WO2019201130A1 - 一种移动终端和红外检测方法 - Google Patents
一种移动终端和红外检测方法 Download PDFInfo
- Publication number
- WO2019201130A1 WO2019201130A1 PCT/CN2019/082048 CN2019082048W WO2019201130A1 WO 2019201130 A1 WO2019201130 A1 WO 2019201130A1 CN 2019082048 W CN2019082048 W CN 2019082048W WO 2019201130 A1 WO2019201130 A1 WO 2019201130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared
- display screen
- mobile terminal
- receiving tube
- pulse signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/042—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
- G06F3/0421—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
Definitions
- the present disclosure relates to the field of communications technologies, and in particular, to a mobile terminal and an infrared detecting method.
- an infrared sensor is generally disposed on the display screen of the mobile terminal.
- the display screen of the mobile terminal is turned off, thereby preventing the mobile terminal from being triggered by mistake.
- an infrared emitting hole is generally provided on the display screen of the mobile terminal for implementing the infrared detecting function, but setting the infrared emitting hole will make the utilization rate of the display screen lower, and at the same time increase the manufacturing of the display screen. Difficulty, it is therefore necessary to provide a solution that does not require separate infrared emission holes on the display for infrared detection.
- the embodiments of the present disclosure provide a mobile terminal and an infrared detection method to solve the problem in the related art that an infrared emission hole needs to be separately disposed on a display screen to implement infrared detection.
- an embodiment of the present disclosure provides a mobile terminal, where the mobile terminal includes a display screen, an infrared transmitting tube, and an infrared receiving tube.
- the infrared transmitting tube is disposed at one end of the display screen, and the infrared receiving tube is disposed.
- the first infrared light emitted by the infrared transmitting tube is transmitted to the mobile terminal through the display screen, and the infrared receiving tube receives the second infrared light through the display screen.
- the second infrared light is infrared light after the first infrared light is reflected by an object other than the mobile terminal.
- an embodiment of the present disclosure further provides an infrared detecting method, which is applied to a mobile terminal, where the mobile terminal includes a display screen, an infrared transmitting tube, and an infrared receiving tube, and the infrared transmitting tube is disposed at one end of the display screen.
- the infrared receiving tube is disposed at the other end of the display screen;
- the method includes:
- the embodiment of the present disclosure further provides another infrared detecting method, which is applied to a mobile terminal, where the mobile terminal includes a display screen, an infrared transmitting tube, and an infrared receiving tube, and the infrared transmitting tube is disposed on the display screen.
- the infrared receiving tube is disposed at the other end of the display screen;
- the mobile terminal further includes a bottom noise filtering circuit, a pulse signal processing circuit and a controller, and the bottom noise filtering circuit and the infrared receiving tube Connected, the pulse signal processing circuit is connected to the infrared receiving tube;
- the method includes:
- the first infrared light may be transmitted to the outside of the mobile terminal through the display screen, and when the display screen is in the second display state, the infrared light may not be transmitted to the outside of the mobile terminal through the display screen;
- the foreign object is determined to be in a state of being close to or away from the pulse signal.
- the mobile terminal provided by the embodiment of the present disclosure includes a display screen, an infrared transmitting tube and an infrared receiving tube.
- the infrared transmitting tube is disposed at one end of the display screen, and the infrared receiving tube is disposed at the other end of the display screen, and the first infrared light emitted by the infrared transmitting tube
- the light is transmitted to the mobile terminal through the display screen, and the infrared receiving tube receives the second infrared light through the display screen, and the second infrared light is the infrared light reflected by the first infrared light through an object other than the mobile terminal.
- the infrared emitting tube is disposed at one end of the display screen, and the infrared receiving tube is disposed at the other end of the display screen, and the infrared detecting function can be realized by the first infrared light emitted and the second infrared light received, so that The infrared detection function can be realized without separately setting the infrared emission hole on the display screen of the mobile terminal, and the utilization ratio of the display screen is also improved.
- FIG. 1 is a positional relationship diagram of a display screen and an infrared sensor in a mobile terminal according to an embodiment of the present disclosure
- FIG. 2 is a structural diagram of a bottom noise filtering circuit in a mobile terminal according to an embodiment of the present disclosure
- FIG. 3 is a flowchart of an infrared detection method according to an embodiment of the present disclosure
- FIG. 5 is a schematic diagram of an application scenario of a mobile terminal according to an embodiment of the present disclosure.
- FIG. 6 is a structural diagram of a display screen in another mobile terminal according to an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of hardware of another mobile terminal according to an embodiment of the present disclosure.
- the mobile terminal includes a display screen 1, an infrared transmitting tube 2, and an infrared receiving tube 3.
- the infrared transmitting tube 2 is disposed on the display screen 1.
- the infrared receiving tube 3 is disposed at the other end of the display screen 1.
- the first infrared light emitted by the infrared transmitting tube 2 is transmitted to the outside of the mobile terminal through the display screen 1.
- the infrared The receiving tube 3 receives the second infrared light through the display screen 1, and the second infrared light is infrared light reflected by the first infrared light passing through an object other than the mobile terminal.
- the display screen 1, the infrared transmitting tube 2 and the infrared receiving tube 3 may be various components of an entire infrared detecting module, and of course, may also be separate components.
- the infrared light received by the infrared receiving tube 3 comprises two parts, one part is emitted by the infrared transmitting tube 2, and the emitted light of the infrared receiving tube 3 is directly passed through the display screen 1, and the other part is emitted to the outside through the display screen 1
- the outside is reflected back to the display screen 1 and the reflected light received by the infrared receiving tube 3.
- the infrared light emitted by the infrared emission tube 2 may include first infrared light emitted to the outside through the display screen 1 and direct current infrared light directly transmitted to the infrared receiving tube 3 through the display screen 1.
- the first infrared light emitted to the outside includes a second infrared light that is reflected back to the display screen 1 and then received by the infrared receiving tube 3.
- the mobile terminal can detect the distance of the distance of the mobile terminal from the obstacle according to the second infrared light, thereby implementing the function of infrared detection. It should be noted that the above-mentioned DC infrared light emitted by the infrared transmitting tube 2 and directly transmitted to the infrared receiving tube 3 via the display screen 1 may cause a certain error in the infrared detecting result of the mobile terminal, but the error is small.
- the mobile terminal can also implement an infrared detection function by comparing the difference between the first infrared light and the received second infrared light, for example, if the difference between the first infrared light and the second infrared light is greater than the pre- If the value is set, the foreign object is far away from the mobile terminal; if the difference between the first infrared light and the second infrared light is less than or equal to the preset value, the foreign object is closer to the mobile terminal.
- the specific value of the preset value is not limited herein.
- the preset value may be 3 units or 5 units.
- FIG. 1 a positional relationship diagram between a display screen 1 , an infrared transmitting tube 2 , and an infrared receiving tube 3 in a mobile terminal according to an embodiment of the present disclosure.
- the infrared transmitting tube 2 can adopt an infrared light emitting diode (LED).
- the infrared transmitting tube 2 and the infrared receiving tube 3 can be respectively disposed at opposite ends of the display screen 1.
- the infrared transmitting tube 2 and the infrared receiving tube 3 can also be disposed on two adjacent sides of the display screen 1.
- the display screen 1 is a rectangular display screen
- the infrared emission tube 2 and the infrared receiving tube 3 may be respectively disposed on opposite sides of the rectangular display screen, or may be respectively disposed on two adjacent sides of the rectangular display screen.
- the mobile terminal provided by the embodiment of the present disclosure includes a display screen, an infrared transmitting tube and an infrared receiving tube.
- the infrared transmitting tube is disposed at one end of the display screen, and the infrared receiving tube is disposed at the other end of the display screen, and the first infrared light emitted by the infrared transmitting tube
- the infrared receiving tube receives the second infrared light through the display screen, and the second infrared light is the infrared light reflected by the first infrared light through an object other than the mobile terminal.
- the infrared emitting tube is disposed at one end of the display screen, and the infrared receiving tube is disposed at the other end of the display screen, and the infrared detecting function can be realized by the first infrared light emitted and the second infrared light received, so that The infrared detection function can be realized without separately setting the infrared emission hole on the display screen of the mobile terminal, and the utilization ratio of the display screen is also improved.
- the mobile terminal further includes a controller, the controller is configured to control the display screen 1 to be in a first display state, and when the display screen 1 is in the first display state, the first infrared light passes through the The display screen 1 is transmitted outside the mobile terminal.
- the display screen 1 when the display screen 1 is in the first display state, that is, the white frame picture or the silver frame picture or the like is displayed on the display screen 1, the first infrared light can be more conveniently transmitted to the outside of the mobile terminal through the display screen 1.
- the controller is configured to control the display screen to be in the first display state, and the first infrared light can be more conveniently transmitted to the outside of the mobile terminal through the display screen, thereby improving the transmission efficiency of the first infrared light.
- the mobile terminal further includes a bottom noise filtering circuit and a pulse signal processing circuit, and the bottom noise filtering circuit is connected to the infrared receiving tube 3 for filtering the DC output of the infrared receiving tube 3 signal;
- the controller is configured to control at least a portion of the display screen 1 to switch between the first display state and the second display state to cause the first infrared light to form pulsed infrared light; wherein the display screen 1 is in the In the second display state, the infrared light emitted by the infrared transmitting tube 2 is not transmitted to the outside of the mobile terminal through the display screen 1; that is, the display screen 1 shields the infrared light.
- the pulse signal processing circuit is connected to the infrared receiving tube 3 for processing a pulse signal output by the infrared receiving tube 3 after receiving the second infrared light through the display screen 1.
- the display screen 1 when the display screen 1 is in the first display state, the display screen 1 may display the first frame picture, and the infrared light may be transmitted to the outside of the mobile terminal through the display screen 1, and the first frame picture may be a white frame picture or When the display screen 1 is in the second display state, the display screen 1 may display the second frame picture. At this time, the infrared light may not be transmitted to the outside of the mobile terminal through the display screen 1, and the second frame picture may be Black frame picture or dark gray frame picture, etc.
- the display screen 1 may alternately display the first frame picture and the second frame picture, or may display the first frame picture and the second frame picture in combination, for example, cyclic display in the following manner: first display two frames of the first frame picture Then display one frame of the second frame picture; or display two frames of the second frame picture first, and then display one frame of the first frame picture. It should be noted that, when the display screen 1 is in the first display state and the second display state, the screen type displayed on the display screen 1 is not limited herein, and the manner in which the display screen 1 displays the screen is not limited.
- the infrared light received by the infrared receiving tube 3 at this time includes: DC infrared light emitted from the infrared transmitting tube 2 and directly transmitted to the infrared receiving tube 3 via the display screen 1 of the mobile terminal; The second infrared light is then received by the infrared receiving tube 3, and the second infrared light is also pulsed infrared light. Then, the signal output by the infrared receiving tube 3 includes a direct current signal and a pulse signal, wherein the direct current signal is converted according to direct current infrared light, and the pulse signal is converted according to the second infrared light.
