WO2019200642A1 - 一种气缸及采用该气缸的低温制冷机 - Google Patents

一种气缸及采用该气缸的低温制冷机 Download PDF

Info

Publication number
WO2019200642A1
WO2019200642A1 PCT/CN2018/087119 CN2018087119W WO2019200642A1 WO 2019200642 A1 WO2019200642 A1 WO 2019200642A1 CN 2018087119 W CN2018087119 W CN 2018087119W WO 2019200642 A1 WO2019200642 A1 WO 2019200642A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
stage
thickness
air cylinder
spiral channel
Prior art date
Application number
PCT/CN2018/087119
Other languages
English (en)
French (fr)
Inventor
李奥
周志坡
钱继峰
王立智
Original Assignee
中船重工鹏力(南京)超低温技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中船重工鹏力(南京)超低温技术有限公司 filed Critical 中船重工鹏力(南京)超低温技术有限公司
Publication of WO2019200642A1 publication Critical patent/WO2019200642A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the invention relates to the technical field of cryogenic refrigerators, in particular to a high-strength, low-leakage cylinder capable of solving the contradiction between cylinder strength and heat leakage and cylinder thickness requirements, and a cryogenic refrigerator using the same.
  • An ultra-low temperature refrigerator represented by a Gifford-McMahon (GM) refrigerator has an expander and a compressor of a working gas (also referred to as a refrigerant gas).
  • the chiller of this type is provided by the compressor to discharge the high-pressure airflow, enters into the cylinder through the valve-distributing mechanism, moves up and down in the piston, exchanges heat with the cold-storage material, and then expands into the expansion chamber to perform work expansion.
  • the piston flows out of the valve train and returns to the low pressure chamber of the compressor.
  • the cooling effect is formed by the above continuous cycle process.
  • the refrigerator includes a compressor 1, a cover body 2, a cylinder 13, a first-stage shifting piston 11 and a two-stage shifting piston 12.
  • the cover body 2 is provided with a driving mechanism and a gas distribution structure (not shown).
  • the driving mechanism drives the first-stage shifting piston 11 and the two-stage shifting piston 12 to move up and down in the cylinder 13.
  • the compressor 1 discharges the high-pressure refrigerant gas into the cylinder 13 through the high-pressure exhaust pipe 1a and sucks the low-pressure refrigerant gas through the low-pressure suction pipe 1b, and respectively passes through the first-stage shifting piston 11 and the second-stage shifting piston 12 to the first-stage expansion chamber.
  • the 9 and secondary expansion chambers 10 are compressed and expanded to form a refrigeration effect, and then the refrigeration effect is conducted by the primary heat exchanger 13a and the secondary heat exchanger 13b.
  • 2 is a schematic structural view of a secondary cylinder 132 of a conventional cylinder.
  • the cylinder of the cylinder 13 is made of a thin-walled stainless steel pipe, and the cold end of the secondary cylinder 132 is welded with a secondary heat exchanger 13b, and the inside of the thin-walled stainless steel pipe is
  • the outer surface is a smooth structure, and the thickness of the cylinder is set to ⁇ 1; since the cylinder 13 contains alternating high and low pressure airflow (generally 3.0 MPa/0.7 MPa), the inner diameter of the cylinder 13 does not change under long-term use conditions.
  • the size of ⁇ 1 should not be too small, it must have a certain thickness to ensure mechanical strength to prevent fatigue deformation; at the same time, due to the huge temperature difference between the two ends of the cylinder 13, the temperature near the cover 2 is 25 ° C, close to the primary heat exchanger
