WO2019200905A1 - 一种基于电极随机分布的三维高密度电阻率测量方法及勘探系统 - Google Patents

一种基于电极随机分布的三维高密度电阻率测量方法及勘探系统 Download PDF

Info

Publication number
WO2019200905A1
WO2019200905A1 PCT/CN2018/115832 CN2018115832W WO2019200905A1 WO 2019200905 A1 WO2019200905 A1 WO 2019200905A1 CN 2018115832 W CN2018115832 W CN 2018115832W WO 2019200905 A1 WO2019200905 A1 WO 2019200905A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
measurement
data acquisition
station
module
Prior art date
Application number
PCT/CN2018/115832
Other languages
English (en)
French (fr)
Inventor
王帮兵
王佳馨
田钢
石战结
赵文轲
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to JP2020531163A priority Critical patent/JP7018675B2/ja
Priority to EP18915130.1A priority patent/EP3819676B1/en
Publication of WO2019200905A1 publication Critical patent/WO2019200905A1/zh
Priority to US16/857,969 priority patent/US11262472B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction

Definitions

  • the invention belongs to the technical field of electrical method exploration, and particularly relates to a three-dimensional high-density resistivity measurement method and an exploration system based on random distribution of electrodes.
  • the high-density resistivity method is an array exploration method developed on the basis of ordinary electrical exploration.
  • the traditional high-density electrical method connects all the electrodes in series through a cable and is connected to the instrument.
  • the internal programmable switch of the instrument is set according to the requirements of the device (such as Winner, dipole-dipole, etc.), and all the electrodes are selected to meet the device settings.
  • the required power supply (A, B) and measurement (M, N) electrodes are automatically measured, and the apparent resistivity value Ps corresponding to a certain device parameter is calculated.
  • the instrument changes the device coefficient (that is, changes the power supply and the measurement point position) through the process control switch sequence, and measures the apparent resistivity values of a series of measurement points at different positions and different depths.
  • the advantage of the high-density electrical method is that only the electrode needs to be disposed at one time, and the electrode is controlled by the instrument to control the automatic measurement, which not only saves manpower but also improves data collection efficiency.
  • All the electrodes are connected in series with a long cable, and the measurement is also measured in serial order according to the position of the electrodes in the cable.
  • Bulk cable connections increase labor intensity, and the presence of obstacles (rivers, large buildings, traffic trunks, etc.) often leads to difficult field cable deployment.
  • the current high-density electrical three-dimensional exploration uses a regular grid to arrange measuring points/lines, and the measurement can only proceed in two orthogonal directions along the line, which can only be a pseudo-three-dimensional measurement.
  • the existing high-density electrical instrument uses only four electrodes of two electrode pairs (power supply/measurement) for each measurement, and the collection efficiency is low.
  • the invention aims at the deficiencies of the prior art, and provides a three-dimensional high-density resistivity measurement method and an exploration system based on random distribution of electrodes, and the specific technical solutions are as follows:
  • a three-dimensional high-density resistivity exploration system based on random distribution of electrodes characterized in that the system comprises a central console and a plurality of data acquisition units, the data acquisition unit is randomly set according to requirements, and the data collection unit comprises The collecting station and two GPS positioning electrodes connected by a short cable, the positions of the electrodes are flexibly set according to the grounding conditions of the site, and each data collecting unit is connected with the central console through a wireless network, and is controlled by the central control.
  • the station's command completes the power or potential measurement and passes the measurement back to the central console.
  • the central console includes a central control computer, a wireless communication control unit, and the central control computer is configured to control data acquisition processes of all data acquisition units, and the wireless communication control unit includes a control module and a transmission.
  • the wireless communication control unit is configured to establish a wireless connection with each collection station, register the registration of the acquisition station, issue the execution command, and monitor the status of the collection station.
  • the collection station includes a control module, a power supply module, a built-in power module, a measurement module, an external boost power module, a wireless communication antenna, and a cable interface, and the control module is configured to receive the center console. And control the data acquisition unit to perform power supply or potential measurement, and transmit the collected data to the central console;
  • the power supply module is configured to supply power to two electrodes connected to the collection station;
  • the measuring module is configured to measure a potential difference or a supply current of two electrodes connected to the collecting station;
  • the built-in power module is used to supply power to the collection station and provide power to the power supply module;
  • the external boost power supply module provides supplementary power to the data acquisition unit according to actual needs, and increases the supply current and voltage.
  • the GPS-positioned electrode comprises an electrode and a GPS antenna, the electrode and the GPS antenna are both connected to the short cable, and the GPS data is transmitted back to the collection station via a short cable.
  • the GPS antenna is magnetically disposed at the top end of the electrode.
  • a three-dimensional high-density resistivity measurement method based on random distribution of electrodes which is implemented based on a three-dimensional high-density resistivity exploration system based on random distribution of electrodes, which adopts a parallel measurement method, as follows:
  • a data acquisition unit is designated as the power supply unit by the central console by number, and all other data acquisition units are used as potential measurement units for potential measurement;
  • the next data acquisition unit is designated as the power supply unit by the central console by number, and all other data acquisition units are used as potential measurement units for potential measurement;
  • the present invention has the beneficial effects of:
  • the layout is flexible. According to the surface conditions, the position of the measuring points is flexibly arranged.
  • Each collecting station manages a pair of electrodes (electrode pairs). The spacing and direction of the electrode pairs are flexibly arranged according to the grounding conditions of the site, and are not limited to fixed spacing or regular grid, real three-dimensional measuring.
  • Each collection station only needs short cables to connect the two electrodes it manages.
  • the collection stations are isolated from each other and only communicate wirelessly with the central console (receive commands and upload data), avoiding the cumbersome long cables between all the electrodes.