- the display screen 1, the bottom noise filtering circuit, the pulse signal processing circuit and the controller may constitute an infrared detecting module.
- the infrared detecting module may further include an infrared transmitting tube 2 and an infrared receiving tube 3.
- the display screen 1, the bottom noise filtering circuit, the pulse signal processing circuit, the controller, the infrared transmitting tube 2, and the infrared receiving tube 3 may also be independent devices in the mobile terminal.
- the working principle of the embodiment may be as follows: the controller may be used to control a part of the display screen 1 to switch between the first display state and the second display state, for example, the controller may be used to control a part of the display screen 1 to alternately display the first frame.
- the picture and the second frame picture, and the first frame picture may be a black frame picture
- the second frame picture may be a white frame picture
- the controller A part of the display screen 1 for controlling the mobile terminal alternately displays a white frame picture and a black frame picture, and at this time, the infrared light emitted by the infrared emission tube 2 can be transmitted out of the display screen 1 when the display screen 1 displays a white frame picture, and is displayed on the display screen 1.
- the black frame picture cannot transmit the display screen 1
- the first infrared light transmitted through the display screen 1 is pulsed infrared light.
- the pulsed infrared light transmitted through the display screen 1 encounters an obstacle, it returns to the display screen 1 and then a portion of the infrared receiving tube 3 receives the second infrared light, and the second infrared light is also pulsed infrared light, and the second
- the two infrared light can be converted into a pulse signal in the infrared receiving tube 3, and the bottom noise filtering circuit can directly filter the DC signal output from the infrared receiving tube 3, thereby reducing the interference of the DC signal to the processing of the pulse signal, and the pulse signal processing
- the circuit processes the pulse signal, for example, when the pulse signal at the first moment is too small, at this time, the pulse signal processing circuit integrates or amplifies the pulse signal including the first time period, thereby facilitating the pulse signal size. Judging, and more convenient transmission of the pulse signal inside the mobile terminal, by detecting the size of the pulse signal processed by the pulse signal processing circuit at this time, the distance of the mobile terminal from the obstacle can be detected, thereby completing the
- the distance of the mobile terminal from the obstacle is the first value
- the number of the second infrared light received by the infrared receiving tube 3 of the mobile terminal is the second value
- the infrared receiving tube 3 is according to the first
- the second infrared light of the two values can be converted and output to obtain a pulse signal having a value of the third value.
- the first value may be 3 cm, 4 cm or 5 cm or the like.
- the specific size of the third value is not limited herein, but the third value and the second value may be in one-to-one correspondence with the first value.
- the second value when the first value is 3 cm, the second value may be 2 units of the second infrared light, the third value may be 0.005 microamperes; when the first value is 4 cm, the second value may be 1 The unit second infrared light, the third value can be 0.004 microamperes.
- the third value can be directly generated at the beginning of the use of the mobile terminal, or can be adjusted according to the actual use situation during use. It should be noted that the closer the distance of the mobile terminal from the obstacle is, the larger the value of the pulse signal output by the infrared receiving tube 3 is.
- the DC signal can be filtered by the bottom noise filtering circuit to acquire only the pulse signal, and the mobile terminal and the human body are detected according to the magnitude of the pulse signal. the distance between.
- the display screen 1 may include a first area, the first area is a light transmission area of infrared light from the infrared transmitting tube 2 of the mobile terminal to the infrared receiving tube 3; the controller may control the first area in the first display state and the second area The transition between states is displayed such that the first infrared light that is emitted outward through the first region forms pulsed infrared light.
- the infrared emitting tube 2 and the infrared receiving tube 3 may be correspondingly disposed below the first area 601 in FIG.
- first area 601 can be switched between the first display state and the second display state, and other areas on the display screen other than the first area 601 can be only in the first display state or the second display state, specifically
- the first area 601 can display the first frame picture and the second frame picture in combination, and other areas on the display screen except the first area 601 can display only the first frame picture.
- the controller may control the first area to display through the combination of the first frame picture and the second frame picture, so that the first infrared light emitted outward through the first area forms pulsed infrared light, avoiding all
- the display screen 1 is used to display the first frame picture and the second frame picture in combination, thereby better reducing the energy consumed by all the display screens 1 for combining the display of the first frame picture and the second frame picture, correspondingly extended The service life of the display 1.
- the mobile terminal provided by the embodiment of the present disclosure further includes a bottom noise filtering circuit and a pulse signal processing circuit.
- the bottom noise filtering circuit is connected to the infrared receiving tube
- the pulse signal processing circuit is connected to the infrared receiving tube.
- the controller is configured to control at least a part of the display screen to switch between the first display state and the second display state, so that the first infrared light emitted through the display screen to the outside of the mobile terminal forms pulsed infrared light, the pulsed infrared light
- the obstacle it can be returned to the infrared receiving tube, thereby realizing the infrared detecting function, thereby enabling the infrared detecting function to be realized without separately setting an infrared emitting hole on the display screen of the mobile terminal.
- the display screen 1 includes a liquid crystal layer, a light guide plate and a reflection plate which are sequentially stacked, and further includes a light source 4 connected to the light guide plate, and the infrared emission tube 2 is connected to the light guide plate.
- the light source 4 can be a white LED strip. Of course, one or more white LEDs can be connected in series to form the light source 4.
- the illuminating source 4, the infrared transmitting tube 2 and the infrared receiving tube 3 may be disposed on the same side of the light guiding plate, and the illuminating source 4 may be disposed between the infrared transmitting tube 2 and the infrared receiving tube 3, so that it is not necessary
- the infrared emission hole is separately disposed on the display screen 1 of the mobile terminal, so that the display area of the display screen 1 can be enlarged.
- the infrared emission tube 2 and the infrared receiving tube 3 can also be disposed on different sides of the light guide plate. The specific settings are not limited here.
- the width of the illumination source 4 may be the same as the width of the area for display on the display screen 1 of the mobile terminal.
- the display screen includes a liquid crystal layer, a light guide plate and a reflection plate which are sequentially stacked, and further includes a light source connected to the light guide plate, and the infrared light emitted by the infrared emission tube can be conducted along the light guide plate, and the infrared light is transmitted.
- the display screen can be reflected by the reflection plate, so that by providing the liquid crystal layer, the light guide plate and the reflection plate, the transmission effect on the infrared light can be made better.
- the mobile terminal further includes an Application Specific Integrated Circuit (ASIC), one end of the ASIC is connected to the pulse signal processing circuit, and the other end of the ASIC is connected to the illumination source 4;
- the ASIC is configured to detect, when the illumination source 4 is in a light emitting state, whether a value of a pulse signal output by the infrared receiving tube 3 is greater than a preset value; if the value of the pulse signal is greater than the pre-detection A numerical value is set, and the ASIC controls the illumination source 4 to be turned off.
- ASIC Application Specific Integrated Circuit
- the value of the preset value may be 0.01 microamperes, 0.05 microamperes or 0.10 microamps, etc., and the specific values are not limited herein.
- the value of the preset value may be automatically acquired at the beginning of use of the mobile terminal, or may be adjusted according to the adjustment operation of the user.
- the ASIC can be connected to the analog to digital converter. It should be noted that the ASIC can be a stand-alone device in the mobile terminal.
- the ASIC when the ASIC detects that the value of the pulse signal output by the infrared receiving tube is greater than a preset value, the distance between the mobile terminal and the obstacle is relatively close, and the ASIC controls the light source to be turned off, even if the mobile terminal is in the off state.
- the power consumption of the mobile terminal is reduced, and the phenomenon that the user accidentally triggers the display screen is also reduced, thereby making the mobile terminal more intelligent.
- the bottom noise filtering circuit comprises a DC absorber 6 connected at one end to the infrared receiving tube 3 and grounded at the other end.
- the DC absorber 6 can adopt a current slot, and the DC absorber 6 can pass a DC signal.
- One end of the DC absorber 6 is connected to the output end of the infrared receiving tube 3, and the other end of the DC absorber 6 is grounded, so that the DC signal output from the infrared receiving tube 3 can be absorbed.
- the bottom noise filtering circuit includes a DC absorber, which can absorb the DC signal output by the infrared receiving tube, and can reduce the influence of the DC signal on the judgment result when determining whether the value of the pulse signal reaches a preset value. .
- the pulse signal processing circuit includes a capacitor 5 and an analog to digital converter, and the capacitor 5 has one end connected to the infrared receiving tube 3 and the other end connected to the analog to digital converter.
- capacitor 5 can be designed according to the actual needs of the mobile terminal, and the specification of the capacitor 5 is not specifically limited.
- capacitor 5 can use a 10 microfarad capacitor.
- the analog-to-digital converter can convert the pulse signal into a digital signal for convenient transmission inside the mobile terminal.
- the signal output by the infrared receiving tube includes two parts, one part is an alternating current signal, and the other part is a direct current signal.
- the bottom noise filtering circuit includes a capacitor, because the function of "passing the AC, blocking DC" of the capacitor, thereby selecting the output pulse signal of the infrared receiving tube, thereby determining whether the value of the pulse signal reaches a preset value, Reduce the interference of the DC signal.
- the pulse signal processing circuit further includes an amplifier 7 connected in series between the capacitor 5 and an analog to digital converter.
- the infrared light received by the infrared receiving tube 3 at a certain time is small, and the converted pulse signal is also small, for example, the pulsed infrared light received at the first moment is small, and the converted pulse signal is also compared. Small, so the amplifier 7 can be used to amplify the pulse signal at the first moment, and then converted by the analog-to-digital converter to facilitate transmission.
- the bottom noise filtering circuit further includes an amplifier, and when the pulse signal output from the infrared receiving tube is small, it can be amplified, thereby making the transmission of the pulse signal more convenient.
- the pulse signal processing circuit further includes an integrator connected in series between the capacitor 5 and the analog to digital converter.
- the pulse signal can be accumulated by the integrator for a period of time, and then converted by the analog-to-digital converter, thereby facilitating transmission.
- the time is not limited herein, and may be, for example, 1 millisecond or 3 milliseconds.
- the mobile terminal may be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), or a mobile internet device (Mobile Internet Device, MID) or wearable device (Wearable Device) and so on.
- PDA personal digital assistant
- MID mobile internet device
- Wearable Device wearable Device
- the bottom noise filtering circuit further includes an integrator, and when the pulse signal outputted by the infrared receiving tube is small, the pulse signals received in a period of time can be accumulated, thereby making the transmission of the pulse signal more convenient.
- the ASIC is further configured to: if the illuminating source 4 is in an extinguished state, the ASIC detects that a value of a pulse signal output by the infrared receiving tube 3 is less than or equal to the preset value.
