WO2019200813A1 - Bldc电机的转换电路板及应用其的旅馆用的空调控制系统 - Google Patents

Bldc电机的转换电路板及应用其的旅馆用的空调控制系统 Download PDF

Info

Publication number
WO2019200813A1
WO2019200813A1 PCT/CN2018/103754 CN2018103754W WO2019200813A1 WO 2019200813 A1 WO2019200813 A1 WO 2019200813A1 CN 2018103754 W CN2018103754 W CN 2018103754W WO 2019200813 A1 WO2019200813 A1 WO 2019200813A1
Authority
WO
WIPO (PCT)
Prior art keywords
bldc motor
module
motor
bldc
circuit board
Prior art date
Application number
PCT/CN2018/103754
Other languages
English (en)
French (fr)
Inventor
张先胜
赵勇
陈梅霜
Original Assignee
中山大洋电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820546260.2U external-priority patent/CN208285235U/zh
Priority claimed from CN201810345408.0A external-priority patent/CN108288929A/zh
Application filed by 中山大洋电机股份有限公司 filed Critical 中山大洋电机股份有限公司
Priority to US16/503,620 priority Critical patent/US11018604B2/en
Publication of WO2019200813A1 publication Critical patent/WO2019200813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • H02P2006/045Control of current

Definitions

  • the invention relates to a conversion circuit board of a BLDC motor and an air conditioning control system for a hotel using the same.
  • a PTAC control board is generally used to directly connect a BLDC motor with a drive circuit board.
  • the disadvantage of this solution is that the cost is high. Lack of competitiveness.
  • An object of the present invention is to provide a conversion circuit board for a BLDC motor which can be connected to drive two BLDC motors with a drive circuit board, which has high integration, perfect functions and low cost.
  • Another object of the present invention is to provide an air conditioning control system for a hotel, which uses a PTAC control board and a conversion circuit board of a BLDC motor to connect two BLDC motors with a drive circuit board, which greatly reduces the cost and improves the competitiveness of the product.
  • a conversion circuit board for a BLDC motor characterized in that it comprises a microprocessor module, a power module, a communication module, a first BLDC motor interface module and a second BLDC motor interface module, and the microprocessor module can communicate with the air conditioner through the communication module
  • the control board communicates with each other to transmit data and commands, and the microprocessor module can connect two BLDC motors through the first BLDC motor interface module and the second BLDC motor interface module.
  • the power module includes an inrush current suppression circuit, an EMI circuit, a rectifier circuit, and a DC-DC conversion circuit.
  • the input end of the inrush current suppression circuit is connected to an AC input, an inrush current suppression circuit, an EMI circuit, a rectifier circuit, and a DC-DC conversion.
  • the circuits are connected in turn, and the output end of the rectifier circuit outputs a DC bus voltage VDC, and the output end of the DC-DC conversion circuit outputs a multi-channel isolated independent power supply for supplying power to each part.
  • the above rectifier circuit is a rectifier with a voltage doubler circuit, which doubles the DC bus voltage VDC by exerting the function of the voltage doubler circuit.
  • the power module outputs DC bus voltage VDC, and the power module outputs two low-voltage DC power supplies +5V and +15V for the microprocessor module and inverter circuit.
  • the first BLDC motor interface module includes five signals: a bus voltage VDC, a ground GND, an IGBT driving voltage VCC1, a first speed command signal VSP1, a first speed feedback signal FG1, and a second BLDC motor interface module.
  • the road signals are: bus voltage VDC, ground GND, IGBT driving voltage VCC1, second speed command signal VSP2, and second speed feedback signal FG2.
  • the communication module is a serial communication module.
  • the first speed feedback signal FG1 and the second speed feedback signal FG2 are pulse signals, and the microprocessor module converts the number of pulses fed back by the first speed feedback signal FG1 and the second speed feedback signal FG2 into the real-time rotation speed of the first BLDC motor. And the real speed of the second BLDC motor.
  • the first rotational speed command VSP1 and the second rotational speed command VSP2 described above are PWM signals.
  • the above communication module is an RS485 serial communication module.
  • An air conditioning control system for a hotel comprising a PTAC control board, a conversion circuit board of a BLDC motor, a first BLDC motor and a second BLDC motor, the first BLDC motor and the second BLDC motor are respectively used to drive the fan
  • the microprocessor module communicates with the PTAC control board through the communication module to transmit data and commands.
  • the conversion circuit board of the BLDC motor is the conversion circuit board of the BLDC motor described above, and the microprocessor module passes the first BLDC motor.
  • the interface module is connected to the first BLDC motor
  • the microprocessor module is connected to the second BLDC motor through the second BLDC motor interface module
  • the microprocessor module converts the rotational speed command of the PTAC control main board into the first rotational speed command of the first BLDC motor.
  • VSP1 and the second speed command VSP2 of the second BLDC motor the first speed feedback signal FG1 of the first BLDC motor is transferred to the air conditioning control board through the conversion of the microprocessor module, and the second speed feedback of the second BLDC motor
  • the signal FG2 is transferred to the PTAC control board through the conversion of the microprocessor module.
  • the first BLDC motor and the second BLDC motor described above each have a motor body for driving a circuit board, the motor body including a stator assembly, a rotor assembly, a rotating shaft and a bearing, and the driving circuit board includes a built-in motor Interface circuit, motor microprocessor, motor running parameter detection circuit and IGBT inverter circuit, the motor running parameter detecting circuit sends the detecting parameter of the actual running of the motor to the motor microprocessor, and the motor microprocessor outputs the control signal to the IGBT inverter
  • the circuit, the IGBT inverter circuit controls the energization or de-energization of the coil windings on the stator assembly.
  • the first BLDC motor and the second BLDC motor described above each have a plastic motor for driving the circuit board, including a plastic stator assembly, a rotor assembly, a rotating shaft, a bearing, a front bearing bracket and a rear bearing bracket, and the plastic stator assembly includes a stator
  • the iron core, the end insulation, the coil winding and the plastic sealing body, the plastic sealing body integrally encapsulates the stator core, the end insulation and the coil winding, and the front bearing bracket and the rear bearing bracket are respectively installed at two ends of the plastic sealing stator assembly, two bearings They are mounted on the front bearing bracket and the rear bearing bracket, respectively.
