WO2019202958A1 - 太陽電池デバイスおよび太陽電池デバイスの製造方法 - Google Patents

太陽電池デバイスおよび太陽電池デバイスの製造方法 Download PDF

Info

Publication number
WO2019202958A1
WO2019202958A1 PCT/JP2019/014454 JP2019014454W WO2019202958A1 WO 2019202958 A1 WO2019202958 A1 WO 2019202958A1 JP 2019014454 W JP2019014454 W JP 2019014454W WO 2019202958 A1 WO2019202958 A1 WO 2019202958A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
metal electrode
solar cell
solar
electrode layer
Prior art date
Application number
PCT/JP2019/014454
Other languages
English (en)
French (fr)
Inventor
訓太 吉河
慎也 大本
祐司 ▲高▼橋
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US17/048,945 priority Critical patent/US20210175383A1/en
Priority to JP2020514050A priority patent/JP7353272B2/ja
Publication of WO2019202958A1 publication Critical patent/WO2019202958A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell device and a method for manufacturing the solar cell device.
  • the solar cell string (solar cell device)
  • more solar cells can be mounted on the limited solar cell mounting area in the solar cell module, the light receiving area for photoelectric conversion increases, and the solar cell module Output is improved.
  • the bus bar electrode of one solar cell is covered with the other solar cell in the stacking region in which a part of adjacent solar cells are stacked. The light shielding loss is reduced, and the output of the solar cell module is improved.
  • Patent Document 2 describes a technique for blackening the surface of the light-receiving surface electrode by oxidizing the surface of the light-receiving surface electrode made of a metal such as silver. Thereby, the light-receiving surface electrode can be assimilated with the color of other light-receiving surface portions.
  • Patent Document 2 when the technique described in Patent Document 2 is applied to a solar cell string (solar cell device), when electrically connecting a plurality of double-sided electrode type solar cells, the contact resistance of the electrode connection portion increases, It is considered that the output of the solar cell string (solar cell device) decreases.
  • An object of the present invention is to provide a solar cell device excellent in design while suppressing a decrease in output.
  • a solar cell device is a solar cell device in which a plurality of double-sided electrode type solar cells having metal electrode layers on both main surfaces are electrically connected using a shingling method, and are adjacent to each other. A part of one of the battery cells is electrically connected to a part of the other solar battery cell by stacking via a connecting member.
  • a region on the side of the stacked end, a region on the main surface facing both adjacent solar cells of both main surfaces is a stacking region, a region in contact with the connection member in the stacking region is a connection region,
  • the region around the connection region in the overlapping region is defined as the peripheral region, at least the surface of the metal electrode layer on the main surface side outside the stacking region of the solar cells is covered with an oxide film, and the connection of the solar cells.
  • the method for manufacturing a solar cell device is a method for manufacturing the above-described solar cell device in which a plurality of double-sided electrode type solar cells having metal electrode layers on both main surfaces are electrically connected using a shingling method.
  • the region on the side of the end portion that is stacked with the adjacent solar cell, the region on the main surface facing the adjacent solar cell out of both main surfaces is defined as the stack region.
  • the region in contact with the connection member in the stacking region is a connection region and the region around the connection region in the stacking region is the peripheral region, an oxidation resistant film is formed on the surface of the metal electrode layer in the stacking region of the solar cells.
  • an oxide film on the surface of the metal electrode layer on at least one main surface side outside the stacking region of the solar battery cells by exposure to an oxidation-resistant film forming step and exposure in an oxidizing atmosphere
  • the oxidation-resistant film forming step before the connection member is disposed in the solar cell connection region, the surface of the metal electrode layer in the solar cell connection region and the surface of the metal electrode layer in the peripheral region
  • an acid resistance for preventing oxidation is formed on at least a part of the surface of the metal electrode layer in the peripheral region.
  • a chemical film is formed.
  • FIG. 5 is a cross-sectional view taken along line VV shown in FIGS. 3 and 4.
  • FIG. 6 is a cross-sectional view taken along line VI-VI shown in FIGS. 3 and 4.
  • FIG. 2 is an enlarged view of the vicinity of a stacking region in the section taken along line II-II shown in FIG.
  • FIG. 7 is an enlarged view of the vicinity of a stacking region in the section VIII-VIII shown in FIG. 1.
  • It is a figure (sectional drawing) which shows the connection and baking process in the manufacturing method of the solar cell device which concerns on 1st Embodiment.
  • FIG. 9C shows the connection and baking process which are shown to FIG. 9C.
  • FIG. 4 is an enlarged view of a vicinity of a stacking region in the section taken along line II-II in FIG. 1 of a solar cell device according to a second embodiment.
  • FIG. 7 is an enlarged view of the vicinity of the stacking region in the section VIII-VIII in FIG. 1 of the solar cell device according to the second embodiment.
  • It is a figure which shows the connection process in the manufacturing method of the solar cell device which concerns on 2nd Embodiment.
  • It is a figure which shows the baking and barrier film formation process in the manufacturing method of the solar cell device which concerns on 2nd Embodiment.
  • FIG. 7 is an enlarged view of a vicinity of a stacking region corresponding to a cross section taken along line VIII-VIII in FIG. 1 of a solar cell device according to a modification of the second embodiment.
  • FIG. 7 is an enlarged view of a vicinity of a stacking region corresponding to a cross section taken along line VIII-VIII in FIG. 1 of a solar cell device according to a modification of the second embodiment.
  • FIG. 1 is a view of a solar cell module including the solar cell device according to the first embodiment as seen from the light receiving surface side
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG.
  • a solar cell module 100 is a solar cell device (solar cell string) that electrically connects at least two rectangular double-sided electrode type solar cells 2 using a shingling method. (Also referred to as 1).
  • the solar cell device 1 is sandwiched between the light receiving side protection member 3 and the back side protection member 4.
  • a liquid or solid sealing material 5 is filled between the light-receiving side protection member 3 and the back-side protection member 4, whereby the solar cell device 1 is sealed.
  • the sealing material 5 seals and protects the solar battery device 1, that is, the solar battery cell 2, between the light receiving side surface of the solar battery cell 2 and the light receiving side protection member 3, and the solar battery cell. 2 between the back side surface 2 and the back side protection member 4.
  • the shape of the sealing material 5 is not particularly limited, and examples thereof include a sheet shape. It is because it is easy to coat
  • the material of the sealing material 5 is not particularly limited, but preferably has a light transmitting property (translucency). Moreover, it is preferable that the material of the sealing material 5 has adhesiveness that adheres the solar battery cell 2, the light receiving side protection member 3, and the back side protection member 4.
  • Examples of such materials include ethylene / vinyl acetate copolymer (EVA), ethylene / ⁇ -olefin copolymer, ethylene / vinyl acetate / triallyl isocyanurate (EVAT), polyvinyl butyrate (PVB), acrylic Examples thereof include translucent resins such as resins, urethane resins, and silicone resins.
  • EVA ethylene / vinyl acetate copolymer
  • EVAT ethylene / vinyl acetate / triallyl isocyanurate
  • PVB polyvinyl butyrate
  • acrylic acrylic
  • translucent resins such as resins, urethane resins, and silicone resins.
  • the light-receiving side protection member 3 covers the surface (light-receiving surface) of the solar cell device 1, that is, the solar cell 2 through the sealing material 5, and protects the solar cell 2. Although it does not specifically limit as a shape of the light-receiving side protection member 3, From the point which covers a planar light-receiving surface indirectly, plate shape or sheet shape is preferable.
  • the material of the light-receiving side protection member 3 is not particularly limited, but like the sealing material 5, a material that has translucency but is resistant to ultraviolet light is preferable, for example, glass, or A transparent resin such as an acrylic resin or a polycarbonate resin can be used.
  • the surface of the light-receiving side protection member 3 may be processed into an uneven shape, or may be covered with an antireflection coating layer. This is because the light-receiving side protection member 3 makes it difficult to reflect the received light and guides more light to the solar cell device 1.
  • the back side protection member 4 covers the back surface of the solar battery device 1, that is, the solar battery cell 2 through the sealing material 5, and protects the solar battery cell 2. Although it does not specifically limit as a shape of the back side protection member 4, Like the light reception side protection member 3, a plate shape or a sheet form is preferable from the point which covers a planar back surface indirectly.
  • the material of the back side protection member 4 is not particularly limited, but a material that prevents intrusion of water or the like (high water shielding property) is preferable.
  • a laminate of a resin film such as polyethylene terephthalate (PET), polyethylene (PE), an olefin resin, a fluorine-containing resin, or a silicone-containing resin and a metal foil such as an aluminum foil can be given.
  • a resin film such as polyethylene terephthalate (PET), polyethylene (PE), an olefin resin, a fluorine-containing resin, or a silicone-containing resin and a metal foil such as an aluminum foil can be given.
  • the solar cells 2 are connected in series by stacking part of the end portions of the solar cells 2. Specifically, a part of one surface side (for example, the light receiving surface side) on one end side in the X direction of one of the adjacent solar cells 2, 2 is the other solar cell 2. It overlaps under a part of the other surface side (for example, back surface side) of the other end side opposite to the one end side in the X direction.
  • a bus bar electrode portion (described later) extending in the Y direction is formed on a part of the light receiving surface on one end side of the solar battery cell 2 and a part of the back surface side on the other end side.
  • the bus bar electrode portion on the light receiving surface on one end side of one solar cell 2 is electrically connected to the bus bar electrode portion on the back surface on the other end side of the other solar cell 2 via, for example, the connection member 8. Is done.
  • the solar cells 2 are electrically connected in this way because the plurality of solar cells 2 are uniformly inclined in a certain direction as if the tiles were laid on the roof. This method is called a single ring method.
  • the several photovoltaic cell 2 connected in the shape of a string is called a solar cell string (solar cell device).
  • the photovoltaic cell 2 it is the area
  • connection member 8 in the first embodiment, a ribbon wire made of a copper core material coated with a low melting point metal, a conductive film formed of a thermosetting resin film containing low melting point metal particles, or a low melting point A conductive adhesive or the like formed of metal fine particles and a binder is used.
  • Both ends of the solar cell device 1 are connected to wiring members (not shown) used for taking out the wiring out of the module or for electrical connection with another solar cell string.
  • a lead wire or a metal foil having copper as a core material coated with a low melting point metal is generally used as the wiring member. Details of the solar cell device 1 will be described later. Hereinafter, the solar battery cell 2 in the solar battery device 1 will be described.
  • FIG. 3 is a view of the solar cell 2 according to the first embodiment as viewed from the light receiving surface side
  • FIG. 4 is a view of the solar cell 2 according to the first embodiment as viewed from the back surface side
  • 5 is a cross-sectional view taken along the line VV shown in FIGS. 3 and 4
  • FIG. 6 is a cross-sectional view taken along the line VI-VI shown in FIGS.
  • a solar battery cell 2 shown in FIGS. 3 to 6 is a rectangular double-sided electrode type solar battery cell.
  • the solar cell 2 includes a solar cell substrate 10 having two main surfaces, a metal electrode layer 21 formed on one side (for example, a light receiving surface) of the main surfaces of the solar cell substrate 10, and a solar cell substrate. And a metal electrode layer 31 formed on the other surface side (for example, the back surface side) of the ten main surfaces.
  • the solar cell substrate 10 includes, for example, a polycrystalline silicon substrate or a single crystal silicon substrate.
  • a pn junction for recovering carriers generated by light irradiation is formed on the surface of the silicon substrate.
  • the pn junction is formed by forming an emitter layer doped with a conductive impurity opposite to the conductivity type of the silicon substrate on the surface of the silicon substrate.
  • the emitter layer may be formed in a thickness region of several ⁇ m from the surface of the crystalline silicon substrate by thermal diffusion, or an amorphous silicon layer having a thickness of about 5 nm to 20 nm is formed on the surface of the crystalline silicon substrate. It may be formed by doing.
  • a bonding mode in which an emitter layer is formed in a crystalline silicon substrate by diffusion is called homojunction, and an emitter layer is formed by forming a thin film layer having a different band gap on the surface of the crystalline silicon substrate.
  • the joining mode is called heterojunction.
  • the conductivity type of the crystalline silicon substrate is p-type, minority carriers are electrons, and electrons are collected from the n-type emitter layer.
  • the conductivity type of the crystalline silicon substrate is n-type, minority carriers are holes, and holes are recovered from the p-type emitter layer.
  • an emitter layer is generally formed on one main surface of a crystalline silicon substrate, and a base layer for collecting majority carriers is formed on the other main surface of the crystalline silicon substrate.
  • the base layer has a charge opposite to that of the emitter layer so as to attract majority carriers to the surface of the silicon substrate and drive the minority carriers back into the silicon substrate. That is, the base layer is a layer having the same conductivity type as that of the crystalline silicon substrate and holding a higher concentration of charge.
  • the base layer may be formed by diffusion of doping impurities, or may be formed by alloying Al (aluminum) or the like with silicon so as to form a similar electric field. Further, a doped thin film may be formed on the surface of the crystalline silicon substrate.
  • a passivation layer for chemically terminating the defect levels on the surfaces of both main surfaces of the crystalline silicon substrate is important for suppressing carrier recombination.
  • the surface of the emitter layer or the base layer formed by diffusion or the like is the surface of the crystalline silicon substrate. Therefore, passivation is performed on the emitter layer with a thermal oxide film, silicon nitride, or a laminate thereof. Form a layer.
  • a passivation layer is formed on the surface of the base layer (the surface of the crystalline silicon substrate).
  • the base layer has a very low contact resistance, so that the structure on the base side has a degree of freedom according to the required performance and cost.
  • a BSF (Back Surface Field) solar cell in which an Al paste and silicon are reacted on the entire back surface of the crystalline silicon substrate is obtained, which is inexpensive.
  • the back surface of the crystalline silicon substrate is terminated with a passivation film made of AlOx, silicon oxide, silicon nitride, or a laminate thereof, an opening is locally formed in the passivation layer by a laser or the like, and an Al paste is printed.
  • the local BSF may be formed by baking and locally alloying Al and silicon in the opening. In this case, it becomes a so-called PERC (Passivated Emitter and Rear Cell) cell, and has higher performance than the above-described full-surface BSF solar cell.
  • PERC Passivated Emitter and Rear Cell
  • the passivation layer is inserted between the surface of the crystalline silicon substrate and the emitter layer.
  • the passivation layer an extremely thin insulating layer, a substantially intrinsic amorphous silicon layer, or a laminate thereof is used so that current can be tunneled in the vertical direction.
  • a very thin insulating layer, a substantially intrinsic amorphous silicon layer, or a laminate thereof is used as a passivation layer between the base layer and crystalline silicon.
  • an AR (Anti Reflection) layer having a refractive index of about 1.7 or more and 2.4 or less is formed on the light receiving surface side.
  • the film thickness of the AR layer is designed so that the reflectance with respect to the sunlight spectrum is the lowest.