  • the temperature of 13a is -220 ° C to -200 ° C
  • the temperature near the secondary heat exchanger 13 b is -269 ° C to -250 ° C.
  • the cylinder of the cylinder 13 itself is along the axial direction of the primary cylinder 131 and the secondary cylinder 132 To generate a large amount of conduction heat leakage, to suppress this cooling loss, it is necessary to reduce the cylinder thickness ⁇ 1 of the cylinder 13 and reduce the heat conduction temperature difference in the axial direction. There is a contradiction between the above two points on the cylinder thickness ⁇ 1 of the cylinder 13, that is, the contradiction between the strength and the leakage heat, and the cylinder 13 belongs to a precision machined part, and the control of the cylinder thickness ⁇ 1 makes the machining difficult.
  • the object of the present invention is to provide a high-strength, low-leakage cylinder capable of solving the contradiction between cylinder cylinder strength and heat leakage and cylinder thickness requirement, and a cryogenic refrigerator using the same, in view of the problems existing in the prior art. .
  • a cylinder characterized in that: the outer surface of the cylinder of the cylinder is provided with a spiral channel, the thickness of the groove bottom of the spiral channel is smaller than the thickness of the circumference of the cylinder of the cylinder block itself, and the circumference of the cylinder is spirally continuous. Reinforcing ribs on the cylinder block.
  • the cylinder comprises a cylinder body and a heat exchanger, and the cylinder body is made of stainless steel or titanium alloy, and the heat conductivity of the material of the heat exchanger is larger than the thermal conductivity of the material of the cylinder body.
  • the cylinder is a single-stage structure or a multi-stage structure.
  • the cylinder When the cylinder is of a two-stage structure, the cylinder comprises a first-stage cylinder and a two-stage cylinder, and a first-stage heat exchanger and a second-stage heat exchanger are welded to the cold end of the first-stage cylinder and the second-stage cylinder.
  • a spiral channel is arranged on the outer surface of the cylinder of the first-stage cylinder and/or the second-stage cylinder, and the thickness of the groove bottom of the spiral channel is smaller than the thickness of the cylinder periphery of the cylinder itself, and the circumference of the cylinder is spirally formed.
  • a rib that is continuously wound around the cylinder.
  • the groove bottom thickness ⁇ 2 of the spiral channel and the thickness ⁇ 1 of the cylinder circumference satisfy: 0.1 ⁇ ⁇ 2 / ⁇ 1 ⁇ 1.
  • the first-stage cylinder and the second-stage cylinder are respectively provided with a first-stage shifting piston and a two-stage shifting piston, and the first-stage shifting piston and the second-stage shifting piston are respectively in the corresponding first-stage cylinder and the second-stage cylinder body
  • the reciprocating motion expands and cools the compressed refrigerant gas.
  • a cryogenic refrigerator using the cylinder described above characterized in that the cryogenic refrigerator comprises the above-described cylinder.
  • the invention provides a spiral channel on the outer surface of the cylinder, the thickness of the groove bottom of the spiral channel is smaller than the thickness of the circumference of the cylinder of the cylinder itself, and the circumference of the cylinder constitutes a rib which is spirally wound around the cylinder block, and is solved.
  • the cylinder strength and leakage heat of the cylinder are in contradiction with the requirements of the thickness of the cylinder.
