WO2019202768A1 - Axial gap dynamo electrical machine - Google Patents

Axial gap dynamo electrical machine Download PDF

Info

Publication number
WO2019202768A1
WO2019202768A1 PCT/JP2018/044127 JP2018044127W WO2019202768A1 WO 2019202768 A1 WO2019202768 A1 WO 2019202768A1 JP 2018044127 W JP2018044127 W JP 2018044127W WO 2019202768 A1 WO2019202768 A1 WO 2019202768A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical machine
axial gap
rotating electrical
type rotating
rotor
Prior art date
Application number
PCT/JP2018/044127
Other languages
French (fr)
Japanese (ja)
Inventor
博洋 床井
佐藤 大祐
憲一 相馬
三上 浩幸
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201880085602.8A priority Critical patent/CN111566915B/en
Publication of WO2019202768A1 publication Critical patent/WO2019202768A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the present invention relates to an axial gap type rotating electrical machine, and more particularly to an axial gap type rotating electrical machine characterized by a stator.
  • the axial gap type rotating electrical machine in which a stator and a rotor face each other through a predetermined gap in the direction of the rotation axis.
  • the axial gap type rotating electric machine is suitable for high power density and high efficiency because the opposing area of the stator and the rotor per physique can be increased in a thin (flat) structure.
  • the stator core can have a simple columnar structure.
  • Patent Document 1 is known as a prior art of an axial gap type rotating electrical machine.
  • Patent Document 1 discloses a divided structure of a yoke and a winding magnetic core (tooth). Since division requires holding against magnetic attractive force and torque reaction force, an engagement groove is provided in the division surface, and the yoke and the teeth are mechanically fastened.
  • the structure in the 2-rotor-1 stator type axial gap type rotating electrical machine, the structure is a columnar iron core. In the 1 rotor-1 stator type axial gap type rotating electrical machine, the structure is an iron core composed of teeth and a yoke. Because of this difference, parts were not shared between different types of axial gap type rotating electrical machines.
  • An object of the present invention is to provide an axial gap type rotating electrical machine that reduces costs by eliminating the need for machining work for separating yokes and teeth, and by sharing an iron core between different types of axial gap rotating electrical machines.
  • a preferred example of the present invention is a stator having a tooth which is an iron core around which a winding is wound, a yoke which is an iron core separated from the tooth, and a stator and a rotation axis which are arranged via a gap.
  • An axial gap type rotating electrical machine having a portion.
  • FIG. 1 is an internal configuration diagram illustrating a 1 rotor-1 stator type axial gap type rotating electrical machine according to a first embodiment.
  • FIG. 6 is an internal configuration diagram showing a 1 rotor-1 stator type axial gap type rotating electrical machine of Example 2.
  • FIG. 6 is an internal configuration diagram illustrating a 1 rotor-1 stator type axial gap type rotating electrical machine according to a third embodiment.
  • FIG. 6 is an internal configuration diagram illustrating a 1 rotor-1 stator type axial gap type rotating electrical machine according to a fourth embodiment.
  • FIG. 10 is an internal configuration diagram illustrating a 1 rotor-1 stator type axial gap type rotating electrical machine according to a fifth embodiment.
  • FIG. 9 is an internal configuration diagram illustrating a control device-integrated 1-rotor-1 stator-type axial gap type rotating electrical machine according to a sixth embodiment.
  • FIG. 9 is an internal configuration diagram illustrating a mechanical device-integrated 1-rotor-1 stator-type axial gap type rotating electrical machine according to a seventh embodiment.
  • FIG. 6 is an internal configuration diagram showing a 2-rotor-1 stator type axial gap type rotating electrical machine of a comparative example.
  • FIG. 5 is an internal configuration diagram showing a 1 rotor-1 stator type axial gap type rotating electrical machine of a comparative example. It is an internal block diagram at the time of applying to the type
  • FIG. 1A and FIG. 1B are internal configuration diagrams of a 1 rotor-1 stator type axial gap type rotating electrical machine 2000 according to the first embodiment.
  • FIG.1 (b) is the exploded view which shifted the component of Fig.1 (a) to the axial direction.
  • an annular ring is formed on the inner periphery of a housing 300 having a substantially cylindrical inner diameter.
  • the stator 100 having a donut shape is fixed.
  • the rotor 200 has a disk shape including a permanent magnet 210 and a yoke 220.
  • the permanent magnets 210 are magnetized in the rotation axis direction 101, and a plurality of permanent magnets 210 are arranged in the circumferential direction so that the magnetic pole directions of adjacent permanent magnets are opposite. Permanent magnet 210 is coupled to yoke 220.
  • the magnetized surface of the rotor 200 faces the stator via a predetermined gap in the rotation axis direction 101.
  • the rotor 200 is connected so as to rotate together with the shaft 500.
  • the outer side of the shaft in the rotation axis direction is connected to the end bracket 400 via a bearing 600.
  • the end bracket 400 is fixed to both end portions of the housing 300, and supports the rotor 200 to be rotatable.
  • an iron core 110 and a bobbin 130 covering the outer periphery of the iron core and a winding 120 wound around the bobbin 130 are arranged in an annular shape, and are fixed to the housing 300 integrally with a mold resin 140. .
  • the iron core 110 of the stator 100 is divided into a tooth 111 and a yoke 112, and the tooth 111 is fixed to the housing 300 together with the bobbin 130 and the winding 120 by a mold resin 140.
  • the teeth 111 and the yoke 112 are divided by a plane perpendicular to the rotation axis.
  • the teeth 111 have a trapezoidal column shape in cross section, and the yoke 112 has a ring shape.
  • a convex step 113 is provided on the outer periphery of the yoke 112 on the stator 100 side, and is fixed to a step 301 provided on the inner periphery of the housing 300.
  • the step portion 301 serves to determine the position of the yoke 112 in the rotation axis direction 101. It is possible to provide a desired gap in the rotation axis direction 101 between the tooth 111 and the yoke 112 by adjusting the dimension of the stepped portion 113.
  • FIGS. 8 (a) and 8 (b) A description will be given centering on differences from FIG.
  • the magnetized surfaces of the rotor 200 are opposed to both end surfaces in the rotation axis direction of the stator via a predetermined gap.
  • an iron core 110, a bobbin 130 covering the outer periphery of the iron core, and a winding 120 wound around the bobbin are annularly arranged.
  • the housing 300 and the stator 100 are integrally fixed by a mold resin 140. It has come to be.
  • the annularly arranged iron cores may be integrally resin-molded and then fixed to the housing 300 with bolts or the like.
  • the iron core 110 can be configured in a simple column shape, it is possible to apply a low-loss material such as amorphous metal or nanocrystal, which is difficult to press punch. Ideally, the iron core is attracted to both rotors 200 with equal force, so that no axial load is applied to the stator 100.
  • the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 is configured by a single rotor 200 by using an iron core 110 including a tooth 111 and a yoke 112 as a stator 100.
  • the iron core is held by fastening the yoke 112 to the end bracket 400. While the amount of use of the rotor 200 including the permanent magnet 210 can be reduced by a factor of 2, the shape of the iron core becomes complicated, making it difficult to apply low-loss materials that are difficult to process. Further, since the iron core is unilaterally sucked toward the rotor 200, it needs to be firmly held.
  • the iron core is composed of the simple columnar teeth 111 and the ring-shaped yoke 112, and therefore can be manufactured by simple processing. Further, since the independent teeth 111 are molded integrally with the bobbin 130 and the winding 120, it is easy to assemble. Further, the teeth 111 of the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 of the first embodiment can be shared with the 2 rotor-1 stator type axial gap type motor.
