WO2019202980A1 - Substrate processing system, substrate processing method, and computer storage medium - Google Patents

Substrate processing system, substrate processing method, and computer storage medium Download PDF

Info

Publication number
WO2019202980A1
WO2019202980A1 PCT/JP2019/014742 JP2019014742W WO2019202980A1 WO 2019202980 A1 WO2019202980 A1 WO 2019202980A1 JP 2019014742 W JP2019014742 W JP 2019014742W WO 2019202980 A1 WO2019202980 A1 WO 2019202980A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processed
wafer
substrate processing
unit
Prior art date
Application number
PCT/JP2019/014742
Other languages
French (fr)
Japanese (ja)
Inventor
隼斗 田之上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2019202980A1 publication Critical patent/WO2019202980A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a substrate processing system, a substrate processing method, and a computer storage medium.
  • a wafer is thinned by grinding the back surface of a semiconductor wafer (hereinafter referred to as a wafer) having a plurality of devices such as electronic circuits formed on the surface.
  • a wafer reinforcing support substrate is bonded to the surface of the wafer.
  • a dicing tape is affixed to the back surface of the wafer and is fixed to the annular dicing frame via the dicing tape for the purpose of suppressing damage to the wafer and the like.
  • the wafer to which the dicing tape is attached is divided into individual chips by expanding (expanding) the dicing tape (see Patent Document 1).
  • the supporting substrate for reinforcing the wafer needs to be peeled off from the wafer before the expanding process.
  • a support tape on which an adhesive layer whose adhesive strength is reduced by heat is formed is used for bonding the support substrate and the wafer.
  • heat is provided to an adhesive layer with respect to the wafer of the state joined to the support substrate via the support tape, and being fixed to the dicing frame via the dicing tape, and the support tape
  • the supporting tape (supporting substrate) is peeled off from the wafer.
  • Patent Document 2 when the support tape (support substrate) is peeled from the wafer, heat is applied to the pressure-sensitive adhesive layer, and the device on the wafer surface may be damaged by the heat.
  • Patent Document 1 does not disclose or suggest anything regarding this point. Therefore, there is room for improvement in the conventional support substrate peeling method.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to appropriately peel the superposed substrate bonded through an adhesive member from the substrate to be processed and the support substrate.
  • One embodiment of the present invention that solves the above problem is a substrate processing system for processing a superposed substrate in which a substrate to be processed and a support substrate are bonded via an adhesive member whose adhesiveness is reduced by heat, the substrate being processed
  • a heating unit that heats the support substrate side when peeling the substrate from the support substrate; and a cooling unit that cools the substrate side to be processed when the support substrate side is heated by the heating unit.
  • Another aspect of the present invention is a substrate processing method for processing a superposed substrate in which a substrate to be processed and a support substrate are bonded via an adhesive member whose adhesiveness is reduced by heat, the heating unit A heat treatment step of heating the support substrate side and cooling the substrate to be processed by a cooling unit, and then a peeling step of peeling the substrate to be processed and the support substrate.
  • a readable computer storing a program that operates on a computer of a control unit that controls the substrate processing system so that the substrate processing method is executed by the substrate processing system. It is a storage medium.
  • a superposed substrate bonded through an adhesive member can be appropriately peeled from a substrate to be processed and a support substrate.
  • 1 is a plan view schematically showing an outline of a configuration of a substrate processing system according to a first embodiment. It is a side view which shows the outline of a structure of a superposition
  • FIG. 1 is a plan view schematically showing an outline of a configuration of a substrate processing system 1 according to the first embodiment.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction that are orthogonal to each other are defined, and the positive direction of the Z-axis is the vertically upward direction.
  • polymerization is performed by bonding a processing target wafer W as a processing target substrate and a supporting wafer S as a supporting substrate via an adhesive tape B as an adhesive member.
  • the wafer T is processed.
  • a surface bonded to the support wafer S via the adhesive tape B is referred to as a “bonding surface Wj”, and a surface opposite to the bonding surface Wj is referred to as a “non-bonding surface Wn”.
  • a surface bonded to the processing target wafer W via the adhesive tape B is referred to as a “bonded surface Sj”, and a surface opposite to the bonded surface Sj is referred to as a “non-bonded surface Sn”.
  • a state in which the support wafer S is removed from the overlapped wafer T may also be referred to as a overlapped wafer T.
  • a mounting process is performed in which a die attach film D (DAF: Die Attach Film) and a dicing tape P are attached to the superposed wafer T and fixed to the dicing frame F.
  • DAF Die Attach Film
  • the die attach film D is attached to the wafer W to be processed of the superposed wafer T
  • the dicing tape P is attached to the die attach film D.
  • the wafer fixed to the dicing frame F may also be referred to as a superposed wafer T.
  • the adhesive tape B has, for example, a three-layer structure, that is, adhesive layers Bw and Bs are attached to both surfaces of the base tape Bp.
  • the adhesive layer Bw adheres to the processing wafer W, and the adhesive layer Bs adheres to the support wafer S.
  • the adhesive layer Bw on the wafer W side to be processed is foamed by heat and has a property of reducing adhesiveness (adhesive force).
  • the adhesive layer Bs on the support wafer S side is not foamed by heat, and the adhesiveness is maintained.
  • the processed wafer W is a semiconductor wafer such as a silicon wafer or a compound semiconductor wafer.
  • the wafer W to be processed has a plurality of electronic circuits (devices) formed on the bonding surface Wj.
  • the support wafer S has substantially the same diameter as the wafer W to be processed, and supports the wafer W to be processed.
  • As the support wafer S for example, a silicon wafer is used.
  • the die attach film D has adhesiveness on both surfaces, and bonds the wafers W to be processed when a plurality of wafers W to be processed are stacked. That is, the die attach film D includes a non-bonded surface Wn that is ground as will be described later, and a bonded surface Wj of the wafer to be processed W that is laminated on the one processed wafer W. Join.
  • the dicing tape P has adhesiveness only on one side, and the die attach film D is stuck on the one side. Further, the dicing tape P has an expandability higher than that of the adhesive tape B.
  • the dicing frame F fixes the dicing tape P attached to the wafer W to be processed via the die attach film D, and is made of metal, for example.
  • the substrate processing system 1 stores a superposed wafer T before processing in a cassette C, and carries a plurality of superposed wafers T into the substrate processing system 1 from the outside in units of cassettes.
  • the subsequent superposed wafer T is accommodated in the cassette C, and a plurality of superposed wafers T are unloaded from the substrate processing system 1 to the outside in a cassette unit, and the non-bonded surface Wn of the wafer to be processed W is ground and processed.
  • the carry-in station 2, the transfer station 6, and the processing device 4 are arranged in this order in the Y-axis direction on the X-axis negative direction side.
  • the carry-out station 3 and the processing device 5 are arranged in this order in the Y-axis direction on the X-axis positive direction side.
  • the loading station 2 is provided with a cassette mounting table 10.
  • a cassette mounting table 10 In the illustrated example, a plurality of, for example, two cassettes C can be placed on the cassette mounting table 10 in a line in the X-axis direction.
  • the carry-out station 3 has the same configuration as the carry-in station 2. That is, a cassette mounting table 20 is provided in the carry-out station 3, and two cassettes C, for example, can be mounted in a row in the X-axis direction on the cassette mounting table 20.
  • the processing apparatus 4 includes, for example, a grinding unit as a grinding unit for grinding the non-joint surface Wn of the wafer to be processed W, a cleaning unit for cleaning the non-joint surface Wn of the wafer to be processed W and the non-joint surface Sn of the support wafer S, and the like.
  • the non-joint surface Wn is ground and processed.
  • the structure of the processing apparatus 4 is arbitrary and a well-known apparatus is used for each of the grinding unit and the cleaning unit.
  • the processing apparatus 5 includes a fixing unit 30 as a fixing part, a heat treatment unit 31, and a peeling unit 32 as a peeling part provided in the same apparatus.
  • a fixing unit 30 as a fixing part
  • a heat treatment unit 31 is attached to the superposed wafer T, and a mounting process for fixing the superposed wafer T to the dicing frame F is performed.
  • heat treatment is performed as a pretreatment of the peeling process in the peeling unit 32.
  • a peeling process for peeling the superposed wafer T into the processing target wafer W and the supporting wafer S is performed.
  • the processing apparatus 5 conveys the superposition
  • FIG. A known device is used for each of the fixing unit 30 and the peeling unit 32. The configuration of the heat treatment unit 31 will be described later.
  • the transfer station 6 is provided with a wafer transfer area 40.
  • the wafer transfer area 40 is provided with a wafer transfer device 42 that is movable on a transfer path 41 extending in the X-axis direction.
  • the wafer transfer device 42 has, for example, two transfer arms 43 and 43 that hold and transfer the overlapped wafer T.
  • Each transfer arm 43 is configured to be movable in the horizontal direction, the vertical direction, the horizontal axis, and the vertical axis.
  • the structure of the conveyance arm 43 is not limited to this embodiment, Arbitrary structures can be taken.
  • the above substrate processing system 1 is provided with a control device 50.
  • the control device 50 is a computer, for example, and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling the processing of the superposed wafer T in the substrate processing system 1.
  • the program storage unit also stores a program for controlling operations of drive systems such as the above-described various processing apparatuses and transfer apparatuses to realize later-described wafer processing in the substrate processing system 1.
  • the program is recorded on a computer-readable storage medium H such as a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), or a memory card. May have been installed in the control device 50 from the storage medium H.
  • HD computer-readable hard disk
  • FD flexible disk
  • CD compact disk
  • MO magnetic optical desk
  • the heat treatment unit 31 includes a cooling unit 100 and a heating unit 110.
  • the cooling unit 100 places the superposed wafer T fixed to the dicing frame F. Specifically, the cooling unit 100 abuts on the dicing tape P, that is, places the superposed wafer T with the support wafer S facing upward. Further, the cooling unit 100 is provided with a cooling mechanism 120, and the processing mechanism W cools the processing target wafer W side to a predetermined temperature.
  • the cooling mechanism 120 includes, for example, a cooling pipe 121 through which cooling water circulates inside the cooling unit 100, and a cooling water circulation device 122 that circulates cooling water through the cooling pipe 121. The configuration of the cooling mechanism 120 is not limited to this.
  • the heating unit 110 is provided above the superposed wafer T placed on the cooling unit 100 so as to face the superposed wafer T.
  • An infrared heater that emits infrared rays is used for the heating unit 110.
  • infrared rays R are emitted from the heating unit 110 toward the superposed wafer T.
  • the infrared rays R irradiated from the heating unit 110 pass through the support wafer S, reach the adhesive tape B, and are absorbed. That is, the infrared ray R does not reach the wafer W to be processed.