  • the cylinder has the characteristics of high strength, low heat leakage and easy processing, and is suitable for popularization and use.
  • Figure 1 is a schematic view showing the structure of a cryogenic refrigerator using a conventional cylinder
  • Figure 2 is a schematic structural view of a conventional cylinder
  • Figure 3 is a schematic view showing the structure of the cylinder of the present invention assembled on a cryogenic refrigerator
  • Figure 4 is a schematic view of the structure of the cylinder of the present invention.
  • 1 compressor
  • 1a high pressure exhaust pipe
  • 1b low pressure suction pipe
  • 2 cover body
  • 7 pressure seal ring
  • 8 hot chamber
  • 9 first stage expansion chamber
  • 10 secondary expansion chamber
  • 11 first-stage shifting piston
  • 11a first-stage piston front hole
  • 11b first-stage piston rear hole
  • 11c first-stage cold storage material
  • 12 two-stage shifting piston
  • 12a secondary piston front hole
  • 12b secondary Piston rear hole
  • 12c - secondary cold storage material 13 - cylinder
  • 132 - secondary cylinder 1321 - spiral channel
  • 1322 - cylinder circumference 13a - primary heat exchanger
  • 13b Secondary heat exchanger.
  • FIG. 4 is a cylinder structure of a cylinder 13 provided by the present invention.
  • the cylinder 13 includes a cylinder block and a heat exchanger.
  • the cylinder body is made of stainless steel or titanium alloy, and the heat conductivity ratio of the heat exchanger is The material of the cylinder is highly thermally conductive.
  • a spiral groove 1321 is opened, and the groove bottom 1322 is recessed with respect to the cylinder periphery 1322 of the cylinder 13, and the groove bottom thickness of the spiral groove 1321 becomes ⁇ 2, and the groove bottom thickness of the spiral groove 1321.
  • ⁇ 2 is smaller than the cylinder thickness ⁇ 1 of the cylinder periphery 1322 of the cylinder 13 itself, and the relationship between the groove bottom thickness ⁇ 2 and the cylinder thickness ⁇ 1 of the cylinder periphery 1322 is: 0.1 ⁇ 2/ ⁇ 1 ⁇ 1, so that the original cylinder
  • the heat transfer effect of the cylinder corresponding to the body thickness ⁇ 1 is smaller than that of the cylinder corresponding to the spiral channel 1321, that is, the heat conduction effect of the cylinder 13 in the present invention can be understood as subtracted from the heat transfer amount of the conventional cylinder.
  • the spiral channel 1321 corresponds to the volumetric stainless steel heat transfer amount, thereby improving the refrigeration performance.
  • the leakage heat of the secondary cylinder 132 along the axial direction of the cylinder 13 is shown in Table 1, and is theoretically reduced in the temperature range at 4.2K. 0.104W.
  • the cylinder circumference 1322 is arranged to be continuously arranged on the cylinder surface of the cylinder 13, and the thickness is ⁇ 1, and the value of ⁇ 1 and the corresponding width can be adjusted according to the actuality, so that the cylinder circumference 1322 constitutes
  • the ribs are spirally wound around the cylinder 13 cylinder, and in a specific implementation, the cylinder periphery 1322 is continuously distributed on the outer surface of the cylinder 13 and is arbitrarily traversed in the axial direction of the piston. On the face, there are ribs, which ensure the strength of the cylinder 13, and Table 2 shows the stress intensity of the two-stage cylinder 132.
  • the cylinder of the cylinder provided by the present application The body stress intensity increased by 6%, indicating that the cylinder of this structure can be used on the cryocooler cylinder.