  • silicon nitride that also serves as a passivation layer is generally used as the AR layer.
  • a TCO (Transparent Oxide) layer for example, an indium oxide layer, is used as a contact layer described later as the AR layer.
  • the minority carriers are collected in the emitter layer, and the majority carriers are collected in the base layer and collected in the electrode.
  • a direct contact method in which a silver electrode (Ag electrode) is brought into contact with an emitter layer which is a crystalline silicon substrate is often employed.
  • silver paste Ag paste
  • the silicon nitride which is the AR layer and baked at a high temperature of 700 ° C. or more and 900 ° C. or less
  • the silver (Ag) penetrates the silicon nitride and directly into the lower emitter layer.
  • a contact fire-through process is used.
  • contact recombination Since metal atoms influence as strong recombination centers in the crystalline silicon substrate, recombination at the contact point (contact recombination) becomes strong. This effect can be shielded to some extent by shortening the carrier diffusion length by doping the emitter layer. The shielding effect of contact recombination by this doping increases as the doping concentration increases. In addition, since the contact resistance between Ag and the emitter layer is lower as the doping concentration is higher, higher output can be achieved.
  • the output can be further increased by using a selective emitter method in which the doping concentration only in the contact region where the electrode on the light receiving surface side is disposed is locally increased.
  • a selective emitter method in which the doping concentration only in the contact region where the electrode on the light receiving surface side is disposed is locally increased.
  • an amorphous silicon layer as thin as 5 nm to 20 nm is used as compared with an emitter layer made of a diffusion layer having a thickness of several ⁇ m.
  • the passivation layer and the crystalline silicon substrate underneath are reached, so that the above-described shielding effect due to doping cannot be obtained, and the performance is greatly deteriorated. Therefore, it is common to use a contact layer made of TCO so that the metal does not contact directly.
  • TCO indium oxide such as ITO is used.
  • This TCO layer functions not only as a mere contact layer but also as an in-plane transport layer that transports minority carriers collected in the emitter layer to the grid-shaped light receiving surface electrode. Furthermore, the TCO layer also functions as an AR layer. Therefore, the thickness of the contact layer is preferably 70 nm or more and 100 nm or less.
  • the sheet resistance of the TCO layer is preferably about 30 ⁇ / sq or more and 120 ⁇ / sq or less.
  • the metal electrode layer 21 is formed on the light receiving surface side of the solar cell substrate 10, and the metal electrode layer 31 is formed on the back surface side of the solar cell substrate 10.
  • the metal electrode layer 21 has a so-called comb shape, and includes a plurality of finger electrode portions 21f corresponding to comb teeth and a single or a plurality of bus bar electrode portions 21b corresponding to comb support portions.
  • the bus bar electrode portion 21b extends in the Y direction along a part of the stacked region Ro on the light receiving surface side (one main surface side) on one end side in the X direction.
  • the finger electrode portion 21f extends from the bus bar electrode portion 21b in the X direction that intersects the Y direction.
  • the metal electrode layer 31 has a comb shape, and includes a plurality of finger electrode portions 31f corresponding to comb teeth, and one or a plurality of bus bar electrode portions 31b corresponding to comb support portions.
  • the bus bar electrode portion 31b extends in the Y direction along a part of the stacking region Ro on the back surface side on the other end side in the X direction.
  • the finger electrode portion 31f extends from the bus bar electrode portion 31b in the X direction that intersects the Y direction.
  • the metal electrode layer 31 is not limited to a comb shape, and may be formed in a rectangular shape on substantially the entire back surface side of the solar battery cell 2 when, for example, an inexpensive Al paste is used.
  • the metal electrode layers 21 and 31 are required to be optimally designed to reduce the electrical resistance while increasing the amount of incident light.
  • a high aspect electrode having a narrow width in the X direction or Y direction and a high height (thickness) intersecting the XY plane is preferable from the viewpoint of high output.
  • the Ag paste progresses in sintering, so that the electrical conductivity is high, and it is possible to thin the wire to about 30 ⁇ m or more and 40 ⁇ m or less.
  • the function of the passivation layer deteriorates due to hydrogen desorption at a high temperature of 250 ° C. or higher. Therefore, the Ag paste electrode is fired at a low temperature, and the conductivity is about half that of the homojunction mode. For this reason, a thick wiring having a width of about 60 ⁇ m to 100 ⁇ m is required.
  • the solar cell device 1 in which a current flows in one direction along the X direction is configured.
  • the finger electrode portion 31f on the back surface side does not exist at a position corresponding to the stacked region Ro on the light receiving surface side, and is slightly shorter than the finger electrode portion 21f on the light receiving surface side. This is because the stacked region Ro on the light receiving surface side is a light shielding portion, so that the amount of incident light is extremely small and the generated current is small, so that the voltage drop loss due to the series resistance can be ignored.
  • the finger electrode portion 21f on the light receiving surface side is disposed at a position corresponding to the stacked region Ro on the back surface side. This is because, on the light receiving surface side corresponding to the stacking region Ro on the back surface side, both the amount of incident light and the amount of generated current are large, and the resistance needs to be kept low.
  • the metal electrode layers 21 and 31 are made of a metal material.
  • As the metal material Ag (silver), Cu (copper), or an alloy thereof is used from the viewpoint of a blackening treatment by oxidation described later.
  • FIG. 7 is an enlarged view of the vicinity of the stacked region Ro in the section taken along the line II-II shown in FIG. 1
  • FIG. 8 is an enlarged view of the vicinity of the stacked region Ro in the section of the line VIII-VIII shown in FIG.
  • a region in contact with the connection member 8 is a connection region Ra
  • a region around the connection region Ra is a peripheral region Rb (that is, the peripheral region Rb is a connection region in the stacking region Ro. This is a region excluding Ra).
  • the peripheral region Rb is in the range of about 200 ⁇ m to 1000 ⁇ m from the connection region Ra.
  • the surface of is covered with an oxide film 42.
  • at least the surface of the metal electrode layer on the light receiving surface side (one main surface side) outside the stacked region Ro on the light receiving surface side of the solar battery cell 2 is an oxide film 42. It only has to be covered.
  • the surface of 31 b) is covered with a barrier film (anti-oxidation film) 40 and not covered with an oxide film 42. That is, the surface of the metal electrode layer 21 (21f and 21b) in the connection region Ra on the light receiving surface side of the solar battery cell 2 and the surface of the metal electrode layer 21 (21f and 21b) in the peripheral region Rb are barrier films (acid resistant). Is not covered by the oxide film.
  • the surface of the metal electrode layer 31 (31f and 31b) in the connection region Ra on the back surface side of the solar battery cell 2 and the surface of the metal electrode layer 31 (31f and 31b) in the peripheral region Rb are barrier films (oxidation resistant). Film) 40 and not oxide film 42. Note that at least a part of the surface of the metal electrode layer 21 (21f and 21b) in the peripheral region Rb on the light receiving surface side of the solar battery cell 2 is covered with a barrier film (oxidation resistant film) 40 and covered with an oxide film 42. If there is no.
  • the surface of the metal electrode layer 31 (31f and 31b) in the peripheral region Rb on the back surface side of the solar battery cell 2 must be covered with the barrier film (oxidation resistant film) 40 and covered with the oxide film 42. That's fine.
  • the barrier film 40 prevents the metal electrode layers 21 and 31 from being oxidized. Further, the barrier film 40 does not hinder the contact between the connection member 8 and the metal electrode layers 21 and 31 in the connection region Ra, and the adhesion between the sealing material 5 and the metal electrode layers 21 and 31 in the peripheral region Rb. And preferred.
  • Examples of the barrier film 40 include ester-based or hydrocarbon-based organic films formed thinly on the surfaces of the metal electrode layers 21, 31. These organic films are generally low-molecular substances that can be cited as organic pollutants in a clean room, but preferably function as barrier films against oxidation.
  • the oxide film 42 is formed by oxidizing the surfaces of the metal electrode layers 21 and 31, and is not formed by forming silicon oxide or the like on the metal electrode layers 21 and 31.
  • a glossy metal oxide layer is formed. More specifically, when the surfaces of the metal electrode layers 21 and 31 containing Ag or Cu are oxidized, an oxide film 42 containing Ag oxide or Cu oxide is formed and blackened.
  • FIG. 9A is a diagram (sectional view) showing a barrier film forming step in the method for manufacturing a solar cell device according to the first embodiment
  • FIG. 9B is an oxide film in the method for manufacturing a solar cell device according to the first embodiment
  • FIG. 9C is a diagram (cross-sectional view) showing a forming step
  • FIG. 9C is a diagram (cross-sectional view) showing a connection and firing step in the method for manufacturing a solar cell device according to the first embodiment.
  • the metal electrode layer 21 is formed on the light receiving surface side (one main surface side) of the solar cell substrate 10 having a pn junction. At this time, the bus bar electrode portion 21b extending in the Y direction is formed along a part of the stacked region Ro on one end side in the X direction. Further, the finger electrode portion 21f extending in the X direction is formed. Further, the metal electrode layer 31 is formed on the back surface side (the other main surface side) of the solar cell substrate 10. At this time, the bus bar electrode portion 31b extending in the Y direction is formed along a part of the stacked region Ro on the other end side in the X direction. Further, a finger electrode portion 31f extending in the X direction is formed.
  • a barrier film 40 is formed on (at least a part of) the surface of the metal electrode layer 21 in the stacked region Ro on the light receiving surface side of the solar cell substrate 10. Moreover, the barrier film 40 is formed on the surface (at least a part thereof) of the metal electrode layer 31 in the stacked region Ro on the back surface side of the solar cell substrate 10 (barrier film forming step).
  • the above-described ester-based or hydrocarbon-based organic film may be formed by using a mask vapor deposition method, or an injecting with urethane foam containing the above-described ester-based or hydrocarbon-based material.
  • An organic film may be formed by printing or the like.
  • an oxide film 42 is formed on the surface of the metal electrode layer on which the barrier film 40 is not formed (oxide film formation).
  • the gas in the oxidizing atmosphere include ozone gas.
  • the oxidation reaction may be promoted by UV light irradiation or heating.
  • connection member 8 may be disposed on the barrier film 40 on the light receiving surface side of one solar cell 2 or may be disposed on the barrier film 40 on the back surface side of the other solar cell 2 ( In addition, in the accumulation area
  • this connection member 8 is disposed, a mechanical stress is generated, so that the connection member 8 penetrates through the barrier film 40 and makes electrical contact with the metal electrode layers 21 and 31.
  • the solar cells 2 are arranged on the heat-resistant adsorption stand 90 in a stacked state, and the rear surface side (the other main surface side) of the solar cells 2 is adsorbed.
  • firing is performed, for example, by heating with an IR lamp from the light receiving surface side (one main surface side) of the solar battery cell 2.
  • mechanical stress is generated, so that the connecting member 8 penetrates the barrier film 40 and contacts the metal electrode layers 21 and 31.
  • the solar cell device 1 in which the solar cells 2 are connected both electrically and mechanically is obtained.
  • the solar cell device 1 of the first embodiment and the method for manufacturing the solar cell device outside the stacking region Ro on the light receiving surface side (one main surface side) of the solar cells 2. Since the surface of the metal electrode layer 21 (finger electrode portion 21f) is covered with the oxide film 42, blackening of the oxide film 42 containing Ag oxide or Cu oxide on the surface of the metal electrode layer 21 (finger electrode portion 21f) is performed. It becomes inconspicuous (the entire surface becomes a color near black), and the design is improved.
  • the solar cell device using the string method has a rigid integrated structure in which the solar cell substrate (including the silicon substrate) is connected in series as compared with the normal tab line connection method (less flexible).
  • the stress relaxation performance with respect to temperature change was low, and there was a problem in thermal cycle reliability.
  • the metal electrode layers 21 and 31 (finger electrodes) outside the stacked region Ro occupying most of the solar cells 2. Since the portions 21f and 31f) are covered with the oxide film 42, the adhesion strength between the metal electrode layers 21 and 31 and the sealing material 5 is reduced during the modularization, and the stress is relaxed.
  • the oxide film 42 is disposed between the metal electrode layers 21, 31 and the sealing material 5, so that slip occurs between the metal electrode layers 21, 31 and the sealing material 5, and thermal expansion causes This is thought to be due to the relaxation of the generated stress.
  • the influence of the stress from the sealing material 5 is suppressed in the metal electrode layers 21 and 31 sandwiched between the solar cell substrate 10 including the silicon substrate that is most likely to generate stress and the sealing material 5. Therefore, the peeling of the metal electrode layers 21 and 31 or the occurrence of poor connection between the metal electrode layers 21 and 31 is suppressed, and the thermal cycle reliability is improved.
  • the metal electrode layers 21 and 31 of the solar battery cell 2 sandwich the connection member 8, but there is a gap in the peripheral region Rb around the connection region Ra, and this gap is a sealing material. Filled with 5.
  • the sealing material 5 filling the gap and the metal electrode layers 21 and 31 are in close contact with each other, the adhesiveness in the stacked region Ro is increased, and the stacking is performed by the stress due to thermal expansion. This is considered to prevent disconnection of the region Ro.
  • the metal electrode layers 21 and 31 and the sealing material 5 in the peripheral region Rb are in close contact with each other, thereby preventing an increase in series resistance due to water intrusion into the connection region Ra. Reliability is considered to improve.
  • the barrier film is formed by film formation.
  • a barrier film is formed by printing and baking a connection member paste containing a barrier film material.
  • FIG. 13A is a diagram (cross-sectional view) illustrating a connection step in the method for manufacturing a solar cell device according to the second embodiment
  • FIG. 13B is a diagram illustrating firing and barrier films in the method for manufacturing a solar cell device according to the second embodiment.
  • FIG. 13C is a diagram (cross-sectional view) showing a forming step
  • FIG. 13C is a diagram (cross-sectional view) showing an oxide film forming step in the method for manufacturing a solar cell device according to the second embodiment.
  • the metal electrode layer 21 is formed on the light receiving surface side (one main surface side) of the solar cell substrate 10 having a pn junction. At this time, the bus bar electrode portion 21b extending in the Y direction is formed along a part of the stacked region Ro on one end side in the X direction. Further, the finger electrode portion 21f extending in the X direction is formed. Further, the metal electrode layer 31 is formed on the back surface side (the other main surface side) of the solar cell substrate 10. At this time, the bus bar electrode portion 31b extending in the Y direction is formed along a part of the stacked region Ro on the other end side in the X direction. Further, a finger electrode portion 31f extending in the X direction is formed.
  • connection member 8 in the second embodiment, for example, a connection member including a barrier film material in a conductive adhesive paste in which conductive particles (for example, metal fine particles) are dispersed in a thermosetting adhesive resin material. A paste is used.
  • a connection member 8 an Ag paste or a Cu paste containing an oligomer component such as urethane acrylate may be used.