- the ASIC controls the illumination source 4 to emit light.
- the ASIC can determine that the mobile terminal is far away from the obstacle at the time when the illuminating source is in the extinguished state.
- the illumination source can be controlled to emit light, so that the display screen of the mobile terminal is in a bright screen state, so that automatic adjustment of the illumination of the illumination source can be realized, thereby making the mobile terminal more intelligent.
- FIG. 3 is a flowchart of an infrared detection method according to an embodiment of the present disclosure.
- the above method is applied to a mobile terminal, the mobile terminal includes a display screen, an infrared transmitting tube and an infrared receiving tube, the infrared transmitting tube is disposed at one end of the display screen, and the infrared receiving tube is disposed on the display screen One end; as shown in FIG. 3, the method includes the following steps:
- Step 301 Detect an infrared emission signal emitted by the infrared transmitting tube.
- the infrared emission signal emitted by the infrared emission tube is detected, and the number of the infrared emission signal and/or the time of the transmission is detected, which is not limited herein.
- the display screen, the infrared transmitting tube and the infrared receiving tube can be various components of an entire infrared detecting module, and of course, can also be separate components.
- Step 302 Detect an infrared receiving signal received by the infrared receiving tube through the display screen.
- the receiving time and/or the receiving quantity of the infrared receiving signal can be detected.
- the infrared light received by the infrared receiving tube comprises two parts, one part is the second infrared light, and the other part is the direct current infrared light, wherein the direct current infrared light is emitted by the infrared transmitting tube, and is transmitted to the infrared receiving tube through the display screen.
- Infrared light emitted by the infrared transmitting tube, and the infrared light emitted to the outside of the mobile terminal through the display screen is the first infrared light
- the infrared light that is returned to the infrared receiving tube after the first infrared light encounters the obstacle is the first Two infrared light.
- the mobile terminal can detect the distance of the distance of the mobile terminal from the obstacle according to the number of the second infrared light returned to the infrared receiving tube after encountering the obstacle, thereby realizing the function of infrared detection. It should be noted that the above-mentioned DC infrared light emitted by the infrared transmitting tube and transmitted to the infrared receiving tube through the display screen may cause a certain error in the infrared detecting result of the mobile terminal, but the error is small.
- Step 303 Determine, according to the infrared emission signal and the infrared receiving signal, that the foreign object is in a state of being close to or away from.
- the transmission time of the infrared transmission signal and the reception time of the infrared reception signal can be detected, and the time interval between the transmission time and the reception time is calculated, and the size of the time interval is used to determine that the foreign object is close to the mobile terminal or far away.
- the state of the mobile terminal is implemented to realize the infrared ranging function. For example, if the time interval is less than 1 millisecond, it is judged that the foreign object is closer to the mobile terminal, and if the time interval is greater than 1 millisecond, it is judged that the foreign object is far from the mobile terminal.
- the infrared ranging function can also be realized according to the number of infrared transmitting signals and infrared receiving signals.
- the difference between the number of infrared transmitting signals and the infrared receiving signals is large, indicating that the foreign object is far from the mobile terminal; the infrared transmitting signal The difference between the number of signals received by the infrared and the infrared is small, indicating that the foreign object is closer to the mobile terminal.
- the foreign object is in a state of being close to or away from the mobile terminal according to the received infrared receiving signal. For example, if the received infrared receiving signal is greater than 10 units, it is determined that the foreign object is closer to the mobile terminal, and if the received infrared receiving signal is less than or equal to 10 units, it is determined that the foreign object is far from the mobile terminal.
- step 303 can include:
- the foreign object is in a distant state.
- the specific value of the preset value is not limited herein.
- the preset value may be 3 units or 5 units.
- steps 301, 302, and 303 it is determined that the foreign object is in a state of being close to or away from the infrared transmitting signal and the infrared receiving signal, so that the infrared emitting hole can be separately set on the display screen of the mobile terminal. Detection capabilities and also improved display utilization.
- FIG. 4 is a flowchart of another infrared detection method according to an embodiment of the present disclosure.
- the controller can control the partial display screen to switch between the first display state and the second display state, so that the first infrared light forms pulsed infrared light, and then according to Received pulsed infrared light to achieve infrared detection.
- the above method is applied to a mobile terminal, the mobile terminal includes a display screen, an infrared transmitting tube and an infrared receiving tube, the infrared transmitting tube is disposed at one end of the display screen, and the infrared receiving tube is disposed on the display screen One end; as shown in FIG. 4, the method includes the following steps:
- Step 401 Control, by the controller, at least a part of the display screen to switch between a first display state and a second display state, so that the first infrared light forms pulsed infrared light; wherein the display screen is in the first When the state is displayed, the first infrared light may be transmitted to the mobile terminal through the display screen, and when the display screen is in the second display state, infrared light may not be transmitted to the mobile terminal through the display screen.
- the display screen is controlled by the controller to switch between the first display state and the second display state, so that the first infrared light forms pulsed infrared light, and the pulsed infrared light can return to the mobile terminal if encountering an obstacle,
- the display returns to the infrared receiving tube, and the pulsed infrared light returned to the infrared receiving tube at this time is the second infrared light.
- the infrared detection function can be realized by detecting the size of the second infrared light.
- a part of the display screen may be controlled by the controller to switch between the first display state and the second display state, for example, the controller may control a part of the display screen to alternately display the first frame picture and the second a frame picture, and the first frame picture may be a black frame picture, the second frame picture may be a white frame picture, when the first frame picture is a black frame picture, and the second frame picture is a white frame picture, the mobile terminal is controlled by the controller
- the part of the display alternately displays the white frame picture and the black frame picture, and the infrared light emitted by the infrared emission tube can be transmitted out of the display screen when the display screen displays the white frame picture, and cannot be transmitted out when the display screen displays the black frame picture.
- the screen, the first infrared light transmitted through the display screen forms pulsed infrared light.
- the pulsed infrared light transmitted through the display screen encounters an obstacle, it returns to the display screen and a portion received by the infrared receiving tube is a second infrared light, and the second infrared light is also pulsed infrared light, and the second infrared light
- the infrared receiving tube can be converted into a pulse signal, and the bottom noise filtering circuit can directly filter out the DC signal output by the infrared receiving tube, thereby reducing the interference of the DC signal to the processing of the pulse signal, and the pulse signal processing circuit processes the pulse signal.
- the pulse signal processing circuit integrates or amplifies the pulse signal in a period of time including the first moment, thereby facilitating the judgment of the pulse signal size and being more convenient.
- the transmission of the pulse signal inside the mobile terminal can detect the distance of the mobile terminal from the obstacle by detecting the size of the pulse signal processed by the pulse signal processing circuit at this time, thereby completing the infrared detection function.
- the infrared light received by the infrared receiving tube comprises two parts, and a part is pulsed infrared light (ie, second infrared light) that encounters an obstacle and returns to the infrared receiving tube through the display screen, and the part of the pulsed infrared light can be converted into
- the pulse signal, the other part is the direct current infrared light emitted from the infrared transmitting tube and transmitted to the infrared receiving tube through the display screen, and the part of the direct current infrared light can be converted into a direct current signal.
- the current signal output by the infrared receiving tube 3 of the mobile terminal may include two parts of a direct current signal and a pulse signal, and the infrared
- the current signal outputted by the receiving tube 3 is obtained by converting the infrared light received by the infrared receiving tube 3, and the infrared light received by the infrared receiving tube 3 can be divided into two types, A and B, and the B kinds of infrared light are emitted by the infrared transmitting tube 2 And transmitting the pulsed infrared light formed by the display screen 1; the infrared light of the infrared light emitted by the infrared transmitting tube 2 and directly entering the infrared receiving tube 3 through the display screen 1 .
- the transmission route is changed and returned to the infrared receiving tube 3, and the infrared receiving tube 3 receives the B infrared light, and according to The above B infrared light is converted to obtain a pulse signal, and the A infrared light is received by the infrared receiving tube 3, and converted into a direct current signal.
- the display screen includes a first area, where the first area is a light transmission area of infrared light from an infrared transmitting tube of the mobile terminal to an infrared receiving tube, and the controller controls at least a part of the
- the step of switching the display screen between the first display state and the second display state to form the first infrared light to form pulsed infrared light may include:
- the first area is a light transmission area of the infrared light from the infrared transmitting tube of the mobile terminal to the infrared receiving tube.
- the infrared emitting tube and the infrared receiving tube may be correspondingly disposed under the first area 601 in FIG. It should be noted that the first area 601 can be switched between the first display state and the second display state, and other areas on the display screen other than the first area 601 can be only in the first display state or the second display state.
- the controller controls the first area to switch between the first display state and the second display state, and controls other areas on the display screen other than the first area to be only in the first display state or the second display state.
- other areas are in the second display state, that is, other areas are in the off-screen state, so that the power consumption of the mobile terminal can be reduced, making the mobile terminal more intelligent and more convenient to use.
- Step 402 Control the bottom noise filtering circuit to filter out a DC signal output by the infrared receiving tube.
- the bottom noise filtering circuit can directly filter the DC signal output by the infrared receiving tube, thereby reducing the interference of the DC signal to the processing of the pulse signal.
- Step 403 Control the pulse signal processing circuit to process a pulse signal output by the infrared receiving tube after receiving the second infrared light through the display screen.
- the pulse signal processing circuit can perform amplification, integration or digital conversion on the pulse signal output by the infrared receiving tube, so that by performing amplification or integration on the pulse signal, the size of the pulse signal can be judged more conveniently. Converting the pulse signal into a digital signal makes it easier to transmit the pulse signal inside the mobile terminal.
- Step 404 Determine, according to the pulse signal, that the foreign object is in a state of being close to or away from.
- the foreign object in a state of being close to or away from the state by detecting the number of the pulse signals, thereby realizing the infrared ranging function. For example, if the number of detection pulse signals is greater than 10 units, it is judged that the foreign object is closer to the mobile terminal, and if the number of detection pulse signals is less than or equal to 10 units, it is judged that the foreign object is far from the mobile terminal.
- the criteria for judgment are not limited here.
- the display screen comprises a liquid crystal layer, a light guide plate and a reflection plate which are sequentially stacked, and further comprises a light source connected to the light guide plate, wherein the infrared emission tube is connected to the light guide plate; after step 404,
- the above method may further comprise the following steps:
- the illumination source is turned off.
- the specific value of the preset value is not limited herein.
- the preset value may be set before the mobile terminal leaves the factory, or may be automatically obtained from the server when the mobile terminal is enabled.
- the light source when it is detected that the value of the pulse signal output by the infrared receiving tube is greater than a preset value, indicating that the distance of the mobile terminal from the obstacle is relatively close, the light source is turned off, thereby causing the mobile terminal to be in the off state, thereby reducing
- the power consumption of the mobile terminal also makes the mobile terminal more intelligent.
