WO2019201101A1 - 信号传输方法和装置 - Google Patents

信号传输方法和装置 Download PDF

Info

Publication number
WO2019201101A1
WO2019201101A1 PCT/CN2019/081485 CN2019081485W WO2019201101A1 WO 2019201101 A1 WO2019201101 A1 WO 2019201101A1 CN 2019081485 W CN2019081485 W CN 2019081485W WO 2019201101 A1 WO2019201101 A1 WO 2019201101A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signaling
time slot
time
offset
Prior art date
Application number
PCT/CN2019/081485
Other languages
English (en)
French (fr)
Inventor
肖华华
鲁照华
吴昊
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/048,532 priority Critical patent/US11700094B2/en
Publication of WO2019201101A1 publication Critical patent/WO2019201101A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of communications, for example, to a signal transmission method and apparatus.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • NR New Radio Access Technology
  • CSI channel state information
  • the channel state information includes but is not limited to: channel quality indication (Channel Quality) Indication, CQI), Precoding Matrix Indicator (PMI), Rank Indicator (RI), Channel State Information Reference CSI-RS resource indicator (CRI).
  • the base station or the user needs to transmit a reference signal (Reference Signal, RS), and the reference channel includes but is not limited to a Channel-State Information Reference Signal (CSI-RS), which includes a zero-power CSI-RS.
  • CSI-RS Channel-State Information Reference Signal
  • ZP CSI-RS Zero-power CSI-RS
  • Non-Zero Power CSI-RS, NZP CSI-RS Non-Zero Power CSI-RS, NZP CSI-RS
  • Channel-state information-interference measurement Channel-state information-interference measurement
  • CSI-IM Sounding reference signal
  • SRS Sounding reference signal
  • NZP CSI-RS can be used to measure channel or interference.
  • CSI-RS can also be used for tracking, called tracking reference signal (CSI-RS for Tracking, TRS).
  • the reference signals such as CSI-RS, SRS, and CSI-IM include time domain characteristics in transmission, and time domain characteristics include, but are not limited to, non-periodic aperiodic, periodic periodic, semi-persistent semi-persistent characteristics, respectively, indicating transmission references. Signals are transmitted aperiodically, periodically, or semi-continuously.
  • the periodic reference signal or the semi-persistent reference signal configures a period and/or slot offset information through the high layer signaling, and the two parameters may be jointly encoded (for example, through the high-level signaling periodicityAndOffset configuration, With this parameter, the user can know the transmission period of the periodic or semi-continuous reference signal, as well as the slot of the transmission.
  • multiple reference signal resources may be divided into multiple sets (such as CSI-IM resource set, SRS resource set), and the reference signal resource set includes at least one
  • the reference signal resource, and the plurality of reference signal resource sets may all be from the same reference signal resource setting (such as CSI-RS resource setting, SRS resource setting, CSI-IM resource setting, where CSI-IM resource setting may be and CSI-IM resource
  • the setting merges, both called CSI-RS resource setting), configures parameter information.
  • the channel in order to transmit data, or in some high-level signaling, physical layer signaling, etc., the channel is divided into a physical downlink control channel (Physical Downlink Control Channel, PDCCH), and a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH). ), a Physical Uplink Control Channel (PUCCH), and a Physical Uplink Shared Channel (PUSCH).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • DMRS Demodulation Reference Signal
  • the base station and/or the terminal use the radio frequency beam to obtain the beam gain.
  • Different base stations or terminals, or different antenna panels of the base station, or the antenna panels of the terminal may use different radio frequency beams when transmitting different physical shared channels or reference signals, which requires the terminal or the base station to transmit or receive.
  • Information including reference signals and/or physical shared channels, where reference signals include, but are not limited to, CSI-RS, CSI-IM, SRS, TRS, physical shared channels including but not limited to PUSCH, PDSCH
  • reference signals include, but are not limited to, CSI-RS, CSI-IM, SRS, TRS, physical shared channels including but not limited to PUSCH, PDSCH
  • the spatial parameters herein include but are not limited to one of the following: radio frequency beam, spatial Rx parameter, transmission configuration indication (TCI), beam index, beam group index, and quasi co-location (quasi co- Part of the parameter information indication in location).
  • TCI transmission configuration indication
  • beam index beam index
  • beam group index beam group index
  • quasi co-location quasi co-location
  • the related art When transmitting reference signals and/or physical shared channels, the related art has some drawbacks. For example, there are certain problems in notifying the time domain characteristics of aperiodic CSI-IM or aperiodic TRS, so that the terminal cannot be very The reference signal is well received. In addition, when the reference signal is transmitted, if the reference signal and the physical shared channel have resource overlap, how to effectively receive the reference signal and the physical shared channel transmitted in the common time domain resource is not well solved.
  • the present application proposes a signal transmission method and apparatus, which can effectively implement transmission of an aperiodic reference signal.
  • the present application proposes a signal transmission method, the method comprising:
  • the application also proposes a signal transmission method, the method comprising:
  • the overlapping time domain resource is an overlapping part of a time domain resource that sends the reference signal and a time domain resource of the physical shared channel.
  • the application also proposes a signal transmission method, the method comprising:
  • the reference signal is received on the determined time slot corresponding to the reference signal.
  • the application also proposes a signal transmission method, the method comprising:
  • the overlapping time domain resource is an overlapping part of a time domain resource that transmits the reference signal and a time domain resource of the physical shared channel.
  • the present application also provides a signal transmission apparatus, which is disposed on a first communication node, and the apparatus includes:
  • a first configuration unit configured to configure the first signaling
  • the first sending unit is configured to determine a time slot for transmitting the reference signal according to the first signaling, and send the reference signal on the time slot of the sending reference signal.
  • the present application also provides a signal transmission apparatus, which is disposed on a first communication node, and the apparatus includes:
  • a second configuration unit configured to configure the second signaling
  • a second sending unit configured to send at least one of a reference signal and a physical shared channel in the overlapping time domain resource according to the second signaling
  • the overlapping time domain resource is an overlapping part of a time domain resource that sends the reference signal and a time domain resource of the physical shared channel.
  • the present application also provides a signal transmission apparatus, which is disposed on a second communication node, and the apparatus includes:
  • a first receiving unit configured to receive the first signaling
  • a first time slot determining unit configured to determine a time slot corresponding to the reference signal according to the received first signaling
  • the first receiving unit is further configured to receive the reference signal on the determined time slot corresponding to the reference signal.
  • the present application also provides a signal transmission apparatus, which is disposed on a second communication node, and the apparatus includes:
  • a second receiving unit configured to receive the second signaling
  • the second receiving unit is further configured to receive the reference signal and the physical shared channel in the overlapping time domain resource according to the received second signaling, where the overlapping time domain resource is a time domain resource for transmitting the reference signal and the The overlapping portion of the time domain resources of the physical shared channel.
  • the present application also provides a terminal comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing the computer program to implement any of the applications provided by the present application The processing of a signal transmission method.
  • the present application also proposes a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the processing of any of the signal transmission methods provided herein.
  • the technical solution provided by the present application includes: configuring first signaling; and transmitting a reference signal in a time slot of the sending reference signal according to a time slot of the sending reference signal determined by the first signaling.
  • the wireless communication system can use the relevant periodic related signaling to achieve normal transmission or reception of the aperiodic signal without adding new aperiodic higher layer signaling, that is, without modifying the standard. purpose.
  • FIG. 1A, FIG. 1B, FIG. 1C, and FIG. 1D are respectively schematic flowcharts of a signal transmission method according to an embodiment of the present application;
  • FIG. 2 is a schematic diagram of signals in a signal transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of signals in a signal transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of signals in a signal transmission method according to an embodiment of the present application.
  • a mobile communication network (including but not limited to a 5G mobile communication network) is provided in the embodiment of the present application, and the network architecture of the network may include a network side device (for example, a base station) and a terminal.
  • a network side device for example, a base station
  • an information transmission method that can be run on the network architecture is provided. It should be noted that the operating environment of the foregoing information transmission method provided in the embodiment of the present application is not limited to the foregoing network architecture.
  • the first communication node may be a base station side device in the downlink
  • the second communication node may be a terminal side device.
  • the first communication node may also be a terminal in the uplink.
  • the side device, the second communication node may also be a base station side device.
  • both the first communication node and the second communication node may be base stations or terminals.
  • the terminal can also be called a user.
  • the embodiment of the present application provides a signal transmission method, where the method includes: Step 11 and Step 13.
  • step 11 the first communication node configures the first signaling.
  • step 13 the first communication node transmits the reference signal in the time slot of the transmission reference signal according to the time slot of the transmission reference signal determined by the first signaling.
  • the first signaling includes trigger signaling and offset signaling; in another example, the first signaling is handover signaling.
  • the method before step 13, the method further comprises: the first communication node determining, according to the first signaling, a time slot for transmitting the reference signal.
  • the embodiment of the present application provides a signal transmission method, where the method includes: Step 21 and Step 22.
  • step 21 the first communication node configures the second signaling.
  • step 22 the reference signal and/or the physical shared channel are transmitted in the overlapping time domain resource according to the second signaling;
  • the embodiment of the present application provides a signal transmission method, where the method includes: Step 31, Step 32, and Step 33.
  • step 31 the second communication node receives the first signaling.
  • step 32 the second communication node determines the time slot corresponding to the reference signal according to the received first signaling.
  • step 33 the second communication node receives the reference signal on the determined time slot corresponding to the reference signal.
  • the embodiment of the present application provides a signal transmission method, where the method includes: Step 41 and Step 42.
  • step 41 the second communication node receives the second signaling.
  • step 42 receiving reference signals and/or physical shared channels in overlapping time domain resources according to the received second signaling.
  • the embodiment of the present application provides a signal transmission method, where the method includes:
  • the method on the base station side includes: Step 110 to Step 140.
  • the base station configures first signaling; the first signaling includes trigger signaling and offset signaling.
  • the offset signaling time slot is offset or carries the joint information periodicity and Offset of the period and the time slot offset.
  • the trigger signaling is signaling for triggering the sending of the reference signal, and the time slot for transmitting the reference signal may be determined according to the start time of the time slot K of the transmission trigger signaling and the time slot offset n indicated by the offset signaling.
  • step 120 the base station transmits trigger signaling and offset signaling.
  • step 130 the time slot in which the reference signal is transmitted is determined by the first signaling and the trigger signaling.
  • step 140 the base station transmits a reference signal.
  • Terminal side method step 150, step 160 and step 170.
  • step 150 the terminal receives trigger signaling and offset signaling.
  • step 160 the terminal determines a time slot corresponding to the reference signal according to the trigger signaling and the offset signaling.
  • Step 160 includes:
  • the offset signaling time slot is offset or carries the joint information periodicity and Offset of the period and the time slot offset.
  • the trigger signaling is signaling for triggering the sending of the reference signal, and the time slot for transmitting the reference signal may be determined according to the start time of the time slot K of the transmission trigger signaling and the time slot offset n indicated by the offset signaling.
  • step 170 the terminal receives the reference signal sent by the base station according to the determined time slot corresponding to the received reference signal.
  • Step 170 includes the terminal receiving a reference signal on K+n.
  • the present embodiment is used to describe the slot determination problem in the transmission process of the aperiodic reference signal, such as CSI-IM (aperiodic CSI-IM, AP CSI-IM), and the base station and the terminal send and receive the AP CSI by the following procedure.
  • CSI-IM aperiodic CSI-IM, AP CSI-IM
  • one CSI-RS resource setting may be configured by higher layer signaling
  • each CSI-RS resource setting includes one CSI-IM resource set
  • each CSI-IM resource set includes one CSI or more.
  • -IM resource The time domain characteristics of the CSI-IM here can be configured to be periodic, aperiodic, and semi-persistent through higher layer signaling.
  • the base station configures the first signaling, determines a slot slot for transmitting the aperiodic reference signal according to the first signaling, and sends an aperiodic channel state information interference measurement resource AP CSI-IM resource(s) in the slot.
  • the base station transmits the first signaling.
  • the first signaling is high layer signaling, including but not limited to at least one of the following information: periodicity, slot offset, offset and periodicity.
  • the base station may also send the aperiodic channel state information interference measurement resource set AP CSI-IM resource set(s) in the time slot of the transmission reference signal, the aperiodic tracking reference signal resource TRS resource, and the aperiodic tracking reference.
  • Signal resource set TRS resource set may also send the aperiodic channel state information interference measurement resource set AP CSI-IM resource set(s) in the time slot of the transmission reference signal, the aperiodic tracking reference signal resource TRS resource, and the aperiodic tracking reference.
  • Signal resource set TRS resource set may also send the aperiodic channel state information interference measurement resource set AP CSI-IM resource set(s) in the time slot of the transmission reference signal, the aperiodic tracking reference signal resource TRS resource, and the aperiodic tracking reference.
  • Signal resource set TRS resource set may also send the aperiodic channel state information interference measurement resource set AP CSI-IM resource set(s) in the time slot of the transmission reference signal, the aperi
  • the first signaling here is mainly used to indicate a periodic CSI-IM resource or a periodic CSI-IM set period and/or a slot offset.
  • the base station configures trigger signaling, and the base station sends the trigger signaling, where the trigger signaling is physical layer signaling or higher layer signaling.
  • the base station Determining, by the base station, that the time slot for transmitting the reference signal is K+n according to the first signaling and the trigger signaling, where the K is a time slot for transmitting trigger signaling, and the n is determined according to the first signaling.
  • the time slot offset, K and n are integers greater than or equal to zero.
  • the terminal receives the first signaling, and determines a slot slot for receiving the aperiodic reference signal according to the first signaling, and receives the aperiodic channel state information interference measurement resource AP CSI-IM resource(s) in the slot.
  • the base station accepts trigger signaling, which is physical layer signaling or higher layer signaling.
  • the aperiodic channel state information interference measurement resource set AP CSI-IM resource set(s), the aperiodic tracking reference signal resource TRS resource, and the aperiodic tracking reference signal resource set may also be received in the time slot.
  • TRS resource set may also be received in the time slot.
  • the first signaling is high layer signaling, and includes at least one of the following information: periodicity, slot offset, periodicity and periodicity of the slot offset (periodicityAndOffset).
  • the first signaling here is mainly used to indicate a periodic CSI-IM resource or a periodic CSI-IM set period and/or a slot offset.
  • the first signaling is a time slot offset
  • the terminal determines, by using the time offset, an n that receives an AP CSI-IM resource(s) or an AP CSI-IM resource set(s), where n is a non-negative integer.
  • the first signaling is the joint information periodicityAndOffset of the period and the time slot
  • the terminal acquires the information of the time slot offset part by decoding the periodicityAndOffset, and determines the receiving AP CSI-IM by using the information of the obtained time slot offset part.
  • the wireless communication system can utilize the relevant periodic CSI-IM related signaling without adding new high-level signaling of the aperiodic CSI-IM, that is, without modifying the standard.
  • the period and time slot offset signaling for example, periodicity and Offset
  • the non-periodic CSI-IM resource transmission may be for the CSI-IM resource set, and each CSI - The IM resource set includes at least one CSI-IM resource. Therefore, there may be cases where the slot offsets of different CSI-IM resources of the same CSI-IM resource set are different. That is, the aperiodic channel state information interferes with the channel state information in the measurement resource set.
  • the time slot offset or time slot of the interference measurement resource may take different values. Of course, a special case is that they all take the same value, that is, the non-periodic channel state information interferes with the channel state information in the measurement resource set, and the time slot offset or time slot of the interference measurement resource is the same.
  • the present embodiment is equally applicable to other aperiodic reference signals, such as aperiodic ZP CSI-RS, aperiodic TRS, etc., as long as the CSI-IM in the embodiment is replaced with a ZP CSI-RS or TRS.
  • aperiodic reference signals such as aperiodic ZP CSI-RS, aperiodic TRS, etc.
  • An application example is:
  • the base station configures periodic channel state information to interfere with the measurement resource period and time slot offset signaling. Configuring and transmitting trigger signaling, determining a slot offset n in the period of the periodic channel state information interference measurement resource and the slot offset signaling; determining to send according to the slot offset n and the slot K of the transmission trigger signaling
  • the time slot of the aperiodic channel state information interference measurement resource or channel state information interference measurement resource set is K+n. Where n and K are non-negative integers.
  • the terminal receives the periodic channel state information interference period and the slot offset signaling of the measurement resource, and determines the interference measurement resource or channel used for receiving the aperiodic channel state information according to the periodic channel state information interference measurement resource period and the slot offset signaling.
  • the state information interferes with the time slot offset n of the measurement resource set, receives the trigger signaling, and determines that the time slot of the transmission reference signal is K+n according to the time slot K of the received trigger signaling, where n and K are non-negative integers.
