WO2019201253A1 - 功率控制方法和装置、基站、终端、计算机可读存储介质 - Google Patents
功率控制方法和装置、基站、终端、计算机可读存储介质 Download PDFInfo
- Publication number
- WO2019201253A1 WO2019201253A1 PCT/CN2019/082938 CN2019082938W WO2019201253A1 WO 2019201253 A1 WO2019201253 A1 WO 2019201253A1 CN 2019082938 W CN2019082938 W CN 2019082938W WO 2019201253 A1 WO2019201253 A1 WO 2019201253A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pucch
- power control
- power
- transmission
- pusch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/08—Closed loop power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/10—Open loop power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/42—TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0473—Wireless resource allocation based on the type of the allocated resource the resource being transmission power
Definitions
- the present disclosure relates to the field of wireless communication technologies, and in particular, to a power control method and apparatus, a base station, a terminal, and a computer readable storage medium.
- 5G New Radio is an ongoing research project of the 3rd Generation Partnership Project (3GPP), which determines new Orthogonal Frequency Division Multiplexing (OFDM) based Wireless air interface standards will be the foundation of the next generation mobile network.
- 3GPP 3rd Generation Partnership Project
- OFDM Orthogonal Frequency Division Multiplexing
- NR technology needs to support an unprecedented number of different types of application scenarios, and also needs to support the traditional frequency band, high frequency band and beam mode at the same time, which brings great challenges to the design of power control.
- the power of the uplink transmission is related to many factors, such as path loss, target received power, maximum transmit power, closed loop power adjustment, transmission bandwidth, and transmission rate.
- the uplink transmission includes a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a sounding reference signal (SRS).
- PUSCH physical uplink shared channel
- PUCCH physical uplink control channel
- SRS sounding reference signal
- LTE Long Term Evolution
- the power control of the PUCCH channel includes an open loop power control part, a closed loop power control part, a path loss compensation part, and a PUCCH format related power offset and a transmission rate related power offset. Wait.
- the payload size of the PUCCH transmission and the time-frequency resources occupied by the PUCCH transmission have an influence on the power of the PUCCH, the power control of the PUCCH in the related art cannot accurately reflect the effects of these factors.
- the present disclosure provides a power control method, including: a second communication node configuring a power control parameter for a first communication node, the power control parameter including an offset of at least one transmit power, where the offset of the transmit power is At least one of the following determines the payload size of the PUCCH transmission, the number of orthogonal frequency division multiplexing OFDM symbols occupied by the PUCCH transmission, the number of resource block RBs occupied by the PUCCH transmission, and whether the PUCCH is frequency hopping.
- the present disclosure provides a power control apparatus including a first configuration unit, wherein: a first configuration unit is configured to configure a power control parameter for a first communication node, the power control parameter including an offset of at least one transmit power, The offset of the transmit power is determined by at least one of the following: a payload size of the PUCCH transmission, an OFDM symbol occupied by the PUCCH transmission, a number of RBs occupied by the PUCCH transmission, and whether the PUCCH is frequency hopped.
- the present disclosure provides a power control method, including: a second communication node configuring at least one spatial relationship for a bandwidth portion BWP of a first communication node, and configuring at least one set of power control parameters for each spatial relationship, each set of power control parameters Corresponding to a set of power impact factors, the power impact factor set includes at least one of the following power impact factors: a payload size of the PUCCH transmission, a number of OFDM symbols occupied by the PUCCH transmission, a number of RBs occupied by the PUCCH transmission, and whether the PUCCH is frequency hopped.
- the present disclosure provides a power control apparatus including a second configuration unit, wherein: a second configuration unit is configured to configure at least one spatial relationship for a bandwidth portion BWP of the first communication node, and configure at least one set for each spatial relationship a power control parameter, each set of power control parameters corresponding to a set of power impact factors, the power impact factor set including at least one of the following power impact factors: a payload size of the PUCCH transmission, an OFDM symbol occupied by the PUCCH transmission, and an RB occupied by the PUCCH transmission Whether the number and PUCCH are frequency hopping.
- the present disclosure provides a base station comprising a processor and a memory; the processor being arranged to execute a power control program stored in the memory to implement the steps of the power control method according to any of the above.
- the present disclosure provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement any of the above The steps of the power control method described in the item.
- the present disclosure provides a power control method including: a first communication node receiving a power control parameter from a second communication node, the power control parameter including an offset of at least one transmit power, an offset of the transmit power It is determined by at least one of the following: a payload size of a PUCCH transmission, an OFDM symbol occupied by a PUCCH transmission, a number of RBs occupied by a PUCCH transmission, and a PUCCH frequency hopping; the first communication node determines a transmission power of the PUCCH according to an actual PUCCH transmission parameter. .
- the present disclosure provides a power control apparatus including a first receiving unit and a first determining unit, wherein: a first receiving unit configured to receive power control parameters from a second communication node, the power control parameters including at least one transmission
- the offset of the power, the offset of the transmit power is determined by at least one of: a payload size of a PUCCH transmission, an OFDM symbol occupied by a PUCCH transmission, a number of RBs occupied by a PUCCH transmission, and a PUCCH frequency hopping;
- the determining unit is configured to determine a transmit power of the PUCCH according to the actual PUCCH transmission parameter.
- the present disclosure provides a power control method, including: a first communication node receives a spatial relationship of a BWP configuration configured by a second communication node, and receives at least one set of power control parameters configured by the second communication node for each spatial relationship, Each set of power control parameters corresponds to a set of power impact factors, and the set of power impact factors includes at least one of the following power impact factors: a payload size of a PUCCH transmission, an OFDM symbol occupied by a PUCCH transmission, a number of RBs occupied by a PUCCH transmission, and a PUCCH Whether frequency hopping; the first communication node determines the transmission power of the PUCCH according to the actual PUCCH transmission parameter.
- the present disclosure provides a power control apparatus including a second receiving unit and a second determining unit, wherein: the second receiving unit is configured to receive a spatial relationship of the BWP configuration of the second communication node for the device to which the second communication node belongs, and receive the second At least one set of power control parameters configured by the communication node for each spatial relationship, each set of power control parameters corresponding to a set of power impact factors, the set of power impact factors including at least one of the following power impact factors: load size of PUCCH transmission, PUCCH The number of OFDM symbols occupied by the transmission, the number of RBs occupied by the PUCCH transmission, and whether the PUCCH is frequency hopping; and the second determining unit is configured to determine the transmission power of the PUCCH according to the actual PUCCH transmission parameter.
- the present disclosure provides a power control method, including: determining a power control parameter of a PUSCH according to a power control parameter of a PUCCH, where the determining method includes at least one of the following: an open loop power control parameter of a PUSCH is an open loop power control parameter of a PUCCH It is determined that the RS parameter of the PL of the PUSCH is determined by the RS parameter of the PL of the PUCCH; the closed loop power control parameter of the PUSCH is determined by the closed loop power control parameter of the PUCCH.
- the present disclosure provides a power control apparatus, including a fourth determining unit, wherein: a fourth determining unit, configured to determine a power control parameter of a PUSCH according to a power control parameter of a PUCCH, the determining method comprising at least one of: PUSCH
- the open loop power control parameter is determined by the open loop power control parameter of the PUCCH
- the RS parameter of the PL of the PUSCH is determined by the RS parameter of the PL of the PUCCH
- the closed loop power control parameter of the PUSCH is determined by the closed loop power control parameter of the PUCCH.
- the present disclosure provides a terminal comprising a processor and a memory; the processor being arranged to execute a power control program stored in the memory to implement the steps of the power control method according to any of the above.
- the present disclosure provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement any of the above The steps of the power control method described in the item.
- the present invention configures, by the second communication node, the payload size transmitted by the PUCCH, the number of OFDM symbols occupied by the PUCCH transmission, the number of resource blocks RB occupied by the PUCCH transmission, and whether the PUCCH is hopped in the first communication node. At least one of the determined offsets of the transmit power enables the second communication node and the first communication node to more accurately control the uplink transmit power of the PUCCH channel.
- FIG. 1 is a schematic flow chart of a power control method according to a first embodiment of the present disclosure
- FIG. 2 is a schematic structural diagram of a power control device according to a first embodiment of the present disclosure
- FIG. 3 is a schematic flow chart of a power control method according to a second embodiment of the present disclosure.
- FIG. 4 is a schematic structural diagram of a power control device according to a second embodiment of the present disclosure.
- FIG. 5 is a schematic flowchart diagram of a power control method according to a third embodiment of the present disclosure.
- FIG. 6 is a schematic flowchart diagram of a power control method according to a fourth embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of a power control apparatus according to a third embodiment of the present disclosure.
- FIG. 8 is a schematic structural diagram of a power control device according to a fourth embodiment of the present disclosure.
- FIG. 9 is a schematic flow chart of a power control method according to a fifth embodiment of the present disclosure.
- transmission power control is required for the transmission.
- the size of the communication range, the maximum transmission power and reception sensitivity of the transceiver devices of both parties, the modulation and coding mode and rate of the data, the frequency band of operation, and the bandwidth occupied by the transmission all affect the transmission power. It is generally required to use a lower transmission power as much as possible while satisfying the received signal quality requirements of the receiving end.
- the communication node 1 transmits a reference signal
- the communication node 2 measures the path loss (PL) of the node 1 to the node 2 based on the reference signal.
- the PL is calculated using the difference between the transmission power of the reference signal of the node 1 and the received power of the reference signal received by the node 2. Assuming that the PL of the transport channel of the node 2 to the node 1 is the same as the PL of the transport channel of the node 1 to the node 2, the node 2 can use the PL calculation node 2 as the transmission power of the transmission of the transmitting node to the node 1. Since PL is the result of a unilateral measurement, this factor is an open loop part in the transmission power.
- the node 1 parses and provides the power adjustment information for the node 2 according to the received quality, and the process belongs to the closed loop power control.
- the base-to-terminal link is the downlink
- the terminal-to-base link is the uplink.
- the power of the downlink is determined by the base station according to the channel measurement results of the scheduled UEs and the scheduling algorithm.
- the power control of the uplink is an open loop combined with a closed loop.
- specific quantities related to transmission such as transmission rate, Modulation and Coding Scheme (MCS) level, transmission bandwidth, etc., also affect power.
- MCS Modulation and Coding Scheme
- the following is a calculation formula of the transmission power of the PUSCH channel of the LTE, and as an example, each parameter affecting the power is described.
- each parameter in the power calculation formula is calculated/calculated from the cell configuration. All descriptions in this document are described for one CC when the frequency domain range is not specifically stated. It should be noted that all the parameters in this paper can be extended to multiple CCs, and only the power-related configuration and calculated parameters need to be independently configured for each CC.
- the open loop portion of the uplink PUSCH power P PUSCH is determined by the target received power P O_PUSCH , the path loss amount PL, and the path loss factor ⁇ , wherein the target received power is divided into a cell level and a UE level parameter, which are determined and configured by the base station.
- the closed loop part is that the base station determines the closed loop power control adjustment amount according to the difference between the measurement result and the target, and notifies the UE by transmitting a power control command (Transmit Power Control Command, TPC Command, that is, ⁇ PUSCH for the PUSCH in the DCI).
- TPC Command Transmit Power Control Command
- the UE maintains a local power adjustment amount f(i), updates according to the transmission power control command, and uses the above formula to achieve the purpose of closed-loop control power.
- i is the subframe number
- ⁇ TF is the MCS-related power offset
- P CMAX is the UE's maximum power limit.
- the cell-level target received power P0_nominal of LTE is a PUSCH (semi-static, dynamic, message 3MSG3) and PUCCH, which respectively correspond to different Block Error Ratio (BLER) requirements.
- the UE-level target received power parameter P0_UE_specific is also set to distinguish the above items, in order to compensate for systematic deviations, such as PL estimation error and absolute output power setting error.
- the transmission power control command update f(i) is divided into two modes: accumulation mode and absolute value mode, wherein the absolute value mode is to directly update the local closed-loop power adjustment amount f(i) of the UE by using the transmission power control command sent by the base station.
- the cumulative mode the transmission power control command sent by the base station and the historical value of the local closed-loop power adjustment amount of the UE jointly determine the local closed-loop power adjustment amount f(i) of the UE.
- f(i) here represents the local closed loop power adjustment amount of the UE.
- the local closed loop power control adjustment of the UE in the power control formula is represented by g(i), which is similar to the f(i) meaning of the PUSCH, and is the local closed loop power adjustment of the UE for the PUCCH. the amount.
- the local closed-loop power adjustment amount f(i) of the UE is also referred to as a power control adjustment state.
- the 5G technology introduces a beam transmission mode, and both the base station and the UE support multiple beams.
- the power calculation needs to consider the characteristics of the beam.
- the power control parameters are divided into three parts: open loop power control parameters, closed loop power control parameters, and RS parameters of path loss.
- each part supports multiple configurations, that is, the open loop power control parameters (or a set thereof) can be configured with up to J, and each open loop power control parameter (or its set) is numbered j; the path loss RS parameter (or A set of up to K, the RS parameter (or its set) of each path loss is numbered k; the closed loop power control parameters (or a set thereof) can be configured with up to L, each closed loop power control parameter (or The number of the set is l; where j is an integer greater than 0 and less than or equal to J, k is an integer greater than 0 and less than or equal to K, l is an integer greater than 0 and less than or equal to L, and J, K, and L are all greater than 0. Integer.
- the base station configures an association between each possible beam (or beam group) and the open loop power control parameters, closed loop power control parameters, and RS parameters of the path loss.
- the beam (or beam set) can be indicated by a reference signal resource.
- the reference signal includes at least one of the following: a Sounding Reference Signal (SRS), a Channel State Information Reference Signal (CSI-RS), a Secondary Synchronization Block (SSB), and a phase tracking.
- SRS Sounding Reference Signal
- CSI-RS Channel State Information Reference Signal
- SSB Secondary Synchronization Block
- PTRS Reference Tracking Reference Signal
- TRS Tracking Reference Signal
- DMRS Demodulation Reference Signal
- the base station indicates the reference signal resource for the uplink transmission of the UE, so that the UE obtains the power control parameter associated with the reference signal resource.
- the base station configures J1 open loop power control parameters (or a set thereof), K1 path loss RS parameters (or a set thereof), and L1 closed loop power control parameters (or a set thereof) for PUSCH transmission of the UE.
- the base station configures a PUSCH transmission mode for the UE, such as codebook based transmission or non-codebook based transmission.
- the base station configures a SRS resource set of the PUSCH-based transmission mode for the UE, and includes at least one uplink sounding signal resource (SRS resource).
- the base station sends Downlink Control Information (DCI), which includes an SRS Resource Indicator (SRI), which can be used to determine the precoding of the PUSCH transmission.
- DCI Downlink Control Information
- SRI SRS Resource Indicator
- the set of SRIs indicated in the DCI of different PUSCH transmission modes may be different.
- a SRI set based on codebook transmission may have 2 SRIs, each SRI representing one SRS resource (Resource); an SRI set based on non-codebook transmission may have 15 SRIs, each SRI representing an SRS resource or Multiple SRS resources.
- the base station configures, for the UE, an association between each member SRI in the SRI set indicated in the DCI and at least one of the following: an open loop power control parameter (or a set thereof) number, an RS parameter (or a set thereof) of the path loss, and a closed loop function. Control parameter (or its collection) number.
- the base station informs the UE of the power control parameters of the PUSCH transmission through the SRI in the DCI.
- the base station configures J2 open loop power control parameters (or a set thereof), K2 path loss RS parameters (or a set thereof), and L2 closed loop power control parameters (or a set thereof) for PUCCH transmission of the UE. .
- the base station configures at least one spatial relationship of the PUCCH for the UE, and configures the association of the spatial relationship with the power control parameters of the PUCCH transmission.
- the base station informs the PUCCH of the spatial relationship by using at least one of the following manners: configuring a spatial relationship for the PUCCH through the high layer signaling; configuring at least one spatial relationship for the PUCCH by using the high layer signaling, and passing the MAC CE and/or the physical layer layer
- the command indicates one of them; or the UE itself determines the spatial relationship of the PUCCH. For example, when the UE is in a non-RRC connected state, the UE itself determines the spatial relationship of the PUCCH.
- the UE may determine the spatial relationship of the PUCCH according to the downlink channel measurement result.
- the UE obtains the power control parameters of the PUCCH transmission according to the spatial relationship and spatial relationship of the PUCCH and the power control parameters of the PUCCH transmission.
- the spatial relationship is indicated by reference signal information.
- the SRS resource, the SRS resource set, and the power control parameters are configured based on at least one of the following frequency domain units: BWP, CC.
- F refers to the format of different PUCCHs.
- PUCCH format 0, format 1, ..., format 4.
- PUCCH format 2/format 3/format 4 different sizes of payloads can be supported.
- TF refers to a transport format
- f refers to a carrier number
- c refers to a cell
- i refers to an uplink subframe number, or a slot number, or a PUCCH transmission number
- BPRE is a Bit Per Resource element, that is, a bit rate, which may include The ratio of the number of PUCCH payload bits to the number of REs.
- the payload of the PUCCH includes ACK/NAK (a positive/negative acknowledgement of HARQ), SR (scheduling request), CSI (channel state information), and the number of possible CRC bits.
- BPRE S is a BPRE for small loads.
- a small payload BPRE may not have a CRC.
- K1 and K2 are the coefficients of BPRE.
- the relevant standard configures a power offset value ⁇ F_PUCCH (F) for each PUCCH format as a simplified standard.
- F power offset value
- K1 and K2 the value is different, and other factors (for example, the number of OFDM symbols, the number of RBs, The impact on power, such as frequency hopping, cannot be reflected in the power control framework of related technologies.
- the simulation results show that these factors can not be ignored, otherwise the fitting results and simulation results are too different.
- the base station configures at least one component carrier (CC) for the UE, and each CC includes at least one bandwidth part (BWP).
- CC component carrier
- BWP bandwidth part
- the base station configuring the PUCCH parameter for the UE may include: configuring a PUCCH resource set on the BWP, where each PUCCH resource set includes at least one PUCCH resource.
- an embodiment of the present disclosure provides a power control method, including the following steps.
- the second communication node configures a power control parameter for the first communication node, where the power control parameter includes an offset of at least one transmit power, and the offset of the transmit power is determined by at least one of: PUCCH transmission The payload size, the number of orthogonal frequency division multiplexing OFDM symbols occupied by PUCCH transmission, the number of resource block RBs occupied by PUCCH transmission, and whether the PUCCH is frequency hopping.
- the second communication node in the present disclosure may be replaced by a name of various communication nodes such as an NB (NodeB), a gNB, a TRP (Transmiter Receiver Point), and an AP (Access Point).
- NB NodeB
- gNB gNodeB
- TRP Transmiter Receiver Point
- AP Access Point
- the first communication node described in the present disclosure may be replaced by the names of various communication nodes such as a site, a user, a STA, a relay, a terminal, and a user terminal.
- the number of transmit power offsets configured for any one of the following PUCCH formats is at least 1: PUCCH format 2, PUCCH format 3, and PUCCH format 4.
- the at least one transmission power offset is used for a load size interval of the same number of PUCCHs as the transmission power offset.
- the transmission power offset is 2, which corresponds to the large load interval and the small load interval of the PUCCH.
- the load interval is predefined.
- a large load interval refers to an interval larger than 11 bits
- a small load interval refers to a 3 to 11 bit interval.
- the offset of the transmit power is determined by at least one of the following: the payload size of the physical uplink control channel PUCCH transmission, the number of OFDM symbols occupied by the PUCCH transmission, and the number of resource blocks RB occupied by the PUCCH transmission.
