WO2019198665A1 - Liquid crystal polyester resin, method for manufacturing same, and molded article comprising same - Google Patents
Liquid crystal polyester resin, method for manufacturing same, and molded article comprising same Download PDFInfo
- Publication number
- WO2019198665A1 WO2019198665A1 PCT/JP2019/015328 JP2019015328W WO2019198665A1 WO 2019198665 A1 WO2019198665 A1 WO 2019198665A1 JP 2019015328 W JP2019015328 W JP 2019015328W WO 2019198665 A1 WO2019198665 A1 WO 2019198665A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester resin
- liquid crystal
- crystal polyester
- structural unit
- mol
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/60—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
Definitions
- the present invention relates to a liquid crystal polyester resin and a molded product comprising the same. More specifically, the present invention relates to a liquid crystal polyester resin capable of obtaining a molded product having excellent fluidity and dimensional stability while suppressing mold contamination during molding, and a molded product comprising the same.
- liquid crystal polyester resin Since liquid crystal polyester resin has a liquid crystal structure, it has excellent heat resistance, fluidity and dimensional stability. For this reason, the demand is expanding mainly for the use of electrical and electronic parts such as connectors and relays that require these characteristics. In particular, with the recent improvement in performance of equipment, the above-mentioned parts have been reduced in size and thickness, and further fluidity is required. Therefore, for example, improvement in fluidity has been proposed by melting and kneading a low molecular weight compound in a liquid crystal polymer to obtain a liquid crystal polymer having a low melt viscosity (see, for example, Patent Documents 1 and 2).
- the present invention solves the above-mentioned problems, and provides a liquid crystal polyester resin capable of obtaining a molded product excellent in fluidity and dimensional stability while suppressing mold contamination during molding, and a molded product thereof. Is an issue.
- the inventors of the present invention have achieved liquidity and dimensional stability while suppressing mold contamination during molding with a liquid crystal polyester resin containing a small amount of a specific structural unit.
- the present inventors have found that an excellent molded product can be obtained.
- the present invention is: (1) 15 to 80 mol% of structural units derived from aromatic hydroxycarboxylic acid, 7 to 40 mol% of structural units derived from aromatic diol, and 100% by mol of all structural units of liquid crystal polyester resin Liquid crystal polyester resin containing 7 to 40% of structural units derived from a group dicarboxylic acid and 0.01 to 5 mol% of at least one structural unit selected from the following structural units (I) and (II).
- the liquid crystalline polyester resin includes the structural unit (III) as a structural unit derived from an aromatic hydroxycarboxylic acid, and includes the following structural unit (IV) as a structural unit derived from an aromatic dicarboxylic acid.
- the liquid crystalline polyester resin contains the following structural unit (V) as a structural unit derived from an aromatic diol, and the structural unit (V) is 2 to 20 with respect to 100 mol% of all structural units of the liquid crystalline polyester resin.
- a liquid crystal polyester resin composition comprising 10 to 200 parts by weight of a filler with respect to 100 parts by weight of the liquid crystal polyester resin according to any one of (1) to (5).
- a molded article comprising the liquid crystalline polyester resin according to any one of (1) to (5) or the liquid crystalline polyester resin composition according to (7).
- the molded product according to (8), wherein the molded product is selected from the group consisting of a connector, a relay, a switch, a coil bobbin, a lamp socket, a camera module, and an integrated circuit sealing material.
- liquid crystal polyester resin of the present invention it is possible to obtain a molded product excellent in fluidity and dimensional stability while suppressing mold contamination during molding.
- a resin is particularly suitable for electrical / electronic parts and mechanical parts such as connectors, relays, switches, coil bobbins, lamp sockets, camera modules, integrated circuit sealing materials having a thin box shape or cylindrical shape.
- the liquid crystal polyester resin used in the present invention is a polyester that forms an anisotropic molten phase.
- the liquid crystal polyester resin include polyesters composed of structural units selected to form an anisotropic molten phase from oxycarbonyl units, dioxy units, dicarbonyl units and the like described later.
- the liquid crystal polyester resin of the present invention contains 15 to 80 mol% of oxycarbonyl units, that is, structural units derived from aromatic hydroxycarboxylic acid, with respect to 100 mol% of all structural units of the liquid crystal polyester resin. If the content of the oxycarbonyl unit is less than 15 mol%, the liquid crystallinity is impaired, so that the fluidity of the liquid crystal polyester resin is lowered and the dimensional stability is also lowered. From the viewpoint of improving fluidity and dimensional stability, the content of oxycarbonyl units is preferably 20 mol% or more, and more preferably 25 mol% or more.
- the content of the oxycarbonyl unit is more than 80 mol%, it becomes difficult to control the crystallinity and melting point of the liquid crystal polyester resin, and the fluidity and dimensional stability are lowered.
- the content of oxycarbonyl units is preferably 75 mol% or less, and more preferably 70 mol% or less.
- oxycarbonyl unit structural units derived from p-hydroxybenzoic acid, m-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid and the like can be used.
- the liquid crystalline polyester resin of the present invention contains 7 to 40 mol% of dioxy units, that is, structural units derived from aromatic diol, with respect to 100 mol% of all structural units of the liquid crystalline polyester resin.
- dioxy units that is, structural units derived from aromatic diol
- the content of dioxy units is preferably 10 mol% or more, and more preferably 15 mol% or more.
- the content of the dioxy unit is more than 40 mol%, the liquid crystallinity is impaired, so that the fluidity of the liquid crystal polyester resin is lowered and the dimensional stability is also lowered.
- the content of dioxy units is preferably 37 mol% or less, and more preferably 35 mol% or less.
- the liquid crystalline polyester resin of the present invention has at least one structural unit selected from the following structural units (I) and (II) as a dioxy unit. And 0.01 to 5 mol% with respect to 100 mol% of all structural units of the liquid crystal polyester resin.
- the structural units (I) and (II) are structural units derived from 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol, respectively. When the content of these structural units is less than 0.01 mol%, the thin-wall fluidity and dimensional stability are lowered.
- the content of these structural units is preferably 0.03 mol% or more, and more preferably 0.05 mol% or more.
- the content of these structural units is preferably 3% or less and more preferably 1% or less from the viewpoint of excellent thin-wall fluidity and dimensional stability while suppressing mold contamination during molding.
- the structural unit (I) and the structural unit (II) may have either one of the structural units, and the other structural unit may be 0 mol%, but it suppresses mold contamination during molding.
- the structural unit (II) is included as an essential component from the viewpoint of excellent thin-wall fluidity and dimensional stability.
- Examples of structural units derived from aromatic diols include 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, t-butylhydroquinone, phenylhydroquinone, chlorohydroquinone, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 3,4'-dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, 4,4 Examples include structural units derived from '-dihydroxybenzophenone and the like.
- a structural unit selected from structural units derived from 4,4'-dihydroxybiphenyl and hydroquinone from the viewpoint of excellent fluidity and dimensional stability while suppressing mold contamination during molding. Further, it has structural units derived from aliphatic diols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, etc., as long as liquid crystallinity and characteristics are not impaired. be able to.
- the liquid crystal polyester resin of the present invention contains 7 to 40 mol% of structural units derived from aromatic dicarboxylic acid as dicarbonyl units with respect to 100 mol% of all structural units of the liquid crystal polyester resin.
- the content of the structural unit derived from the aromatic dicarboxylic acid is less than 7 mol%, it becomes difficult to control the crystallinity and melting point of the liquid crystal polyester resin, and the fluidity and dimensional stability are lowered.
- the content of the structural unit derived from the aromatic dicarboxylic acid is preferably 10 mol% or more, and more preferably 15 mol% or more.
- the content of the structural unit derived from the aromatic dicarboxylic acid is preferably 37 mol% or less, and more preferably 35 mol% or less.
- Examples of the structural unit derived from the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 3,3′-diphenyldicarboxylic acid, and 2,2 ′.
- Examples include structural units derived from dicarboxylic acids and the like.
- a structural unit selected from structural units derived from terephthalic acid and isophthalic acid from the viewpoint of excellent fluidity and dimensional stability while suppressing mold contamination during molding.
- structural units derived from aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, hexahydroterephthalic acid, and alicyclic rings such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid
- a structural unit derived from the formula dicarboxylic acid can be further included in a range not impairing liquid crystallinity and characteristics.
- a structural unit generated from p-aminobenzoic acid, p-aminophenol, or the like can be further included within a range that does not impair liquid crystallinity and characteristics.
- the raw material monomer constituting each structural unit is not particularly limited as long as it is a structure capable of forming each structural unit.
- an acylated product of a hydroxyl group of each structural unit an esterified product of a carboxyl group of each structural unit, an acid halogen, and the like.
- a carboxylic acid derivative such as a chemical compound or an acid anhydride may be used.
- the liquid crystal polyester resin of the present invention includes the following structural unit (III) as a structural unit derived from an aromatic hydroxycarboxylic acid, and includes the following structural unit (IV) as a structural unit derived from an aromatic dicarboxylic acid.
- the total content of the unit (III) and the structural unit (IV) is preferably 60 to 80 mol% with respect to 100 mol% of all the structural units of the liquid crystal polyester resin.
- the total content of the structural unit (III) and the structural unit (IV) is preferably 63 mol% or more from the viewpoint of excellent thin-wall fluidity and dimensional stability, while controlling the crystallinity and melting point of the liquid crystal polyester resin. More preferably, it is 67 mol% or more.
- the total content of the structural unit (III) and the structural unit (IV) is preferably 78 mol from the viewpoint of controlling the crystallinity and melting point of the liquid crystal polyester resin and being excellent in thin-wall fluidity and dimensional stability. % Or less.
- the structural unit (III) and the structural unit (IV) may have either one of the structural units, and the other structural unit may be 0 mol%. From the viewpoint of control, it is preferable to include both in excess of 0 mol%.
- the content of the structural unit (III) is preferably 30 mol% or more and more preferably 50 mol% or more with respect to 100 mol% of all structural units of the liquid crystal polyester resin, from the viewpoint of excellent thin-wall fluidity and dimensional stability. .
- the content of the structural unit (III) is preferably 70 mol% or less, and 65 mol% or less from the viewpoint of excellent thin-wall fluidity and dimensional stability after controlling the crystallinity and melting point of the liquid crystal polyester resin. Is preferred.
- the content of the structural unit (IV) is preferably 5 mol% or more and more preferably 10 mol% or more with respect to 100 mol% of all structural units of the liquid crystal polyester resin.
- the content of the structural unit (IV) is preferably 30 mol% or less, and more preferably 20 mol% or less.
- the liquid crystalline polyester resin of the present invention contains the following structural unit (V) as a structural unit derived from an aromatic diol, and the structural unit (V) is 2 to 20 mol with respect to 100 mol% of the total structural units of the liquid crystalline polyester resin. % Content is preferable.
- the structural unit (V) is a structural unit derived from hydroquinone. By containing 2 mol% or more of the structural unit (V), the thin-wall fluidity and dimensional stability can be further improved.
- the content of the structural unit (V) is more preferably 4 mol% or more, and further preferably 7.5 mol% or more.
- the thin-wall fluidity and dimensional stability can be further improved.
- the content of the structural unit (V) is more preferably 15 mol% or less, and further preferably 12 mol% or less.
- the liquid crystal polyester resin of the present invention contains the following structural unit (VI) as a structural unit derived from an aromatic diol, and the structural unit (VI) is 3 to 30 per 100 mol% of the total amount of structural units of the liquid crystal polyester resin. It is preferable to contain mol%.
- the structural unit (VI) is a structural unit derived from 4,4'-dihydroxybiphenyl. By containing 3 mol% or more of the structural unit (VI), the crystallinity and melting point of the liquid crystal polyester resin can be controlled, and the heat resistance is improved. Content of structural unit (VI) becomes like this. Preferably it is 5 mol% or more, More preferably, it is 7 mol% or more.
- the crystallinity and melting point of the liquid crystal polyester resin can be controlled, and the moldability is improved.
- the content of the structural unit (VI) is more preferably 25 mol% or less, and further preferably 20 mol% or less.
- the liquid crystal polyester resin of the present invention contains the following structural unit (VII) as a structural unit derived from an aromatic dicarboxylic acid, and the structural unit (VII) is 1 to It is preferable to contain 10 mol%.
- the following structural unit (VII) is a structural unit derived from isophthalic acid.
- the content of the structural unit (VII) is preferably 2 mol% or more, more preferably 3 mol% or more.
- the crystallinity and melting point of the liquid crystal polyester resin can be controlled, and the heat resistance is improved.
- the content of the structural unit (VII) is more preferably 9 mol% or less, still more preferably 8 mol% or less.
- each structural unit of the liquid crystal polyester resin in the present invention is determined by pulverizing the liquid crystal polyester pellets, adding tetramethylammonium hydroxide, and performing pyrolysis GC / MS measurement using a Shimadzu GCMS-QP5050A. be able to.
- the content of structural units not detected or below the detection limit is calculated as 0 mol%.
- the melting point (Tm) of the liquid crystalline polyester resin of the present invention is preferably 220 ° C. or higher, more preferably 270 ° C. or higher, and further preferably 300 ° C. or higher from the viewpoint of heat resistance.
- the melting point (Tm) of the liquid crystal polyester resin is preferably 360 ° C. or lower, more preferably 355 ° C. or lower, from the viewpoint of suppressing deterioration of the liquid crystal polyester resin during processing and suppressing mold contamination during molding. More preferably, it is not more than °C
- the melting point (Tm) is measured by differential scanning calorimetry. Specifically, first, an endothermic peak temperature (Tm 1 ) is observed by heating the polymer that has been polymerized from room temperature to a temperature rising condition of 20 ° C./min. After observation of an endothermic peak temperature (Tm 1), holding the polymer for 5 minutes at a temperature of the endothermic peak temperature (Tm 1) + 20 °C. Thereafter, the polymer is cooled to room temperature under a temperature drop condition of 20 ° C./min. Then, the endothermic peak temperature (Tm 2 ) is observed by heating the polymer again under the temperature rising condition of 20 ° C./min.
- the melting point (Tm) refers to the endothermic peak temperature (Tm 2 ) in the second temperature raising process.
- the melt viscosity of the liquid crystalline polyester resin of the present invention is preferably 1 Pa ⁇ s or more, more preferably 3 Pa ⁇ s or more, and further preferably 5 Pa ⁇ s or more, from the viewpoint of suppressing mold contamination during molding.
- the melt viscosity of the liquid crystal polyester resin is preferably 50 Pa ⁇ s or less, preferably 20 Pa ⁇ s or less, and more preferably 10 Pa ⁇ s or less.
- the melt viscosity is a value measured by a Koka flow tester at a temperature of the melting point (Tm) of the liquid crystal polyester resin + 20 ° C. and a shear rate of 1000 / sec.
- Examples of the method for producing the liquid crystal polyester resin used in the present invention include the following methods.
- A) A method of adding a compound having at least one structure selected from the structural unit (I) and the structural unit (II) when producing according to a known polyester polycondensation method described later.
- B) A liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II) is produced according to the known polyester polycondensation method described below, and then the structural unit (I) and the structural unit ( A method of blending a compound having at least one structure selected from II).
- the moderate transesterification reaction with the liquid crystal polyester resin can further improve the thin-wall fluidity and dimensional stability while suppressing mold contamination during molding. Therefore, (B) the structural units (I) and (II) A method of blending a compound having at least one structure selected from the structural unit (I) and the structural unit (II) after producing a liquid crystal polyester resin not containing a structural unit selected from In addition, as a method of blending these, a method of melting and kneading them is preferable. A detailed manufacturing method will be described later.
- Examples of the compound having at least one structure selected from the structural unit (I) and the structural unit (II) include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, diol compounds such as oxycarbonyl units and dimers.
- Examples thereof include compounds in which one or more structural units that can constitute a liquid crystal polyester resin such as a carbonyl unit are ester-bonded.
- 1,4-cyclohexanediol having two hydroxyl groups, 1,4-cyclohexanedimethanol, and an oxycarbonyl unit capable of constituting a liquid crystal polyester resin in the diol compound are compounds in which one or more of them are ester-bonded.
- the liquid crystal polyester is added to the diol compound from the viewpoint of excellent thin-wall fluidity and dimensional stability while suppressing mold contamination during molding.
- a compound in which one or more oxycarbonyl units capable of constituting the resin are ester-bonded is more preferable, and a compound in which two or more ester bonds are bonded is particularly preferable.
- a compound in which an oxycarbonyl unit is further bonded next to the oxycarbonyl unit may be used, but the upper limit of the number of bonds of the oxycarbonyl unit does not generate an infusible substance derived from a long chain of rigid oxycarbonyl units. From the viewpoint, 10 or less is preferable, and 7 or less is more preferable.
- Examples of the compound in which one or more oxycarbonyl units capable of constituting a liquid crystal polyester resin are ester-bonded to the diol compound include cyclohexane-1,4-diylbis (methylene) bis (4-hydroxybenzoate) and (4- (hydroxy And methyl) cyclohexyl) methyl 4-hydroxybenzoate, 4-hydroxycyclohexyl 4-hydroxybenzoate, and cyclohexane-1,4-diylbis (4-hydroxybenzoate).
- 1,4-cyclohexanediol or 1,4-cyclohexanedimethanol and an aromatic hydroxycarboxylic acid for example, a method described in JP-T-2008-54495, It can manufacture by esterifying using. Specifically, 1,4-cyclohexanediol or 1,4-cyclohexanedimethanol and aromatic hydroxycarboxylic acid are reacted by heating under reflux in the presence of sulfuric acid in a solvent, and then purified by washing with methanol. By doing so, a compound in which one or more oxycarbonyl units capable of constituting a liquid crystal polyester resin are ester-bonded to the diol compound can be obtained.
- the molecular weight of the compound having at least one structure selected from the structural unit (I) and the structural unit (II) is 200 from the viewpoint of excellent thin-wall fluidity and dimensional stability while suppressing mold contamination during molding.
- the above is preferable, 230 or more is more preferable, and 250 or more is more preferable.
- the diol compound is a compound in which one or more structural units that can constitute the liquid crystal polyester resin are ester-bonded
- the molecular weight is 1000 or less from the viewpoint of suppressing infusible product formation due to long chains of rigid structural units.
- 700 or less is more preferable
- 500 or less is more preferable.
- the structural unit (I) and The compound having at least one structure selected from the structural unit (I) and the structural unit (II) is preferably 0.01 to 100 parts by weight of the liquid crystalline polyester resin not containing the structural unit selected from (II). It is preferable to blend by weight part or more, more preferably 0.03 part by weight or more, and still more preferably 0.05 part by weight or more.
- the liquid crystal polyester resin not containing the structural unit selected from the structural units (I) and (II) at least one structure selected from the structural unit (I) and the structural unit (II) is used. It is preferable to blend the compound having 10 parts by weight or less, more preferably 7 parts by weight or less, and still more preferably 3 parts by weight or less.
- polyester polycondensation methods include structural units derived from p-hydroxybenzoic acid, structural units derived from 4,4′-dihydroxybiphenyl, structural units derived from hydroquinone, structural units derived from terephthalic acid, and Taking the liquid crystal polyester resin comprising a structural unit derived from isophthalic acid as an example, the following may be mentioned.
- a method for producing a liquid crystal polyester resin is preferably used because it is industrially excellent in controlling the terminal structure of the liquid crystal polyester resin and controlling the degree of polymerization.
- the polycondensation reaction can be completed by a solid phase polymerization method.
- the solid phase polymerization method include the following methods. First, a polymer or oligomer of a liquid crystal polyester resin is pulverized by a pulverizer. The pulverized polymer or oligomer is heated under a nitrogen stream or under reduced pressure, and polycondensed to a desired degree of polymerization to complete the reaction. The heating can be performed for 1 to 50 hours in the range of the melting point of the liquid crystal polyester to ⁇ 50 ° C. to the melting point ⁇ 5 ° C. (eg, 200 to 300 ° C.).