- the method further includes:
- the light source is turned on.
- the mobile terminal may further detect, in real time, whether the value of the pulse signal output by the infrared receiving tube is greater than a preset value, and if the value of the pulse signal output by the infrared receiving tube is less than or equal to the The preset value turns on the light source to cause the light source to emit light.
- the real-time detection refers to that the mobile terminal can detect whether the value of the pulse signal output by the infrared receiving tube is greater than a preset value at intervals, and the period is fixed, for example, it can be 1 millisecond, 2 milliseconds. Or 3 milliseconds, etc., which is not limited herein.
- the illumination source after the illumination source is extinguished, and the value of the pulse signal output by the infrared receiving tube is detected to be less than or equal to a preset value, it may be determined that the distance between the obstacle and the mobile terminal is far, and the illumination source is turned on.
- the illumination source is caused to emit light, so that when the obstacle is detected to be far away from the mobile terminal, the illumination source is turned on, thereby making the mobile terminal more intelligent, and the mobile terminal is more convenient to use.
- the processor controls at least a portion of the display screen to switch between the first display state and the second display state, so that the first infrared light forms pulsed infrared light, thereby implementing an infrared detection function, and the bottom noise filtering circuit can
- the DC signal is filtered out, and only the pulse signal is left, so that when the mobile terminal detects the distance between the mobile terminal and the obstacle according to the size of the pulse signal, the interference of the DC signal on the judgment result can be reduced, and the judgment result is more accurate. In this way, an infrared detection method can be realized without separately providing an infrared emission hole on the display screen.
- FIG. 7 is a schematic structural diagram of hardware of a mobile terminal that implements various embodiments of the present disclosure.
- the mobile terminal 700 includes a radio frequency (RF) circuit 710, a memory 720, an input unit 730, a display unit 740, a processor 750, an audio circuit 760, a communication module 770, a power supply 780, a display screen, and an infrared a transmitting tube and an infrared receiving tube, the infrared emitting tube is disposed at one end of the display screen, the infrared receiving tube is disposed at the other end of the display screen, and the first infrared light emitted by the infrared transmitting tube passes through the
- the display screen is transmitted to the outside of the mobile terminal 700, and the infrared receiving tube receives the second infrared light through the display screen, and the second infrared light is outside the mobile terminal 700 by the first infrared light. Infrared light reflected from the object.
- RF radio frequency
- the mobile terminal 700 further includes a controller, the controller is configured to control the display screen to be in a first display state, and when the display screen is in the first display state, the first infrared light passes through the The display screen is transmitted outside of the mobile terminal 700.
- the mobile terminal 700 further includes a bottom noise filtering circuit and a pulse signal processing circuit, where the bottom noise filtering circuit is connected to the infrared receiving tube, and is configured to filter the DC signal output by the infrared receiving tube ;
- the controller is configured to control at least a portion of the display screen to switch between a first display state and a second display state to cause the first infrared light to form pulsed infrared light; wherein the display screen is in a second display state Infrared light cannot be transmitted to the outside of the mobile terminal 700 through the display screen;
- the pulse signal processing circuit is connected to the infrared receiving tube for processing a pulse signal output by the infrared receiving tube after receiving the second infrared light through the display screen.
- the display screen comprises a liquid crystal layer, a light guide plate and a reflection plate which are sequentially stacked, and further comprises a light source connected to the light guide plate, wherein the infrared emission tube is connected to the light guide plate.
- the mobile terminal 700 further includes an ASIC, one end of the ASIC is connected to the pulse signal processing circuit, and the other end of the ASIC is connected to the illumination source; the ASIC is used to be in the illumination source.
- the ASIC In the case of the illuminating state, detecting whether the value of the pulse signal output by the infrared receiving tube is greater than a preset value; if the ASIC detects that the value of the pulse signal is greater than the preset value, the ASIC controls the sending The light source is off.
- the bottom noise filtering circuit includes a DC absorber with one end connected to the infrared receiving tube and the other end grounded.
- the pulse signal processing circuit comprises a capacitor and an analog to digital converter, the capacitor being connected to the infrared receiving tube at one end and the analog to digital converter at the other end.
- the pulse signal processing circuit further includes an amplifier connected in series between the capacitor and the analog to digital converter.
- the pulse signal processing circuit further includes an integrator, the integrator being connected in series between the capacitor and the analog to digital converter.
- the ASIC is further configured to: if the illuminating source is in an extinguished state, the ASIC detects that a value of a pulse signal output by the infrared receiving tube is less than or equal to the preset value, The ASIC controls the illumination source to emit light.