  • the non-periodic channel state information interference measurement resource or the channel state information interference measurement resource set is received in the time slot K+n.
  • This embodiment is mainly used to describe the process of transmitting an aperiodic reference signal when the carrier aggregates and transmits information.
  • a reference signal of multiple carriers such as a CSI-RS
  • a CSI-RS is triggered across a carrier by using one physical downlink control information (Dinwlink Control Information, DCI, generally carried by the PDCCH), assuming that the base station is not configured with a quasi-co-location type D (QCL Type D).
  • DCI physical downlink control information
  • QCL Type D quasi-co-location type D
  • the following process triggers a CSI-RS resource or a CSI-RS resource set or a CSI-RS resource Setting of a plurality of Component Carriers (CCs) through one DCI.
  • CCs Component Carriers
  • AP CSI-RS aperiodic channel state information reference signal
  • the base station transmits the first signaling.
  • the first signaling may be physical downlink control information DCI.
  • the AP CSI-RS may also be one of the following reference signals: an aperiodic channel state information reference signal resource set (AP CSI-RS resource set), and an aperiodic channel state information reference signal resource setting (AP) CSI-RS resource setting), semi-persistent channel state information reference signal (SP CSI-RS), semi-persistent channel state information reference signal resource set (SP CSI-RS resource set), semi-persistent channel state information reference signal resource Set (SP CSI-RS resource setting), aperiodic tracking reference signal resource (AP TRS resource), aperiodic tracking reference signal resource set (AP TRS resource set), aperiodic tracking reference signal resource setting (AP TRS resource setting), The aperiodic sounding reference signal resource (AP SRS resource), the aperiodic sounding reference signal resource set (AP SRS resource setting), the aperiodic sounding reference signal resource setting (AP SRS resource setting), and the like.
  • SP CSI-RS resource set an aperiodic channel state information reference signal resource set
  • the offset signaling is configured, and the offset signaling is high layer signaling or physical layer signaling.
  • the offset signaling includes a slot offset n for transmitting a reference signal, n being a non-negative integer.
  • an application example is as follows, without loss of generality, taking 3 serving cells as an example, serving cell 1 (CC1) is a carrier spacing of 15K, serving cell 2 (CC2) is a carrier spacing of 60K, and serving cell 3 (CC3) It is a carrier spacing of 120K. Then there is at least the following way to determine the time slot in which each serving cell sends the reference signal, where the first signaling is the downlink control information DCI. There are three possible situations.
  • DCI is transmitted in the CC with the smallest carrier spacing, for example, in CC1 transmission.
  • DCI is generally transmitted in the first 1-3 symbols of the slot, assuming that the DCI control resource set (Control-resource set, CORESET) is transmitted.
  • Reference time i 1, 2, 3.
  • the first serving cell sends the AP CSI-RS in the n+1th slot
  • the second serving cell sends the AP CSI-RS in the n+3th slot
  • the third serving cell sends in the n+9th slot.
  • AP CSI-RS AP CSI-RS.
  • the terminal receives the first signaling; and determines a time slot for receiving an aperiodic channel state information reference signal (AP CSI-RS) on the N serving cells according to the first signaling.
  • AP CSI-RS aperiodic channel state information reference signal
  • the first signaling may be physical downlink control information DCI.
  • FIG. 2 it is a signaling diagram of a signal transmission method according to the present embodiment, where two carriers CC0 and CC1 indicate a time slot for transmitting a CSI-RS through a DCI, and for a carrier CC0, a CSI-RS and The DCI is transmitted in the same time slot.
  • the CSI-RS is transmitted in one time slot after the DCI, and in which time slot is sent, it needs to be determined according to the last symbol of the time domain resource where the transmission DCI of CC0 is located.
  • the AP CSI-RS may also be one of the following reference signals: AP CSI-RS resource set, AP CSI-RS resource setting, semi-persistent channel state information reference signal (SP CSI-RS), SP CSI-RS resource set, SP CSI-RS resource setting, AP TRS resource, AP TRS resource set, AP TRS resource setting, AP SRS resource, AP SRS resource set, and AP SRS resource setting.
  • SP CSI-RS semi-persistent channel state information reference signal
  • the first reference time of the receiving aperiodic channel state information reference signal (AP CSI-RS) on the N serving cells is a minimum time slot corresponding to the time T, wherein The time T is the last symbol of the time domain resource that receives or transmits the first signaling.
  • AP CSI-RS aperiodic channel state information reference signal
  • Receive bias signaling which is high layer signaling or physical layer signaling.
  • the offset signaling includes receiving a slot offset n of the reference signal, n being a non-negative integer.
  • the time slot Ki+n time slot for transmitting the reference signal on the i-th serving cell in the embodiment is a time slot corresponding to the carrier spacing.
  • the slot offset n on the i-th serving cell of the embodiment is defined based on the numerology on the i-th serving cell.
  • the slot length of one slot is 1/(2 ⁇ Ni) milliseconds
  • Ni is the values of 1, 4, 8, and numerology in CC1, CC2, and CC3, respectively.
  • the numerology corresponding to each serving cell is the same or the sub-carrier spacing is the same, that is, the reference signal is triggered across the serving cell, and the N serving cells
  • the numerology is the same or the subcarrier spacing is the same.
  • an aperiodic tracking reference signal (AP TRS) is transmitted or received.
  • the AP TRS is divided into two parts, the first part of the AP TRS and the second part of the AP TRS, and the first part of the AP TRS and the second part of the AP TRS may carry the same information, including but not limited to one of the following, the same number of ports, Same time domain location, subcarrier location, same transmit power.
  • the first part of the AP TRS and the second part of the AP TRS are respectively transmitted in two consecutive time slots.
  • the base station configures the first signaling; and determines a time slot for transmitting the aperiodic tracking reference signal according to the first signaling.
  • the base station transmits the first signaling.
  • the base station transmits an aperiodic tracking reference signal in the time slot determined by the first signaling.
  • the base station determines, according to the first signaling, a first time slot K+n for transmitting two slots of the TRS, where K is a time slot in which the first signaling resource is sent, and n is a relative The time slot or time slot offset of the first portion of the aperiodic tracking reference signal is transmitted.
  • the base station configures offset signaling, the offset signaling including the time slot offset n, n being a non-negative integer.
  • the time slot for transmitting the first part of the aperiodic tracking reference signal is determined according to the first signaling, wherein the time slot of the first part of the transmitting aperiodic tracking reference signal is used for transmitting the aperiodic tracking reference signal first part.
  • the first part of the time slot determined by the base station for transmitting the aperiodic TRS is a K+n time slot, where K is the time slot in which the first signaling resource is transmitted, and n is the first part relative to the transmitting aperiodic tracking reference signal.
  • Time slot or time slot offset In general, the TRS is transmitted in two time slots, that is, the first group of TRS resources are transmitted in the K+n time slot, and the second group of TRS resources are transmitted in the K+n+1 time slot.
  • the terminal receives the first signaling; and determines a time slot for receiving the aperiodic tracking reference signal according to the first signaling.
  • the terminal receives an aperiodic tracking reference signal in the time slot.
  • the terminal determines, according to the first signaling, a first time slot K+n for receiving two time slots of the TRS, where K is a time slot in which the first signaling resource is received, and n is a relative And receiving a time slot offset of the first partial time slot of the aperiodic tracking reference signal.
  • the terminal receives the offset signaling, the offset signaling including the time slot offset n, n being a non-negative integer.
  • a time slot for receiving a first portion of the aperiodic tracking reference signal is determined based on the first signaling.
  • the time slot determined by the terminal to receive the first part of the TRS is a K+n time slot, where K is the time slot in which the first signaling resource is transmitted, and n is the time slot offset of the first time slot in which the tracking reference signal is received.
  • K is the time slot in which the first signaling resource is transmitted
  • n is the time slot offset of the first time slot in which the tracking reference signal is received.
  • the TRS is received in two time slots, ie, the first set of TRS resources are received in the T+n time slot and the second set of TRS resources are received in the T+n+1 time slots.
  • FIG. 3 it is a signaling diagram of a signal transmission method according to the present embodiment, in which an AP TRS is transmitted by two slots, wherein a first slot parameter is the first part of the AP TRS, and a second slot transmits an AP TRS. In the second part, the slot offset is determined relative to the first slot in the figure.
  • a bandwidth part that is, a physical resource block set for transmitting resources, generally includes a plurality of consecutive physical resource blocks, where each physical resource block includes multiple subcarriers and A plurality of time domain symbols, which may also be referred to as partial bandwidths, are methods of transmitting and receiving reference signals when switching.
  • BWP bandwidth part
  • N BWPs
  • N is an integer greater than one.
  • the BWP that transmits the first signaling is recorded as BWP0, and the BWP that needs to be switched is changed to BWP1.
  • the base station configures the first signaling, and determines a transmission slot of the aperiodic tracking reference signal according to the first signaling.
  • the base station transmits the first signaling at BWP0.
  • determining, according to the first signaling, that K1 time slots before the BWP1 is valid or the first K2 time slots after the effective time is the time slot for sending the aperiodic tracking reference signal, where K1 and K2 are positive. Integer.
  • the value of K1 may be determined by means of the terminal reporting, or the value of K1 may be determined by means of configuration of the base station, or the value of K1 may be determined by an agreed manner.
  • the base station notifies the initial transmission time T of the PDSCH of the BWP1 or the effective time T of the BWP by using the first signaling, and uses the K1 slots before the T as the measurement interval, and transmits the TRS in the measurement interval.
  • the base station determines the effective time T of the BWP or the initial transmission time T of the PDSCH through the first signaling, and transmits the TRS in the first K2 slots after the T.
  • T and K1, K2 are integers, and T is greater than or equal to the time of BWP switching.
  • K2 may have a value of 1 or 2.
  • the first signaling includes one of the following information: a switching time of BWP0 to BWP1, a starting position of a physical downlink shared channel of BWP1, and a BWP1 effective time.
  • the terminal receives the first signaling, and determines a time slot for receiving the aperiodic tracking reference signal according to the first signaling.
  • the terminal receives the first signaling at BWP0.
  • the terminal receives the aperiodic tracking reference signal in the time slot determined by the first signaling.
  • the K1 time slots before the BWP1 is validated or the first K2 time slot receiving time slots after the BWP1 is valid are determined according to the first signaling, where K1 and K2 are positive integers.
  • the value of K1 may be determined by means of the terminal reporting, or the value of K1 may be determined by means of configuration of the base station, or the value of K1 may be determined by an agreed manner.
  • a possible solution is to notify the start time T of the PDSCH of the BWP1 by the first signaling, or the effective time T of the BWP, and use the K1 slots before T as the measurement interval, and receive the TRS in the measurement interval.
  • the base station determines the effective time T of the BWP or the start time T of the PDSCH through the first signaling, and receives the TRS in the first K2 slots after the T.
  • T and K1, K2 are integers
  • T is a time greater than or equal to the BWP switching.
  • K2 takes a value of 1 or 2.
  • the first signaling includes one of the following information: a switching time of BWP0 to BWP1, a starting position of a physical downlink shared channel of BWP1, and a BWP1 effective time.
  • the base station or the terminal determines, by means of the first signaling implicit manner, that the first K1 slots when the BWP is in effect or the first K1 slots after the BWP is valid have a non-periodic TRS.
  • FIG. 4 it is a signaling diagram of a signal transmission method according to the present embodiment, where the switching of the BWP is triggered by the DCI signaling, and in order to obtain the information such as the time offset on the BWP1 in time, the K1 before the BWP1 takes effect is required.
  • the time slot or the K2 time slots after the BWP1 takes effect sends the AP TRS.
  • This embodiment is used to describe how to determine a valid time slot to transmit a reference signal when the determined time slot of the transmission reference signal is not a valid time slot
  • the reference signal includes but is not limited to one of the following reference signal resources: CSI- RS, CSI-IM, TRS, where CSI-Rs can be used to measure channel and measure interference.
  • CSI-RS CSI-RS
  • CSI-IM CSI-IM
  • TRS where CSI-Rs can be used to measure channel and measure interference.
  • CSI-Rs can be used to measure channel and measure interference.
  • a resource set of reference signals, or a reference signal resource set configuration wherein each reference signal includes one of the following time domain characteristics: a periodic reference signal resource, an aperiodic reference signal resource, and a semi-persistent reference signal resource.
  • periodic CSI-RS semi-persistent SCI-RS
  • non-periodic CSI-RS non-periodic CSI-RS.
  • the base station configures the first signaling, determines a time slot T for transmitting the reference signal according to the first signaling, and transmits the reference signal in the time slot.
  • the method of determining the time slot T for transmitting the aperiodic reference signal includes, but is not limited to, the methods described in Embodiments 1 to 4.
  • the effective time slot refers to a downlink time slot for transmitting a downlink signal, or a time slot for transmitting a downlink signal whose number of symbols is greater than N, where N is an integer greater than N0, where N0 is a positive integer.
  • finding a minimum effective time slot after T includes but is not limited to one of the following methods:
  • T1 is a valid time slot for transmitting a reference signal, where T1 is the smallest effective time slot greater than T. or,
  • T+T0 is a valid time slot for transmitting the reference signal, where T0 is a positive integer and T+T0 is the smallest valid time slot.
  • the terminal receives the first signaling, determines a time slot T for receiving the reference signal according to the first signaling, and receives the reference signal in a time slot of receiving the reference signal.
  • the method of determining the time slot T for receiving the aperiodic reference signal includes, but is not limited to, the methods described in Embodiments 1-4.
  • the effective time slot refers to a downlink time slot for transmitting a downlink signal, or a time slot for transmitting a downlink signal whose number of symbols is greater than N, where N is an integer greater than N0, where N0 is a positive integer.
  • finding a minimum effective time slot after T includes but is not limited to one of the following methods:
  • T1 is a valid time slot for transmitting a reference signal, where T1 is the smallest effective time slot greater than T. or,
  • T+T0 is a valid time slot for transmitting the reference signal, where T0 is a positive integer and T+T0 is the smallest valid time slot.
  • the reference signal includes, but is not limited to, one of the following reference signal resources: CSI-RS, CSI-IM, where CSI-Rs can be used to measure the CSI-RS of the channel and the CSI for measuring interference.
  • CSI-RS CSI-RS
  • CSI-IM CSI-Rs can be used to measure the CSI-RS of the channel and the CSI for measuring interference.
  • each reference signal may include one of the following time domain characteristics: a periodic reference signal resource, an aperiodic reference signal resource, and a semi-persistent reference signal resource. For example, periodic CSI-RS, semi-persistent SCI-RS, and non-periodic CSI-RS.
  • the base station configures the first signaling to determine a time slot offset for transmitting K1 reference signals. At least one of the offsets of the following reference signals, the channel state information reference channel resource slot offset n1 for measuring the channel, the channel state information reference signal resource slot offset n2 for measuring interference, and the channel state information interference
  • the time slot offset of the measurement resource is n3. And determining, according to the time slot offset and the time K of the first signaling trigger, the time slot for transmitting the corresponding reference signal to send a corresponding reference signal, where K1 is an integer greater than 1.
  • the channel state information reference signal resource of the measurement channel is to be transmitted, then it is transmitted in the K+n1 time slot. If the channel state information reference signal resource for measuring interference is to be transmitted, it is sent in the K+n2 time slot, if The CSI-IM resource is sent, then sent in the K+n3 time slot.
  • the CSI process time interval corresponding to the K1 reference signals is K+T to N, where K is a time slot triggering the reference signal, K1 is a positive integer, and K is a non-negative integer.
  • T is a maximum value of a time slot offset including at least one of the following, a channel state information reference signal resource time slot offset n1 for measuring a channel, and channel state information reference signal resource time slot offset for measuring interference N2, the channel state information interferes with the time slot offset n3 of the measurement resource, where N is the time slot of the CSI reporting corresponding to the CSI process, that is, the time slot in which the CSI is reported.
  • the terminal receives the first signaling and determines a time slot offset for receiving the K1 reference signals. And at least one of the time slot offsets of the following reference signals, the channel state information reference signal resource time slot offset n1 for measuring the channel, the channel state information reference signal resource time slot offset n2 for measuring interference, the channel state The information interferes with the time slot offset of the measurement resource, n3. And determining, according to the time offset and the time K of the first signaling trigger, the corresponding reference signal for transmitting the time slot receiving the corresponding reference signal, where K1 is an integer greater than 1.
  • the channel state information reference signal resource of the measurement channel is to be received, then it is received in the K+n1 time slot, and if the channel state information reference signal resource for measuring interference is to be received, it is received in the K+n2 time slot, if Receiving the CSI-IM resource, then receiving in the K+n3 time slot, and K is the time slot for receiving the first signaling or the time slot for triggering the reference signal.
  • K1 is a positive integer
  • K is a non-negative integer
  • T is a maximum value of a time slot offset including at least one of the following, a channel state information reference signal resource time slot offset n1 for measuring a channel, and channel state information reference signal resource time slot offset for measuring interference N2, the channel state information interferes with the time slot offset n3 of the measurement resource.
  • N is the time slot of the CSI reporting corresponding to the CSI process, that is, the time slot in which the CSI is reported.
  • the reference signals herein include, but are not limited to, one of the following reference signal resources: CSI-RS, CSI-IM, TRS, SRS, and SSB (a resource block block for transmitting PSS or SSS, where Primary synchronization signal, PSS Secondary synchronization signal) , SSS). Or a resource set of reference signals, or a reference signal resource set configuration, wherein each reference signal includes one of the following time domain characteristics: a periodic reference signal resource, an aperiodic reference signal resource, and a semi-persistent reference signal resource.
  • the physical shared channel includes a PDSCH or a PUSCH.
  • the first communication node transmits the reference signal and the physical shared channel in the following manner.
  • the first communication node configures the second signaling information. And transmitting, according to the second signaling, a reference signal and/or a physical shared channel in the overlapping time domain resource.
  • the overlapping time domain resource is an overlapping part of a time domain resource that sends the reference signal and a time domain resource of the physical shared channel;