  • the above-described connection member paste is applied or printed on the connection region Ra in the stacking region Ro. At this time, the connection member may be applied to the connection region Ra on the light receiving surface side of one solar battery cell 2 or may be applied to the connection region Ra on the back surface side of the other solar battery cell 2.
  • the solar cells 2 stacked through the connection member 8 are fired.
  • Heating is performed, for example, by an IR lamp from the light receiving surface side (one main surface side).
  • the photovoltaic cells 2 are connected to each other both electrically and mechanically.
  • the low molecular component bleed or evaporated from the connection member paste adheres to the peripheral region Rb to form the barrier film 40 (firing and barrier film forming step).
  • the oxide film 42 is formed on the surfaces of the metal electrode layers 21 and 31 where the barrier film 40 and the connection member 8 are not formed. (Oxide film forming step). Thereby, the solar cell device 1 is obtained.
  • FIG. 11 is an enlarged view of the vicinity of the stacking region corresponding to the section taken along the line II-II of FIG. 1 of the solar cell device according to the second embodiment
  • FIG. 12 is a diagram of FIG. 1 of the solar cell device according to the second embodiment.
  • FIG. 5 is an enlarged view of the vicinity of a stacking region corresponding to a cross section taken along line VIII-VIII.
  • the connection member paste containing the barrier film material is printed and baked to form the barrier film 40, so that the connection region on the light receiving surface side of the solar battery cell 2.
  • a barrier film (oxidation resistant film) 40 is provided on the surface of the metal electrode layer 21 (21f and 21b) in Ra and the surface of the metal electrode layer 31 (31f and 31b) in the connection region Ra on the back surface side of the solar battery cell 2. It is different from the first embodiment in that it is not formed (see FIGS. 9A and 9B).
  • the solar cell device 1 of the second embodiment is the same as that of the first embodiment in that the surface is not covered with the oxide film 42.
  • the direction in which the solar cells 2 are arranged is the arrangement direction (X direction), the direction intersecting the arrangement direction is the cross direction (Y direction), and the adjacent solar cells in the stacking region Ro in the solar cells 2
  • the end side of the solar battery cell 2 stacked under the battery cell 2 is defined as a shielding side, and the opposite side of the shielding side in the arrangement direction is defined as an exposed side.
  • the barrier film 40 is formed by printing and baking the connection member paste containing the barrier film material, as shown in FIG. 10, the back surface of the solar battery cell 2 is used to generate a connection pressure. Adsorb the side (the other main surface side). Then, the barrier film 40 formed by bleeding or evaporation from the connection member paste is formed biased from the exposed side to the light shielding side.
  • the coverage of the oxide film 42 of the metal electrode layer 21 in the region Rb2 is asymmetric.
  • the coverage of the oxide film 42 of the metal electrode layer 21 in the peripheral region Rb 1 on the exposed side with respect to the connection member 8 is the shielding side with respect to the connection member 8. Higher than the coverage of the oxide film 42 of the metal electrode layer 21 in the peripheral region Rb2.
  • the light receiving surface side (one main surface side) of the solar battery cell may be adsorbed.
  • the coverage of the oxide film 42 of the metal electrode layer 21 in the peripheral region Rb 1 on the exposed side with respect to the connection member 8 is the periphery on the shielding side with respect to the connection member 8. It becomes lower than the coverage of the oxide film 42 of the metal electrode layer 21 in the region Rb2.
  • the oxide film 42 is not formed outside the stacked region Ro in the solar battery cell 2 from the viewpoint of design.
  • the solar cell device 1 and the solar cell device manufacturing method of the second embodiment can provide the same advantages as the solar cell device 1 and the solar cell device manufacturing method of the first embodiment.
  • Modification 14A and 14B are enlarged views of the vicinity of the stacking region corresponding to the section taken along line VIII-VIII of FIG. 1 of the solar cell device according to the modification of the second embodiment.
  • FIG. 14A in the stacking region Ro in the solar battery cell 2, when a plurality of metal electrode layers 21 (bus bar electrode portions 21 b and 31 b) extending in the Y direction (crossing direction) are included, the position is closest to the light receiving side.
  • the metal electrode layers 21 and 31 to be covered may be covered with the oxide film 42.
  • FIG. 14B at least a part of the metal electrode layers 21 and 31 located on the most exposed side may be covered with an oxide film 42.
  • the present invention is not limited to this, and the material of the metal electrode layer 21 on the light receiving surface side and the metal electrode layer 31 on the back surface side of the solar battery cell 2.
  • the present invention is not limited to this, and the material of the metal electrode layer 21 on the light receiving surface side and the material of the metal electrode layer 31 on the back surface side may be different.
  • the material of the metal electrode layer 21 on the light receiving surface side Ag or Cu that can be blackened by oxidation is used. Al or the like may be used.
  • the material of the metal electrode layer 21 in the stacked region Ro may be different from the material of the metal electrode layer 21 outside the stacked region Ro.
  • Ag or Cu that can be blackened by oxidation is used as the material of the metal electrode layer 21 outside the stacked region Ro from the viewpoint of design, and the metal electrode layer 21 in the stacked region Ro is used.
  • a material other than Ag and Cu may be used as the material. That is, in the present invention, at least the surface of the metal electrode layer on the light receiving surface side (one main surface side) outside the stacked region Ro of the solar battery cells 2 may be covered with the oxide film.
  • Example 1 The solar cell device 1 of the first embodiment shown in FIGS. 1, 2 and 7, 8 is produced according to the method for manufacturing the solar cell device of the first embodiment shown in FIGS. 9A to 9C as follows.
  • a solar cell module 100 including the solar cell device 1 of the first embodiment was produced as Example 1.
  • the metal electrode layer 21 (the bus bar electrode portion 21b and the finger electrode portion 21f) is formed on the light receiving surface side (one main surface side) of the solar cell substrate 10 having a pn junction, and the back surface side (the other main surface) of the solar cell substrate 10 is formed.
  • Metal electrode layer 31 (bus bar electrode portion 31b and finger electrode portion 31f) was formed on the surface side.
  • a barrier film 40 is formed on the surface (at least part of) the metal electrode layer 21 in the stacked region Ro on the light receiving surface side of the solar cell substrate 10, A barrier film 40 was formed on (at least part of) the surface of the metal electrode layer 31 in the stacking region Ro on the back side (barrier film forming step).
  • the above-described hydrocarbon-based organic film was formed using a mask vapor deposition method.
  • an oxide film 42 was formed on the surface of the metal electrode layer where the barrier film was not formed (oxide film forming step).
  • connection and firing step the solar battery cells 2 are stacked and fired through the connection member 8 (connection and firing step).
  • the solar cell device 1 in which the solar cells 2 were connected both electrically and mechanically was obtained.
  • the solar cell device 1 is sandwiched between EVA (Ethylene-Vinyl Acetate) sheets which are sealing materials 5 and further laminated with a tempered glass substrate which is a light-receiving side protection member 3 and a back side protection member 4.
  • EVA Ethylene-Vinyl Acetate
  • Example 1 since the oxide film 42 was formed on the surface of the metal electrode layers 21 and 31 outside the stacked region Ro of the light receiving surface, the metal electrode layers 21 and 31 on the light receiving surface were not visually recognized after sealing, Excellent design properties were exhibited.
  • Example 2 As shown below, the solar cell device 1 of the second embodiment shown in FIGS. 1, 2 and 11, 12 is manufactured according to the method of manufacturing the solar cell device of the second embodiment shown in FIGS.
  • a solar cell module 100 including the solar cell device 1 of the second embodiment was produced as Example 2.
  • the metal electrode layer 21 (the bus bar electrode portion 21b and the finger electrode portion 21f) is formed on the light-receiving surface side (one main surface side) of the solar cell substrate 10 having a pn junction, and the solar cell substrate
  • the metal electrode layer 31 (the bus bar electrode portion 31b and the finger electrode portion 31f) was formed on the back surface side (the other main surface side) of 10.
  • connection process Ag paste containing an oligomer component of urethane acrylate was used as a connection member paste, and applied or printed on the connection region Ra in the stacking region Ro.
  • the solar cells 2 stacked through the connection member 8 were fired.
  • the connection pressure is generated by adsorbing the back surface side (the other main surface side) of the solar cell 2
  • It heated with the IR lamp from the light-receiving surface side (one main surface side).
  • the photovoltaic cells 2 are connected to each other both electrically and mechanically.
  • the low molecular component bleeded or evaporated from the connection member paste adhered to the peripheral region to form the barrier film 40 (firing and barrier film forming step).
  • the solar cell device 1 is sandwiched between EVA (Ethylene-Vinyl Acetate) sheets which are sealing materials 5, and further with a tempered glass substrate which is the light-receiving side protection member 3 and the back side protection member 4.
  • EVA Ethylene-Vinyl Acetate
  • Example 2 since the oxide film 42 was formed on the surface of the metal electrode layers 21 and 31 outside the stacked region Ro of the light receiving surface, the metal electrode layers 21 and 31 on the light receiving surface were not visually recognized after sealing, Excellent design properties were exhibited.
  • the coverage of the peripheral region Rb1 on the light receiving side of the solar battery cell 2 with the oxide film 42 was larger than the coverage of the peripheral region Rb2 on the shielding side.
  • Comparative Example 1 As Comparative Example 1, a metal electrode layer on the light-receiving surface side and the back surface side was entirely covered with an oxide film without using a barrier film. As a process of Comparative Example 1, the barrier film forming process of FIG. 9A is omitted from the process of Example 1.
  • Comparative Example 1 since the oxide film exists between the connection member and the metal electrode layer on the light receiving surface side and the back surface side in the connection region of the stacking region, the contact resistance is high, and the series resistance of the entire module is reduced. As a result, the initial output was about 3.5% lower than those of Example 1 and Example 2. In Comparative Example 1 as well, an oxide film was formed on the surface of the metal electrode layer outside the stacked area of the light receiving surface, so that after sealing, the metal electrode layer on the light receiving surface was not visually recognized and exhibited excellent design. It was.
  • Comparative Example 2 As Comparative Example 2, a structure in which only a connection region was covered with a connection member without using a barrier film to suppress formation of an oxide film was produced.
  • an Ag paste containing an oligomer component such as urethane acrylate used in Example 2 an Ag paste using an epoxy-based binder with a small amount of low-molecular components was used as a connecting member paste.
  • the barrier film 40 was not formed in the connection and firing step shown in FIG. 13B, and an oxide film was formed in the peripheral region in the same manner as outside the stacked region in the oxide film formation step. That is, except for the connection region, the metal electrode layers on the light receiving surface side and the back surface side were completely covered with the black oxide film.
  • Comparative Example 2 since the contact between the connection member and the metal electrode layer on the light receiving surface side and the back surface side was good, the initial output characteristics were the same as those in Example 1 and Example 2. Also in Comparative Example 2, since the oxide film was formed on the surface of the metal electrode layer outside the stacked area of the light receiving surface, the metal electrode layer on the light receiving surface was not visually recognized after sealing, and exhibited excellent design. It was.
  • Comparative Example 3 As Comparative Example 3, a solar cell device and a solar cell module were produced using solar cells that did not use a barrier film and formed no oxide film. As a process of Comparative Example 3, the oxide film forming process in Comparative Example 2 is omitted.
  • the initial output characteristic is 0.8% higher than that of Example 1 and Example 2 due to the effect that the reflected light of the metal electrode layer on the light-receiving surface side is confined in the module, with a slight improvement in current. The higher the value.
  • the oxide film is not formed on the surface of the metal electrode layer outside the stacking region, the metal electrode layer on the light receiving surface side can be visually recognized.
  • the thermal cycle reliability and wet heat resistance reliability of the solar cell modules of Examples 1 and 2 and Comparative Examples 1 to 3 manufactured as described above were measured.
  • the thermal cycle reliability indicates what percentage of the output is maintained after the 250 cycles of changing the ambient temperature from 80 degrees to -40 degrees (preferably 95% or more).
  • the humidity and heat resistance reliability indicates what percentage of the output is maintained with respect to the initial state after 2000 hours have elapsed at an ambient temperature of 85 degrees and an ambient humidity of 85% (preferably retained at 95% or more).
  • the design quality of the solar cell modules of Examples 1 and 2 and Comparative Examples 1 to 3 was confirmed.
  • Example 1 Example 2, Comparative Example 1, and Comparative Example 2
  • these excellent design properties are such that the surfaces of the metal electrode layer 21 on the light receiving surface side and the metal electrode layer 31 on the back surface side outside the stacked region Ro are covered with the black oxide film 42. Is due to being.
  • Comparative Example 1 resulted in low thermal cycle reliability and moist heat resistance reliability. This is because the oxide film is interposed in the connection region, so that the connection member, the metal electrode layers on the light receiving surface side and the back surface side, However, it was thought that the electrical contact and the mechanically good contact could not be formed, and the electrical contact could not be maintained in the process of the reliability test, which deteriorated. In addition, since the oxide film is also present in the peripheral region, the adhesion between the sealing material and the metal electrode layer on the light-receiving surface side and the back surface side is poor, and it is estimated that the connection could not be maintained and water intrusion could not be prevented. The
  • Comparative Example 2 the thermal cycle reliability is slightly lower than that in Examples 1 and 2, but the retention rate is 95% or more, indicating high reliability.
  • the wet heat resistance showed the second lowest value after the comparative example.
  • Comparative Example 1 since the oxide film is interposed in the peripheral region, the adhesion between the sealing material and the metal electrode layers on the light receiving surface side and the back surface side is weak, and water intrusion can be completely prevented. It is thought that it was not.
  • Comparative Example 3 the wet heat reliability is higher than that of Comparative Example 2, and the retention rate equivalent to that of Example 1 and Example 2 is shown.
  • the formation of the oxide film outside the stacking region promotes the penetration of water, albeit slightly, but does not seal the metal electrode layers on the light receiving surface side and the back surface side in the peripheral region. It is thought that it is prevented by the adhesion with the stopper.
  • Example 1 and Example 2 showed a particularly high retention rate in the thermal cycle test. As described above, this is due to the stress relaxation between the oxide film 42 outside the stacked region Ro and the sealing material 5 and the adhesion between the metal electrode layers 21 and 31 and the sealing material 5 in the peripheral region Rb.
  • Example 1 and Example 2 according to the present invention were proved to be technologies that achieve both excellent reliability and designability.
  • the design property of Example 2 was superior.
  • FIGS. 11 and 12 in Example 2, the coverage ratio of the peripheral region Rb on the light receiving side by the oxide film 42 is high, and there is a probability that the metallic luster remains outside the stacked region Ro on the light receiving side. Compared with Example 1, it was kept low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