- the input unit 730 can be configured to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the mobile terminal 700.
- the input unit 730 may include a touch panel 731.
- the touch panel 731 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 731), and according to the preset
- the programmed program drives the corresponding connection device.
- the touch panel 731 can include two parts: a touch detection device and a touch controller.
- the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
- the processor 750 is provided and can receive commands from the processor 750 and execute them.
- the touch panel 731 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
- the input unit 730 may further include other input devices 732, which may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
- the display unit 740 can be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal 700.
- the display unit 740 can include a display panel 741.
- the display panel 741 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
- the touch panel 731 can cover the display panel 741 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 750 to determine the type of the touch event, and then the processor The 750 provides a corresponding visual output on the touch display depending on the type of touch event.
- the touch display includes an application interface display area and a common control display area.
- the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
- the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
- the application interface display area can also be an empty interface that does not contain any content.
- the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
- the processor 750 is a control center of the mobile terminal 700, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 721, and calling the second storage.
- the data in the memory 722 performs various functions and processing data of the mobile terminal 700, thereby performing overall monitoring of the mobile terminal 700.
- processor 750 can include one or more processing units.
- the electronic device may include at least: a mobile phone, a tablet computer, an e-book reader, an MP3 player, an MP4 player, a digital camera, a laptop portable computer, a car computer, a desktop computer, a set top box, a smart TV, and a wearable device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Human Computer Interaction (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Communication System (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
一种移动终端和红外检测方法,所述移动终端包括显示屏(1)、红外发射管(2)和红外接收管(3),所述红外发射管(2)设于所述显示屏(1)的一端,所述红外接收管(3)设于所述显示屏(1)的另一端,所述红外发射管(2)发出的第一红外光经过所述显示屏(1)传输至所述移动终端之外,所述红外接收管(3)通过所述显示屏(1)接收第二红外光,所述第二红外光为所述第一红外光经过所述移动终端之外的物体反射后的红外光。
Description
相关申请的交叉引用
本申请主张在2018年4月19日在中国提交的中国专利申请号No.201810353399.X的优先权,其全部内容通过引用包含于此。
本公开涉及通信技术领域,尤其涉及一种移动终端和红外检测方法。
随着移动终端的迅速发展,移动终端已经成为人们生活中必不可少的一种工具,并且为用户生活的各个方面带来了极大的便捷。例如:移动终端的显示屏上一般都设置了红外传感器,当检测到移动终端靠近人体时,移动终端的显示屏熄灭,从而可以防止移动终端被误触发。但是相关技术中,通常在移动终端的显示屏上单独设置一个红外发射孔,用以实现红外检测功能,但是设置红外发射孔将会使得显示屏的利用率较低,同时增加了显示屏的制造难度,因此亟需提供一种无须在显示屏上单独设置红外发射孔实现红外检测的方案。
发明内容
本公开实施例提供一种移动终端和红外检测方法,以解决相关技术中需要在显示屏上单独设置红外发射孔才能实现红外检测的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供一种移动终端,所述移动终端包括显示屏、红外发射管和红外接收管,所述红外发射管设于所述显示屏的一端,所述红外接收管设于所述显示屏的另一端,所述红外发射管发出的第一红外光经过所述显示屏传输至所述移动终端之外,所述红外接收管通过所述显示屏接收第二红外光,所述第二红外光为所述第一红外光经过所述移动终端之外的物体反射后的红外光。
第二方面,本公开实施例还提供一种红外检测方法,应用于移动终端,所述移动终端包括显示屏、红外发射管和红外接收管,所述红外发射管设于所述显示屏的一端,所述红外接收管设于所述显示屏的另一端;
所述方法包括:
检测所述红外发射管发射的红外发射信号;
检测所述红外接收管通过所述显示屏接收的红外接收信号;
根据所述红外发射信号和所述红外接收信号确定外物处于靠近或远离状态。
第三方面,本公开实施例还提供另一种红外检测方法,应用于移动终端,所述移动终端包括显示屏、红外发射管和红外接收管,所述红外发射管设于所述显示屏的一端,所述红外接收管设于所述显示屏的另一端;所述移动终端还包括底噪滤除电路、脉冲信号处理电路和控制器,所述底噪滤除电路与所述红外接收管连接,所述脉冲信号处理电路与所述红外接收管连接;
所述方法包括:
通过所述控制器控制至少一部分所述显示屏在第一显示状态和第二显示状态间切换,以使所述第一红外光形成脉冲红外光;其中,所述显示屏处于第一显示状态时,所述第一红外光可经过所述显示屏传输至所述移动终端之外,所述显示屏处于第二显示状态时,红外光不可经过所述显示屏传输至所述移动终端之外;
控制所述底噪滤除电路滤除所述红外接收管输出的直流信号;
控制所述脉冲信号处理电路处理所述红外接收管通过所述显示屏接收第二红外光后输出的脉冲信号;
根据所述脉冲信号确定外物处于靠近或远离状态。
在本公开实施例提供的移动终端包括显示屏、红外发射管和红外接收管,红外发射管设于显示屏的一端,红外接收管设于显示屏的另一端,红外发射管发出的第一红外光经过显示屏传输至移动终端之外,红外接收管通过显示屏接收第二红外光,第二红外光为第一红外光经过移动终端之外的物体反射后的红外光。通过上述设置,将红外发射管设于显示屏的一端,红外接收管设于显示屏的另一端,可以通过发射的第一红外光和接收到的第二红外光来 实现红外检测功能,这样,可以使得无须在移动终端的显示屏上单独设置红外发射孔,即可实现红外检测功能,且还提高了显示屏的利用率。
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种移动终端中的显示屏和红外传感器的位置关系图;
图2是本公开实施例提供的一种移动终端中的底噪滤除电路的结构图;
图3是本公开实施例提供的一种红外检测方法的流程图;
图4是本公开实施例提供的另一种红外检测方法的流程图;
图5是本公开实施例提供的一种移动终端的应用场景图;
图6是本公开实施例提供的另一种移动终端中的显示屏的结构图;
图7是本公开实施例提供的另一种移动终端的硬件结构示意图。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种移动终端,如图1-2所示,所述移动终端包括显示屏1、红外发射管2和红外接收管3,所述红外发射管2设于所述显示屏1的一端,所述红外接收管3设于所述显示屏1的另一端,所述红外发射管2发出的第一红外光经过所述显示屏1传输至所述移动终端之外,所述红外接收管3通过所述显示屏1接收第二红外光,所述第二红外光为所述第一红外光经过所述移动终端之外的物体反射后的红外光。
其中,显示屏1、红外发射管2和红外接收管3可以为一整个红外检测 模组的各个部件,当然,也可以为各个独立的部件。
其中,红外接收管3接收到的红外光包括两部分,一部分是红外发射管2发出的,经过显示屏1直达到红外接收管3的发射光,另一部分是经过显示屏1发射到外界,经过外界反射回显示屏1,被红外接收管3接收的反射光。具体地,红外发射管2发射出的红外光可以包括经过显示屏1发射到外界的第一红外光,以及经过显示屏1直接传导至红外接收管3的直流红外光。发射到外界的第一红外光包括经过外界反射回到显示屏1然后被红外接收管3接收到的第二红外光。移动终端可以根据上述第二红外光的多少来检测移动终端距离障碍物的距离的远近,从而实现红外检测的功能。需要说明的是,上述由红外发射管2发射的,经显示屏1直接传导至红外接收管3中的直流红外光会使得移动终端红外检测的结果有一定误差,但是误差较小。另外,移动终端还可以通过比较发出的第一红外光和接收到的第二红外光的数量差值来实现红外检测功能,例如:若第一红外光和第二红外光的数量差值大于预设值,则说明外物距离移动终端较远;若第一红外光和第二红外光的数量差值小于或等于预设值,则说明外物距离移动终端较近。需要说明的是,预设值的具体取值在此不做限定,例如:预设值可以是3个单位或者5个单位等。
具体的,如图1所示,为本公开实施例提供的一种移动终端中的显示屏1和红外发射管2和红外接收管3的位置关系图。其中,红外发射管2可以采用红外发光二极管(Light Emitting Diode,LED)。红外发射管2和红外接收管3可以分别设置于显示屏1的相对的两端,当然,红外发射管2和红外接收管3也可以设置于显示屏1相邻的两边上。例如:若显示屏1为矩形显示屏,红外发射管2和红外接收管3可以分别设置于矩形显示屏相对的两边,也可以分别设置于矩形显示屏相邻的两边。
本公开实施例提供的移动终端包括显示屏、红外发射管和红外接收管,红外发射管设于显示屏的一端,红外接收管设于显示屏的另一端,红外发射管发出的第一红外光经过显示屏传输至移动终端之外,红外接收管通过显示屏接收第二红外光,第二红外光为第一红外光经过移动终端之外的物体反射后的红外光。通过上述设置,将红外发射管设于显示屏的一端,红外接收管 设于显示屏的另一端,可以通过发射的第一红外光和接收到的第二红外光来实现红外检测功能,这样,可以使得无须在移动终端的显示屏上单独设置红外发射孔,即可实现红外检测功能,且还提高了显示屏的利用率。
可选的,所述移动终端还包括控制器,所述控制器用于控制所述显示屏1处于第一显示状态,所述显示屏1处于第一显示状态时,所述第一红外光经过所述显示屏1传输至所述移动终端之外。
其中,当显示屏1处于第一显示状态时,即显示屏1上显示白色帧画面或者银色帧画面等,可以更加方便第一红外光经过显示屏1传输至移动终端之外。
