WO2019200775A1 - 一种可减少污泥量的循环清洁污水处理方法 - Google Patents

一种可减少污泥量的循环清洁污水处理方法 Download PDF

Info

Publication number
WO2019200775A1
WO2019200775A1 PCT/CN2018/098263 CN2018098263W WO2019200775A1 WO 2019200775 A1 WO2019200775 A1 WO 2019200775A1 CN 2018098263 W CN2018098263 W CN 2018098263W WO 2019200775 A1 WO2019200775 A1 WO 2019200775A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
tank
sewage
processing method
aeration tank
Prior art date
Application number
PCT/CN2018/098263
Other languages
English (en)
French (fr)
Inventor
李思琦
Original Assignee
李思琦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李思琦 filed Critical 李思琦
Publication of WO2019200775A1 publication Critical patent/WO2019200775A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal

Definitions

  • the invention relates to the technical field of water treatment, in particular to a circulating clean sewage treatment method capable of reducing the amount of sludge.
  • the physical treatment method is the most basic and most commonly used technology. It does not change the composition and chemical properties of pollutants during the treatment process, and is mainly used to separate or recover suspended substances in sewage.
  • the chemical treatment method utilizes a chemical reaction to separate or recover contaminants such as colloidal substances and dissolved substances in the wastewater, so as to achieve the purpose of recovering useful substances, reducing pH in the wastewater, removing metal ions, and oxidizing organic substances. This treatment method can separate the pollutants from the water and also change the nature of the pollutants, so that a higher degree of purification than a simple physical treatment method can be achieved.
  • the biological treatment method refers to a method for removing organic pollutants in wastewater by utilizing the metabolism of microorganisms, and is a widely used sewage treatment method at present.
  • the invention of the publication No. CN102515466A discloses a method for treating sludge by a high-temperature anaerobic fermentation method in combination with a continuous thermal hydrolysis pretreatment process, which has high treatment efficiency and realizes energy recycling, but with temperature and pressure. The requirements are high and the equipment is complicated.
  • CN 102126818 A discloses a treatment method of chlorine dioxide/ultrasonic coupling, which is an ideal laboratory treatment method, but requires ultrasonic treatment of the sludge, but the existing ultrasonic equipment The amount of treatment is too small to meet the requirements of large-scale treatment of sewage treatment plants and factory enterprises.
  • the sludge contains a certain amount of components such as nitrogen, phosphorus and organic matter.
  • Landfill, ocean treatment, incineration and other methods not only cause waste of resources, but also nitrogen and phosphorus in the water can cause oxidation of water.
  • the present invention provides a circulation cleaning capable of reducing the amount of sludge. Sewage treatment method.
  • the present invention provides a circulating clean sewage treatment method capable of reducing the amount of sludge, comprising the following steps:
  • Biological treatment step sequentially passing sewage through an anaerobic tank, a first aeration tank, an anaerobic tank and a second aeration tank;
  • Precipitation step the sewage treated by the step (1) is sent to a sedimentation tank to obtain a precipitated sludge and a clear liquid;
  • (3) sludge cracking step transporting the precipitated sludge to the sludge cracking tank, and then adding boron oxide and glycerin to the precipitated sludge for sludge cracking to obtain cracked sludge and recovery liquid; The recovered liquid is sent to an anaerobic tank.
  • the mass ratio of boron oxide to glycerol used is (5-8): (15-20).
  • the amount of boron oxide added is 500 to 800 mg/m 3 of sludge, and the amount of glycerin added is 1,500 to 2,000 mg/m 3 of sludge.
  • step (3) part or all of the cracked sludge is delivered to the anaerobic tank.
  • the ventilation amount in the first aeration tank is 0.1 to 0.5 vvm, and the pH is 5.0 to 8.0.
  • the ventilation amount in the second aeration tank is 1.0 to 2.0 vvm, and the pH is 5.5 to 7.5.
  • the residence time of the sewage in the anaerobic tank is 0.5 to 1.0 hours
  • the residence time in the first aeration tank is 3 to 5 hours
  • the residence time in the anaerobic tank is The residence time in the second aeration tank is 1.5 to 2 hours in 1.5 to 2 hours.
  • the residence time of the cracked sludge in the sludge cracking pool is 10 to 15 hours.
  • step (2) the clear liquid is directly discharged
  • activated carbon is added to the clear liquid prior to discharge, and the amount of activated carbon added is 0.5 to 1.0 kg per cubic meter of clear liquid.
  • a pretreatment step is further included, the pretreatment being carried out by transporting the sewage to the grit chamber for initial sedimentation, and passing the initially settled sewage through the grid.
  • the invention uses boron oxide and glycerin to crack the sludge, reduces the sludge quality, and returns the recovered liquid obtained by the crack to the anaerobic pool for use, not only can reduce environmental pollution, but also is in the anaerobic pool.
  • the denitrification reaction provides the carbon source required.
  • the nitrogen and phosphorus contained in the recovered liquid can be removed and absorbed by aerobic biological treatment to avoid discharge to the external environment and cause pollution.
  • the invention provides a clean, high-efficiency and low-energy sewage treatment method, which can reduce the amount of sludge and recycle nitrogen and phosphorus in the sludge, and includes the following steps:
  • (1) Biological treatment step the sewage is sequentially passed through an anaerobic tank, a first aeration tank, an anaerobic tank and a second aeration tank.
  • the invention adopts a biological treatment method for treating sewage, wherein the microorganisms can decompose the organic matter in the sewage, so that the COD and BOD 5 in the treated effluent are greatly reduced.