- the PUCCH is frequency hopping or not refers to the different payload sizes of the PUCCH transmission, the number of different OFDM symbols occupied by the PUCCH transmission, the number of different RBs occupied by the PUCCH transmission, and whether the PUCCH is frequency hopping when the second communication node transmits the power control parameter.
- the second communication node pre-calculates according to the payload size of the PUCCH transmission, the number of OFDM symbols occupied by the PUCCH transmission, the number of resource blocks RB occupied by the PUCCH transmission, and whether the PUCCH is frequency hopped
- the offset of the transmission power is good, and the offset of the transmission power of the calculation number is transmitted to the first communication node.
- the offset of the transmit power may be configured for at least one of: a PUCCH resource of the first communications node, a PUCCH resource set of the first communications node, and a bandwidth of the first communications node. Partial BWP configuration.
- the PUCCH format is distinguished and configured. Specifically, for one PUCCH format of the first communication node, an offset of at least one transmission power needs to be configured.
- the PUCCH resource has a correspondence relationship with the PUCCH format. Therefore, when the transmission power offset is configured for the PUCCH resource, only the PUCCH format corresponding to the PUCCH resource is configured.
- the power control parameter includes an offset of at least one transmit power.
- each PUCCH resource of some or all of the PUCCH resources is configured with at least one transmit power offset, and the at least one transmit power offset corresponds to a load size interval of different PUCCH transmissions.
- the transmission power is obtained by at least one of the following: a reference amount of the transmission power offset; a sum of a reference amount of the transmission power offset and a correction amount of the transmission power offset.
- the correction amount of the transmission power offset is predefined.
- a reference quantity of the transmit power offset is configured for the BWP of the first communication node, and at least one of the transmit power offsets is configured for the BWP of the first communication node. Correction amount.
- one of the transmission power offsets is used to determine one of the transmission power offsets; and the reference amount of one of the transmission power offsets is used for each of the transmission powers.
- the sum of the correction amounts of the offsets determines the other transmission power offsets, and the total number of correction amounts of the transmission power offset plus the transmission power offset of one can be determined.
- the sum of the reference amount of the transmit power offset and the correction amount of each of the transmit power offsets determines a transmit power offset, and the total may be determined.
- the transmit power offset is used for resources of all PUCCHs of the BWP.
- At least one of the transmit power offsets is used for an equal number of PUCCH payload size intervals as the transmit power offset. For example, two transmission power offsets are used for the PUCCH large load interval and the PUCCH small load interval, respectively.
- a reference quantity of the transmit power offset is configured for the BWP of the first communication node, and at least one transmit power is configured for the PUCCH resource set of the BWP of the first communication node. The amount of correction for the offset.
- the transmission power offset amount is determined by the sum of the reference amount of one of the transmission power offset amounts and the correction amount of each of the transmission power offset amounts.
- the transmit power offset is used for all PUCCH resources in the resource set of the PUCCH of the BWP.
- At least one of the transmit power offsets is used for an equal number of PUCCH payload size intervals as the transmit power offset. For example, two transmission power offsets are used for the PUCCH large load interval and the PUCCH small load interval, respectively.
- a reference quantity of the transmit power offset is configured for a BWP of the first communication node, and at least one of the transmit power offsets is configured for a PUCCH resource of a BWP of the first communication node. The amount of correction for the shift.
- the sum of the reference amount of the transmission power offset and the correction amount of each of the transmission power offsets determines the transmission power offset.
- the transmit power offset is used for resources of the PUCCH of the BWP.
- the at least one of the transmit power offsets is used for the same number of PUCCH payload size intervals as the transmit power offset. For example, two transmission power offsets are used for the PUCCH large load interval and the PUCCH small load interval, respectively.
- a reference amount of the transmission power offset is configured for the PUCCH resource set, and a correction amount of at least one of the transmit power offsets is configured for the PUCCH resource set.
- the transmit power offset of the PUCCH resource set is determined by a sum of a reference amount of the transmit power offset and a correction amount of a transmit power offset of the PUCCH resource set.
- the transmit power offset is used for all PUCCH resources of the PUCCH resource set.
- a reference amount of the transmission power offset is configured for the PUCCH resource set, and at least one correction amount of the transmission power offset is configured for a PUCCH resource of the PUCCH resource set.
- the transmit power offset of the PUCCH resource set is determined by a sum of a reference amount of the transmit power offset and a correction amount of a transmit power offset of the PUCCH resource set.
- the transmit power offset is used for the PUCCH resource of the PUCCH resource set.
- each of the transmit power offsets corresponds to a load size interval of one PUCCH.
- the first communication node selects a transmit power offset corresponding to an appropriate PUCCH payload interval according to the actual PUCCH payload size.
- the offset of the transmission power by the transmission power offset determined ⁇ TF bit rate, and the ⁇ TF range depending on the payload size, defined as comprising at least one different Function of the argument: the number of OFDM symbols occupied by the PUCCH transmission, the number of RBs occupied by the PUCCH transmission, and whether the PUCCH is frequency hopping.
- the offset of the transmit power determined by whether the PUCCH is frequency hopped is predefined by the second communication node and the first communication node, or is pre-configured by the second communication node. of.
- an embodiment of the present disclosure further provides a power control apparatus, including a first configuration unit 201.
- the first configuration unit 201 is configured to configure a power control parameter for the first communication node, where the power control parameter includes an offset of at least one transmit power, the offset of the transmit power is determined by at least one of: PUCCH transmission The payload size, the number of OFDM symbols occupied by PUCCH transmission, the number of RBs occupied by PUCCH transmission, and whether the PUCCH is frequency hopping.
- the offset of the transmit power may be configured for at least one of: a PUCCH resource of the first communications node, a PUCCH resource set of the first communications node, and a bandwidth of the first communications node. Partial BWP configuration.
- the transmission power is obtained by at least one of the following: a reference amount of the transmission power offset; a sum of a reference amount of the transmission power offset and a correction amount of the transmission power offset.
- the correction amount of the transmission power offset is predefined.
- a reference quantity of the transmit power offset is configured for the BWP of the first communication node, and at least one of the transmit power offsets is configured for the BWP of the first communication node. Correction amount.
- a reference quantity of the transmit power offset is configured for the BWP of the first communication node, and at least one transmit power is configured for the PUCCH resource set of the BWP of the first communication node. The amount of correction for the offset.
- a reference quantity of the transmit power offset is configured for a BWP of the first communication node, and at least one of the transmit power offsets is configured for a PUCCH resource of a BWP of the first communication node. The amount of correction for the shift.
- a reference amount of the transmission power offset is configured for the PUCCH resource set, and a correction amount of at least one of the transmit power offsets is configured for the PUCCH resource set.
- a reference amount of the transmission power offset is configured for the PUCCH resource set, and at least one correction amount of the transmission power offset is configured for a PUCCH resource of the PUCCH resource set.
- each of the transmit power offsets corresponds to a load size interval of one PUCCH.
- the offset of the transmission power by the transmission power offset determined ⁇ TF bit rate, and the ⁇ TF range depending on the payload size, defined as comprising at least one different Function of the argument: the number of OFDM symbols occupied by the PUCCH transmission, the number of RBs occupied by the PUCCH transmission, and whether the PUCCH is frequency hopping.
- the offset of the transmit power determined by whether the PUCCH is frequency hopped is predefined by the second communication node and the first communication node, or is pre-configured by the second communication node. of.
- an embodiment of the present disclosure further provides a power control method, including the following steps.
- the second communication node configures at least one spatial relationship for the bandwidth portion BWP of the first communication node, and configures at least one set of power control parameters for each spatial relationship, and each set of power control parameters corresponds to a set of power influence factors.
- the set of power impact factors includes at least one of the following power impact factors: a payload size of a PUCCH transmission, a number of OFDM symbols occupied by a PUCCH transmission, a number of resource block RBs occupied by a PUCCH transmission, and whether a PUCCH is frequency hopped.
- the power control parameter includes a target received power P 0 expected by the second communication node.
- an embodiment of the present disclosure further provides a power control apparatus, including a second configuration unit 401, wherein: the second configuration unit 401 is configured to configure at least one spatial relationship for a bandwidth portion BWP of the first communication node. Configuring at least one set of power control parameters for each spatial relationship, each set of power control parameters corresponding to a set of power impact factors, the set of power impact factors including at least one of the following power impact factors: load size of PUCCH transmission, PUCCH transmission The number of OFDM symbols occupied, the number of resource blocks RB occupied by PUCCH transmission, and whether the PUCCH is frequency hopping.
- the power control parameter includes a target received power P 0 expected by the second communication node.
- the embodiment of the present disclosure further provides a base station, including a processor and a memory, the processor being configured to execute a power control program stored in the memory to implement the steps of the power control method according to any of the above.
- Embodiments of the present disclosure also provide a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement The steps of the power control method of any of the above.
- an embodiment of the present disclosure further provides a power control method, including the following steps.
- the first communication node receives power control parameters from the second communication node, the power control parameters including an offset of at least one transmit power, the offset of the transmit power being determined by at least one of: PUCCH The payload size of the transmission, the number of OFDM symbols occupied by the PUCCH transmission, the number of resource blocks RB occupied by the PUCCH transmission, and whether the PUCCH is frequency hopping.
- the number of transmit power offsets configured for any one of the following PUCCH formats is at least 1: PUCCH format 2, PUCCH format 3, and PUCCH format 4.
- the at least one transmission power offset is used for the same number of PUCCH payload size intervals as the transmission power offset.
- the transmission power offset is 2, which corresponds to the large load interval and the small load interval of the PUCCH.
- the load interval is predefined.
- a large load interval refers to an interval larger than 11 bits
- a small load interval refers to a 3 to 11 bit interval.
- the offset of the transmit power may be configured for at least one of: a PUCCH resource of the first communications node, a PUCCH resource set of the first communications node, and a bandwidth of the first communications node. Partial BWP configuration.
- the PUCCH format is distinguished and configured.
- an offset of at least one transmission power needs to be configured.
- the PUCCH resource has a correspondence relationship with the PUCCH format. Therefore, when the transmission power offset is configured for the PUCCH resource, only the PUCCH format corresponding to the PUCCH resource is configured.
- the power control parameter includes an offset of at least one transmit power.
- each PUCCH resource of some or all of the PUCCH resources is configured with at least one transmit power offset, and the at least one transmit power offset corresponds to a load size interval of different PUCCH transmissions.
- the transmission power is obtained by at least one of the following: a reference amount of the transmission power offset; a sum of a reference amount of the transmission power offset and a correction amount of the transmission power offset.
- the correction amount of the transmission power offset is predefined.
- a reference quantity of the transmit power offset is configured for the BWP of the first communication node, and at least one of the transmit power offsets is configured for the BWP of the first communication node. Correction amount.
- one of the transmission power offsets is used to determine one of the transmission power offsets; and the reference amount of one of the transmission power offsets is used for each of the transmission powers.
- the sum of the correction amounts of the offsets determines the other transmission power offsets, and the total number of correction amounts of the transmission power offset plus the transmission power offset of one can be determined.
- the sum of the reference amount of the transmit power offset and the correction amount of each of the transmit power offsets determines a transmit power offset, and the total may be determined.
- the transmit power offset is used for resources of all PUCCHs of the BWP.
- At least one of the transmit power offsets is used for the same number of PUCCH payload size intervals as the transmit power offset. For example, two transmission power offsets are used for the PUCCH large load interval and the PUCCH small load interval, respectively.
- a reference quantity of the transmit power offset is configured for the BWP of the first communication node, and at least one transmit power is configured for the PUCCH resource set of the BWP of the first communication node. The amount of correction for the offset.
- the transmission power offset amount is determined by the sum of the reference amount of one of the transmission power offset amounts and the correction amount of each of the transmission power offset amounts.
- the transmit power offset is used for all PUCCH resources in the resource set of the PUCCH of the BWP.
- At least one of the transmit power offsets is used for an equal number of PUCCH payload size intervals as the transmit power offset. For example, two transmission power offsets are used for the PUCCH large load interval and the PUCCH small load interval, respectively.
- a reference quantity of the transmit power offset is configured for a BWP of the first communication node, and at least one of the transmit power offsets is configured for a PUCCH resource of a BWP of the first communication node. The amount of correction for the shift.
- the sum of the reference amount of the transmission power offset and the correction amount of each of the transmission power offsets determines the transmission power offset.
- the transmit power offset is used for resources of the PUCCH of the BWP.
- the at least one of the transmit power offsets is used for the same number of PUCCH payload size intervals as the transmit power offset. For example, two transmission power offsets are used for the PUCCH large load interval and the PUCCH small load interval, respectively.
- a reference amount of the transmission power offset is configured for the PUCCH resource set, and a correction amount of at least one of the transmit power offsets is configured for the PUCCH resource set.
- the transmit power offset of the PUCCH resource set is determined by a sum of a reference amount of the transmit power offset and a correction amount of a transmit power offset of the PUCCH resource set.
- the transmit power offset is used for all PUCCH resources of the PUCCH resource set.
- a reference amount of the transmission power offset is configured for the PUCCH resource set, and at least one correction amount of the transmission power offset is configured for a PUCCH resource of the PUCCH resource set.
- the transmit power offset of the PUCCH resource set is determined by a sum of a reference amount of the transmit power offset and a correction amount of a transmit power offset of the PUCCH resource set.
- the transmit power offset is used for the PUCCH resource of the PUCCH resource set.
- each of the transmit power offsets corresponds to a load size interval of one PUCCH.
- the first communication node selects a transmit power offset corresponding to an appropriate PUCCH payload interval according to the actual PUCCH payload size.
- the transmission power offset of the transmission power offset by the determined ⁇ TF bit rate, and the ⁇ TF range depending on the payload size, defined as comprising at least a different one A function of an argument: the number of OFDM symbols occupied by the PUCCH transmission, the number of RBs occupied by the PUCCH transmission, and whether the PUCCH is frequency hopped.
- the offset of the transmit power determined by whether the PUCCH is frequency hopped is predefined, or pre-configured by the second communication node.
- Step 502 The first communication node determines the transmit power of the PUCCH according to the actual PUCCH transmission parameter.
- the embodiment of the present disclosure further provides a power control method, including the following steps.
- the first communication node receives the spatial relationship of the BWP configuration configured by the second communication node, and receives at least one set of power control parameters configured by the second communication node for each spatial relationship, where each set of power control parameters corresponds to one power.
- a set of impact factors where the power impact factor set includes at least one of the following power impact factors: a payload size of the PUCCH transmission, an OFDM symbol occupied by the PUCCH transmission, a number of resource blocks RB occupied by the PUCCH transmission, and whether the PUCCH is frequency hopped.
- the power control parameter includes a target received power P 0 desired by the second communication node.
- the first communication node determines the spatial relationship of the BWP and the transmit power of the PUCCH according to the actual PUCCH transmission parameters.
- the embodiment of the present disclosure further provides a terminal, including a processor and a memory, the processor being configured to execute a power control program stored in the memory to implement the steps of the power control method according to any of the above.
- the embodiment of the present disclosure further provides a computer readable storage medium, wherein the computer readable storage medium stores one or more programs, the one or more programs may be executed by one or more processors, The steps of the power control method of any of the above.
- an embodiment of the present disclosure further provides a power control apparatus, including a first receiving unit 701 and a first determining unit 702.
- the first receiving unit 701 is configured to receive a power control parameter from the second communication node, where the power control parameter includes an offset of at least one transmit power, the offset of the transmit power is determined by at least one of: PUCCH transmission The payload size, the number of OFDM symbols occupied by PUCCH transmission, the number of resource blocks RB occupied by PUCCH transmission, and whether the PUCCH is frequency hopping.
- the first determining unit 702 is configured to determine the transmit power of the PUCCH according to the actual PUCCH transmission parameter.
- the offset of the transmit power may be configured for at least one of: a PUCCH resource of the first communications node, a PUCCH resource set of the first communications node, and a bandwidth of the first communications node. Partial BWP configuration.
- the transmission power is obtained by at least one of the following: a reference amount of the transmission power offset; a sum of a reference amount of the transmission power offset and a correction amount of the transmission power offset.
- the correction amount of the transmission power offset is predefined.
- a reference quantity of the transmit power offset is configured for the BWP of the first communication node, and at least one of the transmit power offsets is configured for the BWP of the first communication node. Correction amount.
- a reference quantity of the transmit power offset is configured for the BWP of the first communication node, and at least one transmit power is configured for the PUCCH resource set of the BWP of the first communication node. The amount of correction for the offset.
- a reference quantity of the transmit power offset is configured for a BWP of the first communication node, and at least one of the transmit power offsets is configured for a PUCCH resource of a BWP of the first communication node. The amount of correction for the shift.
- a reference amount of the transmission power offset is configured for the PUCCH resource set, and a correction amount of at least one of the transmit power offsets is configured for the PUCCH resource set.
- a reference amount of the transmission power offset is configured for the PUCCH resource set, and at least one correction amount of the transmission power offset is configured for a PUCCH resource of the PUCCH resource set.
- each of the transmit power offsets corresponds to a load size interval of one PUCCH.
- the transmission power offset of the transmission power offset by the determined ⁇ TF bit rate, and the ⁇ TF range depending on the payload size, defined as comprising at least a different one A function of an argument: the number of OFDM symbols occupied by the PUCCH transmission, the number of RBs occupied by the PUCCH transmission, and whether the PUCCH is frequency hopped.
- the offset of the transmit power determined by whether the PUCCH is frequency hopped is predefined, or pre-configured by the second communication node.
- an embodiment of the present disclosure further provides a power control apparatus, including a second receiving unit 801 and a second determining unit 802.
- the second receiving unit 801 is configured to receive a spatial relationship of the BWP configuration configured by the second communication node for the device to which the second communication node belongs, and receive at least one set of power control parameters configured by the second communication node for each spatial relationship, where each set of power control parameters corresponds to one And a set of power impact factors, where the power impact factor set includes at least one of the following power impact factors: a payload size of the PUCCH transmission, an OFDM symbol number occupied by the PUCCH transmission, a resource block RB number occupied by the PUCCH transmission, and a PUCCH frequency hopping.
- the second determining unit 802 is configured to determine the transmit power of the PUCCH according to the actual PUCCH transmission parameter.
- the power control parameter includes a target received power P 0 expected by the second communication node.
- the present disclosure also provides a power control method, including the following steps.
- the power control parameter of the PUSCH is determined according to the power control parameter of the PUCCH, where the determining method includes at least one of the following: the open loop power control parameter of the PUSCH is determined by the open loop power control parameter of the PUCCH; and the RS parameter of the PU of the PUSCH Determined by the RS parameter of the PL of the PUCCH; the closed loop power control parameter of the PUSCH is determined by the closed loop power control parameter of the PUCCH.
- the PUCCH is characterized by at least one of the following: a PUCCH determined by a predetermined PUCCH resource (for example, a PUCCH resource with a smallest PUCCH resource number); a recently configured or recently transmitted PUCCH; a cell associated with the PUSCH Or PUCCH in BWP.
- the PUCCH may be: a PUCCH that is recently configured or transmitted in a cell or a BWP to which the PUSCH is associated, or a PUCCH of a resource of a PUCCH that is reserved in a cell or a BWP to which the PUSCH is associated.
- the recently configured PUCCH includes one of the following: a latest spatial relationship configuration of the MAC CE to activate the PUCCH, a spatial relationship of the RRC signaling reconfiguration PUCCH, and a power control parameter of the RRC signaling reconfiguration PUCCH.
- the PUSCH-associated cell refers to one of the following: a primary cell, or a primary cell (PSCell) of a secondary cell group (SCG), or a secondary cell PUCCH configured to transmit a PUCCH. SCell.