  • the first fixing portion that fixes the tooth 111, the winding 120, and the housing 300 via the resin layer, the yoke 112, and the housing 300 are also provided with respect to the attractive force that is a demerit due to the division. It is fixed using means different from the second fixing part for fixing the part in contact. Therefore, the teeth 111 are difficult to attract in the direction of the rotor 200 and in the direction of the yoke 112. Accordingly, since the force applied to the rotor 200 as a whole is reduced, the shearing force acting on the resin portion supporting the teeth 111, particularly the interface with the housing 300, is reduced. As a result, the life of the resin part can be extended.
  • the effective magnetic flux and inductance can be adjusted by changing the gap between the teeth 111 and the yoke 112.
  • the winding is designed exclusively as a 1 rotor-1 stator type axial gap type motor
  • the effective magnetic flux can be maximized by reducing the gap as much as possible.
  • the 2-rotor-1 stator type axial gap type motor and the winding are used in common, it is possible to suppress an increase in voltage by enlarging the gap and reducing the inductance.
  • the teeth 111 and the yoke 112 of the present embodiment may be magnetic materials having high insulating properties, such as electromagnetic steel plates, amorphous metals, nanocrystal materials laminated in the radial direction, or pressure-distributed magnetic cores. It's okay.
  • soft-workable amorphous metals and nanocrystal materials have a great effect of applying this embodiment because it is difficult to manufacture a complicated shape while ensuring high mass productivity.
  • the teeth 111, the bobbin 130, and the winding 120 of the first embodiment are fixed integrally with the housing 300 by mold resin, but are fixed separately from the housing 300 by mold resin and then fastened to the housing 300 with bolts or the like. May be.
  • the yoke 112 is fixed to the stepped portion 301 of the housing 300, but may be fixed to the rotation axis direction 101, and may be fixed by a bolt or a screw.
  • the stator 100 of this embodiment may be applied to a stator of one rotor and two stators in which one disk rotor is sandwiched between two stators from the axial direction.
  • FIG. 2A and FIG. 2B are internal configuration diagrams of a 1 rotor-1 stator type axial gap type rotating electrical machine 2000 according to the second embodiment.
  • FIG. 2B is an exploded view in which the components in FIG. 2A are shifted in the axial direction.
  • the yoke 112 is divided into a peripheral portion facing the teeth 111 and other portions, and the periphery of the teeth 111 is a magnetic body having high insulation as the yoke 112, that is, an electromagnetic steel plate, an amorphous metal, a nanocrystalline material, etc. Are laminated in the radial direction, or a dust core.
  • the other parts are made of iron, SUS, aluminum, resin, or the like as the holding member 150 that holds the yoke 112.
  • a step portion 151 that is convex in the rotation axis direction 101 is provided, and is fixed to the step portion 301 of the housing 300 here.
  • FIGS. 10 (a) and 10 (b) the stator of this embodiment is placed on the stator of one rotor-2 stator 3000 in which one disk rotor is sandwiched between two stators in the axial direction. May be applied.
  • FIG.10 (b) is the exploded view which shifted the component of Fig.10 (a) to the axial direction. In this motor configuration, it is necessary to form the magnetic poles of the rotor on the surface facing each stator.
  • magnetic poles are formed on both sides of the rotor by supporting the side surfaces of the magnet magnetized in the direction of the rotation axis with holding members.
  • any motor including a stator core including at least teeth and a yoke may be used, and the combination of the rotor and the stator is arbitrary. The same applies to the following embodiments.
  • FIG. 3A and FIG. 3B are internal configuration diagrams of the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 of the third embodiment.
  • FIG. 3B is an exploded view in which the components in FIG. 3A are shifted in the axial direction.
  • the holding member 150 and the end bracket 400 are shared, and the holding member 150 is disposed as an end bracket 400 at the end of the housing.
  • This structure reduces the number of parts, so the cost can be reduced. Since the work in the housing 300 becomes unnecessary, the assembling property is improved. It is also possible to make the motor thinner.
  • FIG. 4 shows a schematic configuration of a 1 rotor-1 stator type axial gap type rotating electrical machine of the fourth embodiment.
  • a common mode voltage is electrostatically coupled from the winding to the rotor 200, thereby generating a voltage between the inner and outer rings of the bearing (hereinafter referred to as shaft voltage).
  • shaft voltage When this shaft voltage is increased, dielectric breakdown of the oil film due to discharge is caused, resulting in damage to the bearing surface and a decrease in bearing life.
  • the electric wire drawn from the winding 120 has been wound around in the circumferential direction in the space between the rotor 200 and the housing 300 as a connecting wire 121.
  • the voltage of the connecting wire 121 is also electrostatically coupled to the side surface of the rotor 200 and becomes an increase factor of the shaft voltage.
  • a groove for disposing the connecting wire 121 is provided between the holding member 150 and the housing 300 in a direction opposite to the rotor 200 side and away from the rotor 200.
  • the crossover line 121 is arranged.
  • FIG. 5A is an internal configuration diagram of a 1 rotor-1 stator type axial gap type rotating electrical machine 2000 according to the fifth embodiment.
  • FIG. 5B is an enlarged view around the heat conductor 160 of FIG. In the present embodiment, the heat conductor 160 is disposed in the gap between the tooth 111 and the yoke 112.
  • This structure reduces the thermal resistance from the teeth 111 to the yoke 112. Thereby, heat dissipation improves from the coil
  • the heat conductor is preferably formed of a non-conductive member.
  • a thin plate electromagnetic SUS a heat conductive sheet such as silicone or ceramic, a silicone adhesive, or the like may be used.
  • a non-magnetic heat conductor is desirable, so a heat conductive sheet such as silicone or ceramic, a silicone adhesive, or the like may be used.
  • FIG. 6 is an internal configuration diagram of the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 according to the sixth embodiment.
  • the control device 700 used for driving the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 is arranged on the side opposite to the stator 100 with respect to the holding member 150.
  • control device 700 shown by hatching and the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 can be configured more compactly. Further, since the control device is housed in the rotating electric machine covered with the housing 300 and the end bracket 400, the dust proof and waterproof measures for each control device are not required. Since the wiring between the control device and the rotating electrical machine is reduced, radiation noise is reduced and costs are reduced.
  • FIG. 7 is an internal configuration diagram of a 1 rotor-1 stator type axial gap type rotating electrical machine 2000 according to the seventh embodiment.
  • the mechanical device is arranged at the tip of the rotor 200 and functions as a motor, and a 1 rotor-1 stator type axial gap type rotating electrical machine 2000, and a scroll shown by hatching as an example of the mechanical device.
  • the compression mechanism 800 of the air compressor is integrated.
  • the compression mechanism of the scroll air compressor is integrated, but other mechanical devices such as a fan and a pump may be integrated.
  • 2000 1 rotor-1 stator type axial gap type rotating electrical machine 100 stator, 110 iron core, 111 teeth, 112 yoke, 113 stepped portion, 120 winding, 121 crossover, 140 mold resin, 150 holding member, 151 stepped portion, 160 heat conductor, 200 rotor, 220 yoke, 300 housing, 301 step, 400 end bracket, 500 shaft