  • the biological treatment steps in the present invention are carried out as follows:
  • the sewage is firstly introduced into the anaerobic tank, and the sewage is subjected to strict anaerobic treatment under the action of anaerobic bacteria in the anaerobic tank to cause hydrolysis, acidification and methanation of the organic matter, and at least a part of the organic matter in the sewage is removed, or At least a part of the macromolecular organic matter in the sewage is decomposed into small molecular organic substances, which improves the biodegradability of the sewage and is beneficial to the subsequent aerobic treatment.
  • the anaerobic tank in the present invention is a conventional equipment in sewage treatment and will not be described in detail herein.
  • the sewage discharged from the anaerobic tank is sent to the first aeration tank, and the aeration stirring not only brings the sewage in the pool into contact with the air to be oxygenated, but also accelerates the transfer of oxygen in the air to the sewage due to the agitation, thereby completing the oxygenation.
  • Purpose; in addition, aeration also prevents the suspension of the suspension in the pool, strengthens the contact of organic matter in the pool with microorganisms and dissolved oxygen, thereby ensuring that the aerobic microorganisms in the pool are oxidatively decomposed by organic matter and ammonia in the sewage under conditions of sufficient dissolved oxygen. .
  • the ventilation amount in the first aeration tank in the present invention is controlled to be 0.1 to 0.5 vvm (aeration ratio, that is, aeration rate (unit: cubic meter / minute) / fermentation liquid volume (unit: cubic meter), wherein the gas The volume is in the standard state, and the pH is controlled at 5.0 to 8.0.
  • the sewage discharged from the first aeration tank is continuously transported to an anaerobic tank (also called an anoxic tank), and the sewage is subjected to nitrogen and phosphorus removal treatment.
  • anaerobic tank also called an anoxic tank
  • the anaerobic tank used is a conventional device in sewage treatment and will not be described in detail.
  • the sewage discharged from the anaerobic tank is continuously transported to the second aeration tank, and the aerobic biological treatment is performed on the sewage after the denitrification and dephosphorization treatment, and the ammonia nitrogen, phosphorus and BOD are removed.
  • the ventilation volume in the second aeration tank in the present invention is controlled to be 1.0 to 2.0 vvm, and the pH is controlled to be 5.5 to 7.5.
  • the residence time of sewage in each pool affects the efficiency of biological treatment. If the residence time is too short, the reaction of sewage in the pool is not complete, and the long residence time is not beneficial.
  • the residence time of the sewage in the anaerobic tank is controlled to be 0.5 to 1.0 hours, and the residence time in the first aeration tank is controlled to be 3 to 5 hours, in the anaerobic tank.
  • the residence time in the control is controlled in 1.5 to 2 hours, and the residence time in the second aeration tank is controlled to be 1.5 to 2 hours.
  • Precipitation step the sewage treated by the step (1) is sent to a sedimentation tank, and after precipitation, a precipitated sludge and a clear liquid are obtained.
  • the COD and BOD 5 in the sewage are greatly reduced.
  • the clarified liquid obtained at this time has reached the discharge standard and can be directly discharged into the environment.
  • some sewage may contain more bacteria, metal ions and impurities.
  • activated carbon can be introduced into the clarified liquid to adsorb impurities, metal ions, and bacteria in the wastewater. It is suitable to add 0.5 to 1 kg of activated carbon per cubic meter of water.
  • (3) sludge cracking step transporting the precipitated sludge to the sludge cracking tank, and then adding glycerin to the precipitated sludge for sludge cracking to obtain a cracked sludge and a recovery liquid; The recovered liquid is sent to the anaerobic tank.
  • the sludge is mainly composed of organic residues, inorganic particles, bacterial cells and colloids, and contains a certain amount of water and other substances that can be utilized.
  • the sludge is mainly composed of organic residues, inorganic particles, bacterial cells and colloids, and contains a certain amount of water and other substances that can be utilized.
  • boric acid which is acidic.
  • the added glycerol not only greatly enhances the acidity of boric acid, but also has excellent permeability due to its extremely water-absorbing property. It can diffuse boric acid.
  • the surface of the cells enclosed by the colloidal substance is even inside, thereby enhancing the wall-breaking effect of boric acid on the cells.
  • the sludge flocs are destroyed, the sludge morphology changes, and the encapsulated water, water-soluble substances in the sludge, and organic and inorganic substances in the bacterial cells are released. Recycling liquid, which greatly reduces sludge quality.
  • the recovered liquid containing these substances is returned to the anaerobic tank in the biological treatment step, thereby not only reducing environmental pollution, but also reducing environmental pollution.
  • the organic matter in the recovered liquid can also serve as a carbon source to provide a carbon source for the denitrification reaction in the anaerobic tank, and reduce the addition amount of the external carbon source, thereby reducing the cost.
  • the nitrogen and phosphorus contained in the recovery liquid can be removed and absorbed by the aerobic biological treatment, and the discharge is prevented from being discharged into the external environment to cause pollution.
  • part or all of the cracked sludge may be transported to the anaerobic tank to further remove the phosphorus which may be contained in the sludge.
  • the mass ratio of the boron oxide to the glycerol is (5-8): (15-20).
  • the treatment efficiency is lowered.
  • the residence time of the cracked sludge in the sludge cracking tank is controlled to be 10 to 15 hours.