- the polycondensation reaction of the liquid crystalline polyester resin proceeds even without catalyst, but stannous acetate, tetrabutyl titanate, potassium acetate and sodium acetate, antimony trioxide, magnesium metal, and the like can also be used as a catalyst.
- the liquid crystal polyester resin of the present invention can also be used as a resin composition containing a filler in order to impart mechanical strength and other characteristics of the liquid crystal polyester resin.
- a filler For example, a fibrous filler, a whisker-like filler, a plate-like filler, a powder filler, a granular filler, etc. can be mentioned.
- the fibrous filler and whisker-like filler glass fiber; PAN-based or pitch-based carbon fiber; metal fiber such as stainless steel fiber, aluminum fiber or brass fiber; aromatic polyamide fiber or liquid crystal polyester fiber
- Organic fiber such as: gypsum fiber, ceramic fiber, asbestos fiber, zirconia fiber, alumina fiber, silica fiber, titanium oxide fiber, silicon carbide fiber, rock wool, potassium titanate whisker, barium titanate whisker, aluminum borate whisker, nitriding
- Examples thereof include silicon whiskers and acicular titanium oxide.
- the plate-like filler include mica, talc, kaolin, glass flake, clay, molybdenum disulfide, and wollastonite.
- Examples of the powder filler and the granular filler include silica, glass beads, titanium oxide, zinc oxide, calcium polyphosphate, and graphite.
- the surface of the filler may be treated with a known coupling agent (for example, a silane coupling agent or a titanate coupling agent) or other surface treatment agent. Two or more fillers may be used in combination.
- glass fiber is particularly preferable from the viewpoints of excellent mechanical strength such as tensile strength and bending strength, heat resistance and dimensional stability.
- the type of glass fiber is not particularly limited as long as it is generally used for resin reinforcement, and examples thereof include long fiber type and short fiber type chopped strands, milled fibers, and the like.
- mica is preferable to use from the point which is excellent in thin-wall fluidity
- the surface of the filler may be treated with a known coupling agent (for example, a silane coupling agent or a titanate coupling agent) or other surface treatment agent.
- a known coupling agent for example, a silane coupling agent or a titanate coupling agent
- the glass fiber may be coated or bundled with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin.
- the content of the filler is preferably 10 to 200 parts by weight with respect to 100 parts by weight of the liquid crystalline polyester resin.
- a filler content of 10 parts by weight or more is preferable because the mechanical strength of the molded product can be improved. 15 parts by weight or more is more preferable, and 20 parts by weight or more is more preferable.
- the filler content is 200 parts by weight or less, a liquid crystal polyester resin composition excellent in moldability and thin wall fluidity is obtained, which is preferable. 150 parts by weight or less is more preferable, and 100 parts by weight or less is more preferable.
- an antioxidant and a heat stabilizer for example, hindered phenol, hydroquinone, phosphite, thioethers, and substituted products thereof, etc.
- a heat stabilizer for example, hindered phenol, hydroquinone, phosphite, thioethers, and substituted products thereof, etc.
- UV absorbers eg, resorcinol, salicylate
- anti-coloring agents such as phosphites, hypophosphites, lubricants and mold release agents (montanic acid and its metal salts, its esters, their half esters, stearyl alcohol, Stearamide and polyethylene wax)
- colorants containing dyes or pigments carbon black, crystal nucleating agents, plasticizers, flame retardants (bromine flame retardants, phosphorus flame retardants, red phosphorus, silicone flame retardants)
- flame retardants bromine flame retardants, phosphorus flame retardants, red phosphorus, silicone flame retardants
- a liquid crystal polyester resin that does not contain a structural unit selected from the structural units (I) and (II) can be obtained from the structural units (I) and (II).
- a dry blend method in which a compound having at least one selected structure, a filler, and other solid additives are blended, and a liquid crystal polyester resin not containing a structural unit selected from structural units (I) and (II) ,
- a compound having at least one structure selected from (II), a filler and other additives are selected from structural units (I) and (II).
- a method of adding at the time of polymerization of a liquid crystal polyester resin not containing a structural unit, a liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II), a structural unit (I) and a structural unit (II) A method of melt-kneading a compound having at least one structure, a filler, and other additives can be used. Of these, the melt kneading method is preferred. A known method can be used for melt kneading.
- the above components can be melt-kneaded at a melting point of the liquid crystal polyester resin + 50 ° C. or lower to obtain a liquid crystal polyester resin composition. .
- melt kneading using a twin screw extruder is preferable.
- the twin screw extruder in order to improve the dispersibility of the liquid crystalline polyester resin and the filler, it is preferable to provide one or more kneading parts, and more preferably to provide two or more kneading parts.
- the liquid crystal polyester resin is produced by the method (B) described above, by providing the kneading part as described above, a liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II);
- the dispersibility of the compound having at least one structure selected from the structural unit (I) and the structural unit (II) is improved, and both are appropriately transesterified to suppress mold contamination during molding.
- thin-wall fluidity and dimensional stability can be further improved.
- the kneading portion is installed at one or more locations upstream of the side feeder of the filler in order to promote plasticization of the liquid crystalline polyester resin.
- a vent portion in order to remove moisture in the twin screw extruder and decomposition products generated during kneading.
- the vent portion is installed at one or more locations upstream of the side feeder into which the filler is charged in order to remove moisture adhering to the liquid crystalline polyester resin.
- the vent part may be under normal pressure or under reduced pressure.
- the kneading method includes (1) a liquid crystal polyester resin that does not contain a structural unit selected from structural units (I) and (II), and at least one structure selected from structural units (I) and structural units (II).
- Compound (filler kneading method) in which compound, filler and other additives are added all at once from the original feeder and kneaded (2) Liquid crystalline polyester containing no structural unit selected from structural units (I) and (II)
- a resin, a compound having at least one structure selected from the structural unit (I) and the structural unit (II), and other additives are added from the original feeder and kneaded, and then the filler and other additives are side-loaded.
- Method of adding from a feeder and kneading (side feed method), (3) Liquid not containing a structural unit selected from structural units (I) and (II)
- a master pellet containing a polyester resin, a compound having at least one structure selected from the structural unit (I) and the structural unit (II), and other additives at a high concentration is prepared, and then a specified concentration is obtained.
- Examples thereof include a method (master pellet method) in which the master pellet is kneaded with the liquid crystalline polyester resin and the filler. Any method can be used.
- the liquid crystal polyester resin composition of the present invention has an excellent surface appearance (color tone), machine by performing known melt molding such as injection molding, injection compression molding, compression molding, extrusion molding, blow molding, press molding, spinning, etc. It can be processed into a molded product having mechanical properties, heat resistance and flame retardancy.
- the molded product include injection molded products, extrusion molded products, press molded products, sheets, pipes, unstretched films, uniaxially stretched films, various films such as biaxially stretched films, unstretched yarns, superstretched yarns, and the like. Examples include various fibers.
- an injection molded product is preferable from the viewpoint of processability.
- Molded articles obtained by molding the liquid crystalline polyester resin or liquid crystalline polyester composition of the present invention include, for example, various gears, various cases, sensors, LED lamps, connectors, sockets, resistors, relay cases, relay bases, and relay spools.
- Machine-related parts Optical instruments such as microscopes, binoculars, cameras, watches, precision machine-related parts: Alternator terminals, alternator connectors, IC regulators, light dimmer potentiometer bases, exhaust gas valves, and other fuel related ⁇ exhaust ⁇
- connectors, relays, switches, and coil bobbins that have metal terminal parts and have a thin box shape or cylindrical shape because they are excellent in thin-wall fluidity and dimensional stability while suppressing mold contamination during molding. It is particularly useful for electrical and electronic parts such as lamp sockets, camera modules, and integrated circuit sealing materials.
- Tm Melting point of liquid crystal polyester resin Using a differential scanning calorimeter DSC-7 (manufactured by Perkin Elmer), after observing the endothermic peak temperature (Tm 1 ) observed when the liquid crystalline polyester resin was heated from room temperature under a temperature rising condition of 20 ° C./min. , Held at a temperature of Tm 1 + 20 ° C. for 5 minutes, further cooled to room temperature under a temperature drop condition of 20 ° C./min, and then endothermic peak temperature observed when the temperature was raised again under a temperature rise condition of 20 ° C./min ( Tm 2 ) was taken as the melting point.
- Tm 2 the melting point
- FIG. 1a is a perspective view of the connector molded product.
- a liquid crystal polyester resin or a resin composition was filled from a pin gate G1 (gate diameter 0.3 mm) installed on the short surface 2 on one side of the connector molded product. 500 shot molding was performed, and the number of unfilled occurrences was evaluated with respect to the fillability of the wall corner on the gate facing side.
- the corner portion is a portion where unfilling is likely to occur due to variation in filling amount, and the smaller the number of unfilled occurrences, the better the thin wall fluidity.
- Mold fouling property 0.05 parts by weight of a mold release agent (Licowax E, manufactured by Clariant) is added to 100 parts by weight of the pellets obtained in each of the examples and comparative examples, and 150 parts using a hot air dryer. After drying in hot air at 3 ° C. for 3 hours, it was subjected to a FANUC ⁇ 30C injection molding machine manufactured by FANUC CORPORATION.
- the resin temperature was the melting point of liquid crystal polyester + 20 ° C.
- the mold temperature was 90 ° C.
- the molding cycle was 12 seconds
- 50 mm ⁇ 50 mm ⁇ A 1 mm thick square plate-like molded product was continuously molded.
- 1B is a conceptual diagram showing the measurement site of the warpage amount in the long molded product, where the AB plane is the reference plane a and the difference from the maximum deformation surface b is the warpage amount.
- the AB plane is the reference plane a
- the difference from the maximum deformation surface b is the warpage amount. The smaller the amount of warp, the better the dimensional stability.
- Example 1 In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 932 parts by weight of p-hydroxybenzoic acid, 283 parts by weight of 4,4′-dihydroxybiphenyl, 99 parts by weight of hydroquinone, 284 parts by weight of terephthalic acid, 90 parts by weight of isophthalic acid , 3 parts by weight of 1,4-cyclohexanedimethanol and 1242 parts by weight of acetic anhydride (1.05 equivalents of the total phenolic hydroxyl groups) were allowed to react at 145 ° C. for 1 hour with stirring in a nitrogen gas atmosphere. The jacket temperature of the container was raised from 145 ° C. to 350 ° C. over 4 hours.
- the polymerization temperature was maintained at 350 ° C.
- the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued.
- the torque required for stirring reached 8 kg ⁇ cm
- the polymerization was completed.
- the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
- a liquid crystal polyester resin (A-1) was obtained.
- the obtained liquid crystal polyester resin had a Tm of 327 ° C. and a melt viscosity of 9 Pa ⁇ s.
- Example 2 In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 870 parts by weight of p-hydroxybenzoic acid, 338 parts by weight of 4,4′-dihydroxybiphenyl, 119 parts by weight of hydroquinone, 247 parts by weight of terephthalic acid, 202 parts by weight of isophthalic acid , 1,4-cyclohexanedimethanol 3 parts by weight and acetic anhydride 1321 parts by weight (1.07 equivalents of the total phenolic hydroxyl group) were allowed to react at 145 ° C. for 1 hour with stirring in a nitrogen gas atmosphere. The jacket temperature of the container was raised from 145 ° C. to 330 ° C. over 4 hours.
- the polymerization temperature was maintained at 330 ° C.
- the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued.
- the torque required for stirring reached 10 kg ⁇ cm
- the polymerization was completed.
- the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa)
- the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
- a liquid crystal polyester resin (A-2) was obtained.
- the obtained liquid crystal polyester resin had a Tm of 308 ° C. and a melt viscosity of 9 Pa ⁇ s.
- the polymerization temperature was maintained at 350 ° C.
- the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued.
- the torque required for stirring reached 8 kg ⁇ cm
- the polymerization was completed.
- the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
- a liquid crystal polyester resin (A-3) was obtained.
- the obtained liquid crystal polyester resin had a Tm of 328 ° C. and a melt viscosity of 9 Pa ⁇ s.
- the polymerization temperature was maintained at 330 ° C.
- the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued.
- the torque required for stirring reached 10 kg ⁇ cm
- the polymerization was completed.
- the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa)
- the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
- a liquid crystal polyester resin (A-4) was obtained.
- the obtained liquid crystal polyester resin had a Tm of 310 ° C. and a melt viscosity of 9 Pa ⁇ s.
- the polymerization temperature was maintained at 320 ° C.
- the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued.
- the torque required for stirring reached 15 kg ⁇ cm
- the polymerization was completed.
- the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa)
- the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
- a liquid crystal polyester resin (A-5) was obtained.
- the obtained liquid crystal polyester resin had a Tm of 312 ° C. and a melt viscosity of 9 Pa ⁇ s.
- the polymerization temperature was maintained at 360 ° C.
- the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued.
- the torque required for stirring reached 10 kg ⁇ cm
- the polymerization was completed.
- the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
- a liquid crystal polyester resin (A-6) was obtained.
- the obtained liquid crystal polyester resin had a Tm of 350 ° C. and a melt viscosity of 9 Pa ⁇ s.
- the polymerization temperature was maintained at 350 ° C.
- the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued.
- the torque required for stirring reached 10 kg ⁇ cm
- the polymerization was completed.
- the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
- a liquid crystal polyester resin (A-7) was obtained.
- the obtained liquid crystal polyester resin had a Tm of 333 ° C. and a melt viscosity of 9 Pa ⁇ s.
- the polymerization temperature was maintained at 360 ° C.
- the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour
- the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg ⁇ cm.
- the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
- a liquid crystal polyester resin (A-9) was obtained.
- the obtained liquid crystal polyester resin had a Tm of 350 ° C. and a melt viscosity of 9 Pa ⁇ s.
- Table 1 shows the results of composition analysis performed on the pellets obtained in Examples 1 and 2 and Comparative Examples 1 to 8 by the method described in (1) above, and the results of evaluations (4) to (6). It is shown in 1.
- additives (a-1) to (a′-5) are further melt-kneaded with the liquid crystal polyester resins (A-3) to (A-9) obtained as described above to obtain liquid crystal polyester resins. Produced.
- (A-1) 1,4-cyclohexanediol (molecular weight: 116) manufactured by Tokyo Chemical Industry Co., Ltd.
- (A-2) 1,4-cyclohexanedimethanol (molecular weight: 144) manufactured by Tokyo Chemical Industry Co., Ltd.
- A-3 Cyclohexane-1,4-diylbis (methylene) bis (4-hydroxybenzoate) (molecular weight: 384) synthesized according to Production Example 1 below (Two hydroxyl groups of 1,4-cyclohexanedimethanol) And a compound in which the carboxyl group of p-hydroxybenzoic acid is ester-bonded)
- A′-4 4,4′-dihydroxybiphenyl (molecular weight: 186) manufactured by Tokyo Chemical Industry Co., Ltd.
- A′-5) 1,4-cyclohexanedicarboxylic acid (molecular weight: 172) manufactured by Tokyo Chemical Industry Co., Ltd.
- a production example of (a-3) is as follows. [Production Example 1] Put 75 parts by weight of p-hydroxybenzoic acid, 43 parts by weight of 1,4-cyclohexanedimethanol, and 4 drops of concentrated sulfuric acid into toluene, and distill off the water generated by the reaction azeotropically to remove only toluene. Refluxed and heated for 3 hours. After cooling to room temperature, methanol was added and the resulting solution was filtered. Furthermore, it was washed several times with methanol and dried to obtain (a-3).
- Examples 3-12, Comparative Examples 9-12 Using Toshiba Machine's TEM35B type twin screw extruder equipped with a side feeder, a side feeder is installed at C3 part of cylinder C1 (former feeder side heater) to C6 (die side heater), and a vacuum vent is provided at C5 part.
- a side feeder is installed at C3 part of cylinder C1 (former feeder side heater) to C6 (die side heater), and a vacuum vent is provided at C5 part.
- a screw arrangement in which kneading blocks were incorporated in C2 part and C4 part was used.
- Liquid crystal polyester resins (A-3) to (A-9) and additives (a-1) to (a'-5) were charged from the feed feeder in the blending amounts shown in Table 2, and the cylinder temperature was set to liquid crystal polyester.
- the melting point of the resin + 10 ° C., the screw rotation speed was set to 200 rpm, and melt kneading was performed to obtain pellets.
- the obtained liquid crystal polyester resin pellets were hot-air dried at 150 ° C. for 3 hours using a hot-air dryer, and then evaluated (1) and (4) to (6) above. The results are shown in Table 2.
- an inorganic filler was blended into the liquid crystal polyester resins (A-1) to (A-10) obtained as described above to prepare liquid crystal polyester resins.
- the inorganic fillers (b-1) to (b-3) used in the examples and comparative examples are shown below.
- B-3) EPG (70MD-01N) / P9W manufactured by Nippon Electric Glass Co., Ltd.
- Examples 13 and 14, Comparative Examples 13 to 20 Liquid crystalline polyester resins (A-1) to (A-10) were charged from the feed-in feeder at the blending amounts shown in Table 3, and the inorganic fillers (b-1) to (b-3) were blended as shown in Table 3.
- the pellets were obtained by melt-kneading in the same manner as in Examples 3 to 12 and Comparative Examples 9 to 12 except that they were charged from the side feeder, and the evaluations (4) to (6) were performed. The results are shown in Table 3.
- the liquid crystal polyester resin and the liquid crystal polyester resin composition of the present invention are excellent in thin wall fluidity and dimensional stability while suppressing mold contamination. Therefore, it can be said that it is suitable for use in electrical / electronic parts and mechanical parts applications such as connectors, relays, switches, coil bobbins, lamp sockets, camera modules, integrated circuit sealing materials having a thin box shape or cylindrical shape. .
- liquid crystal polyester resin and the liquid crystal polyester resin composition of the present invention are excellent in thin-wall flowability and dimensional stability while suppressing mold contamination, a connector, relay, switch, coil bobbin having a thin-walled box shape or cylindrical shape It is suitable for electrical / electronic parts and machine parts such as lamp sockets, camera modules and integrated circuit sealing materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
This liquid crystal polyester resin includes, with respect to 100 mol% of the total structural units of a liquid crystal polyester resin, the following: 15-80 mol% of structural units derived from an aromatic hydroxycarboxylic acid; 7-40 mol% of structural units derived from aromatic diol; 7-40 mol% of structural units derived from aromatic dicarboxylic acid; and 0.01-5 mol% of at least one kind of structural unit selected from structural units (I) and (II). Provided are: the liquid crystal polyester resin that has excellent thin section fluidity and dimensional stability, and suppresses mold soiling; and a molded article comprising the same.
Description
本発明は、液晶ポリエステル樹脂およびそれからなる成形品に関する。より詳しくは、成形時の金型汚れを抑制しつつ、流動性、寸法安定性に優れる成形品を得ることのできる液晶ポリエステル樹脂、およびそれからなる成形品に関するものである。
The present invention relates to a liquid crystal polyester resin and a molded product comprising the same. More specifically, the present invention relates to a liquid crystal polyester resin capable of obtaining a molded product having excellent fluidity and dimensional stability while suppressing mold contamination during molding, and a molded product comprising the same.