  • the adhesive tape B is heated by this infrared ray R to a predetermined temperature, for example, 100 ° C. to 130 ° C. Then, the adhesive layer Bw is foamed by heat, and the adhesiveness of the adhesive layer Bw to the processing target wafer W is lowered.
  • the adhesive layer Bs is not foamed by heat, and the adhesiveness of the adhesive layer Bs to the support wafer S does not deteriorate. For this reason, when the superposed wafer T is peeled off from the wafer to be processed W and the support wafer S as will be described later, the adhesive layer Bw having reduced adhesiveness and the wafer to be processed W are appropriately peeled off.
  • the processing target wafer W, the die attach film D, and the dicing tape P are cooled to a predetermined temperature, for example, 40 ° C. by the cooling unit 100. If it does so, it can suppress that each of the device of the to-be-processed wafer W, the die attach film D, and the dicing tape P suffers damage.
  • step A1 the processing target wafer W and the supporting wafer S are bonded via the adhesive tape B as shown in FIG. 5A (step A1). .
  • a dicing apparatus outside the substrate processing system 1 a dicing process using a laser is performed on the processing target wafer W of the overlapped wafer T as shown in FIG. A2).
  • a cassette C storing a plurality of superposed wafers T is loaded into the substrate processing system 1 and mounted on the cassette mounting table 10 of the loading station 2.
  • the overlapped wafer T in the cassette C is taken out by the wafer transfer device 42 and transferred to the processing device 4.
  • the non-bonded surface Wn is ground and processed in a state where the non-bonded surface Wn of the processing target wafer W faces upward as shown in FIG. 5C (step A3).
  • the overlapped wafer T is transferred to the processing apparatus 5 by the wafer transfer apparatus 42.
  • the mounting process is first performed in the fixed unit 30.
  • the dicing tape P is attached to the non-bonding surface Wn, and the dicing frame F is interposed via the dicing tape P. (Step A4).
  • the superposed wafer T is transferred to the heat treatment unit 31 by a transfer device (not shown) in the processing apparatus 5.
  • the superposed wafer T is reversed by a reversing mechanism (not shown) before the heat treatment so that the non-joint surface Sn of the support wafer S faces upward during the heat treatment.
  • the superposed wafer T is placed on the cooling unit 100 as shown in FIG. 4 and FIG. Subsequently, the wafer R, the die attach film D, and the dicing tape P are cooled by the cooling unit 100 while the infrared ray R is irradiated from the heating unit 110 toward the superposed wafer T (step A5).
  • step A5 the adhesive tape B is heated to a predetermined temperature, for example, 100 ° C. to 130 ° C. by infrared rays R. If it does so, adhesive layer Bw will foam and the adhesiveness of adhesive layer Bw with respect to to-be-processed wafer W will fall. On the other hand, the adhesive layer Bs is not foamed by heat, and the adhesiveness of the adhesive layer Bs to the support wafer S does not deteriorate. Air bubbles from the adhesive layer Bw are blocked by the base tape Bp and do not enter the adhesive layer Bs.
  • a predetermined temperature for example, 100 ° C. to 130 ° C. by infrared rays R.
  • the processing target wafer W, the die attach film D, and the dicing tape P are each cooled to a predetermined temperature, for example, 40 ° C. by the cooling unit 100, and are prevented from being damaged. .
  • the overlapped wafer T is transferred to the peeling unit 32 by a transfer device (not shown) in the processing apparatus 5.
  • the supporting wafer S is peeled in a state where the non-joint surface Sn of the supporting wafer S faces upward as shown in FIG. 5 (f) (step A6).
  • the adhesive layer Bs of the adhesive tape B maintains the adhesiveness by the heat treatment in step A5
  • the adhesive layer Bw is foamed and the adhesiveness is lowered.
  • the support wafer S to which the adhesive tape B is attached is appropriately peeled from the wafer to be processed W, with the non-bonding surface Wn of the adhesive layer Bw and the wafer to be processed W as a boundary.
  • the superposed wafer T that has been subjected to all the processes that is, the wafer W to be processed fixed to the dicing frame F, is transferred to the cassette C of the cassette mounting table 20 of the carry-out station 3. Then, the cassette C is unloaded from the substrate processing system 1.
  • the adhesive tape B remaining on the non-bonded surface Wn of the wafer W to be processed is removed by a removal device (not shown) inside or outside the substrate processing system 1.
  • a removal device not shown inside or outside the substrate processing system 1.
  • the adhesive layer Bw is foamed, and the support wafer S to which the adhesive tape B is attached is peeled from the wafer W to be processed. For this reason, when the adhesive tape B does not remain on the wafer W to be processed, this removal process is omitted.
  • the adhesive tape B is heated to a predetermined temperature by irradiating the infrared ray R from the heating unit 110 in Step A5, and the adhesive layer Bw is foamed to reduce the adhesiveness. If it does so, the to-be-processed wafer W and the support wafer S can be appropriately peeled in step A6.
  • the infrared ray R is used in step A5, even if the support wafer S is a silicon wafer, the infrared ray R can be transmitted and the adhesive tape B can be heated appropriately.
  • a silicon wafer as the support wafer S in this way, the in-plane uniformity of the thickness of the overlapped wafer T when the wafer to be processed W and the support wafer S are bonded in step A1 can be improved.
  • an infrared heater for the heating unit 110 and a silicon wafer for the support wafer S the respective costs can be suppressed, and the manufacturing cost can be reduced.
  • step A5 since the adhesive tape B is heated by the heating unit 110 and at the same time, the processing target wafer W, the die attach film D, and the dicing tape P are cooled by the cooling unit 100. Each of the film D and the dicing tape P can be prevented from being damaged.
  • FIG. 6 is a plan view schematically showing an outline of the configuration of the substrate processing system 200 according to the second embodiment.
  • the substrate processing system 200 further includes a dicing apparatus 210 as a dicing unit in the configuration of the substrate processing system 1 of the first embodiment.
  • the dicing apparatus 210 is disposed, for example, on the X axis negative direction side of the wafer transfer region 40. In the dicing apparatus 210, dicing processing using a laser is performed on the processing target wafer W of the overlapped wafer T.
  • wafer processing can be performed according to the procedure shown in FIG. 5 in the first embodiment.
  • the dicing process of Step A2 performed outside the substrate processing system 1 in the first embodiment can be performed by the dicing apparatus 210 inside the substrate processing system 200.
  • step A2 dicing process
  • step A3 grinding process
  • step B2 the order of step A2 (dicing process) and step A3 (grinding process) shown in FIG. 5 in the first embodiment is reversed. That is, after the non-bonded surface Wn of the processing target wafer W is ground and processed in the processing apparatus 4 as shown in FIG. 7B (step B2), the target is processed in the dicing apparatus 210 as shown in FIG. Dicing processing is performed on the processing wafer W (step B3).
  • the other steps A1, A4 to A7 in the second embodiment are the same as steps A1, A4 to A7 in the first embodiment, respectively.
  • the substrate processing system 200 according to the present embodiment can cope with any of the dicing process and the grinding process.
  • the heat treatment unit 31 may have a shielding plate 300 as a shielding part.
  • the shielding plate 300 is provided in an annular shape so as to cover the overlapped wafer T in a plan view. Further, the height position of the shielding plate 300 is not particularly limited, but is disposed slightly above the support wafer S, for example.
  • the shielding plate 300 is provided between the heating unit 110 and the exposed surface Pa of the dicing tape P (the surface exposed between the die attach film D and the dicing frame F).
  • the shielding plate 300 may reflect the infrared ray R using, for example, a metal plate, or may absorb the infrared ray R.
  • the infrared rays R from the heating unit 110 are shielded by the shielding plate 300 and are not irradiated to the exposed surface Pa of the dicing tape P. For this reason, it can suppress that the said exposed surface Pa suffers damage.
  • the die attach film D also has a larger diameter than the superposed wafer T and has an exposed surface Da. However, the exposed surface Da can be prevented from being damaged.
  • the heat treatment unit 31 may have a shade 310 as a shielding portion.
  • the shade 310 is provided in a cylindrical shape extending downward from the heating unit 110.
  • the shade 310 may reflect the infrared ray R using, for example, a metal plate, or may absorb the infrared ray R.
  • the infrared rays R from the heating unit 110 are shielded by the shade 310 and do not diffuse outside the overlapped wafer T in plan view. For this reason, the infrared rays R from the heating unit 110 are not irradiated on the exposed surface Pa of the dicing tape P and the exposed surface Da of the die attach film D, and the exposed surfaces Pa and Da are prevented from being damaged. can do.
  • the heat treatment unit 31 may have a rotation mechanism 320 that rotates the cooling unit 100.
  • the heating unit 110 irradiates the adhesive tape B with infrared rays R while rotating the cooling unit 100 (overlapping wafer T) by the rotation mechanism 320. If it does so, the infrared rays R can be uniformly irradiated in the surface of the adhesive tape B, and the adhesive layer Bw can be uniformly heated and foamed evenly.
  • the cooling unit 100 of this example is provided with a cooling mechanism 130 instead of the cooling mechanism 120.
  • the cooling mechanism 130 includes, for example, a cooling pipe 131 that circulates cooling water inside the cooling unit 100 and a cooling water supply device 132 that supplies the cooling water to the cooling pipe 131.
  • circulated the cooling pipe 131 is discharged
  • the heating unit 110 heated the adhesive tape B with infrared rays R, but the heating method is not limited to this.
  • the adhesive tape B may be heated by bringing a hot plate (not shown) into contact with the non-bonding surface Wn of the support wafer S.
  • the adhesive layer Bw on the processed wafer W side is foamed by heat, but the adhesive layer Bs on the support wafer S side may be foamed by heat.
  • the adhesive tape B remains on the bonding surface Wj of the wafer W to be processed when the support wafer S is peeled from the wafer W to be processed in Step A6. For this reason, it is necessary to remove the adhesive tape B from the non-joint surface Wn in a removal apparatus inside or outside the substrate processing systems 1 and 200.
  • the adhesive layer Bw is foamed by heat.
  • the adhesive layer Bw is not limited to foaming if the adhesiveness of the adhesive layer Bw is reduced by heat.
  • the adhesive layer Bw may be softened by heat so that the adhesiveness is lowered.
  • the adhesive tape B has a three-layer structure of the base tape Bp and the adhesive layers Bw and Bs, but is not limited to this.
  • the adhesive tape B may omit the base tape Bp and have a two-layer structure of adhesive layers Bw and Bs.
  • the support wafer S which is a silicon wafer is used as the support substrate, but a glass substrate may be used. Even if a glass substrate is used as the support substrate, infrared rays R can be transmitted and the adhesive tape B can be heated.
  • the die attach film D is attached to the superposed wafer T, but the die attach film D is omitted depending on the specifications required for the product. Even in such a case, in the heat treatment unit 31, in order to protect the device of the wafer to be processed W and the dicing tape P, the cooling unit 100 cools the wafer to be processed W and the dicing tape P to a predetermined temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Dicing (AREA)

Abstract

Provided is a substrate processing system for processing an overlapping substrate in which a substrate to be processed and a support substrate are bonded together via an adhesive member adhesiveness of which is lowered by heat, the substrate processing system including a heating portion that heats the support substrate side when pealing the substrate to be processed and the support substrate from each other, and a cooling portion that cools the side of the substrate to be processed when heating the support substrate side by the heating portion.