Abstract

An axial gap dynamo electrical machine, having: a stator, having teeth, which are iron cores around which a winding is wound, and a yoke, which is an iron core separated from the teeth; a rotor disposed so that a gap is present between the stator and the rotor in the rotary axis direction; a first fixation part, in which the teeth, the windings, and a housing provided around the stator are fixed by a resin; and a second fixation part that fixes the yoke and the housing.

Description

アキシャルギャップ型回転電機Axial gap type rotating electrical machine
 本発明は、アキシャルギャップ型回転電機に関し、特に、固定子に特徴を有するアキシャルギャップ型回転電機に関する。 The present invention relates to an axial gap type rotating electrical machine, and more particularly to an axial gap type rotating electrical machine characterized by a stator.
 回転軸方向に、所定のギャップを介して固定子と、回転子とが面対向するアキシャルギャップ型回転電機が知られている。アキシャルギャップ型回転電機は、薄型(扁平)な構造において、体格あたりのステータとロータの対向面積を大きくとることが可能であるため、高出力密度化や高効率化に好適である。また、同回転電機には、固定子と回転子の組み合わせが複数存在するが、2枚の円盤状の回転子で固定子を軸方向から挟み込んだ構造では(以下、2ロータ-1ステータ型)、固定子鉄心を柱状の単純な構造とすることが可能である。 There is known an axial gap type rotating electrical machine in which a stator and a rotor face each other through a predetermined gap in the direction of the rotation axis. The axial gap type rotating electric machine is suitable for high power density and high efficiency because the opposing area of the stator and the rotor per physique can be increased in a thin (flat) structure. In addition, there are a plurality of combinations of a stator and a rotor in the same rotating electric machine, but in a structure in which the stator is sandwiched from two disk-shaped rotors in the axial direction (hereinafter referred to as “two rotor-1 stator type”). The stator core can have a simple columnar structure.
 アキシャルギャップ型回転電機の従来技術として、特許文献1が知られている。特許文献1は、ヨークと巻線用磁芯(ティース)の分割構造が開示されている。分割により、磁気吸引力やトルク反力に対する保持が必要になるため分割面に、係合溝を設け、ヨークとティースを機械的に締結している。 Patent Document 1 is known as a prior art of an axial gap type rotating electrical machine. Patent Document 1 discloses a divided structure of a yoke and a winding magnetic core (tooth). Since division requires holding against magnetic attractive force and torque reaction force, an engagement groove is provided in the division surface, and the yoke and the teeth are mechanically fastened.
特開2010-29017号公報JP 2010-29017 A
 特許文献1の技術では、ヨークに係合溝を設ける必要があるため、加工作業を必要とし、コストがかかる。ところで、2ロータ-1ステータ型アキシャルギャップ型回転電機と、1枚の回転子と固定子が対向して配置される1ロータ-1ステータ型アキシャルギャップ型回転電機の部品を共通化することができれば、コストは削減できる。例えば、高出力仕様には、2ロータ構造を、低出力仕様には、1ロータ構造を適用することが考えられる。さらに、回転電機では、永久磁石が占めるコスト比率が大きいため、1ロータ化によりコスト低減が可能になる。 In the technique of Patent Document 1, since it is necessary to provide an engaging groove in the yoke, a machining operation is required and costs are increased. By the way, if the components of the 2-rotor-1 stator type axial gap type rotating electrical machine and the 1 rotor-1 stator type axial gap type rotating electrical machine in which one rotor and the stator are arranged to face each other can be shared, Cost can be reduced. For example, it is conceivable to apply a two-rotor structure to a high-output specification and a one-rotor structure to a low-output specification. Furthermore, in a rotating electrical machine, since the cost ratio occupied by permanent magnets is large, the cost can be reduced by using one rotor.
 しかし、2ロータ-1ステータ型アキシャルギャップ型回転電機では、柱状の鉄心の構成であり、1ロータ-1ステータ型アキシャルギャップ型回転電機では、ティースとヨークからなる鉄心の構成となっており、構成が相違していたことから、アキシャルギャップ型回転電機の異なるタイプ間で部品の共通化はされてはいなかった。 However, in the 2-rotor-1 stator type axial gap type rotating electrical machine, the structure is a columnar iron core. In the 1 rotor-1 stator type axial gap type rotating electrical machine, the structure is an iron core composed of teeth and a yoke. Because of this difference, parts were not shared between different types of axial gap type rotating electrical machines.
 本発明の目的は、ヨークやティースを分離する加工作業を不要とし、異なるタイプのアキシャルギャップ型回転電機間で鉄心を共用できることで、コストを削減したアキシャルギャップ型回転電機を提供することにある。 An object of the present invention is to provide an axial gap type rotating electrical machine that reduces costs by eliminating the need for machining work for separating yokes and teeth, and by sharing an iron core between different types of axial gap rotating electrical machines.
 本発明の好ましい一例は、巻線が巻かれた鉄心であるティースと、前記ティースと分離された鉄心であるヨークとを有する固定子と、前記固定子と回転軸方向にギャップを介して配置された回転子と、前記ティースと、前記巻線と、前記固定子の周囲に設けたハウジングとを、樹脂で固定した第1の固定部と、前記ヨークと前記ハウジングとを固定する第2の固定部とを有するアキシャルギャップ型回転電機である。 A preferred example of the present invention is a stator having a tooth which is an iron core around which a winding is wound, a yoke which is an iron core separated from the tooth, and a stator and a rotation axis which are arranged via a gap. A first fixing portion in which a rotor, the teeth, the windings, and a housing provided around the stator are fixed with resin, and a second fixing for fixing the yoke and the housing. An axial gap type rotating electrical machine having a portion.
 本発明によれば、ヨークやティースを分離する加工作業を不要とし、異なるタイプのアキシャルギャップ型回転電機間で鉄心を共用できることで、コストを削減することができる。 According to the present invention, it is possible to reduce the cost by eliminating the need for machining work for separating the yoke and the teeth and sharing the iron core between different types of axial gap rotating electrical machines.
実施例1の1ロータ-1ステータ型アキシャルギャップ型回転電機を示す内部構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an internal configuration diagram illustrating a 1 rotor-1 stator type axial gap type rotating electrical machine according to a first embodiment. 実施例2の1ロータ-1ステータ型アキシャルギャップ型回転電機を示す内部構成図である。FIG. 6 is an internal configuration diagram showing a 1 rotor-1 stator type axial gap type rotating electrical machine of Example 2. 実施例3の1ロータ-1ステータ型アキシャルギャップ型回転電機を示す内部構成図である。FIG. 6 is an internal configuration diagram illustrating a 1 rotor-1 stator type axial gap type rotating electrical machine according to a third embodiment. 実施例4の1ロータ-1ステータ型アキシャルギャップ型回転電機を示す内部構成図である。FIG. 6 is an internal configuration diagram illustrating a 1 rotor-1 stator type axial gap type rotating electrical machine according to a fourth embodiment. 実施例5の1ロータ-1ステータ型アキシャルギャップ型回転電機を示す内部構成図である。FIG. 10 is an internal configuration diagram illustrating a 1 rotor-1 stator type axial gap type rotating electrical machine according to a fifth embodiment. 実施例6の制御装置一体型1ロータ-1ステータ型アキシャルギャップ型回転電機を示す内部構成図である。FIG. 9 is an internal configuration diagram illustrating a control device-integrated 1-rotor-1 stator-type axial gap type rotating electrical machine according to a sixth embodiment. 実施例7の機械装置一体型1ロータ-1ステータ型アキシャルギャップ型回転電機を示す内部構成図である。FIG. 9 is an internal configuration diagram illustrating a mechanical device-integrated 1-rotor-1 stator-type axial gap type rotating electrical machine according to a seventh embodiment. 比較例の2ロータ-1ステータ型アキシャルギャップ型回転電機を示す内部構成図である。FIG. 6 is an internal configuration diagram showing a 2-rotor-1 stator type axial gap type rotating electrical machine of a comparative example. 比較例の1ロータ-1ステータ型アキシャルギャップ型回転電機を示す内部構成図である。FIG. 5 is an internal configuration diagram showing a 1 rotor-1 stator type axial gap type rotating electrical machine of a comparative example. 1ロータ-2ステータの型アキシャルギャップ型回転電機に適用した場合の内部構成図である。It is an internal block diagram at the time of applying to the type | mold axial gap type rotary electric machine of 1 rotor-2 stator.
 以下、本発明の実施例を、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1(a)および図1(b)は、実施例1である1ロータ-1ステータ型のアキシャルギャップ型回転電機2000の内部構成図である。図1(b)は、図1(a)の部品を軸方向にずらした分解図である。 FIG. 1A and FIG. 1B are internal configuration diagrams of a 1 rotor-1 stator type axial gap type rotating electrical machine 2000 according to the first embodiment. FIG.1 (b) is the exploded view which shifted the component of Fig.1 (a) to the axial direction.
