WO2022021365A1 - Low complexity frequency hopping for reduced capability ue - Google Patents

Low complexity frequency hopping for reduced capability ue Download PDF

Info

Publication number
WO2022021365A1
WO2022021365A1 PCT/CN2020/106304 CN2020106304W WO2022021365A1 WO 2022021365 A1 WO2022021365 A1 WO 2022021365A1 CN 2020106304 W CN2020106304 W CN 2020106304W WO 2022021365 A1 WO2022021365 A1 WO 2022021365A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
active
configuration
slot
periodic transmission
Prior art date
Application number
PCT/CN2020/106304
Other languages
French (fr)
Inventor
Chao Wei
Jing Dai
Jing LEI
Wanshi Chen
Huilin Xu
Qiaoyu Li
Hwan Joon Kwon
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/106304 priority Critical patent/WO2022021365A1/en
Publication of WO2022021365A1 publication Critical patent/WO2022021365A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to bandwidth part switching. Certain embodiments of the technology discussed below can enable and provide faster bandwidth part switching for reduced capability user equipment.
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • a method of wireless of communication includes receiving, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP; receiving, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determining, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and receiving, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
  • DCI downlink control information
  • an apparatus configured for wireless communication.
  • the apparatus includes means for receiving, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP; means for receiving, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; means for determining, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and means for receiving, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
  • DCI downlink control information
  • a non-transitory computer-readable medium having program code recorded thereon.
  • the program code further includes code to receive, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP; receive, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determine, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and receive, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
  • DCI downlink control information
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the processor.
  • the processor is configured to receive, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP; receive, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determine, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and receive, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
  • DCI downlink control information
  • a method of wireless of communication includes transmitting, by a network entity, a periodic transmission according to a first BWP configuration for a first symbol, the first BWP configuration having a first active BWP; transmitting, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determining, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and transmitting, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
  • DCI downlink control information
  • an apparatus configured for wireless communication.
  • the apparatus includes means for transmitting, by a network entity, a periodic transmission according to a first BWP configuration for a first symbol, the first BWP configuration having a first active BWP; means for transmitting, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; means for determining, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and means for transmitting, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
  • DCI downlink control information
  • a non-transitory computer-readable medium having program code recorded thereon.
  • the program code further includes code to transmit, by a network entity, a periodic transmission according to a first BWP configuration for a first symbol, the first BWP configuration having a first active BWP; transmit, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determine, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and transmit, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
  • DCI downlink control information
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the processor.
  • the processor is configured to transmit, by a network entity, a periodic transmission according to a first BWP configuration for a first symbol, the first BWP configuration having a first active BWP; transmit, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determine, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and transmit, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
  • DCI downlink control information
  • FIG. 1 is a block diagram illustrating details of a wireless communication system according to some embodiments of the present disclosure.
  • FIG. 2 is a block diagram conceptually illustrating a design of a base station and a UE configured according to some embodiments of the present disclosure.
  • FIG. 3A is a diagram of an example of a BWP switching delay table.
  • FIG. 3B is a diagram that illustrates a time delay in slots caused by switching a bandwidth of a DL BWP.
  • FIG. 3C is a diagram of an example of an arrangement of BWPs including an anchor BWP and companion BWPs.
  • FIG. 3D is a diagram that illustrates inter-BWP frequency hopping.
  • FIG. 4 is a block diagram illustrating an example of a wireless communications system (with a UE and base station) with low complexity cross BWP frequency hopping operations.
  • FIG. 5 is a diagram of an example of a timing diagram illustrating a particular example of low complexity cross BWP frequency hopping operations according to some embodiments of the present disclosure.
  • FIG. 6 is a diagram of the example of a timing diagram illustrating a particular example of low complexity cross BWP frequency hopping operations according to some embodiments of the present disclosure.
  • FIG. 7 is a diagram of the example of a timing diagram illustrating a particular example of low complexity cross BWP frequency hopping operations according to some embodiments of the present disclosure.
  • FIG. 8 is a diagram of the example of a timing diagram illustrating a particular example of low complexity cross BWP frequency hopping operations according to some embodiments of the present disclosure.
  • FIG. 9 is a diagram of an example diagram for CSI-RS transmissions for low complexity cross BWP frequency hopping.
  • FIG. 10 is a flow diagram illustrating example blocks executed by a UE configured according to an aspect of the present disclosure.
  • FIG. 11 is a flow diagram illustrating example blocks executed by a base station configured according to an aspect of the present disclosure.
  • FIG. 12 is a block diagram conceptually illustrating a design of a UE configured to perform precoding information update operations according to some embodiments of the present disclosure.
  • FIG. 13 is a block diagram conceptually illustrating a design of a base station configured to perform precoding information update operations according to some embodiments of the present disclosure.
  • the present disclosure is related to bandwidth part (BWP) switching operations for reduced capability devices.
  • BWP bandwidth part
  • Such reduced capability devices may include less antennas, reduced processing power, reduced battery capacity, etc., or a combination thereof.
  • Examples of such reduced capability devices include smart wearables, IoT devices, smart appliances, etc.
  • intra-BWP frequency hopping may have limited diversity gain. While inter-BWP frequency hopping enables larger diversity gains, the BWP switching involved in inter-BWP frequency hopping has a switching delay for switching between BWPs (e.g., switching the active BWP) .
  • BWP switching delay period e.g., switching the active BWP
  • Such a delay is generally needed to retune hardware and/or reconfigured software settings.
  • network performance can be enhanced by improved usage of network bandwidth and spectrum by using a more flexible and quicker procedure.
  • Companion BWPs are defined with the same subcarrier spacing (SCS) but have a different frequency location.
  • Such companion BWPs may be indicated by a BWP configuration, such as by one or more “locationAndBandwidth” settings.
  • Companion BWPs e.g., anchor and complementary BWPs
  • Companion BWPs enable faster switching (e.g., retuning) , and by configuring /reconfiguring the BWP more quickly, the network spectrum can be adjusted more quickly, such as from symbol to symbol, i.e., without a delay.
  • a BWP can be switched without the conventional delay incurred from switching the BWP, i.e., switching the bandwidth or size of the BWP.
  • Such techniques can improve usage of network bandwidth and spectrum, resulting in higher throughput and lower latency.
  • anchor BWPs are configured for periodic transmissions
  • a non-anchor BWP or BWPs are configured for non-periodic transmissions.
  • periodic transmissions include PDCCH monitoring, SSB and periodic CSI-RS
  • non-periodic transmissions include PDSCH and aperiodic CSI-RS.
  • Devices of the network may quickly switch between anchor and non-anchor BWPs based on the type of transmission (i.e., periodic or non-periodic) . Accordingly, gain can be increased for non-periodic transmissions and switching delays can be reduced for less wasted network bandwidth and spectrum.
  • This disclosure relates generally to providing or participating in authorized shared access between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5 th Generation
  • NR new radio
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like.
  • UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) .
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA network may, for example implement a radio technology such as Global System for Mobile Communication (GSM) .
  • GSM Global System for Mobile Communication
  • 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN.
  • GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) .
  • the radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) .
  • PSTN public switched telephone network
  • UEs subscriber handsets
  • a mobile phone operator's network may comprise one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network. Additionally, an operator network may also include one or more LTE networks, and/or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
  • RATs radio access technologies
  • RANs radio access networks
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile Communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the 3GPP is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification.
  • 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard.
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • LTE long term evolution
  • UMTS universal mobile telecommunications system
  • the present disclosure may describe certain aspects with reference to LTE, 4G, or 5G NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects descried with reference to one technology may be understood to be applicable to another technology. Indeed, one or more aspects of the present disclosure are related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • 5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTIs transmission time intervals
  • TDD dynamic, low-latency time division duplex
  • FDD frequency division duplex
  • advanced wireless technologies such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
  • the scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
  • Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (e.g. RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • FIG. 1 is a block diagram illustrating details of an example wireless communication system.
  • the wireless communication system may include wireless network 100.
  • Wireless network 100 may, for example, include a 5G wireless network.
  • components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
  • Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities.
  • a base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each base station 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used.
  • base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may include a plurality of operator wireless networks) .
  • base station 105 may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell.
  • an individual base station 105 or UE 115 may be operated by more than one network operating entity.
  • each base station 105 and UE 115 may be operated by a single network operating entity.
  • a base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a base station for a macro cell may be referred to as a macro base station.
  • a base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG.
  • base stations 105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • Base station 105f is a small cell base station which may be a home node or portable access point.
  • a base station may support one or multiple (e.g., two, three, four, and the like) cells.
  • Wireless network 100 may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
  • UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3GPP, such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component device/module, or some other suitable terminology.
  • a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary.
  • Some non-limiting examples of a mobile apparatus such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • a mobile such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • PDA personal digital assistant
  • a mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • IoT Internet of things
  • IoE Internet of everything
  • a UE may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UEs that do not include UICCs may also be referred to as IoE devices.
  • UEs 115a-115d of the implementation illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100
  • a UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
  • a mobile apparatus such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like.
  • a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.
  • UEs may operate as base stations or other network nodes in some scenarios.
  • Backhaul communication between base stations of wireless network 100 may occur using wired and/or wireless communication links.
  • base stations 105a-105c serve UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f.
  • Macro base station 105d also transmits multicast services which are subscribed to and received by UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • Wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from macro base stations 105d and 105e, as well as small cell base station 105f.
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
  • V2V vehicle-to-vehicle
  • FIG. 2 shows a block diagram conceptually illustrating an example design of a base station 105 and a UE 115, which may be any of the base stations and one of the UEs in FIG. 1.
  • base station 105 may be small cell base station 105f in FIG. 1
  • UE 115 may be UE 115c or 115D operating in a service area of base station 105f, which in order to access small cell base station 105f, would be included in a list of accessible UEs for small cell base station 105f.
  • Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
  • transmit processor 220 may receive data from data source 212 and control information from controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc.
  • the data may be for the PDSCH, etc.
  • transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell- specific reference signal.
  • Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
  • transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) ) from controller/processor 280. Additionally, transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105.
  • data e.g., for the physical uplink shared channel (PUSCH)
  • control information e.g., for the physical uplink control channel (PUCCH)
  • controller/processor 280 e.g., for the physical uplink control channel (PUCCH)
  • transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable,
  • the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115.
  • Processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
  • Controllers/processors 240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller/processor 240 and/or other processors and modules at base station 105 and/or controller/processor 280 and/or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in FIGS. 10 and 11, and/or other processes for the techniques described herein.
  • Memories 242 and 282 may store data and program codes for base station 105 and UE 115, respectively.
  • Scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Wireless communications systems operated by different network operating entities may share spectrum.
  • a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time.
  • certain resources e.g., time
  • a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum.
  • the network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum.
  • These time resources, prioritized for use by the network operating entity may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
  • Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
  • UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen-before-talk or listen-before-transmitting (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen-before-talk or listen-before-transmitting
  • CCA clear channel assessment
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions.
  • a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied.
  • RSSI received signal strength indicator
  • a CCA also may include detection of specific sequences that indicate use of the channel.
  • another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK/NACK acknowledge/negative-acknowledge
  • FIGS. 3A and 3B illustrate an example of BWP switching delay.
  • FIG. 3A illustrates an BWP switching delay table 300 and FIG. 3B illustrates a time delay 310 in slots caused by switching a frequency /bandwidth of a DL BWP.
  • a delay incurred in BWP switching is dependent on time and UE capability.
  • the slot length (time in milliseconds) and type of the UE (Type 1 or Type 2) can be used to determine a delay in slots based on the table of FIG. 3A.
  • the delay may also be dependent on sub-carrier spacing.
  • the BWP switching delay is the larger of the two delays for the two types of UEs.
  • the BWP switching delay is large since it may involve both hardware (e.g. radiofrequency (RF) retuning) and software (e.g. digital filter, RRC parameters) adaptation.
  • RF radiofrequency
  • a first DL BWP (DL BWP1) is switched to a second DL BWP (DL BWP2) .
  • DL BWP1 DL BWP
  • DL BWP2 second DL BWP
  • the bandwidth /frequency range of the DL BWP is reduced.
  • This switch causes a delay where no data is transmitted or received by the wireless communication device.
  • no downlink data is transmitted by the base station and no downlink data is received by the UE during the switching delay.
  • the BWPs proposed herein include DL BWPs, UL BWPs, and joint BWPs (e.g., DL/UL BWPs) , both UEs and base stations may face switching delays and wasted transmit or receive opportunities.
  • FIGS. 3C and 3D illustrate companion BWPs and companion BWP based frequency hopping in diagram 320.
  • a carrier BW is illustrated including multiple BWPs, with frequency illustrated along the y axis (vertical axis) .
  • the carrier bandwidth includes a particular BWP (e.g., an active BWP and/or anchor BWP) and a companion BWP for the particular BWP.
  • the particular BWP and its companion BWP have different frequencies. Devices of a network may switch between such BWP, and thus frequencies, based on frequency hopping.
  • FIG. 3D an example of inter BWP frequency hopping is illustrated in diagram 330.
  • the diagrams illustrates time along the x axis (horizontal axis) and frequency along the y axis (vertical axis) .
  • multiple slots are bundled together for the first BWP and multiple slots are bundled together for the second BWP.
  • the first and second BWPs are companion BWPs and have the same SCS and different frequencies (aka “frequency location” ) .
  • the devices can switch between such BWPs more quickly as the first and second BWPs are companion BWPs.
  • the UE may be configured with a complementary BWP.
  • a complementary BWP Such an active BWP may be known as an anchor BWP and the anchor and complementary BWPs may be considered a pair of BWPs which enables faster or zero delay BWP switching.
  • the complementary BWP configuration is dependent on the anchor BWP, and the switching delay between the current active BWP (anchor BWP) and the complementary BWP is relatively small compared to the current BWP switching delay requirements.
  • the same software configurations e.g., RRC configurations
  • the UE might need to do RF tuning for switching from the anchor BWP to the complementary BWP thus the switching delay reduced.
  • networks are designed to be scalable and deployed in a more efficient and cost-effective way.
  • Such operating goals like peak throughput, latency, reliability, etc., can be relaxed for certain operating conditions and/or devices.
  • efficiency e.g. power consumption and system overhead