  • the connection eliminates the inconvenience of long cables connecting the stations (especially rivers, buildings, etc.), which greatly improves the efficiency of on-site deployment.
  • Collection station parallel working mode One acquisition station is responsible for power supply during measurement, and all other acquisition stations perform potential measurement at the same time.
  • the traditional Winner method requires (N*n-3*n*(n+1))/2 measurements (N is the total number of electrodes, n is the number of isolation layers) to complete a collection task.
  • N is the total number of electrodes, n is the number of isolation layers
  • the system is simple and has strong expansion capabilities.
  • the characteristics of the distributed system itself determine that the hardware performance of the main control computer and the acquisition station is not high and easy to implement; but the integrated distributed system is not only powerful but also easy to expand, which is very beneficial for 3D exploration.
  • all the collection stations are exactly the same, which is beneficial to the mass production of the manufacturers, and also facilitates the replacement and maintenance of the collection site.
  • FIG. 1 is a schematic structural view of a center console used in the present invention
  • FIG. 2 is a schematic structural diagram of a data acquisition unit used in the present invention.
  • FIG. 3 is a schematic view showing the arrangement and collection mode of the measurement system of the present invention.
  • FIG. 4 is a schematic diagram showing the arrangement of measuring points in a conventional dipole-dipole acquisition mode
  • FIG. 5 is a schematic diagram of the arrangement of measuring points in the parallel acquisition mode of the present invention.
  • a three-dimensional high-density resistivity exploration system based on random distribution of electrodes the system comprises a central console and a plurality of data acquisition units, the data acquisition unit is randomly set according to requirements, and the data acquisition unit comprises a collection station and Two short-cable-connected electrodes with GPS positioning, the positions of the electrodes are flexibly set according to the grounding conditions of the site, and each data acquisition unit is connected to the central console via a wireless network, and is completed by the command of the central console. Power or potential measurement and pass the measurement back to the center console.
  • the central console is the brain center and the command control center of the entire acquisition system, including the central control computer and the wireless communication control unit, as shown in FIG. 1 , and may also include computer peripherals such as a display, a keyboard, and various interfaces;
  • the acquisition software is run on the control computer, and the central control computer is used to control the data collection process of all the data acquisition units, including the observation system parameter setting, the collection station status monitoring, the sending data collection instruction, the collection process monitoring, the data return, Display and save functions;
  • the wireless communication control unit includes a control module, a transmitter, a receiver, and a wireless transmission antenna, and the wireless communication control unit is configured to establish a wireless connection with each collection station under the control of the acquisition software. , collection station registration, execution instruction release, and status monitoring of the collection station.
  • the wireless communication control unit adopts a full-duplex working mode.
  • the collection station includes a control module, a power supply module, a built-in power module, a measurement module, an external boost power module, a wireless communication antenna, and a cable interface.
  • the control module is configured to receive the The instruction of the central console controls the data acquisition unit to perform power supply or potential measurement, and transmits the collected data to the central console;
  • the control module is also responsible for the control of each module of the system in a series of processes such as operation management, self-test, measurement, data saving and uploading of the system.
  • the power supply module is configured to supply power to two electrodes connected to the collection station; after receiving the power supply command, power is supplied to the underground through two electrodes of the connection cable;
  • the measuring module is configured to measure a potential difference or a supply current of two electrodes connected to the collecting station;
  • the built-in power module is used to supply power to the collection station and provide power to the power supply module;
  • the external boost power supply module provides supplementary power to the data acquisition unit according to actual needs, and increases the supply current and voltage.
  • the GPS-positioned electrode includes an electrode and a GPS antenna, and the electrode and the GPS antenna are both connected to the short cable, and the GPS data is transmitted back to the collection station through a short cable.
  • the GPS antenna is used to directly obtain the position information of the electrode.
  • the antenna adopts a magnetic design to facilitate the pick-and-place of the top of the electrode.
  • the GPS and the electrodes share the same multi-core cable.
  • Each collection station is equipped with 2 cables, 2 GPS antennas and 2 electrodes.
  • the acquisition system of the present invention adopts a different acquisition mode (Fig. 3-5) than the conventional high-density electrical system.
  • the conventional high-density electrical method selects only 4 electrodes at a time as power supply (AB) and measurement (MN) by the programmable switch. The electrodes are then selected in sequence to continue measuring until the end, as shown in Figure 4.
  • the central control unit sequentially designates one collecting station to provide the power supply electrode pair (AB), and the electrodes connected to all other collecting stations serve as measuring electrodes, and parallel measurement is performed at the same time.
  • the power supply task is then moved to the next numbered acquisition station, and all other acquisition stations (including the previous acquisition station serving as the power supply task) perform measurement tasks. All the sampling stations complete the power measurement task in sequence to complete the measurement task of the measurement area, as shown in Figure 5.
  • the specific acquisition methods are as follows:
  • a three-dimensional high-density resistivity measurement method based on random distribution of electrodes which is implemented based on the above-mentioned three-dimensional high-density resistivity exploration system, which adopts a parallel measurement method, as follows:
  • a data acquisition unit is designated as the power supply unit by the central console by number, and all other data acquisition units are used as potential measurement units for potential measurement;
  • the next data acquisition unit is designated as the power supply unit by the central console by number, and all other data acquisition units are used as potential measurement units for potential measurement;