液晶ポリエステル樹脂は、液晶構造を有するため、耐熱性、流動性および寸法安定性に優れる。このため、それらの特性が要求されるコネクタやリレーなどの電気・電子部品用途を中心に需要が拡大している。特に近年の機器の高性能化に伴い、上記部品の小型化や薄肉化が進み、さらなる流動性が求められている。そのため、例えば、液晶ポリマーに低分子量化合物を溶融混練して低溶融粘度の液晶ポリマーを得ることによる流動性向上が提案されている(例えば、特許文献1、2参照)。また、液晶ポリエステル樹脂の分子骨格の化学種を変える方法として、アセトアミノフェノンや1,4-シクロヘキサンジカルボン酸に由来する構造を含む液晶ポリエステルアミドによる流動性向上も提案されている(例えば、特許文献3参照)。
Since liquid crystal polyester resin has a liquid crystal structure, it has excellent heat resistance, fluidity and dimensional stability. For this reason, the demand is expanding mainly for the use of electrical and electronic parts such as connectors and relays that require these characteristics. In particular, with the recent improvement in performance of equipment, the above-mentioned parts have been reduced in size and thickness, and further fluidity is required. Therefore, for example, improvement in fluidity has been proposed by melting and kneading a low molecular weight compound in a liquid crystal polymer to obtain a liquid crystal polymer having a low melt viscosity (see, for example, Patent Documents 1 and 2). Further, as a method for changing the chemical species of the molecular skeleton of a liquid crystal polyester resin, improvement in fluidity by using a liquid crystal polyester amide containing a structure derived from acetaminophenone or 1,4-cyclohexanedicarboxylic acid has been proposed (for example, Patent Documents). 3).
一方で、前記特許文献1、2に記載された方法で液晶ポリエステル樹脂を低溶融粘度化した場合、用いられる低分子化合物自体の耐熱性が低いために、液晶ポリエステル樹脂の成形に必要な高い加工温度においては、分解してガスが増加し、成形時に金型が汚れるほか、寸法安定性が低下するという問題があった。また、薄肉流動性についても不十分であった。また、前記特許文献3に記載された液晶ポリエステルアミド樹脂についても、金型汚れや寸法安定性に課題があり、薄肉流動性についても不十分であった。
On the other hand, when the melt viscosity of the liquid crystal polyester resin is reduced by the method described in Patent Documents 1 and 2, the high processing required for molding the liquid crystal polyester resin is low because the heat resistance of the low molecular weight compound itself is low. In terms of temperature, there is a problem in that gas decomposes and gas increases, the mold becomes dirty at the time of molding, and dimensional stability decreases. Further, the thin wall fluidity was also insufficient. Further, the liquid crystal polyester amide resin described in Patent Document 3 also has problems in mold contamination and dimensional stability, and the thin-wall fluidity is insufficient.
本発明は、上述の課題を解決し、成形時の金型汚れを抑制しつつ、流動性および寸法安定性に優れた成形品を得ることのできる液晶ポリエステル樹脂、およびその成形品を提供することを課題とする。
The present invention solves the above-mentioned problems, and provides a liquid crystal polyester resin capable of obtaining a molded product excellent in fluidity and dimensional stability while suppressing mold contamination during molding, and a molded product thereof. Is an issue.
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定の構造単位を少量含有する液晶ポリエステル樹脂により、成形時の金型汚れを抑制しつつ、流動性および寸法安定性に優れた成形品を得ることのできることを見出し、本発明に到達した。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have achieved liquidity and dimensional stability while suppressing mold contamination during molding with a liquid crystal polyester resin containing a small amount of a specific structural unit. The present inventors have found that an excellent molded product can be obtained.
本発明は:
(1)液晶ポリエステル樹脂の全構造単位100モル%に対して、芳香族ヒドロキシカルボン酸に由来する構造単位を15~80モル%、芳香族ジオールに由来する構造単位を7~40モル%、芳香族ジカルボン酸に由来する構造単位を7~40%、下記構造単位(I)および(II)から選ばれる少なくとも1種の構造単位を0.01~5モル%含む液晶ポリエステル樹脂。 The present invention is:
(1) 15 to 80 mol% of structural units derived from aromatic hydroxycarboxylic acid, 7 to 40 mol% of structural units derived from aromatic diol, and 100% by mol of all structural units of liquid crystal polyester resin Liquid crystal polyester resin containing 7 to 40% of structural units derived from a group dicarboxylic acid and 0.01 to 5 mol% of at least one structural unit selected from the following structural units (I) and (II).
(1)液晶ポリエステル樹脂の全構造単位100モル%に対して、芳香族ヒドロキシカルボン酸に由来する構造単位を15~80モル%、芳香族ジオールに由来する構造単位を7~40モル%、芳香族ジカルボン酸に由来する構造単位を7~40%、下記構造単位(I)および(II)から選ばれる少なくとも1種の構造単位を0.01~5モル%含む液晶ポリエステル樹脂。 The present invention is:
(1) 15 to 80 mol% of structural units derived from aromatic hydroxycarboxylic acid, 7 to 40 mol% of structural units derived from aromatic diol, and 100% by mol of all structural units of liquid crystal polyester resin Liquid crystal polyester resin containing 7 to 40% of structural units derived from a group dicarboxylic acid and 0.01 to 5 mol% of at least one structural unit selected from the following structural units (I) and (II).
(2)液晶ポリエステル樹脂が、芳香族ヒドロキシカルボン酸に由来する構造単位として、構造単位(III)を含み、芳香族ジカルボン酸に由来する構造単位として、下記構造単位(IV)を含み、構造単位(III)および構造単位(IV)の合計が、液晶ポリエステル樹脂の全構造単位100モル%に対して60~80モル%である(1)記載の液晶ポリエステル樹脂。
(2) The liquid crystalline polyester resin includes the structural unit (III) as a structural unit derived from an aromatic hydroxycarboxylic acid, and includes the following structural unit (IV) as a structural unit derived from an aromatic dicarboxylic acid. The liquid crystal polyester resin according to (1), wherein the total of (III) and the structural unit (IV) is 60 to 80 mol% with respect to 100 mol% of all structural units of the liquid crystal polyester resin.
(3)液晶ポリエステル樹脂が、芳香族ジオールに由来する構造単位として、下記構造単位(V)を含み、構造単位(V)が、液晶ポリエステル樹脂の全構造単位100モル%に対して2~20%である(1)または(2)に記載の液晶ポリエステル樹脂。
(3) The liquid crystalline polyester resin contains the following structural unit (V) as a structural unit derived from an aromatic diol, and the structural unit (V) is 2 to 20 with respect to 100 mol% of all structural units of the liquid crystalline polyester resin. % Liquid crystal polyester resin according to (1) or (2).
(4)前記構造単位(I)および(II)から選ばれる少なくとも1種の構造単位は、構造単位(II)を必須成分として含む、(1)~(3)のいずれかに記載の液晶ポリエステル樹脂。
(5)前記構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂および、前記構造単位(I)および(II)から選ばれる少なくとも1種の構造を有する化合物を配合することにより得られる(1)~(4)のいずれかに記載の液晶ポリエステル樹脂。
(6)前記構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステルおよび、前記構造単位(I)および(II)から選ばれる少なくとも1種の構造を有する化合物を溶融混練する(1)~(5)のいずれかに記載の液晶ポリエステル樹脂の製造方法。
(7)(1)~(5)のいずれかに記載の液晶ポリエステル樹脂100重量部に対し、充填材を10~200重量部含む、液晶ポリエステル樹脂組成物。
(8)(1)~(5)のいずれかに記載の液晶ポリエステル樹脂、または(7)に記載の液晶ポリエステル樹脂組成物からなる成形品。
(9)成形品が、コネクタ、リレー、スイッチ、コイルボビン、ランプソケット、カメラモジュール、および集積回路封止材からなる群から選択される、(8)に記載の成形品。 (4) The liquid crystalline polyester according to any one of (1) to (3), wherein at least one structural unit selected from the structural units (I) and (II) includes the structural unit (II) as an essential component. resin.
(5) A liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II) and a compound having at least one structure selected from the structural units (I) and (II) are blended. The liquid crystal polyester resin according to any one of (1) to (4).
(6) Melt-knead a liquid crystal polyester not containing a structural unit selected from the structural units (I) and (II) and a compound having at least one structure selected from the structural units (I) and (II). (1) The method for producing a liquid crystal polyester resin according to any one of (5).
(7) A liquid crystal polyester resin composition comprising 10 to 200 parts by weight of a filler with respect to 100 parts by weight of the liquid crystal polyester resin according to any one of (1) to (5).
(8) A molded article comprising the liquid crystalline polyester resin according to any one of (1) to (5) or the liquid crystalline polyester resin composition according to (7).
(9) The molded product according to (8), wherein the molded product is selected from the group consisting of a connector, a relay, a switch, a coil bobbin, a lamp socket, a camera module, and an integrated circuit sealing material.
(5)前記構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂および、前記構造単位(I)および(II)から選ばれる少なくとも1種の構造を有する化合物を配合することにより得られる(1)~(4)のいずれかに記載の液晶ポリエステル樹脂。
(6)前記構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステルおよび、前記構造単位(I)および(II)から選ばれる少なくとも1種の構造を有する化合物を溶融混練する(1)~(5)のいずれかに記載の液晶ポリエステル樹脂の製造方法。
(7)(1)~(5)のいずれかに記載の液晶ポリエステル樹脂100重量部に対し、充填材を10~200重量部含む、液晶ポリエステル樹脂組成物。
(8)(1)~(5)のいずれかに記載の液晶ポリエステル樹脂、または(7)に記載の液晶ポリエステル樹脂組成物からなる成形品。
(9)成形品が、コネクタ、リレー、スイッチ、コイルボビン、ランプソケット、カメラモジュール、および集積回路封止材からなる群から選択される、(8)に記載の成形品。 (4) The liquid crystalline polyester according to any one of (1) to (3), wherein at least one structural unit selected from the structural units (I) and (II) includes the structural unit (II) as an essential component. resin.
(5) A liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II) and a compound having at least one structure selected from the structural units (I) and (II) are blended. The liquid crystal polyester resin according to any one of (1) to (4).
(6) Melt-knead a liquid crystal polyester not containing a structural unit selected from the structural units (I) and (II) and a compound having at least one structure selected from the structural units (I) and (II). (1) The method for producing a liquid crystal polyester resin according to any one of (5).
(7) A liquid crystal polyester resin composition comprising 10 to 200 parts by weight of a filler with respect to 100 parts by weight of the liquid crystal polyester resin according to any one of (1) to (5).
(8) A molded article comprising the liquid crystalline polyester resin according to any one of (1) to (5) or the liquid crystalline polyester resin composition according to (7).
(9) The molded product according to (8), wherein the molded product is selected from the group consisting of a connector, a relay, a switch, a coil bobbin, a lamp socket, a camera module, and an integrated circuit sealing material.
本発明の液晶ポリエステル樹脂によれば、成形時の金型汚れを抑制しつつ、流動性および寸法安定性に優れた成形品を得ることができる。かかる樹脂は、特に薄肉の箱型や筒型形状を有するコネクタ、リレー、スイッチ、コイルボビン、ランプソケット、カメラモジュール、集積回路封止材などの電気・電子部品や機械部品に好適である。
According to the liquid crystal polyester resin of the present invention, it is possible to obtain a molded product excellent in fluidity and dimensional stability while suppressing mold contamination during molding. Such a resin is particularly suitable for electrical / electronic parts and mechanical parts such as connectors, relays, switches, coil bobbins, lamp sockets, camera modules, integrated circuit sealing materials having a thin box shape or cylindrical shape.
以下、本発明を詳細に説明する。
Hereinafter, the present invention will be described in detail.
<液晶ポリエステル樹脂>
本発明で使用する液晶ポリエステル樹脂は、異方性溶融相を形成するポリエステルである。液晶ポリエステル樹脂としては、例えば、後述するオキシカルボニル単位、ジオキシ単位、ジカルボニル単位などから異方性溶融相を形成するよう選ばれた構造単位から構成されるポリエステルなどが挙げられる。 <Liquid crystal polyester resin>
The liquid crystal polyester resin used in the present invention is a polyester that forms an anisotropic molten phase. Examples of the liquid crystal polyester resin include polyesters composed of structural units selected to form an anisotropic molten phase from oxycarbonyl units, dioxy units, dicarbonyl units and the like described later.
本発明で使用する液晶ポリエステル樹脂は、異方性溶融相を形成するポリエステルである。液晶ポリエステル樹脂としては、例えば、後述するオキシカルボニル単位、ジオキシ単位、ジカルボニル単位などから異方性溶融相を形成するよう選ばれた構造単位から構成されるポリエステルなどが挙げられる。 <Liquid crystal polyester resin>
The liquid crystal polyester resin used in the present invention is a polyester that forms an anisotropic molten phase. Examples of the liquid crystal polyester resin include polyesters composed of structural units selected to form an anisotropic molten phase from oxycarbonyl units, dioxy units, dicarbonyl units and the like described later.
次に、液晶ポリエステル樹脂を構成する構造単位について説明する。
Next, the structural unit constituting the liquid crystal polyester resin will be described.
本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、オキシカルボニル単位、すなわち芳香族ヒドロキシカルボン酸に由来する構造単位を15~80モル%含む。オキシカルボニル単位の含有量が15モル%未満であると、液晶性が損なわれるため、液晶ポリエステル樹脂の流動性が低下し、寸法安定性も低下する。流動性や寸法安定性向上の観点から、オキシカルボニル単位の含有量は、20モル%以上が好ましく、25モル%以上がより好ましい。一方で、オキシカルボニル単位の含有量が80モル%より多いと、液晶ポリエステル樹脂の結晶性および融点の制御が困難となり、流動性や寸法安定性が低下する。流動性や寸法安定性向上の観点から、オキシカルボニル単位の含有量は、75モル%以下が好ましく、70モル%以下がより好ましい。
The liquid crystal polyester resin of the present invention contains 15 to 80 mol% of oxycarbonyl units, that is, structural units derived from aromatic hydroxycarboxylic acid, with respect to 100 mol% of all structural units of the liquid crystal polyester resin. If the content of the oxycarbonyl unit is less than 15 mol%, the liquid crystallinity is impaired, so that the fluidity of the liquid crystal polyester resin is lowered and the dimensional stability is also lowered. From the viewpoint of improving fluidity and dimensional stability, the content of oxycarbonyl units is preferably 20 mol% or more, and more preferably 25 mol% or more. On the other hand, when the content of the oxycarbonyl unit is more than 80 mol%, it becomes difficult to control the crystallinity and melting point of the liquid crystal polyester resin, and the fluidity and dimensional stability are lowered. From the viewpoint of improving fluidity and dimensional stability, the content of oxycarbonyl units is preferably 75 mol% or less, and more preferably 70 mol% or less.
オキシカルボニル単位の具体例としては、p-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸や6-ヒドロキシ-2-ナフトエ酸などに由来する構造単位を使用することができる。
As specific examples of the oxycarbonyl unit, structural units derived from p-hydroxybenzoic acid, m-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid and the like can be used.
本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、ジオキシ単位、すなわち芳香族ジオールに由来する構造単位を7~40モル%含む。ジオキシ単位の含有量が5モル%未満であると、液晶ポリエステル樹脂の結晶性および融点の制御が困難となり、流動性や寸法安定性が低下する。流動性や寸法安定性向上の観点から、ジオキシ単位の含有量は10モル%以上が好ましく、15モル%以上がより好ましい。一方で、ジオキシ単位の含有量が40モル%より多いと、液晶性が損なわれるため、液晶ポリエステル樹脂の流動性が低下し、寸法安定性も低下する。流動性や寸法安定性向上の観点から、ジオキシ単位の含有量は37モル%以下が好ましく、35モル%以下がより好ましい。
The liquid crystalline polyester resin of the present invention contains 7 to 40 mol% of dioxy units, that is, structural units derived from aromatic diol, with respect to 100 mol% of all structural units of the liquid crystalline polyester resin. When the content of dioxy units is less than 5 mol%, it becomes difficult to control the crystallinity and melting point of the liquid crystal polyester resin, and the fluidity and dimensional stability are lowered. From the viewpoint of improving fluidity and dimensional stability, the content of dioxy units is preferably 10 mol% or more, and more preferably 15 mol% or more. On the other hand, when the content of the dioxy unit is more than 40 mol%, the liquid crystallinity is impaired, so that the fluidity of the liquid crystal polyester resin is lowered and the dimensional stability is also lowered. From the viewpoint of improving fluidity and dimensional stability, the content of dioxy units is preferably 37 mol% or less, and more preferably 35 mol% or less.
また、本発明の液晶ポリエステル樹脂は、ジオキシ単位として、上述の含有量の芳香族ジオールに由来する構造単位に加え、下記構造単位(I)および(II)から選ばれる少なくとも1種の構造単位を、液晶ポリエステル樹脂の全構造単位100モル%に対して0.01~5モル%含む。構造単位(I)および(II)は、それぞれ1,4-シクロヘキサンジオールおよび1,4-シクロヘキサンジメタノールに由来する構造単位である。これらの構造単位の含有量が0.01モル%より少ないと、薄肉流動性や寸法安定性が低下する。薄肉流動性や寸法安定性に優れる観点から、これらの構造単位の含有量は0.03モル%以上が好ましく、0.05モル%以上がより好ましい。一方で、これらの構造単位の含有量が5モル%より多いと、成形時に金型汚れが発生し、薄肉流動性や寸法安定性も低下する。成形時の金型汚れを抑制しつつ、薄肉流動性や寸法安定性に優れる観点から、これらの構造単位の含有量は3%以下が好ましく、1%以下がより好ましい。また、構造単位(I)と構造単位(II)は、いずれか一方の構造単位を有し、もう一方の構造単位が0モル%であってもよいが、成形時の金型汚れを抑制しつつ、薄肉流動性や寸法安定性に優れる観点から、構造単位(II)を必須成分として含むことが好ましい。
In addition to the structural unit derived from the aromatic diol having the above content, the liquid crystalline polyester resin of the present invention has at least one structural unit selected from the following structural units (I) and (II) as a dioxy unit. And 0.01 to 5 mol% with respect to 100 mol% of all structural units of the liquid crystal polyester resin. The structural units (I) and (II) are structural units derived from 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol, respectively. When the content of these structural units is less than 0.01 mol%, the thin-wall fluidity and dimensional stability are lowered. From the viewpoint of excellent thin-wall fluidity and dimensional stability, the content of these structural units is preferably 0.03 mol% or more, and more preferably 0.05 mol% or more. On the other hand, when the content of these structural units is more than 5 mol%, mold stains occur during molding, and thin-wall fluidity and dimensional stability are also reduced. The content of these structural units is preferably 3% or less and more preferably 1% or less from the viewpoint of excellent thin-wall fluidity and dimensional stability while suppressing mold contamination during molding. Further, the structural unit (I) and the structural unit (II) may have either one of the structural units, and the other structural unit may be 0 mol%, but it suppresses mold contamination during molding. However, it is preferable that the structural unit (II) is included as an essential component from the viewpoint of excellent thin-wall fluidity and dimensional stability.
芳香族ジオールに由来する構造単位としては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシノール、t-ブチルハイドロキノン、フェニルハイドロキノン、クロロハイドロキノン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、3,4’-ジヒドロキシビフェニル、2,2-ビス(4-ヒドロキシフェニル)プロパン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシベンゾフェノンなどに由来する構造単位が挙げられる。成形時の金型汚れを抑制しつつ、流動性および寸法安定性に優れる観点から、4,4’-ジヒドロキシビフェニルおよびハイドロキノンに由来する構造単位から選ばれた構造単位を使用することが好ましい。また、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどの脂肪族ジオールに由来する構造単位などを液晶性や特性を損なわない程度の範囲でさらに有することができる。
Examples of structural units derived from aromatic diols include 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, t-butylhydroquinone, phenylhydroquinone, chlorohydroquinone, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 3,4'-dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, 4,4 Examples include structural units derived from '-dihydroxybenzophenone and the like. It is preferable to use a structural unit selected from structural units derived from 4,4'-dihydroxybiphenyl and hydroquinone from the viewpoint of excellent fluidity and dimensional stability while suppressing mold contamination during molding. Further, it has structural units derived from aliphatic diols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, etc., as long as liquid crystallinity and characteristics are not impaired. be able to.