  • cost improvements can be prioritized over operating parameters.
  • NR-Light e.g., reduced capability UEs, such as wearables, Industrial wireless sensor networks (IWSN) , Surveillance cameras, etc.
  • Reduced capabilities UEs such as lower complexity UEs, may include smaller bandwidth capabilities, a reduced number of RX antennas, relaxed UE processing and PDCCH monitoring, etc.
  • Intra-BWP frequency hopping may have limited diversity gain with reduced maximum bandwidth and single receive antenna causes significant downlink coverage loss compared to multiple receive antenna configurations (e.g., four receive antennas) .
  • One alternative for implementing cross-BWP hopping is to configure two or more narrow BWPs as the companion BWPs, and the frequency hopping is among the companion BWPs.
  • the companion BWPs are defined with the same SCS but different frequency location, e.g. one or more “locationAndBandwidth” included in the BWP configuration for indicating the companion BWP.
  • One issue with cross-BWP hopping is that BWP switching can be more frequent since periodic downlink transmission may be configured in all the companion BWPs of the anchor BWP and the UE is then required to switch between the anchor and companion BWP for monitoring the periodic downlink transmissions. Therefore, there is a balance between the diversity gain and UE complexity for cross-BWP hopping, e.g. avoiding frequent BWP switching for saving UE power.
  • one BWP in the set of BWPs is indicated as the anchor and all the other BWPs are non-anchor.
  • the anchor BWP is used for periodic downlink transmission (e.g., periodic downlink transmission only)
  • the non-anchor BWPs may be used for non-periodic downlink transmission.
  • Periodic transmissions include PDCCH monitoring, SSB transmissions, and periodic CSI-RS transmissions.
  • FIG. 4 illustrates an example of a wireless communications system 400 that supports low complexity cross BWP frequency hopping operations in accordance with aspects of the present disclosure.
  • wireless communications system 400 may implement aspects of wireless communication system 100.
  • wireless communications system 400 may include UE 115 and network entity 405.
  • Low complexity cross BWP frequency hopping may be used with reduced capability devices and may increase throughput and reliability by increasing diversity gain and reducing switching delay. Thus, network and device performance can be increased.
  • Network entity 405 and UE 115 UE 115 may be configured to communicate via frequency bands, such as FR1 having a frequency of 410 to 7125 MHz, FR2 having a frequency of 24250 to 52600 MHz for mm-Wave, and/or one or more other frequency bands. It is noted that SCS may be equal to 15, 30, 60, or 120 kHz for some data channels.
  • Network entity 405 and UE 115 may be configured to communicate via one or more component carriers (CCs) , such as representative first CC 481, second CC 482, third CC 483, and fourth CC 484. Although four CCs are shown, this is for illustration only, more or fewer than four CCs may be used.
  • One or more CCs may be used to communicate control channel transmissions, data channel transmissions, and/or sidelink channel transmissions.
  • Such transmissions may include a Physical Downlink Control Channel (PDCCH) , a Physical Downlink Shared Channel (PDSCH) , a Physical Uplink Control Channel (PUCCH) , a Physical Uplink Shared Channel (PUSCH) , a Physical Sidelink Control Channel (PSCCH) , a Physical Sidelink Shared Channel (PSSCH) , or a Physical Sidelink Feedback Channel (PSFCH) .
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSFCH Physical Sidelink Feedback Channel
  • Each periodic grant may have a corresponding configuration, such as configuration parameters/settings.
  • the periodic grant configuration may include configured grant (CG) configurations and settings. Additionally, or alternatively, one or more periodic grants (e.g., CGs thereof) may have or be assigned to a CC ID, such as intended CC ID.
  • Each CC may have a corresponding configuration, such as configuration parameters/settings.
  • the configuration may include bandwidth, bandwidth part, HARQ process, TCI state, RS, control channel resources, data channel resources, or a combination thereof.
  • one or more CCs may have or be assigned to a Cell ID, a Bandwidth Part (BWP) ID, or both.
  • the Cell ID may include a unique cell ID for the CC, a virtual Cell ID, or a particular Cell ID of a particular CC of the plurality of CCs.
  • one or more CCs may have or be assigned to a HARQ ID.
  • Each CC may also have corresponding management functionalities, such as, beam management, BWP switching functionality, or both.
  • two or more CCs are quasi co-located, such that the CCs have the same beam and/or same symbol.
  • control information may be communicated via network entity 405 and UE 115.
  • the control information may be communicated suing MAC-CE transmissions, RRC transmissions, DCI, transmissions, another transmission, or a combination thereof.
  • UE 115 can include a variety of components (e.g., structural, hardware components) used for carrying out one or more functions described herein.
  • these components can includes processor 402, memory 404, transmitter 410, receiver 412, encoder, 413, decoder 414, BWP manager 415, frequency hopping manager 416 and antennas 252a-r.
  • Processor 402 may be configured to execute instructions stored at memory 404 to perform the operations described herein.
  • processor 402 includes or corresponds to controller/processor 280
  • memory 404 includes or corresponds to memory 282.
  • Memory 404 may also be configured to store trigger condition data 406, BWP configuration data 408, BWP association data 442, settings data 444, or a combination thereof, as further described herein.
  • the trigger condition data 406 includes or corresponds to data associated with or corresponding to BWP switching trigger condition information.
  • the trigger condition data 406 may indicate one or more possible trigger conditions and/or an active trigger condition or conditions.
  • the trigger condition data 406 may also include thresholds or data used to evaluate the trigger conditions, such as conditions for evaluating BWP ID and/or transmission types. Additionally, the trigger condition data 406 may also include thresholds or data used to evaluate inactivity timers.
  • the BWP configuration data 408 includes or corresponds to data indicating or corresponding to BWP configurations.
  • the BWP configuration data 408 may indicate possible BWP configurations, an active (e.g., currently used) BWP configuration, a default BWP configuration, an anchor BWP configuration, a companion BWP configuration, or a combination thereof.
  • the BWP configuration data 408 may further indicate UL BWP configurations, DL BWP configurations, or both.
  • the BWP association data 442 includes or corresponds to data that indicates associations between different BWP configurations.
  • the BWP association data 442 may be used to indicate a particular anchor BWP and one or more corresponding companion BWPs (e.g., complementary BWP) .
  • the BWP association data 442 may further include multiple pairs of anchor and complementary BWPs.
  • the settings data 444 includes or corresponds to data associated with anchor and companion BWP switching operations.
  • the settings data 444 may include one or more types of anchor and companion BWP switching operation modes and/or thresholds or conditions for switching between different anchor and companion BWP switching modes and/or configurations.
  • the settings data 444 may have data indicating different thresholds for different full-duplex modes, such as low complexity modes and/or IBFD and SBFD modes.
  • Transmitter 410 is configured to transmit data to one or more other devices, and receiver 412 is configured to receive data from one or more other devices.
  • transmitter 410 may transmit data
  • receiver 412 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof.
  • UE 115 may be configured to transmit and/or receive data via a direct device-to-device connection, a local area network (LAN) , a wide area network (WAN) , a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate.
  • transmitter 410 and receiver 412 may be replaced with a transceiver. Additionally, or alternatively, transmitter 410, receiver, 412, or both may include or correspond to one or more components of UE 115 described with reference to FIG. 2.
  • Encoder 413 and decoder 414 may be configured to encode and decode data for transmission.
  • BWP manager 415 may be configured to determine and perform BWP management and switching operations. For example, BWP manager 415 is configured to determine a particular BWP switching trigger and/or select a particular BWP configuration responsive to particular BWP switching trigger.
  • Frequency hopping manager 416 may be configured to determine and perform frequency hopping management and switching operations. For example, frequency hopping manager 416 may be configured to switch BWPs between anchor and companion BWPs based on a type of transmission (e.g., periodic transmission or non-periodic transmission) . The type of transmission may be indicated directly or indirectly, such as by BWP ID.
  • Network entity 405 includes processor 430, memory 432, transmitter 434, receiver 436, encoder 437, decoder 438, BWP manager 439, frequency hopping manager 440, and antennas 234a-t.
  • Processor 430 may be configured to execute instructions stores at memory 432 to perform the operations described herein.
  • processor 430 includes or corresponds to controller/processor 240
  • memory 432 includes or corresponds to memory 242.
  • Memory 432 may be configured to store trigger condition data 406, BWP configuration data 408, BWP association data 442, settings data 444, or a combination thereof, similar to the UE 115 and as further described herein.
  • Transmitter 434 is configured to transmit data to one or more other devices
  • receiver 436 is configured to receive data from one or more other devices.
  • transmitter 434 may transmit data
  • receiver 436 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof.
  • network entity 405 may be configured to transmit and/or receive data via a direct device-to-device connection, a local area network (LAN) , a wide area network (WAN) , a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate.
  • transmitter 434 and receiver 436 may be replaced with a transceiver. Additionally, or alternatively, transmitter 434, receiver, 436, or both may include or correspond to one or more components of network entity 405 described with reference to FIG. 2.
  • Encoder 437, and decoder 438 may include the same functionality as described with reference to encoder 413 and decoder 414, respectively.
  • BWP manager 439 may include similar functionality as described with reference to BWP manager 415.
  • Frequency hopping manager 440 may include similar functionality as described with reference to frequency hopping manager 416.
  • network entity 405 may determine that UE 115 has low complexity cross BWP frequency hopping capability. For example, UE 115 may transmit a message 448 that includes a low complexity cross BWP frequency hopping indicator 490 (e.g., transmission type based anchor to companion BWP switching indicator) . Indicator 490 may indicate low complexity cross BWP frequency hopping operation capability or a particular type or mode of low complexity cross BWP frequency hopping operation. In some implementations, network entity 405 sends control information to indicate to UE 115 that low complexity cross BWP frequency hopping operation and/or a particular type of low complexity cross BWP frequency hopping operation is to be used.
  • a low complexity cross BWP frequency hopping indicator 490 e.g., transmission type based anchor to companion BWP switching indicator
  • Indicator 490 may indicate low complexity cross BWP frequency hopping operation capability or a particular type or mode of low complexity cross BWP frequency hopping operation.
  • network entity 405 sends control information to indicate to UE
  • message 448 (or another message, such as configuration transmission 450) is transmitted by the network entity 405.
  • the configuration transmission 450 may include or indicate to low complexity cross BWP frequency hopping operation or to adjust or implement a setting of a particular type of low complexity cross BWP frequency hopping operation.
  • devices of wireless communications system 400 perform low complexity cross BWP frequency hopping operations.
  • the network entity 405 and the UE 115 exchange transmissions using a particular active BWP.
  • Such transmissions may include or correspond to periodic transmissions, such as physical downlink control channel (PDCCH) monitoring, a synchronization signal block (SSB) transmission, or a periodic channel state information reference signal (CSI-RS) transmission.
  • the network entity 405 and the UE 115 transmits one or more periodic transmissions using a particular DL active BWP, such as a periodic transmission 452.
  • the network 405, the UE 115, or both may be configured with up to four BWPs and may be switched between the four BWPs such that one of the four BWPs is the “active” BWP.
  • the network entity 405 and/or the UE 115 may determine to switch the active BWP between the configured BWPs to efficiently use the network spectrum. For example, the network entity 405 may determine to switch an active BWP for UL, DL, or both, and the network entity 405 may send a switching trigger transmission, such as a DCI 454, to the UE 115 to indicate the BWP switch.
  • a DCI transmission may indicate a BWP switch by indicating a non-periodic transmission.
  • the non-periodic transmission may be indicated directly or indirectly, such as by a BWP ID which indicates a different BWP (e.g., a companion BWP for a current/active, anchor BWP) .
  • the network entity 405 and the UE 115 After determining that a trigger condition for changing the particular BWP exists, the network entity 405 and the UE 115 determine the particular BWP configuration or configuration change. The network entity 405 and the UE 115 may then change /set the switch the BWP configuration such that the new active BWP is used. While the above has been described with reference to the UE 115, the network entity 405 similarly evaluates trigger conditions and determines the new BWP configuration. Thus, the UE 115 and network entity 405 determine the particular BWP configuration based on the trigger conditions data 406, the BWP configuration data 408, and the BWP associations data 442.
  • the network entity 405 and UE 115 perform one or more periodic transmissions 456 (e.g., data channel transmissions) according to the BWP configuration indicated by BWP configuration data 408 for the upcoming symbol or slot. For example, the network entity 405 transmits a DCI for one slot to schedule UL and DL transmissions for a subsequent slot.
  • periodic transmissions 456 e.g., data channel transmissions
  • the network entity 405 Based on the scheduled UL and DL transmissions indicated by the DCI and the determined BWP configuration, the network entity 405 transmits downlink data (e.g., one or more DL symbols) and the UE 115 transmits uplink data (one or more UL symbols) .
  • downlink data e.g., one or more DL symbols
  • uplink data one or more UL symbols
  • the UE 115 and network entity 405 may be able to transmit and receive information with different BWP configurations in sequential /consecutive symbols or slots based on transmission type and perform cross BWP frequency hopping.
  • FIG. 4 describes low complexity cross BWP frequency hopping operations.
  • Using transmission type (e.g., periodic and non-periodic) based frequency hopping for anchor and companion BWPs may enable improvements when operating with less advanced hardware.
  • Performing transmission type (e.g., periodic and non-periodic) based frequency hopping for anchor and companion BWPs enables reduced bandwidth /spectrum waste when BWP switching and thus, enhanced UE and network performance by increasing throughput and reducing latency.
  • FIG. 5-8 are diagrams of examples of timing diagrams illustrating particular examples of low complexity cross BWP frequency hopping operations.
  • example BWP layouts are illustrated where time is the horizontal or x axis and frequency is the vertical or y axis.
  • a BWP layout e.g., BWP arrangement
  • the two BWPs are allocated for DL with one such BWP being active at a time.
  • the first BWP (BWP0) is the anchor BWP and the second BWP (BWP1) is the companion BWP.
  • another BWP layout (e.g., BWP arrangement) has four configured BWPs.
  • the four BWPs are allocated for DL with one such BWP being active at a time.
  • the BWP layout includes four BWPs, BWP0-BWP3, from bottom to top.
  • a first BWP (BWP0) is a standard BWP
  • BWP1 is an anchor BWP
  • BWP2 is an anchor BWP
  • BWP2 is a is a standard BWP
  • a fourth BWP (BWP3) is a companion BWP for the second BWP (anchor BWP) .
  • a base station of the present disclosure may dynamically and flexibly configure the BWP layouts of FIGS. 5-8, as illustrated in FIGS. 5-8. That is the base station may configure or select a particular BWP of the BWP layout to be the active BWP.
  • the base station may further set one or more anchor and companion BWP pairs and optionally a default BWP.
  • a default BWP may include a default anchor BWP and a default complementary BWP. Both the base station and UE may quickly switch between BWPs based on the BWPs being companion BWPs.
  • FIG. 5 illustrates example low complexity cross BWP frequency hopping operations over 7 slots in timing diagram 500.
  • a UE receives a DCI transmission and a corresponding PDSCH transmission during a first slot and in the anchor BWP, i.e., first BWP (BWP0) .
  • Such transmissions are periodic transmissions in the example of FIG. 5.
  • the UE receives a DCI transmission indicating a first non-periodic transmission for a third slot.
  • the DCI may indicate, such as by BWP ID, that the first non-periodic transmission is to be sent in a particular non-anchor BWP, such as the second BWP (BWP1) .
  • the UE may not monitor the first BWP during the third slot even if a previous periodic transmission was scheduled for the third slot. That is, the previous periodic transmission may be superseded /overwritten by the non-periodic transmission.
  • the UE receives the first non-periodic transmission in the particular non-anchor, companion BWP, such as the second BWP (BWP1) .
  • This process that is the operations of the third slot, may then be repeated for slots four, five, six, and/or seven as illustrated in FIG. 5. Additionally, such non-periodic transmissions may continue until the non-periodic transmissions are completed (e.g., data transfer is complete) .
  • the operations of the first slot may be repeated in any of the fourth through the seventh slots or beyond. To illustrate, if no non-periodic data is to be transmitted, then periodic transmissions may occur in any such slot, similar to the operations of the first slot. In the example of FIG.
  • the periodic transmission occur in the first active BWP (BWP0) , and the active BWP will revert to the first active BWP when no non-periodic transmissions are scheduled.
  • a particular set of non-periodic transmissions e.g., data transmissions
  • the active BWP may revert to the anchor BWP, i.e., the first active BWP (BWP0) .
  • a DCI that is a third DCI is received in slot six. If the DCI is for a periodic transmission (i.e., a BWP ID of BWP0) , the UE may receive a PDSCH in the sixth slot similar to the first slot. Alternatively and as illustrated, if the third DCI is for another non-periodic transmission, the UE may receive a PDSCH in the companion BWP, i.e., second BWP (BWP1) , during the seventh slot.
  • BWP1 second BWP
  • FIG. 6 illustrates another example low complexity cross BWP frequency hopping operations over 7 slots in timing diagram 600.
  • a UE receives a DCI transmission (DCI1) and a corresponding PDSCH transmission during a first slot and in the anchor BWP, i.e., first BWP (BWP0) .
  • DCI1 DCI transmission
  • BWP0 first BWP
  • Such transmissions are periodic transmissions in the example of FIG. 6.
  • the UE receives a DCI transmission (DCI2) indicating a first non-periodic transmission for a third slot.
  • the DCI may indicate that the first non-periodic transmission is to be sent in a particular non-anchor BWP, such as the second BWP (BWP1) .
  • the UE receives the first non-periodic transmission in the particular non-anchor, companion BWP, such as the second BWP (BWP1) .
  • the UE may switch the anchor BWP to the current active BWP, i.e., switch the anchor BWP from the first BWP to the second BWP.
  • the UE may monitor the periodic transmission in the new active BWP. That is, the periodic transmission may not be superseded /overwritten by the BWP switching.
  • the periodic or non-periodic transmission process may be repeated for any of the fourth through seventh slots.
  • the non-periodic transmissions continue until the fifth slot using the second BWP (BWP1) as the active, anchor BWP.
  • the subsequent non-periodic transmissions of the fourth and fifth slots may be indicated by a prior non-periodic transmission.