出力の低下を抑制しつつ、意匠性に優れた太陽電池デバイスを提供する。太陽電池デバイス1は、隣接する太陽電池セル2,2のうちの一方の太陽電池セル2の一部は、他方の太陽電池セル2の一部と、接続部材8を介して積み重なることにより電気的に接続され、太陽電池セル2において、隣接する太陽電池セル2と積み重なる端部側の領域であって、隣接する太陽電池セル2と対向する主面側の領域を積重領域Roとし、積重領域Roにおける接続部材8と接する領域を接続領域Raとし、積重領域Roにおける接続領域Raの周辺の領域を周辺領域Rbとすると、太陽電池セル2の積重領域Roの外における、少なくとも一方主面側の金属電極層21,31の表面は、酸化膜で覆われ、太陽電池セル2の接続領域Raにおける金属電極層21,31の表面、および、周辺領域Rbにおける金属電極層21,31の表面の少なくとも一部は、酸化膜で覆われない。

Description

太陽電池デバイスおよび太陽電池デバイスの製造方法
 本発明は、太陽電池デバイスおよび太陽電池デバイスの製造方法に関する。
 昨今、両面電極型の太陽電池セルをモジュール化する場合、導電性の接続線を用いることなく、太陽電池セルの一部同士を積み重ねることで、直接、電気的かつ物理的に接続を行う方式が存在する。このような接続方式はシングリング方式と称され、シングリング方式で電気的に接続された複数の両面電極型の太陽電池セルは太陽電池ストリング(太陽電池デバイス)と称される(例えば、特許文献1参照)。
 太陽電池ストリング(太陽電池デバイス)では、太陽電池モジュールにおける限られた太陽電池セル実装面積に、より多くの太陽電池セルが実装可能になり、光電変換のための受光面積が増え、太陽電池モジュールの出力が向上する。更に、太陽電池ストリング(太陽電池デバイス)では、隣接する太陽電池セルの一部同士が積み重なる積重領域において、一方の太陽電池セルのバスバー電極が他方の太陽電池セルで覆われるため、バスバー電極による遮光ロスが低減し、太陽電池モジュールの出力が向上する。
特開2017-517145号公報 特開平10-313126号公報
 太陽電池ストリング(太陽電池デバイス)では、バスバー電極は隣接する太陽電池セルで覆われるが、フィンガー電極は露出されているため、フィンガー電極が筋状の模様として視認され、意匠性に問題があった。
 この点に関し、特許文献2には、銀等の金属からなる受光面電極の表面を酸化させることにより、受光面電極の表面を黒色化する技術が記載されている。これにより、受光面電極を他の受光面部分の色と同化させることができる。
 しかし、特許文献2に記載の技術を太陽電池ストリング(太陽電池デバイス)に適用すると、複数の両面電極型の太陽電池セルを電気的に接続する際に、電極接続部の接触抵抗が増加し、太陽電池ストリング(太陽電池デバイス)の出力が低下すると考えられる。
 本発明は、出力の低下を抑制しつつ、意匠性に優れた太陽電池デバイスを提供することを目的とする。
 本発明に係る太陽電池デバイスは、両主面に金属電極層を有する両面電極型の太陽電池セルを複数個、シングリング方式を用いて電気的に接続する太陽電池デバイスであって、隣接する太陽電池セルのうちの一方の太陽電池セルの一部は、他方の太陽電池セルの一部と、接続部材を介して積み重なることにより電気的に接続され、太陽電池セルにおいて、隣接する太陽電池セルと積み重なる端部側の領域であって、両主面のうちの隣接する太陽電池セルと対向する主面側の領域を積重領域とし、積重領域における接続部材と接する領域を接続領域とし、積重領域における接続領域の周辺の領域を周辺領域とすると、太陽電池セルの積重領域の外における、少なくとも一方主面側の金属電極層の表面は、酸化膜で覆われ、太陽電池セルの接続領域における金属電極層の表面、および、周辺領域における金属電極層の表面の少なくとも一部は、酸化膜で覆われない。
 本発明に係る太陽電池デバイスの製造方法は、両主面に金属電極層を有する両面電極型の太陽電池セルを複数個、シングリング方式を用いて電気的に接続する上述の太陽電池デバイスの製造方法であって、太陽電池セルにおいて、隣接する太陽電池セルと積み重なる端部側の領域であって、両主面のうちの隣接する太陽電池セルと対向する主面側の領域を積重領域とし、積重領域における接続部材と接する領域を接続領域とし、積重領域における接続領域の周辺の領域を周辺領域とすると、太陽電池セルの積重領域における前記金属電極層の表面に、耐酸化膜を形成する耐酸化膜形成工程と、酸化雰囲気下での暴露により、太陽電池セルの積重領域の外における、少なくとも一方主面側の金属電極層の表面に、酸化膜を形成する酸化膜形成工程とを含み、耐酸化膜形成工程では、太陽電池セルの接続領域に接続部材を配置する前に、太陽電池セルの接続領域における金属電極層の表面、および、周辺領域における金属電極層の表面の少なくとも一部に、耐酸化膜を形成するか、または、太陽電池セルの接続領域に接続部材を配置した後に、周辺領域における金属電極層の表面の少なくとも一部に、酸化防止のための耐酸化膜を形成する。
 本発明によれば、出力の低下を抑制しつつ、意匠性に優れた太陽電池デバイスを提供できる。
第1実施形態に係る太陽電池デバイスを備える太陽電池モジュールを受光面側からみた図である。 図1に示すII-II線断面図である。 第1実施形態に係る太陽電池セルを受光面側からみた図である。 第1実施形態に係る太陽電池セルを裏面側からみた図である。 図3および図4に示すV-V線断面図である。 図3および図4に示すVI-VI線断面図である。 図1に示すII-II線断面における積重領域付近の拡大図である。 図1に示すVIII-VIII線断面における積重領域付近の拡大図である。 第1実施形態に係る太陽電池デバイスの製造方法におけるバリア膜形成工程を示す図である。 第1実施形態に係る太陽電池デバイスの製造方法における酸化膜形成工程を示す図である。 第1実施形態に係る太陽電池デバイスの製造方法における接続および焼成工程を示す図(断面図)である。 図9Cに示す接続および焼成工程を説明するための図である。 第2実施形態に係る太陽電池デバイスの図1のII-II線断面における積重領域付近の拡大図である。 第2実施形態に係る太陽電池デバイスの図1のVIII-VIII線断面における積重領域付近の拡大図である。 第2実施形態に係る太陽電池デバイスの製造方法における接続工程を示す図である。 第2実施形態に係る太陽電池デバイスの製造方法における焼成およびバリア膜形成工程を示す図である。 第2実施形態に係る太陽電池デバイスの製造方法における酸化膜形成工程を示す図である。 第2実施形態の変形例に係る太陽電池デバイスの図1のVIII-VIII線断面相当における積重領域付近の拡大図である。 第2実施形態の変形例に係る太陽電池デバイスの図1のVIII-VIII線断面相当における積重領域付近の拡大図である。
 本発明の一実施形態について説明すると以下の通りであるが、本発明はこれに限定されるものではない。なお、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面における種々部材の寸法は、便宜上、見やすいように調整されている。
[第1実施形態]
(太陽電池モジュール)
 図1は、第1実施形態に係る太陽電池デバイスを備える太陽電池モジュールを受光面側からみた図であり、図2は、図1に示すII-II線断面図である。図1および図2に示すように、太陽電池モジュール100は、少なくとも2個の長方形状の両面電極型の太陽電池セル2をシングリング方式を用いて電気的に接続する太陽電池デバイス(太陽電池ストリングとも称される)1を、少なくとも1個含む。
 太陽電池デバイス1は、受光側保護部材3と裏側保護部材4とによって挟み込まれている。受光側保護部材3と裏側保護部材4との間には、液体状または固体状の封止材5が充填されており、これにより、太陽電池デバイス1は封止される。
 封止材5は、太陽電池デバイス1、すなわち太陽電池セル2を封止して保護するもので、太陽電池セル2の受光側の面と受光側保護部材3との間、および、太陽電池セル2の裏側の面と裏側保護部材4との間に介在する。
 封止材5の形状としては、特に限定されるものではなく、例えばシート状が挙げられる。シート状であれば、面状の太陽電池セル2の表面および裏面を被覆しやすいためである。
 封止材5の材料としては、特に限定されるものではないが、光を透過する特性(透光性)を有すると好ましい。また、封止材5の材料は、太陽電池セル2と受光側保護部材3と裏側保護部材4とを接着させる接着性を有すると好ましい。
 このような材料としては、例えば、エチレン/酢酸ビニル共重合体(EVA)、エチレン/α-オレフィン共重合体、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、アクリル樹脂、ウレタン樹脂、または、シリコーン樹脂等の透光性樹脂が挙げられる。
 受光側保護部材3は、封止材5を介して、太陽電池デバイス1、すなわち太陽電池セル2の表面(受光面)を覆って、その太陽電池セル2を保護する。
 受光側保護部材3の形状としては、特に限定されるものではないが、面状の受光面を間接的に覆う点から、板状またはシート状が好ましい。
 受光側保護部材3の材料としては、特に限定されるものではないが、封止材5同様に、透光性を有しつつも紫外光に耐性の有る材料が好ましく、例えば、ガラス、または、アクリル樹脂若しくはポリカーボネート樹脂等の透明樹脂が挙げられる。また、受光側保護部材3の表面は、凹凸状に加工されていても構わないし、反射防止コーティング層で被覆されていても構わない。これらのようになっていると、受光側保護部材3は、受けた光を反射させ難くして、より多くの光を太陽電池デバイス1に導けるためである。
 裏側保護部材4は、封止材5を介して、太陽電池デバイス1、すなわち太陽電池セル2の裏面を覆って、その太陽電池セル2を保護する。
 裏側保護部材4の形状としては、特に限定されるものではないが、受光側保護部材3同様に、面状の裏面を間接的に覆う点から、板状またはシート状が好ましい。
 裏側保護部材4の材料としては、特に限定されるものではないが、水等の浸入を防止する(遮水性の高い)材料が好ましい。例えば、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、オレフィン系樹脂、含フッ素樹脂、若しくは含シリコーン樹脂等の樹脂フィルムと、アルミニウム箔等の金属箔との積層体が挙げられる。
(太陽電池デバイス)
 太陽電池デバイス1では、太陽電池セル2の端部の一部が積み重なることにより、太陽電池セル2が直列に接続される。具体的には、隣接する太陽電池セル2,2のうちの一方の太陽電池セル2のX方向の一方端側の一方面側(例えば受光面側)の一部は、他方の太陽電池セル2のX方向における一方端側と逆方向の他方端側の他方面側(例えば裏面側)の一部の下に重なる。太陽電池セル2の一方端側の受光面側の一部、および、他方端側の裏面側の一部には、Y方向に延在するバスバー電極部(後述)が形成される。一方の太陽電池セル2の一方端側の受光面側のバスバー電極部は、例えば接続部材8を介して、他方の太陽電池セル2の他方端側の裏面側のバスバー電極部と電気的に接続される。
 このように、瓦を屋根に葺いたように、複数の太陽電池セル2が一様にある方向にそろって傾く堆積構造となることから、このようにして太陽電池セル2を電気的に接続する方式を、シングリング方式と称する。また、ひも状につながった複数の太陽電池セル2を、太陽電池ストリング(太陽電池デバイス)と称する。
 以下では、太陽電池セル2において、隣接する太陽電池セル2と積み重なる端部側の領域であって、両主面のうちの隣接する太陽電池セル2と対向する主面側の領域を、積重領域Roとする。
 接続部材8としては、第1実施形態では、低融点金属を被覆した銅芯材からなるリボン線、低融点金属粒子を内包した熱硬化性樹脂フィルムで形成された導電性フィルム、または、低融点金属微粒子とバインダーとで形成された導電性接着剤等が用いられる。
 太陽電池デバイス1の両端には、モジュール外への配線取り出し、または、別の太陽電池ストリングとの電気的な接続に用いられる配線部材(図示省略)が接続される。配線部材としては、一般的に低融点金属でコーティングされた銅を芯材とするリード線または金属箔が用いられる。
 太陽電池デバイス1の詳細は後述する。以下、太陽電池デバイス1における太陽電池セル2について説明する。
(太陽電池セル)
 図3は、第1実施形態に係る太陽電池セル2を受光面側からみた図であり、図4は、第1実施形態に係る太陽電池セル2を裏面側からみた図である。図5は、図3および図4に示すV-V線断面図であり、図6は、図3および図4に示すVI-VI線断面図である。図3~図6に示す太陽電池セル2は、長方形状の両面電極型の太陽電池セルである。太陽電池セル2は、2つの主面を有する太陽電池基板10と、太陽電池基板10の主面のうちの一方面側(例えば受光面側)に形成された金属電極層21と、太陽電池基板10の主面のうちの他方面側(例えば裏面側)に形成された金属電極層31とを有する。