  • the reference signal and/or the physical shared channel are sent in the overlapping time domain resource according to the second signaling, including one of the following situations:
  • the second signaling is high layer signaling, and the high layer signaling is used to determine an overlapping time domain resource sending reference signal and/or a physical shared channel;
  • the second signaling is physical layer signaling, and the overlapping time domain resource sending reference signal and/or physics is determined according to at least one of a receiving end capability, a spatial parameter corresponding to the reference signal, and a spatial parameter corresponding to the physical shared channel. Shared channel.
  • the reference signal and the physical shared channel transmitted in the overlapping time domain resources may include, but are not limited to, one of the following combinations: CSI-RS and PDSCH, CSI-IM and PDSCH, TRS and PDSCH, SSB and PDSCH, and SRS and PUSCH,
  • the time domain characteristics of the various reference signals may be periodic or aperiodic or semi-persistent, or may be a resource set of reference signals.
  • the second signaling includes at least three possible values V1 or V2, respectively, corresponding to only transmitting the reference signal, or only the physical shared channel; or transmitting the reference signal and the physical shared channel.
  • the spatial parameters include, but are not limited to, one of the following: a transmit beam index, a transmit beam set index, a receive beam index, a receive beam set index, a spatial receive parameter, a quasi-common position type D, and a transmission configuration indication ( Transmission configuration indication (TCI), and transmission configuration indication status.
  • a transmit beam index a transmit beam set index
  • a receive beam index a receive beam set index
  • a spatial receive parameter a quasi-common position type D
  • a transmission configuration indication Transmission configuration indication (TCI)
  • TCI Transmission configuration indication
  • the second communication node receives and receives the second signaling information. Receiving reference signals and/or physical shared channels in overlapping time domain resources according to the second signaling.
  • the overlapping time domain resource is an overlapping portion of a time domain resource that receives the reference signal and a time domain resource of the physical shared channel;
  • the receiving, by the second signaling, the reference signal and/or the physical shared channel in the overlapping time domain resource includes one of the following situations:
  • the second signaling is high layer signaling, and the high layer signaling is used to determine an overlapping time domain resource sending reference signal and/or a physical shared channel;
  • the second signaling is physical layer signaling, and the overlapping time domain resource sending reference signal and/or physics is determined according to at least one of a receiving end capability, a spatial parameter corresponding to the reference signal, and a spatial parameter corresponding to the physical shared channel. Shared channel.
  • the reference signal and the physical shared channel transmitted in the overlapping time domain resources may include, but are not limited to, one of the following combinations: CSI-RS and PDSCH, CSI-IM and PDSCH, TRS and PDSCH, SSB and PDSCH, SRS and PUSCH, wherein
  • the time domain characteristics of the various reference signals may be periodic or aperiodic or semi-persistent, or may be a collection of resources of the reference signal.
  • the second signaling includes at least three possible values V1 or V2, respectively, corresponding to receiving only the reference signal, or only receiving the physical shared channel; or receiving the reference signal and the physical shared channel.
  • the spatial parameters include, but are not limited to, one of the following: a transmit beam index, a transmit beam set index, a receive beam index, a receive beam set index, a spatial receive parameter, a quasi-common position type D, and a transmission configuration indication ( Transmission configuration indication (TCI), and transmission configuration indication status.
  • a transmit beam index a transmit beam set index
  • a receive beam index a receive beam set index
  • a spatial receive parameter a quasi-common position type D
  • a transmission configuration indication Transmission configuration indication (TCI)
  • TCI Transmission configuration indication
  • the transmitted physical shared channel is a PUSCH
  • the first communication node is a terminal
  • the second communication node is a base station.
  • the transmitted physical shared channel is a PDSCH
  • the first communication node is a base station
  • the second communication is performed.
  • the node is the terminal.
  • the embodiment of the present application further provides a signal transmission apparatus, which is disposed on a first communication node.
  • the signal transmission apparatus proposed by the present application includes: a first configuration unit and a first transmission unit.
  • the first configuration unit is configured to configure the first signaling.
  • the first sending unit is configured to send a reference signal in a time slot of the sending reference signal according to a time slot of the sending reference signal determined according to the first signaling.
  • the first signaling includes offset signaling
  • the offset signaling includes joint information periodicityOffset of period and time slot offset.
  • the first signaling includes trigger signaling and offset signaling.
  • the time slot of the reference signal determined according to the trigger signaling and the offset signaling is K+n; wherein the K is a time slot for transmitting trigger signaling, and the n is a time slot determined according to the offset signaling Offset, K and n are integers greater than or equal to zero.
  • the first transmitting unit is configured to transmit a reference signal in the time slot K+n of the transmission reference signal according to the time slot K+n of the transmission reference signal determined according to the first signaling.
  • the reference signal includes at least one of the following reference signals: an aperiodic channel state information interference measurement resource AP CSI-IM resource; an aperiodic channel state information interference measurement resource set AP CSI-IM resource set; Aperiodic tracking reference signal resource TRS resource; aperiodic tracking reference signal resource set TRS resource set.
  • the first signaling includes trigger signaling across a serving cell
  • the first reference time Ki is a minimum time slot not earlier than the time T or a time slot not earlier than the time T or less than the time T, wherein the time T is The last symbol of the time domain resource that transmits the serving cell trigger signaling.
  • the first signaling further includes offset signaling
  • n is a time slot offset value configured by the bias signaling
  • the first sending unit is configured to separately send the reference signal in the time slot Ki+n of the transmission reference signal corresponding to each serving cell according to the determined time slot Ki+n of the transmission reference signal.
  • the reference signal includes, but is not limited to, at least one of: an aperiodic channel state information reference signal resource or an aperiodic channel state information reference signal resource set; an aperiodic channel state information interference measurement resource AP CSI-IM resource; The periodic channel state information interferes with the measurement resource set AP CSI-IM resource set.
  • the N serving cells triggered by the cross-serving cell triggering signaling have the same carrier spacing or the same numerology, and N is an integer greater than 1.
  • the first signaling includes trigger signaling and offset signaling.
  • the time slot of the transmission reference signal determined according to the trigger signaling and the offset signaling is K+n or K+n+1, where K is a time slot for transmitting trigger signaling, and n is carried by the offset signaling. Slot offset, K and n are non-negative integers.
  • the first sending unit is configured to send a first part of the aperiodic tracking reference signal in the time slot K+n of the sending reference signal, and send the non-slot in the time slot K+n+1 of the sending reference signal.
  • the second part of the periodic tracking reference signal is configured to send a first part of the aperiodic tracking reference signal in the time slot K+n of the sending reference signal, and send the non-slot in the time slot K+n+1 of the sending reference signal.
  • the first signaling is the handover signaling
  • the K1 time slots before the second bandwidth part BWP1 takes effect or the first K2 time slots after the effective time are determined to be the reference signal according to the first signaling.
  • a gap portion wherein the BWP1 is a bandwidth portion after the first bandwidth portion BWP0 is switched; the BWP0 is a bandwidth portion for transmitting the first signaling; and K1 and K2 are positive integers.
  • the first sending unit sends the aperiodic tracking reference on the time slot of the sending reference signal, that is, the K1 time slots before the second bandwidth part BWP1 takes effect or the first K2 time slots after the effective time. signal.
  • the handover signaling carries one of the following information: a handover time of the BWP0 to the BWP1, a start position of the physical downlink shared channel of the BWP1, and a BWP1 effective time.
  • the time slot, or the symbol used to transmit the reference signal is a downlink symbol, or the symbol used to transmit the reference signal does not belong to an uplink symbol.
  • Nx is greater than N0
  • Nx and N0 are positive integers
  • K is a time slot for transmitting trigger signaling
  • n is a time slot offset carried by the bias signaling
  • K and n are non-negative integers.
  • the effective time slot T1 for transmitting the reference signal is determined by one of the following methods:
  • T1 is the least significant time slot greater than T; or,
  • T+T0 is a valid time slot for transmitting the reference signal, where T0 is a positive integer and T+T0 is the smallest valid time slot.
  • the first sending unit sends the reference signal on the time slot of the transmission reference signal that is determined to be a valid time slot.
  • the embodiment of the present application further provides another signal transmission apparatus, which is disposed on the first communication node, and the signal transmission apparatus proposed by the present application includes: a second configuration unit and a second transmission unit. .
  • the second configuration unit is configured to configure the second signaling.
  • a second sending unit configured to send the reference signal and/or the physical shared channel in the overlapping time domain resource according to the second signaling.
  • the overlapping time domain resource is an overlapping part of a time domain resource that sends the reference signal and a time domain resource of the physical shared channel.
  • the second signaling is high layer signaling, and the second sending unit is configured to determine, according to the high layer signaling, an overlapping time domain resource sending reference signal and/or a physical shared channel; or
  • the second signaling is physical layer signaling, and the second sending unit is configured to determine an overlapping time domain resource sending reference according to one or any combination of a receiving end capability, a spatial parameter corresponding to the reference signal, and a spatial parameter corresponding to the physical shared channel. Signal and / or physical shared channel.
  • determining the overlapping time domain resource transmission reference signal and/or the physical shared channel includes one of the following situations:
  • the spatial parameters of the overlapping time domain resources are determined by at least one of the following manners:
  • the second signaling includes a parameter value V1 or a parameter value V2;
  • the parameter value of the second signaling is V1, indicating that the spatial parameter of the overlapping time domain resource is a spatial parameter corresponding to the physical shared resource;
  • the spatial parameter of the overlapping time domain resource is a spatial parameter corresponding to the physical shared resource and a spatial parameter corresponding to the reference signal, or
  • the spatial parameter of the overlapping time domain resource is a spatial parameter corresponding to the physical shared resource.
  • the embodiment of the present application further provides a signal transmission apparatus, which is disposed on a second communication node, and the signal transmission apparatus proposed by the present application includes:
  • a first receiving unit configured to receive the first signaling
  • a first time slot determining unit configured to determine a time slot corresponding to the reference signal according to the received first signaling
  • the first receiving unit is further configured to receive the reference signal on the determined time slot corresponding to the reference signal.
  • the first signaling includes offset signaling
  • the offset signaling includes joint information periodicityOffset of period and time slot offset.
  • the first signaling includes trigger signaling and offset signaling.
  • the first time slot determining unit determines, according to the received first signaling, that the time slot corresponding to the reference signal includes:
  • the time slot corresponding to the reference signal is K+n; wherein the K is a time slot for transmitting trigger signaling, and the n is a time slot offset carried by the offset signaling, K and n are integers greater than or equal to 0;
  • the receiving the reference signal on the determined time slot corresponding to the reference signal includes:
  • the reference signal is received on time slot K+n.
  • the first signaling includes trigger signaling across a serving cell
  • the first time slot determining unit determines, according to the received first signaling, that the time slot corresponding to the reference signal includes:
  • Determining, according to the cross-serving cell trigger signaling, a first reference time Ki of the N serving cells; wherein, the Ki is an integer greater than or equal to 0, and i 1, . . . , N, N is an integer greater than 1.
  • the first reference time Ki is a minimum time slot not earlier than the time T, or a time slot not earlier than the time T, or a minimum symbol not earlier than the time T, wherein the time is T is the last symbol of the time domain resource that transmits the serving cell trigger signaling.
  • the first signaling further includes offset signaling
  • the determining, by the first time slot determining unit, the time slot corresponding to the reference signal according to the received first signaling further includes:
  • a time slot corresponding to the reference signal of the i th service cell is Ki+n; wherein n is a time slot offset value configured by the bias signaling,
  • the receiving, by the first receiving unit, the receiving the reference signal on the determined time slot corresponding to the reference signal includes:
  • the reference signals are respectively received in the time slots corresponding to the reference signals corresponding to each serving cell.
  • the N serving cells triggered by the cross-serving cell triggering signaling have the same carrier spacing or the same numerology, and N is an integer greater than 1.
  • the first signaling includes trigger signaling and offset signaling.
  • the first time slot determining unit determines, according to the received first signaling, that the time slot corresponding to the reference signal includes:
  • a time slot corresponding to the reference signal is K+n or K+n+1, where K is a time slot for transmitting trigger signaling, and n is a bias signaling carrying The time slot offset, K and n are non-negative integers.
  • the first receiving unit is configured to receive a first part of the aperiodic tracking reference signal on the time slot K+n corresponding to the reference signal, where the time slot corresponding to the reference signal is K+n+ The second portion of the non-periodic tracking reference signal is received on 1.
  • the first signaling is handover signaling
  • the first time slot determining unit determines, according to the received first signaling, that the time slot corresponding to the reference signal includes:
  • the BWP0 is a bandwidth portion for transmitting the first signaling; K1 and K2 are positive integers;
  • the receiving, by the first receiving unit, the reference signal on the determined time slot corresponding to the reference signal includes:
  • a non-periodic tracking reference signal is received in a time slot of the reference signal.
  • the handover signaling carries one of the following information: a handover time of the BWP0 to the BWP1, a start position of the physical downlink shared channel of the BWP1, and an effective time of the BWP1.
  • the determining, by the first time slot determining unit, the time slot corresponding to the reference signal further includes:
  • the valid time slot includes one of: a downlink time slot, or a time slot including Nx downlink symbols, or a symbol for transmitting the reference signal is a downlink symbol, or a symbol for transmitting the reference signal is not Belong to the up symbol;
  • Nx is greater than N0
  • Nx and N0 are positive integers
  • K is a time slot for transmitting trigger signaling
  • n is a time slot offset carried by the bias signaling
  • K and n are non-negative integers.
  • the determining, by the first time slot determining unit, the time slot corresponding to the reference signal further includes:
  • the effective time slot T1 corresponding to the reference signal is determined by one of the following methods:
  • T1 is the least significant time slot greater than T; or,
  • T+T0 is a valid time slot corresponding to the reference signal, where T0 is a positive integer, and T+T0 is the smallest effective time slot.
  • the time zone for processing the channel state information corresponding to the reference signal is K+T to N, where the K is a time slot for triggering the reference signal or a time slot for transmitting trigger signaling.
  • T is the maximum value of the time slot offset of K1 reference signals
  • N is the time slot of the channel state information reporting CSI reporting
  • K1 is a positive integer
  • K is a non-negative integer
  • the time slot offset of the K1 reference signals includes at least one of the following time slot offsets, and is used to measure channel state information reference signal resource time slot offset n1 of the channel, and is used to measure the interference channel.
  • the status information refers to the signal resource time slot offset n2, and the channel status information interferes with the time slot offset n3 of the measurement resource.
  • the embodiment of the present application further provides another signal transmission apparatus, which is disposed on the second communication node, and the signal transmission apparatus proposed by the present application includes: a second receiving unit.
  • a second receiving unit configured to receive the second signaling
  • the second receiving unit is further configured to receive the reference signal and the physical shared channel in the overlapping time domain resource according to the received second signaling.
  • the overlapping time domain resource is an overlapping part of a time domain resource that transmits the reference signal and a time domain resource of the physical shared channel.
  • the second signaling is high layer signaling, and the second receiving unit is further configured to determine, according to the high layer signaling, an overlapping time domain resource receiving reference signal and/or a physical shared channel; or
  • the second signaling is physical layer signaling, and the second receiving unit is further configured to determine the overlapping time domain resource receiving according to at least one of a receiving end capability, a spatial parameter corresponding to the reference signal, and a spatial parameter corresponding to the physical shared channel.
  • the second receiving unit is further configured to determine an overlapping time domain resource.
  • the determining, by the second receiving unit, the overlapping time domain resource receiving reference signal and/or the physical shared channel includes:
  • the spatial parameter determining unit is configured to determine spatial parameters of the overlapping time domain resources by using at least one of the following manners:
  • the second signaling includes at least one of a parameter value V1 or a parameter value V2;
  • the parameter value of the second signaling is V1, indicating that the spatial parameter of the overlapping time domain resource is a spatial parameter corresponding to the physical shared resource;
  • the spatial parameter indicating the overlapping time domain resource is a spatial parameter corresponding to the physical shared resource and a spatial parameter corresponding to the reference signal, or
  • the spatial parameter of the overlapping time domain resource is a spatial parameter corresponding to the physical shared resource.
  • the embodiment of the present application further provides an apparatus, including a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor.
  • the processing of any of the signal transmission methods provided by the embodiments of the present application is implemented when the computer program is executed.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer program is stored, and when the computer program is executed by the processor, any one of the embodiments provided in this application is implemented. Processing of signal transmission methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种信号传输方法和装置,该方法包括:配置第一信令;根据所述第一信令确定发送参考信号的时隙,并在所述发送参考信号的时隙上发送参考信号。