  • the present invention also pretreats the sewage before the biological treatment, and the pretreatment is carried out as follows: the sewage is sent to the grit chamber for initial sedimentation, and then passed. Grille.
  • the grit chamber removes large particulate matter from the sewage, and the grid removes suspended matter from the sewage.
  • the sewage is sent to an anaerobic tank for anaerobic treatment, and the residence time of the sewage in the anaerobic tank is 0.5 hours.
  • the sewage discharged from the anaerobic tank is sent to the first aeration tank for aerobic biological treatment, wherein the ventilation in the pool is controlled at 0.1 vvm, the pH is controlled at 5.0 to 5.5, and the sewage is in the first aeration tank.
  • the stay time is 3 hours.
  • the sewage discharged from the first aeration tank is sent to an anaerobic tank for nitrogen and phosphorus removal treatment, wherein the residence time of the sewage in the anaerobic tank is 1.5 hours.
  • the sewage discharged from the anaerobic tank is sent to the second aeration tank for aerobic biological treatment, wherein the ventilation in the pool is controlled at 1.0 vvm, the pH is controlled at 5.5 to 6.0, and the sewage is in the second aeration tank.
  • the residence time in the period is 1.5 hours.
  • the sewage discharged from the second aeration tank is sent to the sedimentation tank, and after precipitation, the precipitated sludge and the clear liquid are obtained.
  • the precipitated sludge is transported to the sludge cracking tank, and then, according to the standard of adding 500 mg of boron oxide and 800 mg of glycerin per cubic meter of sludge, the above substances are added to the precipitated sludge, and a stirring device is started to stir to ensure The above substances are uniformly mixed with the sludge.
  • the sewage is sent to the grit chamber for sedimentation, and the large particle sediment is removed, and then the sewage discharged from the grit chamber is passed through the grill to remove the suspended matter in the sewage.
  • the sewage is sent to an anaerobic tank for anaerobic treatment, and the residence time of the sewage in the anaerobic tank is 1.0 hour.
  • the sewage discharged from the anaerobic tank is sent to the first aeration tank for aerobic biological treatment, wherein the ventilation in the pool is controlled at 0.5 vvm, the pH is controlled at 7.5 to 8.0, and the sewage is in the first aeration tank.
  • the residence time in the middle is 5 hours.
  • the sewage discharged from the first aeration tank is sent to an anaerobic tank for nitrogen and phosphorus removal treatment, wherein the residence time of the sewage in the anaerobic tank is 2 hours.
  • the sewage discharged from the anaerobic tank is sent to the second aeration tank for aerobic biological treatment, wherein the ventilation in the pool is controlled at 2.0 vvm, the pH is controlled at 7.0 to 7.5, and the sewage is in the second aeration tank.
  • the stay time is 2 hours.
  • the sewage discharged from the second aeration tank is sent to the sedimentation tank, and after precipitation, the precipitated sludge and the clear liquid are obtained.
  • Activated carbon was added to the clarified liquid in accordance with the standard of adding 0.5 kg of activated carbon per cubic meter of the clarified liquid.
  • the precipitated sludge is transported to the sludge cracking tank. Then, according to the standard of adding 1500 mg of boron oxide and 2000 mg of glycerin per cubic meter of sludge, the above substances are added to the precipitated sludge, and a stirring device is started to stir to ensure The above substances are uniformly mixed with the sludge.
  • the recovered liquid in the pool was transferred to an anaerobic tank, and all the cracked sludge was sent to an anaerobic tank for treatment.
  • Example 3 to Example 4 were substantially the same as those of Example 2, and the process conditions are shown in Table 1.
  • Comparative Example 1 The treatment method in Example 2 was basically the same except that no sludge cracking was performed.
  • Comparative Example 2 Basically the same as the treatment method in Example 2, except that only boron oxide was added in the sludge cracking step.
  • the treatment water in a chemical plant is treated by the treatment method in the embodiment of the invention and the comparative example, and the sewage water quality is:
  • Ammonia nitrogen 43 mg / L; total phosphorus: 5.1 mg / L.
  • Example 1 18.2mg/L 11.8mg/L 0.03mg/L 0.77mg/L 0.08mg/L
  • Example 2 17.3mg/L 9.2mg/L 0.02mg/L 0.54mg/L 0.05mg/L
  • Example 3 16.5mg/L 8.7mg/L 0.01mg/L 0.49mg/L 0.03mg/L
  • Example 4 16.1mg/L 8.8mg/L 0.01mg/L 0.46mg/L 0.03mg/L
  • the sewage treatment method provided by the invention can remove most of the pollutants in the sewage.
  • M 1 is the quality of the precipitated sludge
  • M 2 is the quality of the cracked sludge
  • Example 1 Percentage of sludge quality reduction
  • Example 2 33.6%
  • Example 3 32.9%
  • Example 4 33.4% Comparative example 1 0% Comparative example 2 7%
  • the present invention uses the synergistic action of boron oxide and glycerol to crack the sludge, so that the amount of sludge is greatly reduced. Moreover, since the organic matter, nitrogen, phosphorus, and the like in the sludge are released by the microorganisms, the recovered liquid containing these substances is returned to the anaerobic tank in the biological treatment step, thereby not only reducing environmental pollution, but also reducing environmental pollution.
  • the organic matter in the recovered liquid can also serve as a carbon source to provide a carbon source for the denitrification reaction in the anaerobic tank, and reduce the addition amount of the external carbon source, thereby reducing the cost.
  • the nitrogen and phosphorus contained in the recovered liquid can be removed and absorbed by aerobic biological treatment, and the discharge is prevented from being discharged into the external environment to cause pollution.
  • part or all of the cracked sludge is also sent to the anaerobic tank in the present invention to further remove the phosphorus which may be contained in the sludge.