  • the shaft support is mounted on the bearing, and the rotor assembly is connected to the rotating shaft.
  • the motor operating parameter detecting circuit described above is for detecting a rotor position signal or detecting a phase current signal of the coil winding or detecting a bus current and a bus voltage signal.
  • the conversion circuit board of the above BLDC motor is provided with a four-pin full-duplex communication plug interface, two pins of the four-pin full-duplex communication plug interface are used for connection with the communication module, and the remaining two pins of the four-pin full-duplex communication interface Connect to ground GND and power supply VCC2 respectively.
  • the conversion circuit board of the above BLDC motor is provided with two standard 6-pin BLDC plug connectors, and the 5-pin of one standard 6-pin BLDC plug interface is respectively connected to the bus voltage VDC, the ground GND, the IGBT driving voltage VCC1, and the first speed command signal VSP1. And the first speed feedback signal FG1, the remaining one pin is reserved; the other five pins of the standard 6-pin BLDC plug interface are respectively connected to the bus voltage VDC, the ground GND, the IGBT driving voltage VCC1, the second speed command signal VSP2 and the second speed feedback signal. FG2, the remaining 1 stitch is reserved.
  • the invention has the following effects:
  • the conversion circuit board of the BLDC motor of the present invention comprises a microprocessor module, a power module, a communication module, a first BLDC motor interface module and a second BLDC motor interface module, and has a simple structure, high integration, and low functional cost. ;
  • the power module includes an inrush current suppression circuit, an EMI circuit, an EMI circuit, a rectifier circuit, and a DC-DC conversion circuit, and an input terminal of the inrush current suppression circuit is connected to an AC input, and the inrush current
  • the suppression circuit, the EMI circuit, the rectifier circuit and the DC-DC conversion circuit are sequentially connected, the output end of the rectifier circuit outputs a DC bus voltage VDC, and the output of the DC-DC conversion circuit outputs a multi-channel isolated independent power supply for each part, It provides multiple voltages for BLDC motors with driver boards and also provides a stable low voltage for the PTAC control board, simplifying construction and reducing costs.
  • the air conditioning control system for the hotel of the present invention uses a PTAC control board and a conversion circuit board of the BLDC motor to connect two BLDC motors with a drive circuit board, which greatly reduces the cost and improves the competitiveness of the product.
  • the air conditioning control system for hotels of the present invention two BLDC motors with a drive circuit board are used, and the BLDC motor with a drive circuit board has a standard interface signal (bus voltage VDC, ground GND, IGBT drive voltage VCC1).
  • the first speed command signal VSP and the first speed feedback signal FG greatly simplify the interface, further reduce the cost, make the installation and connection work easier, and enhance the competitiveness of the product.
  • the conversion circuit board of the BLDC motor is provided with a four-pin full-duplex communication plug-in interface, and two pins of the four-pin full-duplex communication plug-in interface are used for connection with the communication module, and the communication module is an RS485 serial communication module and PTAC control.
  • the motherboard is connected, and the remaining two pins of the four-pin full-duplex communication interface are respectively connected with the ground GND and the power supply VCC2, which further simplifies the interface structure, further reduces the cost, makes the installation and connection work more simple, and improves the competitiveness of the product.
  • FIG. 1 is a schematic structural view of a conventional PTAC control system
  • Figure 2 is a perspective view of a block diagram of the circuit of the present invention.
  • FIG. 3 is a circuit block diagram of a power module of a conversion circuit board of a BLDC motor of the present invention
  • Figure 4 is a partial circuit diagram corresponding to Figure 3;
  • Figure 5 is another partial circuit diagram corresponding to Figure 3;
  • FIG. 6 is a circuit diagram corresponding to a first BLDC motor interface module of a conversion circuit board of a BLDC motor of the present invention
  • FIG. 7 is a circuit diagram corresponding to a second BLDC motor interface module of a conversion circuit board of a BLDC motor of the present invention.
  • FIG. 8 is a circuit diagram corresponding to a communication module of a conversion circuit board of the BLDC motor of the invention.
  • FIG. 9 is a circuit diagram corresponding to a microprocessor module of a conversion circuit board of the BLDC motor of the invention.
  • Figure 10 is a perspective view of a BLDC motor used in the present invention.
  • Figure 11 is an exploded perspective view of an angle of a BLDC motor employed in the present invention.
  • Figure 12 is an exploded perspective view showing another angle of the BLDC motor used in the present invention.
  • Figure 13 is a cross-sectional view showing the structure of a BLDC motor used in the present invention.
  • Figure 14 is a circuit block diagram of a driving circuit board of a BLDC motor used in the present invention.
  • Figure 15 is a block diagram showing another circuit of the drive circuit board of the BLDC motor used in the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the air conditioning control system for a hotel of the present invention comprises a PTAC control board, a conversion circuit board of a BLDC motor, a first BLDC motor and a second BLDC motor, a first BLDC motor and a second
  • the BLDC motors are respectively used to drive the fan, and the microprocessor module communicates with the PTAC control board through the communication module to transmit data and commands;
  • the conversion circuit board of the BLDC motor comprises a microprocessor module, a power module, a communication module, a first BLDC motor interface module and a second BLDC motor interface module, and the microprocessor module can communicate with the air conditioning control board through the communication module To transmit data and commands, the microprocessor module can connect two BLDC motors through the first BLDC motor interface module and the second BLDC motor interface module.
  • the invention converts the BLDC motor control command issued by the PTAC control board by converting the microprocessor module on the circuit board, and simultaneously sets two BLDC motors