 太陽電池基板10は、例えば多結晶シリコン基板または単結晶シリコン基板を含む。シリコン基板の表面には、光照射により生成されたキャリアを回収するためのpn接合が形成される。pn接合は、シリコン基板の導電型とは逆の導電性不純物がドーピングされたエミッタ層がシリコン基板の表面に形成されることで形成される。エミッタ層は、熱拡散によって結晶シリコン基板の表面から数μmの厚み領域に形成されてもよいし、5nm以上20nm以下程度の厚みを有する非晶質シリコン層等を結晶シリコン基板の表面に製膜することで形成されてもよい。
 一般的に、拡散によって結晶シリコン基板内にエミッタ層が形成される接合様式をホモ接合と称し、結晶シリコン基板の表面にバンドギャップが異なる薄膜層が製膜されることでエミッタ層が形成される接合様式をヘテロ接合と称する。結晶シリコン基板の導電型がp型の場合、少数キャリアは電子であり、n型のエミッタ層から電子が回収される。一方、結晶シリコン基板の導電型がn型の場合、少数キャリアはホールであり、p型のエミッタ層からホールが回収される。
 両面電極型の太陽電池セルにおいては、一般的に、結晶シリコン基板の一方の主面にエミッタ層が形成され、結晶シリコン基板の他方の主面に、多数キャリアを回収するベース層が形成される。ベース層は、多数キャリアをシリコン基板の表面に引き付け、少数キャリアをシリコン基板内へ追い返すように、エミッタ層とは反対の電荷を帯びる。つまり、ベース層は、結晶シリコン基板と同じ導電型で、より高濃度の電荷を保持する層である。ベース層は、ドーピング不純物の拡散によって形成されてもよいし、同様の電場を形成するようにAl(アルミニウム)等とシリコンとを合金化させることで形成されてもよい。また、ドーピングがなされた薄膜が結晶シリコン基板の表面に形成されてもよい。
 ホモ接合およびヘテロ接合のいずれの場合においても、結晶シリコン基板の両主面の表面の欠陥準位を化学的に終端するためのパッシベーション層が、キャリアの再結合を抑制するために重要である。
 ホモ接合の場合、拡散などによって形成されたエミッタ層の表面またはベース層の表面が結晶シリコン基板の表面であるので、エミッタ層上に、熱酸化膜、シリコンナイトライド、またはそれらの積層体でパッシベーション層を形成する。ベース側に関しては、拡散によってベース層が形成されている場合は、ベース層の表面(結晶シリコン基板の表面)にパッシベーション層を形成する。例えば、p型結晶シリコン基板のベース層としてAlとシリコンとの合金が用いられる場合、ベース層のコンタクト抵抗が極めて低いため、求める性能とコストに応じてベース側の構造には自由度がある。パッシベーション層を用いない場合は、結晶シリコン基板の裏面の全面にAlペーストとシリコンとを反応させたBSF(Back Surface Field)太陽電池となり、安価である。一方、結晶シリコン基板の裏面表面をAlOx、シリコンオキサイド、シリコンナイトライド、またはそれらの積層体からなるパッシベーション膜で終端し、レーザー等により局所的にパッシベーション層に開口部を設け、Alペーストを印刷し焼成することで、開口部において局所的にAlとシリコンを合金させることで、局所BSFを形成してもよい。この場合、いわゆるPERC(Passivated Emitter and Rear Cell)セルとなり、先の全面BSFの太陽電池と比較して高性能となる。
 ヘテロ接合様式の場合、結晶シリコン基板の表面はエミッタ層の下地であるので、パッシベーション層は結晶シリコン基板の表面とエミッタ層の間に挿入される。この場合、パッシベーション層としては、垂直方向に電流がトンネリングできるように極めて薄い絶縁層、実質的に真性な非晶質シリコン層、またはそれらの積層体が用いられる。ベース層も同様に、パッシベーション層として、ベース層と結晶シリコンの間に、極めて薄い絶縁層、実質的に真性な非晶質シリコン層、またはそれらの積層体が用いられる。
 ホモ接合とヘテロ接合のいずれの場合でも、受光面側には1.7以上2.4以下程度の屈折率からなるAR(Anti Reflection)層が形成される。AR層の膜厚は、太陽光スペクトルに対する反射率が最も低くなるように設計される。ホモ接合の場合、AR層としては、パッシベーション層も兼ねたシリコンナイトライドが用いられることが一般的である。ヘテロ接合の場合は、AR層としては、後述のコンタクト層としてTCO(Transparent Conductive Oxide)層、例えばインジウム酸化物層が用いられる。
 太陽電池セルにおいては、光照射によって生成された少数キャリアと多数キャリアとにあっては、少数キャリアはエミッタ層、多数キャリアはベース層に回収され、電極へと回収される。
 ホモ接合様式においては、銀電極(Ag電極)を結晶シリコン基板であるエミッタ層にコンタクトさせる直接コンタクト方式が採られることが多い。AR層であるシリコンナイトライド上に銀ペースト(Agペースト)を印刷し、700℃以上900℃以下で高温焼成する際に、シリコンナイトライドを銀(Ag)が貫通し、下のエミッタ層に直接コンタクトするファイアースルー工程が用いられる。金属原子は結晶シリコン基板中では、強い再結合中心として影響する為、コンタクト箇所の再結合(コンタクト再結合)は強くなる。この影響はエミッタ層のドーピングによって、キャリアの拡散長を短くすることで、ある程度遮蔽することが出来る。このドーピングによるコンタクト再結合の遮蔽効果はドーピング濃度が高い程大きくなる。また、Agとエミッタ層のコンタクト抵抗もドーピング濃度が高い程低くなるので、高出力化が可能となる。一方、ドーピング濃度が高すぎるとドーピング不純物由来の再結合量も増えてしまう為、エミッタ層のシート抵抗が100Ω/sq以上150Ω/sq以下となるようなドーピング濃度にバランス調整される。このバランスを超えて更に高効率化するために、受光面側の電極が配置されるコンタクト領域のみのドーピング濃度を局所的に高くするというSelective Emitter方式を用いることで、更に高出力化できる。
 ヘテロ接合の場合、数μmの厚みを有する拡散層からなるエミッタ層と比較して、5nm以上20nm程度と薄い非晶質シリコン層を用いているので、直接コンタクト方式を用いた場合、エミッタ層を超えて、その下のパッシベーション層や結晶シリコン基板まで到達してしまう為、前述したドーピングによる遮蔽効果が得られず、大幅に性能が低下してしまう。その為、金属が直接コンタクトさせないようにTCOからなるコンタクト層を用いるのが一般的である。TCOとしてはITO等のインジウム酸化物を用いる。このTCO層は単なるコンタクト層としてだけではなく、エミッタ層に回収された少数キャリアをグリッド状の受光面電極まで輸送する面内輸送層としても機能する。更に、TCO層はAR層としても機能する。よってコンタクト層の膜厚は70nm以上100nm以下であると好ましい。TCO層のシート抵抗は30Ω/sq以上120Ω/sq以下程度であると好ましい。
 金属電極層21は、太陽電池基板10の受光面側に形成され、金属電極層31は、太陽電池基板10の裏面側に形成される。
 金属電極層21は、いわゆる櫛型の形状をなし、櫛歯に相当する複数のフィンガー電極部21fと、櫛歯の支持部に相当する単数または複数のバスバー電極部21bとを有する。バスバー電極部21bは、X方向の一方端側の受光面側(一方主面側)の一部の積重領域Roに沿ってY方向に延在する。フィンガー電極部21fは、バスバー電極部21bから、Y方向に交差するX方向に延在する。
 同様に、金属電極層31は、櫛型の形状をなし、櫛歯に相当する複数のフィンガー電極部31fと、櫛歯の支持部に相当する1または複数のバスバー電極部31bとを有する。バスバー電極部31bは、X方向の他方端側の裏面側の一部の積重領域Roに沿ってY方向に延在する。フィンガー電極部31fは、バスバー電極部31bから、Y方向に交差するX方向に延在する。なお、金属電極層31は、櫛型に限定されるものではなく、例えば、安価なAlペーストを用いる場合、太陽電池セル2の裏面側の略全体に矩形状に形成されてもよい。
 金属電極層21,31としては、入射光量を増やしつつ電気抵抗を減らすために最適設計が求められる。金属電極層21,31としては、X方向またはY方向の幅が細く、XY平面に交差する高さ(厚さ)が高いという高アスペクト電極が高出力化の観点で好ましい。
 高温処理が可能なホモ接合様式の場合、Agペーストの焼結が進むため導電率が高く、30μm以上40μm以下程度まで細線化することが可能である。
 ヘテロ接合様式では、250℃以上の高温ではパッシベーション層の機能が水素脱離によって劣化してしまう為、Agペースト電極は低温焼成となりホモ接合様式と比較して半分程度の導電率となる。このため、60μm以上100μm以下程度の幅の太めの配線が必要となる。
 受光面側のバスバー電極部21bと裏面側のバスバー電極部31bの位置は、図5に示すように太陽電池セル2の両端に分かれている。こうすることで、X方向に沿って、一方向に電流が流れる太陽電池デバイス1が構成される。図6に示すように裏面側のフィンガー電極部31fは、受光面側の積重領域Roに対応する位置に存在せず、受光面側のフィンガー電極部21fよりも若干短くなっている。これは、受光面側の積重領域Roは遮光部となるため光の入射量が極めて少なく、発生する電流も小さいため直列抵抗による電圧降下ロスが無視できるためである。
 一方、裏面側の積重領域Roに対応する位置には、受光面側のフィンガー電極部21fが配置されている。これは、裏面側の積重領域Roに対応する受光面側では、光の入射量および電流の発生量が共に大きく、抵抗を低く抑える必要があるためである。
 金属電極層21,31は、金属材料で形成される。金属材料としては、後述する酸化による黒色化処理の観点で、Ag(銀)、Cu(銅)、またはこれらの合金等が用いられる。
(太陽電池デバイスの詳細)
 図7は、図1に示すII-II線断面における積重領域Ro付近の拡大図であり、図8は、図1に示すVIII-VIII線断面における積重領域Ro付近の拡大図である。
 太陽電池セル2における積重領域Roにおいて、接続部材8と接する領域を接続領域Raとし、接続領域Raの周辺の領域を周辺領域Rbとする(すなわち、周辺領域Rbは積重領域Roにおいて接続領域Raを除外した領域である)。なお、周辺領域Rbは、接続領域Raから200μm以上1000μm以下程度の範囲である。
 太陽電池セル2の受光面側の積重領域Roの外における金属電極層21(21f)の表面、および、太陽電池セル2の裏面側の積重領域Roの外における金属電極層31(31f)の表面は、酸化膜42で覆われる。
 なお、受光面側の意匠性の観点では、太陽電池セル2の受光面側の積重領域Roの外における少なくとも受光面側(一方主面側)の金属電極層の表面が、酸化膜42で覆われていればよい。
 一方、太陽電池セル2の受光面側の積重領域Roにおける金属電極層21(21fおよび21b)の表面、および、太陽電池セル2の裏面側の積重領域Roにおける金属電極層31(31fおよび31b)の表面は、バリア膜(耐酸化膜)40で覆われ、酸化膜42で覆われない。
 すなわち、太陽電池セル2の受光面側の接続領域Raにおける金属電極層21(21fおよび21b)の表面、および、周辺領域Rbにおける金属電極層21(21fおよび21b)の表面は、バリア膜(耐酸化膜)40で覆われ、酸化膜42で覆われない。また、太陽電池セル2の裏面側の接続領域Raにおける金属電極層31(31fおよび31b)の表面、および、周辺領域Rbにおける金属電極層31(31fおよび31b)の表面は、バリア膜(耐酸化膜)40で覆われ、酸化膜42で覆われない。
 なお、太陽電池セル2の受光面側の周辺領域Rbにおける金属電極層21(21fおよび21b)の表面の少なくとも一部が、バリア膜(耐酸化膜)40で覆われ、酸化膜42で覆われなければよい。また、太陽電池セル2の裏面側の周辺領域Rbにおける金属電極層31(31fおよび31b)の表面の少なくとも一部が、バリア膜(耐酸化膜)40で覆われ、酸化膜42で覆われなければよい。
 バリア膜40(耐酸化膜)は、金属電極層21,31の酸化を防止する。また、バリア膜40は、接続領域Raにおける接続部材8と金属電極層21,31とのコンタクト、および、周辺領域Rbにおける封止材5と金属電極層21,31との密着性、を阻害しないと好ましい。バリア膜40としては、金属電極層21,31の表面に薄く形成されるエステル系または炭化水素系の有機膜が挙げられる。これらの有機膜は、一般的には、クリーンルーム内での有機汚染物質として挙げられる低分子物質ではあるが、酸化に対するバリア膜として好適に機能する。