  • the spiral channel 1321 is processed on the outer surface of the cylinder 13 of the cylinder 13, for example, in the form of turning, the processing is simple, convenient, and easy to implement.
  • the spiral channel 1321 structure is suitable for a single-stage refrigerator or a multi-stage refrigerator.
  • the cylinder 13 is of a two-stage structure
  • the cylinder 13 includes a first-stage cylinder 131 and a two-stage cylinder 132.
  • the cold ends of the primary cylinder 131 and the secondary cylinder 132 are correspondingly welded with a primary heat exchanger 13a and a secondary heat exchanger 13b, and the cylinders of the primary cylinder 131 and/or the secondary cylinder 132 are described.
  • the outer surface is provided with a spiral channel 1321.
  • the thickness of the groove bottom of the spiral channel 1321 is smaller than the thickness of the cylinder periphery 1322 of the cylinder itself, and the cylinder periphery 1322 constitutes a rib that is spirally wound around the cylinder.
  • a first-stage shifting piston 11 and a two-stage shifting piston 12 are respectively disposed in the first-stage cylinder 131 and the second-stage cylinder 132, and the first-stage shifting piston 11 and the second-stage shifting piston 12 are respectively corresponding to the first-stage cylinders 131 and two.
  • the cylinders 132 are reciprocated up and down to expand and cool the compressed refrigerant gas.
  • the cylinder 13 having the structure of the spiral channel 1321 may have moving parts or no moving parts, and may be used in the pulsator and the regenerator cylinder in the pulse tube refrigerator.
  • a cryogenic refrigerator using the above cylinder includes the above-mentioned cylinder 13, and a spiral channel 1321 is provided on the outer surface of the cylinder 13 of the cylinder 13, and the thickness of the groove bottom of the spiral channel 1321 is smaller than that.
  • the cylinder 13 has a thickness of the cylinder periphery 1322 of the cylinder itself, and the cylinder periphery 1322 constitutes a rib that is spirally wound around the cylinder 13 cylinder.
  • the compressor 1 compresses the refrigerant gas sucked from the intake port and discharges it to the discharge port, and supplies a high-low pressure alternating air flow by the gas distribution mechanism in the cover 2, and the cylinder 13 supplies the compressor 1 refrigerant.
  • the gas, installed in the cylinder 13, moves the piston up and down in the cylinder 13;
  • the cryogenic refrigerator is a refrigerator with a cylinder, not limited to the Gifford-McMahon refrigerator, the Solvin refrigerator, the pulse tube refrigerator Wait.
  • the present invention provides a spiral channel 1321 on the outer surface of the cylinder.
  • the thickness of the groove bottom of the spiral channel 1321 is smaller than the thickness of the cylinder periphery 1322 of the cylinder 13 itself, and the cylinder periphery 1322 is spirally wound around the cylinder 13 cylinder.
  • the upper reinforcing rib solves the contradiction between the cylinder strength and the leakage heat of the cylinder 13 and the thickness requirement of the cylinder.
  • the cylinder has the characteristics of high strength, low heat leakage and easy processing, and is suitable for popularization and use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种气缸(13),气缸(13)的缸体外表面设有螺旋槽道(1321),螺旋槽道(1321)的槽底厚度小于气缸(13)缸体本身的气缸周缘(1322)的厚度,且气缸周缘(1322)构成呈螺旋状连续绕在气缸(13)缸体上的加强筋。还公开了一种包括气缸(13)的低温制冷机。通过在缸体外表面设有螺旋槽道,螺旋槽道的槽底厚度小于气缸本身的气缸周缘的厚度,且气缸周缘构成呈螺旋状连续绕在气缸缸体上的加强筋,解决了气缸的缸体强度和漏热与缸体厚度要求上的矛盾,气缸具有高强度、低漏热、易加工的特点。