  • the power module includes an inrush current suppression circuit, an EMI circuit, a rectifier circuit, and a DC-DC conversion circuit, and an input terminal of the inrush current suppression circuit is connected to an AC input, and the inrush current suppression circuit is provided.
  • the EMI circuit, the rectifier circuit and the DC-DC conversion circuit are sequentially connected.
  • the output end of the rectifier circuit outputs a DC bus voltage VDC, and the output end of the DC-DC conversion circuit outputs a multi-channel isolated independent power supply for supplying power to each part.
  • the rectifier circuit is a rectifier with a voltage doubler circuit that doubles the DC bus voltage VDC by acting as a voltage doubler circuit.
  • the power module outputs the bus voltage VDC, the driving voltage VCC1 (generally +15V) and the microprocessor module supply voltage VCC2 (generally +5V).
  • Figure 4 includes the inrush current suppression circuit, EMI circuit, rectifier circuit, and inrush current.
  • the suppression circuit comprises a varistor V1, a varistor V2, a varistor V3 and a gas discharge tube TB;
  • the EMI circuit comprises a capacitor C1, a capacitor C4, a capacitor C5, a capacitor C6, an inductor L1 and an inductor L2;
  • the rectifier circuit is a The rectifier DB, the voltage doubler circuit includes a capacitor C11, a capacitor C10, a resistor R8, a resistor R9, a resistor R10, a resistor R11, and a connector JK.
  • FIG. 5 is a DC-DC conversion circuit mainly composed of a chip IC 101, a chip U101, and a peripheral circuit.
  • the first BLDC motor interface module described above includes five signals: a bus voltage VDC, a ground GND, an IGBT driving voltage VCC1, a first speed command signal VSP1, and a first speed feedback signal FG1, respectively.
  • the circuit board is provided with a standard 6-pin BLDC plug interface CN1, and 5 pins of a standard 6-pin BLDC plug interface are respectively connected to the bus voltage VDC, the ground GND, the IGBT driving voltage VCC1 (+15V), the first speed command signal VSP1 and The first speed feedback signal FG1, the remaining one pin is reserved, the PWM1 in FIG.
  • the second BLDC motor interface module contains 5 signals: bus voltage VDC, ground GND, IGBT drive voltage VCC1, second speed command signal VSP2, second speed feedback signal FG2;
  • the 5-pin BLDC plug-in interface CN2 is connected to the bus voltage VDC, ground GND, IGBT drive voltage VCC1 (+15V), second speed command signal VSP2 and second speed feedback signal FG2, respectively, and the remaining 1 pin is reserved.
  • the WM2 is connected to the output end of the microprocessor module, and the output end of the microprocessor module is output as a second speed command signal VSP2 through an amplifying circuit composed of transistors Q203 and Q204.
  • the communication module described above is a serial communication module, and the communication module is an RS485 serial communication module.
  • the conversion circuit board of the BLDC motor is provided with a four-pin full-duplex communication interface CN3, and the two pins of the four-pin full-duplex communication interface CN3 are used for connection with the communication module, and the remaining two pins of the four-pin full-duplex communication interface Connect to ground GND and power supply VCC2 (+5V) respectively.
  • the microprocessor module of the conversion circuit board has two signal outputs PWM1 and PWM2, and after the circuit is amplified, the first speed command signal VSP1 and the second speed command signal VSP2 are output; the microprocessor module has two The road signal inputs FG1.1 and FG1.2 correspond to the first speed feedback signal FG1 and the second speed feedback signal FG2; the microprocessor module has two signals TXD1 and RXD1 connected to the serial communication module.
  • the first speed feedback signal FG1 and the second speed feedback signal FG2 described above are pulse signals, and the microprocessor module converts the number of pulses fed back by the first speed feedback signal FG1 and the second speed feedback signal FG2 into the first stage, respectively.
  • the first rotational speed command VSP1 and the second rotational speed command VSP2 are PWM signals.
  • the microprocessor module is connected to the first BLDC motor through the first BLDC motor interface module, and the microprocessor module is connected to the second BLDC motor through the second BLDC motor interface module, and the microprocessor module converts the rotation command of the PTAC control board into the first The first speed command VSP1 of one BLDC motor and the second speed command VSP2 of the second BLDC motor, the first speed feedback signal FG1 of the first BLDC motor is transferred to the PTAC control board through the conversion of the microprocessor module, The second speed feedback signal FG2 of the two BLDC motors is transferred to the PTAC control board through the conversion of the microprocessor module.
  • the first BLDC motor and the second BLDC motor of the present invention both have a plastic-sealed motor for driving a circuit board, including a molded stator assembly 1, a rotor assembly, and a rotating shaft 1 , the bearing 4, the front bearing bracket 5, the rear bearing bracket 6 and the driving circuit board 7, the plastic sealing stator assembly 1 comprises a stator core 11, an end insulation 12, a coil winding 13 and a molding body 14, and the molding body 14 will be the stator core 11
  • the end insulation 12 and the coil winding 13 are integrally molded, and the front bearing bracket 5 and the rear bearing bracket 5 are respectively installed at two ends of the plastic stator assembly 1, and the two bearings 4 are respectively mounted on the front bearing bracket 5 and the rear bearing bracket 6.
  • the rotating shaft 3 is supported and mounted on the bearing 4, and the rotor assembly 2 is connected and mounted to the rotating shaft 3.
  • the first BLDC motor and the second BLDC motor in FIG. 2 both have a motor body for driving a circuit board, and the motor body includes a stator assembly 1, a rotor assembly 2, a rotating shaft 3 and a bearing 4, and the driving circuit board 7 includes built-in motor interface circuit, motor microprocessor, motor running parameter detection circuit and IGBT inverter circuit.
  • the motor running parameter detection circuit sends the actual running detection parameter of the motor to the motor microprocessor, and the motor microprocessor outputs the control signal.
  • the IGBT inverter circuit controls the energization or de-energization of the coil windings on the stator assembly.
  • the motor running parameter detection circuit can detect the phase current of each phase winding of the motor.
  • the IGBT inverter circuit adopts the intelligent power integrated chip IPM; the motor running parameter detecting circuit can also detect the position signal of the rotor, as shown in Fig. 15. The rotor position is detected by the Hall element HALL. As shown in Figure 14, the motor operating parameter detection circuit is used to detect the bus current and bus voltage signals.