 実施例1の1ロータ-1ステータ型アキシャルギャップ型回転電機2000では、図1(a)および図1(b)に示すように、概略円筒形状の内径を有するハウジング300の内周に、環状のドーナツ形状を有する固定子100が固定される。回転子200は、永久磁石210と、ヨーク220とからなる円盤形状を有する。永久磁石210は、回転軸方向101に着磁されており、隣接する永久磁石の磁極向きが反対になるように周方向に複数配置されている。永久磁石210は、ヨーク220に結合されている。回転子200の着磁面は、回転軸方向101に所定のギャップを介して、固定子と対向している。また、回転子200は、シャフト500と共回りするように接続される。シャフトの回転軸方向外側は、軸受600を介してエンドブラケット400と接続される。エンドブラケット400は、ハウジング300の両端部に固定され、回転子200を回転可能に支持するようになっている。固定子100は、鉄心110と鉄心の外周を覆うボビン130およびボビン130に巻回された巻線120を環状に配列し、ハウジング300と一体的にモールド樹脂140により固定されるようになっている。 In the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 of the first embodiment, as shown in FIGS. 1 (a) and 1 (b), an annular ring is formed on the inner periphery of a housing 300 having a substantially cylindrical inner diameter. The stator 100 having a donut shape is fixed. The rotor 200 has a disk shape including a permanent magnet 210 and a yoke 220. The permanent magnets 210 are magnetized in the rotation axis direction 101, and a plurality of permanent magnets 210 are arranged in the circumferential direction so that the magnetic pole directions of adjacent permanent magnets are opposite. Permanent magnet 210 is coupled to yoke 220. The magnetized surface of the rotor 200 faces the stator via a predetermined gap in the rotation axis direction 101. The rotor 200 is connected so as to rotate together with the shaft 500. The outer side of the shaft in the rotation axis direction is connected to the end bracket 400 via a bearing 600. The end bracket 400 is fixed to both end portions of the housing 300, and supports the rotor 200 to be rotatable. In the stator 100, an iron core 110 and a bobbin 130 covering the outer periphery of the iron core and a winding 120 wound around the bobbin 130 are arranged in an annular shape, and are fixed to the housing 300 integrally with a mold resin 140. .
 さらに、固定子100の鉄心110は、ティース111とヨーク112に分割されており、ティース111は、ボビン130、巻線120とともに、ハウジング300とが一体にモールド樹脂140で固定される。ティース111とヨーク112は、回転軸に垂直な平面で分割されており、ティース111は、断面が台形の柱状、ヨーク112は、リング状となる。ヨーク112外周には、固定子100側に、凸の段部113を設け、ハウジング300内周に設けた段部301に固定している。段部301により回転軸方向101でのヨークの112の位置を決める役割をもつ。段部113の寸法を調整することで、ティース111とヨーク112の間に、回転軸方向101に所望の空隙を設けることが可能である。 Further, the iron core 110 of the stator 100 is divided into a tooth 111 and a yoke 112, and the tooth 111 is fixed to the housing 300 together with the bobbin 130 and the winding 120 by a mold resin 140. The teeth 111 and the yoke 112 are divided by a plane perpendicular to the rotation axis. The teeth 111 have a trapezoidal column shape in cross section, and the yoke 112 has a ring shape. A convex step 113 is provided on the outer periphery of the yoke 112 on the stator 100 side, and is fixed to a step 301 provided on the inner periphery of the housing 300. The step portion 301 serves to determine the position of the yoke 112 in the rotation axis direction 101. It is possible to provide a desired gap in the rotation axis direction 101 between the tooth 111 and the yoke 112 by adjusting the dimension of the stepped portion 113.
 このように構成された1ロータ-1ステータ型アキシャルギャップ型回転電機の動作を、モータを例に以下に述べる。まず、インバータ等を介して巻線に流れる交流電流が、回転磁界を発生させる。永久磁石により形成されたロータの直流磁界と、コイルの回転磁界とを吸引・反発させることでトルクが発生する。 The operation of the thus configured 1 rotor-1 stator type axial gap type rotating electrical machine will be described below with reference to a motor as an example. First, an alternating current flowing through a winding via an inverter or the like generates a rotating magnetic field. Torque is generated by attracting and repelling the DC magnetic field of the rotor formed by the permanent magnet and the rotating magnetic field of the coil.
 次に、比較例としての2ロータ-1ステータ型アキシャルギャップ型回転電機1000を、図8(a)および図8(b)に基づいて説明する。図1と異なる点を中心に説明する。回転子200の着磁面は、固定子の回転軸方向の両端面と所定のギャップを介して対向している。固定子100は、鉄心110と、鉄心の外周を覆うボビン130、およびボビンに巻回された巻線120を環状に配列しており、ハウジング300と固定子100は一体的にモールド樹脂140により固定されるようになっている。なお、環状に配列した鉄心を一体的に樹脂モールドした後に、ハウジング300にボルト等で固定するようにしてもよい。 Next, a 2-rotor-1 stator type axial gap type rotating electrical machine 1000 as a comparative example will be described with reference to FIGS. 8 (a) and 8 (b). A description will be given centering on differences from FIG. The magnetized surfaces of the rotor 200 are opposed to both end surfaces in the rotation axis direction of the stator via a predetermined gap. In the stator 100, an iron core 110, a bobbin 130 covering the outer periphery of the iron core, and a winding 120 wound around the bobbin are annularly arranged. The housing 300 and the stator 100 are integrally fixed by a mold resin 140. It has come to be. Note that the annularly arranged iron cores may be integrally resin-molded and then fixed to the housing 300 with bolts or the like.
 本回転電機では、鉄心110を、単純な柱状に構成できるため、プレス打ち抜きが困難なアモルファス金属やナノ結晶などの低損失材を適用することが可能である。また、理想的には鉄心が両方の回転子200に等しい力で吸引されるため、固定子100に軸方向の荷重がかからない。 In this rotating electrical machine, since the iron core 110 can be configured in a simple column shape, it is possible to apply a low-loss material such as amorphous metal or nanocrystal, which is difficult to press punch. Ideally, the iron core is attracted to both rotors 200 with equal force, so that no axial load is applied to the stator 100.
 図9(a)および図9(b)を用いて、比較例としての1ロータ-1ステータ型アキシャルギャップ型回転電機2000を説明する。1ロータ-1ステータ型アキシャルギャップ型回転電機2000は、固定子100に、ティース111とヨーク112からなる鉄心110を用いることで、1枚の回転子200で構成したものである。鉄心は、ヨーク112をエンドブラケット400に締結することで保持されている。永久磁石210を含む回転子200の使用量を二分の一に削減できる反面、鉄心形状が複雑化するため、難加工性の低損失材の適用が困難になる。また、鉄心は、回転子200側に一方的に吸引されるため、強固な保持が必要となる。特許文献1の構成でもヨークとティースは係合されており、図9の構成と同様に、回転子200側に一方的に吸引されるため、強固な保持が必要となる。さらには、インダクタンスが大幅に増加するため、比較例である2ロータ-1ステータ型アキシャルギャップ型回転電機1000と同一の巻線仕様だと電圧が増加する。 9A and 9B, a 1 rotor-1 stator type axial gap type rotating electrical machine 2000 as a comparative example will be described. The 1 rotor-1 stator type axial gap type rotating electrical machine 2000 is configured by a single rotor 200 by using an iron core 110 including a tooth 111 and a yoke 112 as a stator 100. The iron core is held by fastening the yoke 112 to the end bracket 400. While the amount of use of the rotor 200 including the permanent magnet 210 can be reduced by a factor of 2, the shape of the iron core becomes complicated, making it difficult to apply low-loss materials that are difficult to process. Further, since the iron core is unilaterally sucked toward the rotor 200, it needs to be firmly held. Even in the configuration of Patent Document 1, the yoke and the teeth are engaged, and similarly to the configuration of FIG. 9, the yoke 200 is unilaterally sucked to the rotor 200 side, so that it needs to be firmly held. Furthermore, since the inductance is greatly increased, the voltage increases if the winding specifications are the same as those of the 2-rotor-1 stator type axial gap type rotating electrical machine 1000 as the comparative example.
 図8および図9に示したように、比較例としての2ロータ-1ステータ型アキシャルギャップ型回転電機1000と、1ロータ-1ステータ型アキシャルギャップ型回転電機2000の鉄心などの構成が異なっており、そのままでは共用はできない。 As shown in FIGS. 8 and 9, the configurations of the iron core and the like of the 2-rotor-1 stator type axial gap type rotating electrical machine 1000 as the comparative example and the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 are different. It cannot be shared as it is.