Description

一种气缸及采用该气缸的低温制冷机 技术领域
本发明涉及低温制冷机技术领域,具体地说是一种能够解决气缸强度和漏热与缸体厚度要求上的矛盾的高强度、低漏热的气缸及采用该气缸的低温制冷机。
背景技术
以吉福德-麦克马洪(Gifford-McMahon;GM)制冷机为代表的超低温制冷机具有工作气体(也称为制冷剂气体)的膨胀机及压缩机。该类制冷机由压缩机提供排出的高压气流,经由配气机构进入到置于气缸内,上下往复运动的推移活塞内,与蓄冷材料进行换热,再到膨胀腔内做功膨胀,再经过推移活塞,流出配气机构,回到压缩机低压腔内。通过上述连续循环过程,形成制冷效应。
如图1所示,制冷机包含压缩机1、罩体2、气缸13、一级推移活塞11和二级推移活塞12,罩体2内装驱动机构和配气结构(图中未画出),驱动机构带动一级推移活塞11和二级推移活塞12在气缸13内上下运动。压缩机1通过高压排气管道1a向气缸13内排入高压制冷剂气体并通过低压吸气管道1b吸出低压制冷剂气体,通过一级推移活塞11和二级推移活塞12分别对一级膨胀腔9和二级膨胀腔10压缩、膨胀,形成制冷效应,然后利用一级换热器13a和二级换热器13b将制冷效应传导出去。图2是传统气缸的二级气缸132的结构示意图,气缸13的缸体采用薄壁不锈钢管制成,二级气缸132的冷端焊接有二级换热器13b,且薄壁不锈钢管的内、外表面为光滑结构,设定缸体厚度为δ1;由于气缸13内含有交变的高低压气流(一般为3.0MPa/0.7MPa),为保证长期使用条件下,气缸13的内径不发生变化,因此δ1的尺寸不能过小,必须有一定的厚度,确保机械强度以防止疲劳变形;同时由于气缸13的两端存在巨大的温差,靠近罩体2处温度为25℃,靠近一级换热器13a温度为-220℃~-200℃,靠近二级换热器13b的温度为-269℃~-250℃,气缸13的缸体本身会沿着一级气缸131和二级气缸132的轴向产生巨大的传导漏热,要抑制这项制冷损失,必须减少气缸13的缸体厚度δ1,降低轴向上的导热温差。上述两点对气缸13的缸体厚度δ1的需求存在着矛盾,即强度与漏热之间的矛盾,并且气缸13属于精密加工件,为控制这一缸体厚度δ1,使得加工难度较大。
发明内容
本发明的目的是针对现有技术存在的问题,提供一种能够解决气缸缸体强度和漏热与缸体厚度要求上的矛盾的高强度、低漏热的气缸及采用该气缸的低温制冷机。
本发明的目的是通过以下技术方案解决的:
一种气缸,其特征在于:所述气缸的缸体外表面设有螺旋槽道,螺旋槽道的槽底厚度小于该气缸缸体本身的气缸周缘的厚度,且气缸周缘构成呈螺旋状连续绕在气缸缸体上的加强筋。
所述的气缸包括缸体和换热器,缸体的材质为不锈钢或钛合金,换热器的材质热导率比缸体的材质热导率大。
所述的气缸是单级结构或多级结构。
所述的气缸是双级结构时,该气缸包括一级缸体和二级缸体,在一级缸体和二级缸体的冷端对应焊接有一级换热器和二级换热器,在所述的一级缸体和/或二级缸体的缸体外表面设有螺旋槽道,螺旋槽道的槽底厚度小于缸体本身的气缸周缘的厚度,且气缸周缘构成呈螺旋状连续绕在缸体上的加强筋。
所述螺旋槽道的槽底厚度δ2与气缸周缘的厚度δ1满足:0.1<δ2/δ1<1。
所述的一级缸体和二级缸体内分别对应设置有一级推移活塞和二级推移活塞,一级推移活塞和二级推移活塞分别在对应的一级缸体和二级缸体内上下往复运动使被压缩的制冷剂气体膨胀制冷。
一种采用所述的气缸的低温制冷机,其特征在于:所述的低温制冷机包括上述的气缸。
本发明相比现有技术有如下优点:
本发明通过在缸体外表面设有螺旋槽道,螺旋槽道的槽底厚度小于该气缸本身的气缸周缘的厚度,且气缸周缘构成呈螺旋状连续绕在气缸缸体上的加强筋,解决了气缸的缸体强度和漏热与缸体厚度要求上的矛盾,该气缸具有高强度、低漏热、易加工的特点,适宜推广使用。
附图说明
附图1为采用传统气缸的低温制冷机的结构示意图;
附图2为传统气缸的结构示意图;
附图3为本发明的气缸组装在低温制冷机上的结构示意图;
附图4为本发明的气缸结构示意图。
其中:1—压缩机;1a—高压排气管道;1b—低压吸气管道;2—罩体;7—活塞密封圈;8—热腔;9—一级膨胀腔;10—二级膨胀腔;11—一级推移活塞;11a—一级活塞前孔;11b—一级活塞后孔;11c—一级蓄冷材料;12—二级推移活塞;12a—二级活塞前孔;12b—二级活塞后孔;12c—二级蓄冷材料;13—气缸;131—一级缸体;132—二级缸体;1321—螺旋槽道;1322—气缸周缘;13a—一级换热器;13b—二级换热器。