  • the PDSCH of the third slot indicates the PDSCH of the fourth slot, which indicates the PDSCH of the fifth slot.
  • another set of non-periodic transmissions occur for slots five through seven.
  • the other set of non-periodic transmissions occur in the original anchor slot (BWP0) .
  • Such set of non-periodic transmissions may be indicated by a DCI (DCI3) in the new anchor BWP (BWP1) , and additionally in another slot, such as the original or previous anchor BWP (BWP0) .
  • DCI3 DCI
  • Ping-pong switching in the context of this disclosure may involve switching back to the original anchor BWP for the periodic transmissions after a non-periodic transmission has occurred on a companion BWP (e.g., non-anchor BWP) for original anchor BWP, as illustrated in the example of FIG. 5.
  • a companion BWP e.g., non-anchor BWP
  • the operations in FIG. 6 reduce or eliminate ping-pong switching, it is possible that the UE and network get out of sync, such as when a DCI is missed by the UE.
  • repetitive transmissions and/or inactivity timers may be used.
  • the DCI which schedules the non-periodic transmission may be repeated on the original anchor BWP, which is currently a non-anchor, companion BWP.
  • a repeat DCI i.e., third DCI (DCI3) may be transmitted on both the active anchor and companion BWPs (i.e., BWP1 and BWP0) which indicates that the second non-periodic transmission will be transmitted in the first anchor BWP (i.e., first BWP (BWP0) ) during the sixth slot.
  • the PDSCH may be repeated as well. To illustrate, consecutive PDSCHs may correspond to the same data.
  • expiration of an inactivity timer may reconfigured to the anchor BWP back to the original anchor BWP.
  • the anchor BWP would be switched from the fourth BWP back to the original anchor BWP of the BWP0.
  • Such inactivity timer operations may be in line with conventional inactivity timer operations, but in the context of this disclosure may help resolve anchor BWP configuration mismatches.
  • FIG. 7 illustrates example low complexity cross BWP frequency hopping operations over 7 slots in timing diagram 700.
  • a UE receives a DCI transmission (DCI1) and a corresponding PDSCH transmission during a first slot and in the anchor BWP, i.e., second BWP (BWP1) .
  • DCI1 DCI transmission
  • BWP1 second BWP
  • Such transmissions are periodic transmissions in the example of FIG. 7.
  • the UE receives a DCI transmission (DCI2) indicating a first non-periodic transmission for a third slot.
  • the DCI may indicate that the first non-periodic transmission is to be sent in a particular non-anchor BWP, such as the fourth BWP (BWP3) .
  • the UE receives the first non-periodic transmission in the particular non-anchor, companion BWP, such as the fourth BWP (BWP3) .
  • the UE may switch the anchor BWP to the current active BWP, i.e., switch the anchor BWP from the second BWP (BWP1) to the fourth BWP (BWP3) .
  • the UE may monitor the periodic transmission in the new active, anchor BWP, i.e., BWP3. That is, the periodic transmissions may not be superseded /overwritten by the BWP switching.
  • the periodic or non-periodic transmission process may be repeated for any of the fourth through seventh slots.
  • the non-periodic transmissions continue until the fifth slot using the fourth BWP (BWP3) as the active, anchor BWP.
  • the subsequent non-periodic transmissions of the fourth and fifth slots may be indicated by a prior non-periodic transmission.
  • the PDSCH of the third slot indicates the PDSCH of the fourth slot, which indicates the PDSCH of the fifth slot.
  • another set of non-periodic transmissions occur for slots five through seven. As compared to FIG.
  • the other set of non-periodic transmissions occur in a new BWP, third BWP (BWP2) .
  • Such set of non-periodic transmissions may be indicated by a DCI (DCI3) in the new anchor BWP (BWP3) , and additionally in another slot, such as BWP1 or BWP2 (as illustrated) .
  • the anchor BWP is switched among multiple different non-anchor, companion BWPs.
  • the active BWP may cycle through multiple different BWPs of the configured BWPs of a BWP layout/arrangement. Such operations may increase flexibility and/or diversity gain.
  • the example of FIG. 7 may include additional operations to resolve configuration mismatches, such as repetitive transmissions and/or inactivity timers as described with reference to FIG. 6.
  • FIG. 8 illustrates example low complexity cross BWP frequency hopping operations over 7 slots in timing diagram 800.
  • a UE receives a DCI transmission and a corresponding PDSCH transmission during a first slot and in the anchor BWP (second BWP (BWP1) ) .
  • Such transmissions are periodic transmissions in the example of FIG. 8.
  • the UE receives a DCI transmission indicating a first non-periodic transmission for a third slot, such as a CSI-RS transmission in a PDSCH.
  • the DCI may indicate that the first non-periodic transmission is to be sent in a particular non-anchor BWP, such as the fourth BWP (BWP3) .
  • the UE may not monitor the second BWP during the second slot even if a previous periodic transmission was scheduled for the second slot. That is, the previous periodic transmission may be superseded /overwritten by the non-periodic transmission.
  • the UE receives the first non-periodic transmission in the particular non-anchor BWP, such as the fourth BWP (BWP3) .
  • the first non-periodic transmission may be a CSI-RS transmission and the DCI of the second slot may be an aperiodic CSI-RS trigger message.
  • the UE may determine to perform CSI-RS measurement operations and transmit CSI-RS measurement information, such as a CSI-RS measurement report or CSF report, in a corresponding PUSCH. As illustrated in the example of FIG.
  • the corresponding PUSCH and transmission may have the same active BWP as the first non-periodic transmission and occur during the same slot, that is in the fourth BWP and during the third slot.
  • the corresponding PUSCH transmission for the PDSCH transmission may occur in other BWPs and/or in later slots.
  • Such delayed transmission of the PUSCH and/or alternative BWP of the PUSCH may be indicated by the DCI or previously indicated (e.g., by RRC) .
  • the non-periodic CSI-RS transmission and reporting may take up one slot or multiple slots.
  • the non-periodic transmissions continue for multiple slots and then the anchor/active BWP reverts to the original active/anchor BWP, i.e., BWP1, similar to FIG. 5.
  • a DCI may then be received for the original active/anchor BWP, i.e., BWP1.
  • a third DCI is received in slot six.
  • the third DCI may indicate a second companion BWP which is different from the first companion BWP indicated by the second DCI in slot two.
  • the third DCI indicates a BWP ID of zero and the first BWP (BWP0) as the new active, anchor BWP for PDSCH and PUSCH transmissions.
  • Such transmissions in the seventh slot may include or correspond to CSI-RS transmissions and reporting in some implementations.
  • the anchor BWP may be fixed, such as semi-statically set.
  • the UE may receive a RRC message configuring the first BWP (BWP0) as the anchor BWP.
  • the anchor BWP may be dynamic, such as dynamically set or triggered.
  • the UE may receive a DCI message configuring the first BWP (e.g., BWP0 or BWP1) as the anchor BWP or triggering a switch in anchor BWP from a previous anchor BWP to a default anchor BWP, such as the second BWP (e.g., BWP1 or BWP3 ) .
  • the second BWP e.g., BWP1 or BWP3
  • FIGS. 5-8 may be combined or adjusted. Additionally, or alternatively, a UE and network may switch between the different operations of timing diagrams of FIGS. 5-8.
  • FIG. 9 an example diagram 900 for CSI reporting for low complexity BWP frequency hopping.
  • a first CSI reporting is transmitted for a first active BWP (BWP0) , which is an anchor BWP, in a first slot (slot n) .
  • a second CSI reporting is transmitted for a second active BWP (BWP1) , which is a corresponding companion BWP, in a second slot (slot n+1) .
  • the second CSI reporting is transmitted with the same rank indicator (RI) as the first CSI reporting.
  • the UE may use RI inheritance to determine the RI for the CSI reporting for the companion BWP of the anchor (e.g. based on the latest RI of the CSI reporting for the anchor BWP) .
  • the CSI reporting setting for the companion BWP includes a reference CSI reporting setting which is the CSI reporting setting for the anchor BWP.
  • the reference CSI reporting setting for the companion BWP may be based on the CSI reporting setting for the anchor BWP, the RI is reported with RI inherence.
  • CSI reporting may include one or more the BWPs.
  • different CSI reporting settings may be associated with different indications of the number of BWPs configured, e.g. reporting 1 indicates anchor BWP only; reporting 2 indicates the anchor BWP and one non-anchor BWP; reporting 3 indicates the anchor BWP and two non-anchor BWPs, etc.
  • FIG. 10 is a flow diagram illustrating example blocks executed by a UE configured according to an aspect of the present disclosure. The example blocks will also be described with respect to UE 115 as illustrated in FIG. 12.
  • FIG. 12 is a block diagram illustrating UE 115 configured according to one aspect of the present disclosure.
  • UE 115 includes the structure, hardware, and components as illustrated for UE 115 of FIG. 2.
  • UE 115 includes controller/processor 280, which operates to execute logic or computer instructions stored in memory 282, as well as controlling the components of UE 115 that provide the features and functionality of UE 115.
  • UE 115 under control of controller/processor 280, transmits and receives signals via wireless radios 1200a-r and antennas 252a-r.
  • Wireless radios 1200a-r includes various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator/demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266.
  • memory 282 stores full-duplex logic 1202, BWP logic 1203, trigger conditions data 1204, BWP configuration data 1205, BWP association data 1206, timer (s) 1207, and settings data 1208.
  • a wireless communication device such as a UE receives a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP.
  • the UE 115 receives a PDSCH according to a particular active BWP, as described with reference to FIGS. 4-8.
  • a DCI which schedules the periodic transmission is also received according to the same particular active BWP as the periodic transmission (e.g., PDSCH) .
  • the periodic transmission includes or corresponds to a physical downlink control channel (PDCCH) monitoring, a synchronization signal block (SSB) transmission, or a periodic channel state information reference signal (CSI-RS) transmission.
  • PDCH physical downlink control channel
  • SSB synchronization signal block
  • CSI-RS periodic channel state information reference signal
  • the UE 115 receives a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot.
  • DCI downlink control information
  • the UE 115 receives a DCI indicating a BWP ID which indicates a BWP switch (i.e., a second BWP different from the first active BWP) for a non-periodic transmission in a second slot, as described with reference to FIGS. 4-8.
  • the non-periodic transmission includes or corresponds to a physical downlink data channel (PDSCH) transmission or an aperiodic CSI-RS transmission.
  • the second slot may include or correspond to a next or subsequent slot to the first slot.
  • the UE 115 determines a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP. For example, the UE 115 determines that the current BWP configuration, i.e., the first active BWP of the periodic transmission, is different from the indicated and/or determined BWP configuration (second BWP) for the signaled non-periodic transmission indicated by the DCI and the base station 105 determines to switch BWP configurations based on the indicated second BWP, as described with reference to FIGS. 4-8.
  • the UE 115 receives the non-periodic transmission according to the second BWP configuration during the second slot.
  • the UE 115 receives the non-periodic transmission according to the second BWP configuration indicated by the DCI during the second slot, as described with reference to FIGS. 4-8.
  • the UE 115 may execute additional blocks (or the UE 115 may be configured further perform additional operations) in other implementations. For example, the UE 115 may perform one or more operations described above. As another example, the UE 115 may perform one or more aspects as described below.
  • the periodic transmission includes or corresponds to a physical downlink control channel (PDCCH) monitoring, a synchronization signal block (SSB) transmission, or a periodic channel state information reference signal (CSI-RS) transmission.
  • PDCCH physical downlink control channel
  • SSB synchronization signal block
  • CSI-RS periodic channel state information reference signal
  • the non-periodic transmission includes or corresponds to a physical downlink data channel (PDSCH) transmission or an aperiodic CSI-RS transmission.
  • PDSCH physical downlink data channel
  • the DCI includes a BWP ID, and further comprising determining, by the UE, that the BWP ID included in the DCI indicates a BWP that is different from the first BWP.
  • the UE 115 refrains from monitoring the first active BWP during the second slot based on the BWP switching trigger.
  • the first active BWP is an anchor BWP and the second active BWP is a non-anchor BWP.
  • the second active BWP is a companion BWP for the first active BWP.
  • the UE 115 prior to receiving the periodic transmission, receives a RRC message indicating an anchor BWP configuration, and sets the first active BWP indicated by the RRC message as the anchor BWP.
  • the UE 115 after receiving the non-periodic transmission, switches to the first active BWP as the anchor BWP, and monitors for a PDCCH transmission on the first active BWP.
  • the UE 115 after receiving the non-periodic transmission, sets the second active BWP indicated by the DCI message as the anchor BWP, and receives one or more periodic transmissions via the second active BWP.
  • the UE 115 determines to switch back to the first active BWP based on an BWP inactivity timer expiring, and sets the first active BWP as the anchor BWP.
  • a CORESET and a search space set configuration for PDCCH monitoring are the same for the first active BWP and the second active BWP.
  • switching from the first BWP to the second BWP includes a retuning of radio frequency circuitry, wherein a switching delay of switching from the first BWP to the second BWP is less than a slot, and wherein switching from the first BWP to the second BWP is independent of radio resource configuration reconfiguring.
  • the UE is configured to report a CSI for the second active BWP.
  • the CSI reporting for the second active BWP is based on an aperiodic CSI-RS, and wherein the transmission of the aperiodic CSI-RS is based on the BWP switching trigger.
  • the UE is configured to set a rank indicator for CSI reporting for the second active BWP based on a rank indicator for a CSI reporting for the first active BWP:
  • the UE is configured with multiple CSI reporting settings, wherein a first setting indicates anchor BWP CSI reporting only, a second setting indicates anchor BWP CSI reporting and a single non-anchor BWP CSI reporting, and a third setting indicates anchor BWP CSI reporting and multiple non-anchor BWP CSI reporting.
  • a UE and a base station may perform low complexity cross BWP frequency hopping operations for anchor and companion BWPs.
  • low complexity cross BWP frequency hopping operations By performing low complexity cross BWP frequency hopping operations, throughput and reliability may be increased and such operations may be compatible with reduced capability (e.g., less advanced) devices.
  • FIG. 11 is a flow diagram illustrating example blocks executed by wireless communication device configured according to another aspect of the present disclosure.
  • the example blocks will also be described with respect to base station 105 (e.g., gNB) as illustrated in FIG. 13.
  • FIG. 13 is a block diagram illustrating base station 105 configured according to one aspect of the present disclosure.
  • Base station 105 includes the structure, hardware, and components as illustrated for base station 105 of FIG. 2.
  • base station 105 includes controller/processor 240, which operates to execute logic or computer instructions stored in memory 242, as well as controlling the components of base station 105 that provide the features and functionality of base station 105.
  • Base station 105 under control of controller/processor 240, transmits and receives signals via wireless radios 1301a-t and antennas 234a-t.
  • Wireless radios 1301a-t includes various components and hardware, as illustrated in FIG. 2 for base station 105, including modulator/demodulators 232a-t, MIMO detector 236, receive processor 238, transmit processor 220, and TX MIMO processor 230.
  • memory 242 stores full-duplex logic 1302, BWP logic 1303, trigger conditions data 1304, BWP configuration data 1305, BWP association data 1306, timer (s) 1307, and settings data 1308.
  • One of more of 1302-1308 may include or correspond to one of 1202-1208.
  • a wireless communication device such as a base station transmits a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP.
  • the base station 105 transmits a PDSCH according to a particular active BWP, as described with reference to FIGS. 4-8.
  • a DCI which schedules the periodic transmission is also transmitted according to the same particular active BWP as the periodic transmission (e.g., PDSCH) .
  • the periodic transmission includes or corresponds to a physical downlink control channel (PDCCH) monitoring, a synchronization signal block (SSB) transmission, or a periodic channel state information reference signal (CSI-RS) transmission.
  • PDCH physical downlink control channel
  • SSB synchronization signal block
  • CSI-RS periodic channel state information reference signal
  • the base station 105 transmits a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot.
  • DCI downlink control information
  • the base station 105 transmits a DCI indicating a BWP ID which indicates a BWP switch (i.e., a second BWP different from the first active BWP) for a non-periodic transmission in a second slot, as described with reference to FIGS. 4-8.
  • the non-periodic transmission includes or corresponds to a physical downlink data channel (PDSCH) transmission or an aperiodic CSI-RS transmission.
  • PDSCH physical downlink data channel
  • the base station 105 determines a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP. For example, the base station 105 determines that the current BWP configuration, i.e., the first active BWP of the periodic transmission, is different from the indicated and/or determined BWP configuration (second BWP) for the signaled non-periodic transmission indicated by the DCI and the base station 105 determines to switch BWP configurations based on the indicated second BWP, as described with reference to FIGS. 4-8.
  • the base station 105 transmits the non-periodic transmission according to the second BWP configuration during the second slot.
  • the base station 105 transmits the non-periodic transmission according to the second BWP configuration indicated by the DCI during the second slot, as described with reference to FIGS. 4-8.
  • the base station 105 may execute additional blocks (or the base station 105 may be configured further perform additional operations) in other implementations.
  • the base station 105 may perform one or more operations described above.
  • the base station 105 may perform one or more aspects as described below and with reference to the UE in FIG. 10.
  • the base station 105 transmits a second DCI via the second active BWP indicating a second non-periodic transmission, and transmits the second non-periodic transmission via the second active BWP, where the second non-periodic transmission corresponds to a repeated transmission of the non-periodic transmission.
  • the base station 105 transmits a second DCI via the first active BWP indicating a second non-periodic transmission, transmits a third DCI via the second active BWP indicating a second non-periodic transmission, and transmits the second non-periodic transmission via the second active BWP.
  • a UE and a base station may perform low complexity cross BWP frequency hopping operations for anchor and companion BWPs.
  • low complexity cross BWP frequency hopping operations By performing low complexity cross BWP frequency hopping operations, throughput and reliability may be increased and such operations may be compatible with reduced capability (e.g., less advanced) devices.
  • Components, the functional blocks, and modules described herein may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • processors e.g., the components, functional blocks, and modules in FIG. 2
  • features discussed herein relating to low complexity cross BWP frequency hopping may be implemented via specialized processor circuitry, via executable instructions, and/or combinations thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • a connection may be properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium.
  • DSL digital subscriber line
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.