Abstract

一种可减少污泥量的循环清洁污水处理方法,包括如下步骤:(1)生物处理步骤:将污水依次通过厌氧池、第一曝气池、无氧池和第二曝气池;(2)沉淀步骤:将经步骤(1)处理后的污水输送至沉淀池,得到沉淀污泥和澄清液;(3)污泥破解步骤:将沉淀污泥输送至污泥破解池,然后向沉淀污泥中加入氧化硼和丙三醇进行污泥破解,得到破解污泥和回收液;将回收液输送至无氧池。该方法将破解后得到的回收液返回到无氧池中利用,可去除回收液中含有的氮磷,减少环境污染,降低成本。

Description

一种可减少污泥量的循环清洁污水处理方法 技术领域
本发明涉及水处理技术领域,尤其涉及一种可减少污泥量的循环清洁污水处理方法。
背景技术
由于人类的生活和生产活动,用水和排水对水的自然循环产生了量和质两方面的影响。20世纪中期以来,由于人口增长和工农业生产的发展,加剧了这种影响。排放的污水已构成了对水环境生态系统的严重污染,使地表水甚至地下水水质恶化,并致死水生动植物。我国从20世纪80年代初以来,工农业和人口迅猛发展,每年工业废水和城市污水合计排放量已达约400亿立方米,且处理效率较低,大量污水排入天然水体,已使我国约80%的河流湖泊受到不同程度的污染。水污染已成为我国面临的严重环境问题之一。在水资源日益紧缺的今天,做好污水的处理和再生利用,有利于保护水环境、保护水源,促进有限的水资源能够可持续开发利用。
目前关于污水处理常用的方法大体上可分为物理处理方法、化学处理方法和生物处理方法。物理处理方法是最基本最常用技术,它在处理的过程中不改变污染物质的组成和化学性质,主要被用来分离或回收污水中的悬浮性物质。然而,单纯依靠物理处理方法往往不能达到理想的处理结果。化学处理方法是利用化学反应来分离或回收废水中的胶体物质、溶解性物质等污染物,以达到回收有用物质、降低废水中的酸碱度、去除金属离子、氧化有机物等目的。这种处理方法既可使污染物质与水分离,也能够改变污染物的性质,因此可以达到比简单的物理处理方法更高的净化程度。但由于化学处理法常需采用化学药剂或材料,故处理费用较高,运行管理的要求也较严格。生物处 理方法是指利用微生物的代谢作用去除废水中有机污染物的一种方法,是目前应用较为广泛的一种污水处理方法。
污水处理后得到大量污泥,我国常用填埋、海洋处理、焚烧等方法来处理这些污泥。但随着近年来污水处理量的增加,污水处理后得到的污泥的量也逐渐增加,传统的填埋、海洋处理、焚烧等方法已经无法满足要求。公布号为CN102515466A的发明公开了一种采用高温厌氧发酵方法并结合连续热水解预处理工艺处理污泥的方法,该方法处理效率高,并且实现了能源的循环利用,但对温度和压力要求较高,设备复杂。公布号为CN 102126818 A的发明公开了一种二氧化氯/超声波耦合的处理方法,该方法是一种理想的实验室处理方法,但由于需要将污泥进行超声处理,但现有超声设备的处理量太少,无法满足污水处理厂、工厂企业大批量处理的要求。
而且,污泥中含有一定量的氮、磷和有机物等组分,填埋、海洋处理、焚烧等方法不但造成资源浪费,而且其中的氮磷还会引起水体富氧化。
发明内容
(一)要解决的技术问题
针对现有污水处理方法存在的污泥量较大,污泥中的有机物、氮磷组分被直接排放造成资源浪费、环境污染的问题,本发明提供了一种可减少污泥量的循环清洁污水处理方法。
(二)技术方案
为了解决上述技术问题,本发明提供了一种可减少污泥量的循环清洁污水处理方法,包括如下步骤:
(1)生物处理步骤:将污水依次通过厌氧池、第一曝气池、无氧池和第二曝气池;
(2)沉淀步骤:将经步骤(1)处理后的污水输送至沉淀池,得到沉淀污泥和澄清液;
(3)污泥破解步骤:将沉淀污泥输送至污泥破解池,然后向所述沉淀污泥中加入氧化硼和丙三醇进行污泥破解,得到破解污泥和回收液;其中,将所述回收液输送至无氧池。
优选地,在步骤(3)中,所使用的氧化硼和丙三醇的质量比为(5~8):(15~20)。
优选地,在步骤(3)中,氧化硼的添加量为500~800mg/m 3污泥,并且丙三醇的添加量为1500~2000mg/m 3污泥。
优选地,在步骤(3)中,将部分或全部所述破解污泥输送至厌氧池中。
优选地,在步骤(1)中,所述第一曝气池中的通气量为0.1~0.5vvm,pH为5.0~8.0。
优选地,在步骤(1)中,所述第二曝气池中的通气量为1.0~2.0vvm,pH为5.5~7.5。
优选地,在步骤(1)中,污水在厌氧池中的停留时间为0.5~1.0小时,在第一曝气池中的停留时间为3~5小时、在无氧池中的停留时间为1.5~2小时,在第二曝气池中的停留时间为1.5~2小时。