本発明の液晶ポリエステル樹脂は、ジカルボニル単位として、液晶ポリエステル樹脂の全構造単位100モル%に対して、芳香族ジカルボン酸に由来する構造単位を7~40モル%含む。芳香族ジカルボン酸に由来する構造単位の含有量が7モル%未満であると、液晶ポリエステル樹脂の結晶性および融点の制御が困難となり、流動性や寸法安定性が低下する。流動性や寸法安定性向上の観点から、芳香族ジカルボン酸に由来する構造単位の含有量は10モル%以上が好ましく、15モル%以上がより好ましい。一方で、芳香族ジカルボン酸に由来する構造単位の含有量が40モル%より多いと、液晶性が損なわれるため液晶ポリエステル樹脂の流動性が低下し、寸法安定性も低下する。流動性や寸法安定性向上の観点から、芳香族ジカルボン酸に由来する構造単位の含有量は37モル%以下が好ましく、35モル%以下がより好ましい。
The liquid crystal polyester resin of the present invention contains 7 to 40 mol% of structural units derived from aromatic dicarboxylic acid as dicarbonyl units with respect to 100 mol% of all structural units of the liquid crystal polyester resin. When the content of the structural unit derived from the aromatic dicarboxylic acid is less than 7 mol%, it becomes difficult to control the crystallinity and melting point of the liquid crystal polyester resin, and the fluidity and dimensional stability are lowered. From the viewpoint of improving fluidity and dimensional stability, the content of the structural unit derived from the aromatic dicarboxylic acid is preferably 10 mol% or more, and more preferably 15 mol% or more. On the other hand, when there is more content of the structural unit derived from aromatic dicarboxylic acid than 40 mol%, since liquid crystallinity will be impaired, the fluidity | liquidity of liquid crystal polyester resin will fall and dimensional stability will also fall. From the viewpoint of improving fluidity and dimensional stability, the content of the structural unit derived from the aromatic dicarboxylic acid is preferably 37 mol% or less, and more preferably 35 mol% or less.
芳香族ジカルボン酸に由来する構造単位としては、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、3,3’-ジフェニルジカルボン酸、2,2’-ジフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸などに由来する構造単位が挙げられる。成形時の金型汚れを抑制しつつ、流動性および寸法安定性に優れる観点から、テレフタル酸およびイソフタル酸に由来する構造単位から選ばれた構造単位を使用することが好ましい。また、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、ヘキサヒドロテレフタル酸などの脂肪族ジカルボン酸に由来する構造単位、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸に由来する構造単位などを液晶性や特性を損なわない程度の範囲でさらに有することができる。
Examples of the structural unit derived from the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 3,3′-diphenyldicarboxylic acid, and 2,2 ′. -Diphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4'-dicarboxylic acid, 1,2-bis (2-chlorophenoxy) ethane-4,4'-dicarboxylic acid, 4,4'-diphenyl ether Examples include structural units derived from dicarboxylic acids and the like. It is preferable to use a structural unit selected from structural units derived from terephthalic acid and isophthalic acid from the viewpoint of excellent fluidity and dimensional stability while suppressing mold contamination during molding. In addition, structural units derived from aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, hexahydroterephthalic acid, and alicyclic rings such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid A structural unit derived from the formula dicarboxylic acid can be further included in a range not impairing liquid crystallinity and characteristics.
また、上記構造単位に加えて、p-アミノ安息香酸、p-アミノフェノールなどから生成した構造単位を、液晶性や特性を損なわない程度の範囲でさらに有することができる。
Further, in addition to the above structural unit, a structural unit generated from p-aminobenzoic acid, p-aminophenol, or the like can be further included within a range that does not impair liquid crystallinity and characteristics.
上記の各構造単位を構成する原料モノマーとしては、各構造単位を形成しうる構造であれば特に限定されないが、各構造単位の水酸基のアシル化物、各構造単位のカルボキシル基のエステル化物、酸ハロゲン化物、酸無水物などのカルボン酸誘導体などが使用されてもよい。
The raw material monomer constituting each structural unit is not particularly limited as long as it is a structure capable of forming each structural unit. However, an acylated product of a hydroxyl group of each structural unit, an esterified product of a carboxyl group of each structural unit, an acid halogen, and the like. A carboxylic acid derivative such as a chemical compound or an acid anhydride may be used.
本発明の液晶ポリエステル樹脂は、芳香族ヒドロキシカルボン酸に由来する構造単位として、下記構造単位(III)を含み、芳香族ジカルボン酸に由来する構造単位として、下記構造単位(IV)を含み、構造単位(III)と構造単位(IV)の合計含有量が、液晶ポリエステル樹脂の全構造単位100モル%に対して、60~80モル%であることが好ましい。液晶ポリエステル樹脂の結晶性および融点を制御した上で、薄肉流動性や寸法安定性に優れる観点から、構造単位(III)と構造単位(IV)の合計含有量が、好ましくは63モル%以上、さらに好ましくは67モル%以上である。一方で、液晶ポリエステル樹脂の結晶性および融点を制御した上で、薄肉流動性や寸法安定性に優れる観点から、構造単位(III)と構造単位(IV)の合計含有量が、好ましくは78モル%以下である。また、構造単位(III)と構造単位(IV)は、いずれか一方の構造単位を有し、もう一方の構造単位が0モル%であってもよいが、液晶ポリエステル樹脂の結晶性および融点を制御する観点から、両方を0モル%を超えて含むことが好ましい。
The liquid crystal polyester resin of the present invention includes the following structural unit (III) as a structural unit derived from an aromatic hydroxycarboxylic acid, and includes the following structural unit (IV) as a structural unit derived from an aromatic dicarboxylic acid. The total content of the unit (III) and the structural unit (IV) is preferably 60 to 80 mol% with respect to 100 mol% of all the structural units of the liquid crystal polyester resin. The total content of the structural unit (III) and the structural unit (IV) is preferably 63 mol% or more from the viewpoint of excellent thin-wall fluidity and dimensional stability, while controlling the crystallinity and melting point of the liquid crystal polyester resin. More preferably, it is 67 mol% or more. On the other hand, the total content of the structural unit (III) and the structural unit (IV) is preferably 78 mol from the viewpoint of controlling the crystallinity and melting point of the liquid crystal polyester resin and being excellent in thin-wall fluidity and dimensional stability. % Or less. In addition, the structural unit (III) and the structural unit (IV) may have either one of the structural units, and the other structural unit may be 0 mol%. From the viewpoint of control, it is preferable to include both in excess of 0 mol%.
液晶ポリエステル樹脂の全構造単位100モル%に対して、構造単位(III)の含有量は、薄肉流動性や寸法安定性に優れる観点から、30モル%以上が好ましく、50モル%以上がより好ましい。一方で、液晶ポリエステル樹脂の結晶性および融点を制御した上で、薄肉流動性や寸法安定性に優れる観点から、構造単位(III)の含有量は、70モル%以下が好ましく、65モル%以下が好ましい。
The content of the structural unit (III) is preferably 30 mol% or more and more preferably 50 mol% or more with respect to 100 mol% of all structural units of the liquid crystal polyester resin, from the viewpoint of excellent thin-wall fluidity and dimensional stability. . On the other hand, the content of the structural unit (III) is preferably 70 mol% or less, and 65 mol% or less from the viewpoint of excellent thin-wall fluidity and dimensional stability after controlling the crystallinity and melting point of the liquid crystal polyester resin. Is preferred.
液晶ポリエステル樹脂の全構造単位100モル%に対して、構造単位(IV)の含有量は、薄肉流動性や寸法安定性に優れる観点から、5モル%以上が好ましく、10モル%以上が好ましい。一方で、薄肉流動性や寸法安定性に優れる観点から、構造単位(IV)の含有量は、30モル%以下が好ましく、20モル%以下が好ましい。
From the viewpoint of excellent thin-wall fluidity and dimensional stability, the content of the structural unit (IV) is preferably 5 mol% or more and more preferably 10 mol% or more with respect to 100 mol% of all structural units of the liquid crystal polyester resin. On the other hand, from the viewpoint of excellent thin-wall fluidity and dimensional stability, the content of the structural unit (IV) is preferably 30 mol% or less, and more preferably 20 mol% or less.
本発明の液晶ポリエステル樹脂は、芳香族ジオールに由来する構造単位として、下記構造単位(V)を含み、構造単位(V)を液晶ポリエステル樹脂の構造単位全量100モル%に対して2~20モル%含有することが好ましい。構造単位(V)はハイドロキノンに由来する構造単位である。構造単位(V)を2モル%以上含有することにより、薄肉流動性や寸法安定性をより向上させることができる。構造単位(V)の含有量は、より好ましくは4モル%以上であり、さらに好ましくは7.5モル%以上である。一方で、構造単位(V)を20モル%以下含有することにより、薄肉流動性や寸法安定性をより向上させることができる。構造単位(V)の含有量は、より好ましくは15モル%以下であり、さらに好ましくは12モル%以下である。
The liquid crystalline polyester resin of the present invention contains the following structural unit (V) as a structural unit derived from an aromatic diol, and the structural unit (V) is 2 to 20 mol with respect to 100 mol% of the total structural units of the liquid crystalline polyester resin. % Content is preferable. The structural unit (V) is a structural unit derived from hydroquinone. By containing 2 mol% or more of the structural unit (V), the thin-wall fluidity and dimensional stability can be further improved. The content of the structural unit (V) is more preferably 4 mol% or more, and further preferably 7.5 mol% or more. On the other hand, by containing 20 mol% or less of the structural unit (V), the thin-wall fluidity and dimensional stability can be further improved. The content of the structural unit (V) is more preferably 15 mol% or less, and further preferably 12 mol% or less.
本発明の液晶ポリエステル樹脂は、芳香族ジオールに由来する構造単位として、下記構造単位(VI)を含み、構造単位(VI)を液晶ポリエステル樹脂の構造単位全量100モル%に対して、3~30モル%含有することが好ましい。構造単位(VI)は4,4’-ジヒドロキシビフェニルに由来する構造単位である。構造単位(VI)を3モル%以上含有することにより、液晶ポリエステル樹脂の結晶性および融点を制御でき、耐熱性が向上する。構造単位(VI)の含有量は、好ましくは5モル%以上であり、より好ましくは7モル%以上である。一方で、構造単位(VI)を30モル%以下含有することにより、液晶ポリエステル樹脂の結晶性および融点を制御でき、成形加工性が向上する。構造単位(VI)の含有量は、より好ましくは25モル%以下であり、さらに好ましくは20モル%以下である。
The liquid crystal polyester resin of the present invention contains the following structural unit (VI) as a structural unit derived from an aromatic diol, and the structural unit (VI) is 3 to 30 per 100 mol% of the total amount of structural units of the liquid crystal polyester resin. It is preferable to contain mol%. The structural unit (VI) is a structural unit derived from 4,4'-dihydroxybiphenyl. By containing 3 mol% or more of the structural unit (VI), the crystallinity and melting point of the liquid crystal polyester resin can be controlled, and the heat resistance is improved. Content of structural unit (VI) becomes like this. Preferably it is 5 mol% or more, More preferably, it is 7 mol% or more. On the other hand, by containing 30 mol% or less of the structural unit (VI), the crystallinity and melting point of the liquid crystal polyester resin can be controlled, and the moldability is improved. The content of the structural unit (VI) is more preferably 25 mol% or less, and further preferably 20 mol% or less.
本発明の液晶ポリエステル樹脂は、芳香族ジカルボン酸に由来する構造単位として、下記構造単位(VII)を含み、構造単位(VII)を液晶ポリエステル樹脂の構造単位全量100モル%に対して、1~10モル%含有することが好ましい。下記構造単位(VII)はイソフタル酸に由来する構造単位である。構造単位(VII)を1モル%以上含有することにより、液晶ポリエステル樹脂の結晶性および融点を制御でき、成形加工性が向上する。構造単位(VII)の含有量は、好ましくは2モル%以上であり、より好ましくは3モル%以上である。一方で、構造単位(VII)を10モル%以下含有することにより、液晶ポリエステル樹脂の結晶性および融点を制御でき、耐熱性が向上する。構造単位(VII)の含有量は、より好ましくは9モル%以下であり、さらに好ましくは8モル%以下である。
The liquid crystal polyester resin of the present invention contains the following structural unit (VII) as a structural unit derived from an aromatic dicarboxylic acid, and the structural unit (VII) is 1 to It is preferable to contain 10 mol%. The following structural unit (VII) is a structural unit derived from isophthalic acid. By containing 1 mol% or more of structural units (VII), the crystallinity and melting point of the liquid crystal polyester resin can be controlled, and the moldability is improved. The content of the structural unit (VII) is preferably 2 mol% or more, more preferably 3 mol% or more. On the other hand, by containing 10 mol% or less of the structural unit (VII), the crystallinity and melting point of the liquid crystal polyester resin can be controlled, and the heat resistance is improved. The content of the structural unit (VII) is more preferably 9 mol% or less, still more preferably 8 mol% or less.
本発明における液晶ポリエステル樹脂の各構造単位の含有量は、液晶ポリエステルペレットを粉砕後、水酸化テトラメチルアンモニウムを添加し、島津製GCMS-QP5050Aを用いて熱分解GC/MS測定を行うことにより求めることができる。検出されなかった、あるいは検出限界以下の構造単位の含有量は0モル%として計算する。
The content of each structural unit of the liquid crystal polyester resin in the present invention is determined by pulverizing the liquid crystal polyester pellets, adding tetramethylammonium hydroxide, and performing pyrolysis GC / MS measurement using a Shimadzu GCMS-QP5050A. be able to. The content of structural units not detected or below the detection limit is calculated as 0 mol%.
本発明の液晶ポリエステル樹脂の融点(Tm)は、耐熱性の観点から220℃以上が好ましく、270℃以上がより好ましく、300℃以上がさらに好ましい。一方、加工時の液晶ポリエステル樹脂の劣化を抑制し、成形時の金型汚れを抑制する観点から、液晶ポリエステル樹脂の融点(Tm)は、360℃以下が好ましく、355℃以下がより好ましく、350℃以下がさらに好ましい。
The melting point (Tm) of the liquid crystalline polyester resin of the present invention is preferably 220 ° C. or higher, more preferably 270 ° C. or higher, and further preferably 300 ° C. or higher from the viewpoint of heat resistance. On the other hand, the melting point (Tm) of the liquid crystal polyester resin is preferably 360 ° C. or lower, more preferably 355 ° C. or lower, from the viewpoint of suppressing deterioration of the liquid crystal polyester resin during processing and suppressing mold contamination during molding. More preferably, it is not more than ℃
融点(Tm)の測定は、示差走査熱量測定により行う。具体的には、まず、重合を完了したポリマーを室温から20℃/分の昇温条件で加熱することにより吸熱ピーク温度(Tm1)を観測する。吸熱ピーク温度(Tm1)の観測後、吸熱ピーク温度(Tm1)+20℃の温度でポリマーを5分間保持する。その後、20℃/分の降温条件で室温までポリマーを冷却する。そして、20℃/分の昇温条件で再びポリマーを加熱することにより吸熱ピーク温度(Tm2)を観測する。融点(Tm)とは、2回目の昇温過程における該吸熱ピーク温度(Tm2)を指す。
The melting point (Tm) is measured by differential scanning calorimetry. Specifically, first, an endothermic peak temperature (Tm 1 ) is observed by heating the polymer that has been polymerized from room temperature to a temperature rising condition of 20 ° C./min. After observation of an endothermic peak temperature (Tm 1), holding the polymer for 5 minutes at a temperature of the endothermic peak temperature (Tm 1) + 20 ℃. Thereafter, the polymer is cooled to room temperature under a temperature drop condition of 20 ° C./min. Then, the endothermic peak temperature (Tm 2 ) is observed by heating the polymer again under the temperature rising condition of 20 ° C./min. The melting point (Tm) refers to the endothermic peak temperature (Tm 2 ) in the second temperature raising process.
本発明の液晶ポリエステル樹脂の溶融粘度は、成形時の金型汚れを抑制する観点から1Pa・s以上が好ましく、3Pa・s以上がより好ましく、5Pa・s以上がさらに好ましい。一方、薄肉流動性に優れる観点から、液晶ポリエステル樹脂の溶融粘度は、50Pa・s以下が好ましく、20Pa・s以下が好ましく、10Pa・s以下がさらに好ましい。
The melt viscosity of the liquid crystalline polyester resin of the present invention is preferably 1 Pa · s or more, more preferably 3 Pa · s or more, and further preferably 5 Pa · s or more, from the viewpoint of suppressing mold contamination during molding. On the other hand, from the viewpoint of excellent thin-wall fluidity, the melt viscosity of the liquid crystal polyester resin is preferably 50 Pa · s or less, preferably 20 Pa · s or less, and more preferably 10 Pa · s or less.
なお、この溶融粘度は、液晶ポリエステル樹脂の融点(Tm)+20℃の温度で、かつ、せん断速度1000/秒の条件下で、高化式フローテスターによって測定した値である。
The melt viscosity is a value measured by a Koka flow tester at a temperature of the melting point (Tm) of the liquid crystal polyester resin + 20 ° C. and a shear rate of 1000 / sec.
<液晶ポリエステル樹脂の製造方法>
本発明で使用する液晶ポリエステル樹脂を製造する方法は、下記の方法が挙げられる。
(A)後述の公知のポリエステルの重縮合法に準じて製造する際に、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物を添加する方法。
(B)後述の公知のポリエステルの重縮合法に準じて、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂を製造した後、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物を配合する方法。 <Method for producing liquid crystal polyester resin>
Examples of the method for producing the liquid crystal polyester resin used in the present invention include the following methods.
(A) A method of adding a compound having at least one structure selected from the structural unit (I) and the structural unit (II) when producing according to a known polyester polycondensation method described later.
(B) A liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II) is produced according to the known polyester polycondensation method described below, and then the structural unit (I) and the structural unit ( A method of blending a compound having at least one structure selected from II).
本発明で使用する液晶ポリエステル樹脂を製造する方法は、下記の方法が挙げられる。
(A)後述の公知のポリエステルの重縮合法に準じて製造する際に、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物を添加する方法。
(B)後述の公知のポリエステルの重縮合法に準じて、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂を製造した後、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物を配合する方法。 <Method for producing liquid crystal polyester resin>
Examples of the method for producing the liquid crystal polyester resin used in the present invention include the following methods.
(A) A method of adding a compound having at least one structure selected from the structural unit (I) and the structural unit (II) when producing according to a known polyester polycondensation method described later.
(B) A liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II) is produced according to the known polyester polycondensation method described below, and then the structural unit (I) and the structural unit ( A method of blending a compound having at least one structure selected from II).
液晶ポリエステル樹脂との適度なエステル交換反応により、成形時の金型汚れを抑制しつつ、薄肉流動性や寸法安定性をより向上させることができることから、(B)構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂を製造した後、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物を配合する方法が好ましい。なお、これらを配合する方法としては、これらを溶融混練する方法が好ましい。詳細な製造方法は後述する。
The moderate transesterification reaction with the liquid crystal polyester resin can further improve the thin-wall fluidity and dimensional stability while suppressing mold contamination during molding. Therefore, (B) the structural units (I) and (II) A method of blending a compound having at least one structure selected from the structural unit (I) and the structural unit (II) after producing a liquid crystal polyester resin not containing a structural unit selected from In addition, as a method of blending these, a method of melting and kneading them is preferable. A detailed manufacturing method will be described later.