Description

基板処理システム、基板処理方法及びコンピュータ記憶媒体Substrate processing system, substrate processing method, and computer storage medium
 (関連出願の相互参照)
 本願は、2018年4月16日に日本国に出願された特願2018-078144号に基づき、優先権を主張し、その内容をここに援用する。
(Cross-reference of related applications)
This application claims priority based on Japanese Patent Application No. 2018-078144 for which it applied to Japan on April 16, 2018, and uses the content here.
 本発明は、基板処理システム、基板処理方法及びコンピュータ記憶媒体に関する。 The present invention relates to a substrate processing system, a substrate processing method, and a computer storage medium.
 近年、半導体デバイスの製造工程においては、表面に複数の電子回路等のデバイスが形成された半導体ウェハ(以下、ウェハという)に対し、当該ウェハの裏面を研削などして、ウェハを薄化することが行われている。この研削処理の際のウェハ割れを抑制すること等を目的として、例えばウェハ補強用の支持基板をウェハの表面に接合することが行われている。また、研削処理後のウェハは、当該ウェハの損傷を抑制すること等を目的として、ダイシングテープがウェハの裏面に貼り付けられ、当該ダイシングテープを介して、環状のダイシングフレームに固定される。また、ダイシングテープが貼り付けられたウェハは、当該ダイシングテープが拡張(エキスパンド)されることで、個々のチップに分割される(特許文献1参照)。 In recent years, in a semiconductor device manufacturing process, a wafer is thinned by grinding the back surface of a semiconductor wafer (hereinafter referred to as a wafer) having a plurality of devices such as electronic circuits formed on the surface. Has been done. For the purpose of suppressing wafer breakage during the grinding process, for example, a wafer reinforcing support substrate is bonded to the surface of the wafer. In addition, a dicing tape is affixed to the back surface of the wafer and is fixed to the annular dicing frame via the dicing tape for the purpose of suppressing damage to the wafer and the like. In addition, the wafer to which the dicing tape is attached is divided into individual chips by expanding (expanding) the dicing tape (see Patent Document 1).
 ところで、ウェハ補強用の支持基板はエキスパンド処理の前にウェハから剥離する必要がある。特許文献2に開示の支持基板(支持テープ)の剥離方法では、支持基板とウェハの接合に、熱により粘着力が低下する粘着剤層が形成された支持テープを用いている。そして、当該剥離方法では、支持テープを介して支持基板に接合され、かつダイシングテープを介してダイシングフレームに固定された状態のウェハに対して、熱を粘着剤層に付与することで、支持テープの接着力を低下させ、当該支持テープ(支持基板)をウェハから剥離している。 Incidentally, the supporting substrate for reinforcing the wafer needs to be peeled off from the wafer before the expanding process. In the peeling method of the support substrate (support tape) disclosed in Patent Document 2, a support tape on which an adhesive layer whose adhesive strength is reduced by heat is formed is used for bonding the support substrate and the wafer. And in the said peeling method, heat is provided to an adhesive layer with respect to the wafer of the state joined to the support substrate via the support tape, and being fixed to the dicing frame via the dicing tape, and the support tape The supporting tape (supporting substrate) is peeled off from the wafer.
日本国特開2007-67278号公報Japanese Unexamined Patent Publication No. 2007-67278 日本国特開2003-173989号公報Japanese Laid-Open Patent Publication No. 2003-173989
 しかしながら、特許文献2に開示の剥離方法では、ウェハから支持テープ(支持基板)を剥離する際、熱を粘着剤層に付与するが、その熱によりウェハ表面のデバイスが損傷を被るおそれがある。また特許文献1は、この点に関し、何らの開示も示唆もしていない。したがって、従来の支持基板の剥離方法には改善の余地がある。 However, in the peeling method disclosed in Patent Document 2, when the support tape (support substrate) is peeled from the wafer, heat is applied to the pressure-sensitive adhesive layer, and the device on the wafer surface may be damaged by the heat. In addition, Patent Document 1 does not disclose or suggest anything regarding this point. Therefore, there is room for improvement in the conventional support substrate peeling method.
 本発明は、上記事情に鑑みてなされたものであり、接着部材を介して接合された重合基板を、被処理基板と支持基板に適切に剥離することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to appropriately peel the superposed substrate bonded through an adhesive member from the substrate to be processed and the support substrate.
 上記課題を解決する本発明の一態様は、熱により接着性が低下する接着部材を介して被処理基板と支持基板とが接合された重合基板を処理する基板処理システムであって、前記被処理基板と前記支持基板を剥離する際に、前記支持基板側を加熱する加熱部と、前記加熱部によって前記支持基板側を加熱する際に、前記被処理基板側を冷却する冷却部と、を有する。 One embodiment of the present invention that solves the above problem is a substrate processing system for processing a superposed substrate in which a substrate to be processed and a support substrate are bonded via an adhesive member whose adhesiveness is reduced by heat, the substrate being processed A heating unit that heats the support substrate side when peeling the substrate from the support substrate; and a cooling unit that cools the substrate side to be processed when the support substrate side is heated by the heating unit. .
 別な観点による本発明の一態様は、熱により接着性が低下する接着部材を介して被処理基板と支持基板とが接合された重合基板を処理する基板処理方法であって、加熱部によって前記支持基板側を加熱すると共に、冷却部によって前記被処理基板側を冷却する熱処理工程と、その後、前記被処理基板と前記支持基板を剥離する剥離工程と、を有する。 Another aspect of the present invention according to another aspect is a substrate processing method for processing a superposed substrate in which a substrate to be processed and a support substrate are bonded via an adhesive member whose adhesiveness is reduced by heat, the heating unit A heat treatment step of heating the support substrate side and cooling the substrate to be processed by a cooling unit, and then a peeling step of peeling the substrate to be processed and the support substrate.
 また別な観点による本発明の一態様によれば、前記基板処理方法を基板処理システムによって実行させるように当該基板処理システムを制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体である。 According to another aspect of the present invention, a readable computer storing a program that operates on a computer of a control unit that controls the substrate processing system so that the substrate processing method is executed by the substrate processing system. It is a storage medium.
 本発明の一態様によれば、接着部材を介して接合された重合基板を、被処理基板と支持基板に適切に剥離することができる。 According to one embodiment of the present invention, a superposed substrate bonded through an adhesive member can be appropriately peeled from a substrate to be processed and a support substrate.
第1の実施形態にかかる基板処理システムの構成の概略を模式的に示す平面図である。1 is a plan view schematically showing an outline of a configuration of a substrate processing system according to a first embodiment. 重合ウェハの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of a superposition | polymerization wafer. 接着テープの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of an adhesive tape. 熱処理ユニットの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the heat processing unit. 第1の実施形態におけるウェハ処理の主な工程時の重合ウェハの様子を示す図である。It is a figure which shows the mode of the superposition | polymerization wafer at the time of the main process of the wafer process in 1st Embodiment. 第2の実施形態にかかる基板処理システムの構成の概略を模式的に示す平面図である。It is a top view which shows typically the outline of the structure of the substrate processing system concerning 2nd Embodiment. 第2の実施形態におけるウェハ処理の主な工程時の重合ウェハの様子を示す図である。It is a figure which shows the mode of the superposition | polymerization wafer at the time of the main process of the wafer process in 2nd Embodiment. 他の実施形態にかかる熱処理ユニットの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the heat processing unit concerning other embodiment. 他の実施形態にかかる熱処理ユニットの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the heat processing unit concerning other embodiment. 他の実施形態にかかる熱処理ユニットの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the heat processing unit concerning other embodiment.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
 先ず、本発明の第1の実施形態について説明する。図1は、第1の実施形態にかかる基板処理システム1の構成の概略を模式的に示す平面図である。なお、以下においては、位置関係を明確にするために、互いに直交するX軸方向、Y軸方向及びZ軸方向を規定し、Z軸正方向を鉛直上向き方向とする。 First, a first embodiment of the present invention will be described. FIG. 1 is a plan view schematically showing an outline of a configuration of a substrate processing system 1 according to the first embodiment. In the following, in order to clarify the positional relationship, the X-axis direction, the Y-axis direction, and the Z-axis direction that are orthogonal to each other are defined, and the positive direction of the Z-axis is the vertically upward direction.
 本実施形態の基板処理システム1では、図2に示すように接着部材としての接着テープBを介して、被処理基板としての被処理ウェハWと支持基板としての支持ウェハSとが接合された重合ウェハTを処理する。以下、被処理ウェハWにおいて、接着テープBを介して支持ウェハSと接合された面を「接合面Wj」といい、当該接合面Wjと反対側の面を「非接合面Wn」という。同様に、支持ウェハSにおいて、接着テープBを介して被処理ウェハWと接合された面を「接合面Sj」といい、接合面Sjと反対側の面を「非接合面Sn」という。なお、以下の説明では、重合ウェハTから支持ウェハSが取り外された状態のものも重合ウェハTという場合がある。 In the substrate processing system 1 according to the present embodiment, as shown in FIG. 2, polymerization is performed by bonding a processing target wafer W as a processing target substrate and a supporting wafer S as a supporting substrate via an adhesive tape B as an adhesive member. The wafer T is processed. Hereinafter, in the processing target wafer W, a surface bonded to the support wafer S via the adhesive tape B is referred to as a “bonding surface Wj”, and a surface opposite to the bonding surface Wj is referred to as a “non-bonding surface Wn”. Similarly, in the support wafer S, a surface bonded to the processing target wafer W via the adhesive tape B is referred to as a “bonded surface Sj”, and a surface opposite to the bonded surface Sj is referred to as a “non-bonded surface Sn”. In the following description, a state in which the support wafer S is removed from the overlapped wafer T may also be referred to as a overlapped wafer T.
 また、本実施形態の基板処理システム1では、後述するように、重合ウェハTにダイアタッチフィルムD(DAF:Die Attach Film)とダイシングテープPを貼り付け、ダイシングフレームFに固定するマウント処理が行われる。具体的には、重合ウェハTの被処理ウェハWにダイアタッチフィルムDが貼り付けられ、さらにダイアタッチフィルムDにダイシングテープPが貼り付けられる。以下の説明では、ダイシングフレームFに固定された状態のものも重合ウェハTという場合がある。 Further, in the substrate processing system 1 of the present embodiment, as will be described later, a mounting process is performed in which a die attach film D (DAF: Die Attach Film) and a dicing tape P are attached to the superposed wafer T and fixed to the dicing frame F. Is called. Specifically, the die attach film D is attached to the wafer W to be processed of the superposed wafer T, and the dicing tape P is attached to the die attach film D. In the following description, the wafer fixed to the dicing frame F may also be referred to as a superposed wafer T.
 接着テープBは、図3に示すように例えば3層構造を有し、すなわち基材テープBpの両面に接着層Bw、Bsが貼り付けられている。接着層Bwは被処理ウェハWに接着し、接着層Bsは支持ウェハSに接着する。接着層Bw、Bsのうち、被処理ウェハW側の接着層Bwは熱により発泡し、接着性(接着力)が低下する性質を有する。一方、支持ウェハS側の接着層Bsは熱により発泡せず、接着性が維持される。 As shown in FIG. 3, the adhesive tape B has, for example, a three-layer structure, that is, adhesive layers Bw and Bs are attached to both surfaces of the base tape Bp. The adhesive layer Bw adheres to the processing wafer W, and the adhesive layer Bs adheres to the support wafer S. Of the adhesive layers Bw and Bs, the adhesive layer Bw on the wafer W side to be processed is foamed by heat and has a property of reducing adhesiveness (adhesive force). On the other hand, the adhesive layer Bs on the support wafer S side is not foamed by heat, and the adhesiveness is maintained.