具体实施方式
下面结合附图与实施例对本发明作进一步的说明。
如图4所示,图4是本发明所提供的气缸13的缸体结构,气缸13包括缸体和换热器,缸体的材质为不锈钢或钛合金,换热器的材质热导率比缸体的材质热导率大。在气缸13的缸体外表面上,开有螺旋槽道1321,且相对于气缸13的气缸周缘1322凹陷下去,则螺旋槽道1321的槽底厚度变为δ2,螺旋槽道1321的槽底厚度δ2小于该气缸13缸体本身的气缸周缘1322的缸体厚度δ1,且槽底厚度δ2与气缸周缘1322的缸体厚度δ1之间的关系为:0.1<δ2/δ1<1,使得原来的缸体厚度δ1对应的圆筒传热效果小于没有螺旋槽道1321对应的圆筒的传热效果,即本发明中的气缸13的热传导效应可理解为,在传统圆筒传热量基础上,减去了螺旋槽道1321对应体积的不锈钢传热量,从而提升制冷性能,例如,二级缸体132沿着气缸13的轴向的漏热为表1所示,在4.2K下的温区下理论减少了0.104W。
表1二级缸体导热漏热情况对照表
二级缸体导热漏热 传统气缸 本发明气缸
漏热值(W)* 0.193 0.089
*设定热端温度为-228℃,冷端为-269℃;δ2/δ1=0.3。
同时,与凹陷的螺旋槽道1321相比,气缸周缘1322呈现为连续布置在气缸13的缸体表面上,且厚度为δ1,可根据实际调整δ1的值以及对应的宽度,使得气缸周缘1322构成呈螺旋状连续绕在气缸13缸体上的加强筋,并且在具体实施过程中,气缸周缘1322是连续分布在气缸13的缸体外表面上,且在沿着活塞运动的轴向的任意横断面上,均有加强筋,这就确保了气缸13的强度,表2所示为二级缸体132的应力强度,与传统气缸的缸体应力强度相比,本申请所提供的气缸的缸体应力强度增加了6%,说明该结构的气缸可用于低温制冷机气缸上。
表2二级缸体应力强度对照表
二级气缸应力强度 传统气缸 本发明气缸
计算强度(MPa)* 30.5 32.3
*气缸内部气体压强设定压力为3MPa,δ2/δ1=0.3
由于螺旋槽道1321是在气缸13的缸体外表面进行加工,例如采用车削形式,故加工简单、方便,易于实现。
在上述结构的基础上,该螺旋槽道1321结构适用于单级制冷机或多级制冷机,气缸13是双级结构时,该气缸13包括一级缸体131和二级缸体132,在一级缸体131和二级缸体132的冷端对应焊接有一级换热器13a和二级换热器13b,在所述的一级缸体131和/或二级缸体132的缸体外表面设有螺旋槽道1321,螺旋槽道1321的槽底厚度小于缸体本身的气 缸周缘1322的厚度,且气缸周缘1322构成呈螺旋状连续绕在缸体上的加强筋。在一级缸体131和二级缸体132内分别对应设置有一级推移活塞11和二级推移活塞12,一级推移活塞11和二级推移活塞12分别在对应的一级缸体131和二级缸体132内上下往复运动使被压缩的制冷剂气体膨胀制冷。
在实际应用中,具有螺旋槽道1321结构的气缸13内可以有运动部件,也可以没有运动部件,即可用在脉管制冷机中的脉管和蓄冷器气缸上。
如图3所示:一种采用上述气缸的低温制冷机,该低温制冷机包括上述的气缸13,在气缸13的缸体外表面设有螺旋槽道1321,螺旋槽道1321的槽底厚度小于该气缸13缸体本身的气缸周缘1322的厚度,且气缸周缘1322构成呈螺旋状连续绕在气缸13缸体上的加强筋。在低温制冷机中,压缩机1压缩从吸气口吸入的制冷剂气体并向排出口排出,依靠罩体2内的配气机构提供高低压交变的气流,气缸13供给压缩机1制冷剂气体,安装在气缸13内推移活塞在气缸13内上下往复运动;该低温制冷机是具有气缸的制冷机,不局限于吉福德-麦克马洪制冷机、索尔文制冷机、脉管制冷机等。
本发明通过在缸体外表面设有螺旋槽道1321,螺旋槽道1321的槽底厚度小于该气缸13本身的气缸周缘1322的厚度,且气缸周缘1322构成呈螺旋状连续绕在气缸13缸体上的加强筋,解决了气缸13的缸体强度和漏热与缸体厚度要求上的矛盾,该气缸具有高强度、低漏热、易加工的特点,适宜推广使用。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内;本发明未涉及的技术均可通过现有技术加以实现。