 次いで、実施例1の効果を説明する。まず、実施例1の構成では、鉄心が単純な柱状のティース111とリング状のヨーク112からなるため、簡易な加工で製作できる。また、独立したティース111をボビン130や巻線120と一体でモールドするため、組立ても容易である。さらに、実施例1の1ロータ-1ステータ型のアキシャルギャップ型回転電機2000のティース111は、2ロータ-1ステータ型アキシャルギャップ型モータと共用することができる。 Next, the effect of Example 1 will be described. First, in the configuration of the first embodiment, the iron core is composed of the simple columnar teeth 111 and the ring-shaped yoke 112, and therefore can be manufactured by simple processing. Further, since the independent teeth 111 are molded integrally with the bobbin 130 and the winding 120, it is easy to assemble. Further, the teeth 111 of the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 of the first embodiment can be shared with the 2 rotor-1 stator type axial gap type motor.
 分割によるデメリットである吸引力に対しても、実施例1では、ティース111と巻線120とハウジング300とを樹脂層を介して固定する第1の固定部と、ヨーク112とハウジング300とを段部を接触させて固定する第2の固定部とは異なる手段を用いて固定されている。そのため、ティース111には、回転子200方向への吸引力とヨーク112方向への吸引力がはらたく。これにより、全体として回転子200方向にかかる力が低減するため、ティース111を支える樹脂部、特に、ハウジング300との界面に働くせん断力が低減する。結果として、樹脂部の長寿命化が可能になる。 In the first embodiment, the first fixing portion that fixes the tooth 111, the winding 120, and the housing 300 via the resin layer, the yoke 112, and the housing 300 are also provided with respect to the attractive force that is a demerit due to the division. It is fixed using means different from the second fixing part for fixing the part in contact. Therefore, the teeth 111 are difficult to attract in the direction of the rotor 200 and in the direction of the yoke 112. Accordingly, since the force applied to the rotor 200 as a whole is reduced, the shearing force acting on the resin portion supporting the teeth 111, particularly the interface with the housing 300, is reduced. As a result, the life of the resin part can be extended.
 また、ティース111とヨーク112間の空隙の変更により、有効磁束やインダクタンスを調整することが可能である。1ロータ-1ステータ型アキシャルギャップ型モータとして、巻線を専用設計する場合には、空隙を可能な限り縮小することで、有効磁束を最大化することができる。一方、2ロータ-1ステータ型アキシャルギャップ型モータと巻線を共通化する場合には、空隙を拡大しインダクタンスを低減することで電圧の増加を抑制することが可能である。 Also, the effective magnetic flux and inductance can be adjusted by changing the gap between the teeth 111 and the yoke 112. When the winding is designed exclusively as a 1 rotor-1 stator type axial gap type motor, the effective magnetic flux can be maximized by reducing the gap as much as possible. On the other hand, when the 2-rotor-1 stator type axial gap type motor and the winding are used in common, it is possible to suppress an increase in voltage by enlarging the gap and reducing the inductance.
 なお、本実施例のティース111およびヨーク112は、絶縁性の高い磁性体であれば良く、電磁鋼板やアモルファス金属、ナノ結晶材などを径方向に積層したもの、または、圧分磁心などであってよい。特に、軟加工性のアモルファス金属やナノ結晶材は、高い量産性を確保したなかで複雑な形状を製作することが困難なため、本実施例を適用する効果は大きい。 Note that the teeth 111 and the yoke 112 of the present embodiment may be magnetic materials having high insulating properties, such as electromagnetic steel plates, amorphous metals, nanocrystal materials laminated in the radial direction, or pressure-distributed magnetic cores. It's okay. In particular, soft-workable amorphous metals and nanocrystal materials have a great effect of applying this embodiment because it is difficult to manufacture a complicated shape while ensuring high mass productivity.
 実施例1のティース111、ボビン130、巻線120は、ハウジング300と一体でモールド樹脂により固定しているが、ハウジング300とは別体でモールド樹脂により固定したあとボルトなどでハウジング300に締結してもよい。ヨーク112は、ハウジング300の段部301に固定したが、回転軸方向101に固定されていれば良く、ボルトやネジなどで固定されていても良い。 The teeth 111, the bobbin 130, and the winding 120 of the first embodiment are fixed integrally with the housing 300 by mold resin, but are fixed separately from the housing 300 by mold resin and then fastened to the housing 300 with bolts or the like. May be. The yoke 112 is fixed to the stepped portion 301 of the housing 300, but may be fixed to the rotation axis direction 101, and may be fixed by a bolt or a screw.
 実施例1では、2ロータ-1ステータおよび1ロータ-1ステータのアキシャルギャップ型モータにおけるティース共用の例を示したが、その他の構成にも適用可能である。例えば、1枚の円盤回転子を軸方向から2つの固定子で挟み込んだ1ロータ-2ステータの固定子に、本実施例の固定子100を適用しても良い。 In the first embodiment, the example of sharing the teeth in the 2-rotor-1 stator and the 1-rotor-1 stator axial gap type motor is shown, but the present invention can be applied to other configurations. For example, the stator 100 of this embodiment may be applied to a stator of one rotor and two stators in which one disk rotor is sandwiched between two stators from the axial direction.
 以下に、実施2を説明する。実施例1と重複する記載は省略する。
  図2(a)および図2(b)は、実施例2の1ロータ-1ステータ型アキシャルギャップ型回転電機2000の内部構成図である。図2(b)は、図2(a)の部品を軸方向にずらした分解図である。本実施例では、ヨーク112をティース111に対向した周辺部とそれ以外の部分で分割し、ティース111周辺は、ヨーク112として絶縁性の高い磁性体、即ち電磁鋼板やアモルファス金属、ナノ結晶材などを径方向に積層したもの、または、圧粉磁心などで構成する。一方、それ以外の部分は、ヨーク112を保持する保持部材150として、鉄やSUS、アルミ、樹脂などで構成する。保持部材150の外周には、回転軸方向101に凸の段部151を設け、ここでハウジング300の段部301に固定している。
The second embodiment will be described below. Descriptions overlapping with those in the first embodiment are omitted.
FIG. 2A and FIG. 2B are internal configuration diagrams of a 1 rotor-1 stator type axial gap type rotating electrical machine 2000 according to the second embodiment. FIG. 2B is an exploded view in which the components in FIG. 2A are shifted in the axial direction. In this embodiment, the yoke 112 is divided into a peripheral portion facing the teeth 111 and other portions, and the periphery of the teeth 111 is a magnetic body having high insulation as the yoke 112, that is, an electromagnetic steel plate, an amorphous metal, a nanocrystalline material, etc. Are laminated in the radial direction, or a dust core. On the other hand, the other parts are made of iron, SUS, aluminum, resin, or the like as the holding member 150 that holds the yoke 112. On the outer periphery of the holding member 150, a step portion 151 that is convex in the rotation axis direction 101 is provided, and is fixed to the step portion 301 of the housing 300 here.
 本構造により、ヨーク112に段部を設ける必要がなく、単純な一定厚みのリング形状とすることができる。これにより、ヨーク112の製作が容易になる。また、ヨーク112を巻鉄心のような積層構造とした場合にも、機械的な保持が容易になる。これにより、ヨーク112として難加工なアモルファス金属やナノ結晶材を利用し易くなり、高効率化を図ることができる。 With this structure, it is not necessary to provide a step portion on the yoke 112, and a simple ring shape with a constant thickness can be obtained. Thereby, manufacture of the yoke 112 becomes easy. Further, even when the yoke 112 has a laminated structure such as a wound iron core, mechanical holding is facilitated. As a result, it becomes easy to use a difficult-to-process amorphous metal or nanocrystal material as the yoke 112, and high efficiency can be achieved.
 実施例1と同様に、実施例2では、2ロータ-1ステータおよび1ロータ-1ステータのアキシャルギャップ型モータにおけるティース共用の例を示したが、その他の構成にも適用可能である。例えば、図10の(a)、(b)に示すように、1枚の円盤回転子を軸方向から2つの固定子で挟み込んだ1ロータ-2ステータ3000の固定子に本実施例の固定子を適用しても良い。ここで、図10(b)は、図10(a)の部品を軸方向にずらした分解図である。本モータ構成では、それぞれの固定子に対向する面に回転子の磁極を形成する必要がある。本図では、回転軸方向に着磁した磁石の側面を保持部材で支持することで、回転子の両面に磁極を形成している。なお、本実施例では、少なくともティースとヨークを備えた固定子鉄心を備えたモータであれば良く、回転子と固定子の組み合わせは任意である。以降の実施例に関しても同様である。 As in the first embodiment, in the second embodiment, the example of sharing the teeth in the 2-rotor-1 stator and the 1-rotor-1 stator axial gap type motor is shown, but the present invention can be applied to other configurations. For example, as shown in FIGS. 10 (a) and 10 (b), the stator of this embodiment is placed on the stator of one rotor-2 stator 3000 in which one disk rotor is sandwiched between two stators in the axial direction. May be applied. Here, FIG.10 (b) is the exploded view which shifted the component of Fig.10 (a) to the axial direction. In this motor configuration, it is necessary to form the magnetic poles of the rotor on the surface facing each stator. In this figure, magnetic poles are formed on both sides of the rotor by supporting the side surfaces of the magnet magnetized in the direction of the rotation axis with holding members. In the present embodiment, any motor including a stator core including at least teeth and a yoke may be used, and the combination of the rotor and the stator is arbitrary. The same applies to the following embodiments.