 被処理ウェハWは、例えばシリコンウェハや化合物半導体ウェハなどの半導体ウェハである。被処理ウェハWは、接合面Wjに複数の電子回路(デバイス)が形成されている。 The processed wafer W is a semiconductor wafer such as a silicon wafer or a compound semiconductor wafer. The wafer W to be processed has a plurality of electronic circuits (devices) formed on the bonding surface Wj.
 支持ウェハSは、被処理ウェハWの径と略同じ径を有し、当該被処理ウェハWを支持するものである。支持ウェハSとしては、例えばシリコンウェハが用いられる。 The support wafer S has substantially the same diameter as the wafer W to be processed, and supports the wafer W to be processed. As the support wafer S, for example, a silicon wafer is used.
 ダイアタッチフィルムDは、両面に接着性を有し、被処理ウェハWを複数積層する際の、当該被処理ウェハW同士を接合するものである。すなわち、ダイアタッチフィルムDは、一の被処理ウェハWのうち、後述するように研削された非接合面Wnと、当該一の被処理ウェハWに積層される被処理ウェハWの接合面Wjとを接合する。 The die attach film D has adhesiveness on both surfaces, and bonds the wafers W to be processed when a plurality of wafers W to be processed are stacked. That is, the die attach film D includes a non-bonded surface Wn that is ground as will be described later, and a bonded surface Wj of the wafer to be processed W that is laminated on the one processed wafer W. Join.
 ダイシングテープPは、片面のみに接着性を有し、当該片面にダイアタッチフィルムDが貼り付けられている。また、ダイシングテープPは、接着テープBより高いエキスパンド性を有する。ダイシングフレームFは、ダイアタッチフィルムDを介して被処理ウェハWに貼り付けられたダイシングテープPを固定するものであり、例えば金属製である。 The dicing tape P has adhesiveness only on one side, and the die attach film D is stuck on the one side. Further, the dicing tape P has an expandability higher than that of the adhesive tape B. The dicing frame F fixes the dicing tape P attached to the wafer W to be processed via the die attach film D, and is made of metal, for example.
 図1に示すように基板処理システム1は、処理前の重合ウェハTをカセットC内に収納し、複数の重合ウェハTをカセット単位で外部から基板処理システム1に搬入する搬入ステーション2と、処理後の重合ウェハTをカセットC内に収納し、複数の重合ウェハTをカセット単位で基板処理システム1から外部に搬出する搬出ステーション3と、被処理ウェハWの非接合面Wnを研削して加工する加工装置4と、上述のマウント処理や支持ウェハSを剥離する処理等を行う処理装置5と、搬入ステーション2、加工装置4、及び処理装置5の間で重合ウェハTを搬送する搬送ステーション6と、を接続した構成を有している。搬入ステーション2、搬送ステーション6、及び加工装置4は、X軸負方向側においてY軸方向にこの順で並べて配置されている。搬出ステーション3と処理装置5は、X軸正方向側においてY軸方向にこの順で並べて配置されている。 As shown in FIG. 1, the substrate processing system 1 stores a superposed wafer T before processing in a cassette C, and carries a plurality of superposed wafers T into the substrate processing system 1 from the outside in units of cassettes. The subsequent superposed wafer T is accommodated in the cassette C, and a plurality of superposed wafers T are unloaded from the substrate processing system 1 to the outside in a cassette unit, and the non-bonded surface Wn of the wafer to be processed W is ground and processed. A processing apparatus 4 for performing the above-described processing, a processing apparatus 5 for performing the above-described mounting process, a process for separating the support wafer S, and the like, and a transfer station 6 for transferring the superposed wafer T among the carry-in station 2, the processing apparatus 4 and the processing apparatus 5. Are connected to each other. The carry-in station 2, the transfer station 6, and the processing device 4 are arranged in this order in the Y-axis direction on the X-axis negative direction side. The carry-out station 3 and the processing device 5 are arranged in this order in the Y-axis direction on the X-axis positive direction side.
 搬入ステーション2には、カセット載置台10が設けられている。図示の例では、カセット載置台10には、複数、例えば2つのカセットCをX軸方向に一列に載置自在になっている。 The loading station 2 is provided with a cassette mounting table 10. In the illustrated example, a plurality of, for example, two cassettes C can be placed on the cassette mounting table 10 in a line in the X-axis direction.
 搬出ステーション3も、搬入ステーション2と同様の構成を有している。すなわち、搬出ステーション3にはカセット載置台20が設けられ、カセット載置台20には、例えば2つのカセットCをX軸方向に一列に載置自在になっている。 The carry-out station 3 has the same configuration as the carry-in station 2. That is, a cassette mounting table 20 is provided in the carry-out station 3, and two cassettes C, for example, can be mounted in a row in the X-axis direction on the cassette mounting table 20.
 加工装置4は、例えば被処理ウェハWの非接合面Wnを研削する研削部としての研削ユニット、被処理ウェハWの非接合面Wnや支持ウェハSの非接合面Snを洗浄する洗浄ユニットなどを備え、非接合面Wnを研削して加工する。なお、加工装置4の構成は任意であり、研削ユニットや洗浄ユニットにはそれぞれ公知の装置が用いられる。 The processing apparatus 4 includes, for example, a grinding unit as a grinding unit for grinding the non-joint surface Wn of the wafer to be processed W, a cleaning unit for cleaning the non-joint surface Wn of the wafer to be processed W and the non-joint surface Sn of the support wafer S, and the like. The non-joint surface Wn is ground and processed. In addition, the structure of the processing apparatus 4 is arbitrary and a well-known apparatus is used for each of the grinding unit and the cleaning unit.
 処理装置5は、固定部としての固定ユニット30と、熱処理ユニット31と、剥離部としての剥離ユニット32とが同一の装置内に設けられたものである。固定ユニット30では、重合ウェハTにダイシングテープPを貼り付け、当該重合ウェハTをダイシングフレームFに固定するマウント処理が行われる。熱処理ユニット31では、剥離ユニット32における剥離処理の前処理としての熱処理が行われる。剥離ユニット32では、重合ウェハTを被処理ウェハWと支持ウェハSに剥離する剥離処理が行われる。そして、処理装置5は、各種処理が行われた重合ウェハTを搬出ステーション3のカセットCに搬送する。なお、固定ユニット30と剥離ユニット32にはそれぞれ、公知の装置が用いられる。また、熱処理ユニット31の構成は後述する。 The processing apparatus 5 includes a fixing unit 30 as a fixing part, a heat treatment unit 31, and a peeling unit 32 as a peeling part provided in the same apparatus. In the fixing unit 30, a dicing tape P is attached to the superposed wafer T, and a mounting process for fixing the superposed wafer T to the dicing frame F is performed. In the heat treatment unit 31, heat treatment is performed as a pretreatment of the peeling process in the peeling unit 32. In the peeling unit 32, a peeling process for peeling the superposed wafer T into the processing target wafer W and the supporting wafer S is performed. And the processing apparatus 5 conveys the superposition | polymerization wafer T in which various processes were performed to the cassette C of the unloading station 3. FIG. A known device is used for each of the fixing unit 30 and the peeling unit 32. The configuration of the heat treatment unit 31 will be described later.
 搬送ステーション6には、ウェハ搬送領域40が設けられている。ウェハ搬送領域40には、X軸方向に延伸する搬送路41上を移動自在なウェハ搬送装置42が設けられている。ウェハ搬送装置42は、重合ウェハTを保持して搬送する、例えば2本の搬送アーム43、43を有している。各搬送アーム43は、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。なお、搬送アーム43の構成は本実施形態に限定されず、任意の構成を取り得る。 The transfer station 6 is provided with a wafer transfer area 40. The wafer transfer area 40 is provided with a wafer transfer device 42 that is movable on a transfer path 41 extending in the X-axis direction. The wafer transfer device 42 has, for example, two transfer arms 43 and 43 that hold and transfer the overlapped wafer T. Each transfer arm 43 is configured to be movable in the horizontal direction, the vertical direction, the horizontal axis, and the vertical axis. In addition, the structure of the conveyance arm 43 is not limited to this embodiment, Arbitrary structures can be taken.
 以上の基板処理システム1には、制御装置50が設けられている。制御装置50は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、基板処理システム1における重合ウェハTの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、基板処理システム1における後述のウェハ処理を実現させるためのプログラムも格納されている。なお、前記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、その記憶媒体Hから制御装置50にインストールされたものであってもよい。 The above substrate processing system 1 is provided with a control device 50. The control device 50 is a computer, for example, and has a program storage unit (not shown). The program storage unit stores a program for controlling the processing of the superposed wafer T in the substrate processing system 1. The program storage unit also stores a program for controlling operations of drive systems such as the above-described various processing apparatuses and transfer apparatuses to realize later-described wafer processing in the substrate processing system 1. The program is recorded on a computer-readable storage medium H such as a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), or a memory card. May have been installed in the control device 50 from the storage medium H.
 次に、上述した処理装置5の熱処理ユニット31の構成について説明する。図4に示すように熱処理ユニット31は、冷却部100と加熱部110を有している。 Next, the configuration of the heat treatment unit 31 of the processing apparatus 5 described above will be described. As shown in FIG. 4, the heat treatment unit 31 includes a cooling unit 100 and a heating unit 110.
 冷却部100は、ダイシングフレームFに固定された重合ウェハTを載置する。具体的に冷却部100は、ダイシングテープPに当接し、すなわち支持ウェハSが上側を向いた状態で重合ウェハTを載置する。また、冷却部100には冷却機構120が設けられ、当該冷却機構120によって被処理ウェハW側を所定の温度に冷却する。冷却機構120は、例えば冷却部100の内部を冷却水が循環する冷却管121と、冷却管121に冷却水を循環させる冷却水循環装置122とを有している。なお、冷却機構120の構成はこれに限定されるものではない。 The cooling unit 100 places the superposed wafer T fixed to the dicing frame F. Specifically, the cooling unit 100 abuts on the dicing tape P, that is, places the superposed wafer T with the support wafer S facing upward. Further, the cooling unit 100 is provided with a cooling mechanism 120, and the processing mechanism W cools the processing target wafer W side to a predetermined temperature. The cooling mechanism 120 includes, for example, a cooling pipe 121 through which cooling water circulates inside the cooling unit 100, and a cooling water circulation device 122 that circulates cooling water through the cooling pipe 121. The configuration of the cooling mechanism 120 is not limited to this.
 加熱部110は、冷却部100に載置された重合ウェハTの上方において、当該重合ウェハTに対向して設けられている。加熱部110には、赤外線を照射する赤外線ヒータが用いられる。 The heating unit 110 is provided above the superposed wafer T placed on the cooling unit 100 so as to face the superposed wafer T. An infrared heater that emits infrared rays is used for the heating unit 110.