优选地,在步骤(3)中,所述破解污泥在污泥破解池中的停留时间为10~15小时。
优选地,在步骤(2)中,将所述澄清液直接排放;
优选的是,在排放前向所述澄清液中加入活性炭,且加入量为每立方米澄清液中加入0.5~1.0kg活性炭。
优选地,在步骤(1)之前还包括预处理步骤,所述预处理按照如下方式进行:将污水输送至沉砂池进行初次沉降,再将经过初次沉降的污水通过格栅。
(三)有益效果
本发明的上述技术方案具有如下优点:
本发明采用氧化硼和丙三醇对污泥进行破解,减少了污泥质量,而且将破解后得到的回收液返回到无氧池中利用,不但可以减少环境 污染,而且还为无氧池中的脱氮反应提供所需要的碳源。此外,还可将回收液中含有的氮磷通过好氧性生物处理得以去除、吸收,避免排放到外部环境中引起污染。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种清洁、高效、低能耗的污水处理方法,该污水处理方法可减少污泥量并循环利用污泥中的氮磷,包括如下步骤:
(1)生物处理步骤:将污水依次通过厌氧池、第一曝气池、无氧池和第二曝气池。
本发明采用生物处理方法对污水进行处理,其中的微生物能够将污水中的有机物进行分解,从而使得处理后的出水中的COD和BOD 5大幅度降低。
本发明中的生物处理步骤按照如下方式进行:
先将污水通入厌氧池中,污水在厌氧池中的厌氧菌的作用下进行严格的厌氧处理,使有机物发生水解、酸化和甲烷化,去除污水中的至少一部分有机物,或将污水中的至少一部分大分子有机物分解为小分子有机物,提高污水的可生化性,有利于后续的好氧处理。本发明中的厌氧池为污水处理中的常规设备,在此不再详述。
从厌氧池中排出的污水输送至第一曝气池中,通过曝气搅拌不仅使池内污水与空气接触充氧,而且由于搅拌,加速了空气中氧向污水中转移,从而完成充氧的目的;此外,曝气还有防止池内悬浮体下沉,加强池内有机物与微生物和溶解氧接触的目的,从而保证池内好氧微生物在充足溶解氧的条件下,对污水中有机物和氨进行氧化分解。总 之,通过曝气处理对池中的污水进行好氧性生物处理,氧化分解污水中的有机物和氨。优选地,本发明中的第一曝气池中的通气量控制在0.1~0.5vvm(通气比,即通气速率(单位:立方米/分钟)/发酵液体积(单位:立方米),其中气体体积以标准状态计),pH控制在5.0~8.0。
从第一曝气池中排出的污水继续被输送至无氧池(也叫缺氧池)中,对污水进行脱氮除磷处理。其中,所用的厌氧池为污水处理中的常规装置,不再详述。
从无氧池中排出的污水继续被输送至第二曝气池中,对经脱氮除磷处理后的污水再进行一次好氧性生物处理,氨氮磷以及BOD得以去除。
优选地,本发明中的第二曝气池中的通气量控制在1.0~2.0vvm,pH控制在5.5~7.5。
污水在各个池中的停留时间影响生物处理的效率,停留时间过短容易导致污水在池中的反应不彻底,而过长的停留时间也无益。优选地,在本发明提供的污水处理方法中,污水在厌氧池中的停留时间控制在0.5~1.0小时,在第一曝气池中的停留时间控制在3~5小时、在无氧池中的停留时间控制在1.5~2小时,在第二曝气池中的停留时间控制在1.5~2小时。
(2)沉淀步骤:将经步骤(1)处理后的污水输送至沉淀池,经沉淀后得到沉淀污泥和澄清液。
经过上述生物处理后,污水中的COD和BOD 5大幅度降低,对于大多数种类的污水来说,此时得到的澄清液已经达到了排放标准,可直接排放到环境中。但有的污水中可能含有较多的细菌、金属离子和杂质等,经生物处理后,得到的澄清液中仍有一部分细菌、金属离子和杂质等。此时,可将澄清液中投入活性炭,吸附废水中的杂质、金属离子和细菌。加入量为每立方水中加入0.5~1kg的活性炭较为适宜。
(3)污泥破解步骤:将沉淀污泥输送至污泥破解池,然后向所述沉淀污泥中加入和丙三醇进行污泥破解,得到破解污泥和回收液;其 中,将所述回收液输送至无氧池。
本发明采用和丙三醇实现污泥破解的原理如下:
污泥主要由有机残片、无机颗粒、细菌菌体和胶体等组成,其中含有一定的水分以及其它可被利用的物质。但由于污泥菌体细胞外有大量的大分子胶体物质紧密包裹,同时由于污泥菌体细胞壁或细胞膜的阻隔,使得污泥中大部分易于被微生物降解利用的物质固定于菌体细胞内,难以被有效利用。
氧化硼溶于水后生成硼酸,显酸性,加入的丙三醇不但可使硼酸的酸性大为增强,而且由于丙三醇极易吸水的特性,它还具有优异的渗透性,可将硼酸扩散至被胶体物质包裹的菌体细胞表面甚至内部,从而加强硼酸对菌体细胞的破壁作用。