本公开实施例中,控制器用于控制显示屏处于第一显示状态,可以更加方便第一红外光经过显示屏传输至移动终端之外,这样,提高了第一红外光的传输效率。
可选的,所述移动终端还包括底噪滤除电路和脉冲信号处理电路,所述底噪滤除电路与所述红外接收管3连接,用于滤除所述红外接收管3输出的直流信号;
所述控制器用于控制至少一部分所述显示屏1在所述第一显示状态和第二显示状态间切换,以使所述第一红外光形成脉冲红外光;其中,所述显示屏1处于所述第二显示状态时,所述红外发射管2发射的红外光不可透过所述显示屏1发射至所述移动终端外部;即显示屏1对红外光屏蔽。
所述脉冲信号处理电路与所述红外接收管3连接,用于处理所述红外接收管3通过所述显示屏1接收第二红外光后输出的脉冲信号。
其中,显示屏1处于第一显示状态时,可以是显示屏1显示第一帧画面,此时红外光可透过显示屏1发射至移动终端外部,而第一帧画面可以为白色帧画面或者米白色帧画面等,显示屏1处于第二显示状态时,可以是显示屏1显示第二帧画面,此时红外光不可透过显示屏1发射至移动终端外部,而第二帧画面可以为黑色帧画面或者深灰色帧画面等。另外,显示屏1可以交替显示第一帧画面和第二帧画面,也可以结合显示第一帧画面和第二帧画面,例如:以下述的方式进行循环显示:先显示两帧第一帧画面,再显示一帧第二帧画面;或者先显示两帧第二帧画面,再显示一帧第一帧画面。需要说明 的是,当显示屏1分别处于第一显示状态和第二显示状态时,显示屏1显示的画面类型在此不做限定,显示屏1显示画面的方式也不做限定。
其中,红外接收管3此时接收到的红外光包括:从红外发射管2发出的,经移动终端的显示屏1直接传导至红外接收管3的直流红外光;经过外界发射回到显示屏1然后被红外接收管3接收到的第二红外光,而此时第二红外光也为脉冲红外光。则红外接收管3输出的信号包括直流信号和脉冲信号,其中,直流信号根据直流红外光转化得到,脉冲信号根据第二红外光转化得到。
需要说明的是,显示屏1、底噪滤除电路、脉冲信号处理电路和控制器可以组成一个红外检测模组,当然,该红外检测模组还可以包括红外发射管2和红外接收管3。另外,显示屏1、底噪滤除电路、脉冲信号处理电路、控制器、红外发射管2和红外接收管3在移动终端中也可以是独立的器件。
其中,本实施例的工作原理可以如下:控制器可以用于控制一部分显示屏1在第一显示状态和第二显示状态间切换,例如控制器可以用于控制一部分显示屏1交替显示第一帧画面和第二帧画面,而第一帧画面可以是黑色帧画面,第二帧画面可以是白色帧画面,当第一帧画面是黑色帧画面,且第二帧画面是白色帧画面,控制器控制移动终端的部分显示屏1交替显示白色帧画面和黑色帧画面,而此时红外发射管2发射的红外光可以在显示屏1显示白色帧画面时透射出显示屏1,在显示屏1显示黑色帧画面时不能透射出显示屏1,则透射出显示屏1的第一红外光为脉冲红外光。而上述透射出显示屏1的脉冲红外光遇到障碍物则会返回到显示屏1然后被红外接收管3接收的一部分为第二红外光,则第二红外光也为脉冲红外光,并且第二红外光在红外接收管3中可以转化为脉冲信号,而底噪滤除电路可以直接滤除红外接收管3输出的直流信号,从而减小直流信号对处理脉冲信号时的干扰,脉冲信号处理电路处理脉冲信号,例如:当第一时刻的脉冲信号过小,此时脉冲信号处理电路对包括第一时刻的一段时间内的脉冲信号进行积分或者放大等操作,从而更加方便对脉冲信号大小的判断,以及更加方便脉冲信号在移动终端内部的传输,通过检测此时经过脉冲信号处理电路处理后的脉冲信号的大小,即可检测移动终端距离障碍物的距离,从而完成红外检测功能。
其中,当移动终端离障碍物(通常是人体)的距离为第一数值,此时移动终端的红外接收管3接收到的第二红外光的数量为第二数值,而红外接收管3根据第二数值的第二红外光可以转化并输出得到数值为第三数值的脉冲信号。需要说明的是,第一数值可以是3厘米、4厘米或者5厘米等。另外,第三数值的具体大小在此也不做限定,但是第三数值、第二数值与第一数值可以是一一对应的。例如:当第一数值为3厘米时,第二数值可以为2个单位的第二红外光,第三数值可以为0.005微安;当第一数值为4厘米时,第二数值可以为1个单位第二红外光,第三数值可以为0.004微安。第三数值可以在移动终端使用之初直接生成的,也可以在使用的过程中,根据实际的使用情况,进行调整。需要说明的是,移动终端距离障碍物的距离越近,红外接收管3输出的脉冲信号的数值也就越大。
另外,需要说明的是,为了更好的区分脉冲信号和直流信号,可以通过底噪滤除电路将直流信号滤除,只获取脉冲信号,并根据该脉冲信号的数值大小,检测移动终端与人体之间的距离。
其中,显示屏1可以包括第一区域,第一区域为红外光从移动终端的红外发射管2到红外接收管3的光线传输区域;控制器可以控制第一区域在第一显示状态和第二显示状态间切换,以使穿过第一区域向外发射的第一红外光形成脉冲红外光。请参见图1和图6,图6中的第一区域601的下方可以对应设置红外发射管2和红外接收管3。需要说明的是,第一区域601可以在第一显示状态和第二显示状态间切换,而显示屏上除第一区域601外的其他区域可以只处于第一显示状态或者第二显示状态,具体的,第一区域601可以结合显示第一帧画面和第二帧画面,而显示屏上除第一区域601外的其他区域可以只显示第一帧画面。在该实施方式中,控制器可以控制第一区域通过第一帧画面和第二帧画面的结合显示,以使穿过第一区域向外发射的第一红外光形成脉冲红外光,避免了全部的显示屏1用于结合显示第一帧画面和第二帧画面,从而较好的减小了全部显示屏1用于结合显示第一帧画面和第二帧画面所消耗的能量,相应的延长了显示屏1的使用寿命。
本公开实施例提供的移动终端还包括底噪滤除电路和脉冲信号处理电路,底噪滤除电路与红外接收管连接,脉冲信号处理电路与红外接收管连接。通 过上述设置,控制器用于控制至少一部分显示屏在第一显示状态和第二显示状态间切换,以使穿过显示屏向移动终端外部发射的第一红外光形成脉冲红外光,上述脉冲红外光遇到障碍物即可返回至红外接收管中,从而实现红外检测功能,进而使得无须在移动终端的显示屏上单独设置一个红外发射孔,即可实现红外检测功能。
可选的,所述显示屏1包括依次层叠设置的液晶层、导光板和反射板,还包括与所述导光板连接的发光源4,所述红外发射管2与所述导光板连接。
其中,发光源4可以采用白光LED灯条,当然,也可以将一个个的白光LED串联起来,从而构成发光源4。另外,发光源4、红外发射管2和红外接收管3可以均设置于所述导光板的同一侧,且发光源4可以设置于红外发射管2和红外接收管3之间,这样,无须在移动终端的显示屏1上单独设置红外发射孔,从而可以扩大显示屏1的显示区域,当然,红外发射管2和红外接收管3也可以设置于导光板不同的两侧。具体设置在此不做限定。
其中,发光源4的宽度可以与移动终端的显示屏1上用于显示的区域的宽度相同。
本公开实施例中,显示屏包括依次层叠设置的液晶层、导光板和反射板,还包括与导光板连接的发光源,红外发射管发射的红外光可以沿着导光板进行传导,并且红外光可以经反射板反射出显示屏,这样,通过设置液晶层、导光板和反射板,可以使得对红外光的传输效果更好。
可选的,所述移动终端还包括特定用途集成电路(Application Specific Integrated Circuits,ASIC),所述ASIC一端与所述脉冲信号处理电路连接,所述ASIC的另一端与所述发光源4连接;所述ASIC用于在所述发光源4处于发光状态的情况下,检测所述红外接收管3输出的脉冲信号的数值是否大于预设数值;若检测到所述脉冲信号的数值大于所述预设数值,所述ASIC控制所述发光源4关闭。
其中,预设数值的取值可以是0.01微安、0.05微安或者0.10微安等,具体的数值在此不做限定。而预设数值的取值可以是在移动终端在使用之初自动获取的,也可以是随着用户的调整操作进行调整。另外,脉冲信号处理电路中包括模数转换器时,ASIC可以与模数转换器连接。需要说明的是,ASIC 在移动终端中可以为一个独立的器件。
本公开实施例中,当ASIC检测到红外接收管输出的脉冲信号的数值大于预设数值,说明移动终端距离障碍物的距离较近,ASIC控制发光源关闭,即使移动终端处于灭屏状态,从而减小了移动终端的电量损耗,并且还可以减少用户误触发显示屏的现象的发生,进而使得移动终端更加智能。
可选的,所述底噪滤除电路包括一端与所述红外接收管3连接、另一端接地的直流吸收器6。
其中,直流吸收器6可以采用电流槽,上述直流吸收器6可以通过直流信号。上述直流吸收器6的一端与红外接收管3的输出端相连,直流吸收器6的另一端接地,从而可以吸收红外接收管3输出的直流信号。
本公开实施例中,底噪滤除电路中包括直流吸收器,可以吸收红外接收管输出的直流信号,在判断脉冲信号的数值是否达到预设数值时,可以减小直流信号对判断结果的影响。
可选的,所述脉冲信号处理电路包括电容5和模数转换器,所述电容5一端与所述红外接收管3连接,另一端与所述模数转换器连接。
其中,电容5的规格可根据移动终端的实际需要来设计,并不具体限定电容5的规格。例如:电容5可以采用10微法的电容。另外,模数转换器可以将脉冲信号转化为数字信号,方便在移动终端内部的传输。
本公开实施例中,因为红外接收管输出的信号中包括两部分,一部分为交流信号,另一部分为直流信号。而底噪滤除电路中包括电容,因为电容的“通交流,阻直流”的功能,从而可以将红外接收管输出脉冲信号选择出来,从而在判断脉冲信号的数值是否达到预设数值时,可以减小直流信号的干扰。
可选的,所述脉冲信号处理电路还包括放大器7,所述放大器7串联于所述电容5和模数转换器之间。
其中,红外接收管3在某一时刻接收到的脉冲红外光较小,导致转化的脉冲信号也较小,例如:在第一时刻接收到的脉冲红外光较小,导致转化的脉冲信号也较小,所以可以通过放大器7进行放大第一时刻的脉冲信号,再通过模数转化器进行转化,进而方便传输。
本公开实施例中,底噪滤除电路还包括放大器,在红外接收管输出的脉 冲信号较小时,可以对其进行放大,从而使得对脉冲信号的传输更加方便。
可选的,所述脉冲信号处理电路还包括积分器,所述积分器串联于所述电容5和所述模数转换器之间。
其中,增大转化的电流信号,还可以通过积分器累积一段时间内的脉冲信号,再通过模数转化器进行转化,进而方便传输。需要说明的是,一段时间在此不做限定,例如可以是1毫秒或3毫秒等。
本公开实施例中,上述移动终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等等。
本公开实施例中,底噪滤除电路还包括积分器,在红外接收管输出的脉冲信号较小时,可以将一段时间内接收到的脉冲信号进行累加,从而使得对脉冲信号的传输更加方便。
可选的,所述ASIC还用于:在所述发光源4处于熄灭状态的情况下,所述ASIC若检测到所述红外接收管3输出的脉冲信号的数值小于或等于所述预设数值,所述ASIC控制所述发光源4发光。
本公开实施例中,在发光源处于熄灭状态的情况下,ASIC若检测到红外接收管输出的脉冲信号的数值小于或等于预设数值,则可以判断此时移动终端距离障碍物较远,从而可以控制发光源发光,使得移动终端的显示屏处于亮屏状态,这样,可以实现对发光源发光的自动调节,进而使得移动终端更加智能。
参见图3,图3是本公开实施例提供的一种红外检测方法的流程图。上述方法应用于移动终端,所述移动终端包括显示屏、红外发射管和红外接收管,所述红外发射管设于所述显示屏的一端,所述红外接收管设于所述显示屏的另一端;如图3所示,该方法包括以下步骤:
步骤301、检测所述红外发射管发射的红外发射信号。
其中,检测红外发射管发射的红外发射信号,可以检测红外发射信号的数量和/或发射时刻等数据,具体在此不做限定。
其中,显示屏、红外发射管和红外接收管可以为一整个红外检测模组的 各个部件,当然,也可以为各个独立的部件。
步骤302、检测所述红外接收管通过所述显示屏接收的红外接收信号。
其中,检测红外接收信号时,可以检测红外接收信号的接收时刻和/或接收数量等。
其中,红外接收管接收到的红外光包括两部分,一部分是第二红外光,另一部分是直流红外光,其中,直流红外光是由红外发射管发射的,经显示屏传导至红外接收管中的红外光;由红外发射管发射的,经显示屏发射至移动终端外部的红外光为第一红外光,而第一红外光遇到障碍物后又返回至红外接收管中的红外光为第二红外光。移动终端可以根据上述遇到障碍物后返回至红外接收管中的第二红外光的多少来检测移动终端距离障碍物的距离的远近,从而实现红外检测的功能。需要说明的是,上述由红外发射管发射的,经显示屏传导至红外接收管中的直流红外光会使得移动终端红外检测的结果有一定误差,但是误差较小。
步骤303、根据所述红外发射信号和所述红外接收信号确定外物处于靠近或远离状态。
其中,在上述步骤中可以检测红外发射信号的发射时刻和红外接收信号的接收时刻,并计算发射时刻和接收时刻之间的时间间隔,通过时间间隔的大小来确定外物处于靠近移动终端或远离移动终端状态,从而实现红外测距功能。例如:若时间间隔小于1毫秒,则判断外物距离移动终端较近,若时间间隔大于1毫秒,则判断外物距离移动终端较远。当然,还可以根据红外发射信号和红外接收信号的数量来实现红外测距功能,例如:红外发射信号和红外接收信号的数量差值较大,则说明外物距离移动终端较远;红外发射信号和红外接收信号的数量差值较小,则说明外物距离移动终端较近。
另外,还可以根据接收到的红外接收信号的多少来判断外物相对移动终端处于靠近或远离状态。例如:若接收到的红外接收信号为大于10个单位,则判断外物距离移动终端较近,若接收到的红外接收信号为小于或等于10个单位,则判断外物距离移动终端较远。
可选的,步骤303可以包括:
当所述红外发射信号和所述红外接收信号的差值小于或等于预设值,所 述外物处于靠近状态;
当所述红外发射信号和所述红外接收信号的差值大于预设值,所述外物处于远离状态。
需要说明的是,预设值的具体取值在此不做限定,例如:预设值可以是3个单位或者5个单位等。
在该实施方式中,通过比较红外发射信号和红外接收信号的差值,从而来判断外物处于靠近或者远离状态,使得移动终端的判断结果更加直观和准确。