 かかる構成の熱処理ユニット31では、加熱部110から重合ウェハTに向けて赤外線Rを照射する。加熱部110から照射された赤外線Rは、支持ウェハSを透過し、接着テープBに到達し吸収される。すなわち、赤外線Rは、被処理ウェハWまで到達することはない。そして接着テープBは、この赤外線Rによって所定の温度、例えば100℃~130℃に加熱される。そうすると、熱によって接着層Bwが発泡し、被処理ウェハWに対する接着層Bwの接着性が低下する。一方、接着層Bsは熱により発泡せず、支持ウェハSに対する接着層Bsの接着性は低下しない。このため、後述するように重合ウェハTを被処理ウェハWと支持ウェハSに剥離する際、接着性が低下した接着層Bwと被処理ウェハWが適切に剥離される。 In the heat treatment unit 31 having such a configuration, infrared rays R are emitted from the heating unit 110 toward the superposed wafer T. The infrared rays R irradiated from the heating unit 110 pass through the support wafer S, reach the adhesive tape B, and are absorbed. That is, the infrared ray R does not reach the wafer W to be processed. The adhesive tape B is heated by this infrared ray R to a predetermined temperature, for example, 100 ° C. to 130 ° C. Then, the adhesive layer Bw is foamed by heat, and the adhesiveness of the adhesive layer Bw to the processing target wafer W is lowered. On the other hand, the adhesive layer Bs is not foamed by heat, and the adhesiveness of the adhesive layer Bs to the support wafer S does not deteriorate. For this reason, when the superposed wafer T is peeled off from the wafer to be processed W and the support wafer S as will be described later, the adhesive layer Bw having reduced adhesiveness and the wafer to be processed W are appropriately peeled off.
 また、赤外線Rを照射すると同時に、冷却部100で被処理ウェハW、ダイアタッチフィルムD、及びダイシングテープPを所定の温度、例えば40℃に冷却する。そうすると、被処理ウェハWのデバイス、ダイアタッチフィルムD、及びダイシングテープPのそれぞれが、損傷を被るのを抑制することができる。 Further, simultaneously with the irradiation with the infrared ray R, the processing target wafer W, the die attach film D, and the dicing tape P are cooled to a predetermined temperature, for example, 40 ° C. by the cooling unit 100. If it does so, it can suppress that each of the device of the to-be-processed wafer W, the die attach film D, and the dicing tape P suffers damage.
 次に、以上のように構成された基板処理システム1を用いて行われるウェハ処理について説明する。 Next, wafer processing performed using the substrate processing system 1 configured as described above will be described.
 先ず、基板処理システム1の外部の接合装置(図示せず)において、図5(a)に示すように接着テープBを介して、被処理ウェハWと支持ウェハSが接合される(ステップA1)。その後、基板処理システム1の外部のダイシング装置(図示せず)において、図5(b)に示すように重合ウェハTの被処理ウェハWに対して、レーザを用いたダイシング処理が行われる(ステップA2)。 First, in a bonding apparatus (not shown) outside the substrate processing system 1, the processing target wafer W and the supporting wafer S are bonded via the adhesive tape B as shown in FIG. 5A (step A1). . Thereafter, in a dicing apparatus (not shown) outside the substrate processing system 1, a dicing process using a laser is performed on the processing target wafer W of the overlapped wafer T as shown in FIG. A2).
 その後、複数の重合ウェハTを収納したカセットCが、基板処理システム1に搬入され、搬入ステーション2のカセット載置台10に載置される。 Thereafter, a cassette C storing a plurality of superposed wafers T is loaded into the substrate processing system 1 and mounted on the cassette mounting table 10 of the loading station 2.
 次に、ウェハ搬送装置42によりカセットC内の重合ウェハTが取り出され、加工装置4に搬送される。加工装置4では、図5(c)に示すように被処理ウェハWの非接合面Wnが上側を向いた状態で、当該非接合面Wnが研削され加工される(ステップA3)。 Next, the overlapped wafer T in the cassette C is taken out by the wafer transfer device 42 and transferred to the processing device 4. In the processing apparatus 4, the non-bonded surface Wn is ground and processed in a state where the non-bonded surface Wn of the processing target wafer W faces upward as shown in FIG. 5C (step A3).
 次に、重合ウェハTはウェハ搬送装置42により処理装置5に搬送される。処理装置5では、先ず固定ユニット30においてマウント処理が行われる。図5(d)に示すように被処理ウェハWの非接合面Wnが上側を向いた状態で、当該非接合面WnにダイシングテープPが貼り付けられ、該ダイシングテープPを介してダイシングフレームFに固定される(ステップA4)。 Next, the overlapped wafer T is transferred to the processing apparatus 5 by the wafer transfer apparatus 42. In the processing device 5, the mounting process is first performed in the fixed unit 30. As shown in FIG. 5D, with the non-bonding surface Wn of the wafer W to be processed facing upward, the dicing tape P is attached to the non-bonding surface Wn, and the dicing frame F is interposed via the dicing tape P. (Step A4).
 次に、重合ウェハTは、処理装置5内の搬送装置(図示せず)により熱処理ユニット31に搬送される。この際、重合ウェハTは、熱処理時に支持ウェハSの非接合面Snが上側を向くようにするため、熱処理前に反転機構(図示せず)により反転される。 Next, the superposed wafer T is transferred to the heat treatment unit 31 by a transfer device (not shown) in the processing apparatus 5. At this time, the superposed wafer T is reversed by a reversing mechanism (not shown) before the heat treatment so that the non-joint surface Sn of the support wafer S faces upward during the heat treatment.
 熱処理ユニット31では、図4及び図5(e)に示すように重合ウェハTが冷却部100に載置される。続いて、加熱部110から重合ウェハTに向けて赤外線Rを照射すると共に、冷却部100により被処理ウェハW、ダイアタッチフィルムD、及びダイシングテープPを冷却する(ステップA5)。 In the heat treatment unit 31, the superposed wafer T is placed on the cooling unit 100 as shown in FIG. 4 and FIG. Subsequently, the wafer R, the die attach film D, and the dicing tape P are cooled by the cooling unit 100 while the infrared ray R is irradiated from the heating unit 110 toward the superposed wafer T (step A5).
 ステップA5において接着テープBは、赤外線Rによって所定の温度、例えば100℃~130℃に加熱される。そうすると、接着層Bwが発泡し、被処理ウェハWに対する接着層Bwの接着性が低下する。一方、接着層Bsは熱により発泡せず、支持ウェハSに対する接着層Bsの接着性は低下しない。なお、接着層Bwからの気泡は、基材テープBpによって遮られ、接着層Bsに侵入することはない。 In step A5, the adhesive tape B is heated to a predetermined temperature, for example, 100 ° C. to 130 ° C. by infrared rays R. If it does so, adhesive layer Bw will foam and the adhesiveness of adhesive layer Bw with respect to to-be-processed wafer W will fall. On the other hand, the adhesive layer Bs is not foamed by heat, and the adhesiveness of the adhesive layer Bs to the support wafer S does not deteriorate. Air bubbles from the adhesive layer Bw are blocked by the base tape Bp and do not enter the adhesive layer Bs.
 また、この接着テープBの加熱時、被処理ウェハW、ダイアタッチフィルムD、及びダイシングテープPはそれぞれ、冷却部100によって所定の温度、例えば40℃に冷却され、損傷を被るのが抑制される。 In addition, when the adhesive tape B is heated, the processing target wafer W, the die attach film D, and the dicing tape P are each cooled to a predetermined temperature, for example, 40 ° C. by the cooling unit 100, and are prevented from being damaged. .
 次に、重合ウェハTは、処理装置5内の搬送装置(図示せず)により剥離ユニット32に搬送される。剥離ユニット32では、図5(f)に示すように支持ウェハSの非接合面Snが上側を向いた状態で、当該支持ウェハSが剥離される(ステップA6)。この際、ステップA5の熱処理により、接着テープBの接着層Bsは接着性を維持しているが、接着層Bwは発泡して接着性が低下している。このため、接着層Bwと被処理ウェハWの非接合面Wnを境界に、被処理ウェハWから、接着テープBが貼り付けられた支持ウェハSが適切に剥離される。 Next, the overlapped wafer T is transferred to the peeling unit 32 by a transfer device (not shown) in the processing apparatus 5. In the peeling unit 32, the supporting wafer S is peeled in a state where the non-joint surface Sn of the supporting wafer S faces upward as shown in FIG. 5 (f) (step A6). At this time, although the adhesive layer Bs of the adhesive tape B maintains the adhesiveness by the heat treatment in step A5, the adhesive layer Bw is foamed and the adhesiveness is lowered. For this reason, the support wafer S to which the adhesive tape B is attached is appropriately peeled from the wafer to be processed W, with the non-bonding surface Wn of the adhesive layer Bw and the wafer to be processed W as a boundary.
 その後、すべての処理が施された重合ウェハT、すなわちダイシングフレームFに固定された被処理ウェハWは、搬出ステーション3のカセット載置台20のカセットCに搬送される。そして、カセットCは基板処理システム1から搬出される。 Thereafter, the superposed wafer T that has been subjected to all the processes, that is, the wafer W to be processed fixed to the dicing frame F, is transferred to the cassette C of the cassette mounting table 20 of the carry-out station 3. Then, the cassette C is unloaded from the substrate processing system 1.
 その後、基板処理システム1の内部又は外部の除去装置(図示せず)において、被処理ウェハWの非接合面Wnに残存する接着テープBが除去される。なお、上述したようにステップA6では剥離ユニット32において、接着層Bwは発泡し、被処理ウェハWから、接着テープBが貼り付けられた支持ウェハSが剥離される。このため、被処理ウェハWに接着テープBが残存してない場合には、この除去処理は省略される。 Thereafter, the adhesive tape B remaining on the non-bonded surface Wn of the wafer W to be processed is removed by a removal device (not shown) inside or outside the substrate processing system 1. As described above, in step A6, in the peeling unit 32, the adhesive layer Bw is foamed, and the support wafer S to which the adhesive tape B is attached is peeled from the wafer W to be processed. For this reason, when the adhesive tape B does not remain on the wafer W to be processed, this removal process is omitted.
 次に、基板処理システム1の外部のエキスバンド装置(図示せず)において、図5(g)に示すように被処理ウェハWに対してエキスパンド処理が行われ、ダイシングテープPが拡張されることにより、個々のチップに分割される(ステップA7)。こうして、本実施形態の一連のウェハ処理が終了する。 Next, an expanding process is performed on the processing target wafer W as shown in FIG. 5 (g) in an expanding device (not shown) outside the substrate processing system 1, and the dicing tape P is expanded. Thus, the chip is divided into individual chips (step A7). Thus, a series of wafer processing of this embodiment is completed.
 本実施形態によれば、ステップA5において加熱部110から赤外線Rを照射することで接着テープBを所定の温度に加熱し、接着層Bwを発泡させて接着性を低下させる。そうすると、ステップA6において被処理ウェハWと支持ウェハSを適切に剥離させることができる。 According to the present embodiment, the adhesive tape B is heated to a predetermined temperature by irradiating the infrared ray R from the heating unit 110 in Step A5, and the adhesive layer Bw is foamed to reduce the adhesiveness. If it does so, the to-be-processed wafer W and the support wafer S can be appropriately peeled in step A6.
 しかも、ステップA5において赤外線Rを用いているので、支持ウェハSがシリコンウェハであっても、当該赤外線Rを透過させることができ、接着テープBを適切に加熱することができる。そしてこのように支持ウェハSにシリコンウェハを用いることで、ステップA1において被処理ウェハWと支持ウェハSを接合した際の、重合ウェハTの厚みの面内均一性を向上させることができる。さらに、加熱部110に赤外線ヒータを用い、支持ウェハSにシリコンウェハを用いることで、それぞれのコストを抑えることができ、製造コストを低廉化することもできる。 Moreover, since the infrared ray R is used in step A5, even if the support wafer S is a silicon wafer, the infrared ray R can be transmitted and the adhesive tape B can be heated appropriately. By using a silicon wafer as the support wafer S in this way, the in-plane uniformity of the thickness of the overlapped wafer T when the wafer to be processed W and the support wafer S are bonded in step A1 can be improved. Furthermore, by using an infrared heater for the heating unit 110 and a silicon wafer for the support wafer S, the respective costs can be suppressed, and the manufacturing cost can be reduced.
 また、ステップA5では加熱部110によって接着テープBを加熱すると同時に、冷却部100によって被処理ウェハW、ダイアタッチフィルムD、及びダイシングテープPを冷却するので、当該被処理ウェハWのデバイス、ダイアタッチフィルムD、及びダイシングテープPがそれぞれ、損傷を被るのを抑制することができる。 Further, in step A5, since the adhesive tape B is heated by the heating unit 110 and at the same time, the processing target wafer W, the die attach film D, and the dicing tape P are cooled by the cooling unit 100. Each of the film D and the dicing tape P can be prevented from being damaged.
 次に、本発明の第2の実施形態にかかる基板処理システムについて説明する。図6は、第2の実施形態にかかる基板処理システム200の構成の概略を模式的に示す平面図である。 Next, a substrate processing system according to the second embodiment of the present invention will be described. FIG. 6 is a plan view schematically showing an outline of the configuration of the substrate processing system 200 according to the second embodiment.