Abstract

本发明涉及BLDC电机的转换电路板及应用其的旅馆用的空调控制系统,该BLDC电机的转换电路板包括微处理器模块、电源模块、通信模块、第一BLDC电机接口模块和第二BLDC电机接口模块,微处理器模块通过通信模块可与空调控制主板进行相互通信传送数据及指令,微处理器模块可通过第一BLDC电机接口模块和第二BLDC电机接口模块连接二台BLDC电机,它集成度高,功能完善,成本较低。

Description

BLDC电机的转换电路板及应用其的旅馆用的空调控制系统 技术领域:
本发明涉及BLDC电机的转换电路板及应用其的旅馆用的空调控制系统。
背景技术:
目前,旅馆用的空调(简称PTAC)控制系统采用的方案是:如图1所示,一般采用一块PTAC控制主板直接连接一台带有驱动线路板BLDC电机,这种方案缺点:成本较高,缺乏竞争力。
发明内容:
本发明的一个目的是提供BLDC电机的转换电路板,它能连接驱动2台带驱动线路板BLDC电机,集成度高,功能完善,成本较低。
本发明的一个另目的是提供旅馆用的空调控制系统,采用一块PTAC控制主板和BLDC电机的转换电路板连接二台带有驱动线路板BLDC电机,大幅降低成本,提高产品的竞争力。
本发明的目的是通过下述技术方案予以实现的:
一种BLDC电机的转换电路板,其特征在于:它包括微处理器模块、电源模块、通信模块、第一BLDC电机接口模块和第二BLDC电机接口模块,微处理器模块通过通信模块可与空调控制主板进行相互通信传送数据及指令,微处理器模块可通过第一BLDC电机接口模块和第二BLDC电机接口模块连接二台BLDC电机。
上述电源模块包括浪涌电流抑制电路、EMI电路、整流电路和DC-DC变换电路,浪涌电流抑制电路的输入端连接交流输入,浪涌电流抑制电路、EMI电路、整流电路和DC-DC变换电路依次连接起来,整流电路的输出端输出直流母线电压VDC,DC-DC变换电路的输出端输出多路隔离的独立电源为各部分供电。上述的整流电路是一个带倍压电路的整流器,通过发挥倍压电路的作用使直流母线 电压VDC提高一倍。电源模块输出直流母线电压VDC,电源模块输出两路的低压直流电源+5V和+15V供微处理器模块和逆变电路使用。
上述的第一BLDC电机接口模块包含5路信号:分别为母线电压VDC、地GND、IGBT驱动电压VCC1、第一速度指令信号VSP1、第一速度反馈信号FG1;.第二BLDC电机接口模块包含5路信号:分别为母线电压VDC、地GND、IGBT驱动电压VCC1、第二速度指令信号VSP2、第二速度反馈信号FG2。
通信模块是一个串行通信模块。
第一速度反馈信号FG1和第二速度反馈信号FG2是脉冲信号,微处理器模块分别通过对第一速度反馈信号FG1和第二速度反馈信号FG2反馈的脉冲数目转换为第一台BLDC电机实时转速和第二台BLDC电机实时转速。
上述的第一转速指令VSP1和第二转速指令VSP2是PWM信号。
上述的通信模块是一个RS485串行通信模块。
一种旅馆用的空调控制系统,它包括PTAC控制主板、BLDC电机的转换电路板、第一台BLDC电机和第二台BLDC电机,第一台BLDC电机和第二台BLDC电机分别用来驱动风机,微处理器模块通过通信模块与PTAC控制主板进行相互通信传送数据及指令,所述的BLDC电机的转换电路板是上述所述的BLDC电机的转换电路板,微处理器模块通过第一BLDC电机接口模块连接第一台BLDC电机,微处理器模块通过第二BLDC电机接口模块连接第二台BLDC电机,微处理器模块对PTAC控制主板的转速指令转换为第一台BLDC电机的第一转速指令VSP1和第二台BLDC电机的第二转速指令VSP2,第一台BLDC电机的第一速度反馈信号FG1通过微处理器模块的转换后输送到空调控制主板,第二台BLDC电机的第二速度反馈信号FG2通过微处理器模块的转换后输送到PTAC控制主板。
上述所述的第一台BLDC电机和第二台BLDC电机都带有驱动线路板的电机实体,所述的电机实体包括定子组件、转子组件、转轴和轴承,所述的驱动线路板包括内置电机接口电路、电机微处理器、电机运行参数检测电路和IGBT逆变电路,电机运行参数检测电路将电机的实际运行的检测参数送到电机微处理 器,电机微处理器输出控制信号到IGBT逆变电路,IGBT逆变电路控制定子组件上的线圈绕组的通电或者断电。
上述所述的第一台BLDC电机和第二台BLDC电机都带有驱动线路板的塑封电机,包括塑封定子组件、转子组件、转轴、轴承、前轴承支架和后轴承支架,塑封定子组件包括定子铁芯、端部绝缘、线圈绕组和塑封体,塑封体将定子铁芯、端部绝缘、线圈绕组塑封成一体,前轴承支架和后轴承支架分别安装在塑封定子组件的两端,两个轴承分别安装在前轴承支架和后轴承支架上,转轴支承安装在轴承上,转子组件与转轴连接安装在一起。