構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物としては、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールや、上記ジオール化合物にオキシカルボニル単位やジカルボニル単位などの液晶ポリエステル樹脂を構成しうる構造単位が1つ以上エステル結合した化合物が挙げられる。なかでも、成形時の金型汚れを抑制する観点から、水酸基を2つ有する1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、および上記ジオール化合物に液晶ポリエステル樹脂を構成しうるオキシカルボニル単位が1つ以上エステル結合した化合物が好ましい。さらには、耐熱性が高く、重縮合や溶融混練時に熱分解を抑制するため、成形時の金型汚れを抑制しつつ、薄肉流動性や寸法安定性に優れる観点から、上記ジオール化合物に液晶ポリエステル樹脂を構成しうるオキシカルボニル単位が1つ以上エステル結合した化合物がさらに好ましく、2つ以上エステル結合した化合物が特に好ましい。オキシカルボニル単位の隣に、さらにオキシカルボニル単位が結合された化合物であってもよいが、オキシカルボニル単位の結合数の上限は、剛直なオキシカルボニル単位の長連鎖に由来する不融物を生成しない観点から、10以下が好ましく、7以下がより好ましい。
Examples of the compound having at least one structure selected from the structural unit (I) and the structural unit (II) include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, diol compounds such as oxycarbonyl units and dimers. Examples thereof include compounds in which one or more structural units that can constitute a liquid crystal polyester resin such as a carbonyl unit are ester-bonded. Among them, from the viewpoint of suppressing mold contamination during molding, 1,4-cyclohexanediol having two hydroxyl groups, 1,4-cyclohexanedimethanol, and an oxycarbonyl unit capable of constituting a liquid crystal polyester resin in the diol compound. Are compounds in which one or more of them are ester-bonded. Furthermore, since it has high heat resistance and suppresses thermal decomposition during polycondensation and melt-kneading, the liquid crystal polyester is added to the diol compound from the viewpoint of excellent thin-wall fluidity and dimensional stability while suppressing mold contamination during molding. A compound in which one or more oxycarbonyl units capable of constituting the resin are ester-bonded is more preferable, and a compound in which two or more ester bonds are bonded is particularly preferable. A compound in which an oxycarbonyl unit is further bonded next to the oxycarbonyl unit may be used, but the upper limit of the number of bonds of the oxycarbonyl unit does not generate an infusible substance derived from a long chain of rigid oxycarbonyl units. From the viewpoint, 10 or less is preferable, and 7 or less is more preferable.
上記ジオール化合物に液晶ポリエステル樹脂を構成しうるオキシカルボニル単位が1つ以上エステル結合した化合物としては、例えば、シクロヘキサン-1,4-ジイルビス(メチレン)ビス(4-ヒドロキシベンゾエート)、(4-(ヒドロキシメチル)シクロヘキシル)メチル4-ヒドロキシベンゾエート、4-ヒドロキシシクロヘキシル4-ヒドロキシベンゾエート、シクロヘキサン-1,4-ジイルビス(4-ヒドロキシベンゾエート)などが挙げられる。
Examples of the compound in which one or more oxycarbonyl units capable of constituting a liquid crystal polyester resin are ester-bonded to the diol compound include cyclohexane-1,4-diylbis (methylene) bis (4-hydroxybenzoate) and (4- (hydroxy And methyl) cyclohexyl) methyl 4-hydroxybenzoate, 4-hydroxycyclohexyl 4-hydroxybenzoate, and cyclohexane-1,4-diylbis (4-hydroxybenzoate).
これらの化合物は、1,4-シクロヘキサンジオールまたは1,4-シクロヘキサンジメタノールと、芳香族ヒドロキシカルボン酸とを当業者に知られた方法、例えば特表2008-544954号公報に記載される方法、を用いてエステル化することにより製造することができる。具体的には、1,4-シクロヘキサンジオールまたは1,4-シクロヘキサンジメタノールと、芳香族ヒドロキシカルボン酸とを、溶媒中、硫酸の存在下での加熱還流により反応させ、その後、メタノール洗浄で精製することにより、上記ジオール化合物に液晶ポリエステル樹脂を構成しうるオキシカルボニル単位が1つ以上エステル結合した化合物を得ることができる。
These compounds are obtained by a method known to those skilled in the art, such as 1,4-cyclohexanediol or 1,4-cyclohexanedimethanol and an aromatic hydroxycarboxylic acid, for example, a method described in JP-T-2008-54495, It can manufacture by esterifying using. Specifically, 1,4-cyclohexanediol or 1,4-cyclohexanedimethanol and aromatic hydroxycarboxylic acid are reacted by heating under reflux in the presence of sulfuric acid in a solvent, and then purified by washing with methanol. By doing so, a compound in which one or more oxycarbonyl units capable of constituting a liquid crystal polyester resin are ester-bonded to the diol compound can be obtained.
構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物の分子量は、成形時の金型汚れを抑制しつつ、薄肉流動性や寸法安定性に優れる観点から、200以上が好ましく、230以上がより好ましく、250以上がさらに好ましい。一方、ジオール化合物に液晶ポリエステル樹脂を構成しうる構造単位が1つ以上エステル結合した化合物である場合、剛直な構造単位の長連鎖による不融物生成を抑制する観点から、分子量は、1000以下が好ましく、700以下がより好ましく、500以下がさらに好ましい。
The molecular weight of the compound having at least one structure selected from the structural unit (I) and the structural unit (II) is 200 from the viewpoint of excellent thin-wall fluidity and dimensional stability while suppressing mold contamination during molding. The above is preferable, 230 or more is more preferable, and 250 or more is more preferable. On the other hand, when the diol compound is a compound in which one or more structural units that can constitute the liquid crystal polyester resin are ester-bonded, the molecular weight is 1000 or less from the viewpoint of suppressing infusible product formation due to long chains of rigid structural units. Preferably, 700 or less is more preferable, and 500 or less is more preferable.
上記(B)の方法で液晶ポリエステル樹脂を製造する場合、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の含有量を所望の範囲とするために、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂100重量部に対して、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物を、好ましくは0.01重量部以上、より好ましくは0.03重量部以上、さらに好ましくは0.05重量部以上配合することが好ましい。一方で、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂100重量部に対して、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物を、好ましくは10重量部以下、より好ましくは7重量部以下、さらに好ましくは3重量部以下配合することが好ましい。
When the liquid crystal polyester resin is produced by the method (B), in order to bring the content of at least one selected from the structural unit (I) and the structural unit (II) into a desired range, the structural unit (I) and The compound having at least one structure selected from the structural unit (I) and the structural unit (II) is preferably 0.01 to 100 parts by weight of the liquid crystalline polyester resin not containing the structural unit selected from (II). It is preferable to blend by weight part or more, more preferably 0.03 part by weight or more, and still more preferably 0.05 part by weight or more. On the other hand, with respect to 100 parts by weight of the liquid crystal polyester resin not containing the structural unit selected from the structural units (I) and (II), at least one structure selected from the structural unit (I) and the structural unit (II) is used. It is preferable to blend the compound having 10 parts by weight or less, more preferably 7 parts by weight or less, and still more preferably 3 parts by weight or less.
公知のポリエステルの重縮合法としては、p-ヒドロキシ安息香酸に由来する構造単位、4,4’-ジヒドロキシビフェニルに由来する構造単位、ハイドロキノンに由来する構造単位、テレフタル酸に由来する構造単位、およびイソフタル酸に由来する構造単位からなる液晶ポリエステル樹脂を例にすると、以下が挙げられる。
Known polyester polycondensation methods include structural units derived from p-hydroxybenzoic acid, structural units derived from 4,4′-dihydroxybiphenyl, structural units derived from hydroquinone, structural units derived from terephthalic acid, and Taking the liquid crystal polyester resin comprising a structural unit derived from isophthalic acid as an example, the following may be mentioned.
(1)p-アセトキシ安息香酸、4,4’-ジアセトキシビフェニル、ジアセトキシベンゼンとテレフタル酸およびイソフタル酸から脱酢酸縮重合反応によって液晶ポリエステル樹脂を製造する方法。
(1) A method for producing a liquid crystal polyester resin from p-acetoxybenzoic acid, 4,4'-diacetoxybiphenyl, diacetoxybenzene, terephthalic acid and isophthalic acid by a deacetic acid condensation polymerization reaction.
(2)p-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、およびイソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアセチル化した後、脱酢酸重合することによって液晶ポリエステル樹脂を製造する方法。
(2) Liquid crystalline polyester by reacting p-hydroxybenzoic acid, 4,4'-dihydroxybiphenyl, hydroquinone, terephthalic acid, and isophthalic acid with acetic anhydride to acetylate the phenolic hydroxyl group, followed by deacetic acid polymerization A method for producing a resin.
(3)p-ヒドロキシ安息香酸フェニル、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸ジフェニルおよびイソフタル酸ジフェニルから脱フェノール重縮合反応により液晶ポリエステル樹脂を製造する方法。
(3) A method for producing a liquid crystal polyester resin from a phenyl p-hydroxybenzoate, 4,4'-dihydroxybiphenyl, hydroquinone, diphenyl terephthalate and diphenyl isophthalate by a dephenol polycondensation reaction.
(4)p-ヒドロキシ安息香酸、テレフタル酸およびイソフタル酸に所定量のジフェニルカーボネートを反応させて、それぞれフェニルエステルとした後、4,4’-ジヒドロキシビフェニルおよびハイドロキノンを加え、脱フェノール重縮合反応により液晶ポリエステル樹脂を製造する方法。
(4) After reacting p-hydroxybenzoic acid, terephthalic acid and isophthalic acid with a predetermined amount of diphenyl carbonate to form phenyl esters, respectively, 4,4′-dihydroxybiphenyl and hydroquinone are added, and dephenol polycondensation reaction is performed. A method for producing a liquid crystal polyester resin.
なかでも(2)p-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、およびイソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアセチル化した後、脱酢酸重縮合反応によって液晶ポリエステル樹脂を製造する方法が、液晶ポリエステル樹脂の末端構造の制御および重合度の制御に工業的に優れる点から、好ましく用いられる。
Among them, (2) p-hydroxybenzoic acid, 4,4'-dihydroxybiphenyl, hydroquinone, terephthalic acid, and isophthalic acid are reacted with acetic anhydride to acetylate the phenolic hydroxyl group, and then deacetic acid polycondensation reaction. A method for producing a liquid crystal polyester resin is preferably used because it is industrially excellent in controlling the terminal structure of the liquid crystal polyester resin and controlling the degree of polymerization.
液晶ポリエステル樹脂の製造方法として、固相重合法により重縮合反応を完了させることも可能である。固相重合法としては、例えば、以下の方法が挙げられる。まず、液晶ポリエステル樹脂のポリマーまたはオリゴマーを粉砕機で粉砕する。粉砕したポリマーまたはオリゴマーを、窒素気流下、または、減圧下において加熱し、所望の重合度まで重縮合することで、反応を完了させる。上記加熱は、液晶ポリエステルの融点-50℃~融点-5℃(例えば、200~300℃)の範囲で1~50時間行うことができる。
As a method for producing a liquid crystal polyester resin, the polycondensation reaction can be completed by a solid phase polymerization method. Examples of the solid phase polymerization method include the following methods. First, a polymer or oligomer of a liquid crystal polyester resin is pulverized by a pulverizer. The pulverized polymer or oligomer is heated under a nitrogen stream or under reduced pressure, and polycondensed to a desired degree of polymerization to complete the reaction. The heating can be performed for 1 to 50 hours in the range of the melting point of the liquid crystal polyester to −50 ° C. to the melting point −5 ° C. (eg, 200 to 300 ° C.).
液晶ポリエステル樹脂の重縮合反応は、無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどを触媒として使用することもできる。
The polycondensation reaction of the liquid crystalline polyester resin proceeds even without catalyst, but stannous acetate, tetrabutyl titanate, potassium acetate and sodium acetate, antimony trioxide, magnesium metal, and the like can also be used as a catalyst.
<液晶ポリエステル樹脂組成物>
本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の機械強度その他の特性を付与するために充填材を含有した樹脂組成物として用いることもできる。充填材としては、特に限定されるものではないが、例えば、繊維状充填材、ウィスカー状充填材、板状充填材、粉末状充填材、粒状充填材などを挙げることができる。具体的には、繊維状充填材およびウィスカー状充填材としては、ガラス繊維;PAN系やピッチ系の炭素繊維;ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維;芳香族ポリアミド繊維や液晶ポリエステル繊維などの有機繊維;石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカー、および針状酸化チタンなどが挙げられる。板状充填材としては、マイカ、タルク、カオリン、ガラスフレーク、クレー、二硫化モリブデン、およびワラステナイトなどが挙げられる。粉末状充填材および粒状充填材としては、シリカ、ガラスビーズ、酸化チタン、酸化亜鉛、ポリリン酸カルシウムおよび黒鉛などが挙げられる。上記の充填材は、その表面を公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他の表面処理剤で処理されていてもよい。充填材は、2種以上を併用してもよい。 <Liquid crystal polyester resin composition>
The liquid crystal polyester resin of the present invention can also be used as a resin composition containing a filler in order to impart mechanical strength and other characteristics of the liquid crystal polyester resin. Although it does not specifically limit as a filler, For example, a fibrous filler, a whisker-like filler, a plate-like filler, a powder filler, a granular filler, etc. can be mentioned. Specifically, as the fibrous filler and whisker-like filler, glass fiber; PAN-based or pitch-based carbon fiber; metal fiber such as stainless steel fiber, aluminum fiber or brass fiber; aromatic polyamide fiber or liquid crystal polyester fiber Organic fiber such as: gypsum fiber, ceramic fiber, asbestos fiber, zirconia fiber, alumina fiber, silica fiber, titanium oxide fiber, silicon carbide fiber, rock wool, potassium titanate whisker, barium titanate whisker, aluminum borate whisker, nitriding Examples thereof include silicon whiskers and acicular titanium oxide. Examples of the plate-like filler include mica, talc, kaolin, glass flake, clay, molybdenum disulfide, and wollastonite. Examples of the powder filler and the granular filler include silica, glass beads, titanium oxide, zinc oxide, calcium polyphosphate, and graphite. The surface of the filler may be treated with a known coupling agent (for example, a silane coupling agent or a titanate coupling agent) or other surface treatment agent. Two or more fillers may be used in combination.
本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の機械強度その他の特性を付与するために充填材を含有した樹脂組成物として用いることもできる。充填材としては、特に限定されるものではないが、例えば、繊維状充填材、ウィスカー状充填材、板状充填材、粉末状充填材、粒状充填材などを挙げることができる。具体的には、繊維状充填材およびウィスカー状充填材としては、ガラス繊維;PAN系やピッチ系の炭素繊維;ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維;芳香族ポリアミド繊維や液晶ポリエステル繊維などの有機繊維;石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカー、および針状酸化チタンなどが挙げられる。板状充填材としては、マイカ、タルク、カオリン、ガラスフレーク、クレー、二硫化モリブデン、およびワラステナイトなどが挙げられる。粉末状充填材および粒状充填材としては、シリカ、ガラスビーズ、酸化チタン、酸化亜鉛、ポリリン酸カルシウムおよび黒鉛などが挙げられる。上記の充填材は、その表面を公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他の表面処理剤で処理されていてもよい。充填材は、2種以上を併用してもよい。 <Liquid crystal polyester resin composition>
The liquid crystal polyester resin of the present invention can also be used as a resin composition containing a filler in order to impart mechanical strength and other characteristics of the liquid crystal polyester resin. Although it does not specifically limit as a filler, For example, a fibrous filler, a whisker-like filler, a plate-like filler, a powder filler, a granular filler, etc. can be mentioned. Specifically, as the fibrous filler and whisker-like filler, glass fiber; PAN-based or pitch-based carbon fiber; metal fiber such as stainless steel fiber, aluminum fiber or brass fiber; aromatic polyamide fiber or liquid crystal polyester fiber Organic fiber such as: gypsum fiber, ceramic fiber, asbestos fiber, zirconia fiber, alumina fiber, silica fiber, titanium oxide fiber, silicon carbide fiber, rock wool, potassium titanate whisker, barium titanate whisker, aluminum borate whisker, nitriding Examples thereof include silicon whiskers and acicular titanium oxide. Examples of the plate-like filler include mica, talc, kaolin, glass flake, clay, molybdenum disulfide, and wollastonite. Examples of the powder filler and the granular filler include silica, glass beads, titanium oxide, zinc oxide, calcium polyphosphate, and graphite. The surface of the filler may be treated with a known coupling agent (for example, a silane coupling agent or a titanate coupling agent) or other surface treatment agent. Two or more fillers may be used in combination.
上記充填材中、特に引張強度や曲げ強度などの機械的強度、耐熱性および寸法安定性に優れる点から、ガラス繊維が好ましい。ガラス繊維の種類は、一般に樹脂の強化用に用いるものであれば特に限定はなく、例えば、長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどを挙げることができる。また、薄肉流動性に優れる点からは、マイカを使用することが好ましい。
Among the above fillers, glass fiber is particularly preferable from the viewpoints of excellent mechanical strength such as tensile strength and bending strength, heat resistance and dimensional stability. The type of glass fiber is not particularly limited as long as it is generally used for resin reinforcement, and examples thereof include long fiber type and short fiber type chopped strands, milled fibers, and the like. Moreover, it is preferable to use mica from the point which is excellent in thin-wall fluidity | liquidity.
上記充填材は、その表面が公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他の表面処理剤により処理されていてもよい。また、ガラス繊維は、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂で被覆あるいは集束されていてもよい。
The surface of the filler may be treated with a known coupling agent (for example, a silane coupling agent or a titanate coupling agent) or other surface treatment agent. The glass fiber may be coated or bundled with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin.
充填材の含有量は、液晶ポリエステル樹脂100重量部に対し、10~200重量部が好ましい。充填材含有量が10重量部以上であれば、成形品の機械強度を向上させることができるため好ましい。15重量部以上がより好ましく、20重量部以上がさらに好ましい。一方、充填材含有量が200重量部以下であれば、成形性および薄肉流動性に優れた液晶ポリエステル樹脂組成物が得られるため好ましい。150重量部以下がより好ましく、100重量部以下がさらに好ましい。
The content of the filler is preferably 10 to 200 parts by weight with respect to 100 parts by weight of the liquid crystalline polyester resin. A filler content of 10 parts by weight or more is preferable because the mechanical strength of the molded product can be improved. 15 parts by weight or more is more preferable, and 20 parts by weight or more is more preferable. On the other hand, when the filler content is 200 parts by weight or less, a liquid crystal polyester resin composition excellent in moldability and thin wall fluidity is obtained, which is preferable. 150 parts by weight or less is more preferable, and 100 parts by weight or less is more preferable.
本発明の液晶ポリエステル樹脂組成物には、本発明の効果を損なわない範囲でさらに酸化防止剤、熱安定剤(例えば、ヒンダードフェノール、ハイドロキノン、ホスファイト、チオエーテル類およびこれらの置換体など)、紫外線吸収剤(例えば、レゾルシノール、サリシレート)、亜リン酸塩、次亜リン酸塩などの着色防止剤、滑剤および離型剤(モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料または顔料を含む着色剤、導電剤あるいは着色剤としてカーボンブラック、結晶核剤、可塑剤、難燃剤(臭素系難燃剤、燐系難燃剤、赤燐、シリコーン系難燃剤など)、難燃助剤、および帯電防止剤から選択される通常の添加剤を配合することができる。
In the liquid crystal polyester resin composition of the present invention, an antioxidant and a heat stabilizer (for example, hindered phenol, hydroquinone, phosphite, thioethers, and substituted products thereof, etc.) as long as the effects of the present invention are not impaired. UV absorbers (eg, resorcinol, salicylate), anti-coloring agents such as phosphites, hypophosphites, lubricants and mold release agents (montanic acid and its metal salts, its esters, their half esters, stearyl alcohol, Stearamide and polyethylene wax), colorants containing dyes or pigments, carbon black, crystal nucleating agents, plasticizers, flame retardants (bromine flame retardants, phosphorus flame retardants, red phosphorus, silicone flame retardants) Conventional additives selected from flame retardants, flame retardant aids, and antistatic agents. Can.