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种电极随机分布式高密度电阻率测量方法及勘探系统。系统由中央控制台和多个采集单元组成。中央控制台和采集单元之间通过无线网络通讯连接。采集单元由采集站和通过电缆连接的两个配备GPS定位的电极组成。电极布设可以根据现场接地条件随机布设,由电极上配备的GPS提供测点位置坐标。采集站受中央控制台控制,分别提供供电或电位测量两种工作模式。数据采集过程采用并行测量模式:顺序选择一个采集单元供电,其它所有采集单元进行电位测量。电极随机分布式高密度电阻率测量方法具有极高的数据采集效率,而且接地条件灵活,适用于城市以及难以通行的复杂地表环境勘探。

Description

一种基于电极随机分布的三维高密度电阻率测量方法及勘探系统 技术领域
本发明属于电法勘探技术领域,具体涉及一种基于电极随机分布的三维高密度电阻率测量方法及勘探系统。
背景技术
高密度电阻率法是在普通电法勘探基础上发展的一种阵列勘探方法。传统高密度电法是通过电缆将所有电极串接起来连接到仪器上,由仪器内部程控开关按照装置(如温纳、偶极-偶极等)设置要求,从所有电极中挑选出满足装置设置要求的供电(A、B)和测量(M、N)电极进行自动测量,进而计算得到对应某一装置参数的视电阻率值Ps。仪器通过程控开关顺序改变装置系数(也即改变供电、测量点位置),测量得到不同位置、不同深度的一系列测点的视电阻率值。再通过室内数据处理(主要是反演),获得测量区域的地下电阻率分布特征。高密度电法的优势在于只需要一次性布设好电极,测量时由仪器程控选择电极,实现自动测量,不仅节省了人力,也提高了数据采集效率。
然而目前高密度电法存在以下不足:
1.只能采用规则网格布设电极,在城市或复杂环境条件下,难以找到合适、规整的矩形区域规则布设电极,严重限制了高密度电法的野外应用。
2.采用长电缆串接所有电极,测量也是按电极在电缆中的位置串行顺序测量。笨重的电缆连接既增加劳动强度,而且障碍物(河流、大型建筑、交通干线等)的存在也往往导致现场电缆布设工作难以实施。
3.目前的高密度电法三维勘探采用规则网格布置测点/测线,测量只能按照沿测线的两个正交方向前进,只能是一种拟三维测量。而且现有高密度电法仪器每次测量只用到两个电极对(供电/测量)的四个电极,采集效率较低。
发明内容
本发明针对现有技术的不足,提供一种基于电极随机分布的三维高密度电阻率测量方法及勘探系统,具体技术方案如下:
一种基于电极随机分布的三维高密度电阻率勘探系统,其特征在于,该系统包括中央控制台和多个数据采集单元,所述的数据采集单元根据需要随机设置,所述的数据采集单元包括采集站和通过短电缆连接的两个带GPS定位的电极,所述的电极的位置根据现场接地条件灵活设置,每个数据采集单元与中央控制台通过无线网络通讯连接,受所述的中央 控制台的指挥完成供电或电位测量,并把测量结果回传至中央控制台。
优选地,所述的中央控制台包括中控计算机、无线通讯控制单元,所述的中控计算机用于控制所有的数据采集单元的数据采集过程,所述的无线通讯控制单元包括控制模块、发射机、接收机和无线传输天线,所述的无线通讯控制单元用于与各采集站建立无线连接、采集站注册登记、执行指令发布以及采集站的状态监控。
优选地,所述的采集站包括控制模块、供电模块、内置电源模块、测量模块、外置升压电源模块、无线通讯天线、电缆接口,所述的控制模块用于接收所述的中央控制台的指令,控制数据采集单元进行供电或电位测量,并把采集的数据回传至所述的中央控制台;
所述的供电模块用于给与所述的采集站连接的两个电极供电;
所述的测量模块用于测量与所述的采集站连接的两个电极的电位差或供电电流;
所述的内置电源模块用于给采集站内部供电,并给所述的供电模块提供电源;
所述的外置升压电源模块根据实际需要为所述的数据采集单元提供补充电源,增大供电电流和电压。
优选地,所述的带GPS定位的电极包括电极和GPS天线,所述的电极和GPS天线均连接在所述的短电缆上,并通过短电缆将GPS数据回传至所述的采集站。
优选地,所述的GPS天线采用磁吸方式设置在电极的顶端。
一种基于电极随机分布的三维高密度电阻率测量方法,该方法基于上述任意一项的基于电极随机分布的三维高密度电阻率勘探系统来实现,该方法采用并行测量方法,具体如下:
(1)由中央控制台对所有的数据采集单元进行注册登记,并编号;
(2)采集开始后,由中央控制台按编号指定一个数据采集单元作为供电单元,其他的所有的数据采集单元均作为电位测量单元,进行电位测量;
(3)完成一次测量后,由中央控制台按编号指定下一个数据采集单元作为供电单元,其他所有的数据采集单元均作为电位测量单元,进行电位测量;
(4)当所有的数据采集单元轮序供电一遍后,完成整个测量过程。
本发明与背景技术相比,具有有益的效果是:
1.布极方式灵活。根据地表条件灵活布置测点位置,每个采集站管理一对电极(电极对),电极对的间距和方向根据现场接地条件灵活布置,而不限于固定的间距或规则网格,实现真正的三维测量。