 以下に、実施例3を説明する。実施例1と重複する記載は省略する。図3(a)および図3(b)は、実施例3の1ロータ-1ステータ型アキシャルギャップ型回転電機2000の内部構成図である。図3(b)は、図3(a)の部品を軸方向にずらした分解図である。実施例3では、保持部材150とエンドブラケット400を共通化し、保持部材150を、エンドブラケット400として前記ハウジングの端部に配置している。 Example 3 will be described below. Descriptions overlapping with those in the first embodiment are omitted. FIG. 3A and FIG. 3B are internal configuration diagrams of the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 of the third embodiment. FIG. 3B is an exploded view in which the components in FIG. 3A are shifted in the axial direction. In the third embodiment, the holding member 150 and the end bracket 400 are shared, and the holding member 150 is disposed as an end bracket 400 at the end of the housing.
 本構造により、部品点数が削減されるため、コスト低減を図れる。ハウジング300内での作業が、不要になるため、組立て性も向上する。また、モータを薄型化することも可能である。 本 This structure reduces the number of parts, so the cost can be reduced. Since the work in the housing 300 becomes unnecessary, the assembling property is improved. It is also possible to make the motor thinner.
 以下に、実施例4を説明する。実施例1と重複する記載は省略する。図4は、実施例4の1ロータ-1ステータ型アキシャルギャップ型回転電機の概要構成を示す。 Example 4 will be described below. Descriptions overlapping with those in the first embodiment are omitted. FIG. 4 shows a schematic configuration of a 1 rotor-1 stator type axial gap type rotating electrical machine of the fourth embodiment.
 インバータ駆動のモータでは、コモンモード電圧が巻線から回転子200に静電結合することで、軸受けの内外輪間に電圧が発生する(以下、軸電圧)。この軸電圧が大きくなると、放電による油膜の絶縁破壊を引き起こし、軸受け表面の損傷、軸受け寿命の低下を招く。 In an inverter-driven motor, a common mode voltage is electrostatically coupled from the winding to the rotor 200, thereby generating a voltage between the inner and outer rings of the bearing (hereinafter referred to as shaft voltage). When this shaft voltage is increased, dielectric breakdown of the oil film due to discharge is caused, resulting in damage to the bearing surface and a decrease in bearing life.
 今までは、巻線120から引き出された電線は、渡り線121として、回転子200とハウジング300の間の空間で周方向に這いまわされている。この場合、渡り線121の電圧も回転子200側面と静電結合し、軸電圧の増加要因になることがわかっている。 Up to now, the electric wire drawn from the winding 120 has been wound around in the circumferential direction in the space between the rotor 200 and the housing 300 as a connecting wire 121. In this case, it is known that the voltage of the connecting wire 121 is also electrostatically coupled to the side surface of the rotor 200 and becomes an increase factor of the shaft voltage.
 そこで、実施例4では、回転子200側とは反対の方向で、回転子200とは離れた位置にある保持部材150とハウジング300との間に、渡り線121を配置するための溝を設け、渡り線121を配置している。本構造により、軸電圧が低減し軸受けの長寿命化を図れる。 Therefore, in the fourth embodiment, a groove for disposing the connecting wire 121 is provided between the holding member 150 and the housing 300 in a direction opposite to the rotor 200 side and away from the rotor 200. The crossover line 121 is arranged. With this structure, the shaft voltage is reduced and the life of the bearing can be extended.
 以下に、実施例5を説明する。実施例1と重複する記載は省略する。図5(a)は、実施例5の1ロータ-1ステータ型アキシャルギャップ型回転電機2000の内部構成図である。図5(b)は、図5(a)の熱伝導体160周辺を拡大した図である。
本実施例では、ティース111と、ヨーク112との間の空隙に、熱伝導体160を配置している。
Example 5 will be described below. Descriptions overlapping with those in the first embodiment are omitted. FIG. 5A is an internal configuration diagram of a 1 rotor-1 stator type axial gap type rotating electrical machine 2000 according to the fifth embodiment. FIG. 5B is an enlarged view around the heat conductor 160 of FIG.
In the present embodiment, the heat conductor 160 is disposed in the gap between the tooth 111 and the yoke 112.
 本構造により、ティース111からヨーク112への熱抵抗が低減する。これにより、主熱源である巻線から放熱性が向上する。結果として、1ロータ-1ステータ型アキシャルギャップ型回転電機2000の出力向上や高効率化、小型化が図れる。 This structure reduces the thermal resistance from the teeth 111 to the yoke 112. Thereby, heat dissipation improves from the coil | winding which is a main heat source. As a result, it is possible to improve the output, increase the efficiency, and reduce the size of the 1 rotor-1 stator type axial gap type rotating electrical machine 2000.
 空隙には、磁束が鎖交するため、熱伝導体は、非導電性の部材で形成することがのぞましい。例えば、薄板の電磁SUSやシリコーンやセラミックなどの熱伝導シート、シリコーン接着剤などを用いても良い。また、インダクタンスの低減のため積極的に空隙を設ける場合には、非磁性の熱伝導体が望ましいので、シリコーンやセラミックなどの熱伝導シート、シリコーン接着剤などを用いても良い。 Since the magnetic flux interlinks in the gap, the heat conductor is preferably formed of a non-conductive member. For example, a thin plate electromagnetic SUS, a heat conductive sheet such as silicone or ceramic, a silicone adhesive, or the like may be used. Further, when a gap is positively provided to reduce inductance, a non-magnetic heat conductor is desirable, so a heat conductive sheet such as silicone or ceramic, a silicone adhesive, or the like may be used.
 以下に、実施例6を説明する。実施例1と重複する記載は省略する。図6は、実施例6の1ロータ-1ステータ型アキシャルギャップ型回転電機2000の内部構成図である。本実施例では、保持部材150に対して、固定子100とは反対の側に、1ロータ-1ステータ型アキシャルギャップ型回転電機2000の駆動に用いる制御装置700を配置した。 Hereinafter, Example 6 will be described. Descriptions overlapping with those in the first embodiment are omitted. FIG. 6 is an internal configuration diagram of the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 according to the sixth embodiment. In the present embodiment, the control device 700 used for driving the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 is arranged on the side opposite to the stator 100 with respect to the holding member 150.
 本構造により、斜線を施して示した制御装置700、1ロータ-1ステータ型アキシャルギャップ型回転電機2000を、よりコンパクトに構成することができる。また、ハウジング300、エンドブラケット400に覆われた回転電機内に制御装置を格納しているため、制御装置個別の防塵防水対策が不用になる。制御装置と回転電機間の配線が縮小するため、放射ノイズの削減やコスト低減につながる。 With this structure, the control device 700 shown by hatching and the 1 rotor-1 stator type axial gap type rotating electrical machine 2000 can be configured more compactly. Further, since the control device is housed in the rotating electric machine covered with the housing 300 and the end bracket 400, the dust proof and waterproof measures for each control device are not required. Since the wiring between the control device and the rotating electrical machine is reduced, radiation noise is reduced and costs are reduced.
 以下に、実施例7を説明する。実施例1と重複する記載は省略する。図7は、実施例7の1ロータ-1ステータ型アキシャルギャップ型回転電機2000の内部構成図である。本実施例では、機械装置を、回転子200の先に配置し、モータとして機能する1ロータ-1ステータ型アキシャルギャップ型回転電機2000と、機械装置の一例である、斜線を施して示したスクロール空気圧縮機の圧縮機構800を一体化している。 Example 7 will be described below. Descriptions overlapping with those in the first embodiment are omitted. FIG. 7 is an internal configuration diagram of a 1 rotor-1 stator type axial gap type rotating electrical machine 2000 according to the seventh embodiment. In this embodiment, the mechanical device is arranged at the tip of the rotor 200 and functions as a motor, and a 1 rotor-1 stator type axial gap type rotating electrical machine 2000, and a scroll shown by hatching as an example of the mechanical device. The compression mechanism 800 of the air compressor is integrated.
 本構造により、機械装置とモータをよりコンパクトに構成することができる。なお、本実施形態ではスクロール空気圧縮機の圧縮機構を一体化したが、ファンやポンプなど他の機械装置を一体化してもよい。 This structure makes it possible to make the machine and motor more compact. In the present embodiment, the compression mechanism of the scroll air compressor is integrated, but other mechanical devices such as a fan and a pump may be integrated.
2000 1ロータ-1ステータ型アキシャルギャップ型回転電機、100 固定子、110 鉄心、111 ティース、112 ヨーク、113 段部、120 巻線、121 渡り線、140 モールド樹脂、150 保持部材、151 段部、160 熱伝導体、200 回転子、220 ヨーク、300 ハウジング、301 段部、400 エンドブラケット、500 シャフト 2000 1 rotor-1 stator type axial gap type rotating electrical machine, 100 stator, 110 iron core, 111 teeth, 112 yoke, 113 stepped portion, 120 winding, 121 crossover, 140 mold resin, 150 holding member, 151 stepped portion, 160 heat conductor, 200 rotor, 220 yoke, 300 housing, 301 step, 400 end bracket, 500 shaft