Abstract

In one aspect, a method of wireless communication includes receiving, by a user equipment (UE), a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP. The method also includes receiving, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot. The method includes determining, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP. The method further includes receiving, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot. Other aspects and features are also claimed and described.

Description

LOW COMPLEXITY FREQUENCY HOPPING FOR REDUCED CAPABILITY UE TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to bandwidth part switching. Certain embodiments of the technology discussed below can enable and provide faster bandwidth part switching for reduced capability user equipment.
INTRODUCTION
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance wireless technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
SUMMARY
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
In one aspect of the disclosure, a method of wireless of communication includes receiving, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP; receiving, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determining, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and receiving, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes means for receiving, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP; means for receiving, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; means for determining, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and means for receiving, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon. The program code further includes code to receive, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP; receive, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic  transmission in a second slot; determine, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and receive, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes at least one processor, and a memory coupled to the processor. The processor is configured to receive, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP; receive, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determine, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and receive, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
In another aspect of the disclosure, a method of wireless of communication includes transmitting, by a network entity, a periodic transmission according to a first BWP configuration for a first symbol, the first BWP configuration having a first active BWP; transmitting, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determining, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and transmitting, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes means for transmitting, by a network entity, a periodic transmission according to a first BWP configuration for a first symbol, the first BWP configuration having a first active BWP; means for transmitting, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; means for determining, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but  a different frequency location as the second active BWP; and means for transmitting, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon. The program code further includes code to transmit, by a network entity, a periodic transmission according to a first BWP configuration for a first symbol, the first BWP configuration having a first active BWP; transmit, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determine, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and transmit, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes at least one processor, and a memory coupled to the processor. The processor is configured to transmit, by a network entity, a periodic transmission according to a first BWP configuration for a first symbol, the first BWP configuration having a first active BWP; transmit, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot; determine, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and transmit, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
Other aspects, features, and embodiments will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments in conjunction with the accompanying figures. While features may be discussed relative to certain aspects and figures below, all embodiments can include one or more of the advantageous features discussed herein. In other words, while one or more aspects may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various aspects. In similar fashion, while exemplary aspects may be discussed below as device, system, or method aspects, the exemplary aspects can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
FIG. 1 is a block diagram illustrating details of a wireless communication system according to some embodiments of the present disclosure.
FIG. 2 is a block diagram conceptually illustrating a design of a base station and a UE configured according to some embodiments of the present disclosure.
FIG. 3A is a diagram of an example of a BWP switching delay table.
FIG. 3B is a diagram that illustrates a time delay in slots caused by switching a bandwidth of a DL BWP.
FIG. 3C is a diagram of an example of an arrangement of BWPs including an anchor BWP and companion BWPs.
FIG. 3D is a diagram that illustrates inter-BWP frequency hopping.
FIG. 4 is a block diagram illustrating an example of a wireless communications system (with a UE and base station) with low complexity cross BWP frequency hopping operations.
FIG. 5 is a diagram of an example of a timing diagram illustrating a particular example of low complexity cross BWP frequency hopping operations according to some embodiments of the present disclosure.
FIG. 6 is a diagram of the example of a timing diagram illustrating a particular example of low complexity cross BWP frequency hopping operations according to some embodiments of the present disclosure.
FIG. 7 is a diagram of the example of a timing diagram illustrating a particular example of low complexity cross BWP frequency hopping operations according to some embodiments of the present disclosure.
FIG. 8 is a diagram of the example of a timing diagram illustrating a particular example of low complexity cross BWP frequency hopping operations according to some embodiments of the present disclosure.
FIG. 9 is a diagram of an example diagram for CSI-RS transmissions for low complexity cross BWP frequency hopping.
FIG. 10 is a flow diagram illustrating example blocks executed by a UE configured according to an aspect of the present disclosure.
FIG. 11 is a flow diagram illustrating example blocks executed by a base station configured according to an aspect of the present disclosure.
FIG. 12 is a block diagram conceptually illustrating a design of a UE configured to perform precoding information update operations according to some embodiments of the present disclosure.
FIG. 13 is a block diagram conceptually illustrating a design of a base station configured to perform precoding information update operations according to some embodiments of the present disclosure.
The Appendix provides further details regarding various embodiments of this disclosure and the subject matter therein forms a part of the specification of this application.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings and appendix, is intended as a description of various configurations and is not intended to limit the scope of the disclosure. Rather, the detailed description includes specific details for the purpose of providing a thorough understanding of the inventive subject matter. It will be apparent to those skilled in the art that these specific details are not required in every case and that, in some instances, well-known structures and components are shown in block diagram form for clarity of presentation.
The present disclosure is related to bandwidth part (BWP) switching operations for reduced capability devices. Specifically, a low complexity cross BWP frequency hopping scheme for less advanced devices, commonly referred to as reduced capability devices. Such reduced capability devices may include less antennas, reduced processing power, reduced battery capacity, etc., or a combination thereof. Examples of such reduced capability devices include smart wearables, IoT devices, smart appliances, etc.
Conventionally, intra-BWP frequency hopping may have limited diversity gain. While inter-BWP frequency hopping enables larger diversity gains, the BWP switching involved in inter-BWP frequency hopping has a switching delay for switching between BWPs (e.g., switching the active BWP) . To illustrate, when switching from a first BWP with a first frequency range to a second BWP with a second frequency range there is BWP  switching delay period in which network bandwidth and spectrum are essentially wasted. Such a delay is generally needed to retune hardware and/or reconfigured software settings. Thus, network performance can be enhanced by improved usage of network bandwidth and spectrum by using a more flexible and quicker procedure.
One such mechanism of the present disclosure is to utilize resource companion BWPs for faster switching, often referred to as anchor and complementary BWPs. Companion BWPs are defined with the same subcarrier spacing (SCS) but have a different frequency location. Such companion BWPs may be indicated by a BWP configuration, such as by one or more “locationAndBandwidth” settings. Companion BWPs (e.g., anchor and complementary BWPs) may be used for UL, DL, or both. Companion BWPs enable faster switching (e.g., retuning) , and by configuring /reconfiguring the BWP more quickly, the network spectrum can be adjusted more quickly, such as from symbol to symbol, i.e., without a delay. Thus, a BWP can be switched without the conventional delay incurred from switching the BWP, i.e., switching the bandwidth or size of the BWP. Such techniques can improve usage of network bandwidth and spectrum, resulting in higher throughput and lower latency.
In the present disclosure, a particular low complexity scheme for inter-BWP frequency hopping is provided. To illustrate, anchor BWPs are configured for periodic transmissions, and a non-anchor BWP or BWPs are configured for non-periodic transmissions. Examples of periodic transmissions include PDCCH monitoring, SSB and periodic CSI-RS; examples of non-periodic transmissions include PDSCH and aperiodic CSI-RS. Devices of the network may quickly switch between anchor and non-anchor BWPs based on the type of transmission (i.e., periodic or non-periodic) . Accordingly, gain can be increased for non-periodic transmissions and switching delays can be reduced for less wasted network bandwidth and spectrum.
This disclosure relates generally to providing or participating in authorized shared access between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks. In various implementations, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR”  networks/systems/devices) , as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
A CDMA network, for example, may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like. UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) . CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
A TDMA network may, for example implement a radio technology such as Global System for Mobile Communication (GSM) . The Third Generation Partnership Project (3GPP) defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN. GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) . The radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) . A mobile phone operator's network may comprise one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network. Additionally, an operator network may also include one or more LTE networks, and/or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and Global System for Mobile Communications (GSM) are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3GPP is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure may describe certain  aspects with reference to LTE, 4G, or 5G NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects descried with reference to one technology may be understood to be applicable to another technology. Indeed, one or more aspects of the present disclosure are related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various  deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
The scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
For clarity, certain aspects of the apparatus and techniques may be described below with reference to example 5G NR implementations or in a 5G-centric way, and 5G terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to 5G applications.
Moreover, it should be understood that, in operation, wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
While aspects and implementations are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, embodiments and/or uses may come about via integrated chip embodiments and/or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems  incorporating one or more described aspects. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (e.g. RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
FIG. 1 is a block diagram illustrating details of an example wireless communication system. The wireless communication system may include wireless network 100. Wireless network 100 may, for example, include a 5G wireless network. As appreciated by those skilled in the art, components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used. In implementations of wireless network 100 herein, base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may include a plurality of operator wireless networks) . Additionally, in implementations of wireless network 100 herein, base station 105 may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In some other examples, each base station 105 and UE 115 may be operated by a single network operating entity.
A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may  allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A base station for a macro cell may be referred to as a macro base station. A base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG. 1,  base stations  105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f is a small cell base station which may be a home node or portable access point. A base station may support one or multiple (e.g., two, three, four, and the like) cells.
Wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. In some scenarios, networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. It should be appreciated that, although a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3GPP, such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component device/module, or some other suitable terminology. Within the present document, a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary. Some non-limiting examples of a mobile apparatus, such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a  notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) . A mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, UEs that do not include UICCs may also be referred to as IoE devices. UEs 115a-115d of the implementation illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100 A UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
A mobile apparatus, such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like. In FIG. 1, a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations. UEs may operate as base stations or other network nodes in some scenarios. Backhaul communication between base stations of wireless network 100 may occur using wired and/or wireless communication links.
In operation at wireless network 100, base stations 105a-105c serve  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f. Macro base station 105d also transmits multicast services which are subscribed to and received by  UEs  115c and 115d. Such multicast services may include mobile television or stream video,  or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
Wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from  macro base stations  105d and 105e, as well as small cell base station 105f. Other machine type devices, such as UE 115f (thermometer) , UE 115g (smart meter) , and UE 115h (wearable device) may communicate through wireless network 100 either directly with base stations, such as small cell base station 105f, and macro base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as UE 115f communicating temperature measurement information to the smart meter, UE 115g, which is then reported to the network through small cell base station 105f. Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
FIG. 2 shows a block diagram conceptually illustrating an example design of a base station 105 and a UE 115, which may be any of the base stations and one of the UEs in FIG. 1. For a restricted association scenario (as mentioned above) , base station 105 may be small cell base station 105f in FIG. 1, and UE 115 may be UE 115c or 115D operating in a service area of base station 105f, which in order to access small cell base station 105f, would be included in a list of accessible UEs for small cell base station 105f. Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