2.采集站无线通讯管理模式。每个采集站只需要短电缆连接自身管理的两个电极,采集站之间互相孤立,只与中央控制台采用无线通讯联络(接收指令和上传数据),避免了所 有电极之间笨重的长电缆连接,消除测站之间长电缆相互串接的诸多不便(特别是河流、建筑等地表阻碍),极大地提高了现场布设工作效率。
3.采集站并行工作模式。测量时一个采集站负责供电,其它所有采集站同时进行电位测量。对于N个电极而言,传统温纳法需要(N*n-3*n*(n+1))/2次测量(N为总电极数,n为隔离层数)才能完成一次采集任务,而本发明由于所有采集站采用并行工作模式,只需要N/2次测量即可完成整个测区采集任务,极大地提高了采集效率。
4.系统简单、扩展能力强。分布式系统自身的特点决定系统对主控计算机以及采集站的硬件性能要求不高,易于实现;但集成的分布式系统总体不但性能强大而且易于扩充,十分有利于开展三维勘探。而且所有采集站完全一样,有利于厂商批量生产,也便于采集现场的替换和维修。
附图说明
图1为本发明用到的中央控制台的结构示意图;
图2为本发明用到的数据采集单元的结构示意图;
图3为本发明测量系统的布置和采集方式示意图;
图4为常规偶极-偶极采集方式的测点布置示意图;
图5为本发明的并行采集方式的测点布置示意图。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种基于电极随机分布的三维高密度电阻率勘探系统,该系统包括中央控制台和多个数据采集单元,所述的数据采集单元根据需要随机设置,所述的数据采集单元包括采集站和通过短电缆连接的两个带GPS定位的电极,所述的电极的位置根据现场接地条件灵活设置,每个数据采集单元与中央控制台通过无线网络通讯连接,受所述的中央控制台的指挥完成供电或电位测量,并把测量结果回传至中央控制台。
所述的中央控制台是整个采集系统的大脑中枢和指令控制中心,包括中控计算机、无线通讯控制单元,如图1所示,还可以包括显示器、键盘、各类接口等计算机外设;中控计算机上运行采集软件,所述的中控计算机用于控制所有的数据采集单元的数据采集过程,包括观测系统参数设置、采集站状态监控、发送数据采集指令、采集过程监控、数据回传、显示及保存等功能;所述的无线通讯控制单元包括控制模块、发射机、接收机和无线传输天线,所述的无线通讯控制单元在采集软件的控制下,用于与各采集站建立无线连接、采 集站注册登记、执行指令发布以及采集站的状态监控。无线通讯控制单元采用全双工工作模式。
所述的采集站包括控制模块、供电模块、内置电源模块、测量模块、外置升压电源模块、无线通讯天线、电缆接口,如图2所示,所述的控制模块用于接收所述的中央控制台的指令,控制数据采集单元进行供电或电位测量,并把采集的数据回传至所述的中央控制台;
控制模块还负责自身系统的运行管理、自检、测量以及数据保存及上传等一系列过程中对系统各模块的控制。
所述的供电模块用于给与所述的采集站连接的两个电极供电;在收到供电指令后通过连接电缆的两根电极向地下供电;
所述的测量模块用于测量与所述的采集站连接的两个电极的电位差或供电电流;
所述的内置电源模块用于给采集站内部供电,并给所述的供电模块提供电源;
所述的外置升压电源模块根据实际需要为所述的数据采集单元提供补充电源,增大供电电流和电压。
所述的带GPS定位的电极包括电极和GPS天线,所述的电极和GPS天线均连接在所述的短电缆上,并通过短电缆将GPS数据回传至所述的采集站。
GPS天线是为了直接获取电极位置信息,天线采用磁吸设计,便于电极顶端的取放。GPS和电极共用同一多芯电缆。每个采集站配备2条电缆、2个GPS天线和2根电极。
本发明的采集系统采用与传统高密度电法系统不一样的采集方式(图3-5),传统高密度电法由程控开关每次只选择4个电极作为供电(AB)和测量(MN)电极,然后在顺序选择其它电极继续测量,直至结束,如图4所示。本发明是由中控按顺序指定一个采集站提供供电电极对(AB),同时其它所有采集站连接的电极都作为测量电极,同时开展并行测量。然后供电任务移到下一个编号的采集站,其它所有采集站(包括前一个担任供电任务的采集站)执行测量任务。所有采集站顺序执行完供电任务就完成该测区测量任务,如图5所示,具体的采集方法如下:
一种基于电极随机分布的三维高密度电阻率测量方法,该方法基于上述的三维高密度电阻率勘探系统来实现,该方法采用并行测量方法,具体如下:
(1)由中央控制台对所有的数据采集单元进行注册登记,并编号;
(2)采集开始后,由中央控制台按编号指定一个数据采集单元作为供电单元,其他的所有的数据采集单元均作为电位测量单元,进行电位测量;
(3)完成一次测量后,由中央控制台按编号指定下一个数据采集单元作为供电单元, 其他所有的数据采集单元均作为电位测量单元,进行电位测量;
(4)当所有的数据采集单元轮序供电一遍后,完成整个测量过程。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (6)