Description

信号传输方法和装置
本申请要求在2018年04月16日提交中国专利局、申请号为201810340285.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种信号传输方法和装置。
背景技术
随着生活、生产对无线通信需求的迅猛发展,无线通信系统已经从第四代的长期演进技术(Long Term Evolution,LTE)、长期演进升级技术(LTE-Advanced,LTE-A),到现在的第五代的新无线接入技术(New Radio Access Technology,New RAT,NR,)发展和演进。而NR和LTE等通信系统中,未来更好地传输信息,需要基站或者用户获取较准确的信道状态信息(Channel State Information,CSI),其中信道状态信息包括但不限于:信道质量指示(Channel Quality Indication,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、秩指示(Rank Indicator,RI)、信道状态信息参考导频资源指示(CSI-RS resource Indicator,CRI)。为了计算CSI,需要基站或者用户发送参考信号(Reference Signal,RS),参考信道包括但不限于信道状态信息参考信号(Channel-State Information reference signal,CSI-RS),它包括零功率的CSI-RS(Zero Power CSI-RS,ZP CSI-RS)和非零功率的CSI-RS(Non-Zero Power CSI-RS,NZP CSI-RS),信道状态信息干扰测量信号(Channel-State Information-Interference Measurement,CSI-IM),探测参考信号(Sounding reference signal,SRS),NZP CSI-RS可以用来测量信道或者干扰,CSI-RS也可以用来做跟踪,叫做跟踪参考信号(CSI-RS for Tracking,TRS),而CSI-IM一般用来测量干扰,SRS用来进行信道估计。CSI-RS,SRS,CSI-IM等这些参考信号,在传输时又包括时域特性,其中时域特性包括但不限于非周期aperiodic、周期periodic、半持续semi-persistent特性,分别表示传输的参考信号是非周期传输的,周期传输的,或者半持续传输的。其中周期参考信号或者半持续的参考信号都会通过高层信令配置一个周期和/或时隙偏置(slot offset)信息,这两个参数可以是联合编码的(比如通过高层信令periodicityAndOffset配置,通过获取这个参数,用户就 可以知道周期或者半持续参考信号的传输周期,以及传输的时隙slot)。在通信系统中,为了节省信令开销等,可能会把多个参考信号资源分成多个集合(比如CSI-RS resource set,CSI-IM resource set,SRS resource set),参考信号资源集合包括至少一个参考信号资源,而多个参考信号资源集合可以都来自同一个参考信号资源设置(比如CSI-RS resource setting,SRS resource setting,CSI-IM resource setting,其中CSI-IM resource setting可能和CSI-IM resource setting合并,都称为CSI-RS resource setting)来配置参数信息。
在通信系统中,为了传输数据,或者在一些高层信令,物理层信令等,将信道分成了物理下行控制信道(Physical Downlink Control Channel,PDCCH),物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理上行控制信道(Physical Uplink Control Channel,PUCCH),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。为了解调这些信道,还需要用到解调参考信号(DMRS,Demodulation Reference Signal)来估计信道系数以解调数据。
在NR系统中,特别是高频段(比如大于等于6G Hz)系统,为了克服路径损耗,基站和/或终端采用了射频波束以获得波束增益。而不同的基站或终端,或者基站的不同天线面板(panel),或者终端的天线面板在传输不同物理共享信道或者参考信号时使用的射频波束可能都不同,这就需要终端或者基站在传输或者接收信息(包括参考信号和/或物理共享信道,其中参考信号包括但不限于CSI-RS,CSI-IM,SRS,TRS,物理共享信道包括但不限于PUSCH,PDSCH)时对空间参数有相同的理解。这里的空间参数包括但不限于以下之一:射频波束、空间接收参数(Spatial Rx parameter),传输配置指示(Transmission configuration indication,TCI)、波束索引,波束组索引、以及准共位(quasi co-location)中的部分参数信息指示。不同的参考信号或者物理共享信道可以使用不同的射频波束来发送或者接收。
在传输参考信号和/或者物理共享信道的时候,相关技术还存在一些缺陷,比如,在通知非周期的CSI-IM或非周期的TRS的时域特性时还存在一定的问题,使得终端不能很好地接收所述的参考信号。另外,在传参考信号时,如果参考信号和物理共享信道有资源重叠,如何有效地接收在共同的时域资源传输的参考信号和物理共享信道,也没有很好地解决。
发明内容
本申请提出了一种信号传输方法和装置,能够有效地实现非周期参考信号的传输。
本申请提出了一种信号传输方法,所述方法包括:
配置第一信令;
根据所述第一信令确定发送参考信号的时隙,并在所述发送参考信号的时隙上发送参考信号。
本申请还提出了一种信号传输方法,所述方法包括:
配置第二信令;
根据所述第二信令在重叠时域资源发送参考信号和物理共享信道中的至少之一。
其中,所述重叠时域资源为发送所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分。
本申请还提出了一种信号传输方法,所述方法包括:
接收第一信令;
根据接收的第一信令,确定参考信号对应的时隙;
在确定的所述参考信号对应的时隙上接收参考信号。
本申请还提出了一种信号传输方法,所述方法包括:
接收第二信令;
根据接收的第二信令在重叠时域资源接收参考信号和物理共享信道;
其中,所述重叠时域资源为传输所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分。
本申请还提出了一种信号传输装置,设置在第一通信节点上,所述装置包括:
第一配置单元,设置为配置第一信令;
第一发送单元,设置为根据所述第一信令确定发送参考信号的时隙,并在所述发送参考信号的时隙上发送参考信号。
本申请还提出了一种信号传输装置,设置在第一通信节点上,所述装置包括:
第二配置单元,设置为配置第二信令;
第二发送单元,设置为根据所述第二信令在重叠时域资源发送参考信号和 物理共享信道中的至少之一;
其中,所述重叠时域资源为发送所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分。
本申请还提出了一种信号传输装置,设置在第二通信节点上,所述装置包括:
第一接收单元,设置为接收第一信令;
第一时隙确定单元,设置为根据接收的第一信令,确定参考信号对应的时隙;
所述第一接收单元还设置为在确定的所述参考信号对应的时隙上接收参考信号。
本申请还提出了一种信号传输装置,设置在第二通信节点上,所述装置包括:
第二接收单元,设置为接收第二信令;
所述第二接收单元还设置为根据接收的第二信令在重叠时域资源接收参考信号和物理共享信道;其中,所述重叠时域资源为传输所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分。
本申请还提出了一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本申请提供的任一信号传输方法的处理。
本申请还提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本申请提供的任一信号传输方法的处理。
与相关技术相比,本申请提供的技术方案包括:配置第一信令;根据所述第一信令确定的发送参考信号的时隙,在所述发送参考信号的时隙发送参考信号。通过本申请的方案,无线通信系统可以在不增加新的非周期高层信令的情况下,即不需要修改标准的情况下,利用相关的周期的相关信令达到正常发送或接收非周期信号的目的。
附图概述
下面对本申请实施例中的附图进行说明,实施例中的附图是用于对本申请的进一步理解,与说明书一起用于解释本申请,并不构成对本申请保护范围的限制。
图1A、图1B、图1C和图1D分别为本申请实施例提供的一种信号传输方法的流程示意图;
图2为本申请实施例提供的信号传输方法中的信号示意图;
图3为本申请实施例提供的信号传输方法中的信号示意图;
图4为本申请实施例提供的信号传输方法中的信号示意图。
具体实施方式
为了便于本领域技术人员的理解,下面结合附图对本申请作进一步的描述,并不能用来限制本申请的保护范围。本申请实施例中提供了一种移动通信网络(包括但不限于5G移动通信网络),该网络的网络架构可以包括网络侧设备(例如基站)和终端。在本实施例中提供了一种可运行于上述网络架构上的信息传输方法,需要说明的是,本申请实施例中提供的上述信息传输方法的运行环境并不限于上述网络架构。
需要补充的是,在本申请文件中,在下行链路中第一通信节点可以是基站侧设备,第二通信节点可以终端侧设备,当然,在上行链路中第一通信节点也可以是终端侧设备,第二通信节点也可以是基站侧设备。在两个通信节点是设备到设备通信中,第一通信节点和第二通信节点都可以是基站或者终端。其中终端也可以称为用户。
如图1A所示,本申请实施例提出了一种信号传输方法,所述方法包括:步骤11和步骤13。
在步骤11中,第一通信节点配置第一信令。
在步骤13中,第一通信节点根据所述第一信令确定的发送参考信号的时隙,在所述发送参考信号的时隙发送参考信号。
在一个示例中,所述第一信令包括触发信令和偏置信令;另一个示例中,所述第一信令为切换信令。
在一实施例中,在步骤13之前还包括:第一通信节点根据所述第一信令确定发送参考信号的时隙。如图1B所示,本申请实施例提出了一种信号传输方法,所述方法包括:步骤21和步骤22。
在步骤21中,第一通信节点配置第二信令。
在步骤22中,根据第二信令在重叠时域资源发送参考信号和/或物理共享信道;
如图1C所示,本申请实施例提出了一种信号传输方法,所述方法包括:步骤31、步骤32和步骤33。
在步骤31中,第二通信节点接收第一信令。
在步骤32中,第二通信节点根据接收的第一信令,确定参考信号对应的时隙。
在步骤33中,第二通信节点在确定的所述参考信号对应的时隙上接收参考信号。
如图1D所示,本申请实施例提出了一种信号传输方法,所述方法包括:步骤41和步骤42。
在步骤41中,第二通信节点接收第二信令。
在步骤42中,根据所述接收的第二信令在重叠时域资源接收参考信号和/或物理共享信道。
本申请实施例提出了一种信号传输方法,所述方法包括:
基站侧的方法,包括:步骤110至步骤140。
在步骤110中,基站配置第一信令;所述第一信令包括触发信令和偏置信令。
其中,偏置信令时隙偏置或携带有周期和时隙偏置的联合信息periodicityAndOffset。
其中,触发信令为触发发送参考信号的信令,根据传输触发信令的时隙K起点和偏置信令指示的时隙偏置n,可以确定发送参考信号的时隙。
在步骤120中,基站发送触发信令和偏置信令。
在步骤130中,通过第一信令和触发信令确定发送参考信号的时隙。
在步骤140中,基站发送参考信号。
终端侧的方法:步骤150、步骤160和步骤170。
在步骤150中,终端接收触发信令和偏置信令。
在步骤160中,终端根据触发信令和偏置信令确定参考信号对应的时隙。
步骤160包括:
其中,偏置信令时隙偏置或携带有周期和时隙偏置的联合信息periodicityAndOffset。
其中,触发信令为触发发送参考信号的信令,根据传输触发信令的时隙K起点和偏置信令指示的时隙偏置n,可以确定发送参考信号的时隙。
确定参考信号对应的时隙为K+n。
在步骤170中,终端根据确定的接收参考信号对应的时隙,接收基站发送的参考信号。
步骤170包括:终端在K+n上接收参考信号。
下面结合示例性的实施场景进行说明。
实施例1
通过本实施例用于说明在非周期参考信号,如CSI-IM(aperiodic CSI-IM,AP CSI-IM)的发送过程的时隙确定问题,基站和终端通过如下的过程发送和接收AP CSI-IM。这里,可以通过高层信令配置大于等于1个CSI-RS resource setting,每个CSI-RS resource setting包括大于等于1个CSI-IM resource set,而每个CSI-IM resource set包括大于等于1个CSI-IM resource。这里的CSI-IM的时域特性可以通过高层信令配置为周期的,非周期的,以及半持续的。
基站配置第一信令,根据第一信令确定用于发送非周期参考信号的时隙slot,在所述时隙发送非周期的信道状态信息干扰测量资源AP CSI-IM resource(s)。
在一实施例中,基站发送所述第一信令。
其中,第一信令为高层信令,包括但不限于至少以下信息之一:周期Periodicity,时隙偏置slot offset,周期和时隙偏置的联合信息periodicityAndOffset。
这里,基站也可以在所述发送参考信号的时隙发送非周期的信道状态信息干扰测量资源集合AP CSI-IM resource set(s),非周期的跟踪参考信号资源TRS resource,非周期的跟踪参考信号资源集合TRS resource set。
在一实施例中,这里的第一信令主要用于指示周期的CSI-IM resource或者周期的CSI-IM set的周期和/或slot offset。
在一实施例中,基站配置触发信令,基站发送所述触发信令,所述触发信令为物理层信令或高层信令。
基站根据所述第一信令和所述触发信令确定发送参考信号的时隙为K+n,其中,所述K为传输触发信令的时隙,所述n为根据第一信令确定的时隙偏置,K和n为大于等于0的整数。
终端接收第一信令,根据第一信令确定接收非周期参考信号的时隙slot,在所述时隙接收非周期的信道状态信息干扰测量资源AP CSI-IM resource(s)。
在一实施例中,基站接受触发信令,所述触发信令为物理层信令或高层信令。
当然这里的,也可以在所述时隙接收非周期的信道状态信息干扰测量资源集合AP CSI-IM resource set(s),非周期的跟踪参考信号资源TRS resource,非周期的跟踪参考信号资源集合TRS resource set。
其中,第一信令为高层信令,包括至少以下信息之一:周期(Periodicity),时隙偏置(slot offset),周期和时隙偏置的联合信息(periodicityAndOffset)。
在一实施例中,这里的第一信令主要用于指示周期的CSI-IM resource或者周期的CSI-IM set的周期和/或slot offset。
在一实施例中,通过第一信令为时隙偏置,终端通过所述的时间偏置确定接收AP CSI-IM resource(s)或AP CSI-IM resource set(s)的n,其中,n为非负整数。
在一实施例中,通过第一信令为周期和时隙的联合信息periodicityAndOffset,终端通过解码periodicityAndOffset获取时隙偏置部分的信息,并用获取的时隙偏置部分的信息确定接收AP CSI-IM resource(s)或AP CSI-IM resource set(s)的时隙偏置n,其中,n为非负整数。
终端根据所述第一信令确定所述时隙偏置n和所述的触发信令确定发送参考信号的时隙为K+n,所述K为传输触发信令的时隙,所述n为根据第一信令确定的时隙偏置,K和n为大于等于0的整数。
通过本实施例的方法,无线通信系统可以在不增加新的非周期CSI-IM的高层信令的情况下,即不需要修改标准的情况下,利用相关的周期CSI-IM的相关信令(周期和时隙偏置信令,比如,periodicity And Offset)达到正常发送或接收AP CSI-IM resource或AP CSI-IM resource set的目的。
当然,由于周期CSI-IM的周期和时隙偏置信令可能是针对每个CSI-IM resource的,而非周期的CSI-IM resource传输可能是针对CSI-IM resource set的,而每个CSI-IM resource set包括至少一个CSI-IM resource。所以可能存在的情况是,同一个CSI-IM resource set的不同CSI-IM resource的时隙偏置是不同的。即,非周期的信道状态信息干扰测量资源集合中的信道状态信息干扰测量资源的时隙偏置或时隙可取不同的值。当然,一个特例是它们都取相同的值,即非周期的信道状态信息干扰测量资源集合中的信道状态信息干扰测量资源的时隙偏置或时隙都相同。
本实施例也同样适用于其它的非周期参考信号,比如非周期的ZP CSI-RS,非周期的TRS等,只要将实施例中的CSI-IM替换成ZP CSI-RS或者TRS就可 以。
一个应用示例为:
基站配置周期信道状态信息干扰测量资源的周期和时隙偏置信令。配置并发送触发信令,在所述周期信道状态信息干扰测量资源的周期和时隙偏置信令确定时隙偏置n;根据时隙偏置n以及传输触发信令的时隙K确定发送非周期的信道状态信息干扰测量资源或信道状态信息干扰测量资源集合的时隙为K+n。其中,n和K为非负整数。
终端接收周期信道状态信息干扰测量资源的周期和时隙偏置信令,根据周期信道状态信息干扰测量资源的周期和时隙偏置信令确定用于接收非周期信道状态信息干扰测量资源或信道状态信息干扰测量资源集合的时隙偏置n,接收触发信令,并根据接收触发信令的时隙K确定发送参考信号的时隙为K+n,其中,n和K为非负整数。在所述时隙K+n接收非周期信道状态信息干扰测量资源或信道状态信息干扰测量资源集合。