- the BWP associated with the PUSCH refers to one of the following: a BWP activated in a primary cell, or a BWP activated in a primary cell PSCell of an SCG, or a BWP activated in a secondary cell PUCCH SCell configured to transmit a PUCCH.
- the cell or BWP associated with the PUSCH belongs to the same PUCCH packet as the cell or BWP to which the PUSCH belongs.
- the open loop power control parameter of the PUSCH is determined by an open loop power control parameter of the PUCCH, and includes: an open loop power control parameter of the PUSCH, an open loop power control parameter of the PUCCH, and an open loop of the PUCCH and the PUSCH.
- the deviation of the power control parameters is determined jointly.
- the deviation between the PUCCH and the PUSCH open loop power control parameter includes at least a deviation of the target received power P0.
- the deviation value is determined in a predefined manner or in a manner configured by the base station.
- the path loss factor ⁇ of the PUSCH takes one.
- the closed loop power control parameter of the PUSCH is determined by a closed loop power control parameter of the PUCCH, including at least one of the following: whether the cumulative closed loop power control is turned on; the UE local closed loop power adjustment amount of the PUSCH is determined by the UE of the PUCCH The local closed loop power adjustment is determined.
- the UE local closed-loop power adjustment amount of the PUSCH is determined by the UE local closed-loop power adjustment amount of the PUCCH, including at least one of the following: the UE local closed-loop power adjustment amount of the PUCCH is used as the UE local of the PUSCH.
- the closed-loop power control parameter of the PUSCH uses the closed-loop power control parameter of the PUCCH at a predetermined time, and the PUSCH uses the local closed-loop power adjustment of the UE independently maintained after the predetermined time; the local closed-loop power adjustment of the UE of the PUCCH
- the UE local closed-loop power adjustment of the PUSCH is determined by the UE's local closed-loop power adjustment of the PUCCH; when the UE's local closed-loop power adjustment of the PUCCH is greater than the predetermined threshold at the predetermined time, the closed-loop power control of the PUSCH
- the parameter uses the closed-loop power control parameter of the PUCCH, and the PUSCH uses the local closed-loop power adjustment amount of the UE that is independently maintained by the PUSCH after the predetermined time.
- the predetermined time instant refers to one of: when the PUSCH is scheduled by the DCI format 0-0 for the first time; when the non-DCI format 0-0 scheduling PUSCH is transformed into the DCI format 0-0 scheduling PUSCH; When the spatial relationship of the current PUCCH changes; when the spatial relationship of the current PUCCH changes, the PUSCH is scheduled by DCI format 0-0.
- the DCI format 0-0 is a format of downlink control information for scheduling PUSCH transmission, which does not include an SRI domain.
- the DCI format 0-1 is also a format of another type of downlink control information for scheduling PUSCH transmission, including an SRI domain.
- the present disclosure also provides a terminal comprising a processor and a memory; the processor being arranged to execute a power control program stored in the memory to implement the steps of the power control method according to any of the above.
- the present disclosure also provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement A step of the power control method described.
- the present disclosure also provides a power control device including a fourth determining unit.
- the fourth determining unit is configured to determine a power control parameter of the PUSCH according to the power control parameter of the PUCCH, where the determining method includes at least one of the following: an open loop power control parameter of the PUSCH is determined by an open loop power control parameter of the PUCCH; and a PL of the PUSCH
- the RS parameter is determined by the RS parameter of the PU of the PUCCH; the closed loop power control parameter of the PUSCH is determined by the closed loop power control parameter of the PUCCH.
- the PUCCH is characterized by at least one of the following: a PUCCH determined by a predetermined PUCCH resource (for example, a PUCCH resource with a smallest PUCCH resource number); a recently configured or recently transmitted PUCCH; a cell associated with the PUSCH Or PUCCH in BWP.
- the PUCCH may be: a PUCCH that is recently configured or transmitted in a cell or a BWP to which the PUSCH is associated, or a PUCCH of a resource of a PUCCH that is reserved in a cell or a BWP to which the PUSCH is associated.
- the recently configured PUCCH includes one of the following: a latest spatial relationship configuration of the MAC CE to activate the PUCCH, a spatial relationship of the RRC signaling reconfiguration PUCCH, and a power control parameter of the RRC signaling reconfiguration PUCCH.
- the PUSCH-associated cell refers to one of the following: a primary cell, or a primary cell (PSCell) of a secondary cell group (SCG), or a secondary cell PUCCH configured to transmit a PUCCH. SCell.
- the BWP associated with the PUSCH refers to one of the following: a BWP activated in a primary cell, or a BWP activated in a primary cell PSCell of an SCG, or a BWP activated in a secondary cell PUCCH SCell configured to transmit a PUCCH.
- the cell or BWP associated with the PUSCH belongs to the same PUCCH packet as the cell or BWP to which the PUSCH belongs.
- the open loop power control parameter of the PUSCH is determined by an open loop power control parameter of the PUCCH, and includes: an open loop power control parameter of the PUSCH, an open loop power control parameter of the PUCCH, and an open loop of the PUCCH and the PUSCH.
- the deviation of the power control parameters is determined jointly.
- the closed loop power control parameter of the PUSCH is determined by a closed loop power control parameter of the PUCCH, including at least one of the following: whether the cumulative closed loop power control is turned on; the UE local closed loop power adjustment amount of the PUSCH is determined by the UE of the PUCCH The local closed loop power adjustment is determined.
- the UE local closed-loop power adjustment amount of the PUSCH is determined by the UE local closed-loop power adjustment amount of the PUCCH, including at least one of the following: the UE local closed-loop power adjustment amount of the PUCCH is used as the UE local of the PUSCH.
- the closed-loop power control parameter of the PUSCH uses the closed-loop power control parameter of the PUCCH at a predetermined time, and the PUSCH uses the local closed-loop power adjustment of the UE independently maintained after the predetermined time; the local closed-loop power adjustment of the UE of the PUCCH
- the UE local closed-loop power adjustment of the PUSCH is determined by the UE's local closed-loop power adjustment of the PUCCH; when the UE's local closed-loop power adjustment of the PUCCH is greater than the predetermined threshold at the predetermined time, the closed-loop power control of the PUSCH
- the parameter uses the closed-loop power control parameter of the PUCCH, and the PUSCH uses the local closed-loop power adjustment amount of the UE that is independently maintained by the PUSCH after the predetermined time.
- the predetermined time instant refers to one of: when the PUSCH is scheduled by the DCI format 0-0 for the first time; when the non-DCI format 0-0 scheduling PUSCH is transformed into the DCI format 0-0 scheduling PUSCH; When the spatial relationship of the current PUCCH changes; when the spatial relationship of the current PUCCH changes, the PUSCH is scheduled by DCI format 0-0.
- the base station configures a power control parameter of the PUCCH for the UE, the power control parameter being a PUCCH resource configuration ⁇ F_PUCCH (F), or a ⁇ F_PUCCH (F) reference amount and a correction amount of ⁇ F_PUCCH (F).
- ⁇ F_PUCCH (F) represents the transmission power offset.
- the transmit power offset can be further divided into two parts: a reference amount of the transmit power offset and a correction amount of the transmit power offset.
- the sum of the correction amount of the transmission power offset and the transmission power reference amount can obtain the transmission power offset.
- the correction amount of the transmission power offset may be a transmission power offset.
- the eNB may configure the ⁇ F_PUCCH for the PUCCH resource according to at least one of the above parameters, because the PUCCH format, the RB start position, the RB number, the OFDM symbol start position, the OFDM symbol number, and the frequency hopping are configured in the PUCCH resource. ), or the correction amount of ⁇ F_PUCCH (F) reference amount and ⁇ F_PUCCH (F).
- the base station cannot determine the actual transmission load when configuring the parameters, the base station configures the maximum payload size on the PUCCH resource set, so each PUCCH resource in the PUCCH resource set also has a corresponding payload range. Therefore, the base station can also configure the ⁇ F_PUCCH (F), or the ⁇ F_PUCCH (F) reference amount and the correction amount of ⁇ F_PUCCH (F) for the PUCCH resource according to the payload range of the PUCCH resource.
- the base station may also configure N ⁇ F_PUCCH (F) or N ⁇ F_PUCCH (F) correction amounts for each PUCCH resource, corresponding to different load intervals.
- N is an integer greater than or equal to 1.
- the UE selects one of the N ⁇ F_PUCCH (F) or the ⁇ F_PUCCH (F) reference amount and the correction amount of ⁇ F_PUCCH (F) to perform the power control of the PUCCH according to the actual PUCCH transmission load size.
- the load interval can be a pre-configured fixed value. For example, [3,11] identifies the payload range from 3 bits to 11 bits.
- the load interval can also be determined based on the data rate or coding rate.
- the maximum load size configured on the PUCCH resource set is large, and it may be necessary to configure more than one ⁇ F_PUCCH (F) in the corresponding load range, corresponding to multiple load ranges.
- the maximum payload size on the resource set of the PUCCH is 100 bits.
- three ⁇ F_PUCCH (F) are configured, corresponding to three load size intervals respectively.
- three load size intervals are in the range of bit numbers [3, 11], [12, 22], [23 ,Positive infinity].
- the payload of the PUCCH bearer transmitted by the UE is 10 bits, the ⁇ F_PUCCH (F) corresponding to the first payload interval is selected.
- the base station configures three PUCCH resource sets for the UE, and each resource set independently configures a maximum payload size.
- the maximum payload size of the resource set of the first PUCCH is 2 bits
- the maximum payload size of the resource set of the second PUCCH is 11 bits
- the maximum payload size of the resource set of the third PUCCH is 100 bits.
- the UE combines the resource sets of the plurality of PUCCHs to determine the resource set of the PUCCH used by the specific PUCCH.
- the resource aggregate payload size of the first PUCCH is 1, 2 bits
- the resource aggregate payload size of the second PUCCH is 3 to 11 bits
- the resource aggregate payload size of the third PUCCH is 12 to 100 bits. If the actual payload of the PUCCH is 20 bits, the resource set of the third PUCCH should be selected.
- the base station is configured ⁇ F_PUCCH (F) of the correction amount, the correction amount ⁇ F_PUCCH (F) requires a combination of ⁇ F_PUCCH (F) determines the amount of reference power control of the PUCCH ⁇ F_PUCCH (F) item. Therefore, the base station also needs to configure the reference amount of ⁇ F_PUCCH (F) for the UE.
- the base station configures a reference amount of ⁇ F_PUCCH (F) for each PUCCH format on the BWP. Then the reference amount of ⁇ F_PUCCH (F) is used for all PUCCH resources on the BWP.
- the actual ⁇ F_PUCCH (F) is arranged ⁇ F_PUCCH ⁇ F_PUCCH (F) a reference amount corresponding to the determined PUCCH resource with (F) the correction amount.
- ⁇ F_PUCCH (F) ⁇ F_PUCCH (F) reference amount + ⁇ F_PUCCH (F) correction amount.
- the base station configures a power control parameter of the PUCCH for the UE, including: configuring, for the PUCCH resource set, a reference quantity of N ⁇ F_PUCCH (F) or ⁇ F_PUCCH (F) and a correction quantity of ⁇ F_PUCCH (F), the N ⁇ F_PUCCH ( F) or ⁇ F_PUCCH (F) correction amounts respectively correspond to different load intervals, where N is an integer greater than or equal to 1.
- the UE selects one of the N ⁇ F_PUCCH (F) or the correction amount of ⁇ F_PUCCH (F) to perform the power control of the PUCCH according to the actual payload of the PUCCH transmission.
- the ⁇ F_PUCCH (F) based on the set configuration can reflect the difference in load.
- the limit of the load interval may be predefined, for example, greater than 11 bits is referred to as a large load interval, and less than or equal to 11 bits is referred to as a small load interval.
- the limit of the load interval may also be determined according to the bit rate or the coding rate and the number of RBs.
- N 3 bits
- >22 bits are the first type of load interval
- ⁇ 11 bits are the third type of load interval.
- BPRE itself can reflect the bit rate, that is, the comprehensive manifestation of the payload, the number of OFDM symbols, and the number of RBs, but it is necessary to adjust these factors depending on the scenario.
- ⁇ TF,f,c (i), or ⁇ F_PUCCH (F), or an independent term in the power formula, embody at least one of the following: the number of OFDM symbols occupied by the PUCCH resource, the number of RBs occupied by the PUCCH resource, and whether the PUCCH resource skips frequency.
- ⁇ TF, f, c (i) and ⁇ F_PUCCH (F) represent the transmission power offset.
- Whether the deviation caused by frequency hopping can be predefined or configured.
- the deviation introduced by the predefined or base station configuration frequency hopping is 2 dB.
- ⁇ TF,f,c (i), or ⁇ F_PUCCH (F) or a separate term in the power equation will reflect the difference. If the frequency hopping is turned on, the transmission power is reduced by 2 dB with respect to the transmission power when not turned on.
- the deviation caused by the number of OFDM symbols occupied by the PUCCH resource is a function of the number of OFDM symbols occupied by the PUCCH resource.
- the function is among them, The number of OFDM symbols.
- the function may be part of ⁇ TF, f, c (i), or ⁇ F_PUCCH (F), or a separate term in the power equation to reflect the effect of the number of OFDM symbols occupied by the PUCCH resource on the power control.
- the deviation caused by the number of RBs occupied by the PUCCH resource is a function of the number of RBs occupied by the PUCCH resource.
- the function is -2log 10 (M PUCCH,c (i)). Where M PUCCH,c (i) is the number of RBs.
- This function can be used as part of ⁇ TF, f, c (i), or ⁇ F_PUCCH (F), or a separate term in the power equation to reflect the effect of the number of RBs occupied by the PUCCH resource on the power control.
- the independent term in the above power formula refers to an existing item different from the related power formula, but a new one is added.
- Table 1 is an example in which the number of OFDM symbols and the amount of adjustment of the number of RBs are represented in ⁇ F_PUCCH (F) of PUCCH formats 2, 3, and 4.
- Table 2 is an example of the number of OFDM symbols and the amount of adjustment of the number of RBs in ⁇ TF, f, c (i) of PUCCH formats 2, 3, and 4.
- Ouci(i) represents the payload length of the i-th uplink subframe.
- the base station configures a power control parameter of the PUCCH for the UE, including: configuring N ⁇ F_PUCCHs (F) for the BWP, where the N ⁇ F_PUCCHs (F) respectively correspond to different load intervals, where N is an integer greater than or equal to 1.
- the UE selects one of the N ⁇ F_PUCCH (F) to perform the power control of the PUCCH according to the actual payload of the PUCCH transmission.
- N when N is 2, it corresponds to a large load section and a small load section.
- a large load interval greater than 11 bits is referred to as a large load interval, and less than or equal to 11 bits is referred to as a small load interval.
- the base station configures 1 CC for the UE, including 3 BWPs, where the first BWP has a PUCCH configuration.
- Two ⁇ F_PUCCH (F) are arranged on the BWP, corresponding to the large load interval and the small load interval, respectively.
- BPRE itself can reflect the bit rate, that is, the comprehensive manifestation of the payload, the number of OFDM symbols, and the number of RBs, but it is necessary to adjust these factors depending on the scenario.
- ⁇ TF,f,c (i), or ⁇ F_PUCCH (F), or an independent term in the power formula, embody at least one of the following: the number of OFDM symbols occupied by the PUCCH resource, the number of RBs occupied by the PUCCH resource, and whether the PUCCH resource skips frequency.
- ⁇ F_PUCCH (F) number is 1, ⁇ F_PUCCH (F) substantially ⁇ F_PUCCH value (F), the reference amount by the ⁇ F_PUCCH (F) correction amount and the ⁇ F_PUCCH (F) co Determine the actual ⁇ F_PUCCH (F) value.
- the ⁇ F_PUCCH (F) correction is predefined.
- the ⁇ F_PUCCH (F) correction amount reflects the difference in different load intervals.
- the reference amount of ⁇ F_PUCCH (F) is configured to be 4 dB.
- the difference between different load intervals is predefined.
- the large load interval ⁇ F_PUCCH (F) correction amount is 3 dB
- the small load interval ⁇ F_PUCCH (F) correction amount is 1 dB.
- the ⁇ F_PUCCH (F) correction amount is configured by the base station.
- the ⁇ F_PUCCH (F) correction amount reflects the difference in different load intervals.
- the method includes: the base station configures N ⁇ F_PUCCH (F) correction amounts for the BWP of the UE, and respectively corresponds to N different load intervals.
- the reference amount of ⁇ F_PUCCH (F) is configured to be 4 dB.
- the large load interval ⁇ F_PUCCH (F) correction amount is 3 dB
- the small load interval ⁇ F_PUCCH (F) correction amount is 1 dB.
- the ⁇ F_PUCCH (F) correction amount is configured by the base station.
- the ⁇ F_PUCCH (F) correction amount reflects the difference in different load intervals.
- the method includes: the base station configures N ⁇ F_PUCCH (F) correction amounts for the UE PUCCH resource set, and respectively corresponds to N different load intervals.
- the ⁇ F_PUCCH (F) correction amount is configured by the base station.
- the ⁇ F_PUCCH (F) correction amount reflects the difference in different load intervals.
- the base station includes: a correction amount of N ⁇ F_PUCCH (F) configured for the PUCCH resource of the UE, and corresponding to N different load intervals.
- the ⁇ F_PUCCH (F) correction amount is configured by the base station.
- the ⁇ F_PUCCH (F) correction amount reflects the difference of at least one of the following: the number of RBs occupied by the PUCCH resource, the number of symbols occupied by the PUCCH resource, whether or not the frequency hopping, and the different load intervals.
- the correction amount of ⁇ F_PUCCH (F) is configured according to one of the following methods:
- the base station configures a correction amount of N ⁇ F_PUCCH (F) for the PUCCH resource of the UE.
- the base station configures a correction amount of N ⁇ F_PUCCH (F) for the PUCCH resource set of the UE.
- the base station configures the correction amount of N ⁇ F_PUCCH (F) for the BWP of the UE.
- the base station configures the power control parameters of the PUCCH for the UE, including: configuring M spatial relationships for the BWP, and corresponding Mn (sets) power control parameters for each spatial relationship.
- MN is an integer greater than or equal to 1.
- the spatial relationship can also be replaced by reference signal information.
- the power control parameter includes at least one of the following: at least one open loop power control parameter set or open loop power control parameter set index, at least one path loss measurement parameter set or path loss measurement parameter set index, at least one closed loop power control process parameter Or closed loop power control process index.
- the reference signal information includes at least one of: at least one reference signal or reference signal index, at least one reference signal resource or reference signal resource index, at least one spatial relationship information or spatial relationship information index, at least one reference signal resource group or reference A signal resource grouping index, at least one reference signal resource combination, or a reference signal resource combination index.
- the set of open loop power control parameters includes at least one of the following: target received power (P0), and path loss factor ( ⁇ ).
- the path loss measurement parameter set includes at least one of: a reference signal resource type indication for path loss measurement, a reference signal resource indication for path loss measurement, and a path of a reference signal for two or more path loss measurements. Processing rules for loss values.
- the closed loop power control process parameter includes at least one of the following: a closed loop power control process identification set, and a closed loop power control process number.
- the value of Mn for each spatial relationship can be different.
- the Mn power control parameters of a spatial relationship represent Mn power impact factor sets, respectively.
- the power impact factor set includes at least one of the following: a load interval, a number of RBs occupied by the PUCCH, a number of OFDM symbols occupied by the PUCCH, and whether frequency hopping.
- the UE determines the foregoing power impact factor set according to the actual PUCCH transmission parameter, and selects one (set) power control parameter of the Mn.
- the base station configures the CC and the BWP for the UE, and configures multiple PUCCH resource sets for the BWP, and each resource set includes multiple PUCCH resources.