上述的电机运行参数检测电路用于检测转子位置信号或者检测线圈绕组的相电流信号或者检测母线电流和母线电压信号。
上述的BLDC电机的转换电路板设置有四针全双工通讯插接口,四针全双工通讯插接口的2个针用于与通信模块连接,四针全双工通讯接口的其余2个针分别与地GND和电源VCC2连接。
上述的BLDC电机的转换电路板设置有2个标准6针BLDC插接口,其中一个标准6针BLDC插接口的5针分别连接母线电压VDC、地GND、IGBT驱动电压VCC1、第一速度指令信号VSP1和第一速度反馈信号FG1,余下1针备用;另一个标准6针BLDC插接口的5针分别连接母线电压VDC、地GND、IGBT驱动电压VCC1、第二速度指令信号VSP2和第二速度反馈信号FG2,余下1针备用。
本发明与现有技术相比,具有如下效果:
1)本发明的BLDC电机的转换电路板,包括微处理器模块、电源模块、通信模块、第一BLDC电机接口模块和第二BLDC电机接口模块,结构简单,集成度高,功能完善成本较低;
2)在转换电路板上设置电源模块,电源模块包括浪涌电流抑制电路、EMI电路、EMI电路、整流电路和DC-DC变换电路,浪涌电流抑制电路的输入端连接交流输入,浪涌电流抑制电路、EMI电路、整流电路和DC-DC变换电路依次连接 起来,整流电路的输出端输出直流母线电压VDC,DC-DC变换电路的输出端输出多路隔离的独立电源为各部分供电,可以为带驱动线路板BLDC电机提供多种电压,也可以为PTAC控制主板提供稳定低压,从而简化结构,降低成本。
3)本发明的旅馆用的空调控制系统,采用一块PTAC控制主板和BLDC电机的转换电路板连接二台带有驱动线路板BLDC电机,大幅降低成本,提高产品的竞争力。
4)本发明的旅馆用的空调控制系统中使用二台带有驱动线路板塑封BLDC电机,带有驱动线路板塑封BLDC电机具有标准的接口信号(母线电压VDC、地GND、IGBT驱动电压VCC1、第一速度指令信号VSP和第一速度反馈信号FG),大大简化接口,进一步降低成本,使安装连接工作更加简单,提升产品的竞争力。
5)BLDC电机的转换电路板设置有四针全双工通讯插接口,四针全双工通讯插接口的2个针用于与通信模块连接,通信模块是一个RS485串行通信模块与PTAC控制主板连接,四针全双工通讯接口的其余2个针分别与地GND和电源VCC2连接,进一步简化接口结构,进一步降低成本,使安装连接工作更加简单,提升产品的竞争力。
附图说明:
图1是现有的PTAC控制系统的结构示意图;
图2是本发明的电路方框图的立体图;
图3是本发明的BLDC电机的转换电路板的电源模块的电路方框图;
图4是图3对应的部分电路图;
图5是图3对应的另一部分电路图;
图6是本发明的BLDC电机的转换电路板的第一BLDC电机接口模块对应的电路图;
图7是本发明的BLDC电机的转换电路板的第二BLDC电机接口模块对应的电路图;
图8是发明的BLDC电机的转换电路板的通信模块对应的电路图;
图9是发明的BLDC电机的转换电路板的微处理器模块对应的电路图;
图10是本发明采用的BLDC电机的立体图;
图11是本发明采用的BLDC电机的一个角度的分解图;
图12是本发明采用的BLDC电机的另一个角度的分解图;
图13是本发明采用的BLDC电机的结构剖视图;
图14是本发明采用的BLDC电机的驱动线路板的一种电路方框图;
图15是本发明采用的BLDC电机的驱动线路板的另一种电路方框图。
具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
如图2所示,本发明一种旅馆用的空调控制系统,它包括PTAC控制主板、BLDC电机的转换电路板、第一台BLDC电机和第二台BLDC电机,第一台BLDC电机和第二台BLDC电机分别用来驱动风机,微处理器模块通过通信模块与PTAC控制主板进行相互通信传送数据及指令;
所述的BLDC电机的转换电路板包括微处理器模块、电源模块、通信模块、第一BLDC电机接口模块和第二BLDC电机接口模块,微处理器模块通过通信模块可与空调控制主板进行相互通信传送数据及指令,微处理器模块可通过第一BLDC电机接口模块和第二BLDC电机接口模块连接二台BLDC电机。
本发明通过转换电路板上的微处理器模块来转换PTAC控制主板发出的BLDC电机控制指令,同时将2台BLDC电机
如图3、图4、图5所示,电源模块包括浪涌电流抑制电路、EMI电路、整流电路和DC-DC变换电路,浪涌电流抑制电路的输入端连接交流输入,浪涌电流抑制电路、EMI电路、整流电路和DC-DC变换电路依次连接起来,整流电路的输出端输出直流母线电压VDC,DC-DC变换电路的输出端输出多路隔离的独立电源为各部分供电。整流电路是一个带倍压电路的整流器,通过发挥倍压电路的 作用使直流母线电压VDC提高一倍。电源模块输出母线电压VDC、驱动电压VCC1(一般是+15V)和微处理器模块供电电压VCC2(一般是+5V),其中图4包括浪涌电流抑制电路、EMI电路、整流电路,浪涌电流抑制电路包括压敏电阻V1、压敏电阻V2、压敏电阻V3和气体放电管TB;EMI电路包括电容C1、电容C4、电容C5、电容C6、电感器L1和电感器L2;整流电路是一个整流器DB,倍压电路包括电容C11、电容C10、电阻R8、电阻R9、电阻R10、电阻R11和接插件JK。图5是DC-DC变换电路,主要是由芯片IC101、芯片U101及外围电路组成。