实施例2
本实施例主要用于说明在载波聚合传输信息时,传输非周期的参考信号的过程。基站配置了多个服务小区(或载波,或BWP)CCi,第i个载波(或载波,或BWP)CCi对应的子载波间距subcarrier spacing为SCSi,i=1,…,N,N为大于1的整数。需要说明的是,这里的服务小区,可以替换成载波或BWP。用一个物理下行控制信息(Donwlink Control information,DCI,一般由PDCCH携带)跨载波触发多个载波的参考信号,如CSI-RS,假设基站没有配置准共位置类型D(QCL Type D)。下面的过程,通过一个DCI触发多个分量载波(Component Carrier,CC)的CSI-RS resource或者CSI-RS resource set或者CSI-RS resource Setting。
配置第一信令;根据第一信令确定用于发送N个服务小区上的非周期信道状态信息参考信号(AP CSI-RS)的第一参考时间Ki,i=1,…,N。
在一实施例中,基站发送所述第一信令。
这里,例如第一信令可以为物理下行控制信息DCI。
这里,在一实施例中,AP CSI-RS也可以是以下参考信号之一:非周期信道状态信息参考信号资源集合(AP CSI-RS resource set),非周期信道状态信息参考信号资源设置(AP CSI-RS resource setting),半持续的信道状态信息参考信号(SP CSI-RS),半持续的信道状态信息参考信号资源集合(SP CSI-RS resource  set),半持续的信道状态信息参考信号资源设置(SP CSI-RS resource setting),非周期跟踪参考信号资源(AP TRS resource),非周期跟踪参考信号资源集合(AP TRS resource set),非周期跟踪参考信号资源设置(AP TRS resource setting),非周期探测参考信号资源(AP SRS resource),非周期探测参考信号资源集合(AP SRS resource set),非周期探测参考信号资源设置(AP SRS resource setting)等。
这里,在一实施例中,第i个服务小区上的发送非周期信道状态信息参考信号(AP CSI-RS)的第一参考时间Ki为不早于时间T的最小时隙或不早于时间T所在的时隙或不早于时间T的最小符号,其中,所述时间T为传输服务小区触发信令的时域资源的最后一个符号,i=1,…,N。
配置偏置信令,所述偏置信令为高层信令或者物理层信令。所述偏置信令包括发送参考信号的时隙偏置n,n为非负整数。
这里,一个应用例子如下,不失一般性,以3个服务小区为例,服务小区1(CC1)为15K的载波间距,服务小区2(CC2)为60K的载波间距,服务小区3(CC3)为120K的载波间距。那么至少存在以下的方式一直来确定每个服务小区发送参考信号的时隙,这里的第一信令为下行控制信息DCI。有可能存在如下三种情况。
情况1:DCI在载波间距最小的CC传输,比如在CC1传输,由于一般来说,DCI一般在slot的前1~3个符号传输,假设传输DCI的控制资源集合(Control-resource set,CORESET)最后一个符号为T=2个符号;那么T=2对应CC2的符号为第四个符号,而CC3的第8个符号,它们都属于第一个slot,所以每个服务小区都在不迟于T的最小的slot都为K1=K2=K3=1,即确定在Ki+n个时隙发送第i个服务小区上的AP CSI-RS,Ki为第i个服务小区发送参考信号的第一参考时间i=1,2,3。这里n对应的时隙slot为每个服务小区上对应的slot,比如n=4,那么第i个服务小区发送参考信号的slot都是5,i=1,2,3。
情况2:DCI在载波间距最大的CC传输,比如在CC3传输,由于一般来说,假设在CC3的第8个slot的第二个符号T=2传输。那么CC3的第8个slot的T=2对应CC1的符号为第ceil(7*14+2)/16)符号(即第7个符号,第一个slot),而相当于CC2的第ceil(7*14+2)/4)个符号(即第25个符号,第二个slot),从而CC1和CC2,CC3的第一参考时间分别在K1=1,K2=2,K3=8,那么第一个服务小区在第n+1个slot发送AP CSI-RS,第二个服务小区在第n+2个slot发送AP CSI-RS,第三个服务小区在第n+8个slot发送AP CSI-RS。
情况3:DCI在载波间距中间的CC传输,比如在CC2传输,由于一般来说,假设在CC2的第3个slot的第二个符号T=2传输。那么CC2的第3个slot的T=2对应CC1的符号为第ceil(2*14+2)/4)符号(即第8个符号,第一个slot),而相当于CC2的第ceil(2*14+2)*4)个符号(即第120个符号,第9个slot),从而CC1和CC2,CC3的第一参考时间分别为K 1=1,K2=3,K3=9,那么第一个服务小区在第n+1个slot发送AP CSI-RS,第二个服务小区在第n+3个slot发送AP CSI-RS,第三个服务小区在第n+9个slot发送AP CSI-RS。
终端接收第一信令;根据第一信令确定用于接收N个服务小区上的非周期信道状态信息参考信号(AP CSI-RS)的时隙。
这里,例如第一信令可以为物理下行控制信息DCI。
如图2所示,为根据本实施例提供的信号传输方法的信令示意图,其中两个载波CC0和CC1,通过DCI指示发送CSI-RS的时隙,对于载波CC0来说,CSI-RS和DCI在同一个时隙发送,对于载波CC1,CSI-RS在DCI之后的一个时隙发送,在哪个时隙发,需要根据CC0的传输DCI所在的时域资源的最后一个符号确定。
这里,在一实施例中,AP CSI-RS也可以是以下参考信号之一:AP CSI-RS resource set,AP CSI-RS resource setting,半持续的信道状态信息参考信号(SP CSI-RS),SP CSI-RS resource set,SP CSI-RS resource setting,AP TRS resource,AP TRS resource set,AP TRS resource setting,AP SRS resource,AP SRS resource set,以及AP SRS resource setting等。
这里,在一实施例中,根据第一信令确定接收第i个CC的AP CSI-RS的第一参考时间Ki,i=1,…,N,N为大于1的整数。
这里,在一实施例中,N个服务小区上的接收非周期信道状态信息参考信号(AP CSI-RS)的第一参考时间都为不迟于时间T所对应的最小时隙,其中,所述时间T为接收或传输所述第一信令的时域资源的最后一个符号。
接收偏置信令,所述偏置信令为高层信令或者物理层信令。所述偏置信令包括接收参考信号的时隙偏置n,n为非负整数。
在所述确定的N个时隙分别接收N个服务小区上的非周期的信道状态信息参考信号,其中N为大于1的整数。即在Ki+n时隙接收第i个CC的非周期信道状态信息参考信号,i=1,…,N,N为大于1的整数。
本实施例的所述的第i个服务小区上用于发送参考信号的时隙Ki+n时隙为 对应载波间距下的时隙。
本实施例的所述的第i个服务小区上的时隙偏置n为基于第i个服务小区上的numerology定义的。比如本实施例的第i个服务小区的一个slot的时隙长为1/(2^Ni)毫秒,Ni在CC1,CC2,CC3中分别为1,4,8,及numerology的取值。分别对应不同的载波间距为2^Ni*15K,其中,i=1,2,3,^表示指数。
需要说明的是,有一种场景是,跨服务小区触发的情况下,每个服务小区(serving cell)对应的numerology相同或者子载波间距相同,即跨服务小区触发参考信号,所述N个服务小区的numerology相同或者子载波间距相同。
实施例3
在本实施例中,发送或者接收非周期的跟踪参考信号(AP TRS)。其中,所述AP TRS分成两部分,AP TRS第一部分和AP TRS第二部分,AP TRS第一部分和AP TRS第二部分可以携带相同的信息,包括但不限于以下之一,相同的端口数,相同的时域位置,子载波位置,相同的发送功率。且AP TRS第一部分和AP TRS第二部分分别在两个连续的时隙发送。
基站配置第一信令;根据第一信令确定用于发送非周期跟踪参考信号的时隙。
在一实施例中,基站发送所述第一信令。
基站在所述第一信令确定的所述时隙发送非周期的跟踪参考信号。
在一实施例中,基站根据第一信令确定用于传输TRS的两个时隙的第一个时隙K+n,其中,K为发送第一信令资源所在的时隙,n为相对于发送非周期跟踪参考信号的第一部分的时隙或时隙偏置。在一实施例中,基站配置偏置信令,所述偏置信令包括所述的时隙偏置n,n为非负整数。
在一实施例中,根据第一信令确定用于发送非周期跟踪参考信号第一部分的时隙,其中,所述发送非周期跟踪参考信号第一部分的时隙用于发送非周期跟踪参考信号的第一部分。
比如,基站确定的用于发送非周期TRS第一部分时隙为K+n时隙,其中,K为传输第一信令资源所在的时隙,n为相对于发送非周期跟踪参考信号的第一部分的时隙或时隙偏置。一般来说,用两个时隙传输TRS,即在K+n时隙传输第一组TRS资源,在K+n+1时隙传输第二组TRS资源。
终端接收第一信令;根据第一信令确定用于接收非周期跟踪参考信号的时隙。
终端在所述时隙接收非周期的跟踪参考信号。
在一实施例中,终端根据第一信令确定用于接收TRS的两个时隙的第一个时隙K+n,其中,K为接收第一信令资源所在的时隙,n为相对于接收非周期跟踪参考信号的第一部分时隙的时隙偏置。在一实施例中,终端接收偏置信令,所述偏置信令包括所述的时隙偏置n,n为非负整数。
在一实施例中,根据第一信令确定用于接收非周期跟踪参考信号第一部分的时隙。
比如,终端确定的接收TRS第一部分的时隙为K+n时隙,其中,K为传输第一信令资源所在的时隙,n为接收跟踪参考信号的第一个时隙的时隙偏置或时隙。一般来说,用两个时隙接收TRS,即在T+n时隙接收第一组TRS资源,在T+n+1时隙接收第二组TRS资源。
如图3所示,为根据本实施例提供的信号传输方法的信令示意图,其中,用两个slot传输AP TRS,其中第一个slot参数AP TRS的第一部分,第二个slot传输AP TRS的第二部分,slot offset是相对于图中的第一个slot确定的。
实施例4
本实施例重要用于说明在多个带宽部分(bandwidth part,BWP,即用于传输资源的物理资源块集合,一般包括多个连续的物理资源块,其中每个物理资源块包括多个子载波和多个时域符号,也可以称为部分带宽)切换时参考信号的发送和接收方法。这里不失一般性,假设系统配置了N个BWP,其中第i个BWP为BWPi,i=1,…,N,N为大于1的整数。不失去一般性,把传输第一信令的BWP记为BWP0,把需要切换的BWP成为BWP1。
基站配置第一信令,根据所述第一信令确定非周期的跟踪参考信号的发送时隙。
在一实施例中,基站在BWP0发送所述第一信令。
基站在根据所述第一信令确定的用于发送非周期的跟踪参考信号的时隙。
在一实施例中,根据所述第一信令确定BWP1生效之前的K1个时隙或者生效之后的前K2个时隙为所述发送非周期跟踪参考信号的时隙,其中K1和K2为正整数。
可以通过终端上报的方式确定K1的取值,或者通过基站配置的方式确定K1的取值,或通过约定的方式确定K1的取值。
一个可能的方案是,基站通过第一信令通知BWP1的PDSCH的起始传输时 间T,或者BWP的生效时间T,并将T之前的K1个slot作为测量区间,在所述的测量区间传输TRS。另外一种可能的实现方案是,基站通过第一信令确定BWP的生效时间T或者PDSCH的起始传输时间T,在T之后的前K2个slot传输TRS。这里T和K1,K2为整数,T为大于等于BWP切换的时间,在一实施例中,K2的取值可以为1或2。
在一实施例中,所述第一信令包括以下信息之一:BWP0到BWP1的切换时间、BWP1的物理下行共享信道的起始位置、BWP1生效时间。
终端接收第一信令,根据所述第一信令确定用于接收非周期的跟踪参考信号的时隙。
在一实施例中,终端在BWP0接收所述第一信令。
终端在所述第一信令确定的时隙接收非周期的跟踪参考信号。
在一实施例中,根据所述第一信令确定BWP1生效之前的K1个时隙或者生效之后的前K2个时隙接收时隙,其中K1和K2为正整数。
可以通过终端上报的方式确定K1的取值,或者通过基站配置的方式确定K1的取值,或通过约定的方式确定K1的取值。
一个可能的方案是,通过第一信令通知BWP1的PDSCH的起始时间T,或者BWP的生效时间T,并将T之前的K1个slot作为测量区间,在所述的测量区间接收TRS。另外一种可能的实现方案是,基站通过第一信令确定BWP的生效时间T或者PDSCH的起始时间T,在T之后的前K2个slot接收TRS。这里T和K1,K2为整数,T为大于等于BWP切换的时间,在一实施例中,K2取值为1或者2。
在一实施例中,所述第一信令包括以下信息之一:BWP0到BWP1的切换时间、BWP1的物理下行共享信道的起始位置、以及BWP1生效时间。
在一实施例中,基站或终端通过第一信令隐含的方式确定在BWP生效时的前K1个slot或在BWP生效之后的前K1个slot有非周期的TRS。
如图4所示,为根据本实施例提供的信号传输方法的信令示意图,其中,通过DCI信令触发BWP的切换,为了及时获得BWP1上的时偏等信息,需要在BWP1生效前的K1个时隙或者BWP1生效后的K2个时隙发送AP TRS。
实施例5
本实施例用于说明在确定的发送参考信号的时隙为不是有效时隙时,如何确定有效的时隙来发送参考信号,这里的参考信号包括但不限于以下参考信号 资源之一:CSI-RS,CSI-IM,TRS,其中CSI-Rs可以用于测量信道和测量干扰。或者参考信号的资源集合,或者参考信号资源集合配置,其中,每种参考信号包括可以包括以下时域特性之一:周期的参考信号资源,非周期的参考信号资源,半持续的参考信号资源。比如周期的CSI-RS,半持续的SCI-RS,非周期的CSI-RS。
基站配置第一信令,根据第一信令确定用于发送参考信号的时隙T,在所述时隙发送参考信号。
这里,确定用于发送非周期参考信号的时隙T的方法包括但不限于实施例1~4所述的方法。
如果时隙T是有效时隙,那么在所述的时隙T发送参考信号,如果所述的时隙不是有效时隙,那么需要在大于T的时隙找一个最小的有效时隙发送参考信号。其中有效时隙是指用于传输下行信号的下行时隙,或者用于传输下行信号的符号个数大于N的时隙,其中N为大于N0的整数,其中N0为正整数。
其中,在T的后面找一个最小的有效时隙包括但不限于以下方法之一:
确定T1为发送参考信号的有效时隙,其中,T1为大于T的最小的有效时隙。或者,
以步长1增加T的时隙索引,直到找到索引最小的有效时隙。
确定T+T0为发送参考信号的有效时隙,其中,T0为正整数,且T+T0为最小的有效时隙。
终端接收第一信令,根据第一信令确定用于接收参考信号的时隙T,在接收参考信号的时隙接收参考信号。
这里,确定用于接收非周期参考信号的时隙T的方法包括但不限于实施例1~4所述的方法。
如果时隙T是有效时隙,那么在所述的时隙T接收参考信号,如果所述的时隙不是有效时隙,那么需要在大于T的时隙找一个最小的有效时隙接收参考信号。其中有效时隙是指用于传输下行信号的下行时隙,或者用于传输下行信号的符号个数大于N的时隙,其中N为大于N0的整数,其中N0为正整数。
其中,在T的后面找一个最小的有效时隙包括但不限于以下方法之一:
确定T1为发送参考信号的有效时隙,其中,T1为大于T的最小的有效时隙。或者,
以步长1增加T的时隙索引,直到找到索引最小的有效时隙。
确定T+T0为发送参考信号的有效时隙,其中,T0为正整数,且T+T0为最小的有效时隙。
实施例6
本实施例用于说明在如果发送的参考信号有多种,其计算CSI的CSI进程(CSI process)的时间区间问题。参考信号包括但不限于以下参考信号资源之一:CSI-RS,CSI-IM,其中CSI-Rs可以用于测量信道的CSI-RS和用于测量干扰的CSI。或者参考信号的资源集合,或者参考信号资源集合配置,其中,每种参考信号可以包括以下时域特性之一:周期的参考信号资源,非周期的参考信号资源,以及半持续的参考信号资源。比如周期的CSI-RS,半持续的SCI-RS,非周期的CSI-RS。
基站配置第一信令,确定用于发送K1种参考信号的时隙偏置。其中至少包括以下参考信号的偏置之一,用于测量信道的信道状态信息参考信号资源时隙偏置n1,用于测量干扰的信道状态信息参考信号资源时隙偏置n2,信道状态信息干扰测量资源的时隙偏置n3。并根据所述时隙偏置和第一信令触发的时间K确定发送对应参考信号的时隙以发送对应的参考信号,K1为大于1的整数。
比如,如果要发送测量信道的信道状态信息参考信号资源,那么在K+n1时隙发送,如果要发送用于测量干扰的信道状态信息参考信号资源,那么在K+n2时隙发送,如果要发送CSI-IM resource,那么在K+n3时隙发送。
那么K1种参考信号对应的CSI process时间区间为K+T到N,其中,所述K为触发所述参考信号的时隙,K1为正整数,K为非负整数。这里,T为至少包括如下之一的时隙偏置的最大值,用于测量信道的信道状态信息参考信号资源时隙偏置n1,用于测量干扰的信道状态信息参考信号资源时隙偏置n2,信道状态信息干扰测量资源的时隙偏置n3,N为所述CSI进程对应的CSI reporting的时隙,即上报CSI的时隙。
终端接收第一信令,确定用于接收K1种参考信号的时隙偏置。其中至少包括以下参考信号的时隙偏置之一,用于测量信道的信道状态信息参考信号资源时隙偏置n1,用于测量干扰的信道状态信息参考信号资源时隙偏置n2,信道状态信息干扰测量资源的时隙偏置n3。并根据所述时间偏置和第一信令触发的时间K确定接收对应参考信号的时隙发送对应的参考信号,K1为大于1的整数。