本公开实施例中,通过步骤301、302和303,根据红外发射信号和红外接收信号确定外物处于靠近或远离状态,使得无须在移动终端的显示屏上单独设置红外发射孔,即可实现红外检测功能,且还提高了显示屏的利用率。
参见图4,图4是本公开实施例提供的另一种红外检测方法的流程图。本实施例与上个实施例的主要区别在于:本实施例可以通过控制器控制部分显示屏在第一显示状态和第二显示状态间切换,以使第一红外光形成脉冲红外光,进而根据接收到的脉冲红外光来实现红外检测功能。上述方法应用于移动终端,所述移动终端包括显示屏、红外发射管和红外接收管,所述红外发射管设于所述显示屏的一端,所述红外接收管设于所述显示屏的另一端;如图4所示,该方法包括以下步骤:
步骤401、通过所述控制器控制至少一部分所述显示屏在第一显示状态和第二显示状态间切换,以使所述第一红外光形成脉冲红外光;其中,所述显示屏处于第一显示状态时,所述第一红外光可经过所述显示屏传输至所述移动终端之外,所述显示屏处于第二显示状态时,红外光不可经过所述显示屏传输至所述移动终端之外;
其中,通过控制器控制至少一部分显示屏在第一显示状态和第二显示状态间切换,以使第一红外光形成脉冲红外光,脉冲红外光若遇到障碍物则可以返回至移动终端,经显示屏回到红外接收管中,此时回到红外接收管中的脉冲红外光即为第二红外光。通过检测第二红外光的大小,即可实现红外检测功能。同样的,还可以检测脉冲红外光的发射时刻和第二红外光的接收时刻,并计算发射时刻和接收时刻之间的时间间隔,通过时间间隔的大小来确 定外物处于靠近移动终端或远离移动终端状态,从而实现红外测距功能。另外,还可以通过检测发射脉冲红外光和接收的第二红外光之间的数量差值的大小,从而确定外物处于靠近移动终端或远离移动终端状态。
其中,本实施例的工作原理可以如下:可以通过控制器控制一部分显示屏在第一显示状态和第二显示状态间切换,例如可以通过控制器控制一部分显示屏交替显示第一帧画面和第二帧画面,而第一帧画面可以是黑色帧画面,第二帧画面可以是白色帧画面,当第一帧画面是黑色帧画面,且第二帧画面是白色帧画面,通过控制器控制移动终端的部分显示屏交替显示白色帧画面和黑色帧画面,而此时红外发射管发射的红外光可以在显示屏显示白色帧画面时透射出显示屏,在显示屏显示黑色帧画面时不能透射出显示屏,则透射出显示屏的第一红外光形成了脉冲红外光。而上述透射出显示屏的脉冲红外光遇到障碍物则会返回到显示屏然后被红外接收管接收的一部分为第二红外光,则第二红外光也为脉冲红外光,并且第二红外光在红外接收管中可以转化为脉冲信号,而底噪滤除电路可以直接滤除红外接收管输出的直流信号,从而减小直流信号对处理脉冲信号时的干扰,脉冲信号处理电路处理脉冲信号,例如:当第一时刻的脉冲信号过小,此时脉冲信号处理电路对包括第一时刻的一段时间内的脉冲信号进行积分或者放大等操作,从而更加方便对脉冲信号大小的判断,以及更加方便脉冲信号在移动终端内部的传输,通过检测此时经过脉冲信号处理电路处理后的脉冲信号的大小,即可检测移动终端距离障碍物的距离,从而完成红外检测功能。
其中,红外接收管接收到的红外光包括两部分,一部分是遇到障碍物经显示屏返回至红外接收管中的脉冲红外光(即第二红外光),而该部分脉冲红外光可以转化为脉冲信号,另一部分是从红外发射管发出的,经显示屏传导到达红外接收管的直流红外光,该部分直流红外光可以转化为直流信号。
另外,请参照图5,移动终端的显示屏在第一显示状态和第二显示状态间切换时,移动终端的红外接收管3输出的电流信号可以包括直流信号和脉冲信号两个部分,而红外接收管3输出的电流信号是根据红外接收管3接收到的红外光转化得到的,红外接收管3接收到的红外光可以分为A和B两种,B种红外光是红外发射管2发射的,且透射出显示屏1形成的脉冲红外光;A 种红外光是红外发射管2发射的,且直接经过显示屏1射入红外接收管3的直流红外光。而B种红外光透射出显示屏后,当遇到障碍物C(C一般为人体)后,会改变传输路线,返回红外接收管3中,则红外接收管3接收到B红外光,并根据上述B红外光转化得到脉冲信号,而A红外光经红外接收管3接收,并转化得到直流信号。
可选的,所述显示屏包括第一区域,所述第一区域为红外光从所述移动终端的红外发射管到红外接收管的光线传输区域,所述通过所述控制器控制至少一部分所述显示屏在第一显示状态和第二显示状态间切换,以使所述第一红外光形成脉冲红外光的步骤,可以包括:
通过所述控制器控制所述第一区域在第一显示状态和第二显示状态间切换,以使经过所述第一区域传输至所述移动终端之外的所述第一红外光形成脉冲红外光。
其中,第一区域为红外光从移动终端的红外发射管到红外接收管的光线传输区域,请参见图6,图6中的第一区域601的下方可以对应设置红外发射管和红外接收管。需要说明的是,第一区域601可以在第一显示状态和第二显示状态间切换,而显示屏上除第一区域601外的其他区域可以只处于第一显示状态或者第二显示状态。
该实施方式中,控制器控制第一区域在第一显示状态和第二显示状态间切换,且控制显示屏上除第一区域以外的其他区域只处于第一显示状态或者第二显示状态,当其他区域处于第二显示状态时,即其他区域处于灭屏状态,这样,可以减小移动终端的电量损耗,使得移动终端更加智能,使用上也更加方便。
步骤402、控制所述底噪滤除电路滤除所述红外接收管输出的直流信号。
其中,底噪滤除电路可以直接滤除红外接收管输出的直流信号,从而减小直流信号对处理脉冲信号时的干扰。
步骤403、控制所述脉冲信号处理电路处理所述红外接收管通过所述显示屏接收第二红外光后输出的脉冲信号。
其中,脉冲信号处理电路可以对红外接收管输出的脉冲信号进行放大、积分或者数字转换等操作,这样,通过对脉冲信号进行放大或者积分等操作, 可以使得对脉冲信号的大小判断更加方便,通过将脉冲信号转化为数字信号,可以使得脉冲信号在移动终端的内部传输更加方便。
步骤404、根据所述脉冲信号确定外物处于靠近或远离状态。
其中,可以通过检测脉冲信号的数量来判断外物处于靠近或远离状态,从而实现红外测距功能。例如:若检测脉冲信号的数量大于10个单位,则判断外物距离移动终端较近,若检测脉冲信号的数量小于或等于10个单位,则判断外物距离移动终端较远。当然,判断的标准在此不做限定。
可选的,所述显示屏包括依次层叠设置的液晶层、导光板和反射板,还包括与所述导光板连接的发光源,所述红外发射管与所述导光板连接;步骤404之后,上述方法还可以包括如下步骤:
在所述发光源处于发光状态的情况下,检测所述红外接收管输出的脉冲信号的数值是否大于预设数值;
若检测到所述脉冲信号的数值大于所述预设数值,关闭所述发光源。
其中,预设数值的具体数值在此不做限定,预设数值可以是在移动终端出厂之前就设置好的,也可以是移动终端启用时,自动从服务器中获取的。
该实施方式中,当检测到红外接收管输出的脉冲信号的数值大于预设数值,说明移动终端距离障碍物的距离较近,则关闭发光源,从而使移动终端处于灭屏状态,从而减小了移动终端的电量损耗,也使得移动终端更加智能。
可选的,所述若检测到所述脉冲信号的数值大于所述预设数值,关闭所述发光源的步骤之后,所述方法还包括:
若检测到所述红外接收管输出的脉冲信号的数值小于或等于所述预设数值,开启所述发光源。
其中,当发光源熄灭之后,移动终端还可以实时检测所述红外接收管输出的脉冲信号的数值是否大于预设数值,若检测到所述红外接收管输出的脉冲信号的数值小于或等于所述预设数值,开启所述发光源,使得发光源发光。需要说明的是,实时检测指的是移动终端可以每隔一段时间检测一次红外接收管输出的脉冲信号的数值是否大于预设数值,而一段时间为固定的,例如:可以是1毫秒、2毫秒或者3毫秒等,具体在此不做限定。
该实施方式中,当发光源熄灭之后,且检测到红外接收管输出的脉冲信 号的数值小于或等于预设数值,则可以判断障碍物与移动终端之间的距离较远,则开启发光源,使得发光源发光,这样,当检测障碍物距离移动终端较远时,开启发光源,进而使得移动终端更加智能,也使得移动终端使用上更加方便。
本公开实施方式中,处理器控制至少一部分显示屏在第一显示状态和第二显示状态间切换,以使第一红外光形成脉冲红外光,从而可以实现红外检测功能,底噪滤除电路可以滤除直流信号,只剩下脉冲信号,使得移动终端根据脉冲信号的大小来检测移动终端与障碍物之间的距离时,可以减小直流信号对判断结果的干扰,使得判断结果更加准确。这样,提供了一种无须在显示屏上单独设置红外发射孔,就能实现红外检测的方案。
图7为实现本公开各个实施例的一种移动终端的硬件结构示意图。
如图7所示,移动终端700包括射频(Radio Frequency,RF)电路710、存储器720、输入单元730、显示单元740、处理器750、音频电路760、通信模块770、电源780、显示屏、红外发射管和红外接收管,所述红外发射管设于所述显示屏的一端,所述红外接收管设于所述显示屏的另一端,所述红外发射管发出的第一红外光经过所述显示屏传输至所述移动终端700之外,所述红外接收管通过所述显示屏接收第二红外光,所述第二红外光为所述第一红外光经过所述移动终端700之外的物体反射后的红外光。
可选的,所述移动终端700还包括控制器,所述控制器用于控制所述显示屏处于第一显示状态,所述显示屏处于第一显示状态时,所述第一红外光经过所述显示屏传输至所述移动终端700之外。
可选的,所述移动终端700还包括底噪滤除电路和脉冲信号处理电路,所述底噪滤除电路与所述红外接收管连接,用于滤除所述红外接收管输出的直流信号;
所述控制器用于控制至少一部分所述显示屏在第一显示状态和第二显示状态间切换,以使所述第一红外光形成脉冲红外光;其中,所述显示屏处于第二显示状态时,红外光不可经过所述显示屏传输至所述移动终端700之外;
所述脉冲信号处理电路与所述红外接收管连接,用于处理所述红外接收管通过所述显示屏接收第二红外光后输出的脉冲信号。
可选的,所述显示屏包括依次层叠设置的液晶层、导光板和反射板,还包括与所述导光板连接的发光源,所述红外发射管与所述导光板连接。
可选的,所述移动终端700还包括ASIC,所述ASIC一端与所述脉冲信号处理电路连接,所述ASIC的另一端与所述发光源连接;所述ASIC用于在所述发光源处于发光状态的情况下,检测所述红外接收管输出的脉冲信号的数值是否大于预设数值;若所述ASIC检测到所述脉冲信号的数值大于所述预设数值,所述ASIC控制所述发光源关闭。
可选的,所述底噪滤除电路包括一端与所述红外接收管连接、另一端接地的直流吸收器。
可选的,所述脉冲信号处理电路包括电容和模数转换器,所述电容一端与所述红外接收管连接,另一端与所述模数转换器连接。
可选的,所述脉冲信号处理电路还包括放大器,所述放大器串联于所述电容和模数转换器之间。
可选的,所述脉冲信号处理电路还包括积分器,所述积分器串联于所述电容和所述模数转换器之间。
可选的,所述ASIC还用于:在所述发光源处于熄灭状态的情况下,所述ASIC若检测到所述红外接收管输出的脉冲信号的数值小于或等于所述预设数值,所述ASIC控制所述发光源发光。
其中,输入单元730可用于接收用户输入的数字或字符信息,以及产生与移动终端700的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元730可以包括触控面板731。触控面板731,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板731上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板731可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器750,并能接收处理器750发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板731。除了触控面板731,输入单元730还可以包 括其他输入设备732,其他输入设备732可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元740可用于显示由用户输入的信息或提供给用户的信息以及移动终端700的各种菜单界面。显示单元740可包括显示面板741,可选的,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板741。
应注意,触控面板731可以覆盖显示面板741,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器750以确定触摸事件的类型,随后处理器750根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器750是移动终端700的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器721内的软件程序和/或模块,以及调用存储在第二存储器722内的数据,执行移动终端700的各种功能和处理数据,从而对移动终端700进行整体监控。可选的,处理器750可包括一个或多个处理单元。
电子设备可以包括:手机、平板电脑、电子书阅读器、MP3播放器、MP4播放器、数码相机、膝上型便携计算机、车载电脑、台式计算机、机顶盒、智能电视机、可穿戴设备中的至少一项。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应 以权利要求的保护范围为准。
Claims (15)
- 一种移动终端,包括:显示屏、红外发射管和红外接收管,所述红外发射管设于所述显示屏的一端,所述红外接收管设于所述显示屏的另一端,所述红外发射管发出的第一红外光经过所述显示屏传输至所述移动终端之外,所述红外接收管通过所述显示屏接收第二红外光,所述第二红外光为所述第一红外光经过所述移动终端之外的物体反射后的红外光。
- 如权利要求1所述的移动终端,其中,所述移动终端还包括控制器,所述控制器用于控制所述显示屏处于第一显示状态,所述显示屏处于第一显示状态时,所述第一红外光经过所述显示屏传输至所述移动终端之外。