<液晶ポリエステル樹脂組成物の製造方法>
本発明の液晶ポリエステル樹脂組成物を得る方法としては、例えば、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂に、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、充填材およびその他の固体状の添加剤等を配合するドライブレンド法や、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、充填材およびその他の液体状の添加剤等を配合する溶液配合法、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、充填材およびその他の添加剤を構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂の重合時に添加する方法や、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、充填材およびその他の添加剤を溶融混練する方法などを用いることができる。なかでも溶融混練する方法が好ましい。溶融混練には公知の方法を用いることができる。たとえば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを用い、上記の各成分を、液晶ポリエステル樹脂の融点+50℃以下で溶融混練して液晶ポリエステル樹脂組成物を得ることができる。なかでも二軸押出機を用いた溶融混練が好ましい。 <Method for Producing Liquid Crystalline Polyester Resin Composition>
As a method for obtaining the liquid crystal polyester resin composition of the present invention, for example, a liquid crystal polyester resin that does not contain a structural unit selected from the structural units (I) and (II) can be obtained from the structural units (I) and (II). A dry blend method in which a compound having at least one selected structure, a filler, and other solid additives are blended, and a liquid crystal polyester resin not containing a structural unit selected from structural units (I) and (II) , A solution blending method, a structural unit (I) and a structural unit containing at least one compound selected from the structural unit (I) and the structural unit (II), a filler and other liquid additives A compound having at least one structure selected from (II), a filler and other additives are selected from structural units (I) and (II). A method of adding at the time of polymerization of a liquid crystal polyester resin not containing a structural unit, a liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II), a structural unit (I) and a structural unit (II) A method of melt-kneading a compound having at least one structure, a filler, and other additives can be used. Of these, the melt kneading method is preferred. A known method can be used for melt kneading. For example, using a Banbury mixer, rubber roll machine, kneader, single-screw or twin-screw extruder, the above components can be melt-kneaded at a melting point of the liquid crystal polyester resin + 50 ° C. or lower to obtain a liquid crystal polyester resin composition. . Among these, melt kneading using a twin screw extruder is preferable.
本発明の液晶ポリエステル樹脂組成物を得る方法としては、例えば、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂に、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、充填材およびその他の固体状の添加剤等を配合するドライブレンド法や、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、充填材およびその他の液体状の添加剤等を配合する溶液配合法、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、充填材およびその他の添加剤を構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂の重合時に添加する方法や、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、充填材およびその他の添加剤を溶融混練する方法などを用いることができる。なかでも溶融混練する方法が好ましい。溶融混練には公知の方法を用いることができる。たとえば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを用い、上記の各成分を、液晶ポリエステル樹脂の融点+50℃以下で溶融混練して液晶ポリエステル樹脂組成物を得ることができる。なかでも二軸押出機を用いた溶融混練が好ましい。 <Method for Producing Liquid Crystalline Polyester Resin Composition>
As a method for obtaining the liquid crystal polyester resin composition of the present invention, for example, a liquid crystal polyester resin that does not contain a structural unit selected from the structural units (I) and (II) can be obtained from the structural units (I) and (II). A dry blend method in which a compound having at least one selected structure, a filler, and other solid additives are blended, and a liquid crystal polyester resin not containing a structural unit selected from structural units (I) and (II) , A solution blending method, a structural unit (I) and a structural unit containing at least one compound selected from the structural unit (I) and the structural unit (II), a filler and other liquid additives A compound having at least one structure selected from (II), a filler and other additives are selected from structural units (I) and (II). A method of adding at the time of polymerization of a liquid crystal polyester resin not containing a structural unit, a liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II), a structural unit (I) and a structural unit (II) A method of melt-kneading a compound having at least one structure, a filler, and other additives can be used. Of these, the melt kneading method is preferred. A known method can be used for melt kneading. For example, using a Banbury mixer, rubber roll machine, kneader, single-screw or twin-screw extruder, the above components can be melt-kneaded at a melting point of the liquid crystal polyester resin + 50 ° C. or lower to obtain a liquid crystal polyester resin composition. . Among these, melt kneading using a twin screw extruder is preferable.
二軸押出機については、液晶ポリエステル樹脂、および充填材の分散性を向上させるため、ニーディング部を1箇所以上設けたものが好ましく、ニーディング部を2箇所以上設けたものがより好ましい。液晶ポリエステル樹脂を上述の(B)の方法で製造する場合、ニーディング部を上記のように設けることにより、構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂と、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物の分散性が向上し、両者が適度にエステル交換反応することにより、成形時の金型汚れを抑制しつつ、薄肉流動性や寸法安定性をより向上させることができる。ニーディング部の設置箇所は、例えば、充填材をサイドフィーダーから添加する場合、液晶ポリエステル樹脂の可塑化を促進させるために、充填材のサイドフィーダーより上流側に1箇所以上、液晶ポリエステル樹脂と充填材との分散性を向上させるため、サイドフィーダーよりも下流側に1箇所以上の計2箇所以上設置することが好ましい。
For the twin screw extruder, in order to improve the dispersibility of the liquid crystalline polyester resin and the filler, it is preferable to provide one or more kneading parts, and more preferably to provide two or more kneading parts. When the liquid crystal polyester resin is produced by the method (B) described above, by providing the kneading part as described above, a liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II); The dispersibility of the compound having at least one structure selected from the structural unit (I) and the structural unit (II) is improved, and both are appropriately transesterified to suppress mold contamination during molding. Moreover, thin-wall fluidity and dimensional stability can be further improved. For example, when the filler is added from the side feeder, the kneading portion is installed at one or more locations upstream of the side feeder of the filler in order to promote plasticization of the liquid crystalline polyester resin. In order to improve the dispersibility with the material, it is preferable to install two or more in total, one or more on the downstream side of the side feeder.
また、二軸押出機中の水分や混練中に生じた分解物を除去するため、ベント部を設けていることが好ましい。ベント部の設置箇所は、例えば、充填材をサイドフィーダーから添加する場合、液晶ポリエステル樹脂の付着水分を除去するために、充填材を投入するサイドフィーダーより上流側に1箇所以上、溶融混練時の分解ガス、充填材供給時の持ち込み空気を除去するため、サイドフィーダーよりも下流側に1箇所以上の計2箇所以上設置することが好ましい。ベント部は、常圧下としてもよく、減圧下としてもよい。
Further, it is preferable to provide a vent portion in order to remove moisture in the twin screw extruder and decomposition products generated during kneading. For example, when the filler is added from the side feeder, the vent portion is installed at one or more locations upstream of the side feeder into which the filler is charged in order to remove moisture adhering to the liquid crystalline polyester resin. In order to remove the carry-in air when supplying the cracked gas and filler, it is preferable to install two or more places, one or more places, downstream of the side feeder. The vent part may be under normal pressure or under reduced pressure.
混練方法としては、(1)構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、充填材およびその他の添加剤を元込めフィーダーから一括で投入して混練する方法(一括混練法)、(2)構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、およびその他の添加剤を元込めフィーダーから投入して混練した後、充填材およびその他添加剤をサイドフィーダーから添加して混練する方法(サイドフィード法)、(3)構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂、構造単位(I)および構造単位(II)から選ばれる少なくとも1種の構造を有する化合物、およびその他の添加剤を高濃度に含むマスターペレットを作製し、次いで規定の濃度になるようにマスターペレットを液晶ポリエステル樹脂および充填材と混練する方法(マスターペレット法)などが挙げられる。どの方法を用いてもかまわない。
The kneading method includes (1) a liquid crystal polyester resin that does not contain a structural unit selected from structural units (I) and (II), and at least one structure selected from structural units (I) and structural units (II). Compound (filler kneading method) in which compound, filler and other additives are added all at once from the original feeder and kneaded (2) Liquid crystalline polyester containing no structural unit selected from structural units (I) and (II) A resin, a compound having at least one structure selected from the structural unit (I) and the structural unit (II), and other additives are added from the original feeder and kneaded, and then the filler and other additives are side-loaded. Method of adding from a feeder and kneading (side feed method), (3) Liquid not containing a structural unit selected from structural units (I) and (II) A master pellet containing a polyester resin, a compound having at least one structure selected from the structural unit (I) and the structural unit (II), and other additives at a high concentration is prepared, and then a specified concentration is obtained. Examples thereof include a method (master pellet method) in which the master pellet is kneaded with the liquid crystalline polyester resin and the filler. Any method can be used.
本発明の液晶ポリエステル樹脂組成物は、射出成形、射出圧縮成形、圧縮成形、押出成形、ブロー成形、プレス成形、紡糸などの公知の溶融成形を行うことによって、優れた表面外観(色調)、機械的性質、耐熱性および難燃性を有する成形品に加工することが可能である。ここでいう成形品としては、射出成形品、押出成形品、プレス成形品、シート、パイプ、未延伸フィルム、一軸延伸フィルム、二軸延伸フィルムなどの各種フィルム、未延伸糸、超延伸糸などの各種繊維などが挙げられる。特に加工性の観点から射出成形品が好ましい。
The liquid crystal polyester resin composition of the present invention has an excellent surface appearance (color tone), machine by performing known melt molding such as injection molding, injection compression molding, compression molding, extrusion molding, blow molding, press molding, spinning, etc. It can be processed into a molded product having mechanical properties, heat resistance and flame retardancy. Examples of the molded product include injection molded products, extrusion molded products, press molded products, sheets, pipes, unstretched films, uniaxially stretched films, various films such as biaxially stretched films, unstretched yarns, superstretched yarns, and the like. Examples include various fibers. In particular, an injection molded product is preferable from the viewpoint of processability.
本発明の液晶ポリエステル樹脂または液晶ポリエステル組成物を成形して得られる成形品は、例えば、各種ギヤー、各種ケース、センサー、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、リレーベース、リレー用スプール、スイッチ、コイルボビン、カメラモジュール、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、ハウジング、半導体、集積回路封止材、液晶ディスプレー部品、FDDキャリッジ、FDDシャーシ、HDD部品、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク・コンパクトディスクなどの音声機器部品;照明部品、冷蔵庫部品、エアコン部品、パソコン部品などに代表される家庭、事務電気製品部品;オフィスコンピューター関連部品、電話機関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、オイルレス軸受、船尾軸受、水中軸受などの各種軸受、モーター部品などに代表される機械関連部品;顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディマー用ポテンショメーターベース、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、エアコン用モーターインシュレーター、パワーウインド等の車載用モーターインシュレーター、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、デュストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプベゼル、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケースなどの自動車・車両関連部品;シャンプー、リンス、液体石鹸、洗剤等の各種薬剤用ボトル;薬液保存用タンク、ガス保存用タンク、冷却液タンク、オイル移液用タンク、消毒液用タンク、輸血ポンプ用タンク、燃料タンク、キャニスター、ウォッシャー液タンク、オイルリザーバータンクなどの薬液・ガス保存用タンク;医療器具用途部品;醤油、ソース、ケチャップ、マヨネーズ、ドレッシング等の調味料、味噌、食酢等の発酵食品、サラダ油等の油脂食品、清酒、ビール、みりん、ウィスキー、焼酎、ワイン等の酒類、炭酸飲料、ジュース、スポーツドリンク、牛乳、コーヒー飲料、ウーロン茶、紅茶、ミネラルウォーター等の清涼飲料水などの食品保存容器;および一般生活器具部品としてのタンク、ボトル状成形品やまたはそれらタンクなどの中空容器などに用いることができる。
Molded articles obtained by molding the liquid crystalline polyester resin or liquid crystalline polyester composition of the present invention include, for example, various gears, various cases, sensors, LED lamps, connectors, sockets, resistors, relay cases, relay bases, and relay spools. , Switch, coil bobbin, camera module, capacitor, variable capacitor case, optical pickup, oscillator, various terminal boards, transformer, plug, printed wiring board, tuner, speaker, microphone, headphones, small motor, magnetic head base, power module, Electrical and electronic parts represented by housings, semiconductors, integrated circuit sealing materials, liquid crystal display parts, FDD carriages, FDD chassis, HDD parts, motor brush holders, parabolic antennas, computer-related parts; V R parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio equipment parts such as audio / laser discs / compact discs; lighting parts, refrigerator parts, air conditioner parts, personal computer parts, etc. Household, office electrical product parts; office computer-related parts, telephone-related parts, facsimile-related parts, copier-related parts, cleaning jigs, oilless bearings, stern bearings, submersible bearings, motor parts, etc. Machine-related parts: Optical instruments such as microscopes, binoculars, cameras, watches, precision machine-related parts: Alternator terminals, alternator connectors, IC regulators, light dimmer potentiometer bases, exhaust gas valves, and other fuel related ·exhaust・ Various intake pipes, air intake nozzle snorkel, intake manifold, fuel pump, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor, oil temperature sensor, throttle position sensor, crankshaft position sensor, Air flow meter, brake butt wear sensor, thermostat base for air conditioner, motor insulator for air conditioner, automotive motor insulator such as power window, heating air flow control valve, brush holder for radiator motor, water pump impeller, turbine vane, wiper Motor parts, distributors, starter switches, starter relays, transmitters Wiring harness, window washer nozzle, air conditioner panel switch board, coil for fuel related solenoid valve, connector for fuse, horn terminal, electrical component insulation plate, step motor rotor, lamp bezel, lamp socket, lamp reflector, lamp housing, brake Automotive and vehicle-related parts such as pistons, solenoid bobbins, engine oil filters, ignition device cases; bottles for various chemicals such as shampoos, rinses, liquid soaps and detergents; chemical storage tanks, gas storage tanks, coolant tanks, oils Liquid transfer tanks, disinfectant tanks, transfusion pump tanks, fuel tanks, canisters, washer liquid tanks, oil reservoir tanks and other chemical and gas storage tanks; medical equipment parts; soy sauce, sauces, ketchup, ma Seasonings such as naise and dressing, fermented foods such as miso and vinegar, fats and oils such as salad oil, sake, beer, mirin, whiskey, shochu, wine and other alcoholic beverages, carbonated drinks, juices, sports drinks, milk, coffee drinks, It can be used for food storage containers such as soft drinks such as oolong tea, black tea, and mineral water; and tanks, bottle-shaped molded products, or hollow containers such as those tanks as parts for general living utensils.
なかでも、成形時の金型汚れを抑制しつつ、薄肉流動性や寸法安定性に優れることから、金属端子部を有し、薄肉の箱型や筒型形状を有するコネクタ、リレー、スイッチ、コイルボビン、ランプソケット、カメラモジュール、集積回路封止材などの電気・電子部品に特に有用である。
Among them, connectors, relays, switches, and coil bobbins that have metal terminal parts and have a thin box shape or cylindrical shape because they are excellent in thin-wall fluidity and dimensional stability while suppressing mold contamination during molding. It is particularly useful for electrical and electronic parts such as lamp sockets, camera modules, and integrated circuit sealing materials.
以下、実施例を用いて本発明を説明するが、本発明が実施例により限定されるものではない。実施例中、液晶ポリエステル樹脂の組成および特性評価は以下の方法により測定した。
Hereinafter, the present invention will be described using examples, but the present invention is not limited to the examples. In the examples, the composition and characteristic evaluation of the liquid crystal polyester resin were measured by the following methods.
(1)液晶ポリエステル樹脂の組成分析
粉砕した液晶ポリエステル樹脂ペレット0.1mgに、水酸化テトラメチルアンモニウム25%メタノール溶液2μLを添加し、島津製GCMS-QP5050Aを用いて熱分解GC/MS測定を行い、液晶ポリエステル樹脂中の各構成成分の組成比を求めた。 (1) Composition analysis of liquid crystal polyester resin To 0.1 mg of pulverized liquid crystal polyester resin pellets, 2 μL of tetramethylammonium hydroxide 25% methanol solution was added, and pyrolysis GC / MS measurement was performed using GCMS-QP5050A manufactured by Shimadzu. The composition ratio of each component in the liquid crystal polyester resin was determined.
粉砕した液晶ポリエステル樹脂ペレット0.1mgに、水酸化テトラメチルアンモニウム25%メタノール溶液2μLを添加し、島津製GCMS-QP5050Aを用いて熱分解GC/MS測定を行い、液晶ポリエステル樹脂中の各構成成分の組成比を求めた。 (1) Composition analysis of liquid crystal polyester resin To 0.1 mg of pulverized liquid crystal polyester resin pellets, 2 μL of tetramethylammonium hydroxide 25% methanol solution was added, and pyrolysis GC / MS measurement was performed using GCMS-QP5050A manufactured by Shimadzu. The composition ratio of each component in the liquid crystal polyester resin was determined.
(2)液晶ポリエステル樹脂の融点(Tm)
示差走査熱量計DSC-7(パーキンエルマー製)を用いて、液晶ポリエステル樹脂を室温から20℃/分の昇温条件で昇温した際に観測される吸熱ピーク温度(Tm1)を観測した後、Tm1+20℃の温度で5分間保持し、さらに20℃/分の降温条件で室温までいったん冷却し、再度20℃/分の昇温条件で昇温した際に観測される吸熱ピーク温度(Tm2)を融点とした。以下の製造例においては、融点(Tm2)をTmと記載する。 (2) Melting point (Tm) of liquid crystal polyester resin
Using a differential scanning calorimeter DSC-7 (manufactured by Perkin Elmer), after observing the endothermic peak temperature (Tm 1 ) observed when the liquid crystalline polyester resin was heated from room temperature under a temperature rising condition of 20 ° C./min. , Held at a temperature of Tm 1 + 20 ° C. for 5 minutes, further cooled to room temperature under a temperature drop condition of 20 ° C./min, and then endothermic peak temperature observed when the temperature was raised again under a temperature rise condition of 20 ° C./min ( Tm 2 ) was taken as the melting point. In the following production examples, the melting point (Tm 2 ) is described as Tm.
示差走査熱量計DSC-7(パーキンエルマー製)を用いて、液晶ポリエステル樹脂を室温から20℃/分の昇温条件で昇温した際に観測される吸熱ピーク温度(Tm1)を観測した後、Tm1+20℃の温度で5分間保持し、さらに20℃/分の降温条件で室温までいったん冷却し、再度20℃/分の昇温条件で昇温した際に観測される吸熱ピーク温度(Tm2)を融点とした。以下の製造例においては、融点(Tm2)をTmと記載する。 (2) Melting point (Tm) of liquid crystal polyester resin
Using a differential scanning calorimeter DSC-7 (manufactured by Perkin Elmer), after observing the endothermic peak temperature (Tm 1 ) observed when the liquid crystalline polyester resin was heated from room temperature under a temperature rising condition of 20 ° C./min. , Held at a temperature of Tm 1 + 20 ° C. for 5 minutes, further cooled to room temperature under a temperature drop condition of 20 ° C./min, and then endothermic peak temperature observed when the temperature was raised again under a temperature rise condition of 20 ° C./min ( Tm 2 ) was taken as the melting point. In the following production examples, the melting point (Tm 2 ) is described as Tm.
(3)液晶ポリエステル樹脂の溶融粘度
高化式フローテスターCFT-500D(オリフィス0.5φ×10mm)(島津製作所製)を用いて、Tm+20℃、せん断速度1000/sの条件で液晶ポリエステル樹脂の溶融粘度を測定した。 (3) Melt viscosity of liquid crystalline polyester resin Melting of liquid crystalline polyester resin under the conditions of Tm + 20 ° C. and shear rate of 1000 / s using Koka-type flow tester CFT-500D (orifice 0.5φ × 10 mm) (manufactured by Shimadzu Corporation) The viscosity was measured.
高化式フローテスターCFT-500D(オリフィス0.5φ×10mm)(島津製作所製)を用いて、Tm+20℃、せん断速度1000/sの条件で液晶ポリエステル樹脂の溶融粘度を測定した。 (3) Melt viscosity of liquid crystalline polyester resin Melting of liquid crystalline polyester resin under the conditions of Tm + 20 ° C. and shear rate of 1000 / s using Koka-type flow tester CFT-500D (orifice 0.5φ × 10 mm) (manufactured by Shimadzu Corporation) The viscosity was measured.