比如,如果要接收测量信道的信道状态信息参考信号资源,那么在K+n1时隙接收,如果要接收用于测量干扰的信道状态信息参考信号资源,那么在K+n2 时隙接收,如果要接收CSI-IM resource,那么在K+n3时隙接收,K为接收第一信令的时隙或者触发参考信号的时隙。
那么用所述接收的K1种参考信号对应的CSI process计算CSI时间区间为K+T到N,其中,所述K为触发所述参考信号的时隙(比如传输第一信令的时隙),K1为正整数,K为非负整数。这里,T为至少包括如下之一的时隙偏置的最大值,用于测量信道的信道状态信息参考信号资源时隙偏置n1,用于测量干扰的信道状态信息参考信号资源时隙偏置n2,信道状态信息干扰测量资源的时隙偏置n3。N为所述CSI进程对应的CSI reporting的时隙,即上报CSI的时隙。
实施例7
本实施例用于说明参考信号和物理共享信道发送时隙重叠时,基站如何确定发送波束,终端如何确定接收波束。这里的参考信号包括但不限于以下参考信号资源之一:CSI-RS,CSI-IM,TRS,SRS,以及SSB(用于传输PSS或SSS的资源块Block,其中Primary synchronization signal,PSS Secondary synchronization signal,SSS)。或者参考信号的资源集合,或者参考信号资源集合配置,其中,每种参考信号包括可以包括以下时域特性之一:周期的参考信号资源,非周期的参考信号资源,半持续的参考信号资源。比如周期的CSI-RS,半持续的SCI-RS,非周期的CSI-RS。物理共享信道包括PDSCH或PUSCH。第一通信节点通过以下方式发送参考信号和物理共享信道。
第一通信节点配置第二信令信息。根据所述第二信令在重叠时域资源发送参考信号和/或物理共享信道。
其中,所述重叠时域资源为发送所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分;
其中,根据第二信令在重叠时域资源发送参考信号和/或物理共享信道,包括以下情形之一:
只发送参考信号,或
只发送物理共享信道;
或发送参考信号和物理共享信道。
在一实施例中,所述第二信令为高层信令,用所述高层信令确定重叠时域资源发送参考信号和/或物理共享信道;或者
所述第二信令为物理层信令,至少根据接收端能力、参考信号对应的空间 参数和物理共享信道对应的空间参数的之一或其组合确定重叠时域资源发送参考信号和/或物理共享信道。
在重叠的时域资源发送的参考信号和物理共享信道可以包括但不限于如下的组合之一:CSI-RS和PDSCH,CSI-IM和PDSCH,TRS和PDSCH,SSB和PDSCH,以及SRS和PUSCH,其中各种参考信号的时域特性可以是周期的或者非周期的或者半持续的,也可以是参考信号的资源集合。
在一实施例中,其中第二信令至少包括三种可能的取值V1或V2,V3分别对应只发送参考信号,或只发送物理共享信道;或发送参考信号和物理共享信道。
在一实施例中,所述空间参数包括但不限于以下之一:发送波束索引,发送波束组索引,接收波束索引,接收波束组索引,空间接收参数,准共位置类型D,传输配置指示(Transmission configuration indication,TCI),以及传输配置指示状态。
第二通信节点接收接收第二信令信息。根据所述第二信令在重叠时域资源接收参考信号和/或物理共享信道。
其中,所述重叠时域资源为接收所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分;
其中,根据第二信令在重叠时域资源接收参考信号和/或物理共享信道,包括以下情形之一:
只接收参考信号,或
只接收物理共享信道;
或接收参考信号和物理共享信道。
在一实施例中,所述第二信令为高层信令,用所述高层信令确定重叠时域资源发送参考信号和/或物理共享信道;或者
所述第二信令为物理层信令,至少根据接收端能力、参考信号对应的空间参数和物理共享信道对应的空间参数的之一或其组合确定重叠时域资源发送参考信号和/或物理共享信道。
在重叠的时域资源发送的参考信号和物理共享信道可以包括但不限于如下的组合之一:CSI-RS和PDSCH,CSI-IM和PDSCH,TRS和PDSCH,SSB和PDSCH,SRS和PUSCH,其中各种参考信号的时域特性可以是周期的或者非周期的或者半持续的,也可以是参考信号的资源集合。
在一实施例中,其中第二信令至少包括三种可能的取值V1或V2,V3分别对应只接收参考信号,或只接收物理共享信道;或接收参考信号和物理共享信道。
在一实施例中,所述空间参数包括但不限于以下之一:发送波束索引,发送波束组索引,接收波束索引,接收波束组索引,空间接收参数,准共位置类型D,传输配置指示(Transmission configuration indication,TCI),以及传输配置指示状态。
在本实施例中,如果传输的物理共享信道为PUSCH,那么第一通信节点为终端,第二通信节点为基站,如果传输的物理共享信道为PDSCH,那么第一通信节点为基站,第二通信节点为终端。
基于与上述实施例相同或相似的构思,本申请实施例还提供一种信号传输装置,设置在第一通信节点上,本申请提出的信号传输装置包括:第一配置单元和第一发送单元。
第一配置单元,设置为配置第一信令。
第一发送单元,设置为根据所述第一信令确定的发送参考信号的时隙,在所述发送参考信号的时隙发送参考信号。
本申请实施例中,所述第一信令包括偏置信令,
所述偏置信令包括周期和时隙偏置的联合信息periodicityAndOffset。
本申请实施例中,所述第一信令包括触发信令和偏置信令,
根据所述触发信令和偏置信令确定的参考信号的时隙为K+n;其中,所述K为传输触发信令的时隙,所述n为根据偏置信令确定的时隙偏置,K和n为大于等于0的整数。
第一发送单元设置为根据所述第一信令确定的发送参考信号的时隙K+n,在所述发送参考信号的时隙K+n发送参考信号。
本申请实施例中,所述参考信号包括如下参考信号至少之一:非周期的信道状态信息干扰测量资源AP CSI-IM resource;非周期的信道状态信息干扰测量资源集合AP CSI-IM resource set;非周期的跟踪参考信号资源TRS resource;非周期的跟踪参考信号资源集合TRS resource set。
本申请实施例中,所述第一信令包括跨服务小区触发信令,
根据所述的跨服务小区触发信令确定N个服务小区的第一参考时间Ki,所述Ki为大于等于0的整数,i=1,…,N,N为大于1的整数。
本申请实施例中,所述第一参考时间Ki为不早于时间T的最小时隙或不早于时间T所在的时隙或不早于时间T的最小符号,其中,所述时间T为传输服务小区触发信令的时域资源的最后一个符号。
本申请实施例中,所述第一信令还包括偏置信令,
根据所述偏置信令和所述第一参考时间Ki确定第i个服务小区发送参考信号的时隙为Ki+n,其中,n为偏置信令配置的时隙偏置值,所述第i个服务小区的时隙偏置值由第i个服务小区的numerology确定,Ki和n为非负整数,i=1,…,N,N为大于1的整数。
本申请实施例中,第一发送单元设置为根据确定的发送参考信号的时隙Ki+n,在各个服务小区所对应的发送参考信号的时隙Ki+n分别发送参考信号。
所述参考信号包括但不限于至少以下之一:非周期的信道状态信息参考信号资源或者非周期的信道状态信息参考信号资源集合;非周期的信道状态信息干扰测量资源AP CSI-IM resource;非周期的信道状态信息干扰测量资源集合AP CSI-IM resource set。
本申请实施例中,所述跨服务小区触发信令触发的N个服务小区的载波间距相同或者numerology相同,N为大于1的整数。
本申请实施例中,所述第一信令包括触发信令和偏置信令,
根据所述触发信令和偏置信令确定的发送参考信号的时隙为K+n或K+n+1,其中,K为传输触发信令的时隙,n为偏置信令携带的时隙偏置,K和n为非负整数。
本申请实施例中,第一发送单元设置为在所述发送参考信号的时隙K+n发送非周期的跟踪参考信号第一部分,在所述发送参考信号的时隙K+n+1发送非周期的跟踪参考信号第二部分。
本申请实施例中,所述第一信令为切换信令,根据第一信令确定第二带宽部分BWP1生效之前的K1个时隙或者生效之后的前K2个时隙为发送参考信号的时隙;其中,所述BWP1为第一带宽部分BWP0切换后的带宽部分;所述BWP0为传输所述第一信令的带宽部分;K1和K2为正整数。
本申请实施例中,第一发送单元在所述的发送参考信号的时隙,即第二带宽部分BWP1生效之前的K1个时隙或者生效之后的前K2个时隙上发送非周期的跟踪参考信号。
本申请实施例中,所述切换信令携带有以下信息之一:BWP0到BWP1的 切换时间、BWP1的物理下行共享信道的起始位置、以及BWP1生效时间。
在一实施例中,用于发送参考信号的时隙T=K+n为有效时隙,其中,所述有效时隙包括但不限于如下之一:下行时隙,或者包含Nx个下行符号的时隙,或者用于传输所述参考信号的符号都是下行符号,或者用于传输所述参考信号的符号不属于上行符号。其中Nx大于N0,Nx和N0均为正整数,K为传输触发信令的时隙,n为偏置信令携带的时隙偏置,K和n为非负整数。
本申请实施例中,如果所述确定的发送参考信号的时隙T=K+n不是有效时隙,通过以下方式之一确定用于发送参考信号的有效时隙T1:
T1为大于T的最小有效时隙;或者,
确定T+T0为发送参考信号的有效时隙,其中,T0为正整数,且T+T0为最小的有效时隙。
本申请实施例中,第一发送单元在确定为有效时隙的发送参考信号的时隙上,发送参考信号。
基于与上述实施例相同或相似的构思,本申请实施例还提供另一种信号传输装置,设置在第一通信节点上,本申请提出的信号传输装置包括:第二配置单元和第二发送单元。
第二配置单元,设置为配置第二信令。
第二发送单元,设置为根据所述第二信令在重叠时域资源发送参考信号和/或物理共享信道。
其中,所述重叠时域资源为发送所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分。
所述第二信令为高层信令,第二发送单元设置为根据所述高层信令确定重叠时域资源发送参考信号和/或物理共享信道;或
所述第二信令为物理层信令,第二发送单元设置为根据接收端能力、参考信号对应的空间参数和物理共享信道对应的空间参数的之一或任意组合确定重叠时域资源发送参考信号和/或物理共享信道。
本申请实施例中,确定重叠时域资源发送参考信号和/或物理共享信道包括以下情况之一:
只发送参考信号,或
只发送物理共享信道;
或发送参考信号和物理共享信道。
本申请实施例中,通过以下方式的至少一种确定重叠时域资源的空间参数:
通过第二信令确定;
通过约定的方式确定;
通过物理共享资源对应的空间参数确定。
本申请实施例中,所述第二信令包括参数值V1或参数值V2;
在第二信令的参数值为V1时,指示重叠时域资源的空间参数为物理共享资源对应的空间参数;或
在第二信令携带的参数值为V2时,指示重叠时域资源的空间参数为物理共享资源对应的空间参数和参考信号对应的空间参数,或
在所述第二信令的参数值为V1或者V2时,所述重叠时域资源的空间参数为物理共享资源对应的空间参数。
基于与上述实施例相同或相似的构思,本申请实施例还提供一种信号传输装置,设置在第二通信节点上,本申请提出的信号传输装置包括:
第一接收单元,设置为接收第一信令;
第一时隙确定单元,设置为根据接收的第一信令,确定参考信号对应的时隙;
所述第一接收单元,还设置为在确定的所述参考信号对应的时隙上接收参考信号。
本申请实施例中,所述第一信令包括偏置信令,
所述偏置信令包括周期和时隙偏置的联合信息periodicityAndOffset。
本申请实施例中,所述第一信令包括触发信令和偏置信令,
所述第一时隙确定单元根据接收的第一信令,确定参考信号对应的时隙包括:
根据触发信令和偏置信令确定参考信号对应的时隙为K+n;其中,所述K为传输触发信令的时隙,所述n为偏置信令携带的时隙偏置,K和n为大于等于0的整数;
所述在确定的所述参考信号对应的时隙上接收参考信号包括:
在时隙K+n上接收参考信号。
本申请实施例中,所述第一信令包括跨服务小区触发信令,
所述第一时隙确定单元根据接收的第一信令,确定参考信号对应的时隙包括:
根据所述跨服务小区触发信令确定N个服务小区的第一参考时间Ki;其中,所述Ki为大于等于0的整数,i=1,…,N,N为大于1的整数。
本申请实施例中,所述第一参考时间Ki为不早于时间T的最小时隙、或不早于时间T所在的时隙、或不早于时间T的最小符号,其中,所述时间T为传输服务小区触发信令的时域资源的最后一个符号。
本申请实施例中,所述第一信令还包括偏置信令,
所述第一时隙确定单元根据接收的第一信令,确定参考信号对应的时隙还包括:
根据所述偏置信令和所述第一参考时间Ki确定第i个服务小区的参考信号对应的时隙为Ki+n;其中,n为偏置信令配置的时隙偏置值,所述第i个服务小区的时隙偏置值由第i个服务小区的numerology确定,Ki和n为非负整数,i=1,…,N,N为大于1的整数。
本申请实施例中,所述第一接收单元设置为在确定的所述参考信号对应的时隙上接收参考信号包括:
在每个服务小区所对应的参考信号所对应的时隙分别接收参考信号。
本申请实施例中,所述跨服务小区触发信令触发的N个服务小区的载波间距相同或者numerology相同,N为大于1的整数。
本申请实施例中,所述第一信令包括触发信令和偏置信令,
所述第一时隙确定单元根据接收的第一信令,确定参考信号对应的时隙包括:
根据所述触发信令和所述偏置信令确定参考信号对应的时隙为K+n或K+n+1,其中,K为传输触发信令的时隙,n为偏置信令携带的时隙偏置,K和n为非负整数。
本申请实施例中,所述第一接收单元设置为在所述参考信号对应的时隙K+n上接收非周期的跟踪参考信号第一部分,在所述参考信号对应的时隙K+n+1上接收非周期的跟踪参考信号第二部分。
本申请实施例中,所述第一信令为切换信令;
所述第一时隙确定单元根据接收的第一信令,确定参考信号对应的时隙包括:
根据切换信令确定第二带宽部分BWP1生效之前的K1个时隙或者生效之后的前K2个时隙为参考信号对应的时隙;其中,所述BWP1为第一带宽部分BWP0 切换后的带宽部分;所述BWP0为传输所述第一信令的带宽部分;K1和K2为正整数;
所述第一接收单元在确定的所述参考信号对应的时隙上接收参考信号包括:
在所述的参考信号的时隙接收非周期的跟踪参考信号。
本申请实施例中,所述切换信令携带有以下信息之一:BWP0到BWP1的切换时间、BWP1的物理下行共享信道的起始位置、BWP1生效时间。
本申请实施例中,所述第一时隙确定单元确定参考信号对应的时隙还包括:
确定的参考信号对应的时隙T=K+n为有效时隙,其中,
所述有效时隙包括以下之一:下行时隙、或者包含Nx个下行符号的时隙、或者用于传输所述参考信号的符号都是下行符号、或者用于传输所述参考信号的符号不属于上行符号;
其中Nx大于N0,Nx和N0均为正整数,K为传输触发信令的时隙,n为偏置信令携带的时隙偏置,K和n为非负整数。
本申请实施例中,所述第一时隙确定单元确定参考信号对应的时隙还包括:
如果所述确定的参考信号对应的时隙T=K+n不是有效时隙,通过以下方式之一确定参考信号对应的有效时隙T1:
T1为大于T的最小有效时隙;或者,
确定T+T0为参考信号对应的有效时隙,其中,T0为正整数,且T+T0为最小的有效时隙。
本申请实施例中,所述参考信号对应的信道状态信息处理的时间区域为K+T到N,其中,所述K为触发所述参考信号的时隙或者传输触发信令的时隙,所述T为K1个参考信号的时隙偏置的最大值,N为信道状态信息报告CSI reporting的时隙,K1为正整数,K为非负整数,N>T+K。
本申请实施例中,所述K1个参考信号的时隙偏置至少包括以下时隙偏置之一,用于测量信道的信道状态信息参考信号资源时隙偏置n1,用于测量干扰的信道状态信息参考信号资源时隙偏置n2,信道状态信息干扰测量资源的时隙偏置n3。
基于与上述实施例相同或相似的构思,本申请实施例还提供另一种信号传输装置,设置在第二通信节点上,本申请提出的信号传输装置包括:第二接收单元。
第二接收单元,设置为接收第二信令;
所述第二接收单元,还设置为根据接收的第二信令在重叠时域资源接收参考信号和物理共享信道。其中,所述重叠时域资源为传输所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分。
所述第二信令为高层信令,所述第二接收单元还设置为根据所述高层信令确定重叠时域资源接收参考信号和/或物理共享信道;或
所述第二信令为物理层信令,所述第二接收单元还设置为根据接收端能力、参考信号对应的空间参数和物理共享信道对应的空间参数的至少一项确定重叠时域资源接收参考信号和/或物理共享信道。
本申请实施例中,所述第二接收单元还设置为确定重叠时域资源。
本申请实施例中,所述第二接收单元确定重叠时域资源接收参考信号和/或物理共享信道包括以下情况之一:
只接收参考信号,或
只接收物理共享信道;
或接收参考信号和物理共享信道。
本申请实施例中,空间参数确定单元设置为通过以下方式的至少一种确定重叠时域资源的空间参数:
通过第二信令确定;
通过约定的方式确定;
通过物理共享资源对应的空间参数确定。
本申请实施例中,其中,
所述第二信令包括参数值V1或参数值V2中的至少一个;
在第二信令的参数值为V1时,指示重叠时域资源的空间参数为物理共享资源对应的空间参数;或
在第二信令的参数值为V2时,指示重叠时域资源的空间参数为物理共享资源对应的空间参数和参考信号对应的空间参数,或
在所述第二信令的参数值为V1或者V2时,所述重叠时域资源的空间参数为物理共享资源对应的空间参数。
基于与上述实施例相同或相似的构思,本申请实施例还提供一种设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本申请实施例提供的任一信号传输方法的处理。
基于与上述实施例相同或相似的构思,本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的任一信号传输方法的处理。
需要说明的是,以上所述的实施例仅是为了便于本领域的技术人员理解而已,并不用于限制本申请的保护范围,在不脱离本申请的申请构思的前提下,本领域技术人员对本申请所做出的任何显而易见的替换和改进等均在本申请的保护范围之内。