如图6所示,上述所述的第一BLDC电机接口模块包含5路信号:分别为母线电压VDC、地GND、IGBT驱动电压VCC1、第一速度指令信号VSP1、第一速度反馈信号FG1,转换电路板设置有1个标准6针BLDC插接口CN1,其中一个标准6针BLDC插接口的5针分别连接母线电压VDC、地GND、IGBT驱动电压VCC1(+15V)、第一速度指令信号VSP1和第一速度反馈信号FG1,余下1针备用,图6中PWM1与微处理器模块的输出端连接,微处理器模块的输出端通过三极管Q201、Q202组成的放大电路后作为第一速度指令信号VSP1输出;如图7所示.第二BLDC电机接口模块包含5路信号:分别为母线电压VDC、地GND、IGBT驱动电压VCC1、第二速度指令信号VSP2、第二速度反馈信号FG2;另一个标准6针BLDC插接口CN2的5针分别连接母线电压VDC、地GND、IGBT驱动电压VCC1(+15V)、第二速度指令信号VSP2和第二速度反馈信号FG2,余下1针备用,图7中PWM2与微处理器模块的输出端连接,微处理器模块的输出端通过三极管Q203、Q204组成的放大电路后作为第二速度指令信号VSP2输出。
如图8所示,上述所述的通信模块是一个串行通信模块,通信模块是一个RS485串行通信模块。BLDC电机的转换电路板设置有四针全双工通讯插接口CN3,四针全双工通讯插接口CN3的2个针用于与通信模块连接,四针全双工通讯接口的其余2个针分别与地GND和电源VCC2(+5V)连接。
如图9所示,转换电路板的微处理器模块有两路信号输出PWM1和PWM2,经过电路放大处理后形成第一速度指令信号VSP1和第二速度指令信号VSP2输出; 微处理器模块有两路信号输入FG1.1和FG1.2,对应第一速度反馈信号FG1和第二速度反馈信号FG2;微处理器模块有两路信号TXD1和RXD1与串行通信模块连接。
上述所述的第一速度反馈信号FG1和第二速度反馈信号FG2是脉冲信号,微处理器模块分别通过对第一速度反馈信号FG1和第二速度反馈信号FG2反馈的脉冲数目转换为第一台BLDC电机实时转速和第二台BLDC电机实时转速。第一转速指令VSP1和第二转速指令VSP2是PWM信号。
微处理器模块通过第一BLDC电机接口模块连接第一台BLDC电机,微处理器模块通过第二BLDC电机接口模块连接第二台BLDC电机,微处理器模块对PTAC控制主板的转速指令转换为第一台BLDC电机的第一转速指令VSP1和第二台BLDC电机的第二转速指令VSP2,第一台BLDC电机的第一速度反馈信号FG1通过微处理器模块的转换后输送到PTAC控制主板,第二台BLDC电机的第二速度反馈信号FG2通过微处理器模块的转换后输送到PTAC控制主板。
如图10、图11、图12、图13所示,本发明的第一台BLDC电机和第二台BLDC电机都带有驱动线路板的塑封电机,包括塑封定子组件1、转子组件、转轴1、轴承4、前轴承支架5、后轴承支架6和驱动线路板7,塑封定子组件1包括定子铁芯11、端部绝缘12、线圈绕组13和塑封体14,塑封体14将定子铁芯11、端部绝缘12、线圈绕组13塑封成一体,前轴承支架5和后轴承支架5分别安装在塑封定子组件1的两端,两个轴承4分别安装在前轴承支架5和后轴承支架6上,转轴3支承安装在轴承4上,转子组件2与转轴3连接安装在一起。
图2中第一台BLDC电机和第二台BLDC电机都带有驱动线路板的电机实体,所述的电机实体包括定子组件1、转子组件2、转轴3和轴承4,所述的驱动线路板7包括内置电机接口电路、电机微处理器、电机运行参数检测电路和IGBT逆变电路,电机运行参数检测电路将电机的实际运行的检测参数送到电机微处理器,电机微处理器输出控制信号到IGBT逆变电路,IGBT逆变电路控制定子组 件上的线圈绕组的通电或者断电。电机运行参数检测电路可以检测电机的各相绕组的相电流,如图14所示,IGBT逆变电路采用智能功率集成芯片IPM;电机运行参数检测电路也可以检测转子的位置信号,如图15所示,通过霍尔元件HALL检测转子位置。如图14所示,电机运行参数检测电路用于检测母线电流和母线电压信号。
以上实施例为本发明的较佳实施方式,但本发明的实施方式不限于此,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。