At base station 105, transmit processor 220 may receive data from data source 212 and control information from controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc. The data may be for the PDSCH, etc. Additionally, transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell- specific reference signal. Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. For example, spatial processing performed on the data symbols, the control symbols, or the reference symbols may include precoding. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
At UE 115, the antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
On the uplink, at UE 115, transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) ) from controller/processor 280. Additionally, transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105. At base station 105, the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115. Processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
Controllers/ processors  240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller/processor 240 and/or other processors and modules at base  station 105 and/or controller/processor 280 and/or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in FIGS. 10 and 11, and/or other processes for the techniques described herein.  Memories  242 and 282 may store data and program codes for base station 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Wireless communications systems operated by different network operating entities (e.g., network operators) may share spectrum. In some instances, a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time. Thus, in order to allow network operating entities use of the full designated shared spectrum, and in order to mitigate interfering communications between the different network operating entities, certain resources (e.g., time) may be partitioned and allocated to the different network operating entities for certain types of communication.
For example, a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum. The network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum. These time resources, prioritized for use by the network operating entity, may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
In some cases, UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen-before-talk or listen-before-transmitting (LBT) procedure such as a clear  channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available. In some implementations, a CCA may include an energy detection procedure to determine whether there are any other active transmissions. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. A CCA also may include detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
FIGS. 3A and 3B illustrate an example of BWP switching delay. FIG. 3A illustrates an BWP switching delay table 300 and FIG. 3B illustrates a time delay 310 in slots caused by switching a frequency /bandwidth of a DL BWP. Referring to FIG. 3A, a delay incurred in BWP switching is dependent on time and UE capability. To illustrate, the slot length (time in milliseconds) and type of the UE (Type 1 or Type 2) can be used to determine a delay in slots based on the table of FIG. 3A. The delay may also be dependent on sub-carrier spacing. As illustrated, if a SCS changes, then the BWP switching delay is the larger of the two delays for the two types of UEs. The BWP switching delay is large since it may involve both hardware (e.g. radiofrequency (RF) retuning) and software (e.g. digital filter, RRC parameters) adaptation.
Referring to FIG. 3B, a first DL BWP (DL BWP1) is switched to a second DL BWP (DL BWP2) . In the example of FIG. 3B, the bandwidth /frequency range of the DL BWP is reduced. This switch causes a delay where no data is transmitted or received by the wireless communication device. As this example is for downlink, no downlink data is transmitted by the base station and no downlink data is received by the UE during the switching delay. As the BWPs proposed herein include DL BWPs, UL BWPs, and joint BWPs (e.g., DL/UL BWPs) , both UEs and base stations may face switching delays and wasted transmit or receive opportunities.
FIGS. 3C and 3D illustrate companion BWPs and companion BWP based frequency hopping in diagram 320. Referring to FIG. 3C, a carrier BW is illustrated including multiple BWPs, with frequency illustrated along the y axis (vertical axis) . In the example of FIG. 3C, the carrier bandwidth includes a particular BWP (e.g., an active BWP and/or anchor BWP)  and a companion BWP for the particular BWP. As illustrated in FIG. 3C, the particular BWP and its companion BWP have different frequencies. Devices of a network may switch between such BWP, and thus frequencies, based on frequency hopping.
Referring to FIG. 3D, an example of inter BWP frequency hopping is illustrated in diagram 330. In the example of FIG. 3D, the diagrams illustrates time along the x axis (horizontal axis) and frequency along the y axis (vertical axis) . As illustrated, multiple slots are bundled together for the first BWP and multiple slots are bundled together for the second BWP. The first and second BWPs are companion BWPs and have the same SCS and different frequencies (aka “frequency location” ) . The devices can switch between such BWPs more quickly as the first and second BWPs are companion BWPs.
For every active BWP (e.g., anchor BWP) , the UE may be configured with a complementary BWP. Such an active BWP may be known as an anchor BWP and the anchor and complementary BWPs may be considered a pair of BWPs which enables faster or zero delay BWP switching.
In this disclosure, the complementary BWP configuration is dependent on the anchor BWP, and the switching delay between the current active BWP (anchor BWP) and the complementary BWP is relatively small compared to the current BWP switching delay requirements. For example, when the same software configurations (e.g., RRC configurations) are used for all the companion BWPs of the anchor, the UE might need to do RF tuning for switching from the anchor BWP to the complementary BWP thus the switching delay reduced.
In advanced wireless networks, networks are designed to be scalable and deployed in a more efficient and cost-effective way. Such operating goals, like peak throughput, latency, reliability, etc., can be relaxed for certain operating conditions and/or devices. Additionally, efficiency (e.g. power consumption and system overhead) and cost improvements can be prioritized over operating parameters. For example, NR-Light (e.g., reduced capability UEs, such as wearables, Industrial wireless sensor networks (IWSN) , Surveillance cameras, etc. ) is one such example. Reduced capabilities UEs, such as lower complexity UEs, may include smaller bandwidth capabilities, a reduced number of RX antennas, relaxed UE processing and PDCCH monitoring, etc.
For NR light /reduced capability, cross BWP hopping for non-periodic transmissions (e.g., PUSCH, PUCCH, and/or PDSCH) is motivated by Intra-BWP frequency hopping may have limited diversity gain with reduced maximum bandwidth and single receive antenna  causes significant downlink coverage loss compared to multiple receive antenna configurations (e.g., four receive antennas) .
One alternative for implementing cross-BWP hopping is to configure two or more narrow BWPs as the companion BWPs, and the frequency hopping is among the companion BWPs. The companion BWPs are defined with the same SCS but different frequency location, e.g. one or more “locationAndBandwidth” included in the BWP configuration for indicating the companion BWP. One issue with cross-BWP hopping is that BWP switching can be more frequent since periodic downlink transmission may be configured in all the companion BWPs of the anchor BWP and the UE is then required to switch between the anchor and companion BWP for monitoring the periodic downlink transmissions. Therefore, there is a balance between the diversity gain and UE complexity for cross-BWP hopping, e.g. avoiding frequent BWP switching for saving UE power.
In a particular aspect, one BWP in the set of BWPs is indicated as the anchor and all the other BWPs are non-anchor. The anchor BWP is used for periodic downlink transmission (e.g., periodic downlink transmission only) , and the non-anchor BWPs may be used for non-periodic downlink transmission. Periodic transmissions include PDCCH monitoring, SSB transmissions, and periodic CSI-RS transmissions.
FIG. 4 illustrates an example of a wireless communications system 400 that supports low complexity cross BWP frequency hopping operations in accordance with aspects of the present disclosure. In some examples, wireless communications system 400 may implement aspects of wireless communication system 100. For example, wireless communications system 400 may include UE 115 and network entity 405. Low complexity cross BWP frequency hopping may be used with reduced capability devices and may increase throughput and reliability by increasing diversity gain and reducing switching delay. Thus, network and device performance can be increased.
Network entity 405 and UE 115 UE 115 may be configured to communicate via frequency bands, such as FR1 having a frequency of 410 to 7125 MHz, FR2 having a frequency of 24250 to 52600 MHz for mm-Wave, and/or one or more other frequency bands. It is noted that SCS may be equal to 15, 30, 60, or 120 kHz for some data channels. Network entity 405 and UE 115 may be configured to communicate via one or more component carriers (CCs) , such as representative first CC 481, second CC 482, third CC 483, and fourth CC 484. Although four CCs are shown, this is for illustration only, more or fewer than four CCs may be used. One or more CCs may be used to communicate control channel transmissions, data channel transmissions, and/or sidelink channel transmissions.
Such transmissions may include a Physical Downlink Control Channel (PDCCH) , a Physical Downlink Shared Channel (PDSCH) , a Physical Uplink Control Channel (PUCCH) , a Physical Uplink Shared Channel (PUSCH) , a Physical Sidelink Control Channel (PSCCH) , a Physical Sidelink Shared Channel (PSSCH) , or a Physical Sidelink Feedback Channel (PSFCH) . Such transmissions may be scheduled by aperiodic grants and/or periodic grants.
Each periodic grant may have a corresponding configuration, such as configuration parameters/settings. The periodic grant configuration may include configured grant (CG) configurations and settings. Additionally, or alternatively, one or more periodic grants (e.g., CGs thereof) may have or be assigned to a CC ID, such as intended CC ID.
Each CC may have a corresponding configuration, such as configuration parameters/settings. The configuration may include bandwidth, bandwidth part, HARQ process, TCI state, RS, control channel resources, data channel resources, or a combination thereof. Additionally, or alternatively, one or more CCs may have or be assigned to a Cell ID, a Bandwidth Part (BWP) ID, or both. The Cell ID may include a unique cell ID for the CC, a virtual Cell ID, or a particular Cell ID of a particular CC of the plurality of CCs. Additionally, or alternatively, one or more CCs may have or be assigned to a HARQ ID. Each CC may also have corresponding management functionalities, such as, beam management, BWP switching functionality, or both. In some implementations, two or more CCs are quasi co-located, such that the CCs have the same beam and/or same symbol.
In some implementations, control information may be communicated via network entity 405 and UE 115. For example, the control information may be communicated suing MAC-CE transmissions, RRC transmissions, DCI, transmissions, another transmission, or a combination thereof.
UE 115 can include a variety of components (e.g., structural, hardware components) used for carrying out one or more functions described herein. For example, these components can includes processor 402, memory 404, transmitter 410, receiver 412, encoder, 413, decoder 414, BWP manager 415, frequency hopping manager 416 and antennas 252a-r. Processor 402 may be configured to execute instructions stored at memory 404 to perform the operations described herein. In some implementations, processor 402 includes or corresponds to controller/processor 280, and memory 404 includes or corresponds to memory 282. Memory 404 may also be configured to store trigger condition data 406, BWP configuration data 408, BWP association data 442, settings data 444, or a combination thereof, as further described herein.
The trigger condition data 406 includes or corresponds to data associated with or corresponding to BWP switching trigger condition information. For example, the trigger condition data 406 may indicate one or more possible trigger conditions and/or an active trigger condition or conditions. The trigger condition data 406 may also include thresholds or data used to evaluate the trigger conditions, such as conditions for evaluating BWP ID and/or transmission types. Additionally, the trigger condition data 406 may also include thresholds or data used to evaluate inactivity timers.
The BWP configuration data 408 includes or corresponds to data indicating or corresponding to BWP configurations. For example, the BWP configuration data 408 may indicate possible BWP configurations, an active (e.g., currently used) BWP configuration, a default BWP configuration, an anchor BWP configuration, a companion BWP configuration, or a combination thereof. In some implementations, the BWP configuration data 408 may further indicate UL BWP configurations, DL BWP configurations, or both.
The BWP association data 442 includes or corresponds to data that indicates associations between different BWP configurations. The BWP association data 442 may be used to indicate a particular anchor BWP and one or more corresponding companion BWPs (e.g., complementary BWP) . The BWP association data 442 may further include multiple pairs of anchor and complementary BWPs.
The settings data 444 includes or corresponds to data associated with anchor and companion BWP switching operations. The settings data 444 may include one or more types of anchor and companion BWP switching operation modes and/or thresholds or conditions for switching between different anchor and companion BWP switching modes and/or configurations. For example, the settings data 444 may have data indicating different thresholds for different full-duplex modes, such as low complexity modes and/or IBFD and SBFD modes.
Transmitter 410 is configured to transmit data to one or more other devices, and receiver 412 is configured to receive data from one or more other devices. For example, transmitter 410 may transmit data, and receiver 412 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof. For example, UE 115 may be configured to transmit and/or receive data via a direct device-to-device connection, a local area network (LAN) , a wide area network (WAN) , a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate. In some  implementations, transmitter 410 and receiver 412 may be replaced with a transceiver. Additionally, or alternatively, transmitter 410, receiver, 412, or both may include or correspond to one or more components of UE 115 described with reference to FIG. 2.
Encoder 413 and decoder 414 may be configured to encode and decode data for transmission. BWP manager 415 may be configured to determine and perform BWP management and switching operations. For example, BWP manager 415 is configured to determine a particular BWP switching trigger and/or select a particular BWP configuration responsive to particular BWP switching trigger. Frequency hopping manager 416 may be configured to determine and perform frequency hopping management and switching operations. For example, frequency hopping manager 416 may be configured to switch BWPs between anchor and companion BWPs based on a type of transmission (e.g., periodic transmission or non-periodic transmission) . The type of transmission may be indicated directly or indirectly, such as by BWP ID.
Network entity 405 includes processor 430, memory 432, transmitter 434, receiver 436, encoder 437, decoder 438, BWP manager 439, frequency hopping manager 440, and antennas 234a-t. Processor 430 may be configured to execute instructions stores at memory 432 to perform the operations described herein. In some implementations, processor 430 includes or corresponds to controller/processor 240, and memory 432 includes or corresponds to memory 242. Memory 432 may be configured to store trigger condition data 406, BWP configuration data 408, BWP association data 442, settings data 444, or a combination thereof, similar to the UE 115 and as further described herein.
Transmitter 434 is configured to transmit data to one or more other devices, and receiver 436 is configured to receive data from one or more other devices. For example, transmitter 434 may transmit data, and receiver 436 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof. For example, network entity 405 may be configured to transmit and/or receive data via a direct device-to-device connection, a local area network (LAN) , a wide area network (WAN) , a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate. In some implementations, transmitter 434 and receiver 436 may be replaced with a transceiver. Additionally, or alternatively, transmitter 434, receiver, 436, or both may include or correspond to one or more components of network entity 405 described with reference to FIG. 2.