 酸化膜42は、金属電極層21,31の表面を酸化させることで形成されるものであり、金属電極層21,31上にシリコンオキサイド等が製膜されたものではない。光沢のある金属電極層21,31の表面は、酸化されると光沢のない金属酸化物層を形成する。より詳細には、AgまたはCuを含む金属電極層21,31の表面は、酸化されると酸化Agまたは酸化Cuを含む酸化膜42を形成し、黒色化する。
(太陽電池デバイスの製造方法)
 次に、図9A~図9Cを参照して、第1実施形態に係る太陽電池デバイスの製造方法について説明する。図9Aは、第1実施形態に係る太陽電池デバイスの製造方法におけるバリア膜形成工程を示す図(断面図)であり、図9Bは、第1実施形態に係る太陽電池デバイスの製造方法における酸化膜形成工程を示す図(断面図)であり、図9Cは、第1実施形態に係る太陽電池デバイスの製造方法における接続および焼成工程を示す図(断面図)である。
 まず、pn接合を有する太陽電池基板10の受光面側(一方主面側)に金属電極層21を形成する。この際、X方向の一方端側の一部の積重領域Roに沿って、Y方向に延在するバスバー電極部21bを形成する。また、X方向に延在するフィンガー電極部21fを形成する。
 また、太陽電池基板10の裏面側(他方主面側)に金属電極層31を形成する。この際、X方向の他方端側の一部の積み重ね領域Roに沿って、Y方向に延在するバスバー電極部31bを形成する。また、X方向に延在するフィンガー電極部31fを形成する。
 次に、図9Aに示すように、太陽電池基板10の受光面側の積重領域Roにおける金属電極層21の表面(の少なくとも一部)に、バリア膜40を形成する。
 また、太陽電池基板10の裏面側の積重領域Roにおける金属電極層31の表面(の少なくとも一部)に、バリア膜40を形成する(バリア膜形成工程)。
 バリア膜の形成方法としては、マスク蒸着法を用いて、上述したエステル系または炭化水素系の有機膜を形成してもよいし、上述したエステル系または炭化水素系の材料を含むウレタンフォームによるインプリント等によって、有機膜を形成してもよい。
 次に、図9Bに示すように、酸化雰囲気中に金属電極層21,31を暴露することで、バリア膜40が形成されていない金属電極層の表面に酸化膜42を形成する(酸化膜形成工程)。
 酸化雰囲気におけるガスとしては、オゾンガス等が挙げられる。UV光照射または加熱により、酸化反応を促進させてもよい。
 次に、図9Cに示すように、積重領域Roにおいて、接続部材8を介して、太陽電池セル2同士を積み重ねて、焼成する(接続および焼成工程)。
 このとき、接続部材8は、一方の太陽電池セル2の受光面側のバリア膜40に配置されてもよいし、他方の太陽電池セル2の裏面側のバリア膜40に配置されてもよい(なお、太陽電池セル2の積重領域Roにおいて、接続部材8の占める領域が接続領域Raとなる)。この接続部材8を配置する際、力学的応力が生じるため、接続部材8はバリア膜40を貫通して金属電極層21,31に電気的にコンタクトする。
 また、このとき、図10に示すように、太陽電池セル2同士を積み重ねた状態で耐熱性の吸着台90上に配置し、太陽電池セル2の裏面側(他方主面側)を吸着することによって接続圧力を発生させる。この状態で、太陽電池セル2の受光面側(一方主面側)から例えばIRランプで加熱することによって、焼成する。この太陽電池セル2を吸着する際にも、力学的応力が生じるため、接続部材8はバリア膜40を貫通して、金属電極層21,31にコンタクトする。
 これにより、電気的にも力学的にも太陽電池セル2同士が接続された太陽電池デバイス1が得られる。
 以上説明したように、第1実施形態の太陽電池デバイス1、および、太陽電池デバイスの製造方法によれば、太陽電池セル2の受光面側(一方主面側)の積重領域Roの外における金属電極層21(フィンガー電極部21f)の表面は、酸化膜42で覆われるので、金属電極層21(フィンガー電極部21f)の表面における、酸化Agまたは酸化Cuを含む酸化膜42の黒色化によって目立たなくなり(表面全体が黒に近い発色となり)、意匠性が向上する。
 ところで、ストリング方式を用いた太陽電池デバイスでは、通常のタブ線接続方式と比較して、太陽電池基板(シリコン基板を含む)が直列接続される剛直な集積構造となるため(柔軟性に乏しく)、温度変化に対する応力緩和性能が低く、熱サイクル信頼性に課題があった。
 この点に関し、本実施形態の太陽電池デバイス1、および、太陽電池デバイスの製造方法によれば、太陽電池セル2の大部分を占める積重領域Roの外の金属電極層21,31(フィンガー電極部21f,31f)が酸化膜42で覆われるので、モジュール化の際に金属電極層21,31と封止材5との密着強度が低下し、応力が緩和される。これは、金属電極層21,31と封止材5の間に酸化膜42が配置されることで、金属電極層21,31と封止材5との間に滑りが発生し、熱膨張によって生じる応力が緩和されるためと考えられる。これにより、最も応力が発生しやすいシリコン基板を含む太陽電池基板10と封止材5とに挟まれた金属電極層21,31において、封止材5からの応力の影響が抑制される。そのため、金属電極層21,31の剥がれ、または、金属電極層21,31同士の接続不良の発生が抑制され、熱サイクル信頼性が向上する。
 また、本実施形態の太陽電池デバイス1、および、太陽電池デバイスの製造方法によれば、太陽電池セル2の積重領域Roにおける接続部材8に接する接続領域Raの金属電極層21,31の表面は、酸化膜42で覆われないので、接続部材8と金属電極層21,31との電気接触抵抗の増大が抑制され、太陽電池デバイス1の出力の低下が抑制される。換言すれば、接続部材8と金属電極層21,31との電気接触抵抗が低く保たれ、太陽電池デバイス1の出力が維持され、信頼性が向上する。
 また、本実施形態の太陽電池デバイス1、および、太陽電池デバイスの製造方法によれば、太陽電池セル2の積重領域Roにおける接続領域Raの周囲の周辺領域Rbの金属電極層21,31の表面は、酸化膜42で覆われないので、モジュール化の際に金属電極層21,31と封止材5との密着強度が高い。その結果、熱サイクル信頼性および耐湿耐熱性信頼性が向上する。
 積重領域Roにおける接続領域Raでは、太陽電池セル2の金属電極層21,31が接続部材8を挟み込むが、接続領域Raの周辺の周辺領域Rbでは間隙が存在し、この間隙は封止材5で埋められる。周辺領域Rbに酸化膜42が配置されないことにより、間隙を埋める封止材5と金属電極層21,31とが強く密着し、積重領域Roにおける接着性が高まり、熱膨張による応力で積重領域Roの接続が外れることを防ぐと考えられる。また、耐湿耐熱性信頼性については、周辺領域Rbにおける金属電極層21,31と封止材5とが密着することで、接続領域Raへの水の侵入による直列抵抗の増大を防ぐことができ、信頼性が向上すると考えられる。
[第2実施形態]
 第1実施形態の太陽電池デバイスの製造方法では、バリア膜を製膜により形成した。第2実施形態の太陽電池デバイスの製造方法では、バリア膜材料を含む接続部材ペーストを印刷し、焼成することでバリア膜を形成する。
(太陽電池デバイスの製造方法)
 次に、図13A~図13Cを参照して、第2実施形態に係る太陽電池デバイスの製造方法について説明する。図13Aは、第2実施形態に係る太陽電池デバイスの製造方法における接続工程を示す図(断面図)であり、図13Bは、第2実施形態に係る太陽電池デバイスの製造方法における焼成およびバリア膜形成工程を示す図(断面図)であり、図13Cは、第2実施形態に係る太陽電池デバイスの製造方法における酸化膜形成工程を示す図(断面図)である。
 まず、pn接合を有する太陽電池基板10の受光面側(一方主面側)に金属電極層21を形成する。この際、X方向の一方端側の一部の積み重ね領域Roに沿って、Y方向に延在するバスバー電極部21bを形成する。また、X方向に延在するフィンガー電極部21fを形成する。
 また、太陽電池基板10の裏面側(他方主面側)に金属電極層31を形成する。この際、X方向の他方端側の一部の積重領域Roに沿って、Y方向に延在するバスバー電極部31bを形成する。また、X方向に延在するフィンガー電極部31fを形成する。
 次に、図13Aに示すように、積重領域Roにおいて、接続部材8を介して、太陽電池セル2同士を積み重ねる(接続工程)。
 接続部材8としては、第2実施形態では、例えば、熱硬化型の接着性樹脂材料に、導電性粒子(例えば、金属微粒子)を分散させた導電性接着ペーストに、バリア膜材料を含む接続部材ペーストが用いられる。接続部材8の一例としては、ウレタンアクリレート等のオリゴマー成分を含有するAgペーストまたはCuペーストが挙げられる。
 接続部材8の形成方法としては、上述した接続部材ペーストを、積重領域Roにおける接続領域Raに塗布または印刷する。このとき、接続部材は、一方の太陽電池セル2の受光面側の接続領域Raに塗布されてもよいし、他方の太陽電池セル2の裏面側の接続領域Raに塗布されてもよい。
 次に、図13Bに示すように、接続部材8を介して積み重ねた太陽電池セル2を焼成する。このとき、第1実施形態と同様に、図10に示すように、太陽電池セル2の裏面側(他方主面側)を吸着することによって接続圧力を発生させた状態で、太陽電池セル2の受光面側(一方主面側)から例えばIRランプで加熱する。これにより、電気的にも力学的にも太陽電池セル2同士が接続される。
 また、このとき、接続部材ペーストからブリードした、または蒸発した低分子成分が周辺領域Rbに付着してバリア膜40が形成される(焼成およびバリア膜形成工程)。
 次に、図13Cに示すように、酸化雰囲気中に金属電極層21,31を暴露することで、バリア膜40および接続部材8が形成されていない金属電極層21,31の表面に酸化膜42を形成する(酸化膜形成工程)。これにより、太陽電池デバイス1が得られる。
(太陽電池デバイス)
 図11は、第2実施形態に係る太陽電池デバイスの図1のII-II線断面相当における積重領域付近の拡大図であり、図12は、第2実施形態に係る太陽電池デバイスの図1のVIII-VIII線断面相当における積重領域付近の拡大図である。
 第2実施形態の太陽電池デバイス1では、上述したようにバリア膜材料を含む接続部材ペーストを印刷し、焼成することでバリア膜40を形成するため、太陽電池セル2の受光面側の接続領域Raにおける金属電極層21(21fおよび21b)の表面、および、太陽電池セル2の裏面側の接続領域Raにおける金属電極層31(31fおよび31b)の表面に、バリア膜(耐酸化膜)40が形成されない点(図9A,図9B参照)で第1実施形態と異なる。
 なお、太陽電池セル2の受光面側の接続領域Raにおける金属電極層21(21fおよび21b)の表面、および、太陽電池セル2の裏面側の接続領域Raにおける金属電極層31(31fおよび31b)の表面が、酸化膜42で覆われない点では、第2実施形態の太陽電池デバイス1は第1実施形態と同様である。
 ここで、太陽電池セル2が配列される方向を配列方向(X方向)とし、配列方向に交差する方向を交差方向(Y方向)とし、太陽電池セル2における積重領域Roにおいて、隣接する太陽電池セル2の下に積み重なる太陽電池セル2の端側を遮蔽側、配列方向において遮蔽側の反対側を露出側とする。
 上述したように、バリア膜材料を含む接続部材ペーストを印刷し、焼成することでバリア膜40を形成する際、図10に示すように、接続圧力を発生させるために、太陽電池セル2の裏面側(他方主面側)を吸着する。すると、接続部材ペーストからのブリードまたは蒸発によって形成されるバリア膜40は、露出側から遮光側に偏って形成される。
 これにより、太陽電池セル2における積重領域Roにおいて、接続部材8に対して露出側の周辺領域Rb1の金属電極層21の酸化膜42の被覆率と、接続部材8に対して遮蔽側の周辺領域Rb2の金属電極層21の酸化膜42の被覆率とは、非対称である。
 より詳細には、太陽電池セル2における積重領域Roにおいて、接続部材8に対して露出側の周辺領域Rb1の金属電極層21の酸化膜42の被覆率は、接続部材8に対して遮蔽側の周辺領域Rb2の金属電極層21の酸化膜42の被覆率よりも高い。
 なお、バリア膜材料を含む接続部材ペーストを印刷し、焼成することでバリア膜40を形成する際、太陽電池セルの受光面側(一方主面側)を吸着してもよい。この場合、太陽電池セル2における積重領域Roにおいて、接続部材8に対して露出側の周辺領域Rb1の金属電極層21の酸化膜42の被覆率は、接続部材8に対して遮蔽側の周辺領域Rb2の金属電極層21の酸化膜42の被覆率よりも低くなる。