(4)薄肉流動性
各実施例および比較例により得られたペレットを、熱風乾燥機を用いて150℃3時間熱風乾燥した後、ファナック(株)製ファナックα30C射出成形機に供し、樹脂温度を液晶ポリエステルの融点+20℃、金型温度を90℃として、射出圧力を100MPa、速度を最低充填速度に設定し、図1aに示す端子間ピッチが0.4mm、製品の最小肉厚部(隔壁部3)が0.2mm、外形寸法が幅3mm×高さ2mm×長さ30mmのコネクタ成形品を得た。図1aは上記コネクタ成形品の斜視図である。コネクタ成形品の片側の短尺面2に設置したピンゲートG1(ゲート径0.3mm)から液晶ポリエステル樹脂または樹脂組成物を充填した。500ショット成形を行い、ゲート対面側の壁角部の充填性について未充填発生件数を評価した。該角部は充填量がばらつくことで未充填が発生しやすい部分であり、未充填発生件数が少ないほど薄肉流動性に優れる。 (4) Thin wall fluidity The pellets obtained in each Example and Comparative Example were hot-air dried at 150 ° C. for 3 hours using a hot-air dryer, and then subjected to a FANUC Co., Ltd. FANUC α30C injection molding machine. The melting point of the liquid crystalline polyester + 20 ° C., the mold temperature is 90 ° C., the injection pressure is set to 100 MPa, the speed is set to the minimum filling speed, the pitch between terminals shown in FIG. 3) A connector molded product having a size of 0.2 mm and outer dimensions of 3 mm width × 2 mm height × 30 mm length was obtained. FIG. 1a is a perspective view of the connector molded product. A liquid crystal polyester resin or a resin composition was filled from a pin gate G1 (gate diameter 0.3 mm) installed on theshort surface 2 on one side of the connector molded product. 500 shot molding was performed, and the number of unfilled occurrences was evaluated with respect to the fillability of the wall corner on the gate facing side. The corner portion is a portion where unfilling is likely to occur due to variation in filling amount, and the smaller the number of unfilled occurrences, the better the thin wall fluidity.
各実施例および比較例により得られたペレットを、熱風乾燥機を用いて150℃3時間熱風乾燥した後、ファナック(株)製ファナックα30C射出成形機に供し、樹脂温度を液晶ポリエステルの融点+20℃、金型温度を90℃として、射出圧力を100MPa、速度を最低充填速度に設定し、図1aに示す端子間ピッチが0.4mm、製品の最小肉厚部(隔壁部3)が0.2mm、外形寸法が幅3mm×高さ2mm×長さ30mmのコネクタ成形品を得た。図1aは上記コネクタ成形品の斜視図である。コネクタ成形品の片側の短尺面2に設置したピンゲートG1(ゲート径0.3mm)から液晶ポリエステル樹脂または樹脂組成物を充填した。500ショット成形を行い、ゲート対面側の壁角部の充填性について未充填発生件数を評価した。該角部は充填量がばらつくことで未充填が発生しやすい部分であり、未充填発生件数が少ないほど薄肉流動性に優れる。 (4) Thin wall fluidity The pellets obtained in each Example and Comparative Example were hot-air dried at 150 ° C. for 3 hours using a hot-air dryer, and then subjected to a FANUC Co., Ltd. FANUC α30C injection molding machine. The melting point of the liquid crystalline polyester + 20 ° C., the mold temperature is 90 ° C., the injection pressure is set to 100 MPa, the speed is set to the minimum filling speed, the pitch between terminals shown in FIG. 3) A connector molded product having a size of 0.2 mm and outer dimensions of 3 mm width × 2 mm height × 30 mm length was obtained. FIG. 1a is a perspective view of the connector molded product. A liquid crystal polyester resin or a resin composition was filled from a pin gate G1 (gate diameter 0.3 mm) installed on the
(5)金型汚れ性
各実施例および比較例により得られたペレット100重量部に対して、離型剤(LicowaxE、クラリアント製)を0.05重量部添加し、熱風乾燥機を用いて150℃3時間熱風乾燥した後、ファナック(株)製ファナックα30C射出成形機に供し、樹脂温度を液晶ポリエステルの融点+20℃、金型温度を90℃として、成形サイクル12秒にて、50mm×50mm×1mm厚の角板状成形品を連続成形した。100ショット毎に目視でモールドデポジットの付着状況を確認しながら、モールドデポジットの付着が確認されるまで最大1000ショット連続成形した。金型キャビティ内への付着が確認された時点のショット数を金型汚れ性とした。金型キャビティ内へのモールドデポジットの付着が確認されたショット数が多いほど、金型汚れが少ないことを意味しており、金型汚れ性に優れる。1000ショット連続成形後もモールドデポジットの付着が確認されなかった場合は、”>1000”とした。 (5) Mold fouling property 0.05 parts by weight of a mold release agent (Licowax E, manufactured by Clariant) is added to 100 parts by weight of the pellets obtained in each of the examples and comparative examples, and 150 parts using a hot air dryer. After drying in hot air at 3 ° C. for 3 hours, it was subjected to a FANUC α30C injection molding machine manufactured by FANUC CORPORATION. The resin temperature was the melting point of liquid crystal polyester + 20 ° C., the mold temperature was 90 ° C., and the molding cycle was 12 seconds, 50 mm × 50 mm × A 1 mm thick square plate-like molded product was continuously molded. While confirming the adhesion state of the mold deposit every 100 shots, a maximum of 1000 shots were continuously formed until the adhesion of the mold deposit was confirmed. The number of shots at the time when adhesion to the mold cavity was confirmed was defined as mold contamination. The larger the number of shots where adhesion of mold deposits to the mold cavity is confirmed, the smaller the mold contamination, and the better the mold contamination. If adhesion of mold deposits was not confirmed after 1000 shots of continuous molding, “> 1000” was set.
各実施例および比較例により得られたペレット100重量部に対して、離型剤(LicowaxE、クラリアント製)を0.05重量部添加し、熱風乾燥機を用いて150℃3時間熱風乾燥した後、ファナック(株)製ファナックα30C射出成形機に供し、樹脂温度を液晶ポリエステルの融点+20℃、金型温度を90℃として、成形サイクル12秒にて、50mm×50mm×1mm厚の角板状成形品を連続成形した。100ショット毎に目視でモールドデポジットの付着状況を確認しながら、モールドデポジットの付着が確認されるまで最大1000ショット連続成形した。金型キャビティ内への付着が確認された時点のショット数を金型汚れ性とした。金型キャビティ内へのモールドデポジットの付着が確認されたショット数が多いほど、金型汚れが少ないことを意味しており、金型汚れ性に優れる。1000ショット連続成形後もモールドデポジットの付着が確認されなかった場合は、”>1000”とした。 (5) Mold fouling property 0.05 parts by weight of a mold release agent (Licowax E, manufactured by Clariant) is added to 100 parts by weight of the pellets obtained in each of the examples and comparative examples, and 150 parts using a hot air dryer. After drying in hot air at 3 ° C. for 3 hours, it was subjected to a FANUC α30C injection molding machine manufactured by FANUC CORPORATION. The resin temperature was the melting point of liquid crystal polyester + 20 ° C., the mold temperature was 90 ° C., and the molding cycle was 12 seconds, 50 mm × 50 mm × A 1 mm thick square plate-like molded product was continuously molded. While confirming the adhesion state of the mold deposit every 100 shots, a maximum of 1000 shots were continuously formed until the adhesion of the mold deposit was confirmed. The number of shots at the time when adhesion to the mold cavity was confirmed was defined as mold contamination. The larger the number of shots where adhesion of mold deposits to the mold cavity is confirmed, the smaller the mold contamination, and the better the mold contamination. If adhesion of mold deposits was not confirmed after 1000 shots of continuous molding, “> 1000” was set.
(6)寸法安定性
(4)と同様の条件で成形し、完全に充填した成形品について、コネクタ成形品の熱処理後のソリ量を測定した。熱処理は260℃に加熱されたオーブン中にコネクタ成形品を3分間放置して行った。なお、ソリ量は成形品の長尺方向を水平な定盤の上に静置した状態で、万能投影機(V-16A(Nikon製))を用いて、長尺成形品の長尺方向の両端を直線で結んだ線を基準とし、そこから水平な定盤までの寸法差を測定し、ソリ量とした。図1bは上記長尺成形品においてソリ量の測定部位を示す概念図であり、A-B面を基準面aとして、最大変形面bとの差をソリ量とした。ソリ量が少ないほど寸法安定性に優れる。 (6) Dimensional stability A molded product that was molded under the same conditions as in (4) and completely filled was measured for the amount of warpage after heat treatment of the connector molded product. The heat treatment was performed by leaving the connector molded product for 3 minutes in an oven heated to 260 ° C. Note that the amount of warping is determined in the longitudinal direction of the long molded product using a universal projector (V-16A (Nikon)) with the long direction of the molded product standing on a horizontal surface plate. Using a line connecting both ends with a straight line as a reference, the dimensional difference from that to the horizontal surface plate was measured and used as the amount of warpage. FIG. 1B is a conceptual diagram showing the measurement site of the warpage amount in the long molded product, where the AB plane is the reference plane a and the difference from the maximum deformation surface b is the warpage amount. The smaller the amount of warp, the better the dimensional stability.
(4)と同様の条件で成形し、完全に充填した成形品について、コネクタ成形品の熱処理後のソリ量を測定した。熱処理は260℃に加熱されたオーブン中にコネクタ成形品を3分間放置して行った。なお、ソリ量は成形品の長尺方向を水平な定盤の上に静置した状態で、万能投影機(V-16A(Nikon製))を用いて、長尺成形品の長尺方向の両端を直線で結んだ線を基準とし、そこから水平な定盤までの寸法差を測定し、ソリ量とした。図1bは上記長尺成形品においてソリ量の測定部位を示す概念図であり、A-B面を基準面aとして、最大変形面bとの差をソリ量とした。ソリ量が少ないほど寸法安定性に優れる。 (6) Dimensional stability A molded product that was molded under the same conditions as in (4) and completely filled was measured for the amount of warpage after heat treatment of the connector molded product. The heat treatment was performed by leaving the connector molded product for 3 minutes in an oven heated to 260 ° C. Note that the amount of warping is determined in the longitudinal direction of the long molded product using a universal projector (V-16A (Nikon)) with the long direction of the molded product standing on a horizontal surface plate. Using a line connecting both ends with a straight line as a reference, the dimensional difference from that to the horizontal surface plate was measured and used as the amount of warpage. FIG. 1B is a conceptual diagram showing the measurement site of the warpage amount in the long molded product, where the AB plane is the reference plane a and the difference from the maximum deformation surface b is the warpage amount. The smaller the amount of warp, the better the dimensional stability.
[実施例1]
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル283重量部、ハイドロキノン99重量部、テレフタル酸284重量部、イソフタル酸90重量部、1,4-シクロヘキサンジメタノール3重量部および無水酢酸1242重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から350℃までを4時間かけて昇温した。その後、重合温度を350℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが8kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-1)を得た。得られた液晶ポリエステル樹脂のTmは327℃、溶融粘度は9Pa・sであった。 [Example 1]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 932 parts by weight of p-hydroxybenzoic acid, 283 parts by weight of 4,4′-dihydroxybiphenyl, 99 parts by weight of hydroquinone, 284 parts by weight of terephthalic acid, 90 parts by weight of isophthalic acid , 3 parts by weight of 1,4-cyclohexanedimethanol and 1242 parts by weight of acetic anhydride (1.05 equivalents of the total phenolic hydroxyl groups) were allowed to react at 145 ° C. for 1 hour with stirring in a nitrogen gas atmosphere. The jacket temperature of the container was raised from 145 ° C. to 350 ° C. over 4 hours. Thereafter, the polymerization temperature was maintained at 350 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 8 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-1) was obtained. The obtained liquid crystal polyester resin had a Tm of 327 ° C. and a melt viscosity of 9 Pa · s.
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル283重量部、ハイドロキノン99重量部、テレフタル酸284重量部、イソフタル酸90重量部、1,4-シクロヘキサンジメタノール3重量部および無水酢酸1242重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から350℃までを4時間かけて昇温した。その後、重合温度を350℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが8kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-1)を得た。得られた液晶ポリエステル樹脂のTmは327℃、溶融粘度は9Pa・sであった。 [Example 1]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 932 parts by weight of p-hydroxybenzoic acid, 283 parts by weight of 4,4′-dihydroxybiphenyl, 99 parts by weight of hydroquinone, 284 parts by weight of terephthalic acid, 90 parts by weight of isophthalic acid , 3 parts by weight of 1,4-cyclohexanedimethanol and 1242 parts by weight of acetic anhydride (1.05 equivalents of the total phenolic hydroxyl groups) were allowed to react at 145 ° C. for 1 hour with stirring in a nitrogen gas atmosphere. The jacket temperature of the container was raised from 145 ° C. to 350 ° C. over 4 hours. Thereafter, the polymerization temperature was maintained at 350 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 8 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-1) was obtained. The obtained liquid crystal polyester resin had a Tm of 327 ° C. and a melt viscosity of 9 Pa · s.
[実施例2]
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル338重量部、ハイドロキノン119重量部、テレフタル酸247重量部、イソフタル酸202重量部、1,4-シクロヘキサンジメタノール3重量部および無水酢酸1321重量部(フェノール性水酸基合計の1.07当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から330℃まで4時間かけて昇温した。その後、重合温度を330℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-2)を得た。得られた液晶ポリエステル樹脂のTmは308℃、溶融粘度は9Pa・sであった。 [Example 2]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 870 parts by weight of p-hydroxybenzoic acid, 338 parts by weight of 4,4′-dihydroxybiphenyl, 119 parts by weight of hydroquinone, 247 parts by weight of terephthalic acid, 202 parts by weight of isophthalic acid , 1,4-cyclohexanedimethanol 3 parts by weight and acetic anhydride 1321 parts by weight (1.07 equivalents of the total phenolic hydroxyl group) were allowed to react at 145 ° C. for 1 hour with stirring in a nitrogen gas atmosphere. The jacket temperature of the container was raised from 145 ° C. to 330 ° C. over 4 hours. Thereafter, the polymerization temperature was maintained at 330 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 10 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-2) was obtained. The obtained liquid crystal polyester resin had a Tm of 308 ° C. and a melt viscosity of 9 Pa · s.
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル338重量部、ハイドロキノン119重量部、テレフタル酸247重量部、イソフタル酸202重量部、1,4-シクロヘキサンジメタノール3重量部および無水酢酸1321重量部(フェノール性水酸基合計の1.07当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から330℃まで4時間かけて昇温した。その後、重合温度を330℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-2)を得た。得られた液晶ポリエステル樹脂のTmは308℃、溶融粘度は9Pa・sであった。 [Example 2]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 870 parts by weight of p-hydroxybenzoic acid, 338 parts by weight of 4,4′-dihydroxybiphenyl, 119 parts by weight of hydroquinone, 247 parts by weight of terephthalic acid, 202 parts by weight of isophthalic acid , 1,4-
[比較例1]
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル283重量部、ハイドロキノン99重量部、テレフタル酸284重量部、イソフタル酸90重量部および無水酢酸1242重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から350℃までを4時間かけて昇温した。その後、重合温度を350℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが8kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-3)を得た。得られた液晶ポリエステル樹脂のTmは328℃、溶融粘度は9Pa・sであった。 [Comparative Example 1]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 932 parts by weight of p-hydroxybenzoic acid, 283 parts by weight of 4,4′-dihydroxybiphenyl, 99 parts by weight of hydroquinone, 284 parts by weight of terephthalic acid, 90 parts by weight of isophthalic acid And 1242 parts by weight of acetic anhydride (1.05 equivalent of the total phenolic hydroxyl groups) were allowed to react at 145 ° C. for 1 hour with stirring under a nitrogen gas atmosphere, and the jacket temperature of the reaction vessel was increased from 145 ° C. to 350 ° C. The temperature was raised over 4 hours. Thereafter, the polymerization temperature was maintained at 350 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 8 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-3) was obtained. The obtained liquid crystal polyester resin had a Tm of 328 ° C. and a melt viscosity of 9 Pa · s.
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル283重量部、ハイドロキノン99重量部、テレフタル酸284重量部、イソフタル酸90重量部および無水酢酸1242重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から350℃までを4時間かけて昇温した。その後、重合温度を350℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが8kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-3)を得た。得られた液晶ポリエステル樹脂のTmは328℃、溶融粘度は9Pa・sであった。 [Comparative Example 1]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 932 parts by weight of p-hydroxybenzoic acid, 283 parts by weight of 4,4′-dihydroxybiphenyl, 99 parts by weight of hydroquinone, 284 parts by weight of terephthalic acid, 90 parts by weight of isophthalic acid And 1242 parts by weight of acetic anhydride (1.05 equivalent of the total phenolic hydroxyl groups) were allowed to react at 145 ° C. for 1 hour with stirring under a nitrogen gas atmosphere, and the jacket temperature of the reaction vessel was increased from 145 ° C. to 350 ° C. The temperature was raised over 4 hours. Thereafter, the polymerization temperature was maintained at 350 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 8 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-3) was obtained. The obtained liquid crystal polyester resin had a Tm of 328 ° C. and a melt viscosity of 9 Pa · s.
[比較例2]
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル338重量部、ハイドロキノン119重量部、テレフタル酸247重量部、イソフタル酸202重量部および無水酢酸1302重量部(フェノール性水酸基合計の1.07当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から330℃まで4時間かけて昇温した。その後、重合温度を330℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-4)を得た。得られた液晶ポリエステル樹脂のTmは310℃、溶融粘度は9Pa・sであった。 [Comparative Example 2]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 870 parts by weight of p-hydroxybenzoic acid, 338 parts by weight of 4,4′-dihydroxybiphenyl, 119 parts by weight of hydroquinone, 247 parts by weight of terephthalic acid, 202 parts by weight of isophthalic acid And 1302 parts by weight of acetic anhydride (1.07 equivalents of total phenolic hydroxyl groups) were allowed to react at 145 ° C. for 1 hour with stirring under a nitrogen gas atmosphere, and the jacket temperature of the reaction vessel was increased from 145 ° C. to 330 ° C. The temperature was raised over 4 hours. Thereafter, the polymerization temperature was maintained at 330 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 10 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-4) was obtained. The obtained liquid crystal polyester resin had a Tm of 310 ° C. and a melt viscosity of 9 Pa · s.
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル338重量部、ハイドロキノン119重量部、テレフタル酸247重量部、イソフタル酸202重量部および無水酢酸1302重量部(フェノール性水酸基合計の1.07当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から330℃まで4時間かけて昇温した。その後、重合温度を330℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-4)を得た。得られた液晶ポリエステル樹脂のTmは310℃、溶融粘度は9Pa・sであった。 [Comparative Example 2]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 870 parts by weight of p-hydroxybenzoic acid, 338 parts by weight of 4,4′-dihydroxybiphenyl, 119 parts by weight of hydroquinone, 247 parts by weight of terephthalic acid, 202 parts by weight of isophthalic acid And 1302 parts by weight of acetic anhydride (1.07 equivalents of total phenolic hydroxyl groups) were allowed to react at 145 ° C. for 1 hour with stirring under a nitrogen gas atmosphere, and the jacket temperature of the reaction vessel was increased from 145 ° C. to 330 ° C. The temperature was raised over 4 hours. Thereafter, the polymerization temperature was maintained at 330 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 10 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-4) was obtained. The obtained liquid crystal polyester resin had a Tm of 310 ° C. and a melt viscosity of 9 Pa · s.