  1. 一种基于电极随机分布的三维高密度电阻率勘探系统,其特征在于,该系统包括中央控制台和多个数据采集单元,所述的数据采集单元根据需要随机设置,所述的数据采集单元包括采集站和通过短电缆连接的两个带GPS定位的电极,所述的电极的位置根据现场接地条件灵活设置,每个数据采集单元与中央控制台通过无线网络通讯连接,受所述的中央控制台的指挥完成供电或电位测量,并把测量结果回传至中央控制台。
  2. 根据权利要求1所述的基于电极随机分布的三维高密度电阻率勘探系统,其特征在于,所述的中央控制台包括中控计算机、无线通讯控制单元,所述的中控计算机用于控制所有的数据采集单元的数据采集过程,所述的无线通讯控制单元包括控制模块、发射机、接收机和无线传输天线,所述的无线通讯控制单元用于与各采集站建立无线连接、采集站注册登记、执行指令发布以及采集站的状态监控。
  3. 根据权利要求1所述的基于电极随机分布的三维高密度电阻率勘探系统,其特征在于,所述的采集站包括控制模块、供电模块、内置电源模块、测量模块、外置升压电源模块、无线通讯天线、电缆接口,所述的控制模块用于接收所述的中央控制台的指令,控制数据采集单元进行供电或电位测量,并把采集的数据回传至所述的中央控制台;
    所述的供电模块用于给与所述的采集站连接的两个电极供电。
    所述的测量模块用于测量与所述的采集站连接的两个电极的电位差或供电电流。
    所述的内置电源模块用于给采集站内部供电,并给所述的供电模块提供电源。
    所述的外置升压电源模块根据实际需要为所述的数据采集单元提供补充电源,增大供电电流和电压。
  4. 根据权利要求1所述的基于电极随机分布的三维高密度电阻率勘探系统,其特征在于,所述的带GPS定位的电极包括电极和GPS天线,所述的电极和GPS天线均连接在所述的短电缆上,并通过短电缆将GPS数据回传至所述的采集站。
  5. 根据权利要求4所述的基于电极随机分布的三维高密度电阻率勘探系统,其特征在于,所述的GPS天线采用磁吸方式设置在电极的顶端。
  6. 一种基于电极随机分布的三维高密度电阻率测量方法,该方法基于权利要求1-5中任意一项的基于电极随机分布的三维高密度电阻率勘探系统来实现,该方法采用并行测量方法,具体如下:
    (1)由中央控制台对所有的数据采集单元进行注册登记,并编号;
    (2)采集开始后,由中央控制台按编号指定一个数据采集单元作为供电单元,其他的 所有的数据采集单元均作为电位测量单元,进行电位测量;
    (3)完成一次测量后,由中央控制台按编号指定下一个数据采集单元作为供电单元,其他所有的数据采集单元均作为电位测量单元,进行电位测量;
    (4)当所有的数据采集单元轮序供电一遍后,完成整个测量过程。
PCT/CN2018/115832 2018-04-18 2018-11-16 一种基于电极随机分布的三维高密度电阻率测量方法及勘探系统 WO2019200905A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020531163A JP7018675B2 (ja) 2018-04-18 2018-11-16 電極のランダム分布に基づく三次元高密度電気比抵抗測定方法及び探査システム
EP18915130.1A EP3819676B1 (en) 2018-04-18 2018-11-16 Three-dimensional high-density resistivity measurement method based on electrode random distribution and exploration system
US16/857,969 US11262472B2 (en) 2018-04-18 2020-04-24 Prospecting method and instrument system of the three-dimensional electrical resistivity tomography based on random distribution of electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810348248.5 2018-04-18
CN201810348248.5A CN108873074B (zh) 2018-04-18 2018-04-18 一种电极随机分布式高密度电阻率测量方法及勘探系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/857,969 Continuation US11262472B2 (en) 2018-04-18 2020-04-24 Prospecting method and instrument system of the three-dimensional electrical resistivity tomography based on random distribution of electrodes

Publications (1)

Publication Number Publication Date
WO2019200905A1 true WO2019200905A1 (zh) 2019-10-24

Family

ID=64326779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115832 WO2019200905A1 (zh) 2018-04-18 2018-11-16 一种基于电极随机分布的三维高密度电阻率测量方法及勘探系统

Country Status (5)

Country Link
US (1) US11262472B2 (zh)
EP (1) EP3819676B1 (zh)
JP (1) JP7018675B2 (zh)
CN (1) CN108873074B (zh)
WO (1) WO2019200905A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11262472B2 (en) * 2018-04-18 2022-03-01 Zhejiang University Prospecting method and instrument system of the three-dimensional electrical resistivity tomography based on random distribution of electrodes

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884715A (zh) * 2019-04-01 2019-06-14 安徽理工大学 一种用于电法勘探的智能磁吸式电极
CN110276484B (zh) * 2019-06-04 2021-05-04 长江勘测规划设计研究有限责任公司 输水暗涵、堤防及边坡水体渗透的电法监测预警系统
CN110263985B (zh) * 2019-06-04 2021-05-04 长江勘测规划设计研究有限责任公司 输水暗涵、堤防及边坡水体渗透的电法监测预警系统
CN111856588B (zh) * 2020-06-17 2022-09-27 南方科技大学 一种地陷预警方法、系统、终端设备及存储介质
CN112305624B (zh) * 2020-10-30 2024-02-06 中国地质调查局西安地质调查中心(西北地质科技创新中心) 一种非接触式跨障碍的高密度测量方法
CN112444886B (zh) * 2020-11-06 2021-09-10 浙江大学 基于城市路政交通供电网络的随机分布式电阻率感知系统
CN112433252B (zh) * 2020-11-06 2021-08-10 浙江大学 电极随机分布式三维高密度电法数据采集方法
CN112782770B (zh) * 2020-12-24 2022-05-03 浙江大学 主从随机分布式高密度电法勘探的数据采集方法
CN112612059B (zh) * 2020-12-25 2023-02-28 中国矿业大学 一种三维模型采动裂隙发育特征无损探测方法
CN113671579A (zh) * 2021-08-18 2021-11-19 中国矿业大学 一种电容电极高密度电阻率连续测量系统及其测量方法
CN114679248B (zh) * 2022-03-25 2024-02-09 北斗星通智联科技有限责任公司 一种车载显示屏和主机的全双工通讯系统及方法
CN115356051A (zh) * 2022-08-12 2022-11-18 吉林大学 一种堤坝渗漏监测系统、方法及电子设备
CN117607210B (zh) * 2024-01-24 2024-05-31 中南大学 一种分布式偶极-偶极电法监测方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120029825A1 (en) * 2008-01-23 2012-02-02 Korea Institute Of Geoscience & Mineral Resources System for streamer electrical resistivity survey and method for analysis of underground structure below a riverbed
CN203930089U (zh) * 2014-06-25 2014-11-05 国家海洋局第一海洋研究所 一种分布式海洋电法测量装置
CN204086568U (zh) * 2014-10-13 2015-01-07 湖南师范大学 一种超高密度电法数据采集装置
CN204256187U (zh) * 2014-10-15 2015-04-08 安徽理工大学 一种井地联合并行电法测试系统
CN104614771A (zh) * 2015-01-22 2015-05-13 深圳市市政设计研究院有限公司 一种双模式高密度电法采集控制装置及方法
CN104656145A (zh) * 2014-11-20 2015-05-27 河南理工大学 基于数字电极技术的电法测量系统
CN105866842A (zh) * 2016-03-24 2016-08-17 刘向红 一种具有定位功能的智能电极系统及其定位方法
CN205991957U (zh) * 2016-08-31 2017-03-01 山东电力工程咨询院有限公司 一种分布式多功能测量电极装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257395A (ja) * 1990-03-08 1991-11-15 Komatsu Ltd 地中探査装置
US5495175A (en) * 1993-09-14 1996-02-27 The Regents Of The University Of California Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids
US5914603A (en) * 1997-02-20 1999-06-22 The Regents Of The University Of California Electrical resistance tomography using steel cased boreholes as electrodes
US6295512B1 (en) * 1998-05-01 2001-09-25 John Bryant Subsurface mapping apparatus and method
US6147497A (en) * 1998-06-29 2000-11-14 The Regents Of The University Of California Using electrical impedance tomography to map subsurface hydraulic conductivity
DE10238824A1 (de) * 2002-08-23 2004-03-11 Forschungszentrum Jülich GmbH Verfahren und Vorrichtung zur schnellen tomographischen Messung der elektrischen Leitfähigkeitsverteilung in einer Probe
GB0301980D0 (en) * 2003-01-28 2003-02-26 Natural Environment Res Systems and methods for resistivity measurement
JP4353480B2 (ja) 2004-12-22 2009-10-28 財団法人電力中央研究所 電極切替装置
GB0516153D0 (en) * 2005-08-05 2005-09-14 Mtem Ltd Multi-transient dc resistivity measurements
US7788049B2 (en) 2006-06-22 2010-08-31 Bryant Consultants, Inc. Remotely reconfigurable system for mapping subsurface geological anomalies
US8321160B2 (en) * 2006-06-22 2012-11-27 Bryant Consultants, Inc. Remotely reconfigurable system for mapping subsurface geological anomalies
US8019547B2 (en) * 2006-06-22 2011-09-13 Bryant Consultants, Inc. Remotely reconfigurable system for mapping subsurface geological anomalies
US7386402B2 (en) * 2006-06-22 2008-06-10 Bryant Consultants, Inc. Remotely reconfigurable system for mapping structure subsurface geological anomalies
US7813883B2 (en) * 2006-06-22 2010-10-12 Bryant Consultants, Inc. Remotely reconfigurable system for mapping subsurface geological anomalies
CN200962147Y (zh) 2006-10-19 2007-10-17 张东来 基于天然电场理想化的深部资源高精度探测仪
JP5453611B2 (ja) 2007-09-12 2014-03-26 国立大学法人九州大学 地下流体観測装置及び測定方法
GB0910704D0 (en) * 2009-06-22 2009-08-05 Univ Leeds A novel tomographic sensing system for high conductivity multiphase flow measurement
KR101131826B1 (ko) * 2009-10-29 2012-03-30 한국지질자원연구원 센서 네트워크 기반의 전기비저항 탐사 시스템
CA2828564C (en) * 2011-03-02 2018-08-28 Multi-Phase Technologies, Llc Method and apparatus for measuring the electrical impedance properties of geological formations using multiple simultaneous current sources
CN102426297B (zh) * 2011-08-17 2014-03-19 陕西理工学院 无线多点土壤电阻率测量系统
CN102404764A (zh) * 2011-11-11 2012-04-04 中南大学 一种用于三维电磁勘探的无线网络观测方法和系统
US9952345B1 (en) * 2012-12-11 2018-04-24 David Bruce Harro Subsurface multi-electrode resistivity implant method and system
US9256003B2 (en) * 2013-01-15 2016-02-09 Shan Dong University Three-dimensional focusing induced polarization equipment for advanced geological prediction of water inrush disaster source in underground engineering
US9638652B2 (en) * 2013-01-30 2017-05-02 Giatec Scientific Inc. Electrical methods and systems for concrete testing
US20150006081A1 (en) * 2013-07-01 2015-01-01 Subsurface Insights LLC Adaptive time-lapse sub-surface electrical resistivity monitoring
US9772423B2 (en) * 2014-07-30 2017-09-26 Battelle Memorial Institute Method of imaging the electrical conductivity distribution of a subsurface
CN104614772A (zh) * 2015-01-22 2015-05-13 深圳市市政设计研究院有限公司 一种高密度电法的测量数据传输方法
FR3049711B1 (fr) * 2016-04-01 2018-04-13 IFP Energies Nouvelles Dispositif pour la determination de parametres petrophysiques d'une formation souterraine
CN106405250B (zh) * 2016-08-31 2020-11-03 山东电力工程咨询院有限公司 适用于复杂地形条件下的高密度地电阻率测量系统及方法
CN106570227B (zh) * 2016-10-20 2019-09-24 湖南师范大学 一种超高密度电法的电极排列优化方法及装置
US11598739B2 (en) * 2018-03-13 2023-03-07 Penny Precision Llc Methods and systems for high fidelity electrical tomographic processes
CN108873074B (zh) * 2018-04-18 2020-03-24 浙江大学 一种电极随机分布式高密度电阻率测量方法及勘探系统
CN108614300B (zh) * 2018-04-28 2020-12-29 黄河水利委员会黄河水利科学研究院 一种直流电阻率成像设备及其分布式测站
CN111722292B (zh) * 2020-06-03 2021-06-01 山东大学 一种三维电阻率层析成像方法及系统
KR102309633B1 (ko) * 2020-12-30 2021-10-07 한국교육방송공사 양적/질적 평가에 기반한 독서 교육을 위한 컴퓨터 프로그램, 그러한 방법 및 이를 위한 컴퓨터 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120029825A1 (en) * 2008-01-23 2012-02-02 Korea Institute Of Geoscience & Mineral Resources System for streamer electrical resistivity survey and method for analysis of underground structure below a riverbed
CN203930089U (zh) * 2014-06-25 2014-11-05 国家海洋局第一海洋研究所 一种分布式海洋电法测量装置
CN204086568U (zh) * 2014-10-13 2015-01-07 湖南师范大学 一种超高密度电法数据采集装置
CN204256187U (zh) * 2014-10-15 2015-04-08 安徽理工大学 一种井地联合并行电法测试系统
CN104656145A (zh) * 2014-11-20 2015-05-27 河南理工大学 基于数字电极技术的电法测量系统
CN104614771A (zh) * 2015-01-22 2015-05-13 深圳市市政设计研究院有限公司 一种双模式高密度电法采集控制装置及方法
CN105866842A (zh) * 2016-03-24 2016-08-17 刘向红 一种具有定位功能的智能电极系统及其定位方法
CN205991957U (zh) * 2016-08-31 2017-03-01 山东电力工程咨询院有限公司 一种分布式多功能测量电极装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3819676A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11262472B2 (en) * 2018-04-18 2022-03-01 Zhejiang University Prospecting method and instrument system of the three-dimensional electrical resistivity tomography based on random distribution of electrodes

Also Published As

Publication number Publication date
EP3819676A1 (en) 2021-05-12
US11262472B2 (en) 2022-03-01
EP3819676B1 (en) 2024-01-31
JP2021505890A (ja) 2021-02-18
CN108873074B (zh) 2020-03-24
US20200249370A1 (en) 2020-08-06
CN108873074A (zh) 2018-11-23
JP7018675B2 (ja) 2022-02-14
EP3819676A4 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
WO2019200905A1 (zh) 一种基于电极随机分布的三维高密度电阻率测量方法及勘探系统
CN102012525B (zh) 分布式多参数深部电磁断面成像系统及测量方法
CN102685677B (zh) 一种室内定位方法及装置
CN103018781B (zh) 2d/3d核磁共振与瞬变电磁联用仪及野外工作方法
CN106802429B (zh) 一种基于超宽带无线模块的准实时无缆网络地震仪系统
CN104280780A (zh) 核磁共振与瞬变电磁联用仪及工作方法
CN103310613A (zh) 移动式自组网土壤环境信息远程监测装置
CN103963936A (zh) 无线移动水质监测设备
CN105866558A (zh) 一种小区域雷电监测定位方法及系统
CN208783112U (zh) 一种基于压缩感知与多边测量相结合的定位系统
CN104090173A (zh) 一种基于蓝牙通信的多节点分布式场强测试系统及方法
CN205139294U (zh) 一种基于无线传感器网络的接地网腐蚀状况测试装置
CN201071714Y (zh) 油气井地面测试数据无线采集监控装置
CN109668946A (zh) 一种非接触式分层土壤墒情监测装置
CN109059793A (zh) 用于地表区域形变观测的无线激光矩阵监测系统及方法
CN112782770B (zh) 主从随机分布式高密度电法勘探的数据采集方法
CN212837779U (zh) 一种随钻测量与随钻测井地面信号无线传输系统
CN204989391U (zh) 一种变电站接地网水平均压导体腐蚀状态遥控检测装置
CN205027414U (zh) 一种坝体静水位原位自动监测系统
CN112824871B (zh) 基于瞬变电磁视电阻率成像技术的接地网缺陷诊断方法
CN205909830U (zh) 巡检移动终端基于微惯导的定位系统
CN103105520B (zh) 容性设备带电测试装置
CN206788387U (zh) 一种宽探测范围且多通道、同步采集的瞬变电磁接收装置
CN203813779U (zh) 一种总线信号模拟与远程校验装置
CN205068749U (zh) 大体积混凝土温度自动采集无线传输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018915130

Country of ref document: EP

Effective date: 20201118