采用上述方法对污泥进行破解后,由于污泥絮体被破坏,污泥形态发生变化,污泥中被包裹的水、水溶性物质以及菌体细胞中的有机物和无机物被释放出来,得到回收液,从而大大降低污泥质量。而且,由于污泥中的有机物、氮磷等可被微生物降解利用的物质释放出来,此时,含有这些物质的回收液返回到生物处理步骤中的无氧池中,不但可以减少环境污染,而且回收液中的有机物质还可作为碳源,为无氧池中的脱氮反应提供所需要的碳源,减少外加碳源的添加量,从而降低成本。
而且,回收液中在进入第二曝气池中时,回收液中含有的氮磷可通过好氧性生物处理得以去除、吸收,避免排放到外部环境中引起污染。
对于破解后得到的破解污泥,还可将其部分或全部输送至厌氧池中,进一步去除污泥中可能含有的磷。
优选地,所述氧化硼和丙三醇的质量比为(5~8):(15~20)。
进一步优选地,每立方米污泥中:加入500~800mg所述氧化硼和1500~2000mg所述丙三醇。
为了确保污泥破解效率同时又避免冗长的停留时间导致处理效率 降低,优选地,在本发明提供的污水处理方法中,破解污泥在污泥破解池中的停留时间控制在10~15小时。
若污水中的大颗粒物质、悬浮物含量较多时,本发明还在生物处理前对污水进行预处理,所述预处理按照如下方式进行:将污水输送至沉砂池进行初次沉降,然后再通过格栅。沉砂池可去除污水中的大颗粒物质,格栅可去除污水中的悬浮物。
以下是本发明列举的几个实施例。
实施例1
(1)生物处理步骤
将污水输送至厌氧池进行厌氧处理,污水在厌氧池的停留时间为0.5小时。
从厌氧池中排出的污水输送至第一曝气池中进行好氧性生物处理,其中,将池中的通气量控制在0.1vvm,pH控制在5.0~5.5,污水在第一曝气池中的停留时间为3小时。
从第一曝气池中排出的污水输送至无氧池中进行脱氮除磷处理,其中,污水在无氧池中的停留时间为1.5小时。
从无氧池中排出的污水输送至第二曝气池中进行好氧性生物处理,其中,将池中的通气量控制在1.0vvm,pH控制在5.5~6.0,污水在第二曝气池中的停留时间为1.5小时。
(2)沉淀步骤
从第二曝气池中排出的污水输送至沉淀池,经过沉淀后,得到沉淀污泥和澄清液。
(3)污泥破解步骤
将沉淀污泥输送至污泥破解池,然后,按照每立方米污泥中加入500mg氧化硼和800mg丙三醇的标准,将上述物质加入到沉淀污泥中,启动搅拌装置进行搅拌,以确保上述物质与污泥混合均匀。
5小时后,将池中破解出来的回收液输送至无氧池中。
实施例2
(1)预处理步骤
将污水输送至沉砂池进行沉降,去除其中的大颗粒沉淀物,然后将沉砂池排出的污水通过格栅,去除污水中的悬浮物。
(2)生物处理步骤
将污水输送至厌氧池进行厌氧处理,污水在厌氧池的停留时间为1.0小时。
从厌氧池中排出的污水输送至第一曝气池中进行好氧性生物处理,其中,将池中的通气量控制在0.5vvm,pH控制在7.5~8.0,污水在第一曝气池中的停留时间为5小时。
从第一曝气池中排出的污水输送至无氧池中进行脱氮除磷处理,其中,污水在无氧池中的停留时间为2小时。
从无氧池中排出的污水输送至第二曝气池中进行好氧性生物处理,其中,将池中的通气量控制在2.0vvm,pH控制在7.0~7.5,污水在第二曝气池中的停留时间为2小时。
(3)沉淀步骤
从第二曝气池中排出的污水输送至沉淀池,经过沉淀后,得到沉淀污泥和澄清液。按照每立方米澄清液中加入0.5kg活性炭的标准,向澄清液中加入活性炭。
(4)污泥破解步骤
将沉淀污泥输送至污泥破解池,然后,按照每立方米污泥中加入1500mg氧化硼和2000mg丙三醇的标准,将上述物质加入到沉淀污泥中,启动搅拌装置进行搅拌,以确保上述物质与污泥混合均匀。
8小时后,将池中破解出来的回收液输送至无氧池中,将破解污泥全部输送至厌氧池中进行处理。
实施例3至实施例4的处理步骤与实施例2基本上相同,工艺条件如表1所示。
表1 各实施例处理工艺
Figure PCTCN2018098263-appb-000001
对比例
对比例1:与实施例2中的处理方法基本上相同,不同之处在于:未进行污泥破解。
对比例2:与实施例2中的处理方法基本上相同,不同之处在于:在污泥破解步骤中仅添加氧化硼。
采用本发明实施例和对比例中的处理方法处理某化工厂污水,污水水质为:
COD:1500mg/L;BOD 5:800mg/L;SS(悬浮物):700mg/L;
氨氮:43mg/L;总磷:5.1mg/L。
结果说明:
(1)出水水质检测
为了说明本发明提供的污水处理方法对污水中的污染物的处理效 果,对澄清液的水质进行了检测。