- the power impact factor set includes: a load interval. There are only two load intervals, which are large load interval and small load interval. Then the number of power control influence factor sets is two.
- the base station configures multiple spatial relationships for the BWP, and each spatial relationship corresponds to Mn (set) power control parameters.
- the power control parameters include at least an open loop power control parameter, and the open loop power control parameter includes at least P0. According to the number of power control influence factor sets, the size of Mn is determined to be two.
- the base station schedules the PUSCH to the UE by transmitting the DCI.
- SRI domain exists in the DCI
- power control parameters are obtained through SRI.
- the power control parameters of the PUSCH cannot be indicated by the SRI indicated in the DCI.
- Determining the power control parameter of the PUSCH according to the power control parameter of the PUCCH may include at least one of the following.
- the PUSCH uses the power control parameters of the PUCCH.
- the PUCCH is configured with at least one set of power control parameters, and one set of power control parameters is determined in a predefined manner for use in a case where the spatial relationship is unknown, and the PUSCH utilizes a set of power control parameters predefined by the PUCCH.
- the predefined manner includes at least one of the following: a power control parameter with the lowest number among the power control parameters, and a power control parameter with a specified number among the power control parameters.
- the PUSCH uses the PUCCH
- a predefined set of power control parameters includes at least one of the following: a power control parameter associated with the smallest spatial relationship number, and a power control parameter associated with the spatial relationship of the specified number.
- a set of power control parameters of the PUCCH using the spatial relationship of the PUCCH is used to determine the power control parameters of the PUSCH.
- the power control parameter includes at least one of the following: at least one open loop power control parameter set or open loop power control parameter set index, at least one path loss measurement parameter set or path loss measurement parameter set index, at least one closed loop power control process parameter Or closed loop power control process index.
- the set of open loop power control parameters includes at least one of the following: a target received power, a path loss factor.
- the path loss measurement parameter set includes at least one of: a reference signal resource type indication for path loss measurement, a reference signal resource indication for path loss measurement, and a path of a reference signal for two or more path loss measurements. Processing rules for loss values.
- the closed loop power control process parameter includes at least one of the following: a closed loop power control process identification set, and a closed loop power control process number.
- the spatial relationship of the PUCCH is determined in the following manner: high-level signaling, and/or MAC CE, and/or spatial layer indication for the current PUCCH transmission indicated by the physical layer signaling.
- the high layer signaling configures a spatial relationship of at least one PUCCH
- the MAC CE activates one or more of the spatial relationships for transmission of the current PUCCH.
- the high layer signaling configures a spatial relationship of at least one PUCCH
- the MAC CE activates one or more spatial relationships as a subset of active spatial relationships
- the physical layer signaling indicates one or more spaces in the subset of MAC CE activation. The relationship is used for the transmission of the current PUCCH.
- the power control parameters of a set of PUCCHs can be indexed.
- the power control parameters of the PUSCH are determined in at least one of the following manners.
- the open loop power control parameters of the PUSCH are determined by the open loop power control parameters of the PUCCH, including.
- the open loop power control parameters of the PUSCH are directly determined by the open loop power control parameters of the PUCCH.
- the open loop power control parameter of the PUSCH may be determined by using an open loop power control parameter of the PUCCH and a deviation between the PUCCH and the PUSCH.
- the deviation between the PUCCH and the PUSCH includes at least a deviation of the target received power.
- the deviation can be predefined or configured by the base station. For example, P0 of PUSCH is 2 dB lower than P0 of PUCCH.
- the RS parameter of the PL of the PUSCH is determined by the RS parameter of the PL of the PUCCH; that is, the PL value of the PUSCH and the value of the PL of the PUCCH use the same RS.
- the closed loop power control parameters of the PUSCH are determined by the closed loop power control parameters of the PUCCH. Includes at least one of the following:
- the UE local closed loop power adjustment amount of the PUSCH is determined by the UE local closed loop power adjustment amount of the PUCCH. Includes one of the following.
- the UE local closed loop power adjustment amount of the PUCCH is used as the UE local closed loop power adjustment amount of the PUSCH.
- the closed-loop power control parameter of the PUSCH uses the closed-loop power control parameter of the PUCCH at a predetermined time, and the PUSCH uses the local closed-loop power adjustment amount of the UE that is independently maintained at the remaining time.
- the PUSCH uses DCI 0-0 for the first time, since there is no SRI in DCI 0-0, the power control parameters cannot be obtained.
- the closed-loop power control parameter of the PUCCH that is, the local closed-loop power adjustment amount of the UE of the PUCCH is obtained by using the spatial relationship of the current PUCCH.
- the PUSCH scheduled by the DCI 0-0 is used. Because the TPC command is included in the DCI 0-0, the PUSCH can use the TPC command to update the local closed-loop power adjustment of the UE of the PUSCH, that is, the PUSCH independently maintains the local closed loop of the UE independently of the PUCCH. Power adjustment amount.
- the power control parameters of the PUSCH index the power control parameters of the PUSCH through the SRI.
- the PUSCH uses the spatial relationship of the PUCCH to obtain the closed loop power control parameter of the PUCCH, that is, the UE local closed loop power adjustment amount of the PUCCH is used as the initial value of the UE local closed loop power adjustment amount of the PUSCH, and thereafter The UE local closed loop power adjustment amount of the PUSCH is updated using the TPC0-0 scheduled PUSCH using the TPC command included in DCI0-0.
- the PUSCH uses the predefined SRI to index the power control parameters of the PUSCH; or the PUSCH uses the power parameters of the predefined PUSCH, such as the PUSCH of the predefined number.
- the predefined number refers to the smallest number in the defined collection number, or the specified number.
- the UE local closed-loop power adjustment amount of the PUCCH is determined by the UE local closed-loop power adjustment amount of the PUCCH.
- the predetermined threshold is 0, that is, the UE local closed-loop power adjustment amount of the PUCCH is a positive value
- the UE local closed-loop power adjustment amount of the PUSCH is determined by the UE local closed-loop power adjustment amount of the PUCCH.
- the UE local closed-loop power adjustment amount of the PUCCH is less than or equal to a predetermined threshold, the UE local closed-loop power adjustment amount of the PUSCH is 0.
- the above b) and c) may be combined, and the closed loop power control parameter of the PUSCH uses the closed loop power control parameter of the PUCCH when the local closed loop power adjustment amount of the UE of the PUCCH is greater than a predetermined threshold at a predetermined time, and the PUSCH uses its own independent maintenance at other times.
- the local closed loop power adjustment of the UE may be combined, and the closed loop power control parameter of the PUSCH uses the closed loop power control parameter of the PUCCH when the local closed loop power adjustment amount of the UE of the PUCCH is greater than a predetermined threshold at a predetermined time, and the PUSCH uses its own independent maintenance at other times.
- the local closed loop power adjustment of the UE may be combined, and the closed loop power control parameter of the PUSCH uses the closed loop power control parameter of the PUCCH when the local closed loop power adjustment amount of the UE of the PUCCH is greater than a predetermined threshold at a predetermined time, and the PUSCH uses its own independent maintenance at other times
- the predetermined time instant refers to one of the following: when the PUSCH is scheduled by the DCI format 0-0 for the first time; when the PUSCH is converted from the non-DCI format 0-0 to the DCI format 0-0 to schedule the PUSCH; the spatial relationship of the current PUCCH occurs. When changing.
- the method for determining each of the above parameters may be used by the PUSCH or partially by the PUSCH.
- the remaining parameters in the power control parameters use PUSCH's own. That is, the pre-defined or base station configuration mode informs the UE of the power control parameters used when there is no SRI.
- the P0 of the open-loop power control part of the PUSCH uses the P0 value of the MSG1, and the alpha is predefined as 1, and the closed loop power control part of the PUSCH
- the initial value of the UE's local closed loop power control adjustment is predefined to be zero.
- the RS of the PU of the PUCCH is directly used by the RS of the PL of the PUSCH;
- the P0 of the open-loop power control part of the PUSCH uses the sum of the P0 value of the open-loop power control parameter of the PUCCH and the predefined offset value, PUSCH
- the alpha of the open-loop part uses the alpha value of the open-loop power control parameter of the PUCCH;
- the initial value of the UE's local closed-loop power control adjustment of the PUSCH closed-loop power control part is predefined to be 0.
- the RS of the PU of the PUCCH is directly used by the RS of the PL of the PUSCH; the open loop power control part of the PUSCH uses the open loop power control parameter of the PUCCH; and the closed loop power control parameter of the PUSCH uses the closed loop power of the PUCCH at a predetermined time.
- the PUSCH uses the local closed-loop power adjustment of the UE that is independently maintained at the remaining time.
- the above current PUCCH transmission may also be the most recent PUCCH transmission.
- the current PUCCH transmission does not necessarily refer to a real PUCCH transmission, but refers to a configuration parameter of the PUCCH for a certain period of time.
- the spatial relationship of the MAC CE-activated PUCCH is not for a specific PUCCH, but for a period from the time when the MAC CE activates the spatial relationship of the PUCCH to the time when the next MAC CE deactivates or reactivates the same type of information.
- the power control parameters of the PUCCH of the spatial relationship index of the PUCCH activated by the MAC CE during the time period refer to the power control parameters of the current PUCCH of the spatial relationship index of the PUCCH of the current PUCCH.
- the power control parameters of the PUSCH transmission may also be determined by the power control parameters of the PUCCH corresponding to the specific spatial relationship of the PUCCH.