Claims (14)

  1. 一种BLDC电机的转换电路板,其特征在于:它包括微处理器模块、电源模块、通信模块、第一BLDC电机接口模块和第二BLDC电机接口模块,微处理器模块通过通信模块可与空调控制主板进行相互通信传送数据及指令,微处理器模块可通过第一BLDC电机接口模块和第二BLDC电机接口模块连接二台BLDC电机。
  2. 根据权利要求1所述的一种BLDC电机的转换电路板,其特征在于:电源模块包括浪涌电流抑制电路、EMI电路、整流电路和DC-DC变换电路,浪涌电流抑制电路的输入端连接交流输入,浪涌电流抑制电路、EMI电路、整流电路和DC-DC变换电路依次连接起来,整流电路的输出端输出直流母线电压VDC,DC-DC变换电路的输出端输出多路隔离的独立电源为各部分供电。
  3. 根据权利要求2所述的一种BLDC电机的转换电路板,其特征在于:整流电路是一个带倍压电路的整流器,通过发挥倍压电路的作用使直流母线电压VDC提高一倍。
  4. 根据权利要求1或2或3所述的一种BLDC电机的转换电路板,其特征在于:第一BLDC电机接口模块包含5路信号:分别为母线电压VDC、地GND、IGBT驱动电压VCC1、第一速度指令信号VSP1、第一速度反馈信号FG1;第二BLDC电机接口模块包含5路信号:分别为母线电压VDC、地GND、IGBT驱动电压VCC1、第二速度指令信号VSP2、第二速度反馈信号FG2。
  5. 根据权利要求5所述的一种BLDC电机的转换电路板,其特征在于:通信模块是一个串行通信模块。
  6. 根据权利要求5所述的一种BLDC电机的转换电路板,其特征在于:第一速度反馈信号FG1和第二速度反馈信号FG2是脉冲信号,微处理器模块分别通过对第一速度反馈信号FG1和第二速度反馈信号FG2反馈的脉冲数目转换为第一台BLDC电机实时转速和第二台BLDC电机实时转速。
  7. 根据权利要求6所述的一种BLDC电机的转换电路板,其特征在于:第 一转速指令VSP1和第二转速指令VSP2是PWM信号。
  8. 根据权利要求7所述的一种BLDC电机的转换电路板,其特征在于:通信模块是一个RS485串行通信模块。
  9. 一种旅馆用的空调控制系统,其特征在于:它包括PTAC控制主板、BLDC电机的转换电路板、第一台BLDC电机和第二台BLDC电机,第一台BLDC电机和第二台BLDC电机分别用来驱动风机,微处理器模块通过通信模块与PTAC控制主板进行相互通信传送数据及指令,所述的BLDC电机的转换电路板是权利要求1至8任何一项所述的BLDC电机的转换电路板,微处理器模块通过第一BLDC电机接口模块连接第一台BLDC电机,微处理器模块通过第二BLDC电机接口模块连接第二台BLDC电机,微处理器模块对PTAC控制主板的转速指令转换为第一台BLDC电机的第一转速指令VSP1和第二台BLDC电机的第二转速指令VSP2,第一台BLDC电机的第一速度反馈信号FG1通过微处理器模块的转换后输送到PTAC控制主板,第二台BLDC电机的第二速度反馈信号FG2通过微处理器模块的转换后输送到PTAC控制主板。
  10. 根据权利要求9所述的旅馆用的空调控制系统,其特征在于:所述的第一台BLDC电机和第二台BLDC电机都带有驱动线路板的电机实体,所述的电机实体包括定子组件、转子组件、转轴和轴承,所述的驱动线路板包括内置电机接口电路、电机微处理器、电机运行参数检测电路和IGBT逆变电路,电机运行参数检测电路将电机的实际运行的检测参数送到电机微处理器,电机微处理器输出控制信号到IGBT逆变电路,IGBT逆变电路控制定子组件上的线圈绕组的通电或者断电。
  11. 根据权利要求10所述的旅馆用的空调控制系统,其特征在于:所述的第一台BLDC电机和第二台BLDC电机都带有驱动线路板的塑封电机,包括塑封定子组件、转子组件、转轴、轴承、前轴承支架和后轴承支架,塑封定子组件包括定子铁芯、端部绝缘、线圈绕组和塑封体,塑封体将定子铁芯、端部绝缘、线圈绕组塑封成一体,前轴承支架和后轴承支架分别安装在塑封定子组件的两 端,两个轴承分别安装在前轴承支架和后轴承支架上,转轴支承安装在轴承上,转子组件与转轴连接安装在一起。
  12. 根据权利要求11所述的旅馆用的空调控制系统,其特征在于:电机运行参数检测电路用于检测转子位置信号或者检测线圈绕组的相电流信号或者检测母线电流和母线电压信号。
  13. 根据权利要求11所述的旅馆用的空调控制系统,其特征在于:BLDC电机的转换电路板设置有四针全双工通讯插接口,四针全双工通讯插接口的2个针用于与通信模块连接,四针全双工通讯接口的其余2个针分别与地GND和电源VCC2连接。
  14. 根据权利要求11所述的旅馆用的空调控制系统,其特征在于:BLDC电机的转换电路板设置有2个标准6针BLDC插接口,其中一个标准6针BLDC插接口的5针分别连接母线电压VDC、地GND、IGBT驱动电压VCC1、第一速度指令信号VSP1和第一速度反馈信号FG1,余下1针备用;另一个标准6针BLDC插接口的5针分别连接母线电压VDC、地GND、IGBT驱动电压VCC1、第二速度指令信号VSP2和第二速度反馈信号FG2,余下1针备用。
PCT/CN2018/103754 2018-04-17 2018-09-03 Bldc电机的转换电路板及应用其的旅馆用的空调控制系统 WO2019200813A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/503,620 US11018604B2 (en) 2018-04-17 2019-07-04 Conversion circuit board of brushless direct current (BLDC) motor and packaged terminal air conditioner (PTAC) comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820546260.2U CN208285235U (zh) 2018-04-17 2018-04-17 Bldc电机的转换电路板及应用其的旅馆用的空调控制系统
CN201810345408.0A CN108288929A (zh) 2018-04-17 2018-04-17 Bldc电机的转换电路板及应用其的旅馆用的空调控制系统
CN201820546260.2 2018-04-17
CN201810345408.0 2018-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/503,620 Continuation-In-Part US11018604B2 (en) 2018-04-17 2019-07-04 Conversion circuit board of brushless direct current (BLDC) motor and packaged terminal air conditioner (PTAC) comprising the same

Publications (1)