Claims (48)

  1. 一种信号传输方法,包括:
    配置第一信令;
    根据所述第一信令确定发送参考信号的时隙,并在所述发送参考信号的时隙上发送参考信号。
  2. 根据权利要求1所述的方法,其中,所述第一信令包括偏置信令,
    所述偏置信令包括周期和时隙偏置的联合信息。
  3. 根据权利要求1所述的方法,其中,所述第一信令包括触发信令和偏置信令,根据所述第一信令确定发送参考信号的时隙包括:
    根据所述触发信令和偏置信令确定参考信号的时隙为K+n;其中,所述K为传输触发信令的时隙,所述n为根据偏置信令确定的时隙偏置,K和n为大于等于0的整数。
  4. 根据权利要求3所述的方法,其中,所述参考信号包括如下至少之一:
    非周期的信道状态信息干扰测量资源;
    非周期的信道状态信息干扰测量资源集合;
    非周期的跟踪参考信号资源;
    非周期的跟踪参考信号资源集合。
  5. 根据权利要求1所述的方法,其中,所述第一信令包括跨服务小区触发信令,根据所述第一信令确定发送参考信号的时隙包括:
    根据所述跨服务小区触发信令确定N个服务小区的第一参考时间Ki,所述Ki为大于等于0的整数,i=1,…,N,N为大于1的整数。
  6. 根据权利要求5所述的方法,其中,所述第一参考时间Ki满足以下条件中的任意一个:
    所述第一参考时间Ki为不早于时间T的最小时隙;
    所述第一参考时间Ki为不早于时间T所在的时隙;
    所述第一参考时间Ki为不早于时间T的最小符号;
    其中,所述时间T为传输跨服务小区触发信令的时域资源的最后一个符号。
  7. 根据权利要求5所述的方法,其中,
    所述第一信令还包括偏置信令,根据所述第一信令确定发送参考信号的时隙还包括:根据所述偏置信令和所述第一参考时间Ki确定第i个服务小区发送参考信号的时隙为Ki+n,其中,n为偏置信令配置的时隙偏置值,所述第i个服务小区的时隙偏置值由第i个服务小区的numerology确定,Ki和n为非负整数, i=1,…,N,N为大于1的整数。
  8. 根据权利要求7所述的方法,其中,在所述发送参考信号的时隙上发送参考信号包括:
    在每个服务小区所对应的发送参考信号的时隙上分别发送参考信号,
    所述参考信号包括以下至少之一:非周期的信道状态信息参考信号资源或者非周期的信道状态信息参考信号资源集合;非周期的信道状态信息干扰测量资源;非周期的信道状态信息干扰测量资源集合。
  9. 根据权利要求5所述的方法,其中,所述跨服务小区触发信令触发的N个服务小区的载波间距相同或者numerology相同,N为大于1的整数。
  10. 根据权利要求1所述的方法,其中,所述第一信令包括触发信令和偏置信令,根据所述第一信令确定发送参考信号的时隙还包括:
    根据所述触发信令和偏置信令确定发送参考信号的时隙为K+n和K+n+1,其中,K为传输触发信令的时隙,n为偏置信令携带的时隙偏置,K和n为非负整数。
  11. 根据权利要求10所述的方法,其中,在所述发送参考信号的时隙上发送参考信号包括:在所述发送参考信号的时隙K+n发送非周期的跟踪参考信号第一部分,在所述发送参考信号的时隙K+n+1发送非周期的跟踪参考信号第二部分。
  12. 根据权利要求1所述的方法,其中,
    所述第一信令为切换信令,根据所述第一信令确定发送参考信号的时隙包括:
    根据第一信令确定第二带宽部分BWP1生效之前的K1个时隙或者所述第二带宽部分BWP1生效之后的前K2个时隙为发送参考信号的时隙;其中,所述BWP1为第一带宽部分BWP0切换后的带宽部分;所述BWP0为传输所述第一信令的带宽部分;K1和K2为正整数;并在所述发送参考信号的时隙上发送非周期的跟踪参考信号。
  13. 根据权利要求12所述的方法,其中,
    所述切换信令携带有以下之一:BWP0到BWP1的切换时间、BWP1的物理下行共享信道的起始位置、以及BWP1生效时间。
  14. 根据权利要求1~13所述的方法,其中,用于发送参考信号的时隙T=K+n为有效时隙,其中,所述有效时隙包括以下之一:下行时隙,或者包含Nx个下 行符号的时隙,或者用于传输所述参考信号的符号都是下行符号的时隙,或者用于传输所述参考信号的符号不属于上行符号的时隙;其中Nx大于N0,Nx和N0均为正整数,K为传输触发信令的时隙,n为偏置信令携带的时隙偏置,K和n为非负整数。
  15. 根据权利要求14所述的方法,其中,在所述确定的发送参考信号的时隙T=K+n不是有效时隙的情况下,通过以下方式之一确定用于发送参考信号的有效时隙T1:
    T1为大于T的最小有效时隙;
    确定T+T0为发送参考信号的有效时隙,其中,T0为正整数,且T+T0为最小的有效时隙。
  16. 根据权利要求1~13所述的方法,其中,所述参考信号对应的信道状态信息处理的时间区域为K+T到N,其中,所述K为触发所述参考信号的时隙或者传输触发信令的时隙,所述T为K1个参考信号的时隙偏置的最大值,N为信道状态信息报告的时隙,K1为正整数,K为非负整数,N>T+K。
  17. 根据权利要求16所述的方法,其中,所述K1个参考信号的时隙偏置包括以下之一,用于测量信道的信道状态信息参考信号资源时隙偏置n1,用于测量干扰的信道状态信息参考信号资源时隙偏置n2,信道状态信息干扰测量资源的时隙偏置n3。
  18. 一种信号传输方法,包括:
    配置第二信令;
    根据所述第二信令在重叠时域资源发送参考信号和物理共享信道中的至少之一;
    其中,所述重叠时域资源为发送所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分。
  19. 根据权利要求18所述的方法,其中,
    所述第二信令为高层信令,所述方法还包括:根据所述高层信令确定重叠时域资源发送参考信号和物理共享信道中的至少之一;或
    所述第二信令为物理层信令,所述方法还包括:根据接收端能力、参考信号对应的空间参数和物理共享信道对应的空间参数的至少一项确定重叠时域资源发送参考信号和物理共享信道中的至少之一。
  20. 根据权利要求19所述的方法,其中,确定重叠时域资源发送参考信号 和物理共享信道中的至少之一包括以下情况之一:
    只发送参考信号;
    只发送物理共享信道;
    发送参考信号和物理共享信道。
  21. 根据权利要求19或20所述的方法,其中,所述参考信号对应的空间参数和物理共享信道对应的空间参数包括以下之一:发送波束索引,发送波束组索引,接收波束索引,接收波束组索引,空间接收参数,准共位置类型D,传输配置指示,以及传输配置指示状态。
  22. 一种信号传输方法,包括:
    接收第一信令;
    根据接收的第一信令,确定参考信号对应的时隙;
    在确定的所述参考信号对应的时隙上接收参考信号。
  23. 根据权利要求22所述的方法,其中,所述第一信令包括偏置信令,
    所述偏置信令包括周期和时隙偏置的联合信息。
  24. 根据权利要求22所述的方法,其中,所述第一信令包括触发信令和偏置信令,
    所述根据接收的第一信令,确定参考信号对应的时隙包括:
    根据触发信令和偏置信令确定参考信号对应的时隙为K+n;其中,所述K为传输触发信令的时隙,所述n为偏置信令携带的时隙偏置,K和n为大于等于0的整数;
    所述在确定的所述参考信号对应的时隙上接收参考信号包括:
    在时隙K+n上接收参考信号。
  25. 根据权利要求24所述的方法,其中,所述参考信号包括如下至少之一:
    非周期的信道状态信息干扰测量资源;
    非周期的信道状态信息干扰测量资源集合;
    非周期的跟踪参考信号资源;
    非周期的跟踪参考信号资源集合。
  26. 根据权利要求22所述的方法,其中,所述第一信令包括跨服务小区触发信令,
    所述根据接收的第一信令,确定参考信号对应的时隙包括:
    根据所述跨服务小区触发信令确定N个服务小区的第一参考时间Ki;其中, 所述Ki为大于等于0的整数,i=1,…,N,N为大于1的整数。
  27. 根据权利要求26所述的信号传输方法,其中,所述第一参考时间Ki满足以下条件中的任意一个:
    所述第一参考时间Ki为不早于时间T的最小时隙;
    所述第一参考时间Ki为不早于时间T所在的时隙;
    所述第一参考时间Ki为不早于时间T的最小符号;
    其中,所述时间T为传输服务小区触发信令的时域资源的最后一个符号。
  28. 根据权利要求26所述的方法,其中,
    所述第一信令还包括偏置信令,
    所述根据接收的第一信令,确定参考信号对应的时隙还包括:
    根据所述偏置信令和所述第一参考时间Ki确定第i个服务小区的参考信号对应的时隙为Ki+n;其中,n为偏置信令配置的时隙偏置值,所述第i个服务小区的时隙偏置值由第i个服务小区的numerology确定,Ki和n为非负整数,i=1,…,N,N为大于1的整数。
  29. 根据权利要求28所述的方法,其中,
    所述在确定的所述参考信号对应的时隙上接收参考信号包括:
    在每个服务小区所对应的参考信号的时隙上分别接收参考信号,
    所述参考信号包括以下至少之一:非周期的信道状态信息参考信号资源或者非周期的信道状态信息参考信号资源集合,非周期的信道状态信息干扰测量资源;非周期的信道状态信息干扰测量资源集合。
  30. 根据权利要求26所述的方法,其中,所述跨服务小区触发信令触发的N个服务小区的载波间距相同或者numerology相同,N为大于1的整数。
  31. 根据权利要求22所述的方法,其中,所述第一信令包括触发信令和偏置信令,
    所述根据接收的第一信令,确定参考信号对应的时隙包括:
    根据所述触发信令和所述偏置信令确定参考信号对应的时隙为K+n或K+n+1,其中,K为传输触发信令的时隙,n为偏置信令携带的时隙偏置,K和n为非负整数。
  32. 根据权利要求31所述的方法,其中,在所述参考信号对应的时隙K+n上接收非周期的跟踪参考信号第一部分,在所述参考信号对应的时隙K+n+1上接收非周期的跟踪参考信号第二部分。
  33. 根据权利要求22所述的方法,其中,
    所述第一信令为切换信令;
    所述根据接收的第一信令,确定参考信号对应的时隙包括:
    根据切换信令确定第二带宽部分BWP1生效之前的K1个时隙或者第二带宽部分BWP1生效之后的前K2个时隙为参考信号对应的时隙;其中,所述BWP1为第一带宽部分BWP0切换后的带宽部分;所述BWP0为传输所述第一信令的带宽部分;K1和K2为正整数;
    所述在确定的所述参考信号对应的时隙上接收参考信号包括:
    在所述参考信号的时隙上接收非周期的跟踪参考信号。
  34. 根据权利要求33所述的方法,其中,
    所述切换信令携带有以下之一:BWP0到BWP1的切换时间、BWP1的物理下行共享信道的起始位置、以及BWP1生效时间。
  35. 根据权利要求33~34所述的方法,其中,
    所述确定参考信号对应的时隙还包括:
    确定的参考信号对应的时隙T=K+n为有效时隙,其中,
    所述有效时隙包括以下之一:下行时隙、或者包含Nx个下行符号的时隙、或者用于传输所述参考信号的符号都是下行符号的时隙、或者用于传输所述参考信号的符号不属于上行符号的时隙;
    其中Nx大于N0,Nx和N0均为正整数,K为传输触发信令的时隙,n为偏置信令携带的时隙偏置,K和n为非负整数。
  36. 根据权利要求35所述的方法,其中,
    所述确定参考信号对应的时隙还包括:
    在所述确定的参考信号对应的时隙T=K+n不是有效时隙的情况下,通过以下方式之一确定参考信号对应的有效时隙T1:
    T1为大于T的最小有效时隙;以及
    确定T+T0为参考信号对应的有效时隙,其中,T0为正整数,且T+T0为最小的有效时隙。
  37. 根据权利要求22~36所述的方法,其中,所述参考信号对应的信道状态信息处理的时间区域为K+T到N,其中,所述K为触发所述参考信号的时隙或者传输触发信令的时隙,所述T为K1个参考信号的时隙偏置的最大值,N为信道状态信息报告的时隙,K1为正整数,K为非负整数,N>T+K。
  38. 根据权利要求37所述的方法,其中,所述K1个参考信号的时隙偏置包括以下之一,用于测量信道的信道状态信息参考信号资源时隙偏置n1,用于测量干扰的信道状态信息参考信号资源时隙偏置n2,信道状态信息干扰测量资源的时隙偏置n3。
  39. 一种信号传输方法,包括:
    接收第二信令;
    根据接收的第二信令在重叠时域资源接收参考信号和物理共享信道;
    其中,所述重叠时域资源为传输所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分。
  40. 根据权利要求39所述的方法,其中,
    所述第二信令为高层信令,根据所述高层信令确定重叠时域资源接收参考信号和物理共享信道中的至少之一;或
    所述第二信令为物理层信令,根据接收端能力、参考信号对应的空间参数和物理共享信道对应的空间参数的至少一项确定重叠时域资源接收参考信号和物理共享信道中的至少之一。
  41. 根据权利要求40所述的方法,其中,确定重叠时域资源接收参考信号和物理共享信道中的至少之一包括以下情况之一:
    只接收参考信号;
    只接收物理共享信道;
    接收参考信号和物理共享信道。
  42. 根据权利要求40或41所述的方法,其中,所述参考信号对应的空间参数和物理共享信道对应的空间参数包括但不限于以下之一:发送波束索引,发送波束组索引,接收波束索引,接收波束组索引,空间接收参数,准共位置类型D,传输配置指示,以及传输配置指示状态。
  43. 一种信号传输装置,设置在第一通信节点上,包括:
    第一配置单元,设置为配置第一信令;
    第一发送单元,设置为根据所述第一信令确定发送参考信号的时隙,并在所述发送参考信号的时隙上发送参考信号。
  44. 一种信号传输装置,设置在第一通信节点上,包括:
    第二配置单元,设置为配置第二信令;
    第二发送单元,设置为根据所述第二信令在重叠时域资源发送参考信号和 物理共享信道中的至少之一;
    其中,所述重叠时域资源为发送所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分。
  45. 一种信号传输装置,设置在第二通信节点上,包括:
    第一接收单元,设置为接收第一信令;
    第一时隙确定单元,设置为根据接收的第一信令,确定参考信号对应的时隙;
    所述第一接收单元,还设置为在确定的所述参考信号对应的时隙上接收参考信号。
  46. 一种信号传输装置,设置在第二通信节点上,包括:
    第二接收单元,设置为接收第二信令;
    所述第二接收单元,还设置为根据接收的第二信令在重叠时域资源接收参考信号和物理共享信道;其中,所述重叠时域资源为传输所述参考信号的时域资源和所述物理共享信道的时域资源的重叠部分。
  47. 一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至42中任一权项所述的方法的处理。
  48. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至42中任一权项所述的方法的处理。
PCT/CN2019/081485 2018-04-16 2019-04-04 信号传输方法和装置 WO2019201101A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/048,532 US11700094B2 (en) 2018-04-16 2019-04-04 Signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810340285.1A CN110391882B (zh) 2018-04-16 2018-04-16 一种信号传输方法和装置
CN201810340285.1 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019201101A1 true WO2019201101A1 (zh) 2019-10-24