- the specific spatial relationship of the PUCCH includes: a spatial relationship of a predefined or base station configured PUCCH. For example, the spatial relationship of the lowest numbered or predefined numbered PUCCH among the spatial relationships of at least one PUCCH configured by the base station.
- the base station configures at least one set of power control parameters of the PUSCH for the UE.
- the base station configures at least one spatial relationship of the PUCCH for the UE.
- the base station configures the association between the spatial relationship of the PUCCH and the PUSCH power control parameter for the UE.
- the UE determines the spatial relationship of the PUSCH by using the spatial relationship of the PUCCH, and obtains the power control parameters of the PUSCH according to the association between the spatial relationship of the PUSCH and the power control parameters of the PUSCH.
- the base station configures at least one set of power control parameters of the PUSCH for the UE.
- the base station configures association between the downlink reference signal information and the PUSCH power control parameter for the UE.
- the UE obtains the power control parameter of the PUSCH according to the downlink reference signal information of the PUSCH and the association between the downlink reference signal information and the power control parameter of the PUSCH.
- the downlink reference signal information related to the PUSCH refers to one of the following: the downlink reference signal information indicated by the TCI of the PDCCH including the scheduling information of the current PUSCH, and the best downlink reference signal obtained by the UE according to the downlink channel measurement.
- the MAC CE activates the spatial relationship of the new PUCCH, the UE local closed-loop power adjustment amount of the PUCCH is reset.
- the MAC CE activates the spatial relationship of the new PUCCH
- the UE local closed-loop power adjustment amount associated with the spatial relationship of the new PUCCH of the PUCCH is reset.
- the base station configures the association between the spatial relationship of the PUCCH and the closed loop power control parameter of the PUCCH. Therefore, the new PUCCH spatial relationship corresponds to the closed loop power control parameter of the specific PUCCH.
- the MAC CE activates the spatial relationship of the new PUCCH, and the UE local closed-loop power adjustment amount of the PUCCH of the closed-loop power control parameter of the PUCCH is set to be reset. Reset is set to a specified value, for example, 0.
- the MAC CE activates the spatial relationship of the new PUCCH, and the PUSCH is scheduled by the DCI without SRI, for example, DCI 0-0, a set of spatial relationship indexes using the new PUCCH is used.
- the power control parameters of the PUCCH determine the power control parameters of the PUSCH. The specific way is the same as above.
- the PUSCH When the PUSCH is scheduled by DCI without SRI, for example, DCI 0-0, and the spatial relationship of the current PUCCH does not change when the previous PUSCH is scheduled by the same DCI, the PUSCH maintains closed loop power control independent of the PUCCH.
- the PUSCH updates the local closed loop power adjustment amount of the PUSCH using a TPC command in the DCI that schedules the current PUSCH transmission.
- the PUSCH is updated to the UE local closed-loop power adjustment amount of the PUSCH by using the sum of the TPC command in the DCI for scheduling the current PUSCH transmission and the UE-local closed-loop power adjustment amount of the PUCCH.
- the power control parameters of the PUSCH can be determined by using the spatial relationship and the power control parameters of the PUCCH on the same cell/BWP.
- the power control parameters of the PUSCH scheduled by the DCI without the SRI are determined by the spatial relationship and the power control parameters of the PUCCH in the PUCCH group in which the PUSCH is located. That is, the PUCCH and the PUSCH used to determine the power control parameters of the PUSCH may not be limited to one BWP or a serving cell, and may belong to the same PUCCH group.
- the description of the embodiments of the present disclosure is performed by using a base station and a UE, but is not intended to limit the present disclosure.
- the base station and the UE can be replaced by the names of various communication nodes such as NB (NodeB), gNB, TRP (transmitter receiver point), AP (access point), site, user, STA, relay, and terminal.
- the base station may also refer to a network, UTRA, EUTRA, and the like.
- computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
- Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by a computer.
- communication media typically includes computer readable instructions, data structures, program modules or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种功率控制方法和装置、基站、终端、计算机可读存储介质,所述方法包括:第二通信节点为第一通信节点配置功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的正交频分复用OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频。
Description
本公开涉及无线通信技术领域,尤其涉及一种功率控制方法和装置、基站、终端、计算机可读存储介质。
5G新无线(New Radio,NR)是正在进行的第三代合作伙伴(3rd Generation Partnership Project,3GPP)的研究项目,它确定了基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的新无线空口标准,并将成为下一代移动网络的基础。作为第五代移动通信系统,NR技术需要支持空前多的不同类型的应用场景,还需要同时支持传统的频段、高频段以及波束方式,对功率控制的设计带来很大挑战。
上行传输的功率与很多因素有关,如路径损耗、目标接收功率、最大发送功率、闭环功率调整量、传输的带宽、传输的速率等。NR中,上行传输包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH),物理上行控制信道(Physical Uplink Control Channel,PUCCH),探测参考信号(Sounding Reference Signal,SRS)等信道的传输。在长期演进(Long Term Evolution,LTE)中,PUCCH信道的功率控制包括开环功控部分、闭环功控部分、路损补偿部分,以及PUCCH格式相关的功率偏移、传输速率相关的功率偏移等。但是,由于PUCCH传输的载荷大小、PUCCH传输所占用的时频资源等都对PUCCH的功率有影响,因此,相关技术中的PUCCH的功率控制不能准确反映这些因素的作用。
发明内容
本公开提供了一种功率控制方法,包括:第二通信节点为第一通信节点配置功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的正交频分复用OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频。
本公开提供了一种功率控制装置,包括第一配置单元,其中:第一配置单元,设置为为第一通信节点配置功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频。
本公开提供了一种功率控制方法,包括:第二通信节点为第一通信节点的带宽部分BWP配置至少一个空间关系,并为每个空间关系配置至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占 用的RB个数、PUCCH是否跳频。
本公开提供了一种功率控制装置,包括第二配置单元,其中:第二配置单元,设置为为第一通信节点的带宽部分BWP配置至少一个空间关系,并为每个空间关系配置至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频。
本公开提供了一种基站,包括处理器及存储器;所述处理器设置为执行所述存储器中存储的功率控制程序,以实现如以上任一项所述的功率控制方法的步骤。
本公开提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的功率控制方法的步骤。
本公开提供了一种功率控制方法,包括:第一通信节点接收来自第二通信节点的功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频;第一通信节点根据实际的PUCCH传输参数,确定PUCCH的发送功率。
本公开提供了一种功率控制装置,包括第一接收单元和第一确定单元,其中:第一接收单元,设置为接收来自第二通信节点的功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频;第一确定单元,设置为根据实际的PUCCH传输参数,确定PUCCH的发送功率。
本公开提供了一种功率控制方法,包括:第一通信节点接收第二通信节点为自身的BWP配置的空间关系,并接收第二通信节点为每个空间关系配置的至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频;第一通信节点根据实际的PUCCH传输参数,确定PUCCH的发送功率。
本公开提供了一种功率控制装置,包括第二接收单元和第二确定单元,其中:第二接收单元,设置为接收第二通信节点为自身所属装置的BWP配置的空间关系,并接收第二通信节点为每个空间关系配置的至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频;第二确定单元,设置为根据实际的PUCCH传输参数,确定PUCCH的发送功率。
本公开提供了一种功率控制方法,包括:根据PUCCH的功率控制参数确定PUSCH 的功率控制参数,所述确定方法包括以下至少之一:PUSCH的开环功率控制参数由PUCCH的开环功率控制参数确定;PUSCH的PL的RS参数由PUCCH的PL的RS参数确定;PUSCH的闭环功率控制参数由PUCCH的闭环功率控制参数确定。
本公开提供了一种功率控制装置,包括第四确定单元,其中:第四确定单元,设置为根据PUCCH的功率控制参数确定PUSCH的功率控制参数,所述确定方法包括以下至少之一:PUSCH的开环功率控制参数由PUCCH的开环功率控制参数确定;PUSCH的PL的RS参数由PUCCH的PL的RS参数确定;PUSCH的闭环功率控制参数由PUCCH的闭环功率控制参数确定。
本公开提供了一种终端,包括处理器及存储器;所述处理器设置为执行所述存储器中存储的功率控制程序,以实现如以上任一项所述的功率控制方法的步骤。
本公开提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的功率控制方法的步骤。
与现有技术相比,本发明通过第二通信节点为第一通信节点配置由PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频中至少之一确定的发送功率的偏移量,使得第二通信节点和第一通信节点能够更加准确地对PUCCH信道的上行发射功率进行控制。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其它优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。在附图中:
图1为本公开第一实施例的一种功率控制方法的流程示意图;
图2为本公开第一实施例的一种功率控制装置的结构示意图;
图3为本公开第二实施例的一种功率控制方法的流程示意图;
图4为本公开第二实施例的一种功率控制装置的结构示意图;
图5为本公开第三实施例的一种功率控制方法的流程示意图;
图6为本公开第四实施例的一种功率控制方法的流程示意图;
图7为本公开第三实施例的一种功率控制装置的结构示意图;
图8为本公开第四实施例的一种功率控制装置的结构示意图;
图9为本公开第五实施例的一种功率控制方法的流程示意图。
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
无线通信系统中,为了降低发送设备功耗并减少不必要的高功率发送对其它传输造成的干扰,需要对传输进行发送功率控制。通信范围的大小、通信双方的收发设备的最大发送供功率和接收灵敏度、数据的调制编码方式及速率、工作的频带、传输占用的带宽等因素都会影响发送功率。一般需要在满足接收端的接收信号质量要求的条件下,尽量使用较低的发送功率。
一般的通信技术中,通信节点1发送参考信号,通信节点2根据该参考信号测量节点1到节点2的路径损失(Pathloss,PL)。PL是用节点1的参考信号的发送功率与节点2收到的参考信号的接收功率之差计算。假设节点2到节点1的传输信道的PL与节点1到节点2的传输信道的PL相同,则节点2可以用上述PL计算节点2作为发送节点到节点1的传输的发送功率。由于PL是单方面测量的结果,因此该因素在发送功率中属于开环部分。节点1接收到传输后进行解析,根据接收的质量为节点2提供功率调整的信息,该过程属于闭环功率控制。
LTE中,基站到终端的链路是下行链路,终端到基站的链路是上行链路。下行链路的功率由基站根据各调度UE的信道测量结果以及调度算法确定。上行链路的功率控制是开环结合闭环的方式。此外,与传输相关的特定的量,如发送速率、调制与编码策略(Modulation and Coding Scheme,MCS)等级、发送带宽等,也会影响功率。
下面是LTE的PUSCH信道的发送功率计算公式,以此为例对影响功率的各个参数进行说明。
上式中下标c是指小区cell,支持载波聚合(Carrier Aggregation,CA)功能的每个成员载波(Component Carrier,CC)对应一个小区cell。从上式可以看到,功率计算 公式中每个参数都是区分cell配置的/计算的。本文中所有的描述没有特别说明频域范围时,都是针对一个CC进行描述。需要指出的是,本文的所有参数都可以扩展到多个CC上,只需要将所述的功率相关的配置和计算的参数为每个CC独立配置即可。
上行传输PUSCH的功率P
PUSCH的开环部分由目标接收功率P
O_PUSCH、路损量PL和路损因子α决定,其中目标接收功率分为小区cell级和UE级参数,都由基站决定并配置给UE;而闭环部分则是基站根据测量结果与目标的差距确定闭环功控调整量,以传输功控命令(Transmit Power Control Command,TPC Command,即DCI中针对PUSCH的δ
PUSCH)的方式通知UE。UE维护一个本地的功率调整量f(i),根据传输功控命令进行更新,采用上述公式达到闭环控制功率的目的。其中,i是子帧编号,ΔTF是MCS相关的功率偏移,P
CMAX是UE的最大功率限制。
LTE的cell级目标接收功率P0_nominal是区分PUSCH(半静态、动态、消息3MSG3)和PUCCH,分别对应不同的误块率(Block Error Ratio,BLER)需求。UE级目标接收功率参数P0_UE_specific也是区分以上几项进行设置,是为了补偿系统性偏差,如PL估计误差、绝对输出功率设置的误差。
根据传输功控命令更新f(i)分为两种方式:累积式和绝对值方式,其中绝对值方式是直接用基站发送的传输功控命令更新UE本地的闭环功率调整量f(i),而累积式则由基站发送的传输功控命令与该UE本地的闭环功率调整量的历史值共同确定UE本地的闭环功率调整量f(i)。需要注意的是,这里的f(i)代表UE本地的闭环功率调整量。对于PUCCH传输,忽略下标的含义,功控公式中的UE本地的闭环功控调整量用g(i)表示,与PUSCH的f(i)含义类似,是用于PUCCH的UE本地的闭环功率调整量。
UE本地的闭环功率调整量f(i),也称为功控调整状态(power control adjustment state)。
5G技术引入了波束的传输方式,基站和UE都支持多波束。当工作在波束模式时,功率计算需要考虑波束的特性。为了支持波束的方式,功率控制参数分为3部分配置:开环功控参数、闭环功控参数、路损的RS参数。其中每个部分支持配置多个,即开环功控参数(或其集合)最多可以配置J个,每个开环功控参数(或其集合)的编号为j;路损的RS参数(或其集合)最多可以配置K个,每个路损的RS参数(或其集合)的编号为k;闭环功控参数(或其集合)最多可以配置L个,每个闭环功控参数(或其集合)的编号为 l;其中,j为大于0小于等于J的整数,k为大于0小于等于K的整数,l为大于0小于等于L的整数,并且J、K、L均为大于0的整数。
如果UE支持多个波束(或波束组),则基站配置每个可能的波束(或波束组)与开环功控参数、闭环功控参数、路损的RS参数之间的关联。波束(或波束组)可以通过参考信号资源指示。
参考信号包括以下至少之一:上行探测信号(Sounding Reference Signal,SRS),信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),辅同步信号块(secondary Synchronization Block,SSB),相位跟踪参考信号(Phase Tracking Reference Signal,PTRS),跟踪参考信号(Tracking Reference Signal,TRS),解调参考信号(Demodulation Reference Signal,DMRS)。
基站为UE的上行传输指示参考信号资源,使UE获得该参考信号资源所关联的功率控制参数。
在一个例子中,基站为UE的PUSCH传输配置J1个开环功控参数(或其集合),K1个路损的RS参数(或其集合),L1个闭环功控参数(或其集合)。基站为UE配置PUSCH的传输方式,如基于码本的传输(codebook based transmission),或基于非码本的传输(non-codebook based transmission)。基站为UE配置基于PUSCH的传输方式的上行探测信号资源集合(SRS resource set),其中包括至少一个上行探测信号资源(SRS resource)。基站为UE发送下行控制信息(Downlink Control Information,DCI),其中包括SRS资源指示(SRS Resource Indicator,SRI),SRI可以用于确定PUSCH传输的预编码。不同PUSCH传输方式的DCI中指示的SRI集合可能不同。例如,基于码本的传输的SRI集合可能有2个SRI,每个SRI代表一个SRS资源(Resource);基于非码本的传输的SRI集合可能有15个SRI,每个SRI代表一个SRS resource或者多个SRS resources。基站为UE配置DCI中指示的SRI集合中的每一个成员SRI与以下至少之一的关联:开环功控参数(或其集合)编号,路损的RS参数(或其集合)编号,闭环功控参数(或其集合)编号。基站通过DCI中的SRI告知UE PUSCH传输的功控参数。
在另一个例子中,基站为UE的PUCCH传输配置J2个开环功控参数(或其集合),K2个路损的RS参数(或其集合),L2个闭环功控参数(或其集合)。基站为UE配置PUCCH的至少一个空间关系,并且配置空间关系与PUCCH传输的功控参数的关联。基站通过以下方式至少之一告知UE PUCCH的空间关系:通过高层信令为PUCCH配置了一个空间关系; 通过高层信令为PUCCH配置了至少1个空间关系,并且通过MAC CE和/或物理层信令指示其中的一个;或者,UE自己决定PUCCH的空间关系。例如,在UE为非RRC连接状态时,UE自己决定PUCCH的空间关系。
UE可以依据下行信道测量结果确定PUCCH的空间关系。
UE根据PUCCH的空间关系、空间关系与PUCCH传输的功控参数的关联获得PUCCH传输的功控参数。
所述空间关系用参考信号信息指示。
SRS resource,SRS resource set、功控参数基于以下至少之一的频域单位进行配置:BWP,CC。
对于PUCCH,功率计算公式如下:
其中F是指不同的PUCCH的格式。例如,PUCCH格式0,格式1,......,格式4。对于PUCCH格式2/格式3/格式4,可以支持不同大小的载荷。
对于大载荷,例如,大于11比特,Δ
TF,f,c(i)=10log
10(2
K1·BPRE(i)–1);对于小载荷,例如,小于等于11比特,Δ
TF,f,c(i)=10log
10(K2·BPRE
S(i))。其中,TF指传输格式(Transport Format),f指载波编号,c指小区,i指上行子帧编号,或者时隙编号,或者PUCCH传输编号;BPRE是Bit Per Resource Element,即比特速率,可包括PUCCH载荷比特数与RE个数的比值。PUCCH的载荷包括ACK/NAK(HARQ的肯定/否定的应答),SR(调度请求),CSI(信道状态信息),以及可能的CRC比特数。BPRE
S是用于小载荷的BPRE。小载荷的BPRE可能没有CRC。K1和K2为BPRE的系数。
相关标准对每种PUCCH的格式配置了一个功率偏移值Δ
F_PUCCH(F)为简化标准,对K1和K2不分多种情况取值,则其他因素(例如,OFDM符号数量,RB个数,是否跳频等)对功率的影响无法在相关技术的功控框架中体现。而仿真结果显示,这些因素无法忽略,否则拟合结果和仿真结果相差过大。