Claims (7)

  1. 一种气缸,其特征在于:所述气缸(13)的缸体外表面设有螺旋槽道(1321),螺旋槽道(1321)的槽底厚度小于该气缸(13)缸体本身的气缸周缘(1322)的厚度,且气缸周缘(1322)构成呈螺旋状连续绕在气缸(13)缸体上的加强筋。
  2. 根据权利要求1所述的气缸,其特征在于:所述的气缸(13)包括缸体和换热器,缸体的材质为不锈钢或钛合金,换热器的材质热导率比缸体的材质热导率大。
  3. 根据权利要求1或2所述的气缸,其特征在于:所述的气缸(13)是单级结构或多级结构。
  4. 根据权利要求3所述的气缸,其特征在于:所述的气缸(13)是双级结构时,该气缸(13)包括一级缸体(131)和二级缸体(132),在一级缸体(131)和二级缸体(132)的冷端对应焊接有一级换热器(13a)和二级换热器(13b),在所述的一级缸体(131)和/或二级缸体(132)的缸体外表面设有螺旋槽道(1321),螺旋槽道(1321)的槽底厚度小于缸体本身的气缸周缘(1322)的厚度,且气缸周缘(1322)构成呈螺旋状连续绕在缸体上的加强筋。
  5. 根据权利要求1或4所述的气缸,其特征在于:所述螺旋槽道(1321)的槽底厚度δ2与气缸周缘(1322)的厚度δ1满足:0.1<δ2/δ1<1。
  6. 根据权利要求4所述的气缸,其特征在于:所述的一级缸体(131)和二级缸体(132)内分别对应设置有一级推移活塞(11)和二级推移活塞(12),一级推移活塞(11)和二级推移活塞(12)分别在对应的一级缸体(131)和二级缸体(132)内上下往复运动使被压缩的制冷剂气体膨胀制冷。
  7. 一种采用如权利要求1-6任一所述的气缸的低温制冷机,其特征在于:所述的低温制冷机包括上述的气缸。
PCT/CN2018/087119 2018-04-19 2018-05-16 一种气缸及采用该气缸的低温制冷机 WO2019200642A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810354808.8 2018-04-19
CN201810354808.8A CN108507213B (zh) 2018-04-19 2018-04-19 一种气缸及采用该气缸的低温制冷机

Publications (1)

Publication Number Publication Date
WO2019200642A1 true WO2019200642A1 (zh) 2019-10-24

Family

ID=63382860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087119 WO2019200642A1 (zh) 2018-04-19 2018-05-16 一种气缸及采用该气缸的低温制冷机

Country Status (2)