 基板処理システム200は、第1の実施形態の基板処理システム1の構成において、ダイシング部としてのダイシング装置210をさらに有している。ダイシング装置210は、例えばウェハ搬送領域40のX軸負方向側に配置される。ダイシング装置210では、重合ウェハTの被処理ウェハWに対して、レーザを用いたダイシング処理が行われる。 The substrate processing system 200 further includes a dicing apparatus 210 as a dicing unit in the configuration of the substrate processing system 1 of the first embodiment. The dicing apparatus 210 is disposed, for example, on the X axis negative direction side of the wafer transfer region 40. In the dicing apparatus 210, dicing processing using a laser is performed on the processing target wafer W of the overlapped wafer T.
 基板処理システム200を用いた場合、第1の実施形態において図5に示した手順でウェハ処理を行うことができる。この際、第1の実施形態において基板処理システム1の外部で行っていたステップA2のダイシング処理を、基板処理システム200の内部のダイシング装置210で行うことができる。 When the substrate processing system 200 is used, wafer processing can be performed according to the procedure shown in FIG. 5 in the first embodiment. At this time, the dicing process of Step A2 performed outside the substrate processing system 1 in the first embodiment can be performed by the dicing apparatus 210 inside the substrate processing system 200.
 また、基板処理システム200を用いた場合、図7に示した手順でウェハ処理を行うことも可能となる。図7に示すウェハ処理では、第1の実施形態において図5に示したステップA2(ダイシング処理)とステップA3(研削加工処理)の順序を逆にしている。すなわち、図7(b)に示すように加工装置4において被処理ウェハWの非接合面Wnを研削して加工した後(ステップB2)、図7(c)に示すようにダイシング装置210において被処理ウェハWにダイシング処理を行う(ステップB3)。なお、本第2の実施形態におけるその他のステップA1、A4~A7はそれぞれ、第1の実施形態におけるステップA1、A4~A7と同様である。 Further, when the substrate processing system 200 is used, it is possible to perform wafer processing according to the procedure shown in FIG. In the wafer process shown in FIG. 7, the order of step A2 (dicing process) and step A3 (grinding process) shown in FIG. 5 in the first embodiment is reversed. That is, after the non-bonded surface Wn of the processing target wafer W is ground and processed in the processing apparatus 4 as shown in FIG. 7B (step B2), the target is processed in the dicing apparatus 210 as shown in FIG. Dicing processing is performed on the processing wafer W (step B3). The other steps A1, A4 to A7 in the second embodiment are the same as steps A1, A4 to A7 in the first embodiment, respectively.
 本実施形態であっても、第1の実施形態と同様の効果を享受することができる。しかも、本実施形態の基板処理システム200は、ダイシング処理と研削加工処理のいずれが先であっても、対応することができる。 Even in this embodiment, it is possible to enjoy the same effects as those in the first embodiment. In addition, the substrate processing system 200 according to the present embodiment can cope with any of the dicing process and the grinding process.
 次に、第1の実施形態と第2の実施形態の変形例について説明する。具体的には、熱処理ユニット31の構成の変形例について説明する。 Next, modifications of the first embodiment and the second embodiment will be described. Specifically, a modified example of the configuration of the heat treatment unit 31 will be described.
 図8に示すように熱処理ユニット31は、遮蔽部としての遮蔽板300を有していてもよい。遮蔽板300は、平面視において重合ウェハTを覆うように環状に設けられている。また、遮蔽板300の高さ位置は特に限定されないが、例えば支持ウェハSより僅かに上方に配置されている。このように遮蔽板300は、加熱部110とダイシングテープPの露出面Pa(ダイアタッチフィルムDとダイシングフレームFとの間で露出した面)との間に設けられている。遮蔽板300は、例えば金属板を用いて赤外線Rを反射させてもよいし、あるいは赤外線Rを吸収してもよい。かかる場合、加熱部110からの赤外線Rが遮蔽板300に遮蔽されて、ダイシングテープPの露出面Paに照射されることがない。このため、当該露出面Paが損傷を被るのを抑制することができる。また、ダイアタッチフィルムDも重合ウェハTより大きい径を有し、露出面Daがあるが、当該露出面Daが損傷を被るのも抑制することができる。 As shown in FIG. 8, the heat treatment unit 31 may have a shielding plate 300 as a shielding part. The shielding plate 300 is provided in an annular shape so as to cover the overlapped wafer T in a plan view. Further, the height position of the shielding plate 300 is not particularly limited, but is disposed slightly above the support wafer S, for example. Thus, the shielding plate 300 is provided between the heating unit 110 and the exposed surface Pa of the dicing tape P (the surface exposed between the die attach film D and the dicing frame F). The shielding plate 300 may reflect the infrared ray R using, for example, a metal plate, or may absorb the infrared ray R. In such a case, the infrared rays R from the heating unit 110 are shielded by the shielding plate 300 and are not irradiated to the exposed surface Pa of the dicing tape P. For this reason, it can suppress that the said exposed surface Pa suffers damage. The die attach film D also has a larger diameter than the superposed wafer T and has an exposed surface Da. However, the exposed surface Da can be prevented from being damaged.
 また、図9に示すように熱処理ユニット31は、遮蔽部としてのシェード310を有していてもよい。シェード310は、加熱部110から下方に延伸した円筒形状に設けられる。シェード310は、例えば金属板を用いて赤外線Rを反射させてもよいし、あるいは赤外線Rを吸収してもよい。かかる場合、加熱部110からの赤外線Rはシェード310で遮蔽されて、平面視において重合ウェハTの外方に拡散することがない。このため、加熱部110からの赤外線Rが、ダイシングテープPの露出面PaとダイアタッチフィルムDの露出面Daとに照射されることがなく、当該露出面Pa、Daが損傷を被るのを抑制することができる。 Further, as shown in FIG. 9, the heat treatment unit 31 may have a shade 310 as a shielding portion. The shade 310 is provided in a cylindrical shape extending downward from the heating unit 110. The shade 310 may reflect the infrared ray R using, for example, a metal plate, or may absorb the infrared ray R. In such a case, the infrared rays R from the heating unit 110 are shielded by the shade 310 and do not diffuse outside the overlapped wafer T in plan view. For this reason, the infrared rays R from the heating unit 110 are not irradiated on the exposed surface Pa of the dicing tape P and the exposed surface Da of the die attach film D, and the exposed surfaces Pa and Da are prevented from being damaged. can do.
 また、図10に示すように熱処理ユニット31は、冷却部100を回転させる回転機構320を有していてもよい。かかる場合、ステップA5において、回転機構320により冷却部100(重合ウェハT)を回転させながら、加熱部110から接着テープBに赤外線Rを照射する。そうすると、接着テープBの面内均一に赤外線Rを照射することができ、接着層Bwを均一に加熱してむらなく発泡させることができる。なお、本例の冷却部100には、冷却機構120に代えて、冷却機構130が設けられている。冷却機構130は、例えば冷却部100の内部で冷却水を流通させる冷却管131と、冷却管131に冷却水を供給する冷却水供給装置132とを有している。なお、冷却管131を流通した冷却水は、外部に排出される。 Further, as shown in FIG. 10, the heat treatment unit 31 may have a rotation mechanism 320 that rotates the cooling unit 100. In such a case, in step A5, the heating unit 110 irradiates the adhesive tape B with infrared rays R while rotating the cooling unit 100 (overlapping wafer T) by the rotation mechanism 320. If it does so, the infrared rays R can be uniformly irradiated in the surface of the adhesive tape B, and the adhesive layer Bw can be uniformly heated and foamed evenly. The cooling unit 100 of this example is provided with a cooling mechanism 130 instead of the cooling mechanism 120. The cooling mechanism 130 includes, for example, a cooling pipe 131 that circulates cooling water inside the cooling unit 100 and a cooling water supply device 132 that supplies the cooling water to the cooling pipe 131. In addition, the cooling water which distribute | circulated the cooling pipe 131 is discharged | emitted outside.
 さらに、熱処理ユニット31において加熱部110は赤外線Rにより接着テープBを加熱したが、加熱方法はこれに限定されない。例えば熱板(図示せず)を支持ウェハSの非接合面Wnに当接させて、接着テープBを加熱してもよい。 Furthermore, in the heat treatment unit 31, the heating unit 110 heated the adhesive tape B with infrared rays R, but the heating method is not limited to this. For example, the adhesive tape B may be heated by bringing a hot plate (not shown) into contact with the non-bonding surface Wn of the support wafer S.
 以上の実施形態では、接着テープBにおいて、被処理ウェハW側の接着層Bwが熱により発泡したが、支持ウェハS側の接着層Bsが熱により発泡してもよい。かかる場合、ステップA6において被処理ウェハWから支持ウェハSを剥離する際、被処理ウェハWの接合面Wjに接着テープBが残存する。このため、基板処理システム1、200の内部又は外部の除去装置において、非接合面Wnから接着テープBを除去する必要がある。 In the above embodiment, in the adhesive tape B, the adhesive layer Bw on the processed wafer W side is foamed by heat, but the adhesive layer Bs on the support wafer S side may be foamed by heat. In such a case, the adhesive tape B remains on the bonding surface Wj of the wafer W to be processed when the support wafer S is peeled from the wafer W to be processed in Step A6. For this reason, it is necessary to remove the adhesive tape B from the non-joint surface Wn in a removal apparatus inside or outside the substrate processing systems 1 and 200.
 また、接着テープBにおいて接着層Bwは熱によって発泡したが、接着層Bwが熱によって接着性が低下すれば発泡に限定されない。例えば接着層Bwは熱により軟化して、接着性が低下するようにしてもよい。 In the adhesive tape B, the adhesive layer Bw is foamed by heat. However, the adhesive layer Bw is not limited to foaming if the adhesiveness of the adhesive layer Bw is reduced by heat. For example, the adhesive layer Bw may be softened by heat so that the adhesiveness is lowered.
 また、接着テープBは、基材テープBpと接着層Bw、Bsの3層構造を有していたが、これに限定されない。例えば接着テープBは、基材テープBpを省略し、接着層Bw、Bsの2層構造を有していてもよい。 The adhesive tape B has a three-layer structure of the base tape Bp and the adhesive layers Bw and Bs, but is not limited to this. For example, the adhesive tape B may omit the base tape Bp and have a two-layer structure of adhesive layers Bw and Bs.
 以上の実施形態では、支持基板として、シリコンウェハである支持ウェハSを用いたが、ガラス基板を用いてもよい。支持基板としてガラス基板を用いても、赤外線Rを透過させることができ、接着テープBを加熱することができる。 In the above embodiment, the support wafer S which is a silicon wafer is used as the support substrate, but a glass substrate may be used. Even if a glass substrate is used as the support substrate, infrared rays R can be transmitted and the adhesive tape B can be heated.
 以上の実施形態では、重合ウェハTにはダイアタッチフィルムDが貼り付けられていたが、製品に要求される仕様によってはダイアタッチフィルムDは省略される。かかる場合であっても、熱処理ユニット31では、被処理ウェハWのデバイスとダイシングテープPを保護するため、冷却部100により被処理ウェハWとダイシングテープPを所定の温度に冷却する。 In the above embodiment, the die attach film D is attached to the superposed wafer T, but the die attach film D is omitted depending on the specifications required for the product. Even in such a case, in the heat treatment unit 31, in order to protect the device of the wafer to be processed W and the dicing tape P, the cooling unit 100 cools the wafer to be processed W and the dicing tape P to a predetermined temperature.
 以上、本発明の実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
  1 基板処理システム
  2 搬入ステーション
  3 搬出ステーション
  4 加工装置
  5 処理装置
  6 搬送ステーション
  30 固定ユニット
  31 熱処理ユニット
  32 剥離ユニット
  42 ウェハ搬送装置
  50 制御装置
  100 冷却部
  110 加熱部
  120、130 冷却機構
  200 基板処理システム
  210 ダイシング装置
  300 遮蔽板
  310 シェード
  320 回転機構
  B 接着テープ
  Bp 基材テープ
  Bs、Bw 接着層
  D ダイアタッチフィルム
  F ダイシングフレーム
  P ダイシングテープ
  S 支持ウェハ
  T 重合ウェハ
  W 被処理ウェハ
DESCRIPTION OF SYMBOLS 1 Substrate processing system 2 Carry-in station 3 Carry-out station 4 Processing apparatus 5 Processing apparatus 6 Transfer station 30 Fixed unit 31 Heat treatment unit 32 Peeling unit 42 Wafer transfer apparatus 50 Control apparatus 100 Cooling part 110 Heating part 120, 130 Cooling mechanism 200 Substrate processing system 210 Dicing machine 300 Shielding plate 310 Shade 320 Rotating mechanism B Adhesive tape Bp Base tape Bs, Bw Adhesive layer D Die attach film F Dicing frame P Dicing tape S Support wafer T Polymerized wafer W Processed wafer