表2 澄清液水质检测
COD BOD 5 SS 氨氮 总磷
实施例1 18.2mg/L 11.8mg/L 0.03mg/L 0.77mg/L 0.08mg/L
实施例2 17.3mg/L 9.2mg/L 0.02mg/L 0.54mg/L 0.05mg/L
实施例3 16.5mg/L 8.7mg/L 0.01mg/L 0.49mg/L 0.03mg/L
实施例4 16.1mg/L 8.8mg/L 0.01mg/L 0.46mg/L 0.03mg/L
可见,本发明提供的污水处理方法可将污水中的大部分污染物去除。
(2)污泥破解效果
对比沉淀污泥和破解污泥的质量,按照如下公式计算得出污泥质量降低百分数。
Figure PCTCN2018098263-appb-000002
式中,M 1为沉淀污泥质量,M 2为破解污泥质量。
表3 污泥质量降低百分数
污泥质量降低百分数
实施例1 28.7%
实施例2 33.6%
实施例3 32.9%
实施例4 33.4%
对比例1 0%
对比例2 7%
综上所述,本发明采用氧化硼、丙三醇的协同作用来破解污泥,使得污泥量大大降低。而且,由于污泥中的有机物、氮磷等可被微生物降解利用的物质释放出来,此时,含有这些物质的回收液返回到生物处理步骤中的无氧池中,不但可以减少环境污染,而且回收液中的有机物质还可作为碳源,为无氧池中的脱氮反应提供所需要的碳源, 减少外加碳源的添加量,从而降低成本。此外,回收液在进入第二曝气池中时,回收液中含有的氮磷可通过好氧性生物处理得以去除、吸收,避免排放到外部环境中引起污染。
对于破解后得到的破解污泥,本发明中还将其部分或全部输送至厌氧池中,进一步去除污泥中可能含有的磷。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种可减少污泥量的循环清洁污水处理方法,其特征在于,包括如下步骤:
    (1)生物处理步骤:将污水依次通过厌氧池、第一曝气池、无氧池和第二曝气池;
    (2)沉淀步骤:将经步骤(1)处理后的污水输送至沉淀池,得到沉淀污泥和澄清液;
    (3)污泥破解步骤:将沉淀污泥输送至污泥破解池,然后向所述沉淀污泥中加入氧化硼和丙三醇进行污泥破解,得到破解污泥和回收液;其中,将所述回收液输送至无氧池。
  2. 根据权利要求1所述的处理方法,其特征在于,在步骤(3)中,所使用的氧化硼和丙三醇的质量比为(5~8):(15~20)。
  3. 根据权利要求2所述的处理方法,其特征在于,在步骤(3)中,氧化硼的添加量为500~800mg/m 3污泥,并且丙三醇的添加量为1500~2000mg/m 3污泥。
  4. 根据权利要求1所述的处理方法,其特征在于,在步骤(3)中,将部分或全部所述破解污泥输送至厌氧池中。
  5. 根据权利要求1所述的处理方法,其特征在于,在步骤(1)中,所述第一曝气池中的通气量为0.1~0.5vvm,pH为5.0~8.0。
  6. 根据权利要求1所述的处理方法,其特征在于,在步骤(1)中,所述第二曝气池中的通气量为1.0~2.0vvm,pH为5.5~7.5。
  7. 根据权利要求1所述的处理方法,其特征在于,在步骤(1)中,污水在厌氧池中的停留时间为0.5~1.0小时,在第一曝气池中的停留时间为3~5小时、在无氧池中的停留时间为1.5~2小时,在第二曝气池中的停留时间为1.5~2小时。
  8. 根据权利要求1所述的处理方法,其特征在于,在步骤(3)中,所述破解污泥在污泥破解池中的停留时间为10~15小时。
  9. 根据权利要求1所述的处理方法,其特征在于,在步骤(2)中,将所述澄清液直接排放;
    优选的是,在排放前向所述澄清液中加入活性炭,且加入量为每立方米澄清液中加入0.5~1.0kg活性炭。
  10. 根据权利要求1~9任一项所述的处理方法,其特征在于,在步骤(1)之前还包括预处理步骤,所述预处理按照如下方式进行:将污水输送至沉砂池进行初次沉降,再将经过初次沉降的污水通过格栅。
PCT/CN2018/098263 2018-04-20 2018-08-02 一种可减少污泥量的循环清洁污水处理方法 WO2019200775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810361032.2A CN108314274B (zh) 2018-04-20 2018-04-20 一种可减少污泥量的循环清洁污水处理方法
CN201810361032.2 2018-04-20