Country Link
CN (1) CN108507213B (zh)
WO (1) WO2019200642A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440475A (zh) * 2019-07-23 2019-11-12 中船重工鹏力(南京)超低温技术有限公司 抗氧化蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851929B2 (ja) * 2002-04-17 2006-11-29 岩谷瓦斯株式会社 極低温冷凍機
CN201687592U (zh) * 2009-05-07 2010-12-29 郑光升 不结积炭的发动机气缸
CN102518525A (zh) * 2011-12-09 2012-06-27 赵四男 一种气缸套
CN102844633A (zh) * 2010-04-14 2012-12-26 住友重机械工业株式会社 超低温制冷机
CN103032987A (zh) * 2011-10-05 2013-04-10 住友重机械工业株式会社 超低温制冷机
CN106016803A (zh) * 2016-06-29 2016-10-12 安徽万瑞冷电科技有限公司 低温制冷机冷头
CN208139618U (zh) * 2018-04-19 2018-11-23 中船重工鹏力(南京)超低温技术有限公司 一种气缸及采用该气缸的低温制冷机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216711A (ja) * 2009-03-16 2010-09-30 Sumitomo Heavy Ind Ltd 蓄冷器式冷凍機
JP5415502B2 (ja) * 2011-09-28 2014-02-12 住友重機械工業株式会社 極低温冷凍機
CN202885328U (zh) * 2012-11-13 2013-04-17 住友重机械工业株式会社 排出器及具备该排出器的制冷机
JP2016180590A (ja) * 2016-07-22 2016-10-13 住友重機械工業株式会社 極低温冷凍機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851929B2 (ja) * 2002-04-17 2006-11-29 岩谷瓦斯株式会社 極低温冷凍機
CN201687592U (zh) * 2009-05-07 2010-12-29 郑光升 不结积炭的发动机气缸
CN102844633A (zh) * 2010-04-14 2012-12-26 住友重机械工业株式会社 超低温制冷机
CN103032987A (zh) * 2011-10-05 2013-04-10 住友重机械工业株式会社 超低温制冷机
CN102518525A (zh) * 2011-12-09 2012-06-27 赵四男 一种气缸套
CN106016803A (zh) * 2016-06-29 2016-10-12 安徽万瑞冷电科技有限公司 低温制冷机冷头
CN208139618U (zh) * 2018-04-19 2018-11-23 中船重工鹏力(南京)超低温技术有限公司 一种气缸及采用该气缸的低温制冷机

Also Published As

Publication number Publication date
CN108507213A (zh) 2018-09-07
CN108507213B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2017118241A1 (zh) 一种机械振动隔离的无液氦消耗极低温制冷系统
WO2012027918A1 (zh) 带调相机构的g-m制冷机
JP2013257074A (ja) 極低温冷凍機及びディスプレーサ
JP2016075429A (ja) 極低温冷凍機
CN107965942A (zh) 提高二氧化碳跨临界循环的制冷热泵系统性能的方法和系统
WO2015165371A1 (zh) 低温回热器及低温制冷机
WO2019200642A1 (zh) 一种气缸及采用该气缸的低温制冷机
CN111141054A (zh) 一种跨临界双级过冷引射二氧化碳系统及应用
US10060656B2 (en) Pulse tube refrigerator
KR102046020B1 (ko) 하이브리드 브레이튼-기퍼드-맥마흔 팽창기
WO2019200643A1 (zh) 一种推移活塞及采用该推移活塞的低温制冷机
CN109556318B (zh) 一种热声制冷机
CN208139618U (zh) 一种气缸及采用该气缸的低温制冷机
CN111141055B (zh) 一种双温区多级过冷co2制冷系统
CN211316632U (zh) 一种引射器增压过冷膨胀机耦合跨临界co2系统
CN210532727U (zh) 超低温制冷机
JP2015523538A (ja) ブレイトンサイクルエンジン
CN210532730U (zh) 一种推移活塞及采用该推移活塞的低温制冷机
CN212157715U (zh) 一种引射增压梯级过冷跨临界co2系统
JP2015117838A (ja) 蓄冷器式冷凍機
CN109974322B (zh) 一种带膨胀机的双温区单级制冷系统
CN110360762A (zh) 超低温制冷机
CN111059785A (zh) 一种采用双喷射器的双级压缩制冷系统
CN111928513A (zh) 一种新型脉冲管制冷机
CN219993863U (zh) 双吸气活塞压缩机及其制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915132

Country of ref document: EP

Kind code of ref document: A1