基站为UE配置至少一个成员载波(Component Carrier,CC),每个CC包括至少一个带宽部分(Bandwidth Part,BWP)。
基站为UE配置PUCCH参数,可包括:在BWP上配置PUCCH资源集合,每个PUCCH资源集合包括至少一个PUCCH资源。
为PUCCH资源配置PUCCH的格式、RB的起始位置、RB个数、OFDM符号起始位置、OFDM符号数量、是否跳频。
为PUCCH资源集合配置最大载荷大小。
如图1所示,本公开实施例提供了一种功率控制方法,包括如下步骤。
在步骤101,第二通信节点为第一通信节点配置功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的正交频分复用OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频。
需要说明的是,本公开所述的第二通信节点可以被NB(NodeB)、gNB、TRP(Transmiter Receiver Point)、AP(Access Point)等各种通信节点的名称代替。
本公开所述的第一通信节点可以被站点、用户、STA、中继(Relay)、终端、用户终端等各种通信节点的名称代替。
本实施例中,对以下任意一个PUCCH格式配置的发送功率偏移量数量至少为1:PUCCH格式2、PUCCH格式3、PUCCH格式4。所述至少为1个的发送功率偏移量用于与发送功率偏移量同样数量的PUCCH的载荷大小区间。例如发送功率偏移量为2,对应PUCCH的大载荷区间和小载荷区间。
在一实施例中,所述载荷区间是预定义的。例如,大载荷区间是指大于11比特的区间,小载荷区间是指3到11比特区间。
需要说明的是,本公开所述的发送功率的偏移量由以下至少之一确定:物理上行控制信道PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频,指的是第二通信节点在发送功率控制参数时,携带PUCCH传输的不同载荷大小、PUCCH传输占用的不同OFDM符号数量、PUCCH传输占用的不同RB个数、PUCCH是否跳频与所述发送功率的偏移量的对应关系;或者,第二通信节点根据PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频预先计算好发送功率的偏移量,并将计算号的发送功率的偏移量发送至第一通信节点。
本实施例中,所述发送功率的偏移量可以对以下至少之一配置:所述第一通信节点的PUCCH资源、所述第一通信节点的PUCCH资源集合、所述第一通信节点的带宽部分BWP配置。
在一实施例中,所述对PUCCH资源集合或BWP配置发送功率的偏移量时,区分PUCCH格式进行配置。具体来说,对第一通信节点的一种PUCCH格式,需要配置至少一个发送功率的偏移量。
需要说明的是,PUCCH资源与PUCCH格式有对应关系,因此,对PUCCH资源配置发送功率的偏移量时,仅针对PUCCH资源对应的PUCCH格式进行配置。
对第一通信节点的一个PUCCH资源,所述功率控制参数包括至少一个发送功率的偏移量。例如,对部分或者全部PUCCH资源的每个PUCCH资源配置至少一个发送功率偏移量,所述至少一个发送功率偏移量对应不同的PUCCH传输的载荷大小区间。
本实施例中,所述发送功率用以下方式至少之一获得:发送功率偏移量的基准量;发送功率偏移量的基准量与发送功率偏移量的修正量之和。
在一实施例中,所述发送功率偏移量的修正量是预定义的。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP配置至少1个所述发送功率偏移量的修正量。
在本公开一实施例中,用1个所述发送功率偏移量的基准量确定其中一个发送功率偏移量;用1个所述发送功率偏移量的基准量与所述每个发送功率偏移量的修正量的和确定其他的发送功率偏移量,则一共可以确定所述发送功率偏移量的修正量的个数加1的发送功率偏移量。
在本公开另一实施例中,用1个所述发送功率偏移量的基准量与所述每个发送功率偏移量的修正量的和确定发送功率偏移量,则一共可以确定所述发送功率偏移量的修正量的个数的发送功率偏移量。
本实施例中,所述发送功率偏移量用于所述BWP的所有PUCCH的资源。
至少一个所述发送功率偏移量用于与所述发送功率偏移量同等数量的PUCCH载荷大小区间。例如,2个发送功率偏移量分别用于PUCCH大载荷区间和PUCCH小载荷区间。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP的PUCCH资源集合配置至少1个所述发送功率偏移量的修正 量。
本实施例中,用1个所述发送功率偏移量的基准量与所述每个发送功率偏移量的修正量的和确定发送功率偏移量。
所述发送功率偏移量用于所述BWP的所述PUCCH的资源集合中所有PUCCH资源。
至少一个所述发送功率偏移量用于与所述发送功率偏移量同等数量的PUCCH载荷大小区间。例如,2个发送功率偏移量分别用于PUCCH大载荷区间和PUCCH小载荷区间。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP的PUCCH资源配置至少1个所述发送功率偏移量的修正量。
本实施例中,1个所述发送功率偏移量的基准量与所述每个发送功率偏移量的修正量的和确定发送功率偏移量。
所述发送功率偏移量用于所述BWP的所述PUCCH的资源。
至少一个的所述发送功率偏移量用于与所述发送功率偏移量同等数量的PUCCH载荷大小区间。例如,2个发送功率偏移量分别用于PUCCH大载荷区间和PUCCH小载荷区间。
在一实施例中,为所述PUCCH资源集合配置1个所述发送功率偏移量的基准量,为所述PUCCH资源集合配置至少1个所述发送功率偏移量的修正量。
本实施例中,用所述PUCCH资源集合的所述发送功率偏移量的基准量与发送功率偏移量的修正量之和确定所述PUCCH资源集合的所述发送功率偏移量。所述发送功率偏移量用于所述PUCCH资源集合的所有PUCCH资源。
在一实施例中,为所述PUCCH资源集合配置1个所述发送功率偏移量的基准量,为所述PUCCH资源集合的PUCCH资源配置至少1个所述发送功率偏移量的修正量。
本实施例中,用所述PUCCH资源集合的所述发送功率偏移量的基准量与发送功率偏移量的修正量之和确定所述PUCCH资源集合的所述发送功率偏移量。所述发送功率偏移量用于所述PUCCH资源集合的所述PUCCH资源。
在一实施例中,每个所述发送功率偏移量对应一个PUCCH的载荷大小区间。
本实施例中,第一通信节点根据实际的PUCCH的载荷大小选择合适的PUCCH载荷区间对应的发送功率偏移量。
在一实施例中,所述发送功率的偏移量为由比特速率确定的发送功率的偏移量Δ
TF,且所 述Δ
TF根据不同的载荷大小区间,定义为不同的包含以下至少之一的自变量的函数:所述PUCCH传输占用的OFDM符号数量、所述PUCCH传输占用的RB个数、所述PUCCH是否跳频。
本实施例中,由所述PUCCH是否跳频确定的所述发送功率的偏移量是所述第二通信节点和所述第一通信节点预定义的,或者是所述第二通信节点预配置的。
如图2所示,本公开实施例还提供了一种功率控制装置,包括第一配置单元201。
第一配置单元201设置为为第一通信节点配置功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频。
本实施例中,所述发送功率的偏移量可以对以下至少之一配置:所述第一通信节点的PUCCH资源、所述第一通信节点的PUCCH资源集合、所述第一通信节点的带宽部分BWP配置。
本实施例中,所述发送功率用以下方式至少之一获得:发送功率偏移量的基准量;发送功率偏移量的基准量与发送功率偏移量的修正量之和。
在一实施例中,所述发送功率偏移量的修正量是预定义的。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP配置至少1个所述发送功率偏移量的修正量。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP的PUCCH资源集合配置至少1个所述发送功率偏移量的修正量。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP的PUCCH资源配置至少1个所述发送功率偏移量的修正量。
在一实施例中,为所述PUCCH资源集合配置1个所述发送功率偏移量的基准量,为所述PUCCH资源集合配置至少1个所述发送功率偏移量的修正量。
在一实施例中,为所述PUCCH资源集合配置1个所述发送功率偏移量的基准量,为所述PUCCH资源集合的PUCCH资源配置至少1个所述发送功率偏移量的修正量。
在一实施例中,每个所述发送功率偏移量对应一个PUCCH的载荷大小区间。
在一实施例中,所述发送功率的偏移量为由比特速率确定的发送功率的偏移量Δ
TF,且所 述Δ
TF根据不同的载荷大小区间,定义为不同的包含以下至少之一的自变量的函数:所述PUCCH传输占用的OFDM符号数量、所述PUCCH传输占用的RB个数、所述PUCCH是否跳频。
本实施例中,由所述PUCCH是否跳频确定的所述发送功率的偏移量是所述第二通信节点和所述第一通信节点预定义的,或者是所述第二通信节点预配置的。
如图3所示,本公开实施例还提供了一种功率控制方法,包括如下步骤。
在步骤301,第二通信节点为第一通信节点的带宽部分BWP配置至少一个空间关系,并为每个空间关系配置至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频。
本实施例中,所述功率控制参数包括所述第二通信节点期望的目标接收功率P
0。
如图4所示,本公开实施例还提供了一种功率控制装置,包括第二配置单元401,其中:第二配置单元401,设置为为第一通信节点的带宽部分BWP配置至少一个空间关系,并为每个空间关系配置至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频。
本实施例中,所述功率控制参数包括所述第二通信节点期望的目标接收功率P
0。
本公开实施例还提供了一种基站,包括处理器及存储器;所述处理器设置为执行所述存储器中存储的功率控制程序,以实现如以上任一项所述的功率控制方法的步骤。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的功率控制方法的步骤。
如图5所示,本公开实施例还提供了一种功率控制方法,包括如下步骤。
在步骤501,第一通信节点接收来自第二通信节点的功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频。
本实施例中,对以下任意一个PUCCH格式配置的发送功率偏移量数量至少为1:PUCCH格式2、PUCCH格式3、PUCCH格式4。所述至少为1个的发送功率偏移量用于与发送功率 偏移量同样数量的PUCCH的载荷大小区间。例如发送功率偏移量为2,对应PUCCH的大载荷区间和小载荷区间。
在一实施例中,所述载荷区间是预定义的。例如,大载荷区间是指大于11比特的区间,小载荷区间是指3到11比特区间。
本实施例中,所述发送功率的偏移量可以对以下至少之一配置:所述第一通信节点的PUCCH资源、所述第一通信节点的PUCCH资源集合、所述第一通信节点的带宽部分BWP配置。
在一实施例中,所述对PUCCH资源集合或BWP配置发送功率的偏移量时,区分PUCCH格式进行配置。对第一通信节点的一种PUCCH格式,需要配置至少一个发送功率的偏移量。
需要说明的是,PUCCH资源与PUCCH格式有对应关系,因此,对PUCCH资源配置发送功率的偏移量时,仅针对PUCCH资源对应的PUCCH格式进行配置。
对第一通信节点的一个PUCCH资源,所述功率控制参数包括至少一个发送功率的偏移量。例如,对部分或者全部PUCCH资源的每个PUCCH资源配置至少一个发送功率偏移量,所述至少一个发送功率偏移量对应不同的PUCCH传输的载荷大小区间。
本实施例中,所述发送功率用以下方式至少之一获得:发送功率偏移量的基准量;发送功率偏移量的基准量与发送功率偏移量的修正量之和。
在一实施例中,所述发送功率偏移量的修正量是预定义的。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP配置至少1个所述发送功率偏移量的修正量。
在本公开一实施例中,用1个所述发送功率偏移量的基准量确定其中一个发送功率偏移量;用1个所述发送功率偏移量的基准量与所述每个发送功率偏移量的修正量的和确定其他的发送功率偏移量,则一共可以确定所述发送功率偏移量的修正量的个数加1的发送功率偏移量。
在本公开另一实施例中,用1个所述发送功率偏移量的基准量与所述每个发送功率偏移量的修正量的和确定发送功率偏移量,则一共可以确定所述发送功率偏移量的修正量的个数的发送功率偏移量。
本实施例中,所述发送功率偏移量用于所述BWP的所有PUCCH的资源。
至少一个所述发送功率偏移量用于与所述发送功率偏移量同等数量的PUCCH载荷大 小区间。例如,2个发送功率偏移量分别用于PUCCH大载荷区间和PUCCH小载荷区间。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP的PUCCH资源集合配置至少1个所述发送功率偏移量的修正量。
本实施例中,用1个所述发送功率偏移量的基准量与所述每个发送功率偏移量的修正量的和确定发送功率偏移量。
所述发送功率偏移量用于所述BWP的所述PUCCH的资源集合中所有PUCCH资源。
至少一个所述发送功率偏移量用于与所述发送功率偏移量同等数量的PUCCH载荷大小区间。例如,2个发送功率偏移量分别用于PUCCH大载荷区间和PUCCH小载荷区间。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP的PUCCH资源配置至少1个所述发送功率偏移量的修正量。
本实施例中,1个所述发送功率偏移量的基准量与所述每个发送功率偏移量的修正量的和确定发送功率偏移量。
所述发送功率偏移量用于所述BWP的所述PUCCH的资源。
至少一个的所述发送功率偏移量用于与所述发送功率偏移量同等数量的PUCCH载荷大小区间。例如,2个发送功率偏移量分别用于PUCCH大载荷区间和PUCCH小载荷区间。
在一实施例中,为所述PUCCH资源集合配置1个所述发送功率偏移量的基准量,为所述PUCCH资源集合配置至少1个所述发送功率偏移量的修正量。
本实施例中,用所述PUCCH资源集合的所述发送功率偏移量的基准量与发送功率偏移量的修正量之和确定所述PUCCH资源集合的所述发送功率偏移量。所述发送功率偏移量用于所述PUCCH资源集合的所有PUCCH资源。
在一实施例中,为所述PUCCH资源集合配置1个所述发送功率偏移量的基准量,为所述PUCCH资源集合的PUCCH资源配置至少1个所述发送功率偏移量的修正量。
本实施例中,用所述PUCCH资源集合的所述发送功率偏移量的基准量与发送功率偏移量的修正量之和确定所述PUCCH资源集合的所述发送功率偏移量。所述发送功率偏移量用于所述PUCCH资源集合的所述PUCCH资源。
在一实施例中,每个所述发送功率偏移量对应一个PUCCH的载荷大小区间。
本实施例中,第一通信节点根据实际的PUCCH的载荷大小选择合适的PUCCH载荷区间 对应的发送功率偏移量。
本实施例中,所述发送功率的偏移量为由比特速率确定的发送功率的偏移量Δ
TF,且所述Δ
TF根据不同的载荷大小区间,定义为不同的包含以下至少之一的自变量的函数:所述PUCCH传输占用的OFDM符号数量、所述PUCCH传输占用的RB个数、所述PUCCH是否跳频。
本实施例中,由所述PUCCH是否跳频确定的所述发送功率的偏移量是预定义的,或者是所述第二通信节点预配置的。
步骤502:第一通信节点根据实际的PUCCH传输参数,确定PUCCH的发送功率。
如图6所示,本公开实施例还提供了一种功率控制方法,包括如下步骤。
在步骤601,第一通信节点接收第二通信节点为自身的BWP配置的空间关系,并接收第二通信节点为每个空间关系配置的至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频。在本实施例中,所述功率控制参数包括所述第二通信节点期望的目标接收功率P
0。
在步骤602,第一通信节点根据实际的PUCCH传输参数,确定BWP的空间关系及PUCCH的发送功率。
本公开实施例还提供了一种终端,包括处理器及存储器;所述处理器设置为执行所述存储器中存储的功率控制程序,以实现如以上任一项所述的功率控制方法的步骤。
本公开实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项任一所述的功率控制方法的步骤。
如图7所示,本公开实施例还提供了一种功率控制装置,包括第一接收单元701和第一确定单元702。
第一接收单元701设置为接收来自第二通信节点的功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频。
第一确定单元702设置为根据实际的PUCCH传输参数,确定PUCCH的发送功率。
本实施例中,所述发送功率的偏移量可以对以下至少之一配置:所述第一通信节点的PUCCH资源、所述第一通信节点的PUCCH资源集合、所述第一通信节点的带宽部分BWP配置。
本实施例中,所述发送功率用以下方式至少之一获得:发送功率偏移量的基准量;发送功率偏移量的基准量与发送功率偏移量的修正量之和。
在一实施例中,所述发送功率偏移量的修正量是预定义的。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP配置至少1个所述发送功率偏移量的修正量。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP的PUCCH资源集合配置至少1个所述发送功率偏移量的修正量。
在一实施例中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP的PUCCH资源配置至少1个所述发送功率偏移量的修正量。
在一实施例中,为所述PUCCH资源集合配置1个所述发送功率偏移量的基准量,为所述PUCCH资源集合配置至少1个所述发送功率偏移量的修正量。
在一实施例中,为所述PUCCH资源集合配置1个所述发送功率偏移量的基准量,为所述PUCCH资源集合的PUCCH资源配置至少1个所述发送功率偏移量的修正量。
在一实施例中,每个所述发送功率偏移量对应一个PUCCH的载荷大小区间。
本实施例中,所述发送功率的偏移量为由比特速率确定的发送功率的偏移量Δ
TF,且所述Δ
TF根据不同的载荷大小区间,定义为不同的包含以下至少之一的自变量的函数:所述PUCCH传输占用的OFDM符号数量、所述PUCCH传输占用的RB个数、所述PUCCH是否跳频。
本实施例中,由所述PUCCH是否跳频确定的所述发送功率的偏移量是预定义的,或者是所述第二通信节点预配置的。
如图8所示,本公开实施例还提供了一种功率控制装置,包括第二接收单元801和第二确定单元802。
第二接收单元801设置为接收第二通信节点为自身所属装置的BWP配置的空间关系, 并接收第二通信节点为每个空间关系配置的至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下功率影响因子中的至少一个:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频。
第二确定单元802设置为根据实际的PUCCH传输参数,确定PUCCH的发送功率。
本实施例中,所述功率控制参数包括所述第二通信节点期望的目标接收功率P
0。
如图9所示,本公开还提供了一种功率控制方法,包括如下步骤。
在步骤901,根据PUCCH的功控参数确定PUSCH的功控参数,所述确定方法包括以下至少之一:PUSCH的开环功控参数由PUCCH的开环功控参数确定;PUSCH的PL的RS参数由PUCCH的PL的RS参数确定;PUSCH的闭环功控参数由PUCCH的闭环功控参数确定。
其中,所述PUCCH存在以下至少之一的特征:由预定的PUCCH资源确定的PUCCH(例如:PUCCH资源编号最小的PUCCH资源);最近配置的或者最近发送的PUCCH;在所述PUSCH所关联的小区或者BWP中的PUCCH。在一实施例中,所述PUCCH可以为:在所述PUSCH所关联的小区或者BWP中最近配置的或者发送的PUCCH,或者在所述PUSCH所关联的小区或者BWP中预定的PUCCH的资源的PUCCH。
其中,所述最近配置的PUCCH包括以下之一:MAC CE激活PUCCH的最新空间关系配置、RRC信令重配PUCCH的空间关系、RRC信令重配PUCCH的功率控制参数。
其中,所述PUSCH关联的小区是指以下之一:主小区(primary cell),或者辅小区分组SCG(Secondary Cell Group)的主小区PSCell(Primary Secondary Cell),或者配置为发送PUCCH的辅小区PUCCH SCell。
其中,所述PUSCH关联的BWP是指以下之一:primary cell中激活的BWP,或者SCG的主小区PSCell中激活的BWP,或者配置为发送PUCCH的辅小区PUCCH SCell中激活的BWP。
在一实施例中,所述PUSCH关联的小区或者BWP与所述PUSCH所属的小区或者BWP属于同一PUCCH分组。
其中,所述PUSCH的开环功控参数由PUCCH的开环功控参数确定,包括:所述PUSCH的开环功控参数,使用所述PUCCH的开环功控参数以及PUCCH与PUSCH的开环功率控制参数的偏差共同确定。
其中,所述PUCCH与PUSCH开环功率控制参数的的偏差至少包括:目标接收功率P0的偏差。该偏差值以预定义的方式或者基站配置的方式确定。
当PUSCH使用PUCCH的开环功率控制参数确定PUSCH开环功率控制参数时,PUSCH的路损因子α取1。
在一实施例中,所述PUSCH的闭环功控参数由PUCCH的闭环功控参数确定,包括以下至少之一:累积式闭环功控是否打开;PUSCH的UE本地的闭环功率调整量由PUCCH的UE本地的闭环功率调整量确定。
在一实施例中,所述PUSCH的UE本地的闭环功率调整量由PUCCH的UE本地的闭环功率调整量确定,包括以下至少之一:PUCCH的UE本地的闭环功率调整量用作PUSCH的UE本地的闭环功率调整量;PUSCH的闭环功控参数在预定时刻使用PUCCH的闭环功控参数,在预定时刻之后PUSCH使用自己独立维护的UE本地的闭环功率调整量;当PUCCH的UE本地的闭环功率调整量大于预定门限时,PUSCH的UE本地的闭环功率调整量由PUCCH的UE本地的闭环功率调整量确定;当在预定时刻PUCCH的UE本地的闭环功率调整量大于预定门限时,PUSCH的闭环功控参数使用PUCCH的闭环功控参数,在预定时刻之后PUSCH使用自己独立维护的UE本地的闭环功率调整量。
在一实施例中,所述预定时刻是指以下之一:当PUSCH第一次被DCI格式0-0调度时;从非DCI格式0-0调度PUSCH变换为DCI格式0-0调度PUSCH时;当前PUCCH的空间关系发生变化时;当前PUCCH的空间关系发生变化后PUSCH被DCI格式0-0调度时。
所述DCI格式0-0是用于调度PUSCH传输的下行控制信息的一种格式,其中不包含SRI域。DCI格式0-1也是用于调度PUSCH传输的另外一种下行控制信息的格式,其中包括SRI域。
本公开还提供了一种终端,包括处理器及存储器;所述处理器设置为执行所述存储器中存储的功率控制程序,以实现如以上任一项所述的功率控制方法的步骤。
本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的功率控制方法的步骤。
本公开还提供了一种功率控制装置,包括第四确定单元。
第四确定单元设置为根据PUCCH的功控参数确定PUSCH的功控参数,所述确定方法包括以下至少之一:PUSCH的开环功控参数由PUCCH的开环功控参数确定;PUSCH的PL的 RS参数由PUCCH的PL的RS参数确定;PUSCH的闭环功控参数由PUCCH的闭环功控参数确定。
其中,所述PUCCH存在以下至少之一的特征:由预定的PUCCH资源确定的PUCCH(例如:PUCCH资源编号最小的PUCCH资源);最近配置的或者最近发送的PUCCH;在所述PUSCH所关联的小区或者BWP中的PUCCH。在一实施例中,所述PUCCH可以为:在所述PUSCH所关联的小区或者BWP中最近配置的或者发送的PUCCH,或者在所述PUSCH所关联的小区或者BWP中预定的PUCCH的资源的PUCCH。
其中,所述最近配置的PUCCH包括以下之一:MAC CE激活PUCCH的最新空间关系配置、RRC信令重配PUCCH的空间关系、RRC信令重配PUCCH的功率控制参数。
其中,所述PUSCH关联的小区是指以下之一:主小区(primary cell),或者辅小区分组SCG(Secondary Cell Group)的主小区PSCell(Primary Secondary Cell),或者配置为发送PUCCH的辅小区PUCCH SCell。
其中,所述PUSCH关联的BWP是指以下之一:primary cell中激活的BWP,或者SCG的主小区PSCell中激活的BWP,或者配置为发送PUCCH的辅小区PUCCH SCell中激活的BWP。
在一实施例中,所述PUSCH关联的小区或者BWP与所述PUSCH所属的小区或者BWP属于同一PUCCH分组。
其中,所述PUSCH的开环功控参数由PUCCH的开环功控参数确定,包括:所述PUSCH的开环功控参数,使用所述PUCCH的开环功控参数以及PUCCH与PUSCH的开环功率控制参数的偏差共同确定。
在一实施例中,所述PUSCH的闭环功控参数由PUCCH的闭环功控参数确定,包括以下至少之一:累积式闭环功控是否打开;PUSCH的UE本地的闭环功率调整量由PUCCH的UE本地的闭环功率调整量确定。
在一实施例中,所述PUSCH的UE本地的闭环功率调整量由PUCCH的UE本地的闭环功率调整量确定,包括以下至少之一:PUCCH的UE本地的闭环功率调整量用作PUSCH的UE本地的闭环功率调整量;PUSCH的闭环功控参数在预定时刻使用PUCCH的闭环功控参数,在预定时刻之后PUSCH使用自己独立维护的UE本地的闭环功率调整量;当PUCCH的UE本地的闭环功率调整量大于预定门限时,PUSCH的UE本地的闭环功率调整量由PUCCH的UE本地的闭环功率调整量确定;当在预定时刻PUCCH的UE本地的闭环功率调整量大于预定 门限时,PUSCH的闭环功控参数使用PUCCH的闭环功控参数,在预定时刻之后PUSCH使用自己独立维护的UE本地的闭环功率调整量。
在一实施例中,所述预定时刻是指以下之一:当PUSCH第一次被DCI格式0-0调度时;从非DCI格式0-0调度PUSCH变换为DCI格式0-0调度PUSCH时;当前PUCCH的空间关系发生变化时;当前PUCCH的空间关系发生变化后PUSCH被DCI格式0-0调度时。
实施例1
基站为UE配置PUCCH的功率控制参数,所述功率控制参数为PUCCH资源配置Δ
F_PUCCH(F),或者Δ
F_PUCCH(F)基准量和Δ
F_PUCCH(F)的修正量。其中,Δ
F_PUCCH(F)表示发送功率偏移量。
发送功率偏移量又可以分为两部分配置:发送功率偏移量的基准量、发送功率偏移量的修正量。
发送功率偏移量的修正量与发送功率基准量之和可以得到发送功率偏移量。