Claims (12)

  1. 巻線が巻かれた鉄心であるティースと、前記ティースと分離された鉄心であるヨークとを有する固定子と、
    前記固定子と回転軸方向にギャップを介して配置された回転子と、
    前記ティースと、前記巻線と、前記固定子の周囲に設けたハウジングとを、樹脂で固定した第1の固定部と、
    前記ヨークと前記ハウジングとを固定する第2の固定部とを有することを特徴とするアキシャルギャップ型回転電機。
    A stator including a tooth that is an iron core wound with a winding, and a yoke that is an iron core separated from the tooth;
    The stator and a rotor disposed via a gap in the direction of the rotation axis;
    A first fixing portion in which the teeth, the windings, and a housing provided around the stator are fixed with resin;
    An axial gap type rotating electrical machine having a second fixing portion for fixing the yoke and the housing.
  2. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記第2の固定部は、前記ハウジングに設けた段部と、前記ヨークの段部と接触させて固定したことを特徴とするアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    The axial gap rotating electric machine according to claim 2, wherein the second fixing portion is fixed in contact with a step portion provided on the housing and a step portion of the yoke.
  3. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記ヨークを保持する保持部材を設け、前記保持部材を前記ハウジングに固定したことを特徴とするアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    An axial gap type rotating electrical machine comprising a holding member for holding the yoke and fixing the holding member to the housing.
  4. 請求項3に記載のアキシャルギャップ型回転電機において、前記保持部材を、エンドブラケットとして前記ハウジングの端部に配置をしたことを特徴とするアキシャルギャップ型回転電機。 4. The axial gap type rotating electrical machine according to claim 3, wherein the holding member is disposed at an end of the housing as an end bracket.
  5. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記ハウジングの周方向に、前記巻線からの引き出し線を這いまわした渡り線を、前記回転子とは反対の方向に配置したことを特徴とするアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    An axial gap type rotating electrical machine characterized in that a connecting wire in which a lead wire from the winding is arranged in a circumferential direction of the housing is arranged in a direction opposite to the rotor.
  6. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記ティースと前記ヨークとの間に、熱伝導体を配置したことを特徴とするアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    An axial gap type rotating electrical machine, wherein a heat conductor is disposed between the teeth and the yoke.
  7. 請求項3に記載のアキシャルギャップ型回転電機において、前記保持部材に対して、前記固定子とは反対側に、駆動に用いる制御装置を配置したことを特徴とするアキシャルギャップ型回転電機。 The axial gap type rotating electrical machine according to claim 3, wherein a control device used for driving is disposed on the side opposite to the stator with respect to the holding member.
  8. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記回転子の先に機械装置を結合したことを特徴とするアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    An axial gap type rotating electrical machine, wherein a mechanical device is coupled to the tip of the rotor.
  9. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記ティース、もしくは前記ヨークは、アモルファス金属、ナノ結晶といった低損失材から選択された材料で形成されたことを特徴とするアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    The teeth or the yoke is formed of a material selected from low-loss materials such as amorphous metals and nanocrystals.
  10. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記ティースは、2ロータ-1ステータ型もしくは1ロータ-1ステータ型といった異なるタイプで共用できることを特徴とするアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    An axial gap type rotating electrical machine characterized in that the teeth can be shared by different types such as a 2-rotor-1 stator type or a 1-rotor-1 stator type.
  11. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記巻線は、2ロータ-1ステータ型もしくは1ロータ-1ステータ型といった異なるタイプで共用できることを特徴とするアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    An axial gap type rotating electrical machine characterized in that the winding can be shared by different types such as a 2-rotor-1 stator type or a 1-rotor-1 stator type.
  12. 請求項2に記載のアキシャルギャップ型回転電機において、
    前記第2の固定部により、前記ティースと前記ヨークとの間に形成された空隙を変更することで、異なるタイプで共用することを特徴とするアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 2,
    An axial gap type rotating electrical machine characterized by being shared by different types by changing a gap formed between the tooth and the yoke by the second fixing portion.
PCT/JP2018/044127 2018-04-18 2018-11-30 Axial gap dynamo electrical machine WO2019202768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880085602.8A CN111566915B (en) 2018-04-18 2018-11-30 Axial gap type rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-079691 2018-04-18
JP2018079691A JP7139138B2 (en) 2018-04-18 2018-04-18 Axial gap type rotary electric machine