Family

ID=68239384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081485 WO2019201101A1 (zh) 2018-04-16 2019-04-04 信号传输方法和装置

Country Status (3)

Country Link
US (1) US11700094B2 (zh)
CN (1) CN110391882B (zh)
WO (1) WO2019201101A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021087959A1 (en) * 2019-11-08 2021-05-14 Mediatek Inc. Procedure of csi-rs configuration update, tci switching, and spatial relation switch
WO2022021365A1 (en) * 2020-07-31 2022-02-03 Qualcomm Incorporated Low complexity frequency hopping for reduced capability ue

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456836B2 (en) * 2019-10-02 2022-09-27 Qualcomm Incorporated Implicit signaling of large-scale channel properties across multiple tracking reference signal transmissions
CN113271662B (zh) * 2020-02-14 2023-08-08 展讯通信(上海)有限公司 参考信号的时频资源配置方法、系统、电子设备和介质
WO2021163900A1 (zh) * 2020-02-18 2021-08-26 华为技术有限公司 一种参考信号传输方法及相关设备
US11778552B2 (en) * 2020-04-09 2023-10-03 Qualcomm Incorporated Tracking reference signal (TRS) for idle mode user equipment (UE)
US11909481B2 (en) * 2020-04-09 2024-02-20 Qualcomm Incorporated Default channel state information (CSI)-reference signal (RS) beam
CN113853025B (zh) * 2020-06-28 2024-04-19 大唐移动通信设备有限公司 一种信号传输方法、装置、设备及存储介质
WO2022061777A1 (zh) * 2020-09-25 2022-03-31 Oppo广东移动通信有限公司 无线通信方法和设备
CN114765503B (zh) * 2021-01-15 2024-01-30 大唐移动通信设备有限公司 信号接收方法、发送方法、终端、网络设备和存储介质
US20230216566A1 (en) * 2021-05-10 2023-07-06 Apple Inc. Cmr and imr configuration enhancement for multi-trp csi-rs reporting
WO2023050146A1 (zh) * 2021-09-29 2023-04-06 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
KR102597219B1 (ko) * 2022-01-07 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 송수신 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038312A (zh) * 2013-03-08 2014-09-10 中兴通讯股份有限公司 信道测量导频的指示信令的确定、csi反馈方法及装置
WO2018028536A1 (zh) * 2016-08-12 2018-02-15 中兴通讯股份有限公司 参考信号的配置、确定方法及装置、基站、终端

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107213B2 (en) * 2011-11-09 2015-08-11 Samsung Electronics Co., Ltd. Reference signal for time and/or frequency tracking in a wireless network
US9008585B2 (en) * 2012-01-30 2015-04-14 Futurewei Technologies, Inc. System and method for wireless communications measurements and CSI feedback
JP6392227B2 (ja) * 2012-09-16 2018-09-19 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてアンテナポート関係を考慮した下りリンク信号送受信方法及び装置
CN104685807B (zh) * 2012-09-20 2018-02-09 Lg 电子株式会社 在无线通信系统中考虑天线端口关系的下行链路信号收发方法和装置
KR20200090973A (ko) * 2012-10-04 2020-07-29 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
WO2015016582A1 (ko) * 2013-07-29 2015-02-05 엘지전자 주식회사 무선 통신 시스템에서 NIB CoMP 방법 및 장치
JP6377744B2 (ja) * 2013-07-29 2018-08-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてNIB CoMP方法及び装置
CN106685500B (zh) * 2015-11-05 2019-11-12 中国移动通信集团公司 一种csi-rs指示方法、基站及用户设备
US10716020B2 (en) * 2016-02-23 2020-07-14 Samsung Electronics Co., Ltd. Method and apparatus for measurement reference signal
JP6179742B2 (ja) * 2016-05-18 2017-08-16 日本電気株式会社 UE(User Equipment)、基地局および通信方法
US10512046B2 (en) * 2016-06-09 2019-12-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement reference signal and synchronization
CN107733507B (zh) * 2016-08-12 2021-12-17 华硕电脑股份有限公司 无线通信系统中确定测量的基础参数带宽的方法和设备
CN107733563B (zh) * 2016-08-12 2019-08-13 中兴通讯股份有限公司 参考信号的发送方法及装置
US10251172B2 (en) * 2016-08-25 2019-04-02 Qualcomm Incorporated Supporting different numerology configurations
US10735072B2 (en) * 2017-03-23 2020-08-04 Samsung Electronics Co., Ltd Method and apparatus for transmitting data in wireless communication system
CN110679095B (zh) * 2017-06-14 2023-06-27 索尼公司 确定是否提供csi报告的装置和方法
CN110959268B (zh) * 2017-07-21 2022-05-03 Lg 电子株式会社 发送和接收信道状态信息-参考信号(csi-rs)的方法和装置
WO2019051242A2 (en) * 2017-09-08 2019-03-14 Convida Wireless, Llc COMMUNICATION MANAGEMENT USING DOWNLINK COMMAND INFORMATION
US10798774B2 (en) * 2017-09-20 2020-10-06 Qualcomm Incorporated Techniques and apparatuses for bandwidth part wake-up signaling
EP3609091B1 (en) * 2017-09-29 2021-12-01 LG Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus therefor
CA3022159A1 (en) * 2017-10-26 2019-04-26 Comcast Cable Communications, Llc Activation and deactivation of configured grant
US11751204B2 (en) * 2017-10-27 2023-09-05 Comcast Cable Communications, Llc Group common DCI for wireless resources
US10701734B2 (en) * 2017-12-28 2020-06-30 Asustek Computer Inc. Method and apparatus of selecting bandwidth part for random access (RA) procedure in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038312A (zh) * 2013-03-08 2014-09-10 中兴通讯股份有限公司 信道测量导频的指示信令的确定、csi反馈方法及装置
WO2018028536A1 (zh) * 2016-08-12 2018-02-15 中兴通讯股份有限公司 参考信号的配置、确定方法及装置、基站、终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VIVO: "Remaining issues on CSI measurement", 3GPP TSG RAN WG1 MEETING #92BIS, R1-1803815, vol. RAN WG1, 6 April 2018 (2018-04-06), XP051412997 *
VIVO: "Remaining issues on simultaneous reception of DL/UL physical channe- ls and reference signals", 3GPP TSG RAN WG1 MEETING #92BIS, R1-1803820, vol. RAN WG1, 6 April 2018 (2018-04-06), XP051413002 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021087959A1 (en) * 2019-11-08 2021-05-14 Mediatek Inc. Procedure of csi-rs configuration update, tci switching, and spatial relation switch
WO2022021365A1 (en) * 2020-07-31 2022-02-03 Qualcomm Incorporated Low complexity frequency hopping for reduced capability ue

Also Published As

Publication number Publication date
CN110391882B (zh) 2022-04-05
US11700094B2 (en) 2023-07-11
CN110391882A (zh) 2019-10-29
US20210167911A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2019201101A1 (zh) 信号传输方法和装置
US11888570B2 (en) User terminal and radio communication method
US20200100193A1 (en) Method and apparatus for triggering power headroom reports
JP7321161B2 (ja) 端末、無線通信方法及びシステム
EP4142231A1 (en) Methods and apparatus for supporting frequency division multiplexing of multiple waveforms
US9025487B2 (en) Reference signal port discovery involving transmission points
US20210259004A1 (en) User terminal
CN111918416B (zh) 通信方法和通信装置
EP2995113B1 (en) Measurements in a wireless system
US11646853B2 (en) Transmitting apparatus, receiving apparatus and radio communication method
US11758412B2 (en) User terminal and radio communication method
US20210314038A1 (en) Base station and radio communication method
AU2017237887B2 (en) User terminal, radio base station and radio communication method
US11412410B2 (en) User terminal and radio communication method
US20210307016A1 (en) User terminal
US20220022274A1 (en) Link failure recovery method and apparatus
US20190335429A1 (en) User terminal and radio communication method
US20220217686A1 (en) User terminal and radio communication method
AU2018409435A1 (en) User terminal and radio communication method
WO2023026413A1 (ja) 端末、無線通信方法及び基地局
WO2020017043A1 (ja) ユーザ端末及び基地局
US20230064052A1 (en) Beam management method using hierarchical beams, and appratus therefor
US20210274480A1 (en) Base station
US20230370231A1 (en) Techniques for sounding reference signal phase coherency
WO2019225688A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19787569

Country of ref document: EP

Kind code of ref document: A1