Claims (17)

  1. 熱により接着性が低下する接着部材を介して被処理基板と支持基板とが接合された重合基板を処理する基板処理システムであって、
    前記被処理基板と前記支持基板を剥離する際に、前記支持基板側を加熱する加熱部と、
    前記加熱部によって前記支持基板側を加熱する際に、前記被処理基板側を冷却する冷却部と、を有する。
    A substrate processing system for processing a superposed substrate in which a substrate to be processed and a support substrate are bonded via an adhesive member whose adhesiveness is reduced by heat,
    A heating unit that heats the support substrate when the substrate to be processed and the support substrate are separated;
    A cooling unit that cools the substrate to be processed when the supporting unit is heated by the heating unit.
  2. 請求項1に記載の基板処理システムにおいて、
    前記被処理基板の前記接着部材と反対側の非接合面には、ダイシングテープが貼り付けられ、
    前記冷却部は前記ダイシングテープ側を冷却する。
    The substrate processing system according to claim 1,
    A dicing tape is affixed to the non-bonding surface of the substrate to be processed opposite to the adhesive member,
    The cooling unit cools the dicing tape side.
  3. 請求項1に記載の基板処理システムにおいて、
    前記加熱部は、赤外線を用いて前記支持基板側を加熱する。
    The substrate processing system according to claim 1,
    The heating unit heats the support substrate side using infrared rays.
  4. 請求項3に記載の基板処理システムにおいて、
    前記被処理基板の前記接着部材と反対側の非接合面に貼り付けられたダイシングテープの露出面と、前記加熱部との間に設けられ、前記赤外線を遮蔽する遮蔽部を有する。
    The substrate processing system according to claim 3, wherein
    There is a shielding part that is provided between the exposed surface of the dicing tape attached to the non-bonding surface of the substrate to be processed opposite to the adhesive member and the heating unit, and shields the infrared rays.
  5. 請求項4に記載の基板処理システムにおいて、
    前記加熱部は、前記重合基板に対向して配置され、
    前記遮蔽部は、平面視において前記重合基板を囲うように環状に設けられている。
    The substrate processing system according to claim 4, wherein
    The heating unit is disposed to face the polymerization substrate,
    The shielding part is provided in an annular shape so as to surround the overlapping substrate in a plan view.
  6. 請求項4に記載の基板処理システムにおいて、
    前記加熱部は、前記重合基板に対向して配置され、
    前記遮蔽部は、前記加熱部からの赤外線が平面視において前記重合基板の外方に拡散しないように設けられている。
    The substrate processing system according to claim 4, wherein
    The heating unit is disposed to face the polymerization substrate,
    The shielding part is provided so that infrared rays from the heating part do not diffuse outward of the superposed substrate in a plan view.
  7. 請求項1に記載の基板処理システムにおいて、
    前記加熱部による前記支持基板側の加熱と、前記冷却部による前記被処理基板側の冷却とを行う際、前記重合基板を回転させる回転機構を有する。
    The substrate processing system according to claim 1,
    A rotating mechanism that rotates the superposed substrate when heating the supporting substrate by the heating unit and cooling the substrate to be processed by the cooling unit is provided.
  8. 請求項1に記載の基板処理システムにおいて、
    前記被処理基板の前記接着部材と反対側の非接合面を研削する研削部と、
    前記研削部で研削された前記非接合面にダイシングテープを貼り付ける固定部と、
    前記加熱部による前記支持基板側の加熱と、前記冷却部による前記被処理基板側の冷却とが行われた前記重合基板を、前記被処理基板と前記支持基板に剥離する剥離部と、を有する。
    The substrate processing system according to claim 1,
    A grinding part for grinding a non-joint surface of the substrate to be treated opposite to the adhesive member;
    A fixing portion for attaching a dicing tape to the non-joint surface ground by the grinding portion;
    A peeling unit that peels the superposed substrate, which has been heated on the support substrate side by the heating unit and cooled on the substrate to be processed by the cooling unit, from the substrate to be processed and the support substrate; .
  9. 請求項8に記載の基板処理システムにおいて、前記被処理基板をダイシングするダイシング部を有する。 9. The substrate processing system according to claim 8, further comprising a dicing unit for dicing the substrate to be processed.
  10. 熱により接着性が低下する接着部材を介して被処理基板と支持基板とが接合された重合基板を処理する基板処理方法であって、
    加熱部によって前記支持基板側を加熱すると共に、冷却部によって前記被処理基板側を冷却する熱処理工程と、
    その後、前記被処理基板と前記支持基板を剥離する剥離工程と、を有する。
    A substrate processing method for processing a superposed substrate in which a substrate to be processed and a support substrate are bonded via an adhesive member whose adhesiveness is reduced by heat,
    A heat treatment step of heating the support substrate side by a heating unit and cooling the substrate to be processed by a cooling unit;
    Then, it has the peeling process which peels the said to-be-processed substrate and the said support substrate.
  11. 請求項10に記載の基板処理方法において、
    前記被処理基板の前記接着部材と反対側の非接合面には、ダイシングテープが貼り付けられ、
    前記熱処理工程において、前記冷却部は前記ダイシングテープ側を冷却する。
    The substrate processing method according to claim 10,
    A dicing tape is affixed to the non-bonding surface of the substrate to be processed opposite to the adhesive member,
    In the heat treatment step, the cooling unit cools the dicing tape side.
  12. 請求項10に記載の基板処理方法において、
    前記熱処理工程において、前記加熱部は、赤外線を用いて前記支持基板側を加熱する。
    The substrate processing method according to claim 10,
    In the heat treatment step, the heating unit heats the support substrate side using infrared rays.
  13. 請求項12に記載の基板処理方法において、
    前記熱処理工程において、前記被処理基板の前記接着部材と反対側の非接合面に貼り付けられたダイシングテープの露出面と、前記加熱部との間で、前記赤外線を遮蔽する。
    The substrate processing method according to claim 12, wherein
    In the heat treatment step, the infrared ray is shielded between the exposed portion of the dicing tape attached to the non-bonding surface of the substrate to be processed opposite to the bonding member and the heating unit.
  14. 請求項10に記載の基板処理方法において、
    前記熱処理工程において、前記重合基板を回転させながら、前記加熱部によって前記支持基板側を加熱すると共に、前記冷却部によって前記被処理基板側を冷却する。
    The substrate processing method according to claim 10,
    In the heat treatment step, while rotating the superposed substrate, the support substrate side is heated by the heating unit, and the target substrate side is cooled by the cooling unit.
  15. 請求項10に記載の基板処理方法において、
    前記被処理基板の前記接着部材と反対側の非接合面を研削する研削工程と、
    その後、前記研削工程で研削された前記非接合面にダイシングテープを貼り付ける固定工程と、を有し、
    前記固定工程の後、前記熱処理工程と前記剥離工程が順次行われる。
    The substrate processing method according to claim 10,
    A grinding step of grinding a non-joint surface of the substrate to be treated opposite to the adhesive member;
    Thereafter, a fixing step of attaching a dicing tape to the non-joint surface ground in the grinding step,
    After the fixing step, the heat treatment step and the peeling step are sequentially performed.
  16. 請求項15に記載の基板処理方法において、
    前記研削工程の前、又は前記研削工程の後であって前記固定工程の間に、前記被処理基板をダイシングするダイシング工程を有する。
    The substrate processing method according to claim 15, wherein
    A dicing step of dicing the substrate to be processed before the grinding step or after the grinding step and during the fixing step;
  17. 熱により接着性が低下する接着部材を介して被処理基板と支持基板とが接合された重合基板を処理する基板処理方法を基板処理システムによって実行させるように、当該基板処理システムを制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、
    前記基板処理方法は、
    加熱部によって前記支持基板側を加熱すると共に、冷却部によって前記被処理基板側を冷却する熱処理工程と、
    その後、前記被処理基板と前記支持基板を剥離する剥離工程と、を有する。
    A control unit that controls the substrate processing system so that the substrate processing system executes a substrate processing method for processing a superposed substrate in which a substrate to be processed and a support substrate are bonded via an adhesive member whose adhesiveness is reduced by heat. A readable computer storage medium storing a program operating on the computer of
    The substrate processing method includes:
    A heat treatment step of heating the support substrate side by a heating unit and cooling the substrate to be processed by a cooling unit;
    Then, it has the peeling process which peels the said to-be-processed substrate and the said support substrate.
PCT/JP2019/014742 2018-04-16 2019-04-03 Substrate processing system, substrate processing method, and computer storage medium WO2019202980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018078144A JP2021108306A (en) 2018-04-16 2018-04-16 Substrate processing system, substrate processing method, program, and computer storage medium
JP2018-078144 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019202980A1 true WO2019202980A1 (en) 2019-10-24