Publications (1)

Publication Number Publication Date
WO2019200775A1 true WO2019200775A1 (zh) 2019-10-24

Family

ID=62895834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098263 WO2019200775A1 (zh) 2018-04-20 2018-08-02 一种可减少污泥量的循环清洁污水处理方法

Country Status (2)

Country Link
CN (1) CN108314274B (zh)
WO (1) WO2019200775A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108314274B (zh) * 2018-04-20 2019-01-25 李思琦 一种可减少污泥量的循环清洁污水处理方法
CN110054364A (zh) * 2019-05-24 2019-07-26 刘树立 一种污水处理方法及污水处理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122682A (ja) * 1995-10-30 1997-05-13 Ebara Corp 汚水処理方法
WO2004026773A1 (en) * 2002-08-13 2004-04-01 Korea Institute Of Science And Technology Method for advanced wastewater treatment without excess sludge using sludge disintegration
CN102583937A (zh) * 2012-01-16 2012-07-18 宁波工程学院 利用高铁酸盐氧化使污泥减量化的污水处理新工艺
CN105152495A (zh) * 2015-10-19 2015-12-16 哈尔滨工业大学 一种超声波+a2o+mbr污水处理与污泥减量组合装置及其应用
CN107473508A (zh) * 2017-08-28 2017-12-15 福建微水环保股份有限公司 一种环境微生物和分段进水两级ao去除总氮的水处理方法
CN108314274A (zh) * 2018-04-20 2018-07-24 李思琦 一种可减少污泥量的循环清洁污水处理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1303261B1 (it) * 1998-10-28 2000-11-06 Stefano Neglia Procedimento ed apparecchiatura per depurazione di liquame domesticosotto aerazione prolungata.
KR100428047B1 (ko) * 2001-12-26 2004-04-28 박석균 역유입 슬러지를 이용한 오폐수 정화장치 및 방법
CN201276473Y (zh) * 2008-10-16 2009-07-22 宇星科技发展(深圳)有限公司 污泥处理超声破解装置超声探头
CN206396015U (zh) * 2017-01-09 2017-08-11 志峰(北京)环境科技集团有限公司 二级ao‑mbr组合式污水处理系统
KR101872161B1 (ko) * 2017-09-05 2018-08-02 주식회사 21세기 환경 하,폐수의 질소,인 제거 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122682A (ja) * 1995-10-30 1997-05-13 Ebara Corp 汚水処理方法
WO2004026773A1 (en) * 2002-08-13 2004-04-01 Korea Institute Of Science And Technology Method for advanced wastewater treatment without excess sludge using sludge disintegration
CN102583937A (zh) * 2012-01-16 2012-07-18 宁波工程学院 利用高铁酸盐氧化使污泥减量化的污水处理新工艺
CN105152495A (zh) * 2015-10-19 2015-12-16 哈尔滨工业大学 一种超声波+a2o+mbr污水处理与污泥减量组合装置及其应用
CN107473508A (zh) * 2017-08-28 2017-12-15 福建微水环保股份有限公司 一种环境微生物和分段进水两级ao去除总氮的水处理方法
CN108314274A (zh) * 2018-04-20 2018-07-24 李思琦 一种可减少污泥量的循环清洁污水处理方法

Also Published As

Publication number Publication date
CN108314274A (zh) 2018-07-24
CN108314274B (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
CN105585220B (zh) 一种城市污水处理系统及净化方法
CN105693019B (zh) 含有硝基苯、苯胺、环己胺的废水处理方法和系统
CN108996808B (zh) 钢铁工业难降解浓水的生化组合处理工艺和设备
CN104944710A (zh) 一种医疗废水三级处理工艺
CN102603128A (zh) 一种垃圾渗滤液深度处理回用方法
CN103408201B (zh) 晶硅片砂浆回收中工业废水的处理方法
CN105084661A (zh) 一种煤制乙二醇污水处理方法及系统
CN208471815U (zh) 一种ao工艺与芬顿系统配套的高浓度污水处理系统
CN104591498A (zh) 一种餐厨污水处理工艺
CN201665583U (zh) 一种垃圾渗滤液生物脱氮装置
WO2019200775A1 (zh) 一种可减少污泥量的循环清洁污水处理方法
CN110921982A (zh) 一种生物催化氧化技术处理煤化工废水的系统及其方法
CN109775933A (zh) 一种一次性丁腈手套生产污水处理及中水回用系统
CN111362425B (zh) 一种微电解强化硫酸盐还原菌处理酸性矿山废水的方法及微电解生物反应器
CN109231673B (zh) 一种A/O联合微电场-Fe/C强化除磷装置及其应用
CN116495923A (zh) 一种制药工业高氨氮废水处理系统及处理工艺
CN206486324U (zh) 一种畜禽养殖废水深度处理装置
CN211445406U (zh) 一种填埋场渗滤液处理装置
CN111547954B (zh) 一种煤化工废水处理系统
CN210340626U (zh) 蓝藻深度脱水废水处理系统
CN108773911B (zh) 一种用于垃圾渗透液的处理剂、制备方法及其处理工艺
CN111925008A (zh) 一种用于污水深度处理的臭氧处理工艺
JP2006326438A (ja) 汚泥処理装置及び汚泥処理方法
TWI829361B (zh) 廚餘水處理系統及方法
CN203382616U (zh) 一种污水处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915440

Country of ref document: EP

Kind code of ref document: A1