Encoder 437, and decoder 438 may include the same functionality as described with reference to encoder 413 and decoder 414, respectively. BWP manager 439 may include similar functionality as described with reference to BWP manager 415. Frequency hopping manager 440 may include similar functionality as described with reference to frequency hopping manager 416.
During operation of wireless communications system 400, network entity 405 may determine that UE 115 has low complexity cross BWP frequency hopping capability. For example, UE 115 may transmit a message 448 that includes a low complexity cross BWP frequency hopping indicator 490 (e.g., transmission type based anchor to companion BWP switching indicator) . Indicator 490 may indicate low complexity cross BWP frequency hopping operation capability or a particular type or mode of low complexity cross BWP frequency hopping operation. In some implementations, network entity 405 sends control information to indicate to UE 115 that low complexity cross BWP frequency hopping operation and/or a particular type of low complexity cross BWP frequency hopping operation is to be used. For example, in some implementations, message 448 (or another message, such as configuration transmission 450) is transmitted by the network entity 405. The configuration transmission 450 may include or indicate to low complexity cross BWP frequency hopping operation or to adjust or implement a setting of a particular type of low complexity cross BWP frequency hopping operation.
During operation, devices of wireless communications system 400, perform low complexity cross BWP frequency hopping operations. For example, the network entity 405 and the UE 115 exchange transmissions using a particular active BWP. Such transmissions may include or correspond to periodic transmissions, such as physical downlink control channel (PDCCH) monitoring, a synchronization signal block (SSB) transmission, or a periodic channel state information reference signal (CSI-RS) transmission. To illustrate, the network entity 405 and the UE 115 transmits one or more periodic transmissions using a particular DL active BWP, such as a periodic transmission 452. In some implementations, the network 405, the UE 115, or both, may be configured with up to four BWPs and may be switched between the four BWPs such that one of the four BWPs is the “active” BWP.
The network entity 405 and/or the UE 115 may determine to switch the active BWP between the configured BWPs to efficiently use the network spectrum. For example, the network entity 405 may determine to switch an active BWP for UL, DL, or both, and the network entity 405 may send a switching trigger transmission, such as a DCI 454, to the UE 115 to indicate the BWP switch. To illustrate, a DCI transmission may indicate a BWP  switch by indicating a non-periodic transmission. The non-periodic transmission may be indicated directly or indirectly, such as by a BWP ID which indicates a different BWP (e.g., a companion BWP for a current/active, anchor BWP) .
After determining that a trigger condition for changing the particular BWP exists, the network entity 405 and the UE 115 determine the particular BWP configuration or configuration change. The network entity 405 and the UE 115 may then change /set the switch the BWP configuration such that the new active BWP is used. While the above has been described with reference to the UE 115, the network entity 405 similarly evaluates trigger conditions and determines the new BWP configuration. Thus, the UE 115 and network entity 405 determine the particular BWP configuration based on the trigger conditions data 406, the BWP configuration data 408, and the BWP associations data 442.
The network entity 405 and UE 115 perform one or more periodic transmissions 456 (e.g., data channel transmissions) according to the BWP configuration indicated by BWP configuration data 408 for the upcoming symbol or slot. For example, the network entity 405 transmits a DCI for one slot to schedule UL and DL transmissions for a subsequent slot.
Based on the scheduled UL and DL transmissions indicated by the DCI and the determined BWP configuration, the network entity 405 transmits downlink data (e.g., one or more DL symbols) and the UE 115 transmits uplink data (one or more UL symbols) .
Accordingly, the UE 115 and network entity 405 may be able to transmit and receive information with different BWP configurations in sequential /consecutive symbols or slots based on transmission type and perform cross BWP frequency hopping. Thus, FIG. 4 describes low complexity cross BWP frequency hopping operations. Using transmission type (e.g., periodic and non-periodic) based frequency hopping for anchor and companion BWPs may enable improvements when operating with less advanced hardware. Performing transmission type (e.g., periodic and non-periodic) based frequency hopping for anchor and companion BWPs enables reduced bandwidth /spectrum waste when BWP switching and thus, enhanced UE and network performance by increasing throughput and reducing latency.
FIG. 5-8 are diagrams of examples of timing diagrams illustrating particular examples of low complexity cross BWP frequency hopping operations. In FIGS. 5-8, example BWP layouts are illustrated where time is the horizontal or x axis and frequency is the vertical or y axis. In FIGS. 5 and 6, a BWP layout (e.g., BWP arrangement) has two configured BWPs. The two BWPs are allocated for DL with one such BWP being active at a time. In the particular example of FIGS. 5 and 6, the first BWP (BWP0) is the anchor BWP and the second BWP (BWP1) is the companion BWP.
In FIGS. 7 and 8, another BWP layout (e.g., BWP arrangement) has four configured BWPs. The four BWPs are allocated for DL with one such BWP being active at a time. In the example of FIGS. 7 and 8, the BWP layout includes four BWPs, BWP0-BWP3, from bottom to top. As illustrated, a first BWP (BWP0) is a standard BWP, a second BWP (BWP1) is an anchor BWP, a third BWP (BWP2) is a is a standard BWP, and a fourth BWP (BWP3) is a companion BWP for the second BWP (anchor BWP) .
A base station of the present disclosure may dynamically and flexibly configure the BWP layouts of FIGS. 5-8, as illustrated in FIGS. 5-8. That is the base station may configure or select a particular BWP of the BWP layout to be the active BWP. The base station may further set one or more anchor and companion BWP pairs and optionally a default BWP. In some implementations, a default BWP may include a default anchor BWP and a default complementary BWP. Both the base station and UE may quickly switch between BWPs based on the BWPs being companion BWPs.
Referring to FIG. 5, FIG. 5 illustrates example low complexity cross BWP frequency hopping operations over 7 slots in timing diagram 500. During operation, a UE receives a DCI transmission and a corresponding PDSCH transmission during a first slot and in the anchor BWP, i.e., first BWP (BWP0) . Such transmissions are periodic transmissions in the example of FIG. 5. During a second slot, the UE receives a DCI transmission indicating a first non-periodic transmission for a third slot. The DCI may indicate, such as by BWP ID, that the first non-periodic transmission is to be sent in a particular non-anchor BWP, such as the second BWP (BWP1) . The UE may not monitor the first BWP during the third slot even if a previous periodic transmission was scheduled for the third slot. That is, the previous periodic transmission may be superseded /overwritten by the non-periodic transmission.
During the third slot, the UE receives the first non-periodic transmission in the particular non-anchor, companion BWP, such as the second BWP (BWP1) . This process, that is the operations of the third slot, may then be repeated for slots four, five, six, and/or seven as illustrated in FIG. 5. Additionally, such non-periodic transmissions may continue until the non-periodic transmissions are completed (e.g., data transfer is complete) . Alternatively, the operations of the first slot may be repeated in any of the fourth through the seventh slots or beyond. To illustrate, if no non-periodic data is to be transmitted, then periodic transmissions may occur in any such slot, similar to the operations of the first slot. In the example of FIG. 5, the periodic transmission occur in the first active BWP (BWP0) , and the active BWP will revert to the first active BWP when no non-periodic transmissions are scheduled. For example, a particular set of non-periodic transmissions (e.g., data  transmissions) may cease in slot five. In the illustrated example, the active BWP may revert to the anchor BWP, i.e., the first active BWP (BWP0) . Thus, a DCI, that is a third DCI is received in slot six. If the DCI is for a periodic transmission (i.e., a BWP ID of BWP0) , the UE may receive a PDSCH in the sixth slot similar to the first slot. Alternatively and as illustrated, if the third DCI is for another non-periodic transmission, the UE may receive a PDSCH in the companion BWP, i.e., second BWP (BWP1) , during the seventh slot.
Referring to FIG. 6, FIG. 6 illustrates another example low complexity cross BWP frequency hopping operations over 7 slots in timing diagram 600. During operation, a UE receives a DCI transmission (DCI1) and a corresponding PDSCH transmission during a first slot and in the anchor BWP, i.e., first BWP (BWP0) . Such transmissions are periodic transmissions in the example of FIG. 6. During a second slot, the UE receives a DCI transmission (DCI2) indicating a first non-periodic transmission for a third slot. The DCI may indicate that the first non-periodic transmission is to be sent in a particular non-anchor BWP, such as the second BWP (BWP1) .
During the third slot, the UE receives the first non-periodic transmission in the particular non-anchor, companion BWP, such as the second BWP (BWP1) . After receiving the first non-periodic transmission in the third slot, the UE may switch the anchor BWP to the current active BWP, i.e., switch the anchor BWP from the first BWP to the second BWP. The UE may monitor the periodic transmission in the new active BWP. That is, the periodic transmission may not be superseded /overwritten by the BWP switching.
Either process, the periodic or non-periodic transmission process may be repeated for any of the fourth through seventh slots. As illustrated in FIG. 6, and similar to FIG. 5, the non-periodic transmissions continue until the fifth slot using the second BWP (BWP1) as the active, anchor BWP. The subsequent non-periodic transmissions of the fourth and fifth slots may be indicated by a prior non-periodic transmission. To illustrate, the PDSCH of the third slot indicates the PDSCH of the fourth slot, which indicates the PDSCH of the fifth slot. Also as illustrated in FIG. 6, another set of non-periodic transmissions occur for slots five through seven. As compared to FIG. 5, the other set of non-periodic transmissions occur in the original anchor slot (BWP0) . Such set of non-periodic transmissions may be indicated by a DCI (DCI3) in the new anchor BWP (BWP1) , and additionally in another slot, such as the original or previous anchor BWP (BWP0) .
As compared to the example of FIG. 5, where the anchor BWP is fixed and/or indicated by RRC or DCI, in the example of FIG. 6 the anchor BWP is switched to a currently active BWP. Such operations may reduce frequent and possibly unnecessary BWP  switching and are often referred to as “ping-pong” switching. Ping-pong switching in the context of this disclosure may involve switching back to the original anchor BWP for the periodic transmissions after a non-periodic transmission has occurred on a companion BWP (e.g., non-anchor BWP) for original anchor BWP, as illustrated in the example of FIG. 5.
Although the operations in FIG. 6 reduce or eliminate ping-pong switching, it is possible that the UE and network get out of sync, such as when a DCI is missed by the UE. In order to overcome such configuration mismatches, repetitive transmissions and/or inactivity timers may be used. For example, the DCI which schedules the non-periodic transmission may be repeated on the original anchor BWP, which is currently a non-anchor, companion BWP. To illustrate, a repeat DCI (i.e., third DCI (DCI3) may be transmitted on both the active anchor and companion BWPs (i.e., BWP1 and BWP0) which indicates that the second non-periodic transmission will be transmitted in the first anchor BWP (i.e., first BWP (BWP0) ) during the sixth slot. In other implementations, the PDSCH may be repeated as well. To illustrate, consecutive PDSCHs may correspond to the same data.
As another example, expiration of an inactivity timer may reconfigured to the anchor BWP back to the original anchor BWP. To illustrate, if after the third slot no periodic and/or non-periodic data was transmitted for multiple slots, that is a period of time which allowed the BWP inactivity timer to expire, the anchor BWP would be switched from the fourth BWP back to the original anchor BWP of the BWP0. Such inactivity timer operations may be in line with conventional inactivity timer operations, but in the context of this disclosure may help resolve anchor BWP configuration mismatches.
Referring to FIG. 7, FIG. 7 illustrates example low complexity cross BWP frequency hopping operations over 7 slots in timing diagram 700. During operation, a UE receives a DCI transmission (DCI1) and a corresponding PDSCH transmission during a first slot and in the anchor BWP, i.e., second BWP (BWP1) . Such transmissions are periodic transmissions in the example of FIG. 7. During a second slot, the UE receives a DCI transmission (DCI2) indicating a first non-periodic transmission for a third slot. The DCI may indicate that the first non-periodic transmission is to be sent in a particular non-anchor BWP, such as the fourth BWP (BWP3) .
During the third slot, the UE receives the first non-periodic transmission in the particular non-anchor, companion BWP, such as the fourth BWP (BWP3) . After receiving the first non-periodic transmission in the third slot, the UE may switch the anchor BWP to the current active BWP, i.e., switch the anchor BWP from the second BWP (BWP1) to the fourth BWP (BWP3) . The UE may monitor the periodic transmission in the new active, anchor  BWP, i.e., BWP3. That is, the periodic transmissions may not be superseded /overwritten by the BWP switching.
Either process, the periodic or non-periodic transmission process may be repeated for any of the fourth through seventh slots. As illustrated in FIG. 7, and similar to FIG. 5, the non-periodic transmissions continue until the fifth slot using the fourth BWP (BWP3) as the active, anchor BWP. The subsequent non-periodic transmissions of the fourth and fifth slots may be indicated by a prior non-periodic transmission. To illustrate, the PDSCH of the third slot indicates the PDSCH of the fourth slot, which indicates the PDSCH of the fifth slot. Also as illustrated in FIG. 7, another set of non-periodic transmissions occur for slots five through seven. As compared to FIG. 6, the other set of non-periodic transmissions occur in a new BWP, third BWP (BWP2) . Such set of non-periodic transmissions may be indicated by a DCI (DCI3) in the new anchor BWP (BWP3) , and additionally in another slot, such as BWP1 or BWP2 (as illustrated) .
As compared to the example of FIG. 6 which alternated between two slots, in the example of FIG. 7 the anchor BWP is switched among multiple different non-anchor, companion BWPs. The active BWP may cycle through multiple different BWPs of the configured BWPs of a BWP layout/arrangement. Such operations may increase flexibility and/or diversity gain. Similar to the example of FIG. 6, the example of FIG. 7 may include additional operations to resolve configuration mismatches, such as repetitive transmissions and/or inactivity timers as described with reference to FIG. 6.
Referring to FIG. 8, FIG. 8 illustrates example low complexity cross BWP frequency hopping operations over 7 slots in timing diagram 800. During operation, a UE receives a DCI transmission and a corresponding PDSCH transmission during a first slot and in the anchor BWP (second BWP (BWP1) ) . Such transmissions are periodic transmissions in the example of FIG. 8. During a second slot, the UE receives a DCI transmission indicating a first non-periodic transmission for a third slot, such as a CSI-RS transmission in a PDSCH. The DCI may indicate that the first non-periodic transmission is to be sent in a particular non-anchor BWP, such as the fourth BWP (BWP3) . The UE may not monitor the second BWP during the second slot even if a previous periodic transmission was scheduled for the second slot. That is, the previous periodic transmission may be superseded /overwritten by the non-periodic transmission.