 この場合、意匠性の観点から、太陽電池セル2における積重領域Roの外に酸化膜42が形成されないことが好ましい。
 この第2実施形態の太陽電池デバイス1、および、太陽電池デバイスの製造方法でも、第1実施形態の太陽電池デバイス1、および、太陽電池デバイスの製造方法と同様の利点が得られる。
(変形例)
 図14Aおよび図14Bは、第2実施形態の変形例に係る太陽電池デバイスの図1のVIII-VIII線断面相当における積重領域付近の拡大図である。
 図14Aに示すように、太陽電池セル2における積重領域Roにおいて、Y方向(交差方向)に延びる複数の金属電極層21(バスバー電極部21b,31b)が含まれる場合、最も受光側に位置する金属電極層21,31が酸化膜42で覆われるようにしてもよい。或いは、図14Bに示すように、最も露出側に位置する金属電極層21,31の少なくとも一部が酸化膜42で覆われるようにしてもよい。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、上述した実施形態では、太陽電池セル2の受光面側の金属電極層21および裏面側の金属電極層31の材料として、同一の材料を用いた。しかし、本発明はこれに限定されず、受光面側の金属電極層21の材料と裏面側の金属電極層31の材料とを異ならせてもよい。例えば、意匠性の観点から、受光面側の金属電極層21の材料として、酸化により黒色化が可能なAgまたはCu等を用い、価格の観点から、裏面側の金属電極層31の材料として、Al等を用いてもよい。
 更に、受光面側において、積重領域Roの金属電極層21の材料と積重領域Ro外の金属電極層21の材料とを異ならせてもよい。例えば、受光面側において、意匠性の観点から、積重領域Ro外の金属電極層21の材料として、酸化により黒色化が可能なAgまたはCu等を用い、積重領域Roの金属電極層21の材料として、AgおよびCu以外の材料を用いてもよい。
 すなわち、本発明では、太陽電池セル2の積重領域Roの外における、少なくとも受光面側(一方主面側)の金属電極層の表面が、酸化膜で覆われればよい。
 以下、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 以下のとおり、図1,図2および図7,8に示す第1実施形態の太陽電池デバイス1を、図9A~図9Cに示す第1実施形態の太陽電池デバイスの製造方法に従って作製し、この第1実施形態の太陽電池デバイス1を含む太陽電池モジュール100を実施例1として作製した。
 まず、pn接合を有する太陽電池基板10の受光面側(一方主面側)に金属電極層21(バスバー電極部21bおよびフィンガー電極部21f)を形成し、太陽電池基板10の裏面側(他方主面側)に金属電極層31(バスバー電極部31bおよびフィンガー電極部31f)を形成した。
 次に、図9Aに示すように、太陽電池基板10の受光面側の積重領域Roにおける金属電極層21の表面(の少なくとも一部)に、バリア膜40を形成し、太陽電池基板10の裏面側の積重領域Roにおける金属電極層31の表面(の少なくとも一部)に、バリア膜40を形成した(バリア膜形成工程)。
 バリア膜の形成方法としては、マスク蒸着法を用いて、上述した炭化水素系の有機膜を形成した。
 次に、図9Bに示すように、オゾンガス雰囲気中に金属電極層を暴露することで、バリア膜が形成されていない金属電極層の表面に酸化膜42を形成した(酸化膜形成工程)。
 次に、図9Cに示すように、積重領域Roにおいて、接続部材8を介して、太陽電池セル2同士を積み重ねて、焼成した(接続および焼成工程)。このとき、図10に示すように、太陽電池セル2の裏面側(他方主面側)を吸着することによって接続圧力を発生させた状態で、太陽電池セル2の受光面側(一方主面側)からIRランプで加熱することによって、焼成した。これにより、電気的にも力学的にも太陽電池セル2同士が接続された太陽電池デバイス1が得られた。
 その後、太陽電池デバイス1を、封止材5であるEVA(Ethylene-Vinyl Acetate)シートで挟み、更に受光側保護部材3よび裏側保護部材4である強化ガラス基板で挟んだ状態で、ラミネートを行うことで、太陽電池モジュール100を制作した。
 実施例1では、受光面の積重領域Ro外の金属電極層21,31の表面には酸化膜42が形成されたため、封止後は受光面の金属電極層21,31が視認されず、優れた意匠性を示した。
(実施例2)
 以下のとおり、図1,2および図11,12に示す第2実施形態の太陽電池デバイス1を、図13A~図13Cに示す第2実施形態の太陽電池デバイスの製造方法に従って作製し、この第2実施形態の太陽電池デバイス1を含む太陽電池モジュール100を実施例2として作製した。
 まず、実施例1と同様に、pn接合を有する太陽電池基板10の受光面側(一方主面側)に金属電極層21(バスバー電極部21bおよびフィンガー電極部21f)を形成し、太陽電池基板10の裏面側(他方主面側)に金属電極層31(バスバー電極部31bおよびフィンガー電極部31f)を形成した。
 次に、図13Aに示すように、積重領域Roにおいて、接続部材8を介して、太陽電池セル2同士を積み重ねた(接続工程)。
 このとき、ウレタンアクリレートのオリゴマー成分を含有するAgペーストを接続部材ペーストとして、積重領域Roにおける接続領域Raに塗布または印刷した。
 次に、図13Bに示すように、接続部材8を介して積み重ねられた太陽電池セル2を焼成した。このとき、第1実施例と同様に、図10に示すように、太陽電池セル2の裏面側(他方主面側)を吸着することによって接続圧力を発生させた状態で、太陽電池セル2の受光面側(一方主面側)からIRランプで加熱した。これにより、電気的にも力学的にも太陽電池セル2同士が接続される。
 また、このとき、接続部材ペーストからブリードした、または蒸発した低分子成分が周辺領域に付着してバリア膜40が形成された(焼成およびバリア膜形成工程)。
 次に、酸化雰囲気中に金属電極層21,31を暴露することで、バリア膜40および接続部材8が形成されていない金属電極層21,31の表面に酸化膜42を形成した(酸化膜形成工程)。これにより、太陽電池デバイス1が得られた。
 その後、第1実施例と同様に、太陽電池デバイス1を、封止材5であるEVA(Ethylene-Vinyl Acetate)シートで挟み、更に受光側保護部材3および裏側保護部材4である強化ガラス基板で挟んだ状態で、ラミネートを行うことで、太陽電池モジュール100を制作した。
 実施例2でも、受光面の積重領域Ro外の金属電極層21,31の表面には酸化膜42が形成されたため、封止後は受光面の金属電極層21,31が視認されず、優れた意匠性を示した。
 なお、実施例2では、太陽電池セル2の受光側の周辺領域Rb1の酸化膜42による被覆率は、遮蔽側の周辺領域Rb2の被覆率よりも大きかった。
(比較例1)
 比較例1として、バリア膜を用いずに、受光面側および裏面側の金属電極層の表面を全て酸化膜で覆ったものを制作した。比較例1の工程としては、実施例1の工程において、図9Aのバリア膜形成工程を省いたものである。
 比較例1では、積重領域の接続領域において、接続部材と、受光面側および裏面側の金属電極層との間に酸化膜が存在することから、コンタクト抵抗が高く、モジュール全体の直列抵抗に反映され、初期出力は実施例1や実施例2と比較して3.5%程低いものとなった。
 なお、比較例1でも、受光面の積重領域外の金属電極層の表面には酸化膜が形成されたため、封止後は受光面の金属電極層が視認されず、優れた意匠性を示した。
(比較例2)
 比較例2として、バリア膜を用いずに接続領域のみ接続部材で覆うことで、酸化膜の形成を抑制した構造を制作した。比較例2の工程としては、実施例2で用いたウレタンアクリレート等のオリゴマー成分を含有するAgペーストではなく、低分子成分の少ないエポキシ系バインダーを用いたAgペーストを接続部材ペーストとして用いた。
 こうすることで、図13Bに示す接続および焼成工程においてバリア膜40が形成されず、酸化膜形成工程において周辺領域は積重領域外と同様に酸化膜が形成された。つまり、接続領域を除き、受光面側および裏面側の金属電極層は完全に黒色の酸化膜で覆われた。
 比較例2では、接続部材と、受光面側および裏面側の金属電極層との接触は良好である為、初期出力特性は、実施例1および実施例2と同等であった。
 また、比較例2でも、受光面の積重領域外の金属電極層の表面には酸化膜が形成されたため、封止後は受光面の金属電極層が視認されず、優れた意匠性を示した。
(比較例3)
 比較例3として、バリア膜を用いずに、酸化膜も形成しない太陽電池セルを用いて太陽電池デバイスおよび太陽電池モジュールを制作した。比較例3の工程としては、比較例2における酸化膜形成工程を省いたものである。
 比較例3では、受光面側の金属電極層の反射光がモジュール内で閉じ込められる効果によって、初期出力特性は、若干電流が向上することで、実施例1および実施例2よりも0.8%程高い値を示した。
 しかし、積重領域外の金属電極層の表面には酸化膜が形成されていないため、受光面側の金属電極層が視認できてしまった。
 以上のように作製した実施例1,2および比較例1~3の太陽電池モジュールの熱サイクル信頼性および耐湿熱信頼性を測定した。熱サイクル信頼性では、周囲温度を80度から-40度まで変化させるサイクルを250サイクル行った後に、初期時に対して出力が何パーセント保持されているかを示す(好ましくは95%以上保持)。また、耐湿熱信頼性では、周囲温度85度、周囲湿度85%の状態で2000時間経過後に、初期時に対して出力が何パーセント保持されているかを示す(好ましくは95%以上保持)。
 また、実施例1,2および比較例1~3の太陽電池モジュールの意匠性の良し悪しを確認した。意匠性では、受光面側の金属電極層21(21f)が視認できると×とし、殆ど視認できずに電極が無い太陽電池セルの受光面と同等に見える場合を〇とした。
 これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1によれば、実施例1、実施例2、比較例1、比較例2では、酸化膜による意匠性の向上が確認できた。これらの優れた意匠性は、比較例3との対比より、積重領域Ro外の受光面側の金属電極層21および裏面側の金属電極層31の表面が黒色の酸化膜42で覆われていることによるものである。
 比較例1は熱サイクル信頼性および耐湿熱信頼性が低い結果となったが、これは接続領域に酸化膜が介在しているため、接続部材と、受光面側および裏面側の金属電極層とが電気的にも力学的にも良好なコンタクトが形成できておらず、信頼性試験の過程で電気的コンタクトを保持することが出来ず、悪化したと考えられる。また、周辺領域にも酸化膜が介在する為、封止材と受光面側および裏面側の金属電極層との密着性が乏しく、接続の維持および水の侵入を防ぐことができなかったと推定される。
 比較例2では、熱サイクル信頼性は実施例1および2よりも若干低いものの、95%以上の保持率を示しており、高い信頼性を示している。一方、耐湿熱信頼性については、比較例に次いで低い値を示した。これは、比較例1と同様に、周辺領域に酸化膜が介在する為、封止材と受光面側および裏面側の金属電極層との密着が弱く、水の侵入を完全に防ぐことが出来なかった為と考えられる。
 比較例3において、耐湿熱信頼性が比較例2よりも高く、実施例1および実施例2と同等の保持率を示している。このことから、酸化膜の積重領域外への形成は、水の侵入を若干ではあるが水の侵入を助長するものであるが、周辺領域における受光面側および裏面側の金属電極層と封止材との密着性によって防がれていると考えられる。
 実施例1および実施例2は、熱サイクル試験で特に高い保持率を示した。これは、前述したように積重領域Ro外の酸化膜42が封止材5との応力緩和と、周辺領域Rbにおける金属電極層21,31と封止材5の密着性によるものである。
 本発明による実施例1および実施例2は、優れた信頼性と意匠性を両立する技術であることが証明された。実施例1と実施例2を比較した場合、実施例2の意匠性の方が優れていた。これは、図11,12に示したように実施例2は受光側の周辺領域Rbの酸化膜42による被覆率が高くなっており、受光側の積重領域Ro外に金属光沢が残る確率が実施例1と比較して低く抑えられた。
 1 太陽電池デバイス
 2 太陽電池セル
 3 受光側保護部材
 4 裏側保護部材
 5 封止材
 8 接続部材
 10 太陽電池基板
 21,31 金属電極層
 21f、31f フィンガー電極部
 21b,31b バスバー電極部
 40 バリア膜(耐酸化膜)
 42 酸化膜
 100 太陽電池モジュール
 Ro 積重領域
 Ra 接続領域
 Rb,Rb1,Rb2 周辺領域