Family

ID=68238862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014742 WO2019202980A1 (en) 2018-04-16 2019-04-03 Substrate processing system, substrate processing method, and computer storage medium

Country Status (3)

Country Link
JP (1) JP2021108306A (en)
TW (1) TW202004875A (en)
WO (1) WO2019202980A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047770A (en) * 2002-07-12 2004-02-12 Sony Corp Wafer dicing method
JP2005116679A (en) * 2003-10-06 2005-04-28 Nitto Denko Corp Method of separating semiconductor wafer from support member and device using same
JP2014103409A (en) * 2010-08-23 2014-06-05 Tokyo Electron Ltd Peeling device, peeling system, peeling method, program, and computer storage medium
JP2015207756A (en) * 2014-04-10 2015-11-19 東京エレクトロン株式会社 Peeling device and peeling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047770A (en) * 2002-07-12 2004-02-12 Sony Corp Wafer dicing method
JP2005116679A (en) * 2003-10-06 2005-04-28 Nitto Denko Corp Method of separating semiconductor wafer from support member and device using same
JP2014103409A (en) * 2010-08-23 2014-06-05 Tokyo Electron Ltd Peeling device, peeling system, peeling method, program, and computer storage medium
JP2015207756A (en) * 2014-04-10 2015-11-19 東京エレクトロン株式会社 Peeling device and peeling system

Also Published As

Publication number Publication date
JP2021108306A (en) 2021-07-29
TW202004875A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP3816253B2 (en) Manufacturing method of semiconductor device
JP5752639B2 (en) Joining system, joining method, program, and computer storage medium
US20140084423A1 (en) Protective member and wafer processing method
JP6158721B2 (en) Cleaning device, peeling system, cleaning method, program, and computer storage medium
TWI730129B (en) Manufacturing method of semiconductor device
JP6956788B2 (en) Board processing method and board processing system
WO2018110301A1 (en) Substrate treatment device, substrate treatment method, and storage medium
TWI668068B (en) Bonding device, and bonding system
JPWO2020213479A5 (en)
JP2019021859A (en) Substrate processing system
JP6412804B2 (en) Joining method and joining system
WO2019202980A1 (en) Substrate processing system, substrate processing method, and computer storage medium
JP5905509B2 (en) Joining apparatus, joining system, joining method, program, and computer storage medium
JP5905407B2 (en) Sheet peeling apparatus, bonding system, peeling system, sheet peeling method, program, and computer storage medium
WO2019208338A1 (en) Substrate processing system and substrate processing method
JP5869960B2 (en) Joining system, joining method, program, and computer storage medium
KR20240050457A (en) Substrate processing method and substrate processing apparatus
JP2017112337A (en) Peeling system
WO2019039432A1 (en) Substrate processing method, computer storage medium and substrate processing system
TW201907513A (en) Substrate processing apparatus and manufacturing method of substrate holding unit
JP6466217B2 (en) Peeling device and peeling system
JP5323730B2 (en) Joining apparatus, joining method, program, and computer storage medium
WO2022153894A1 (en) Substrate processing device and substrate processing method
TW201921545A (en) Substrate processing system and substrate processing method
US8157621B2 (en) Wafer back side grinding process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP