WO2019200844A1 - 全向天线及无人机监听设备 - Google Patents

全向天线及无人机监听设备 Download PDF

Info

Publication number
WO2019200844A1
WO2019200844A1 PCT/CN2018/108260 CN2018108260W WO2019200844A1 WO 2019200844 A1 WO2019200844 A1 WO 2019200844A1 CN 2018108260 W CN2018108260 W CN 2018108260W WO 2019200844 A1 WO2019200844 A1 WO 2019200844A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
holding
annular frame
frame body
antenna
Prior art date
Application number
PCT/CN2018/108260
Other languages
English (en)
French (fr)
Inventor
汤一君
杨飞虎
Original Assignee
上海飞来信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海飞来信息科技有限公司 filed Critical 上海飞来信息科技有限公司
Priority to CN201880004584.6A priority Critical patent/CN110896676A/zh
Publication of WO2019200844A1 publication Critical patent/WO2019200844A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • the embodiment of the invention relates to the technical field of drones, and in particular to an omnidirectional antenna and a drone monitoring device.
  • drones are used by more and more users. However, for some specific location areas, such as airports or government offices, the use of drones can cause some problems.
  • the common UAV listening equipment generally has the problem that the listening distance is close and the listening ability in different directions is obviously different.
  • ordinary drone listening equipment is susceptible to electromagnetic signal noise.
  • Embodiments of the present invention provide an omnidirectional antenna and a drone monitoring device capable of achieving omnidirectional signal coverage.
  • an omnidirectional antenna comprising: a plurality of directional antennas and a connecting device for connecting the plurality of directional antennas to an external fixing structure, the connecting device comprising:
  • a clasp assembly for connecting to an external fixing structure, the clasping assembly being provided with a grip portion adapted to the external fixing structure;
  • An annular bracket is disposed on an outer side of the clasp assembly and fixed to the clasp assembly;
  • the plurality of mounting components are evenly distributed circumferentially on an outer circumferential surface of the annular bracket, and are connected in one-to-one correspondence with the plurality of omnidirectional antennas.
  • the holding assembly includes a first holding structure and a second holding structure fixedly connected to each other from both sides of the external fixing structure, and the first holding structure is provided with a first matching structure of the external fixing structure a second holding structure, the second holding structure is provided with a second holding portion adapted to the external fixing structure, the first holding portion and the second holding portion are from both sides of the external fixing structure Hold the external fixing structure tightly.
  • first holding structure is provided with at least one first connecting hole
  • second holding structure is provided with a second connecting hole corresponding to the position and the number of the first connecting hole, and the position corresponding to the second connecting hole
  • a first fastener is disposed between the first connecting hole and the second connecting hole.
  • the annular bracket includes a first annular frame body and a second annular frame body that are enclosed by each other, the first annular frame body is fixedly connected to the first holding structure, and the second annular frame body Secured to the second clasping structure.
  • the inner surface of the first annular frame body is uniformly disposed with a plurality of first supporting structures circumferentially, and the end of the first supporting structure is fixed to the first holding structure; the second ring The inner surface of the frame body is evenly distributed along the circumference with a plurality of second support structures, and the ends of the second support structure are fixed to the second holding structure.
  • first annular frame body and the second annular frame body are connected by a first grounding wire, and any one of the first annular frame body and the second annular frame body passes The second ground line is connected to the ground common.
  • the mounting assembly includes a connecting rod and a first mounting portion and a second mounting portion connected to both ends of the connecting rod, the first mounting portion is coupled to the annular bracket, and the second mounting portion is Directional antenna connection.
  • the second mounting portion includes a web connected to the connecting rod and two wings vertically connected to both ends of the web, the two wings being connected to the directional antenna.
  • the wing plate is provided with a positioning hole
  • the directional antenna is provided with a first hole that cooperates with the positioning hole, and the second hole is connected to the first hole and the positioning hole.
  • the wing plate is provided with a curved limiting hole
  • the directional antenna is provided with a second hole that cooperates with the curved limiting hole, and the second hole is connected with the curved limiting hole
  • an angle between the two side end portions of the arcuate limiting hole and the connecting line of the positioning hole is greater than or equal to 40°.
  • the wing plate is provided with an angle dial corresponding to the arcuate limiting hole.
  • a drone monitoring apparatus comprising: a receiver, a pole, and the omnidirectional antenna according to any of the above embodiments, wherein the omnidirectional antenna is mounted on the pole The omnidirectional antenna is connected to the receiver through a connection line.
  • the omnidirectional antenna of the embodiment of the invention has a plurality of mounting components uniformly disposed on the annular bracket circumferentially, so that the plurality of directional antennas are evenly arranged along the circumference, so that omnidirectional radiation and signals can be achieved in all directions of the horizontal plane.
  • High gain omnidirectional antenna with receiving capability and anti-interference performance It can solve the problem that the interception distance of ordinary UAV listening equipment is close and the difference in listening ability in different directions is obvious. At the same time, it can also solve the problem that ordinary UAV listening equipment is susceptible to electromagnetic signal noise interference.
  • FIG. 1 is a perspective view of a drone monitoring device according to an embodiment of the present invention.
  • FIG. 2 is a top plan view of a drone monitoring device according to an embodiment of the present invention.
  • FIG. 3 is a perspective view showing only a connecting device of a drone monitoring device according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of another UAV monitoring device according to an embodiment of the present invention.
  • FIG. 5 is a top view of a drone monitoring device showing only one set of antenna circular arrays according to an embodiment of the present invention.
  • FIG. 6 is a top plan view showing a two-group antenna array of a drone monitoring device according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of still another UAV monitoring device according to an embodiment of the present invention.
  • FIG. 8 and FIG. 9 are schematic perspective views of a directional antenna of a 5.8G frequency band of a UAV monitoring device according to an embodiment of the present invention.
  • FIG. 10 and FIG. 11 are schematic perspective views of a directional antenna of a 2.4G frequency band of a UAV monitoring device according to an embodiment of the present invention.
  • FIG. 12 and FIG. 13 are schematic diagrams showing the connection of a directional antenna of a 5.8G frequency band and a directional antenna of a 2.4G frequency band of a UAV monitoring device according to an embodiment of the present invention.
  • FIG. 14 is an exploded perspective view of the holding assembly and the ring bracket of the connecting device of the UAV monitoring device according to the embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a grounding line of a connecting device of a drone monitoring device according to an embodiment of the present invention.
  • 16 is a schematic diagram showing the connection of a mounting assembly and a directional antenna of a connecting device of a drone monitoring device according to an embodiment of the present invention.
  • Figure 17 is a partially enlarged schematic view of Figure 16 .
  • the words “a” or “an” and the like do not denote a quantity limitation, but mean that there is at least one. Unless otherwise indicated, the terms “front”, “rear”, “lower” and/or “upper” are used for convenience of description and are not limited to one location or one spatial orientation.
  • the words “connected” or “connected” and the like are not limited to physical or mechanical connections, and may include electrical connections, whether direct or indirect.
  • the embodiment of the invention provides an omnidirectional antenna and a UAV monitoring device, thereby enabling the antenna system to achieve an omnidirectional high gain performance of the horizontal plane.
  • the omnidirectional antenna and the UAV monitoring device of the embodiment of the present invention will be described in detail below with reference to the accompanying drawings. The features of the embodiments and embodiments described below may be combined with each other without conflict.
  • Embodiments of the present invention provide an omnidirectional antenna that can be used as part of the UAV monitoring device for use in an area where an airport, a government office, or the like needs to monitor and supervise the drone.
  • the omnidirectional antenna includes an omnidirectional antenna system 100 comprised of a plurality of directional antennas 50 and a connection device 300 for connecting a plurality of directional antennas 50 to an external fixed structure.
  • the external fixing structure is a pole 90 that meets a certain height requirement.
  • the connecting device 300 includes a clasping assembly 10, an annular bracket 20, and a plurality of mounting assemblies 30.
  • the holding assembly 10 is provided with a holding portion 11 adapted to the holding rod 90, and the holding assembly 10 is connected to the holding rod 90 via the holding portion 11.
  • the annular bracket 20 is located outside the clasp assembly 10 and is fixedly coupled to the clasp assembly 10.
  • the number of the mounting assemblies 30 is equal to the number of the directional antennas 50.
  • the plurality of mounting assemblies 30 are evenly distributed circumferentially on the outer peripheral surface of the annular bracket 20, and are connected in one-to-one correspondence with a plurality of omnidirectional antennas, so that a plurality of directional antennas are provided. 50 constitutes the omnidirectional antenna.
  • the omnidirectional antenna is connected to the pole 90 by the holding portion 11 of the holding assembly 10, and can be used in an area where the drone is monitored and supervised by an airport, a government office or the like.
  • the omnidirectional antenna of the embodiment of the present invention has a plurality of mounting assemblies 30 uniformly disposed on the annular bracket 20 circumferentially, thereby uniformly arranging the plurality of directional antennas 50 along the circumference, so that the omnidirectional directions in all directions of the horizontal plane can be achieved.
  • High gain omnidirectional antenna for radiation and signal reception and anti-interference performance It can solve the problem that the interception distance of ordinary UAV listening equipment is close and the difference in listening ability in different directions is obvious. At the same time, it can also solve the problem that ordinary UAV listening equipment is susceptible to electromagnetic signal noise interference.
  • An omnidirectional antenna system 100 composed of a plurality of directional antennas 50 will be described below with reference to the accompanying drawings.
  • the omnidirectional antenna system 100 includes at least one antenna circular array 40 arranged in a predetermined direction, the center of the at least one antenna circular array 40 being coaxial, and each of the antenna circular arrays 40 includes a plurality of uniformly arranged circumferentially Directional antenna 50 of the same frequency band.
  • the directional antenna 50 employs a 4 ⁇ 4 antenna array.
  • the plurality of directional antennas 50 are mounted on the pole 90 by the connecting device 300, and the predetermined direction is equivalent to the length direction of the pole 90.
  • the omnidirectional antenna can also be connected to the remote control device of the drone for transmitting a control signal to the drone or receiving a signal returned by the drone.
  • the omnidirectional antenna of the embodiment of the present invention is based on an antenna array, and the gain of the antenna can be improved by using a single antenna array, and the ability of the antenna to radiate and receive signals in a specific direction can be improved, and the plurality of antenna arrays can be evenly distributed along the circumference.
  • the high-gain omnidirectional antenna is set up to achieve better omnidirectional radiation and signal receiving capability and anti-interference performance in all directions of the horizontal plane. It can solve the problem that the interception distance of ordinary UAV listening equipment is close and the difference in listening ability in different directions is obvious. At the same time, it can also solve the problem that ordinary UAV listening equipment is susceptible to electromagnetic signal noise interference.
  • the angle between the adjacent two directional antennas 50 of the same frequency band projected onto the same circumference and the line connecting the antenna circular array 40 to the center of the circle Less than the preset angle.
  • the preset angle is less than or equal to a half power beam width of the directional antenna 50.
  • the directional antenna 50 has a half power beam width of 25°.
  • the omnidirectional antenna of the embodiment of the present invention may have one or more antenna circular arrays 40.
  • Different antenna circular arrays 40 may use directional antennas 50 of the same frequency band or directional antennas 50 of different frequency bands, or different antennas may be used.
  • a plurality of antenna circular arrays 40 of the directional antenna 50 of the frequency band are used in combination.
  • the same antenna circular array of multiple directional antennas 50 may comprise directional antennas of one or more frequency bands.
  • the omnidirectional antenna consists of directional antennas 50 of the same frequency band, and the frequency bands commonly used by drones are 2.4 GHz and 5.8 GHz.
  • the number of antenna arrays 40 is one, and the directional antenna 50 of the 5.8G frequency band can be used.
  • 16 directional antennas 50 are used.
  • the angle between the adjacent two directional antennas 50 projected onto the same circumference and the line connecting the centers of the antenna arrays 40 is 22.5°, which is smaller than the half power beam width of the directional antenna 50. Requirements.
  • the antenna circular array 40 can also adopt the directional antenna 50 of the 2.4G frequency band. Since the directional antenna 50 has a half power beam width of 25°, in order to achieve high gain radiation in the 360° range, at least 15 directional antennas 50 are required, The size of the directional antenna 50 of the 2.4G band is large, so the diameter of the formed antenna array 40 is large, and the overall size of the omnidirectional antenna is relatively large.
  • the number of the antenna circular arrays 40 may be two, and each antenna circular array 40 respectively
  • the directional antenna 50 of eight 2.4G frequency bands is included, and the eight directional antennas 50 of the two antenna circular arrays 40 are staggered with each other.
  • the antenna gain is around 16dBi, the radiation efficiency is greater than 93%.
  • the omnidirectional antenna is composed of directional antennas 50 of two different frequency bands.
  • the antenna circular array 40 includes a first antenna circular array 41 and a second antenna circular array 42, the frequency band of the directional antenna 50 on the first antenna circular array 41 being larger than the orientation on the second antenna circular array 42 The frequency band of the antenna 50.
  • the first antenna circular array 41 adopts the directional antenna 50 of the 5.8G frequency band
  • the second antenna circular array 42 adopts the directional antenna 50 of the 2.4G frequency band, so that the dual-band omnidirectional antenna thus composed has a stronger unmanned antenna. Machine listening ability.
  • the number of the first antenna circular arrays 41 is one, including 16 directional antennas 50 of the 5.8G frequency band.
  • the number of second antenna circular arrays 42 is two, and each of the second antenna circular arrays 42 includes eight directional antennas 50 of 2.4G frequency band.
  • the radius of the first antenna circular array 41 can be made substantially equal to the radius of the second antenna circular array 42.
  • the angle between the adjacent two 5.8G frequency band directional antennas 50 projected on the same circumference and the center line of the first antenna circular array 41 is 22.5°, and all the 2.4G frequency band directional antennas 50
  • the angle between the directional antenna 50 of the adjacent two 2.4G frequency bands projected onto the same circumference and the line connecting the centers of the corresponding second antenna circular arrays 42 is also 22.5°, both of which are smaller than the half power of the directional antenna 50. Beamwidth requirements.
  • the directional antenna 50 of the 5.8G frequency band of the first antenna circular array 41 includes a first RF connector 61, and the first RF connector 61 includes an input port 53 and a An output port 54.
  • the directional antenna 50 of the 2.4G band of the second antenna circular array 42 includes a second RF connector 62, and the second RF connector 62 includes a second output port 55.
  • the second output port 55 of the second RF connector 62 of the directional antenna 50 of the 2.4G band is connected to the input port 53 of the first RF connector 61 of the directional antenna 50 of the 5.8G band by a cable.
  • the first output port 54 of the first RF connector 61 of the directional antenna 50 of the 5.8G band is connected to the external receiver via a cable.
  • the second output port 55 of the second RF connector 62 of the directional antenna 50 of the 2.4G band is connected to the input port 53 of the first RF connector 61 of the directional antenna 50 of the 5.8G band, and then the directional antenna of the 5.8G band is passed.
  • the first output port 54 of the first RF connector 61 of the 50 is connected to the receiver, and only the corresponding interface connected to the directional antenna 50 of the 5.8G band needs to be configured on the receiver, and it is not necessary to configure the directional antenna 50 connected to the 2.4G band. Interface to save the receiver's port configuration.
  • the plurality of directional antennas 50 are disposed obliquely with respect to the predetermined direction at the same inclination angle. That is, the pitch angle of the directional antenna 50 can be adjusted to adapt to a complicated environment. For example, the directional antenna 50 can be tilted upwardly relative to the pole 90 to detect drone conditions within a particular area.
  • the connecting device 300 will be described in detail below with reference to the accompanying drawings.
  • the clasp assembly 10 includes a first clasping structure 12 and a second clasping structure 13 that are fixedly coupled to each other from both sides of the self-supporting rod 90,
  • the first holding structure 12 is provided with a first holding portion 14 adapted to the holding rod 90
  • the second holding structure 13 is provided with a second holding portion 15 adapted to the holding rod 90,
  • the first holding portion 14 and the second holding portion 15 hold the holding rod 90 from both sides of the holding rod 90 to fix the holding assembly 10 and the holding rod 90 to each other.
  • the first holding structure 12 is provided with at least one first connecting hole 17
  • the second holding structure 13 is provided corresponding to the position and the number of the first connecting holes 17 .
  • a second connecting hole 18, a first fastener 19 is disposed between the first connecting hole 17 and the second connecting hole 18, and the first holding portion 14 and the second portion
  • the tightening portion 15 is engaged with each other from both sides of the holding rod 90, and then the first holding portion 14 and the second holding portion 15 are passed through the first connecting hole 17 and the second connecting hole 18 through the first fastener 19. Fix each other and hold the pole 90 tightly.
  • a first connecting hole 17 is defined in each of the four corner positions of the first holding structure 12, and a second connecting hole 18 is also defined in each of the four corner positions of the second holding structure 13.
  • the first fastener 19 can be a bolt and a washer and nut that mates with the bolt.
  • the surfaces of the first holding structure 12 and the second holding structure 13 and the holding rod 90 are respectively disposed.
  • the recess 16 is a semi-circular arc structure that is adapted to the outer circumference of the pole 90.
  • the annular bracket 20 includes a first annular frame body 21 and a second annular frame body 22 that are enclosed with each other, the first annular frame body 21 and the first holding structure. 12 is fixed, and the second annular frame 22 is fixed to the second holding structure 13 .
  • the inner surface of the first annular frame body 21 is evenly distributed along the circumference with a plurality of first supporting structures 23, and the ends of the first supporting structures 23 are tightly coupled with the first Structure 12 is fixed.
  • the inner surface of the second annular frame 22 is evenly distributed along the circumference with a plurality of second supporting structures 24, and the ends of the second supporting structures 24 are fixedly connected to the second holding structures 13.
  • the number of the first support structure 23 and the second support structure 24 is three, and is evenly disposed circumferentially on the inner surfaces of the first annular frame body 21 and the second annular frame body 22 of the annular bracket 20, The connection between the annular bracket 20 and the clasp assembly 10 is made stronger while reducing the weight of the overall structure.
  • first annular frame body 21 and the second annular frame body 22 are connected and connected by a first grounding wire 25, the first annular frame body 21 and the first Any one of the two annular frame bodies 22 is connected to the grounding common end through the second grounding wire 26, so that a good grounding effect can be achieved, and the equipment of the omnidirectional antenna can be prevented from being damaged.
  • the mounting assembly 30 includes a connecting rod 31 and a first mounting portion 32 and a second mounting portion 33 connected to opposite ends of the connecting rod 31.
  • the first mounting portion 32 is coupled to the ring bracket 20, and the second mounting portion 33 is coupled to the directional antenna 50.
  • the outer circumferential surface of the annular bracket 20 is provided with a mounting portion 70 that cooperates with the first mounting portion 32 of the mounting assembly 30.
  • the mounting portion 70 is provided with a positioning groove and one or more first mounting holes. 71. The size and shape of the positioning groove are adapted to the size and shape of the first mounting portion 32.
  • the first mounting portion 32 is provided with one or more second mounting holes 72 corresponding to the first mounting hole 71.
  • a mounting portion 32 and a corresponding mounting portion 70 can be fixed to each other by bolts through the first mounting hole 71 and the second mounting hole 72, thereby connecting the mounting assembly 30 and the ring bracket 20 to each other.
  • the second mounting portion 33 of the mounting assembly 30 includes a web 34 connected to the connecting rod 31 and two wings 35 vertically connected to the two ends of the web 34.
  • the directional antenna 50 is provided with The two connecting plates 80, to which the wings 35 are mated, are connected in one-to-one correspondence with the two connecting plates 80 of the directional antenna 50, thereby connecting the mounting assembly 30 and the directional antenna 50 to each other.
  • the pitch angle adjustment of the directional antenna 50 is achieved to accommodate a complex environment.
  • the wing plate 35 defines a positioning hole 36 and a curved limiting hole 37.
  • the directional antenna 50 is provided with a first hole that cooperates with the positioning hole 36 and a second hole that cooperates with the curved limiting hole 37.
  • a second fastener 81 is connected to the first hole and the positioning hole 36, and a third fastener 82 is connected to the second hole and the curved limiting hole 37 to guide the orientation.
  • the antenna 50 is coupled to the mounting assembly 30.
  • the third fastener 82 is movable around the second fastener 81 in the arcuate limiting hole 37. That is, the directional antenna 50 can rotate the second fastener 81 for the rotating shaft to drive the third fastener 82 to move in the arc limiting hole 37, thereby changing the mounting angle of the directional antenna 50 to achieve orientation.
  • the antenna 50 can be placed obliquely with respect to the pole 90.
  • the second fastener 81 and the third fastener 82 may each be a bolt.
  • an angle between the two side ends of the arc limiting hole 37 and the connecting hole 36 is greater than or equal to 40°, that is, the directional antenna 50 can be relatively opposed to the pole.
  • the 90 is tilted up to a maximum of 20°, and can also be tilted relative to the pole 90 to a maximum of 20°.
  • the adjustment angle can be set according to actual needs.
  • the flap 35 is also provided with an angle dial 38 corresponding to the curvature of the arcuate limiting hole 37.
  • the embodiment of the present invention further provides a UAV monitoring device 200, including a receiver, a pole 90, and an omnidirectional antenna described in the foregoing embodiments and embodiments, where the directional antenna 50 of the omnidirectional antenna can
  • the connecting device 300 described in the above embodiments and embodiments is mounted to the pole 90, and the plurality of directional antennas 50 of the omnidirectional antenna are connected to the receiver through a connecting line. It should be noted that the descriptions of the omnidirectional antennas in the above embodiments and embodiments are equally applicable to the drone monitoring device 200.
  • the UAV monitoring device 200 of the embodiment of the present invention can achieve better omnidirectional radiation and signal receiving capability and anti-interference performance in all directions of the horizontal plane through the omnidirectional antenna. It can solve the problem that the interception distance of ordinary UAV listening equipment is close and the difference in listening ability in different directions is obvious. At the same time, it can also solve the problem that ordinary UAV listening equipment is susceptible to electromagnetic signal noise interference. It can be used in areas where airports, government offices, etc. need to supervise drones, and monitor and supervise drones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

一种全向天线及无人机监听设备。全向天线包括:多个定向天线和用于将多个定向天线连接至外部固定结构的连接装置,连接装置包括:用于与外部固定结构连接的抱紧组件(10),抱紧组件(10)设有与外部固定结构相适配的抱紧部(11);环形支架(20),位于抱紧组件(10)的外侧并与抱紧组件(10)固接;与多个定向天线数量对应的多个安装组件(30),多个安装组件(30)沿圆周均匀布设于环形支架(20)的外周面,并与多个全向天线一一对应地连接。通过将多个安装组件沿圆周均匀设置在环形支架上,使多个定向天线沿圆周均匀设置,可实现水平面各个方向都有较好的全向辐射与信号接收能力以及抗干扰性能的高增益全向天线。

Description

全向天线及无人机监听设备 技术领域
本发明实施例涉及无人机技术领域,特别涉及一种全向天线及无人机监听设备。
背景技术
无人机作为目前比较热门的航拍设备,被越来越多的用户使用。但是,针对一些特定的场所区域,例如机场或是政府办公区域,无人机的使用就会带来一些困扰。
而目前普通无人机侦听设备普遍具有侦听距离近、不同方向侦听能力差异明显的问题。并且,普通无人机侦听设备易受电磁信号噪声干扰。
发明内容
本发明实施例提供一种能够实现全向信号覆盖的全向天线及无人机监听设备。
根据本发明实施例的第一方面,提供一种全向天线,包括:多个定向天线和用于将所述多个定向天线连接至外部固定结构的连接装置,所述连接装置包括:
用于与外部固定结构连接的抱紧组件,所述抱紧组件设有与外部固定结构相适配的抱紧部;
环形支架,位于所述抱紧组件的外侧并与所述抱紧组件固接;
与所述多个定向天线数量对应的多个安装组件,所述多个安装组件沿圆周均匀布设于所述环形支架的外周面,并与所述多个全向天线一一对应地连接。
进一步地,所述抱紧组件包括自外部固定结构的两侧相互固定连接的第一抱紧结构和第二抱紧结构,所述第一抱紧结构设有与外部固定结构相适配的第一抱紧部,所述第二抱紧结构设有与外部固定结构相适配的第二抱紧部,所述第一抱紧部和所述第二抱紧部自外部固定结构的两侧将外部 固定结构抱紧。
进一步地,所述第一抱紧结构设有至少一个第一连接孔,所述第二抱紧结构设有与所述第一连接孔位置及数量均对应的第二连接孔,位置对应的所述第一连接孔与所述第二连接孔之间穿设有第一紧固件。
进一步地,所述环形支架包括相互围合设置的第一环形架体和第二环形架体,所述第一环形架体与所述第一抱紧结构固接,所述第二环形架体与所述第二抱紧结构固接。
进一步地,所述第一环形架体的内表面沿圆周均匀布设有多个第一支撑结构,所述第一支撑结构的端部与所述第一抱紧结构固接;所述第二环形架体的内表面沿圆周均匀布设有多个第二支撑结构,所述第二支撑结构的端部与所述第二抱紧结构固接。
进一步地,所述第一环形架体与所述第二环形架体之间通过第一接地线连接导通,所述第一环形架体和所述第二环形架体中的任意一者通过第二接地线与接地公共端连接。
进一步地,所述安装组件包括连杆以及连接于所述连杆两端的第一安装部和第二安装部,所述第一安装部与所述环形支架连接,所述第二安装部与所述定向天线连接。
进一步地,所述第二安装部包括与所述连杆连接的腹板以及垂直连接于所述腹板两端的两个翼板,所述两个翼板均与所述定向天线连接。
进一步地,所述翼板开设有定位孔,所述定向天线设有与所述定位孔配合的第一孔,所述第一孔和所述定位孔内连接有第二紧固件。
进一步地,所述翼板开设有弧形限位孔,所述定向天线设有与所述弧形限位孔配合的第二孔,所述第二孔和所述弧形限位孔内连接有第三紧固件,所述第三紧固件可绕所述第二紧固件在所述弧形限位孔中运动。
进一步地,所述弧形限位孔的两个侧端部与所述定位孔的连线之间的夹角为大于或等于40°。
进一步地,所述翼板设有与所述弧形限位孔相对应的角度刻度盘。
根据本发明实施例的第二方面,提供一种无人机监听设备,包括接收机、抱杆以及上述任一实施例所述的全向天线,所述全向天线装设于所述抱杆,所述全向天线通过连接线连接至所述接收机。
本发明实施例的全向天线,通过将多个安装组件沿圆周均匀设置在环形支架上,进而使得多个定向天线沿圆周均匀设置,可实现水平面各个方向都有较好的全向辐射与信号接收能力以及抗干扰性能的高增益全向天线。既可以解决普通无人机侦听设备侦听距离近、不同方向侦听能力差异明显的问题。同时,还可以解决普通无人机侦听设备易受电磁信号噪声干扰的问题。
附图说明
图1是本发明实施例示出的一种无人机监听设备的立体示意图。
图2是本发明实施例示出的一种无人机监听设备的俯视图。
图3是本发明实施例示出的一种无人机监听设备仅示出连接装置的立体示意图。
图4是本发明实施例示出的另一种无人机监听设备的立体示意图。
图5是本发明实施例示出的一种无人机监听设备仅示出一组天线圆阵的俯视图。
图6是本发明实施例示出的一种无人机监听设备示出两组天线圆阵的俯视图。
图7是本发明实施例示出的又一种无人机监听设备的立体示意图。
图8和图9是本发明实施例示出的一种无人机监听设备的5.8G频段的定向天线的立体示意图。
图10和图11是本发明实施例示出的一种无人机监听设备的2.4G频段的定向天线的立体示意图。
图12和图13是本发明实施例示出的一种无人机监听设备的5.8G频段的定向天线和2.4G频段的定向天线的连接示意图。
图14是本发明实施例示出的一种无人机监听设备的连接装置的抱紧组件和环形支架的分解示意图。
图15是本发明实施例示出的一种无人机监听设备的连接装置的接地线路的结构示意图。
图16是本发明实施例示出的一种无人机监听设备的连接装置的安装组件和定向天线的连接示意图。
图17是图16的局部放大示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本发明实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明实施例。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,本申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。
本发明实施例提供一种全向天线及无人机监听设备,进而使天线系统实现水平面全向高增益的性能。下面结合附图,对本发明实施例的全向天线及无人机监听设备进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
参见图1至图3所示,示出了一种无人机监听设备的结构示意图。本发明的实施例提供一种全向天线,可以作为该无人机监听设备的一部分,应用在机场、政府办公机构等需要对无人机进行监听和监管的区域内进行使用。所述全向天线包括由多个定向天线50组成的全向天线系统100和用于将多个定向天 线50连接至外部固定结构的连接装置300。在本实施例中,外部固定结构为符合一定高度要求的抱杆90。
参见图3所示,所述连接装置300包括:抱紧组件10、环形支架20以及多个安装组件30。其中,抱紧组件10设有与抱杆90相适配的抱紧部11,抱紧组件10通过该抱紧部11与抱杆90连接。环形支架20位于所述抱紧组件10的外侧并与所述抱紧组件10固定连接。安装组件30的数量与定向天线50数量相等,多个安装组件30沿圆周均匀布设于所述环形支架20的外周面,并与多个全向天线一一对应地连接,以使得多个定向天线50组成所述全向天线。全向天线通过抱紧组件10的抱紧部11与抱杆90连接,就可以在机场、政府办公机构等需要对无人机进行监听和监管的区域内进行使用。
本发明实施例的全向天线,通过将多个安装组件30沿圆周均匀设置在环形支架20上,进而使得多个定向天线50沿圆周均匀设置,可实现水平面各个方向都有较好的全向辐射与信号接收能力以及抗干扰性能的高增益全向天线。既可以解决普通无人机侦听设备侦听距离近、不同方向侦听能力差异明显的问题。同时,还可以解决普通无人机侦听设备易受电磁信号噪声干扰的问题。
下面结合附图,先对由多个定向天线50组成的全向天线系统100进行介绍。
所述全向天线系统100包括沿预设方向排列的至少一个天线圆阵40,所述至少一个天线圆阵40的中心共轴,每个所述天线圆阵40包括沿圆周均匀布设的多个相同频段的定向天线50。在本实施例中,所述定向天线50采用4×4天线阵列。多个定向天线50通过连接装置300安装在抱杆90上,那么所述预设方向就相当于是抱杆90的长度方向。当然,所述全向天线也可以与无人机的遥控设备连接,用于发送控制信号给无人机或接收无人机回传的信号。
本发明实施例的全向天线,以天线阵列为基础,利用单个的天线阵列能够提高天线的增益,可以提高天线朝某个特定方向的辐射及接收信号的能力,将多个天线阵列沿圆周均匀设置,进而实现水平面各个方向都有较好的全向辐射与信号接收能力以及抗干扰性能的高增益全向天线。既可以解决普通无人机侦听设备侦听距离近、不同方向侦听能力差异明显的问题。同时,还可以解决普通无人机侦听设备易受电磁信号噪声干扰的问题。
在一可选的实施方式中,相同频段的定向天线50投影到同一圆周上的相 邻两个定向天线50与所述天线圆阵40投影到该圆周上的圆心的连线之间的夹角小于预设角度。可选地,所述预设角度小于或等于所述定向天线50的半功率波束宽度。在本实施例中,定向天线50的半功率波束宽度为25°。
本发明实施例的全向天线,天线圆阵40的数量可以是一个或多个,不同的天线圆阵40可以采用相同频段的定向天线50或是不同频段的定向天线50,或是将采用不同频段的定向天线50的多个天线圆阵40组合使用。多个定向天线50组成的同一个天线圆阵可包含一种或多种频段的定向天线。
在图1和图2所示的例子中,全向天线由相同频段的定向天线50组成,无人机常用的频段为2.4GHz和5.8GHz。在一些实施例中,天线圆阵40的数量是一个,可以采用5.8G频段的定向天线50,为了使全向天线在水平面的综合方向图不圆度小于3dB,故采用16个定向天线50组成全向高增益天线系统,投影到同一圆周上的相邻的两个定向天线50与天线圆阵40的圆心的连线之间的夹角为22.5°,符合小于定向天线50的半功率波束宽度的要求。天线增益在15dBi左右时,辐射效率大于90%。当然,天线圆阵40也可以采用2.4G频段的定向天线50,由于定向天线50的半功率波束宽度为25°,为了实现360°范围内的高增益辐射,需要至少15个定向天线50,由于2.4G频段的定向天线50的尺寸较大,因此组成的天线圆阵40的直径较大,全向天线的整体尺寸也会相对较大。
参见图4至图6所示,为了减小采用2.4G频段的定向天线50造成全向天线的整体尺寸较大的问题,天线圆阵40的数量可以是两个,每个天线圆阵40分别包括8个2.4G频段的定向天线50,并且两个天线圆阵40的8个定向天线50之间相互交错排列。天线增益在16dBi左右时,辐射效率大于93%。
这样,虽然每个天线圆阵40的定向天线50投影到同一圆周上的相邻的两个定向天线50与该天线圆阵40的圆心的连线之间的夹角为45°(如图5所示),但由于两个天线圆阵40的8个定向天线50之间是相互交错排列的,因此两个天线圆阵40的全部定向天线50投影到同一圆周上的相邻的两个定向天线50与对应的天线圆阵40的圆心的连线之间的夹角仍然是22.5°(如图6所示),同样符合小于定向天线50的半功率波束宽度的要求。
参见图7所示,在图7所示的例子中,全向天线由两种不同频段的定向天线50组成。天线圆阵40包括第一天线圆阵41和第二天线圆阵42,所述第一 天线圆阵41上的所述定向天线50的频段大于所述第二天线圆阵42上的所述定向天线50的频段。在本实施例中,第一天线圆阵41采用5.8G频段的定向天线50,第二天线圆阵42采用2.4G频段的定向天线50,这样组成的双频段全向天线具有更强的无人机侦听能力。
进一步地,第一天线圆阵41的数量为一个,包括16个5.8G频段的定向天线50。第二天线圆阵42的数量为两个,每个第二天线圆阵42均包括8个2.4G频段的定向天线50。这样,可以使第一天线圆阵41的半径大致等于第二天线圆阵42的半径。
并且,投影到同一圆周上的相邻的两个5.8G频段的定向天线50与第一天线圆阵41的圆心的连线之间的夹角为22.5°,全部的2.4G频段的定向天线50投影到同一圆周上的相邻的两个2.4G频段的定向天线50与对应的第二天线圆阵42的圆心的连线之间的夹角也是22.5°,均符合小于定向天线50的半功率波束宽度的要求。
参见图8和图9所示,在一可选的实施方式中,第一天线圆阵41的5.8G频段的定向天线50包括第一射频接头61,第一射频接头61包括输入端口53和第一输出端口54。参见图10和图11所示,第二天线圆阵42的2.4G频段的定向天线50包括第二射频接头62,第二射频接头62包括第二输出端口55。
参见图12和图13所示,2.4G频段的定向天线50的第二射频接头62的第二输出端口55与5.8G频段的定向天线50的第一射频接头61的输入端口53通过线缆连接,5.8G频段的定向天线50的第一射频接头61的第一输出端口54与外部接收机通过线缆连接。这样,通过2.4G频段的定向天线50的第二射频接头62的第二输出端口55与5.8G频段的定向天线50的第一射频接头61的输入端口53连接,再通过5.8G频段的定向天线50的第一射频接头61的第一输出端口54与接收机连接,接收机上只需要配置与5.8G频段的定向天线50连接的相应接口即可,而不必配置与2.4G频段的定向天线50连接的接口,以节约接收机的端口配置。
在一可选的实施方式中,所述多个定向天线50均以相同的倾斜角相对所述预设方向倾斜设置。即定向天线50的俯仰角度可调节,以适应复杂环境。例如,定向天线50可以相对抱杆90朝上倾斜设置,以检测特定区域内的无人机情况。
下面结合附图,对所述连接装置300进行详细介绍。
再次参见图3所示,在一可选的实施方式中,所述抱紧组件10包括自抱杆90的两侧相互固定连接的第一抱紧结构12和第二抱紧结构13,所述第一抱紧结构12设有与抱杆90相适配的第一抱紧部14,所述第二抱紧结构13设有与抱杆90相适配的第二抱紧部15,所述第一抱紧部14和所述第二抱紧部15自抱杆90的两侧将抱杆90抱紧,以使得抱紧组件10与抱杆90相互固定。
参见图14所示,进一步地,所述第一抱紧结构12设有至少一个第一连接孔17,所述第二抱紧结构13设有与所述第一连接孔17位置及数量均对应的第二连接孔18,位置对应的所述第一连接孔17与所述第二连接孔18之间穿设有第一紧固件19,所述第一抱紧部14和所述第二抱紧部15自抱杆90的两侧相互扣合,然后通过第一紧固件19穿过第一连接孔17和第二连接孔18将第一抱紧部14和第二抱紧部15相互固定,进而将抱杆90抱紧。
在本实施例中,第一抱紧结构12的四角位置各开设一个第一连接孔17,第二抱紧结构13的四角位置也各开设一个第二连接孔18。第一紧固件19可以是螺栓和与螺栓配合的垫片及螺母。采用螺栓和螺母配合连接的方式,便于对第一抱紧结构12和第二抱紧结构13进行安装和拆卸。
另外,为了使第一抱紧结构12和第二抱紧结构13与抱杆90连接的更加牢固,第一抱紧结构12和第二抱紧结构13与抱杆90相贴合的表面均设有多个凹陷部16,能够增加第一抱紧结构12和第二抱紧结构13与抱杆90之间的抓紧力。在一可选的实施方式中,所述凹陷部16为半圆弧结构,与抱杆90的外圆周适配。
在一可选的实施方式中,所述环形支架20包括相互围合设置的第一环形架体21和第二环形架体22,所述第一环形架体21与所述第一抱紧结构12固接,所述第二环形架体22与所述第二抱紧结构13固接。
参见图15所示,进一步地,所述第一环形架体21的内表面沿圆周均匀布设有多个第一支撑结构23,所述第一支撑结构23的端部与所述第一抱紧结构12固接。所述第二环形架体22的内表面沿圆周均匀布设有多个第二支撑结构24,所述第二支撑结构24的端部与所述第二抱紧结构13固接。在本实施例中,第一支撑结构23和第二支撑结构24的数量均为三个,沿圆周均匀设置在环形支架20的第一环形架体21和第二环形架体22的内表面,使环形支架20和抱 紧组件10之间连接的更加牢固,同时减轻整体的结构的重量。
在一可选的实施方式中,所述第一环形架体21与所述第二环形架体22之间通过第一接地线25连接导通,所述第一环形架体21和所述第二环形架体22中的任意一者通过第二接地线26与接地公共端连接,能搞达到良好的接地效果,可以防止全向天线的设备损坏。
参见图15和图17所示,在一可选的实施方式中,所述安装组件30包括连杆31以及连接于所述连杆31两端的第一安装部32和第二安装部33,所述第一安装部32与所述环形支架20连接,所述第二安装部33与所述定向天线50连接。可选地,环形支架20的外周面设有和安装组件30的第一安装部32相互配合的安装部70,可选的,安装部70设有定位凹槽和一个或多个第一安装孔71,定位凹槽的大小和形状与第一安装部32的大小和形状适配,第一安装部32设有一个或多个与第一安装孔71一一对应的第二安装孔72,第一安装部32与对应的安装部70之间可以通过第一安装孔71和第二安装孔72用螺栓相互固定,进而将安装组件30与环形支架20相互连接。
进一步地,所述安装组件30的第二安装部33包括与所述连杆31连接的腹板34以及垂直连接于所述腹板34两端的两个翼板35,定向天线50上设有与翼板35相配合的两个连接板80,两个翼板35与定向天线50的两个连接板80一一对应地连接,进而将安装组件30与定向天线50相互连接。
参见图17所示,为了能够对定向天线50的角度进行调节,以使得定向天线50能够相对抱杆90倾斜设置,进而实现定向天线50的俯仰角度调节,以适应复杂环境。所述翼板35开设有定位孔36和弧形限位孔37,所述定向天线50设有与所述定位孔36配合的第一孔以及与所述弧形限位孔37配合的第二孔,所述第一孔和所述定位孔36内连接有第二紧固件81,所述第二孔和所述弧形限位孔37内连接有第三紧固件82,进而将定向天线50和安装组件30连接。此外,所述第三紧固件82可绕所述第二紧固件81在所述弧形限位孔37中运动。即相当于定向天线50可以第二紧固件81为转轴进行转动,以带动第三紧固件82在所述弧形限位孔37中运动,进而改变定向天线50的安装角度,以达到定向天线50能够相对抱杆90倾斜设置的目的。可选地,第二紧固件81和第三紧固件82均可采用螺栓。
进一步地,所述弧形限位孔37的两个侧端部与所述定位孔36的连线之间 的夹角为大于或等于40°,也就是说,定向天线50既可以相对抱杆90朝上倾斜设置至最大20°,也可以相对抱杆90朝下倾斜设置至最大20°,调节角度可以根据实际需要设置。为了能够精确地调节定向天线50的安装角度,所述翼板35还设有与所述弧形限位孔37的弧度相对应的角度刻度盘38。
本发明的实施例还提供一种无人机监听设备200,包括接收机、抱杆90以及上述实施例和实施方式中所描述的全向天线,所述全向天线的多个定向天线50可以通过上述实施例和实施方式中所描述的连接装置300装设于所述抱杆90,所述全向天线的多个定向天线50通过连接线连接至所述接收机。需要说明的是,上述实施例和实施方式中关于全向天线的描述,同样适用于所述无人机监听设备200。
本发明实施例的无人机监听设备200,通过全向天线能够实现水平面各个方向都有较好的全向辐射与信号接收能力以及抗干扰性能。既可以解决普通无人机侦听设备侦听距离近、不同方向侦听能力差异明显的问题。同时,还可以解决普通无人机侦听设备易受电磁信号噪声干扰的问题。可以在例如机场、政府办公机构等需要对无人机进行监管的区域内使用,对无人机进行监听和监管。
以上所述仅是本发明实施例的较佳实施例而已,并非对本发明实施例做任何形式上的限制,虽然本发明实施例已以较佳实施例揭露如上,然而并非用以限定本发明实施例,任何熟悉本专业的技术人员,在不脱离本发明实施例技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明实施例技术方案的内容,依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本实用新型技术方案的范围内。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。

Claims (24)

  1. 一种全向天线,其特征在于,包括:多个定向天线和用于将所述多个定向天线连接至外部固定结构的连接装置,所述连接装置包括:
    用于与外部固定结构连接的抱紧组件,所述抱紧组件设有与外部固定结构相适配的抱紧部;
    环形支架,位于所述抱紧组件的外侧并与所述抱紧组件固接;
    与所述多个定向天线数量对应的多个安装组件,所述多个安装组件沿圆周均匀布设于所述环形支架的外周面,并与所述多个全向天线一一对应地连接。
  2. 根据权利要求1所述的全向天线,其特征在于,所述抱紧组件包括自外部固定结构的两侧相互固定连接的第一抱紧结构和第二抱紧结构,所述第一抱紧结构设有与外部固定结构相适配的第一抱紧部,所述第二抱紧结构设有与外部固定结构相适配的第二抱紧部,所述第一抱紧部和所述第二抱紧部自外部固定结构的两侧将外部固定结构抱紧。
  3. 根据权利要求2所述的全向天线,其特征在于,所述第一抱紧结构设有至少一个第一连接孔,所述第二抱紧结构设有与所述第一连接孔位置及数量均对应的第二连接孔,位置对应的所述第一连接孔与所述第二连接孔之间穿设有第一紧固件。
  4. 根据权利要求2所述的全向天线,其特征在于,所述环形支架包括相互围合设置的第一环形架体和第二环形架体,所述第一环形架体与所述第一抱紧结构固接,所述第二环形架体与所述第二抱紧结构固接。
  5. 根据权利要求4所述的全向天线,其特征在于,所述第一环形架体的内表面沿圆周均匀布设有多个第一支撑结构,所述第一支撑结构的端部与所述第一抱紧结构固接;所述第二环形架体的内表面沿圆周均匀布设有多个第二支撑结构,所述第二支撑结构的端部与所述第二抱紧结构固接。
  6. 根据权利要求4所述的全向天线,其特征在于,所述第一环形架体与所述第二环形架体之间通过第一接地线连接导通,所述第一环形架体和所述第二环形架体中的任意一者通过第二接地线与接地公共端连接。
  7. 根据权利要求1所述的全向天线,其特征在于,所述安装组件包括 连杆以及连接于所述连杆两端的第一安装部和第二安装部,所述第一安装部与所述环形支架连接,所述第二安装部与所述定向天线连接。
  8. 根据权利要求7所述的全向天线,其特征在于,所述第二安装部包括与所述连杆连接的腹板以及垂直连接于所述腹板两端的两个翼板,所述两个翼板均与所述定向天线连接。
  9. 根据权利要求8所述的全向天线,其特征在于,所述翼板开设有定位孔,所述定向天线设有与所述定位孔配合的第一孔,所述第一孔和所述定位孔内连接有第二紧固件。
  10. 根据权利要求9所述的全向天线,其特征在于,所述翼板开设有弧形限位孔,所述定向天线设有与所述弧形限位孔配合的第二孔,所述第二孔和所述弧形限位孔内连接有第三紧固件,所述第三紧固件可绕所述第二紧固件在所述弧形限位孔中运动。
  11. 根据权利要求10所述的全向天线,其特征在于,所述弧形限位孔的两个侧端部与所述定位孔的连线之间的夹角为大于或等于40°。
  12. 根据权利要求11所述的全向天线,其特征在于,所述翼板设有与所述弧形限位孔相对应的角度刻度盘。
  13. 一种无人机监听设备,其特征在于,包括接收机、抱杆以及全向天线,所述全向天线包括:多个定向天线和用于将所述多个定向天线连接至外部固定结构的连接装置,所述连接装置包括:
    用于与外部固定结构连接的抱紧组件,所述抱紧组件设有与外部固定结构相适配的抱紧部;
    环形支架,位于所述抱紧组件的外侧并与所述抱紧组件固接;
    与所述多个定向天线数量对应的多个安装组件,所述多个安装组件沿圆周均匀布设于所述环形支架的外周面,并与所述多个全向天线一一对应地连接,装设于所述抱杆,所述全向天线通过连接线连接至所述接收机。
  14. 根据权利要求13所述的无人机监听设备,其特征在于,所述抱紧组件包括自外部固定结构的两侧相互固定连接的第一抱紧结构和第二抱紧结构,所述第一抱紧结构设有与外部固定结构相适配的第一抱紧部,所述第二抱紧结构设有与外部固定结构相适配的第二抱紧部,所述第一抱紧部和所述第二抱紧部自外部固定结构的两侧将外部固定结构抱紧。
  15. 根据权利要求14所述的无人机监听设备,其特征在于,所述第一抱紧结构设有至少一个第一连接孔,所述第二抱紧结构设有与所述第一连接孔位置及数量均对应的第二连接孔,位置对应的所述第一连接孔与所述第二连接孔之间穿设有第一紧固件。
  16. 根据权利要求14所述的无人机监听设备,其特征在于,所述环形支架包括相互围合设置的第一环形架体和第二环形架体,所述第一环形架体与所述第一抱紧结构固接,所述第二环形架体与所述第二抱紧结构固接。
  17. 根据权利要求16所述的无人机监听设备,其特征在于,所述第一环形架体的内表面沿圆周均匀布设有多个第一支撑结构,所述第一支撑结构的端部与所述第一抱紧结构固接;所述第二环形架体的内表面沿圆周均匀布设有多个第二支撑结构,所述第二支撑结构的端部与所述第二抱紧结构固接。
  18. 根据权利要求16所述的无人机监听设备,其特征在于,所述第一环形架体与所述第二环形架体之间通过第一接地线连接导通,所述第一环形架体和所述第二环形架体中的任意一者通过第二接地线与接地公共端连接。
  19. 根据权利要求13所述的无人机监听设备,其特征在于,所述安装组件包括连杆以及连接于所述连杆两端的第一安装部和第二安装部,所述第一安装部与所述环形支架连接,所述第二安装部与所述定向天线连接。
  20. 根据权利要求19所述的无人机监听设备,其特征在于,所述第二安装部包括与所述连杆连接的腹板以及垂直连接于所述腹板两端的两个翼板,所述两个翼板均与所述定向天线连接。
  21. 根据权利要求20所述的无人机监听设备,其特征在于,所述翼板开设有定位孔,所述定向天线设有与所述定位孔配合的第一孔,所述第一孔和所述定位孔内连接有第二紧固件。
  22. 根据权利要求21所述的无人机监听设备,其特征在于,所述翼板开设有弧形限位孔,所述定向天线设有与所述弧形限位孔配合的第二孔,所述第二孔和所述弧形限位孔内连接有第三紧固件,所述第三紧固件可绕所述第二紧固件在所述弧形限位孔中运动。
  23. 根据权利要求22所述的无人机监听设备,其特征在于,所述弧形 限位孔的两个侧端部与所述定位孔的连线之间的夹角为大于或等于40°。
  24. 根据权利要求23所述的无人机监听设备,其特征在于,所述翼板设有与所述弧形限位孔相对应的角度刻度盘。
PCT/CN2018/108260 2018-04-16 2018-09-28 全向天线及无人机监听设备 WO2019200844A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880004584.6A CN110896676A (zh) 2018-04-16 2018-09-28 全向天线及无人机监听设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820538906.2U CN208062246U (zh) 2018-04-16 2018-04-16 全向天线及无人机监听设备
CN201820538906.2 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019200844A1 true WO2019200844A1 (zh) 2019-10-24

Family

ID=63986071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108260 WO2019200844A1 (zh) 2018-04-16 2018-09-28 全向天线及无人机监听设备

Country Status (2)

Country Link
CN (2) CN208062246U (zh)
WO (1) WO2019200844A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208062246U (zh) * 2018-04-16 2018-11-06 上海飞来信息科技有限公司 全向天线及无人机监听设备
KR102286277B1 (ko) * 2019-02-01 2021-08-05 주식회사 케이엠더블유 무선 통신 장치 지지용 브라켓 및 이를 이용한 무선 통신 장치 지지 조립체
CN112769452A (zh) * 2019-11-06 2021-05-07 杭州海康威视数字技术股份有限公司 接入点设备、无线网络系统及接入点无线通信方法
CN112104399B (zh) * 2020-09-09 2022-03-22 浙江吉利控股集团有限公司 一种天线控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204333210U (zh) * 2014-12-23 2015-05-13 广州东峰通信科技有限公司 一种单频集束型一体化天线
CN204516886U (zh) * 2014-11-10 2015-07-29 湖北日海通讯技术有限公司 塔房一体化通信基站及天线支架
CN107394339A (zh) * 2017-06-14 2017-11-24 西安华为技术有限公司 一种基站天线
US20180090844A1 (en) * 2016-09-23 2018-03-29 Intel Corporation Highly isolated monopole antenna system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947489B1 (ko) * 2009-12-11 2010-03-17 유은수 이동식안테나의 고정장치
CN203434278U (zh) * 2013-01-30 2014-02-12 中兴通讯股份有限公司 减少多个基站天线间干扰的装置
CN103259102A (zh) * 2013-05-06 2013-08-21 重庆金美通信有限责任公司 一种全向覆盖的智能天线
CN103618559B (zh) * 2013-11-28 2015-10-21 西安烽火电子科技有限责任公司 一种基于定向天线的射频前端装置及其通信控制方法
CN203760622U (zh) * 2014-01-15 2014-08-06 摩比天线技术(深圳)有限公司 扩容天线的抱杆结构
CN105356036B (zh) * 2015-12-07 2017-12-29 景县电讯金属构件制造有限公司 具有扩容功能的信号发射塔
CN206040923U (zh) * 2016-09-20 2017-03-22 中国电子科技集团公司第五十四研究所 一种便携式测向天线
CN106329059B (zh) * 2016-10-31 2024-04-12 昆山恩电开通信设备有限公司 三维角度可调的天线安装装置
CN206864635U (zh) * 2017-05-10 2018-01-09 深圳市大疆创新科技有限公司 天线模块及侦听天线装置
CN208062246U (zh) * 2018-04-16 2018-11-06 上海飞来信息科技有限公司 全向天线及无人机监听设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204516886U (zh) * 2014-11-10 2015-07-29 湖北日海通讯技术有限公司 塔房一体化通信基站及天线支架
CN204333210U (zh) * 2014-12-23 2015-05-13 广州东峰通信科技有限公司 一种单频集束型一体化天线
US20180090844A1 (en) * 2016-09-23 2018-03-29 Intel Corporation Highly isolated monopole antenna system
CN107394339A (zh) * 2017-06-14 2017-11-24 西安华为技术有限公司 一种基站天线

Also Published As

Publication number Publication date
CN208062246U (zh) 2018-11-06
CN110896676A (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
WO2019200838A1 (zh) 全向天线系统及无人机监听设备
WO2019200844A1 (zh) 全向天线及无人机监听设备
US9935364B2 (en) Single-radome multi-antenna assembly
US5621421A (en) Antenna and mounting device and system
WO2018228415A1 (zh) 一种基站天线
JP3181923B2 (ja) 調整可能な設置および整列機構を有するマイクロ波トランシーバ、アンテナシステム
US20090243955A1 (en) Antenna for compact satellite terminal
EP2928012B1 (en) Collapsible ground plane for uhf satcom antenna
US11095044B2 (en) Combined omnidirectional and directional antennas
US10116060B2 (en) Variable beam width antenna systems
WO2018094625A1 (zh) 无人飞行器的机架、无人飞行器及天线切换方法
US3299429A (en) Vertical array of folded dipoles adjustably mounted on support mast
CN107039751B (zh) 一种uhf频段的螺旋天线
US7102590B2 (en) Portable telescoping line-of-sight array antenna
TWI715284B (zh) 天線組件
US4691209A (en) Wideband antenna
KR102347047B1 (ko) 안티 드론용 광대역 전방향 모노폴 안테나
CN110534922B (zh) 一种无人机地面站定向天线阵列及其扫描方法
US9300052B2 (en) Adjustable antenna system
JP5572476B2 (ja) 低姿勢広帯域無指向性アンテナ
CN206332169U (zh) 一种uhf频段的螺旋天线
US6791503B2 (en) Reception antenna system
US20230110480A1 (en) Mounting brackets, filter units configured to couple to the mounting brackets and related methods
CN218548781U (zh) 一种天线、天线阵列及无人机
US10594044B1 (en) Wide-direction antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18915450

Country of ref document: EP

Kind code of ref document: A1