Publication Number Publication Date
WO2019200813A1 true WO2019200813A1 (zh) 2019-10-24

Family

ID=68239307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103754 WO2019200813A1 (zh) 2018-04-17 2018-09-03 Bldc电机的转换电路板及应用其的旅馆用的空调控制系统

Country Status (2)

Country Link
US (1) US11018604B2 (zh)
WO (1) WO2019200813A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204615699U (zh) * 2015-05-13 2015-09-02 中山大洋电机制造有限公司 一种新型多电机驱动集中控制系统
CN105811815A (zh) * 2014-12-27 2016-07-27 中山大洋电机股份有限公司 一种bldc电机的脉冲反馈输出控制方法及其应用的空调系统
CN106936342A (zh) * 2015-12-31 2017-07-07 中山大洋电机股份有限公司 一种多电机驱动的送风设备恒风量控制方法
CN107732873A (zh) * 2017-11-09 2018-02-23 厦门芯阳科技股份有限公司 一种防止bldc电机被带动运转发电的保护电路及方法
CN108288929A (zh) * 2018-04-17 2018-07-17 中山大洋电机股份有限公司 Bldc电机的转换电路板及应用其的旅馆用的空调控制系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048530A (en) * 1975-05-05 1977-09-13 The Superior Electric Company Electric motor with plastic encapsulated stator
JPS59149781A (ja) * 1983-02-16 1984-08-27 Mitsubishi Electric Corp エレベ−タの制御装置
US5803043A (en) * 1996-05-29 1998-09-08 Bayron; Harry Data input interface for power and speed controller
US6809484B2 (en) * 2001-09-25 2004-10-26 Siemens Vdo Automotive Inc. Multiple electronically commutated motor control apparatus and method
CA2576785C (en) * 2006-01-31 2013-07-09 Production Control Services, Inc. Multi-well controller
US8164293B2 (en) * 2009-09-08 2012-04-24 Hoffman Enclosures, Inc. Method of controlling a motor
CN202524349U (zh) * 2011-04-20 2012-11-07 中山大洋电机股份有限公司 一种自动配置多种类型接口的电机控制器
WO2012142755A1 (zh) * 2011-04-20 2012-10-26 中山大洋电机制造有限公司 一种电子换向电机接口信号转换子线路板
CN103309251B (zh) * 2012-03-16 2016-01-27 中山大洋电机股份有限公司 一种实现高效控制的电器控制系统及其信号转换板
US9859825B2 (en) * 2012-07-28 2018-01-02 Zhongshan Broad-Ocean Motor Co., Ltd. Centralized motor controller
JP5825410B1 (ja) * 2014-08-06 2015-12-02 Tdk株式会社 ブリッジレス力率改善コンバータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811815A (zh) * 2014-12-27 2016-07-27 中山大洋电机股份有限公司 一种bldc电机的脉冲反馈输出控制方法及其应用的空调系统
CN204615699U (zh) * 2015-05-13 2015-09-02 中山大洋电机制造有限公司 一种新型多电机驱动集中控制系统
CN106936342A (zh) * 2015-12-31 2017-07-07 中山大洋电机股份有限公司 一种多电机驱动的送风设备恒风量控制方法
CN107732873A (zh) * 2017-11-09 2018-02-23 厦门芯阳科技股份有限公司 一种防止bldc电机被带动运转发电的保护电路及方法
CN108288929A (zh) * 2018-04-17 2018-07-17 中山大洋电机股份有限公司 Bldc电机的转换电路板及应用其的旅馆用的空调控制系统

Also Published As

Publication number Publication date
US20190341864A1 (en) 2019-11-07
US11018604B2 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
CN200993455Y (zh) 车用直流变频空调控制电路
ES2188301A1 (es) Sistema de accionamiento de un motor sin escobillas para accionar el ventilador exterior de un acondicionador de aire.
WO2015109629A1 (zh) 一种外置控制卡的直流永磁同步电机及其应用hvac控制系统
CN202634345U (zh) 一种可适应不同频率不同供电电压的ecm电机控制器
WO2014000480A1 (zh) 一种直流电机驱动的引风机
CN108288929A (zh) Bldc电机的转换电路板及应用其的旅馆用的空调控制系统
CN111431352A (zh) 兼容多种通用接口的ecm电机、暖通空调hvac系统及信号转换方法
CN102361425B (zh) 直流无刷变频空调控制电路
CN106160587B (zh) 一种电机的控制方法及应用其的带有风道的电器设备的控制方法
CN105785844B (zh) 一种隔离调速接口电路及应用其的电器设备系统
WO2019200813A1 (zh) Bldc电机的转换电路板及应用其的旅馆用的空调控制系统
CN110539611B (zh) 车载室外机控制电路和车载空调器
WO2014000481A1 (zh) 一种直流无刷电机
CN201039059Y (zh) Ac/dc无刷直流风机
JP2004260965A (ja) 送風ファン
CN209220134U (zh) 控制板、控制系统及吸尘器
CN208656677U (zh) 电动汽车空调压缩机永磁同步电机驱动系统
CN209070343U (zh) 一种基于无位置传感的新能源汽车空调压缩机电机驱动器
CN102763319B (zh) 无刷电动机驱动装置、无刷电动机和空气调节机
CN107300245B (zh) 空调控制器和通讯隔离方法
CN203318181U (zh) 一种直流无刷无位置传感器的电动真空泵控制装置
CN210225285U (zh) 一种两台bldc电机的供电系统及应用其的壁炉机
WO2017114229A1 (zh) 用于识别直流电机转子相位的方法、设备及家用电器
CN215072218U (zh) 电机驱动模块及自动行走设备
CN204089490U (zh) 盘管电机及其控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915495

Country of ref document: EP

Kind code of ref document: A1