Publications (1)

Publication Number Publication Date
WO2019202768A1 true WO2019202768A1 (en) 2019-10-24

Family

ID=68239512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044127 WO2019202768A1 (en) 2018-04-18 2018-11-30 Axial gap dynamo electrical machine

Country Status (3)

Country Link
JP (1) JP7139138B2 (en)
CN (1) CN111566915B (en)
WO (1) WO2019202768A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116526722A (en) * 2023-03-10 2023-08-01 广东白云学院 Axial magnetic flux magnetic-yoke-free hub motor with ceramic air cooling structure
WO2023237149A1 (en) * 2022-06-07 2023-12-14 Schaeffler Technologies AG & Co. KG Axial flux machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006353054A (en) * 2005-06-20 2006-12-28 Nissan Motor Co Ltd Manufacturing method of stator for axial gap type rotary electric machine
WO2007114079A1 (en) * 2006-03-27 2007-10-11 Daikin Industries, Ltd. Armature core, motor using it, and its manufacturing method
JP2009142095A (en) * 2007-12-07 2009-06-25 Sumitomo Electric Ind Ltd Stator core for axial-gap motor
JP2010200555A (en) * 2009-02-26 2010-09-09 Daikin Ind Ltd Armature core
JP2012050312A (en) * 2010-01-06 2012-03-08 Kobe Steel Ltd Axial gap type brushless motor
JP2012143078A (en) * 2010-12-28 2012-07-26 Fujitsu General Ltd Axial gap type electric motor and pump device using the same
WO2014102950A1 (en) * 2012-12-27 2014-07-03 株式会社 日立製作所 Rotating electrical machine
WO2014115255A1 (en) * 2013-01-23 2014-07-31 株式会社 日立製作所 Axial gap type rotating electric machine
JP2015070765A (en) * 2013-09-30 2015-04-13 日本ピストンリング株式会社 Rotary electric machine
JP2015180147A (en) * 2014-03-19 2015-10-08 マツダ株式会社 axial gap type rotary electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011344083B2 (en) * 2010-12-13 2016-08-11 Radam Motors, Llc Stator used in an electrical motor or generator with low loss magnetic material and method of manufacturing a stator
JP6685166B2 (en) * 2016-04-06 2020-04-22 株式会社日立産機システム Axial gap type rotating electric machine
JP6330858B2 (en) * 2016-06-27 2018-05-30 マツダ株式会社 Axial gap type rotating electrical machine and method for manufacturing axial gap type rotating electrical machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006353054A (en) * 2005-06-20 2006-12-28 Nissan Motor Co Ltd Manufacturing method of stator for axial gap type rotary electric machine
WO2007114079A1 (en) * 2006-03-27 2007-10-11 Daikin Industries, Ltd. Armature core, motor using it, and its manufacturing method
JP2009142095A (en) * 2007-12-07 2009-06-25 Sumitomo Electric Ind Ltd Stator core for axial-gap motor
JP2010200555A (en) * 2009-02-26 2010-09-09 Daikin Ind Ltd Armature core
JP2012050312A (en) * 2010-01-06 2012-03-08 Kobe Steel Ltd Axial gap type brushless motor
JP2012143078A (en) * 2010-12-28 2012-07-26 Fujitsu General Ltd Axial gap type electric motor and pump device using the same
WO2014102950A1 (en) * 2012-12-27 2014-07-03 株式会社 日立製作所 Rotating electrical machine
WO2014115255A1 (en) * 2013-01-23 2014-07-31 株式会社 日立製作所 Axial gap type rotating electric machine
JP2015070765A (en) * 2013-09-30 2015-04-13 日本ピストンリング株式会社 Rotary electric machine
JP2015180147A (en) * 2014-03-19 2015-10-08 マツダ株式会社 axial gap type rotary electric machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023237149A1 (en) * 2022-06-07 2023-12-14 Schaeffler Technologies AG & Co. KG Axial flux machine
CN116526722A (en) * 2023-03-10 2023-08-01 广东白云学院 Axial magnetic flux magnetic-yoke-free hub motor with ceramic air cooling structure
CN116526722B (en) * 2023-03-10 2023-12-19 广东白云学院 Axial magnetic flux magnetic-yoke-free hub motor with ceramic air cooling structure

Also Published As

Publication number Publication date
CN111566915A (en) 2020-08-21
JP2019193322A (en) 2019-10-31
CN111566915B (en) 2022-08-16
JP7139138B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
CN109661760B (en) Surface magnet type motor
JP7174658B2 (en) Axial gap type rotary electric machine
EP1885042A2 (en) Small-sized motor having ring-shaped field magnet
US20070138894A1 (en) Rotor assembly for use in line start permanent magnet synchronous motor
JP7007150B2 (en) Axial gap type rotary electric machine
WO2018180721A1 (en) Electric motor
US20130241367A1 (en) Exciter of a rotary electric machine
JP4665454B2 (en) motor
WO2019202768A1 (en) Axial gap dynamo electrical machine
US11764657B2 (en) Rotor for rotating electric machine
WO2018168058A1 (en) Axial gap dynamo-electric machine
JP2020103039A (en) Axial air gap type electric motor
WO2018180720A1 (en) Electric motor and method for producing same
JP2004222356A (en) Rotating electric equipment
JP2011166984A (en) Motor
JP6537613B2 (en) Motor rotor, motor, blower and refrigeration air conditioner
JP2018110505A (en) Axial gap type rotary electrical machine
WO2020054469A1 (en) Stator, and motor using same
JP6685166B2 (en) Axial gap type rotating electric machine
JP7299293B2 (en) Rotor of rotary electric machine
US20230187984A1 (en) Rotary electrical device
CN110785913A (en) Rotating electrical machine
JP7359738B2 (en) Single axial gap type rotating machine
US20230163646A1 (en) Rotary electrical device
JP7166207B2 (en) Rotating electric machine and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915346

Country of ref document: EP

Kind code of ref document: A1