- 如权利要求2所述的移动终端,其中,所述移动终端还包括底噪滤除电路和脉冲信号处理电路,所述底噪滤除电路与所述红外接收管连接,用于滤除所述红外接收管输出的直流信号;所述控制器用于控制至少一部分所述显示屏在所述第一显示状态和第二显示状态间切换,以使所述第一红外光形成脉冲红外光;其中,所述显示屏处于所述第二显示状态时,红外光不可经过所述显示屏传输至所述移动终端之外;所述脉冲信号处理电路与所述红外接收管连接,用于处理所述红外接收管通过所述显示屏接收第二红外光后输出的脉冲信号。
- 如权利要求1-3任一项所述的移动终端,其中,所述显示屏包括依次层叠设置的液晶层、导光板和反射板,还包括与所述导光板连接的发光源,所述红外发射管与所述导光板连接。
- 如权利要求4所述的移动终端,其中,所述移动终端还包括特定用途集成电路ASIC,所述ASIC一端与所述脉冲信号处理电路连接,所述ASIC的另一端与所述发光源连接;所述ASIC用于在所述发光源处于发光状态的情况下,检测所述红外接收管输出的脉冲信号的数值是否大于预设数值;若所述ASIC检测到所述脉冲信号的数值大于所述预设数值,所述ASIC控制所述发光源关闭。
- 如权利要求3所述的移动终端,其中,所述底噪滤除电路包括一端与 所述红外接收管连接、另一端接地的直流吸收器。
- 如权利要求3所述的移动终端,其中,所述脉冲信号处理电路包括电容和模数转换器,所述电容一端与所述红外接收管连接,另一端与所述模数转换器连接。
- 如权利要求7所述的移动终端,其中,所述脉冲信号处理电路还包括放大器,所述放大器串联于所述电容和模数转换器之间。
- 如权利要求7所述的移动终端,其中,所述脉冲信号处理电路还包括积分器,所述积分器串联于所述电容和所述模数转换器之间。
- 如权利要求5所述的移动终端,其中,所述ASIC还用于:在所述发光源处于熄灭状态的情况下,所述ASIC若检测到所述红外接收管输出的脉冲信号的数值小于或等于所述预设数值,所述ASIC控制所述发光源发光。
- 一种红外检测方法,应用于移动终端,所述移动终端包括显示屏、红外发射管和红外接收管,所述红外发射管设于所述显示屏的一端,所述红外接收管设于所述显示屏的另一端;所述方法包括:检测所述红外发射管发射的红外发射信号;检测所述红外接收管通过所述显示屏接收的红外接收信号;根据所述红外发射信号和所述红外接收信号确定外物处于靠近或远离状态。
- 如权利要求11所述的方法,其中,所述根据所述红外发射信号和所述红外接收信号确定外物处于靠近或远离状态,包括:当所述红外发射信号和所述红外接收信号的差值小于或等于预设值,所述外物处于靠近状态;当所述红外发射信号和所述红外接收信号的差值大于预设值,所述外物处于远离状态。
- 一种红外检测方法,应用于移动终端,所述移动终端包括显示屏、红外发射管和红外接收管,所述红外发射管设于所述显示屏的一端,所述红外接收管设于所述显示屏的另一端;所述移动终端还包括底噪滤除电路、脉冲信号处理电路和控制器,所述底噪滤除电路与所述红外接收管连接,所述 脉冲信号处理电路与所述红外接收管连接;所述方法包括:通过所述控制器控制至少一部分所述显示屏在第一显示状态和第二显示状态间切换,以使第一红外光形成脉冲红外光;其中,所述显示屏处于第一显示状态时,所述第一红外光可经过所述显示屏传输至所述移动终端之外,所述显示屏处于第二显示状态时,红外光不可经过所述显示屏传输至所述移动终端之外;控制所述底噪滤除电路滤除所述红外接收管输出的直流信号;控制所述脉冲信号处理电路处理所述红外接收管通过所述显示屏接收第二红外光后输出的脉冲信号;根据所述脉冲信号确定外物处于靠近或远离状态。
- 如权利要求13所述的方法,其中,所述显示屏包括依次层叠设置的液晶层、导光板和反射板,还包括与所述导光板连接的发光源,所述红外发射管与所述导光板连接;所述根据所述脉冲信号确定外物处于靠近或远离状态的步骤之后,所述方法还包括:在所述发光源处于发光状态的情况下,检测所述红外接收管输出的脉冲信号的数值是否大于预设数值;若检测到所述脉冲信号的数值大于所述预设数值,关闭所述发光源。
- 如权利要求14所述的方法,其中,所述若检测到所述脉冲信号的数值大于所述预设数值,关闭所述发光源的步骤之后,所述方法还包括:若检测到所述红外接收管输出的脉冲信号的数值小于或等于所述预设数值,开启所述发光源。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810353399.XA CN108614651B (zh) | 2018-04-19 | 2018-04-19 | 一种移动终端和红外检测方法 |
CN201810353399.X | 2018-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019201130A1 true WO2019201130A1 (zh) | 2019-10-24 |
Family
ID=63660174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/082048 WO2019201130A1 (zh) | 2018-04-19 | 2019-04-10 | 一种移动终端和红外检测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108614651B (zh) |
WO (1) | WO2019201130A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108614651B (zh) * | 2018-04-19 | 2020-06-16 | 维沃移动通信有限公司 | 一种移动终端和红外检测方法 |
CN110865710B (zh) * | 2019-11-19 | 2023-08-18 | Oppo(重庆)智能科技有限公司 | 终端控制方法、装置、移动终端及存储介质 |
CN111487635A (zh) * | 2020-05-11 | 2020-08-04 | 苏州市运泰利自动化设备有限公司 | 高精度红外动态红外测距系统及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101901088A (zh) * | 2010-08-06 | 2010-12-01 | 鸿富锦精密工业(深圳)有限公司 | 红外线控制装置 |
US20110193838A1 (en) * | 2010-02-11 | 2011-08-11 | Chih-Wei Hsu | Driving Device, Driving Method, and Flat Panel Display |
CN106293282A (zh) * | 2015-06-03 | 2017-01-04 | 西藏丹贝投资有限公司 | 一种具有手势识别功能的红外触摸屏 |
CN107422876A (zh) * | 2017-07-18 | 2017-12-01 | 广东欧珀移动通信有限公司 | 一种接近传感器的控制方法、装置、存储介质及移动终端 |
CN107920142A (zh) * | 2017-11-22 | 2018-04-17 | 广东欧珀移动通信有限公司 | 电子装置 |
CN108614651A (zh) * | 2018-04-19 | 2018-10-02 | 维沃移动通信有限公司 | 一种移动终端和红外检测方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202956858U (zh) * | 2012-10-31 | 2013-05-29 | 东北师范大学 | 一种人群密度监测装置 |
CN203274811U (zh) * | 2013-03-22 | 2013-11-06 | 宁波全景电器技术有限公司 | 一种流量计 |
CN105005419B (zh) * | 2015-08-04 | 2024-04-16 | 北京汇冠触摸技术有限公司 | 一种非接触式手势识别红外触摸屏 |
CN206400488U (zh) * | 2017-01-17 | 2017-08-11 | 广东欧珀移动通信有限公司 | 盖板、显示装置及终端 |
CN207150648U (zh) * | 2017-07-28 | 2018-03-27 | 努比亚技术有限公司 | 光感装置及移动终端 |
-
2018
- 2018-04-19 CN CN201810353399.XA patent/CN108614651B/zh active Active
-
2019
- 2019-04-10 WO PCT/CN2019/082048 patent/WO2019201130A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110193838A1 (en) * | 2010-02-11 | 2011-08-11 | Chih-Wei Hsu | Driving Device, Driving Method, and Flat Panel Display |
CN101901088A (zh) * | 2010-08-06 | 2010-12-01 | 鸿富锦精密工业(深圳)有限公司 | 红外线控制装置 |
CN106293282A (zh) * | 2015-06-03 | 2017-01-04 | 西藏丹贝投资有限公司 | 一种具有手势识别功能的红外触摸屏 |
CN107422876A (zh) * | 2017-07-18 | 2017-12-01 | 广东欧珀移动通信有限公司 | 一种接近传感器的控制方法、装置、存储介质及移动终端 |
CN107920142A (zh) * | 2017-11-22 | 2018-04-17 | 广东欧珀移动通信有限公司 | 电子装置 |
CN108614651A (zh) * | 2018-04-19 | 2018-10-02 | 维沃移动通信有限公司 | 一种移动终端和红外检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108614651A (zh) | 2018-10-02 |
CN108614651B (zh) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019201130A1 (zh) | 一种移动终端和红外检测方法 | |
US7420541B2 (en) | Wireless mouse | |
TWI501199B (zh) | 具有操作模式分析之輸入裝置及電腦系統 | |
WO2018145555A1 (zh) | 显示屏状态控制方法、装置、存储介质及电子设备 | |
WO2019024644A1 (zh) | 接近检测方法、装置、存储介质及电子设备 | |
EP2859546A1 (en) | Electronic device with display brightness control | |
KR101427858B1 (ko) | 전자 장치 및 터치 감지 방법 | |
US20140131551A1 (en) | Proximity sensor and operating method thereof | |
TWI580276B (zh) | 機器識別裝置及遙控器系統 | |
EP3019937B1 (en) | Gesture-sensitive display | |
CN108833625B (zh) | 传感器控制电路及电子装置 | |
EP2560081A2 (en) | Motion sensing switch | |
WO2015096335A1 (zh) | 交互识别系统以及显示装置 | |
US20160070410A1 (en) | Display apparatus, electronic apparatus, hand-wearing apparatus and control system | |
CN109088961B (zh) | 传感器控制电路以及电子装置 | |
TW201421280A (zh) | 手勢辨識裝置及複合式光學裝置 | |
TW201248468A (en) | Photo sensing device suitable for optical touch display panel and applications thereof | |
TW201510772A (zh) | 手勢判斷方法及電子裝置 | |
CN109085953A (zh) | 一种降低干扰的方法及终端设备 | |
US20130027355A1 (en) | Input display device, input device, and control method of input device | |
CN110442261A (zh) | 电子设备及其触控操作检测方法 | |
WO2020244344A1 (zh) | Led 驱动及触摸感应模块、 led 驱动及触摸感应方法、计算机可读存储介质、电子设备 | |
US20120169666A1 (en) | Optical touch-sensing liquid crystal panel, optical touch-sensing panel and method of determining touch position | |
US20120313891A1 (en) | Distance sensing circuit and touch-control electronic apparatus | |
CN100367171C (zh) | 位移操控的可携式电子装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19787771 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19787771 Country of ref document: EP Kind code of ref document: A1 |