During the third slot, the UE receives the first non-periodic transmission in the particular non-anchor BWP, such as the fourth BWP (BWP3) . In the example of FIG. 8, the first non-periodic transmission may be a CSI-RS transmission and the DCI of the second slot  may be an aperiodic CSI-RS trigger message. In such implementations, the UE may determine to perform CSI-RS measurement operations and transmit CSI-RS measurement information, such as a CSI-RS measurement report or CSF report, in a corresponding PUSCH. As illustrated in the example of FIG. 8, the corresponding PUSCH and transmission may have the same active BWP as the first non-periodic transmission and occur during the same slot, that is in the fourth BWP and during the third slot. Alternatively, the corresponding PUSCH transmission for the PDSCH transmission may occur in other BWPs and/or in later slots. Such delayed transmission of the PUSCH and/or alternative BWP of the PUSCH may be indicated by the DCI or previously indicated (e.g., by RRC) .
The non-periodic CSI-RS transmission and reporting may take up one slot or multiple slots. In the example of FIG. 8, the non-periodic transmissions continue for multiple slots and then the anchor/active BWP reverts to the original active/anchor BWP, i.e., BWP1, similar to FIG. 5. A DCI may then be received for the original active/anchor BWP, i.e., BWP1. As illustrated in FIG. 8, a third DCI is received in slot six. The third DCI may indicate a second companion BWP which is different from the first companion BWP indicated by the second DCI in slot two. As illustrated in FIG. 8, the third DCI indicates a BWP ID of zero and the first BWP (BWP0) as the new active, anchor BWP for PDSCH and PUSCH transmissions. Such transmissions in the seventh slot may include or correspond to CSI-RS transmissions and reporting in some implementations.
In the example of FIGS. 5-8, the anchor BWP may be fixed, such as semi-statically set. To illustrate, the UE may receive a RRC message configuring the first BWP (BWP0) as the anchor BWP. Alternatively, the anchor BWP may be dynamic, such as dynamically set or triggered. To illustrate, the UE may receive a DCI message configuring the first BWP (e.g., BWP0 or BWP1) as the anchor BWP or triggering a switch in anchor BWP from a previous anchor BWP to a default anchor BWP, such as the second BWP (e.g., BWP1 or BWP3 ) . One or more aspects of FIGS. 5-8 may be combined or adjusted. Additionally, or alternatively, a UE and network may switch between the different operations of timing diagrams of FIGS. 5-8.
Referring to FIG. 9, an example diagram 900 for CSI reporting for low complexity BWP frequency hopping. As illustrated in the example of FIG. 9, two different CSI reporting are illustrated. A first CSI reporting is transmitted for a first active BWP (BWP0) , which is an anchor BWP, in a first slot (slot n) . A second CSI reporting is transmitted for a second active BWP (BWP1) , which is a corresponding companion BWP, in a second slot (slot n+1) . As shown in FIG. 9, the second CSI reporting is transmitted with the same rank indicator (RI)  as the first CSI reporting. The UE may use RI inheritance to determine the RI for the CSI reporting for the companion BWP of the anchor (e.g. based on the latest RI of the CSI reporting for the anchor BWP) . As an example, the CSI reporting setting for the companion BWP includes a reference CSI reporting setting which is the CSI reporting setting for the anchor BWP. The reference CSI reporting setting for the companion BWP may be based on the CSI reporting setting for the anchor BWP, the RI is reported with RI inherence.
CSI reporting may include one or more the BWPs. For example, different CSI reporting settings may be associated with different indications of the number of BWPs configured, e.g. reporting 1 indicates anchor BWP only; reporting 2 indicates the anchor BWP and one non-anchor BWP; reporting 3 indicates the anchor BWP and two non-anchor BWPs, etc.
FIG. 10 is a flow diagram illustrating example blocks executed by a UE configured according to an aspect of the present disclosure. The example blocks will also be described with respect to UE 115 as illustrated in FIG. 12. FIG. 12 is a block diagram illustrating UE 115 configured according to one aspect of the present disclosure. UE 115 includes the structure, hardware, and components as illustrated for UE 115 of FIG. 2. For example, UE 115 includes controller/processor 280, which operates to execute logic or computer instructions stored in memory 282, as well as controlling the components of UE 115 that provide the features and functionality of UE 115. UE 115, under control of controller/processor 280, transmits and receives signals via wireless radios 1200a-r and antennas 252a-r. Wireless radios 1200a-r includes various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator/demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266. As illustrated in the example of FIG. 12, memory 282 stores full-duplex logic 1202, BWP logic 1203, trigger conditions data 1204, BWP configuration data 1205, BWP association data 1206, timer (s) 1207, and settings data 1208.
At block 1000, a wireless communication device, such as a UE, receives a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP. For example, the UE 115 receives a PDSCH according to a particular active BWP, as described with reference to FIGS. 4-8. To illustrate, a DCI which schedules the periodic transmission is also received according to the same particular active BWP as the periodic transmission (e.g., PDSCH) . The periodic transmission includes or corresponds to a physical downlink control channel (PDCCH) monitoring, a  synchronization signal block (SSB) transmission, or a periodic channel state information reference signal (CSI-RS) transmission.
At block 1001, the UE 115 receives a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot. For example, the UE 115 receives a DCI indicating a BWP ID which indicates a BWP switch (i.e., a second BWP different from the first active BWP) for a non-periodic transmission in a second slot, as described with reference to FIGS. 4-8. The non-periodic transmission includes or corresponds to a physical downlink data channel (PDSCH) transmission or an aperiodic CSI-RS transmission. The second slot may include or correspond to a next or subsequent slot to the first slot.
At block 1002, the UE 115 determines a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP. For example, the UE 115 determines that the current BWP configuration, i.e., the first active BWP of the periodic transmission, is different from the indicated and/or determined BWP configuration (second BWP) for the signaled non-periodic transmission indicated by the DCI and the base station 105 determines to switch BWP configurations based on the indicated second BWP, as described with reference to FIGS. 4-8.
At block 1003, the UE 115 receives the non-periodic transmission according to the second BWP configuration during the second slot. For example, the UE 115 receives the non-periodic transmission according to the second BWP configuration indicated by the DCI during the second slot, as described with reference to FIGS. 4-8.
The UE 115 may execute additional blocks (or the UE 115 may be configured further perform additional operations) in other implementations. For example, the UE 115 may perform one or more operations described above. As another example, the UE 115 may perform one or more aspects as described below.
In a first aspect, the periodic transmission includes or corresponds to a physical downlink control channel (PDCCH) monitoring, a synchronization signal block (SSB) transmission, or a periodic channel state information reference signal (CSI-RS) transmission.
In a second aspect, alone or in combination with one or more of the above aspects, the non-periodic transmission includes or corresponds to a physical downlink data channel (PDSCH) transmission or an aperiodic CSI-RS transmission.
In a third aspect, alone or in combination with one or more of the above aspects, the DCI includes a BWP ID, and further comprising determining, by the UE, that the BWP ID included in the DCI indicates a BWP that is different from the first BWP.
In a fourth aspect, alone or in combination with one or more of the above aspects, the UE 115 refrains from monitoring the first active BWP during the second slot based on the BWP switching trigger.
In a fifth aspect, alone or in combination with one or more of the above aspects, the first active BWP is an anchor BWP and the second active BWP is a non-anchor BWP.
In a sixth aspect, alone or in combination with one or more of the above aspects, the second active BWP is a companion BWP for the first active BWP.
In a seventh aspect, alone or in combination with one or more of the above aspects, prior to receiving the periodic transmission, the UE 115 receives a RRC message indicating an anchor BWP configuration, and sets the first active BWP indicated by the RRC message as the anchor BWP.
In an eighth aspect, alone or in combination with one or more of the above aspects, after receiving the non-periodic transmission, the UE 115 switches to the first active BWP as the anchor BWP, and monitors for a PDCCH transmission on the first active BWP.
In a ninth aspect, alone or in combination with one or more of the above aspects, after receiving the non-periodic transmission, the UE 115 sets the second active BWP indicated by the DCI message as the anchor BWP, and receives one or more periodic transmissions via the second active BWP.
In a tenth aspect, alone or in combination with one or more of the above aspects, the UE 115 determines to switch back to the first active BWP based on an BWP inactivity timer expiring, and sets the first active BWP as the anchor BWP.
In an eleventh aspect, alone or in combination with one or more of the above aspects, a CORESET and a search space set configuration for PDCCH monitoring are the same for the first active BWP and the second active BWP.
In a twelfth aspect, alone or in combination with one or more of the above aspects, switching from the first BWP to the second BWP includes a retuning of radio frequency circuitry, wherein a switching delay of switching from the first BWP to the second BWP is less than a slot, and wherein switching from the first BWP to the second BWP is independent of radio resource configuration reconfiguring.
In a thirteenth aspect, alone or in combination with one or more of the above aspects, the UE is configured to report a CSI for the second active BWP.
In a fourteenth aspect, alone or in combination with one or more of the above aspects, the CSI reporting for the second active BWP is based on an aperiodic CSI-RS, and wherein the transmission of the aperiodic CSI-RS is based on the BWP switching trigger.
In a fifteenth aspect, alone or in combination with one or more of the above aspects, the UE is configured to set a rank indicator for CSI reporting for the second active BWP based on a rank indicator for a CSI reporting for the first active BWP:
In a sixteenth aspect, alone or in combination with one or more of the above aspects, the UE is configured with multiple CSI reporting settings, wherein a first setting indicates anchor BWP CSI reporting only, a second setting indicates anchor BWP CSI reporting and a single non-anchor BWP CSI reporting, and a third setting indicates anchor BWP CSI reporting and multiple non-anchor BWP CSI reporting.
Accordingly, a UE and a base station may perform low complexity cross BWP frequency hopping operations for anchor and companion BWPs. By performing low complexity cross BWP frequency hopping operations, throughput and reliability may be increased and such operations may be compatible with reduced capability (e.g., less advanced) devices.
FIG. 11 is a flow diagram illustrating example blocks executed by wireless communication device configured according to another aspect of the present disclosure. The example blocks will also be described with respect to base station 105 (e.g., gNB) as illustrated in FIG. 13. FIG. 13 is a block diagram illustrating base station 105 configured according to one aspect of the present disclosure. Base station 105 includes the structure, hardware, and components as illustrated for base station 105 of FIG. 2. For example, base station 105 includes controller/processor 240, which operates to execute logic or computer instructions stored in memory 242, as well as controlling the components of base station 105 that provide the features and functionality of base station 105. Base station 105, under control of controller/processor 240, transmits and receives signals via wireless radios 1301a-t and antennas 234a-t. Wireless radios 1301a-t includes various components and hardware, as illustrated in FIG. 2 for base station 105, including modulator/demodulators 232a-t, MIMO detector 236, receive processor 238, transmit processor 220, and TX MIMO processor 230. As illustrated in the example of FIG. 13, memory 242 stores full-duplex logic 1302, BWP logic 1303, trigger conditions data 1304, BWP configuration data 1305, BWP association data 1306, timer (s) 1307, and settings data 1308. One of more of 1302-1308 may include or correspond to one of 1202-1208.
At block 1100, a wireless communication device, such as a base station, transmits a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP. For example, the base station 105 transmits a PDSCH according to a particular active BWP, as described with reference to FIGS. 4-8. To illustrate, a DCI which schedules the periodic transmission is also transmitted according to the same particular active BWP as the periodic transmission (e.g., PDSCH) . The periodic transmission includes or corresponds to a physical downlink control channel (PDCCH) monitoring, a synchronization signal block (SSB) transmission, or a periodic channel state information reference signal (CSI-RS) transmission.
At block 1101, the base station 105 transmits a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot. For example, the base station 105 transmits a DCI indicating a BWP ID which indicates a BWP switch (i.e., a second BWP different from the first active BWP) for a non-periodic transmission in a second slot, as described with reference to FIGS. 4-8. The non-periodic transmission includes or corresponds to a physical downlink data channel (PDSCH) transmission or an aperiodic CSI-RS transmission.
At block 1102, the base station 105 determines a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP. For example, the base station 105 determines that the current BWP configuration, i.e., the first active BWP of the periodic transmission, is different from the indicated and/or determined BWP configuration (second BWP) for the signaled non-periodic transmission indicated by the DCI and the base station 105 determines to switch BWP configurations based on the indicated second BWP, as described with reference to FIGS. 4-8.
At block 1103, the base station 105 transmits the non-periodic transmission according to the second BWP configuration during the second slot. For example, the base station 105 transmits the non-periodic transmission according to the second BWP configuration indicated by the DCI during the second slot, as described with reference to FIGS. 4-8.
The base station 105 may execute additional blocks (or the base station 105 may be configured further perform additional operations) in other implementations. For example, the base station 105 may perform one or more operations described above. As another example, the base station 105 may perform one or more aspects as described below and with reference to the UE in FIG. 10.
In a first aspect, the base station 105 transmits a second DCI via the second active BWP indicating a second non-periodic transmission, and transmits the second non-periodic transmission via the second active BWP, where the second non-periodic transmission corresponds to a repeated transmission of the non-periodic transmission.
In a second aspect, alone or in combination with one or more of the above aspects, the base station 105 transmits a second DCI via the first active BWP indicating a second non-periodic transmission, transmits a third DCI via the second active BWP indicating a second non-periodic transmission, and transmits the second non-periodic transmission via the second active BWP.
Accordingly, a UE and a base station may perform low complexity cross BWP frequency hopping operations for anchor and companion BWPs. By performing low complexity cross BWP frequency hopping operations, throughput and reliability may be increased and such operations may be compatible with reduced capability (e.g., less advanced) devices.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Components, the functional blocks, and modules described herein (e.g., the components, functional blocks, and modules in FIG. 2) may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof. In addition, features discussed herein relating to low complexity cross BWP frequency hopping may be implemented via specialized processor circuitry, via executable instructions, and/or combinations thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps (e.g., the logical blocks in FIGS. 10 and 11) described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the  described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available  media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) or any of these in any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Figure PCTCN2020106304-appb-000001
Figure PCTCN2020106304-appb-000002
Figure PCTCN2020106304-appb-000003
Figure PCTCN2020106304-appb-000004
Figure PCTCN2020106304-appb-000005
Figure PCTCN2020106304-appb-000006
Figure PCTCN2020106304-appb-000007
Figure PCTCN2020106304-appb-000008
Figure PCTCN2020106304-appb-000009