或者,发送功率偏移量的修正量可以是发送功率偏移量。
由于PUCCH资源中配置了PUCCH的格式、RB起始位置、RB个数、OFDM符号起始位置、OFDM符号数量、是否跳频,因此基站可以根据以上参数至少之一对PUCCH资源配置Δ
F_PUCCH(F),或者Δ
F_PUCCH(F)基准量和Δ
F_PUCCH(F)的修正量。
虽然基站在配置参数时并不能确定实际传输时的载荷,但是基站在PUCCH资源集合上配置最大载荷大小,所以该PUCCH资源集合中的每个PUCCH资源也有对应的载荷范围。因此,基站还可以依据PUCCH资源的载荷范围为PUCCH资源配置Δ
F_PUCCH(F),或者Δ
F_PUCCH(F)基准量和Δ
F_PUCCH(F)的修正量。
基站也可能为每个PUCCH资源配置N个Δ
F_PUCCH(F),或者N个Δ
F_PUCCH(F)的修正量,分别对应不同的载荷区间。N为大于或等于1的整数。UE根据实际的PUCCH传输的载荷大小,选择N个中的一个Δ
F_PUCCH(F),或者Δ
F_PUCCH(F)基准量和Δ
F_PUCCH(F)的修正量进行PUCCH的功控。
载荷区间可以是预先配置的固定值。例如,[3,11]标识载荷范围是3比特到11比特。
载荷区间还可以是根据数据速率或编码速率确定的。
例如:PUCCH的资源集合上配置的最大载荷大小范围很大,在对应的载荷范围内,可能需要配置大于1个Δ
F_PUCCH(F),分别对应多个载荷范围。例如PUCCH的资源集合上的最大载荷大小是100比特。对于其中一个PUCCH资源配置了3个Δ
F_PUCCH(F),分别对应3个载荷大小区间,如,3个载荷大小区间为比特数数范围在[3,11],[12,22],[23,正无穷]。当UE发送PUCCH承载的载荷为10比特时,则选择第一个载荷区间对应的Δ
F_PUCCH(F)。
又如,基站为UE配置了3个PUCCH的资源集合,每个资源集合独立配置最大载荷大小。第一PUCCH的资源集合的最大载荷大小为2比特,第二PUCCH的资源集合的最大载荷大小为11比特,第三PUCCH的资源集合的最大载荷大小为100比特。则UE将多个PUCCH的资源集合结合起来判断具体的PUCCH使用的PUCCH的资源集合。第一PUCCH的资源集合载荷大小为1、2比特;第二PUCCH的资源集合载荷大小为3到11比特;第三PUCCH的资源集合载荷大小为12到100比特。如果PUCCH的实际载荷是20bit,则应该选择第三PUCCH的资源集合。
基站配置的是Δ
F_PUCCH(F)的修正量时,该Δ
F_PUCCH(F)的修正量需要结合Δ
F_PUCCH(F)的基准量决定PUCCH的功控中Δ
F_PUCCH(F)项。因此,基站还要为UE配置Δ
F_PUCCH(F)的基准量。
例如:基站在BWP上为每个PUCCH格式配置Δ
F_PUCCH(F)的基准量。则该Δ
F_PUCCH(F)的基准量用于该BWP上的所有PUCCH资源。实际的Δ
F_PUCCH(F)是用Δ
F_PUCCH(F)的基准量与对应的PUCCH资源配置的Δ
F_PUCCH(F)修正量一起确定的。如,Δ
F_PUCCH(F)=Δ
F_PUCCH(F)基准量+Δ
F_PUCCH(F)修正量。
实施例2
基站为UE配置PUCCH的功率控制参数,包括:为PUCCH资源集合配置N个Δ
F_PUCCH(F)或者Δ
F_PUCCH(F)的基准量和Δ
F_PUCCH(F)的修正量,所述N个Δ
F_PUCCH(F)或者 Δ
F_PUCCH(F)的修正量分别对应不同的载荷区间,其中,N为大于或等于1的整数。UE根据实际的PUCCH传输的载荷大小,选择N个中的一个Δ
F_PUCCH(F),或者Δ
F_PUCCH(F)的修正量进行PUCCH的功控。
由于PUCCH资源集合上配置了最大载荷大小,因此基于set配置的Δ
F_PUCCH(F)可以体现载荷的不同。
例如,N为2时,对应大载荷区间和小载荷区间。载荷区间的界限可以是预定义的,例如大于11比特称为大载荷区间,小于等于11比特称为小载荷区间。载荷区间的界限也可以是根据比特速率或者编码速率与RB个数确定的。
又如,N为3时,对应3种载荷,>22比特的为第一种载荷区间,>11且<=22比特的为第二种载荷区间,<11比特的为第三种载荷区间。
除了载荷因素外,PUCCH资源占用的OFDM符号数量,RB个数,是否跳频等因素也应该在功控公式中体现。BPRE本身可以体现比特速率,也就是载荷、OFDM符号数、RB数的综合体现,但是根据场景不同还有必要对这些因素进行调整。
Δ
TF,f,c(i),或者Δ
F_PUCCH(F),或者功率公式中的独立项体现以下至少之一:PUCCH资源占用的OFDM符号数量,PUCCH资源占用的RB个数,PUCCH资源是否跳频。其中,Δ
TF,f,c(i)和Δ
F_PUCCH(F)表示发送功率偏移量。
是否跳频引起的偏差可以是预定义的或者是配置的。
例如,预定义或者基站配置跳频引入的偏差是2dB。则Δ
TF,f,c(i),或者Δ
F_PUCCH(F),或者功率公式中的独立项会体现该差异。如果跳频打开,则发送功率相对于不打开时的发送功率减少2dB。
PUCCH资源占用的OFDM符号数量引起的偏差是PUCCH资源占用的OFDM符号数的函数。
例如,该函数为
其中,
为OFDM符号个数。该函数可以作为Δ
TF,f,c(i),或者Δ
F_PUCCH(F),或者功率公式中的独立项中的一部分,以体现PUCCH资源占用的OFDM符号数量对功控的影响。
PUCCH资源占用的RB数量引起的偏差是PUCCH资源占用的RB数量的函数。
例如,该函数为-2log
10(M
PUCCH,c(i))。其中M
PUCCH,c(i)为RB数量。该函数可以作为Δ
TF,f,c(i),或者Δ
F_PUCCH(F),或者功率公式中的独立项中的一部分,以体现PUCCH资源占用的RB数量对功控的影响。
上述功率公式中的独立项,是指不同于相关功率公式中的已有项,而是新增加一项。
例如,表1是PUCCH格式2、3、4的Δ
F_PUCCH(F)中体现OFDM符号数量,RB个数调整量的示例。表2是PUCCH格式2、3、4的Δ
TF,f,c(i)中体现OFDM符号数量,RB个数调整量的示例。
表1
其中,Ouci(i)表示第i个上行子帧的载荷长度。
表2
实施例3
基站为UE配置PUCCH的功率控制参数,包括:为BWP配置N个Δ
F_PUCCH(F),所述N个Δ
F_PUCCH(F)分别对应不同的载荷区间,其中,N为大于或等于1的整数。UE根据实际的PUCCH传输的载荷大小,选择N个中的一个Δ
F_PUCCH(F)进行PUCCH的功控。
例如,N为2时,对应大载荷区间和小载荷区间。例如大于11比特称为大载荷区间,小于等于11比特称为小载荷区间。
例如,基站为UE配置了1个CC,包括3个BWP,其中第一个BWP上有PUCCH配置。BWP上配置了2个Δ
F_PUCCH(F),分别对应大载荷区间和小载荷区间。
除了载荷因素外,PUCCH资源占用的OFDM符号数量,RB个数,是否跳频等因素也应该在功控公式中体现。BPRE本身可以体现比特速率,也就是载荷、OFDM符号数、RB数的综合体现,但是根据场景不同还有必要对这些因素进行调整。
Δ
TF,f,c(i),或者Δ
F_PUCCH(F),或者功率公式中的独立项体现以下至少之一:PUCCH资源占用的OFDM符号数量,PUCCH资源占用的RB个数,PUCCH资源是否跳频。
是否跳频、PUCCH资源占用的OFDM符号数量、PUCCH资源占用的RB数量的细节描述与实施例2相同。
当基站为UE为BWP配置的Δ
F_PUCCH(F)数量为1时,Δ
F_PUCCH(F)为基本Δ
F_PUCCH(F)值,由Δ
F_PUCCH(F)修正量和Δ
F_PUCCH(F)的基准量共同确定实际的Δ
F_PUCCH(F)值。
Δ
F_PUCCH(F)修正量是预定义的。
Δ
F_PUCCH(F)修正量体现不同载荷区间的差异。UE根据实际的PUCCH传输的载荷大小,选择一个Δ
F_PUCCH(F)的修正量与Δ
F_PUCCH(F)的基准量,进行PUCCH的功控。
例如,对于PUCCH格式2,Δ
F_PUCCH(F)的基准量配置为4dB。不同载荷区间的差异是预先定义的,如大载荷区间Δ
F_PUCCH(F)修正量为3dB,小载荷区间Δ
F_PUCCH(F)修正量为1dB。
Δ
F_PUCCH(F)修正量是基站配置的。Δ
F_PUCCH(F)修正量体现不同载荷区间的差异。UE根据实际的PUCCH传输的载荷大小,选择一个Δ
F_PUCCH(F)的修正量与Δ
F_PUCCH(F)的基准量,进行PUCCH的功控。包括:基站为UE的BWP配置N个Δ
F_PUCCH(F)的修正量,分别对应N个不同的载荷区间。
例如,对于PUCCH格式2,Δ
F_PUCCH(F)的基准量配置为4dB。基站为UE的BWP配置N=2个Δ
F_PUCCH(F)的修正量,分别对应2个不同的载荷区间。如大载荷区间Δ
F_PUCCH(F)修正量为3dB,小载荷区间Δ
F_PUCCH(F)修正量为1dB。
Δ
F_PUCCH(F)修正量是基站配置的。Δ
F_PUCCH(F)修正量体现不同载荷区间的差异。UE根据实际的PUCCH传输的载荷大小,选择一个Δ
F_PUCCH(F)的修正量与Δ
F_PUCCH(F)的基准量,进行PUCCH的功控。包括:基站为UE的PUCCH资源集合配置N个Δ
F_PUCCH(F)的修正量,分别对应N个不同的载荷区间。
Δ
F_PUCCH(F)修正量是基站配置的。Δ
F_PUCCH(F)修正量体现不同载荷区间的差异。UE根据实际的PUCCH传输的载荷大小,选择一个Δ
F_PUCCH(F)的修正量与Δ
F_PUCCH(F)的基准量,进行PUCCH的功控。包括:基站为UE的PUCCH资源配置N个Δ
F_PUCCH(F)的修正量,分别对应N个不同的载荷区间。
Δ
F_PUCCH(F)修正量是基站配置的。Δ
F_PUCCH(F)修正量体现以下至少之一的差异:PUCCH资源占用的RB数量、PUCCH资源占用的符号数量、是否跳频、不同载荷区间。
UE根据实际的PUCCH传输的以下至少之一选择一个Δ
F_PUCCH(F)的修正量与Δ
F_PUCCH(F)的基准量,进行PUCCH的功控:PUCCH资源占用的RB数量、PUCCH资源占用的符号数量、是否跳频、不同载荷区间的载荷大小。
Δ
F_PUCCH(F)的修正量按照以下方法之一进行配置:基站为UE的PUCCH资源配置N个Δ
F_PUCCH(F)的修正量。
基站为UE的PUCCH资源集合配置N个Δ
F_PUCCH(F)的修正量。
基站为UE的BWP配置N个Δ
F_PUCCH(F)的修正量。
实施例4
基站为UE配置PUCCH的功率控制参数,包括:为BWP配置M个空间关系,并为每个空间关系对应Mn个(套)功控参数。
其中M为大于等于1的整数。MN为大于或等于1的整数。
其中空间关系也可以用参考信号信息代替。
所述功控参数包括以下至少之一:至少一个开环功率控制参数集合或开环功控参数集合索引、至少一个路损测量参数集合或路损测量参数集合索引、至少一个闭环功率控制进程参数或闭环功率控制进程索引。
所述参考信号信息包括以下至少之一:至少一个参考信号或参考信号索引、至少一个参考信号资源或参考信号资源索引、至少一个空间关系信息或空间关系信息索引、至少一个参考信号资源分组或参考信号资源分组索引、至少一个参考信号资源组合或参考信号资源组合索引。
所述开环功率控制参数集合包括以下至少之一:目标接收功率(P0)、路损因子(α)。
所述路损测量参数集合包括以下至少之一:用于路损测量的参考信号资源类型指示、用于路损测量的参考信号资源指示、两个或两个以上路损测量的参考信号的路径损耗值的处理规则。
所述闭环功率控制进程参数包括以下至少之一:闭环功率控制进程标识集合、闭环功率控制进程个数。
每个空间关系的Mn取值可以不同。
一个空间关系的Mn个功控参数分别表示Mn个功率影响因子集合。
功率影响因子集合包括以下至少之一:载荷区间、PUCCH占用的RB数量、PUCCH占用的OFDM符号数量、是否跳频。
UE根据实际的PUCCH传输的参数确定上述功率影响因子集合,选择Mn个中的一个(套)功控参数。
例如,基站为UE配置CC和BWP,对BWP配置了多个PUCCH资源集合,每个resource set包括多个PUCCH资源。
功率影响因子集合包括:载荷区间。而载荷区间只有2个,分别为大载荷区间和小载荷区间。则功控影响因子集合的数量为2个。
基站为BWP配置多个空间关系,每个空间关系对应Mn个(套)功控参数。功控参数中至少包括开环功控参数,开环功控参数至少包括P0。根据功控影响因子集合的数量确定Mn的大小,为2个。
UE根据实际的PUCCH传输的参数确定上述功率影响因子集合,选择Mn个中的一个(套)功控参数。如PUCCH传输的载荷为9比特,对应小载荷区间,则UE选择对应的CC的BWP中的Mn=2个功控参数的对应小载荷区间的功控参数,如小载荷区间对应的P0。
实施例5
基站通过发送DCI给UE调度PUSCH。当DCI中存在SRI域时,通过SRI获得功率控制参数。当DCI中不存在SRI时,PUSCH的功控参数无法通过DCI中指示的SRI指示。本公开提供了解决该问题的方法。
根据PUCCH的功控参数确定PUSCH的功控参数可包括以下至少之一。
为PUCCH配置一套功控参数,则PUSCH使用PUCCH的功控参数。
为PUCCH配置至少一套功控参数,并以预定义方式确定其中一套功控参数,用于在空间关系不可知的情况,则PUSCH利用PUCCH预定义的一套功控参数。例如,预定义方式包括以下至少之一:功控参数中编号最小的功控参数、功控参数中指定编号的功控参数。
为PUCCH配置至少一套功控参数,并配置空间关系与PUCCH的功控参数的关联,并以预定义方式确定其中一套功控参数,用于在空间关系不可知的情况,则PUSCH利用PUCCH预定义的一套功控参数。例如,预定义方式包括以下至少之一:最小的空间关系编号关联的功控参数、指定编号的空间关系关联的功控参数。
为PUCCH配置至少一套功控参数,并配置空间关系与PUCCH的功控参数的关联,则利用PUCCH的空间关系索引PUCCH的一套功控参数用于确定PUSCH的功控参数。
所述功率控制参数包括以下至少之一:至少一个开环功率控制参数集合或开环功控参数集合索引、至少一个路损测量参数集合或路损测量参数集合索引、至少一个闭环功率控制进程参数或闭环功率控制进程索引。
所述开环功率控制参数集合包括以下至少之一:目标接收功率、路损因子。
所述路损测量参数集合包括以下至少之一:用于路损测量的参考信号资源类型指示、用于路损测量的参考信号资源指示、两个或两个以上路损测量的参考信号的路径损耗值的处理规则。
所述闭环功率控制进程参数包括以下至少之一:闭环功率控制进程标识集合、闭环功率控制进程个数。
采用如下方式确定使用PUCCH的哪个空间关系:高层信令、和/或MAC CE、和/或物理层信令指示的用于当前PUCCH传输的空间关系。
例如,高层信令配置了至少一个PUCCH的空间关系,MAC CE激活其中的一个或者多个空间关系用于当前PUCCH的传输。
又如,高层信令配置了至少一个PUCCH的空间关系,MAC CE激活其中的一个或者多个空间关系作为激活空间关系子集,物理层信令在MAC CE激活的子集中指示一个或者多个空间关系用于当前PUCCH的传输。
当确定了一个PUCCH的空间关系,即可索引一套PUCCH的功控参数。用以下方式至少之一确定PUSCH的功控参数。
1.PUSCH的开环功控参数由PUCCH的开环功控参数确定,包括。PUSCH的开环功控参数由PUCCH的开环功控参数直接确定。
或者,PUSCH的开环功控参数可以使用PUCCH的开环功控参数与PUCCH与PUSCH的偏差共同确定。其中PUCCH与PUSCH的偏差至少包括目标接收功率的偏差。该偏差可以是预定义的或者是基站配置的。如PUSCH的P0比PUCCH的P0低2dB。
2.PUSCH的PL的RS参数由PUCCH的PL的RS参数确定;即PUSCH的PL值与PUCCH的PL的值使用相同的RS。
3.PUSCH的闭环功控参数由PUCCH的闭环功控参数确定。包括以下至少之一:
1).累积式闭环功控是否打开。
2).PUSCH的UE本地的闭环功率调整量由PUCCH的UE本地的闭环功率调整量确定。包括以下之一。
a.PUCCH的UE本地的闭环功率调整量用作PUSCH的UE本地的闭环功率调整量。
b.PUSCH的闭环功控参数在预定时刻使用PUCCH的闭环功控参数,在其余时刻PUSCH使用自己独立维护的UE本地的闭环功率调整量。
例如,当PUSCH第一次使用DCI 0-0时,由于DCI 0-0中没有SRI,因此无法获取功控参数。此时使用当前PUCCH的空间关系获取PUCCH的闭环功控参数,即PUCCH的UE本地的闭环功率调整量。后续使用DCI 0-0调度的PUSCH,因为DCI 0-0中包含了TPC命令,所以PUSCH可以用该TPC命令更新PUSCH的UE本地的闭环功率调整量,即PUSCH独立于PUCCH独立维护UE本地的闭环功率调整量。当PUSCH被用带有SRI的DCI调度之后,PUSCH的功控参数通过SRI索引PUSCH的功控参数。再次出现PUSCH被DCI 0-0调度时,PUSCH使用PUCCH的空间关系获取PUCCH的闭环功控参数,即PUCCH的UE本地的闭环功率调整量作为PUSCH的UE本地的闭环功率调整量的初始值,此后使用DCI0-0调度的PUSCH,使用DCI0-0中包含的TPC命令更新PUSCH的UE本地的闭环功率调整量。
又如,当PUSCH被不带SRI的DCI 0-1调度时,PUSCH使用预定义的SRI索引PUSCH的功控参数;或者PUSCH使用预定义的PUSCH的功控参数,如预定义编号的PUSCH的开环功控参数集合、预定义编号的PUSCH的闭环功控参数集合、预定义编号的PUSCH的PL的RS参数集合。预定义编号是指定义的集合编号中最小的编号,或者指定的编号。
c.当PUCCH的UE本地的闭环功率调整量大于预定门限时,PUSCH的UE本地的闭环功率调整量由PUCCH的UE本地的闭环功率调整量确定。例如,预定门限为0,即PUCCH的UE本地的闭环功率调整量为正值时,PUSCH的UE本地的闭环功率调整量才由PUCCH的UE本地的闭环功率调整量确定。当PUCCH的UE本地的闭环功率调整量小于或等于预定门限时,PUSCH的UE本地的闭环功率调整量为0。
上述的b)与c)可以结合,PUSCH的闭环功控参数在预定时刻当PUCCH的UE本地的闭环功率调整量大于预定门限时使用PUCCH的闭环功控参数,在其余时刻PUSCH使用自己独立维护的UE本地的闭环功率调整量。
所述预定时刻是指以下之一:当PUSCH第一次被DCI格式0-0调度时;从非DCI格式0-0调度PUSCH变换为DCI格式0-0调度PUSCH时;当前PUCCH的空间关系发生变化时。
以上各参数的确定方法可以全部被PUSCH使用,也可以部分地被PUSCH使用。
部分地被PUSCH使用时,功控参数中其余参数使用PUSCH自己的。即,预定义或者基站配置的方式告知UE没有SRI时使用的功控参数。
例如,以上参数中,只有PUCCH的PL的RS被PUSCH的PL的RS直接使用,而PUSCH的开环功控部分的P0使用MSG1的P0值,alpha预定义为1,PUSCH的闭环功控部分的UE本地的闭环功控调整量的初始值预定义为0。
又如,以上参数中,PUCCH的PL的RS被PUSCH的PL的RS直接使用;PUSCH开环功控部分的P0使用PUCCH的开环功控参数的P0值与预定义的偏差值之和,PUSCH的开环部分的alpha使用PUCCH的开环功控参数的alpha值;PUSCH闭环功控部分的UE本地的闭环功控调整量的初始值预定义为0。
又如,以上参数中,PUCCH的PL的RS被PUSCH的PL的RS直接使用;PUSCH开环功控部分使用PUCCH的开环功控参数;PUSCH的闭环功控参数在预定时刻使用PUCCH的闭环功控参数,在其余时刻PUSCH使用自己独立维护的UE本地的闭环功率调整量。
以上当前PUCCH传输也可以是最近的PUCCH传输。
当前PUCCH传输不一定是指真实的某一个PUCCH传输,而是指针对某一段时间的PUCCH的配置参数。例如,MAC CE激活的PUCCH的空间关系,不是针对特定PUCCH,而是从MAC CE激活PUCCH的空间关系的时刻到下次MAC CE去激活或者重激活同类信息的时间段。在该时间段内MAC CE激活的PUCCH的空间关系索引的PUCCH的功控参数都是指当前PUCCH的传输的PUCCH的空间关系索引的当前PUCCH的功控参数。
PUSCH传输的功控参数还可以用PUCCH的特定空间关系对应的PUCCH的功控参数确定。所述PUCCH的特定空间关系包括:预定义的或者基站配置的PUCCH的空间关系。例如,基站配置的至少一个的PUCCH的空间关系中编号最小的或者预定义编号的PUCCH的空间关系。
基站为UE配置至少一套PUSCH的功控参数。基站为UE配置PUCCH的至少一个空间关系。基站为UE配置PUCCH的空间关系与PUSCH功控参数的关联。UE通过PUCCH的空间关系确定PUSCH的空间关系,根据PUSCH的空间关系与PUSCH的功控参数的关联获得PUSCH的功控参数。
基站为UE配置至少一套PUSCH的功控参数。基站为UE配置下行参考信号信息与PUSCH功控参数的关联。UE通过PUSCH相关的下行参考信号信息,根据下行参考信号信息与PUSCH的功控参数的关联获得PUSCH的功控参数。所述PUSCH相关的下行参考信号信息是指以下之一:包含当前PUSCH的调度信息的PDCCH的TCI所指示的下行参考信号信息、UE根据下行信道测量获得的最好下行参考信号。
当PUCCH的空间关系发生变化,例如,MAC CE激活了新的PUCCH的空间关系,则PUCCH的UE本地的闭环功率调整量被重置。
当PUCCH的空间关系发生变化,例如,MAC CE激活了新的PUCCH的空间关系,则PUCCH 的与新的PUCCH的空间关系关联的UE本地的闭环功率调整量被重置。例如,PUCCH的UE本地的闭环功率调整量可能有多个,用编号l表示。基站配置PUCCH的空间关系与PUCCH的闭环功控参数的关联,因此新的PUCCH空间关系对应特定的PUCCH的闭环功控参数。假设MAC CE激活的老的PUCCH的空间关系1与PUCCH的闭环功控参数的编号l=0关联,MAC CE激活的新的PUCCH的空间关系2与PUCCH的闭环功控参数的编号l=1关联。则MAC CE激活了新的PUCCH的空间关系,则PUCCH的闭环功控参数的编号l=1的PUCCH的UE本地的闭环功率调整量被重置。重置是指设置为一个指定值,例如,0。
当PUCCH的空间关系发生变化,例如,MAC CE激活了新的PUCCH的空间关系,并且PUSCH被不带SRI的DCI调度,例如,DCI 0-0,则使用新的PUCCH的空间关系索引的一套PUCCH的功控参数确定PUSCH的功控参数。具体方式同上述。
当PUSCH被不带SRI的DCI调度,例如,DCI 0-0,并且当前PUCCH的空间关系相比上次PUSCH被相同DCI调度时没有发生变化,则PUSCH维持独立于PUCCH的闭环功控。
PUSCH使用调度当前PUSCH传输的DCI中的TPC命令更新PUSCH的本地闭环功率调整量。
或者,当为累积式闭环功率调整时,PUSCH使用调度当前PUSCH传输的DCI中的TPC命令与PUCCH的UE本地的闭环功率调整量之和更新为PUSCH的UE本地的闭环功率调整量。
对于载波聚合CA的场景,配置了PUCCH的小区/BWP上,可以使用上述方法用同一cell/BWP上的PUCCH的空间关系和功控参数确定PUSCH的功控参数。
在没有配置PUCCH的小区/BWP上,由没有SRI的DCI调度的PUSCH的功控参数由该PUSCH所在的PUCCH组内的PUCCH的空间关系和功控参数确定。即用于确定PUSCH的功控参数的PUCCH与PUSCH可以不局限于一个BWP或者服务小区内,属于同一PUCCH组即可。
本公开实施例中为描述方便,采用基站和UE进行描述,但不作为对本公开的限制。实施过程中,基站和UE可以被NB(NodeB)、gNB、TRP(transmiter receiver point)、AP(access point)、站点、用户、STA、中继(relay)、终端等各种通信节点的名称代替。基站还可以是指网络侧(network),UTRA,EUTRA等。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些 组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
以上所述仅为本公开的示例性实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (36)
- 一种功率控制方法,包括:根据PUCCH的功率控制参数确定物理上行共享信道PUSCH的功率控制参数,所述确定方法包括以下至少之一:PUSCH的开环功率控制参数由PUCCH的开环功率控制参数确定;PUSCH的路径损耗PL的参考信号RS参数由PUCCH的PL的RS参数确定;PUSCH的闭环功率控制参数由PUCCH的闭环功率控制参数确定。
- 根据权利要求1所述的功率控制方法,其中,所述PUCCH存在以下至少之一的特征:由预定的PUCCH资源确定的PUCCH;最近配置的或者最近发送的PUCCH;在所述PUSCH所关联的小区或者BWP中的PUCCH。
- 根据权利要求2所述的功率控制方法,其中,所述预定的PUCCH资源是PUCCH资源编号最小的PUCCH资源。
- 根据权利要求2所述的功率控制方法,其中,所述PUSCH关联的小区或者BWP与所述PUSCH所属的小区或者BWP属于同一PUCCH分组。
- 根据权利要求1所述的功率控制方法,其中,所述PUSCH的开环功率控制参数由PUCCH的开环功率控制参数确定,包括:所述PUSCH的开环功率控制参数,使用所述PUCCH的开环功率控制参数以及PUCCH与PUSCH的开环功率控制参数的偏差共同确定。
- 根据权利要求1所述的功率控制方法,其中,所述PUSCH的闭环功率控制参数由PUCCH的闭环功率控制参数确定,包括以下至少之一:累积式闭环功率控制是否打开;PUSCH的功率控制调整状态由PUCCH的功率控制调整状态确定。
- 根据权利要求6所述的功率控制方法,其中,所述PUSCH的功率控制调整状态由PUCCH的功率控制调整状态确定,包括以下之一:所述PUCCH的功率控制调整状态用作所述PUSCH的功率控制调整状态;所述PUSCH的闭环功率控制参数在预定时刻使用所述PUCCH的闭环功率控制参数,在预定时刻之后所述PUSCH使用自己独立维护的功率控制调整状态;当所述PUCCH的功率控制调整状态大于预定门限时,所述PUSCH的功率控制调整状态由所述PUCCH的功率控制调整状态确定;当在预定时刻所述PUCCH的功率控制调整状态大于预定门限时,所述PUSCH的闭环功率控制参数使用所述PUCCH的闭环功率控制参数,在预定时刻之后所述PUSCH使用自己独立维护的功率控制调整状态。
- 根据权利要求7所述的功率控制方法,其中,所述预定时刻是指以下之一:当PUSCH第一次被下行控制信息DCI格式0-0调度时;从非DCI格式0-0调度PUSCH变换为DCI格式0-0调度PUSCH时;当前PUCCH的空间关系发生变化时;当前PUCCH的空间关系发生变化后PUSCH被DCI格式0-0调度时。
- 一种终端,包括处理器及存储器;所述处理器设置为执行所述存储器中存储的功率控制程序,以实现如权利要求1至权利要求8中任一所述的功率控制方法的步骤。
- 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至权利要求8中任一所述的功率控制方法的步骤。