Claims (12)

  1.  両主面に金属電極層を有する両面電極型の太陽電池セルを複数個、シングリング方式を用いて電気的に接続する太陽電池デバイスであって、
     隣接する前記太陽電池セルのうちの一方の前記太陽電池セルの一部は、他方の前記太陽電池セルの一部と、接続部材を介して積み重なることにより電気的に接続され、
     前記太陽電池セルにおいて、隣接する前記太陽電池セルと積み重なる端部側の領域であって、前記両主面のうちの隣接する前記太陽電池セルと対向する主面側の領域を積重領域とし、前記積重領域における前記接続部材と接する領域を接続領域とし、前記積重領域における前記接続領域の周辺の領域を周辺領域とすると、
     前記太陽電池セルの前記積重領域の外における、少なくとも一方主面側の前記金属電極層の表面は、酸化膜で覆われ、
     前記太陽電池セルの前記接続領域における前記金属電極層の表面、および、前記周辺領域における前記金属電極層の表面の少なくとも一部は、酸化膜で覆われない、
    太陽電池デバイス。
  2.  前記太陽電池セルの少なくとも一方主面側の前記金属電極層の材料は、銀または銅を含む、請求項1に記載の太陽電池デバイス。
  3.  前記太陽電池セルの前記接続領域および前記周辺領域における前記金属電極層の表面には、耐酸化膜が形成される、請求項1または2に記載の太陽電池デバイス。
  4.  前記接続部材は、金属微粒子を含み、
     前記太陽電池セルの前記周辺領域における前記金属電極層の表面には、耐酸化膜が形成される、請求項1または2に記載の太陽電池デバイス。
  5.  前記太陽電池セルが配列される方向を配列方向とし、
     前記太陽電池セルにおける前記積重領域において、隣接する前記太陽電池セルの下に積み重なる前記太陽電池セルの端側を遮蔽側、前記配列方向において前記遮蔽側の反対側を露出側とすると、
     前記太陽電池セルにおける前記積重領域において、前記接続部材に対して前記露出側の前記金属電極層の前記酸化膜の被覆率と、前記接続部材に対して前記遮蔽側の前記金属電極層の前記酸化膜の被覆率とは、非対称である、
    請求項4に記載の太陽電池デバイス。
  6.  前記太陽電池セルにおける前記積重領域において、前記接続部材に対して前記露出側の前記金属電極層の前記酸化膜の被覆率は、前記接続部材に対して前記遮蔽側の前記金属電極層の前記酸化膜の被覆率よりも高い、
    請求項5に記載の太陽電池デバイス。
  7.  前記配列方向に交差する方向を交差方向とすると、
     前記太陽電池セルにおける前記積重領域において、前記交差方向に延びる複数の金属電極層が含まれる場合、最も前記露出側に位置する金属電極層の少なくとも一部が前記酸化膜で覆われる、
    請求項5または6に記載の太陽電池デバイス。
  8.  両主面に金属電極層を有する両面電極型の太陽電池セルを複数個、シングリング方式を用いて電気的に接続する請求項1~7のいずれか1項に記載の太陽電池デバイスの製造方法であって、
     前記太陽電池セルにおいて、隣接する前記太陽電池セルと積み重なる端部側の領域であって、前記両主面のうちの隣接する前記太陽電池セルと対向する主面側の領域を積重領域とし、前記積重領域における前記接続部材と接する領域を接続領域とし、前記積重領域における前記接続領域の周辺の領域を周辺領域とすると、
     前記太陽電池セルの前記積重領域における前記金属電極層の表面に、耐酸化膜を形成する耐酸化膜形成工程と、
     酸化雰囲気下での暴露により、前記太陽電池セルの前記積重領域の外における、少なくとも一方主面側の前記金属電極層の表面に、酸化膜を形成する酸化膜形成工程と、
    を含み、
     前記耐酸化膜形成工程では、
     前記太陽電池セルの前記接続領域に接続部材を配置する前に、前記太陽電池セルの前記接続領域における前記金属電極層の表面、および、前記周辺領域における前記金属電極層の表面の少なくとも一部に、耐酸化膜を形成するか、または、
     前記太陽電池セルの前記接続領域に接続部材を配置した後に、前記周辺領域における前記金属電極層の表面の少なくとも一部に、耐酸化膜を形成する、
    太陽電池デバイスの製造方法。
  9.  前記耐酸化膜形成工程では、前記太陽電池セルの前記接続領域に接続部材を配置する前に、耐酸化膜を製膜する、請求項8に記載の太陽電池デバイスの製造方法。
  10.  前記耐酸化膜形成工程では、前記太陽電池セルの前記接続領域に耐酸化膜材料を含む接続部材を配置した後に、前記接続部材を焼成する際に前記接続部材からブリードまたは蒸発した前記耐酸化膜材料により耐酸化膜を形成する、請求項8に記載の太陽電池デバイスの製造方法。
  11.  前記耐酸化膜形成工程では、前記太陽電池セルの一方主面側または他方主面側を吸着しながら、前記接続部材を焼成する、請求項10に記載の太陽電池デバイスの製造方法。
  12.  前記酸化膜形成工程における酸化雰囲気では、オゾンガスを含む、請求項8~11のいずれか1項に記載の太陽電池デバイスの製造方法。
PCT/JP2019/014454 2018-04-19 2019-04-01 太陽電池デバイスおよび太陽電池デバイスの製造方法 WO2019202958A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/048,945 US20210175383A1 (en) 2018-04-19 2019-04-01 Solar cell device and method for manufacturing solar cell device
JP2020514050A JP7353272B2 (ja) 2018-04-19 2019-04-01 太陽電池デバイスおよび太陽電池デバイスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018080906 2018-04-19
JP2018-080906 2018-04-19

Publications (1)

Publication Number Publication Date
WO2019202958A1 true WO2019202958A1 (ja) 2019-10-24

Family

ID=68240086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014454 WO2019202958A1 (ja) 2018-04-19 2019-04-01 太陽電池デバイスおよび太陽電池デバイスの製造方法

Country Status (3)

Country Link
US (1) US20210175383A1 (ja)
JP (1) JP7353272B2 (ja)
WO (1) WO2019202958A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106417A1 (ja) * 2019-11-29 2021-06-03 株式会社カネカ 太陽電池、太陽電池モジュール及び太陽電池の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114937709B (zh) * 2022-07-22 2022-10-25 一道新能源科技(衢州)有限公司 一种p型perc双面太阳能电池组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313126A (ja) * 1997-05-13 1998-11-24 Sharp Corp 太陽電池素子及びその電極の表面処理方法及び太陽電池モジュール
US20120125391A1 (en) * 2010-11-19 2012-05-24 Solopower, Inc. Methods for interconnecting photovoltaic cells
WO2015152020A1 (ja) * 2014-03-31 2015-10-08 株式会社カネカ 太陽電池モジュールおよびその製造方法
US20170077320A1 (en) * 2015-09-11 2017-03-16 Solarcity Corporation Anti-corrosion protection of photovoltaic structures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127738A (en) * 1976-07-06 1978-11-28 Exxon Research & Engineering Company Photovoltaic device containing an organic layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313126A (ja) * 1997-05-13 1998-11-24 Sharp Corp 太陽電池素子及びその電極の表面処理方法及び太陽電池モジュール
US20120125391A1 (en) * 2010-11-19 2012-05-24 Solopower, Inc. Methods for interconnecting photovoltaic cells
WO2015152020A1 (ja) * 2014-03-31 2015-10-08 株式会社カネカ 太陽電池モジュールおよびその製造方法
US20170077320A1 (en) * 2015-09-11 2017-03-16 Solarcity Corporation Anti-corrosion protection of photovoltaic structures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106417A1 (ja) * 2019-11-29 2021-06-03 株式会社カネカ 太陽電池、太陽電池モジュール及び太陽電池の製造方法
CN114651336A (zh) * 2019-11-29 2022-06-21 株式会社钟化 太阳能电池、太阳能电池模块以及太阳能电池的制造方法
CN114651336B (zh) * 2019-11-29 2023-10-17 株式会社钟化 太阳能电池、太阳能电池模块以及太阳能电池的制造方法
JP7560479B2 (ja) 2019-11-29 2024-10-02 株式会社カネカ 太陽電池、太陽電池モジュール及び太陽電池の製造方法

Also Published As

Publication number Publication date
JP7353272B2 (ja) 2023-09-29
JPWO2019202958A1 (ja) 2021-04-22
US20210175383A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
US9608140B2 (en) Solar cell and solar cell module
CN111615752B (zh) 太阳能电池模块
JP4988065B2 (ja) 配線シート、配線シート付き太陽電池セル、太陽電池モジュールおよび配線シートロール
CN107112378B (zh) 太阳能电池及其制造方法、以及太阳能电池模块
US10164129B2 (en) Solar cell
JP7291715B2 (ja) 太陽電池デバイスおよび太陽電池モジュール
WO2013018763A1 (ja) 太陽電池モジュール及びその製造方法
EP2731147A1 (en) Solar cell module and solar cell
WO2019202958A1 (ja) 太陽電池デバイスおよび太陽電池デバイスの製造方法
KR20140095658A (ko) 태양 전지
JP2019079916A (ja) バックコンタクト型太陽電池モジュール
JP6995828B2 (ja) 太陽電池モジュール
JP7530221B2 (ja) 太陽電池ストリング及び太陽電池モジュール
US9362435B2 (en) Solar cell apparatus and method of fabricating the same
EP2533295B1 (en) Solar cell module
CN111095572B (zh) 双面电极型太阳能电池和太阳能电池模块
WO2014050193A1 (ja) 光電変換モジュール
WO2020031574A1 (ja) 太陽電池モジュール
US20180122966A1 (en) Solar cell module
JP7482708B2 (ja) 太陽電池セル及び太陽電池モジュール
US10622502B1 (en) Solar cell edge interconnects
JP2022149039A (ja) 太陽電池モジュール
CN118476035A (zh) 太阳能电池器件及太阳能电池模块
CN117957933A (zh) 太阳能电池器件以及太阳能电池模块
WO2013128566A1 (ja) 太陽電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788950

Country of ref document: EP

Kind code of ref document: A1