Claims (38)

  1. A method of wireless communication comprising:
    receiving, by a user equipment (UE) , a periodic transmission according to a first bandwidth part (BWP) configuration in a first slot, the first BWP configuration having a first active BWP;
    receiving, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot;
    determining, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and
    receiving, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
  2. The method of claim 1, wherein the periodic transmission includes or corresponds to a physical downlink control channel (PDCCH) monitoring, a synchronization signal block (SSB) transmission, or a periodic channel state information reference signal (CSI-RS) transmission.
  3. The method of claim 1, wherein the non-periodic transmission includes or corresponds to a physical downlink data channel (PDSCH) transmission or an aperiodic CSI-RS transmission.
  4. The method of claim 1, wherein the DCI includes a BWP ID, and further comprising determining, by the UE, that the BWP ID included in the DCI indicates a BWP that is different from the first BWP.
  5. The method of claim 1, further comprising:
    refraining, by the UE, from monitoring the first active BWP during the second slot based on the BWP switching trigger.
  6. The method of claim 1, wherein the first active BWP is an anchor BWP and the second active BWP is a non-anchor BWP.
  7. The method of claim 6, wherein the second active BWP is a companion BWP for the first active BWP.
  8. The method of claim 6, further comprising, prior to receiving the periodic transmission:
    receiving, by the UE, a RRC message indicating an anchor BWP configuration; and
    setting, by the UE, the first active BWP indicated by the RRC message as the anchor BWP.
  9. The method of claim 6, further comprising, after receiving the non-periodic transmission:
    switching, by the UE, to the first active BWP as the anchor BWP; and
    monitoring, by the UE, for a PDCCH transmission on the first active BWP.
  10. The method of claim 6, further comprising, after receiving the non-periodic transmission:
    setting, by the UE, the second active BWP indicated by the DCI as the anchor BWP; and
    receiving, by the UE, one or more periodic transmissions via the second active BWP.
  11. The method of claim 6, further comprising:
    determining, by the UE, to switch back to the first active BWP based on an BWP inactivity timer expiring; and
    setting, by the UE, the first active BWP as the anchor BWP.
  12. The method of claim 1, wherein a CORESET and a search space set configuration for PDCCH monitoring are the same for the first active BWP and the second active BWP.
  13. The method of claim 1, wherein switching from the first BWP to the second BWP includes a retuning of radio frequency circuitry, wherein a switching delay of switching from the first BWP to the second BWP is less than a slot, and wherein switching from the first BWP to the second BWP is independent of radio resource configuration reconfiguring.
  14. The method of claim 1, wherein the UE is configured to report a CSI for the second active BWP.
  15. The method of claim 14, wherein the CSI reporting for the second active BWP is based on an aperiodic CSI-RS, and wherein the transmission of the aperiodic CSI-RS is based on the BWP switching trigger.
  16. The method of claim 14, wherein the UE is configured to set a rank indicator for CSI reporting for the second active BWP based on a rank indicator for a CSI reporting for the first active BWP.
  17. The method of claim 1, wherein the UE is configured with multiple CSI reporting settings, wherein a first setting indicates anchor BWP CSI reporting only, a second setting indicates anchor BWP CSI reporting and a single non-anchor BWP CSI reporting, and a third setting indicates anchor BWP CSI reporting and multiple non-anchor BWP CSI reporting.
  18. A method of wireless communication comprising:
    transmitting, by a network entity, a periodic transmission according to a first bandwidth part (BWP) configuration in a first slot, the first BWP configuration having a first active BWP;
    transmitting, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot;
    determining, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and
    transmitting, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
  19. The method of claim 18, wherein the periodic transmission includes or corresponds to a physical downlink control channel (PDCCH) monitoring, a synchronization  signal block (SSB) transmission, or a periodic channel state information reference signal (CSI-RS) transmission.
  20. The method of claim 18, wherein the non-periodic transmission includes or corresponds to a physical downlink data channel (PDSCH) transmission or an aperiodic CSI-RS transmission.
  21. The method of claim 18, wherein the DCI includes a BWP ID, and further comprising setting, by the network entity, the BWP ID included in the DCI to indicate a BWP that is different from the first BWP.
  22. The method of claim 18, wherein the first active BWP is an anchor BWP and the second active BWP is a non-anchor BWP.
  23. The method of claim 22, wherein the second active BWP is a companion BWP for the first active BWP.
  24. The method of claim 18, wherein a CORESET and a search space set configuration for PDCCH monitoring are the same for the first active BWP and the second active BWP.
  25. The method of claim 18, further comprising:
    transmitting, by the network entity, a second DCI via the second active BWP indicating a second non-periodic transmission; and
    transmitting, by the network entity, the second non-periodic transmission via the second active BWP, wherein the second non-periodic transmission corresponds to a repeated transmission of the non-periodic transmission.
  26. The method of claim 18, further comprising:
    transmitting, by the network entity, a second DCI via the first active BWP indicating a second non-periodic transmission;
    transmitting, by the network entity, a third DCI via the second active BWP indicating a second non-periodic transmission; and
    transmitting, by the network entity, the second non-periodic transmission via the second active BWP.
  27. An apparatus configured for wireless communication, comprising:
    at least one processor; and
    a memory coupled to the at least one processor,
    wherein the at least one processor is configured to:
    receive, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP;
    receive, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot;
    determine, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and
    receive, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
  28. The apparatus of claim 27, wherein the apparatus is configured to perform a method as in any of claims 1-17.
  29. An apparatus configured for wireless communication, comprising:
    means for receiving, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP;
    means for receiving, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot;
    means for determining, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and
    means for receiving, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
  30. The apparatus of claim 29, wherein the apparatus is configured to perform a method as in any of claims 1-17.
  31. A non-transitory, computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    receiving, by a user equipment (UE) , a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP;
    receiving, by the UE, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot;
    determining, by the UE, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and
    receiving, by the UE, the non-periodic transmission according to the second BWP configuration during the second slot.
  32. The non-transitory, computer-readable medium of claim 31, wherein the processor is configured to perform a method as in any of claims 1-17.
  33. An apparatus configured for wireless communication, comprising:
    at least one processor; and
    a memory coupled to the at least one processor,
    wherein the at least one processor is configured to:
    transmit, by a network entity, a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP;
    transmit, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot;
    determine, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and
    transmit, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
  34. The apparatus of claim 33, wherein the apparatus is configured to perform a method as in any of claims 18-26.
  35. An apparatus configured for wireless communication, comprising:
    means for transmitting, by a network entity, a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP;
    means for transmitting, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot;
    means for determining, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and
    means for transmitting, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
  36. The apparatus of claim 35, wherein the apparatus is configured to perform a method as in any of claims 18-26.
  37. A non-transitory, computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    transmitting, by a network entity, a periodic transmission according to a first BWP configuration in a first slot, the first BWP configuration having a first active BWP;
    transmitting, by the network entity, a downlink control information (DCI) indicating a BWP switching trigger for a non-periodic transmission in a second slot;
    determining, by the network entity, a second BWP configuration based on the BWP switching trigger, the second BWP configuration having a second active BWP, wherein the first active BWP has a same subcarrier spacing but a different frequency location as the second active BWP; and
    transmitting, by the network entity, the non-periodic transmission according to the second BWP configuration during the second slot.
  38. The non-transitory, computer-readable medium of claim 37, wherein the processor is configured to perform a method as in any of claims 18-26.
PCT/CN2020/106304 2020-07-31 2020-07-31 Low complexity frequency hopping for reduced capability ue WO2022021365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106304 WO2022021365A1 (en) 2020-07-31 2020-07-31 Low complexity frequency hopping for reduced capability ue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106304 WO2022021365A1 (en) 2020-07-31 2020-07-31 Low complexity frequency hopping for reduced capability ue

Publications (1)

Publication Number Publication Date
WO2022021365A1 true WO2022021365A1 (en) 2022-02-03

Family

ID=80036906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106304 WO2022021365A1 (en) 2020-07-31 2020-07-31 Low complexity frequency hopping for reduced capability ue

Country Status (1)

Country Link
WO (1) WO2022021365A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019165224A1 (en) * 2018-02-23 2019-08-29 Idac Holdings, Inc. System and method for bandwidth part operation
WO2019201101A1 (en) * 2018-04-16 2019-10-24 中兴通讯股份有限公司 Signal transmission method and apparatus
CN110475283A (en) * 2018-05-11 2019-11-19 维沃移动通信有限公司 A kind of method, apparatus and system handling CSI processing unit, resource
CN110536444A (en) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 Fractional bandwidth switching method, device, service node, user terminal and medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019165224A1 (en) * 2018-02-23 2019-08-29 Idac Holdings, Inc. System and method for bandwidth part operation
WO2019201101A1 (en) * 2018-04-16 2019-10-24 中兴通讯股份有限公司 Signal transmission method and apparatus
CN110475283A (en) * 2018-05-11 2019-11-19 维沃移动通信有限公司 A kind of method, apparatus and system handling CSI processing unit, resource
CN110536444A (en) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 Fractional bandwidth switching method, device, service node, user terminal and medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA: "Corrections on Cross-carrier Scheduling with Different Numerologies", 3GPP DRAFT; R1-2001443, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-meeting; 20200224 - 20200306, 10 March 2020 (2020-03-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051863824 *

Similar Documents

Publication Publication Date Title
US20230239128A1 (en) Joint dl/ul bandwidth techniques in full-duplex mode
US11849396B2 (en) Discontinuous reception (DRX) with sidelink (SL)
WO2021088043A1 (en) Inter-rat measurement gap configuration
EP4222901A1 (en) Harq feedback transmission for sidelink communication in unlicensed spectrum
WO2021243300A1 (en) Codebook-based operation for subband full duplex in nr
WO2021243481A1 (en) Dynamic dmrs configuration in 5g networks
EP4104598A1 (en) Beam selection for multi-subscriber identity module (msim) devices
WO2021007072A1 (en) Ue aided fast carrier selection
WO2021025805A1 (en) Spur management in millimeter wave communications
US20220217688A1 (en) Cross carrier activation of a periodic grant
US20230189175A1 (en) Synchronization signal block (ssb) spatial overloading
US20220007384A1 (en) Csi-rs triggering offset determination for ue
EP4236542A2 (en) Ue processing time for pdsch repetition in the same slot
EP4098028A1 (en) Ue autonomous beam selection
EP3994821A1 (en) Unified harq id for multiple frequency channels
WO2022021365A1 (en) Low complexity frequency hopping for reduced capability ue
WO2022056671A1 (en) Enhanced c-drx techniques for latency and power optimization
WO2022040901A1 (en) Enhanced paging techniques for latency and power optimization
WO2021237610A1 (en) Low-power data scheduling and reception techniques
US20230269762A1 (en) Multi-beam techniques for small data transfer over preconfigured uplink resources
WO2022067834A1 (en) Design of nr sidelink transmission gap
US20230231603A1 (en) Techniques for antenna-switched diversity and multi-sim concurrent operation management
WO2021179303A1 (en) Power headroom reporting for a full-duplex mode of operation of a device
EP4218358A1 (en) Discontinuous reception (drx) with sidelink (sl)
WO2022061373A1 (en) Enhanced implicit pucch resource indication and identification techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947064

Country of ref document: EP

Kind code of ref document: A1