- 一种功率控制装置,包括第四确定单元,其中:第四确定单元,设置为根据PUCCH的功率控制参数确定PUSCH的功率控制参数,所述确定方法包括以下至少之一:PUSCH的开环功率控制参数由PUCCH的开环功率控制参数确定;PUSCH的PL的RS参数由PUCCH的PL的RS参数确定;PUSCH的闭环功率控制参数由PUCCH的闭环功率控制参数确定。
- 一种功率控制方法,包括:第二通信节点为第一通信节点配置功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:物理上行控制信道PUCCH传输的载荷大小、PUCCH传输占用的正交频分复用OFDM符号数量、PUCCH传输占用的资源块RB个数、PUCCH是否跳频。
- 根据权利要求12所述的功率控制方法,其中,所述发送功率的偏移量对以下至少之一配置:所述第一通信节点的PUCCH资源、所述第一通信节点的PUCCH资源集合、所述第一通信节点的带宽部分BWP。
- 根据权利要求13所述的功率控制方法,其中,所述对所述第一通信节点的PUCCH资源集合或BWP配置发送功率的偏移量时,对所述第一通信节点的一种PUCCH格式,配置至少一个发送功率的偏移量。
- 根据权利要求13所述的功率控制方法,其中,所述发送功率用以下方式至少之一获得:所述发送功率偏移量的基准量;所述发送功率偏移量的基准量与所述发送功率偏移量的修正量之和。
- 根据权利要求15所述的功率控制方法,其中,所述发送功率偏移量的修正量是预定义的。
- 根据权利要求15所述的功率控制方法,其中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP配置至少1个所述发送 功率偏移量的修正量。
- 根据权利要求15所述的功率控制方法,其中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP的PUCCH资源集合配置至少1个所述发送功率偏移量的修正量。
- 根据权利要求15所述的功率控制方法,其中,为所述第一通信节点的BWP配置1个所述发送功率偏移量的基准量,为所述第一通信节点的BWP的PUCCH资源配置至少1个所述发送功率偏移量的修正量。
- 根据权利要求12所述的功率控制方法,其中,每个所述发送功率偏移量对应一个PUCCH的载荷大小区间。
- 根据权利要求12所述的功率控制方法,其中,所述发送功率的偏移量为由比特速率确定的发送功率的偏移量Δ_TF,且所述Δ_TF根据不同的载荷大小区间,定义为不同的包含以下至少之一的自变量的函数:所述PUCCH传输占用的OFDM符号数量、所述PUCCH传输占用的RB个数、所述PUCCH是否跳频。
- 根据权利要求12所述的功率控制方法,其中,由所述PUCCH是否跳频确定的所述发送功率的偏移量是预定义的,或者是所述第二通信节点预配置的。
- 一种基站,包括处理器及存储器;所述处理器设置为执行所述存储器中存储的功率控制程序,以实现如权利要求12至权利要求22中任一所述的功率控制方法的步骤。
- 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求12至权利要求22中任一所述的功率控制方法的步骤。
- 一种功率控制装置,包括第一配置单元,其中:第一配置单元,设置为为第一通信节点配置功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频。
- 一种功率控制方法,包括:第二通信节点为第一通信节点的带宽部分BWP配置至少一个空间关系,并为每个空间关系配置至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频。
- 根据权利要求26所述的功率控制方法,其中,所述功率控制参数包括所述第二通信节点期望的目标接收功率P_0。
- 一种基站,包括处理器及存储器;所述处理器设置为执行所述存储器中存储的功 率控制程序,以实现如权利要求26至权利要求27中任一所述的功率控制方法的步骤。
- 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求26至权利要求27中任一所述的功率控制方法的步骤。
- 一种功率控制装置,包括第二配置单元,其中:第二配置单元,设置为为第一通信节点的带宽部分BWP配置至少一个空间关系,并为每个空间关系配置至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频。
- 一种功率控制方法,包括:第一通信节点接收来自第二通信节点的功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频;第一通信节点根据实际的PUCCH传输参数,确定PUCCH的发送功率。
- 一种功率控制方法,包括:第一通信节点接收第二通信节点为自身的BWP配置的空间关系,并接收第二通信节点为每个空间关系配置的至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频;第一通信节点根据实际的PUCCH传输参数,确定PUCCH的发送功率。
- 一种终端,包括处理器及存储器;所述处理器设置为执行所述存储器中存储的功率控制程序,以实现如权利要求31至权利要求32中任一所述的功率控制方法的步骤。
- 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求31至权利要求32中任一所述的功率控制方法的步骤。
- 一种功率控制装置,包括第一接收单元和第一确定单元,其中:第一接收单元,设置为接收来自第二通信节点的功率控制参数,所述功率控制参数包括至少一个发送功率的偏移量,所述发送功率的偏移量由以下至少之一确定:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频;第一确定单元,设置为根据实际的PUCCH传输参数,确定PUCCH的发送功率。
- 一种功率控制装置,包括第二接收单元和第二确定单元,其中:第二接收单元,设置为接收第二通信节点为自身所属装置的BWP配置的空间关系, 并接收第二通信节点为每个空间关系配置的至少一套功率控制参数,每套功率控制参数对应一个功率影响因子集合,所述功率影响因子集合包括以下至少之一个功率影响因子:PUCCH传输的载荷大小、PUCCH传输占用的OFDM符号数量、PUCCH传输占用的RB个数、PUCCH是否跳频;第二确定单元,设置为根据实际的PUCCH传输参数,确定PUCCH的发送功率。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19789515.4A EP3783966B1 (en) | 2018-04-17 | 2019-04-16 | Power control method and apparatus, base station, terminal, and computer-readable storage medium |
DK19789515.4T DK3783966T3 (da) | 2018-04-17 | 2019-04-16 | Fremgangsmåde og indretning til effektstyring, basisstation, terminal og computerlæsbart lagermedium |
US17/071,360 US11523350B2 (en) | 2018-04-17 | 2020-10-15 | Power control method and apparatus, base station, terminal, and computer-readable storage medium |
US17/988,855 US11902904B2 (en) | 2018-04-17 | 2022-11-17 | Power control method and apparatus, base station, terminal, and computer-readable storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810345623.0 | 2018-04-17 | ||
CN201810345623.0A CN110392418A (zh) | 2018-04-17 | 2018-04-17 | 功率控制方法和装置、基站、终端、计算机可读存储介质 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/071,360 Continuation US11523350B2 (en) | 2018-04-17 | 2020-10-15 | Power control method and apparatus, base station, terminal, and computer-readable storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019201253A1 true WO2019201253A1 (zh) | 2019-10-24 |
Family
ID=68240516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/082938 WO2019201253A1 (zh) | 2018-04-17 | 2019-04-16 | 功率控制方法和装置、基站、终端、计算机可读存储介质 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11523350B2 (zh) |
EP (1) | EP3783966B1 (zh) |
CN (2) | CN110392418A (zh) |
DK (1) | DK3783966T3 (zh) |
WO (1) | WO2019201253A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021179113A1 (en) * | 2020-03-09 | 2021-09-16 | Qualcomm Incorporated | Beam hopping within a single physical uplink control channel resource |
CN114828182A (zh) * | 2019-11-08 | 2022-07-29 | Oppo广东移动通信有限公司 | 上行功率调整方法及相关设备 |
WO2022133277A3 (en) * | 2020-12-17 | 2022-09-15 | Ofinno, Llc | Power control parameter determination in uplink channel repetition |
US11564173B2 (en) | 2020-05-27 | 2023-01-24 | Qualcomm Incorporated | Open-loop power control parameter determination for mixed downlink control information formats |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11317354B2 (en) * | 2018-11-12 | 2022-04-26 | Qualcomm Incorporated | Uplink preemption indication |
US11388723B2 (en) * | 2019-03-28 | 2022-07-12 | Ofinno, Llc | Uplink transmission in a wireless communication system |
CN114223271B (zh) * | 2019-06-13 | 2024-01-09 | 株式会社Ntt都科摩 | 终端、无线通信方法、基站以及系统 |
CN111092710A (zh) * | 2019-11-08 | 2020-05-01 | 中兴通讯股份有限公司 | 发送参数确定方法、电子装置、设备及介质 |
US11330668B2 (en) | 2019-11-22 | 2022-05-10 | Apple Inc. | 5G NR FR2 beam management enhancements |
WO2021120035A1 (zh) * | 2019-12-18 | 2021-06-24 | 华为技术有限公司 | 上行功率控制的方法和装置 |
CN115104275A (zh) * | 2020-01-21 | 2022-09-23 | 中兴通讯股份有限公司 | 用于统一的上行链路和下行链路波束指示的方法 |
WO2021147001A1 (zh) * | 2020-01-22 | 2021-07-29 | Oppo广东移动通信有限公司 | 功率控制参数确定方法、终端、网络设备及存储介质 |
US11711787B2 (en) * | 2020-04-09 | 2023-07-25 | Comcast Cable Communications, Llc | Transmission and reception configuration and signaling |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2763470A1 (en) * | 2011-09-30 | 2014-08-06 | Sharp Kabushiki Kaisha | Terminal, communication system, communication method and base station |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102884844A (zh) * | 2010-04-07 | 2013-01-16 | 宏达国际电子股份有限公司 | 通讯装置和其方法 |
JP5980789B2 (ja) * | 2010-11-03 | 2016-08-31 | サムスン エレクトロニクス カンパニー リミテッド | 時分割二重化システムにおける受信確認情報生成及び電力制御のための方法及び装置 |
US10938540B2 (en) * | 2014-12-18 | 2021-03-02 | Lg Electronics Inc. | Method for allocating transmission resources in wireless communication system supporting device-to-device (D2D) communication |
WO2016114593A1 (ko) * | 2015-01-13 | 2016-07-21 | 엘지전자 주식회사 | 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국 |
US10708938B2 (en) * | 2016-10-31 | 2020-07-07 | Samsung Electronics Co., Ltd. | Transmission of UL control channels with dynamic structures |
CA3063009A1 (en) * | 2017-05-12 | 2019-12-03 | Ntt Docomo, Inc. | User terminal and radio communication method |
US10938519B2 (en) * | 2017-09-11 | 2021-03-02 | Qualcomm Incorporated | Resource (RE) mapping rule for uplink control information (UCI) piggyback on physical uplink shared channel (PUSCH) |
CN109803363B (zh) | 2017-11-17 | 2022-11-08 | 华为技术有限公司 | 通信方法、通信装置和系统 |
KR102414678B1 (ko) | 2018-01-08 | 2022-06-29 | 삼성전자주식회사 | 무선통신시스템에서 상향링크 전송전력 제어 방법 및 장치 |
US10863494B2 (en) * | 2018-01-22 | 2020-12-08 | Apple Inc. | Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration |
-
2018
- 2018-04-17 CN CN201810345623.0A patent/CN110392418A/zh active Pending
- 2018-04-17 CN CN202110758067.1A patent/CN113490264B/zh active Active
-
2019
- 2019-04-16 DK DK19789515.4T patent/DK3783966T3/da active
- 2019-04-16 WO PCT/CN2019/082938 patent/WO2019201253A1/zh unknown
- 2019-04-16 EP EP19789515.4A patent/EP3783966B1/en active Active
-
2020
- 2020-10-15 US US17/071,360 patent/US11523350B2/en active Active
-
2022
- 2022-11-17 US US17/988,855 patent/US11902904B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2763470A1 (en) * | 2011-09-30 | 2014-08-06 | Sharp Kabushiki Kaisha | Terminal, communication system, communication method and base station |
Non-Patent Citations (4)
Title |
---|
"On Power Control Framework", 3GPP TSG RAN WG1 MEETING #92BIS R1-1804736, 7 April 2018 (2018-04-07), XP051414100 * |
CATT: "Remaining Issues of Non-CA Based Power Control", 3GPP TSG RAN WG1 MEETING #92BIS R1-1803763, 7 April 2018 (2018-04-07), XP051413699 * |
See also references of EP3783966A4 * |
VIVO: "Remaining issues on NR UL power control", 3GPP TSG RAN WG1 MEETING #92 R1-1801546, 2 March 2018 (2018-03-02), XP051396798 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114828182A (zh) * | 2019-11-08 | 2022-07-29 | Oppo广东移动通信有限公司 | 上行功率调整方法及相关设备 |
EP4013136A4 (en) * | 2019-11-08 | 2022-08-17 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | UPLINK POWER ADJUSTMENT METHOD AND RELATED DEVICE |
CN114828182B (zh) * | 2019-11-08 | 2023-08-22 | Oppo广东移动通信有限公司 | 上行功率调整方法及相关设备 |
WO2021179113A1 (en) * | 2020-03-09 | 2021-09-16 | Qualcomm Incorporated | Beam hopping within a single physical uplink control channel resource |
US11564173B2 (en) | 2020-05-27 | 2023-01-24 | Qualcomm Incorporated | Open-loop power control parameter determination for mixed downlink control information formats |
WO2022133277A3 (en) * | 2020-12-17 | 2022-09-15 | Ofinno, Llc | Power control parameter determination in uplink channel repetition |
US11750328B2 (en) | 2020-12-17 | 2023-09-05 | Ofinno, Llc | Power control parameter determination in uplink channel repetition |
Also Published As
Publication number | Publication date |
---|---|
EP3783966A4 (en) | 2021-06-02 |
CN113490264A (zh) | 2021-10-08 |
US20230156616A1 (en) | 2023-05-18 |
EP3783966B1 (en) | 2024-09-11 |
CN113490264B (zh) | 2022-09-30 |
US11523350B2 (en) | 2022-12-06 |
US20210105726A1 (en) | 2021-04-08 |
US11902904B2 (en) | 2024-02-13 |
DK3783966T3 (da) | 2024-09-23 |
CN110392418A (zh) | 2019-10-29 |
EP3783966A1 (en) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019201253A1 (zh) | 功率控制方法和装置、基站、终端、计算机可读存储介质 | |
US11419056B2 (en) | Power control method and device, and communication node | |
US11856527B2 (en) | Power headroom report (PHR) reporting determination | |
US20220271890A1 (en) | Uplink Beamforming Framework for Advanced 5G Networks | |
EP3070983B1 (en) | Method and arrangement for power control handling | |
WO2018228226A1 (zh) | 发送功率的确定方法、装置、终端及存储介质 | |
US9788280B2 (en) | Method for controlling uplink transmission power in wireless communication system and device therefor | |
US8711722B2 (en) | Method for processing power headroom and terminal thereof | |
US20220095351A1 (en) | Harq handling for single-dci multi-slot scheduling | |
KR102455743B1 (ko) | 전력 제어 방법 및 디바이스, 그리고 목표 수신 전력을 결정하기 위한 방법 및 디바이스 | |
US12022401B2 (en) | Method and apparatus for controlling PUSCH transmission of a UE in a wireless communication system | |
JP2020022197A (ja) | 電力制御実行方法及びユーザ装置 | |
WO2019029381A1 (zh) | 参数配置、功率确定方法及装置、通信节点 | |
CN110381527B (zh) | 功率余量报告方法、tpc命令发送方法和装置、基站、终端 | |
RU2655648C1 (ru) | ПОЛУЧЕНИЕ Pсмах ПРИ ДВОЙНОМ СОЕДИНЕНИИ | |
CN114698083B (zh) | 无线通信系统中多trp的功率余量报告的方法和设备 | |
JP2018515987A (ja) | 無線通信システムにおけるアップリンク送信のための繰り返しレベルを適応させる方法及び装置 | |
JP2010520711A (ja) | 移動局のアップリンク電力を制御するためのオープンループ/クローズドループを組み合わせた方法 | |
US11659493B2 (en) | Method and apparatus for multi-transmission/reception point power headroom reporting in a wireless communication system | |
WO2020030117A1 (zh) | 功率控制参数的确定方法及装置、存储介质、电子设备 | |
WO2020030159A1 (zh) | 功率控制方法和装置、接收设备及存储介质 | |
US20210099959A1 (en) | Deriving configured output powers with overlapping durations under uplink pre-emption | |
US20240187162A1 (en) | Systems and methods for handling limited set of path loss reference signals | |
TWI840742B (zh) | 用於單個及多個傳輸/接收點(trps)之信號閉路功率控制 | |
US20240259952A1 (en) | Techniques for beam configuration in wireless communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19789515 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019789515 Country of ref document: EP Effective date: 20201117 |