[比較例3]
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸994重量部、4,4’-ジヒドロキシビフェニル126重量部、テレフタル酸112重量部、固有粘度が約0.6dl/gのポリエチレンテレフタレート216重量部および無水酢酸960重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、145℃から320℃まで4時間かけて昇温した。その後、重合温度を320℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが15kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-5)を得た。得られた液晶ポリエステル樹脂のTmは312℃、溶融粘度は9Pa・sであった。 [Comparative Example 3]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 994 parts by weight of p-hydroxybenzoic acid, 126 parts by weight of 4,4′-dihydroxybiphenyl, 112 parts by weight of terephthalic acid, and an intrinsic viscosity of about 0.6 dl / g 216 parts by weight of polyethylene terephthalate and 960 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) were charged, and the mixture was reacted at 145 ° C. for 1 hour with stirring under a nitrogen gas atmosphere. The temperature increased over time. Thereafter, the polymerization temperature was maintained at 320 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 15 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-5) was obtained. The obtained liquid crystal polyester resin had a Tm of 312 ° C. and a melt viscosity of 9 Pa · s.
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸994重量部、4,4’-ジヒドロキシビフェニル126重量部、テレフタル酸112重量部、固有粘度が約0.6dl/gのポリエチレンテレフタレート216重量部および無水酢酸960重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、145℃から320℃まで4時間かけて昇温した。その後、重合温度を320℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが15kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-5)を得た。得られた液晶ポリエステル樹脂のTmは312℃、溶融粘度は9Pa・sであった。 [Comparative Example 3]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 994 parts by weight of p-hydroxybenzoic acid, 126 parts by weight of 4,4′-dihydroxybiphenyl, 112 parts by weight of terephthalic acid, and an intrinsic viscosity of about 0.6 dl / g 216 parts by weight of polyethylene terephthalate and 960 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) were charged, and the mixture was reacted at 145 ° C. for 1 hour with stirring under a nitrogen gas atmosphere. The temperature increased over time. Thereafter, the polymerization temperature was maintained at 320 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 15 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-5) was obtained. The obtained liquid crystal polyester resin had a Tm of 312 ° C. and a melt viscosity of 9 Pa · s.
[比較例4]
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸808重量部、4,4’-ジヒドロキシビフェニル503重量部、テレフタル酸374重量部、イソフタル酸75重量部、6-ヒドロキシ-2-ナフトエ酸85重量部および無水酢酸1254重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から360℃までを4時間かけて昇温した。その後、重合温度を360℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-6)を得た。得られた液晶ポリエステル樹脂のTmは350℃、溶融粘度は9Pa・sであった。 [Comparative Example 4]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 808 parts by weight of p-hydroxybenzoic acid, 503 parts by weight of 4,4′-dihydroxybiphenyl, 374 parts by weight of terephthalic acid, 75 parts by weight of isophthalic acid, 6-hydroxy- 2-Naphthoic acid 85 parts by weight and acetic anhydride 1254 parts by weight (1.05 equivalents of total phenolic hydroxyl groups) were allowed to react at 145 ° C. for 1 hour with stirring in a nitrogen gas atmosphere, and then the jacket temperature of the reaction vessel The temperature was raised from 145 ° C. to 360 ° C. over 4 hours. Thereafter, the polymerization temperature was maintained at 360 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 10 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-6) was obtained. The obtained liquid crystal polyester resin had a Tm of 350 ° C. and a melt viscosity of 9 Pa · s.
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸808重量部、4,4’-ジヒドロキシビフェニル503重量部、テレフタル酸374重量部、イソフタル酸75重量部、6-ヒドロキシ-2-ナフトエ酸85重量部および無水酢酸1254重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から360℃までを4時間かけて昇温した。その後、重合温度を360℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-6)を得た。得られた液晶ポリエステル樹脂のTmは350℃、溶融粘度は9Pa・sであった。 [Comparative Example 4]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 808 parts by weight of p-hydroxybenzoic acid, 503 parts by weight of 4,4′-dihydroxybiphenyl, 374 parts by weight of terephthalic acid, 75 parts by weight of isophthalic acid, 6-hydroxy- 2-Naphthoic acid 85 parts by weight and acetic anhydride 1254 parts by weight (1.05 equivalents of total phenolic hydroxyl groups) were allowed to react at 145 ° C. for 1 hour with stirring in a nitrogen gas atmosphere, and then the jacket temperature of the reaction vessel The temperature was raised from 145 ° C. to 360 ° C. over 4 hours. Thereafter, the polymerization temperature was maintained at 360 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 10 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-6) was obtained. The obtained liquid crystal polyester resin had a Tm of 350 ° C. and a melt viscosity of 9 Pa · s.
[比較例5]
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸497重量部、4,4’-ジヒドロキシビフェニル285重量部、ハイドロキノン228重量部、テレフタル酸598重量部、6-ヒドロキシ-2-ナフトエ酸85重量部および無水酢酸1206重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から350℃までを4時間かけて昇温した。その後、重合温度を350℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-7)を得た。得られた液晶ポリエステル樹脂のTmは333℃、溶融粘度は9Pa・sであった。 [Comparative Example 5]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 497 parts by weight of p-hydroxybenzoic acid, 285 parts by weight of 4,4′-dihydroxybiphenyl, 228 parts by weight of hydroquinone, 598 parts by weight of terephthalic acid, 6-hydroxy-2 -85 parts by weight of naphthoic acid and 1206 parts by weight of acetic anhydride (1.05 equivalents of the total phenolic hydroxyl group) were charged and reacted at 145 ° C for 1 hour with stirring in a nitrogen gas atmosphere. The temperature was raised from 145 ° C. to 350 ° C. over 4 hours. Thereafter, the polymerization temperature was maintained at 350 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 10 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-7) was obtained. The obtained liquid crystal polyester resin had a Tm of 333 ° C. and a melt viscosity of 9 Pa · s.
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸497重量部、4,4’-ジヒドロキシビフェニル285重量部、ハイドロキノン228重量部、テレフタル酸598重量部、6-ヒドロキシ-2-ナフトエ酸85重量部および無水酢酸1206重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から350℃までを4時間かけて昇温した。その後、重合温度を350℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-7)を得た。得られた液晶ポリエステル樹脂のTmは333℃、溶融粘度は9Pa・sであった。 [Comparative Example 5]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 497 parts by weight of p-hydroxybenzoic acid, 285 parts by weight of 4,4′-dihydroxybiphenyl, 228 parts by weight of hydroquinone, 598 parts by weight of terephthalic acid, 6-hydroxy-2 -85 parts by weight of naphthoic acid and 1206 parts by weight of acetic anhydride (1.05 equivalents of the total phenolic hydroxyl group) were charged and reacted at 145 ° C for 1 hour with stirring in a nitrogen gas atmosphere. The temperature was raised from 145 ° C. to 350 ° C. over 4 hours. Thereafter, the polymerization temperature was maintained at 350 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 10 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-7) was obtained. The obtained liquid crystal polyester resin had a Tm of 333 ° C. and a melt viscosity of 9 Pa · s.
[比較例6]
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル419重量部、テレフタル酸254重量部、イソフタル酸120重量部および無水酢酸1206重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から340℃までを4時間かけて昇温した。その後、重合温度を340℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-8)を得た。得られた液晶ポリエステル樹脂のTmは328℃、溶融粘度は9Pa・sであった。 [Comparative Example 6]
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 932 parts by weight of p-hydroxybenzoic acid, 419 parts by weight of 4,4′-dihydroxybiphenyl, 254 parts by weight of terephthalic acid, 120 parts by weight of isophthalic acid and 1206 parts by weight ofacetic anhydride 1 part (1.05 equivalents of total phenolic hydroxyl groups) was allowed to react at 145 ° C. for 1 hour with stirring under a nitrogen gas atmosphere, and the jacket temperature of the reaction vessel was changed from 145 ° C. to 340 ° C. over 4 hours. The temperature rose. Thereafter, the polymerization temperature was maintained at 340 ° C. and the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and then the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg · cm. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-8) was obtained. The obtained liquid crystal polyester resin had a Tm of 328 ° C. and a melt viscosity of 9 Pa · s.
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル419重量部、テレフタル酸254重量部、イソフタル酸120重量部および無水酢酸1206重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から340℃までを4時間かけて昇温した。その後、重合温度を340℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-8)を得た。得られた液晶ポリエステル樹脂のTmは328℃、溶融粘度は9Pa・sであった。 [Comparative Example 6]
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 932 parts by weight of p-hydroxybenzoic acid, 419 parts by weight of 4,4′-dihydroxybiphenyl, 254 parts by weight of terephthalic acid, 120 parts by weight of isophthalic acid and 1206 parts by weight of
[比較例7]
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸31重量部、4,4’-ジヒドロキシビフェニル524重量部、テレフタル酸467重量部、6-ヒドロキシ-2-ナフトエ酸1016重量部および無水酢酸1206重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から360℃までを4時間かけて昇温した。その後、重合温度を360℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧し、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-9)を得た。得られた液晶ポリエステル樹脂のTmは350℃、溶融粘度は9Pa・sであった。 [Comparative Example 7]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 31 parts by weight of p-hydroxybenzoic acid, 524 parts by weight of 4,4′-dihydroxybiphenyl, 467 parts by weight of terephthalic acid, 1016 parts by weight of 6-hydroxy-2-naphthoic acid And 1206 parts by weight of acetic anhydride (1.05 equivalent of the total phenolic hydroxyl group) were allowed to react at 145 ° C. for 1 hour with stirring under a nitrogen gas atmosphere, and then the jacket temperature of the reaction vessel was changed from 145 ° C. to 360 ° C. The temperature was raised over 4 hours. Thereafter, the polymerization temperature was maintained at 360 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg · cm. Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-9) was obtained. The obtained liquid crystal polyester resin had a Tm of 350 ° C. and a melt viscosity of 9 Pa · s.
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸31重量部、4,4’-ジヒドロキシビフェニル524重量部、テレフタル酸467重量部、6-ヒドロキシ-2-ナフトエ酸1016重量部および無水酢酸1206重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、反応容器のジャケット温度を145℃から360℃までを4時間かけて昇温した。その後、重合温度を360℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧し、さらに反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-9)を得た。得られた液晶ポリエステル樹脂のTmは350℃、溶融粘度は9Pa・sであった。 [Comparative Example 7]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 31 parts by weight of p-hydroxybenzoic acid, 524 parts by weight of 4,4′-dihydroxybiphenyl, 467 parts by weight of terephthalic acid, 1016 parts by weight of 6-hydroxy-2-naphthoic acid And 1206 parts by weight of acetic anhydride (1.05 equivalent of the total phenolic hydroxyl group) were allowed to react at 145 ° C. for 1 hour with stirring under a nitrogen gas atmosphere, and then the jacket temperature of the reaction vessel was changed from 145 ° C. to 360 ° C. The temperature was raised over 4 hours. Thereafter, the polymerization temperature was maintained at 360 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg · cm. Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-9) was obtained. The obtained liquid crystal polyester resin had a Tm of 350 ° C. and a melt viscosity of 9 Pa · s.
[比較例8]
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸994重量部、4,4’-ジヒドロキシビフェニル126重量部、テレフタル酸112重量部、固有粘度が約0.6dl/gのポリエチレンテレフタレート216重量部、1,4-シクロヘキサンジメタノール3重量部および無水酢酸963重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、145℃から320℃まで4時間かけて昇温した。その後、重合温度を320℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが15kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-10)を得た。得られた液晶ポリエステル樹脂のTmは311℃、溶融粘度は9Pa・sであった。 [Comparative Example 8]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 994 parts by weight of p-hydroxybenzoic acid, 126 parts by weight of 4,4′-dihydroxybiphenyl, 112 parts by weight of terephthalic acid, and an intrinsic viscosity of about 0.6 dl / g 216 parts by weight of polyethylene terephthalate, 3 parts by weight of 1,4-cyclohexanedimethanol and 963 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) were charged and reacted at 145 ° C. for 1 hour with stirring in a nitrogen gas atmosphere Then, the temperature was raised from 145 ° C. to 320 ° C. over 4 hours. Thereafter, the polymerization temperature was maintained at 320 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 15 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-10) was obtained. The obtained liquid crystal polyester resin had a Tm of 311 ° C. and a melt viscosity of 9 Pa · s.
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸994重量部、4,4’-ジヒドロキシビフェニル126重量部、テレフタル酸112重量部、固有粘度が約0.6dl/gのポリエチレンテレフタレート216重量部、1,4-シクロヘキサンジメタノール3重量部および無水酢酸963重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、145℃から320℃まで4時間かけて昇温した。その後、重合温度を320℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧した後、さらに反応を続け、撹拌に要するトルクが15kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-10)を得た。得られた液晶ポリエステル樹脂のTmは311℃、溶融粘度は9Pa・sであった。 [Comparative Example 8]
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 994 parts by weight of p-hydroxybenzoic acid, 126 parts by weight of 4,4′-dihydroxybiphenyl, 112 parts by weight of terephthalic acid, and an intrinsic viscosity of about 0.6 dl / g 216 parts by weight of polyethylene terephthalate, 3 parts by weight of 1,4-cyclohexanedimethanol and 963 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) were charged and reacted at 145 ° C. for 1 hour with stirring in a nitrogen gas atmosphere Then, the temperature was raised from 145 ° C. to 320 ° C. over 4 hours. Thereafter, the polymerization temperature was maintained at 320 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, and the reaction was further continued. When the torque required for stirring reached 15 kg · cm, the polymerization was completed. . Next, the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A liquid crystal polyester resin (A-10) was obtained. The obtained liquid crystal polyester resin had a Tm of 311 ° C. and a melt viscosity of 9 Pa · s.
実施例1、2および比較例1~8で得られたペレットについて、上記(1)に記載の方法で組成分析を行った結果、および(4)~(6)の評価を行った結果を表1に示す。
Table 1 shows the results of composition analysis performed on the pellets obtained in Examples 1 and 2 and Comparative Examples 1 to 8 by the method described in (1) above, and the results of evaluations (4) to (6). It is shown in 1.
続いて、上記により得られた液晶ポリエステル樹脂(A-3)~(A-9)に対して、さらに添加剤(a-1)~(a’-5)を溶融混練して液晶ポリエステル樹脂を作製した。
Subsequently, additives (a-1) to (a′-5) are further melt-kneaded with the liquid crystal polyester resins (A-3) to (A-9) obtained as described above to obtain liquid crystal polyester resins. Produced.
各実施例および比較例において用いた化合物を次に示す。
(a-1):東京化成工業(株)製 1,4-シクロヘキサンジオール(分子量:116)
(a-2):東京化成工業(株)製 1,4-シクロヘキサンジメタノール(分子量:144)
(a-3):下記の製造例1により合成した、シクロヘキサン-1,4-ジイルビス(メチレン)ビス(4-ヒドロキシベンゾエート)(分子量:384) (1,4-シクロヘキサンジメタノールの2つのヒドロキシル基と、p-ヒドロキシ安息香酸のカルボキシル基とがエステル結合した化合物)
(a’-4):東京化成工業(株)製 4,4’-ジヒドロキシビフェニル(分子量:186)
(a’-5):東京化成工業(株)製 1,4-シクロヘキサンジカルボン酸(分子量:172)。 The compounds used in each example and comparative example are shown below.
(A-1): 1,4-cyclohexanediol (molecular weight: 116) manufactured by Tokyo Chemical Industry Co., Ltd.
(A-2): 1,4-cyclohexanedimethanol (molecular weight: 144) manufactured by Tokyo Chemical Industry Co., Ltd.
(A-3): Cyclohexane-1,4-diylbis (methylene) bis (4-hydroxybenzoate) (molecular weight: 384) synthesized according to Production Example 1 below (Two hydroxyl groups of 1,4-cyclohexanedimethanol) And a compound in which the carboxyl group of p-hydroxybenzoic acid is ester-bonded)
(A′-4): 4,4′-dihydroxybiphenyl (molecular weight: 186) manufactured by Tokyo Chemical Industry Co., Ltd.
(A′-5): 1,4-cyclohexanedicarboxylic acid (molecular weight: 172) manufactured by Tokyo Chemical Industry Co., Ltd.
(a-1):東京化成工業(株)製 1,4-シクロヘキサンジオール(分子量:116)
(a-2):東京化成工業(株)製 1,4-シクロヘキサンジメタノール(分子量:144)
(a-3):下記の製造例1により合成した、シクロヘキサン-1,4-ジイルビス(メチレン)ビス(4-ヒドロキシベンゾエート)(分子量:384) (1,4-シクロヘキサンジメタノールの2つのヒドロキシル基と、p-ヒドロキシ安息香酸のカルボキシル基とがエステル結合した化合物)
(a’-4):東京化成工業(株)製 4,4’-ジヒドロキシビフェニル(分子量:186)
(a’-5):東京化成工業(株)製 1,4-シクロヘキサンジカルボン酸(分子量:172)。 The compounds used in each example and comparative example are shown below.
(A-1): 1,4-cyclohexanediol (molecular weight: 116) manufactured by Tokyo Chemical Industry Co., Ltd.
(A-2): 1,4-cyclohexanedimethanol (molecular weight: 144) manufactured by Tokyo Chemical Industry Co., Ltd.
(A-3): Cyclohexane-1,4-diylbis (methylene) bis (4-hydroxybenzoate) (molecular weight: 384) synthesized according to Production Example 1 below (Two hydroxyl groups of 1,4-cyclohexanedimethanol) And a compound in which the carboxyl group of p-hydroxybenzoic acid is ester-bonded)
(A′-4): 4,4′-dihydroxybiphenyl (molecular weight: 186) manufactured by Tokyo Chemical Industry Co., Ltd.
(A′-5): 1,4-cyclohexanedicarboxylic acid (molecular weight: 172) manufactured by Tokyo Chemical Industry Co., Ltd.
(a-3)の製造例について次に示す。
[製造例1]
p-ヒドロキシ安息香酸75重量部、1,4-シクロヘキサンジメタノール43重量部および4滴の濃硫酸をトルエン中に入れ、反応により生じた水を共沸により系外に留去しながら、トルエンのみ還流させ、3時間にわたり加熱した。室温にまで冷却した後に、メタノールを添加し、得られた溶液を濾過した。さらにメタノールで複数回洗浄、乾燥させ、(a-3)とした。 A production example of (a-3) is as follows.
[Production Example 1]
Put 75 parts by weight of p-hydroxybenzoic acid, 43 parts by weight of 1,4-cyclohexanedimethanol, and 4 drops of concentrated sulfuric acid into toluene, and distill off the water generated by the reaction azeotropically to remove only toluene. Refluxed and heated for 3 hours. After cooling to room temperature, methanol was added and the resulting solution was filtered. Furthermore, it was washed several times with methanol and dried to obtain (a-3).
[製造例1]
p-ヒドロキシ安息香酸75重量部、1,4-シクロヘキサンジメタノール43重量部および4滴の濃硫酸をトルエン中に入れ、反応により生じた水を共沸により系外に留去しながら、トルエンのみ還流させ、3時間にわたり加熱した。室温にまで冷却した後に、メタノールを添加し、得られた溶液を濾過した。さらにメタノールで複数回洗浄、乾燥させ、(a-3)とした。 A production example of (a-3) is as follows.
[Production Example 1]
Put 75 parts by weight of p-hydroxybenzoic acid, 43 parts by weight of 1,4-cyclohexanedimethanol, and 4 drops of concentrated sulfuric acid into toluene, and distill off the water generated by the reaction azeotropically to remove only toluene. Refluxed and heated for 3 hours. After cooling to room temperature, methanol was added and the resulting solution was filtered. Furthermore, it was washed several times with methanol and dried to obtain (a-3).
実施例3~12、比較例9~12
サイドフィーダーを備えた東芝機械製TEM35B型2軸押出機を用いて、シリンダーC1(元込めフィーダー側ヒーター)~C6(ダイ側ヒーター)の、C3部にサイドフィーダーを設置し、C5部に真空ベントを設置した。ニーディングブロックをC2部およびC4部に組み込んだスクリューアレンジを用いた。液晶ポリエステル樹脂(A-3)~(A-9)、および添加剤(a-1)~(a’-5)を表2に示す配合量で元込めフィーダーから投入し、シリンダー温度を液晶ポリエステル樹脂の融点+10℃、スクリュー回転数を200rpmに設定し、溶融混練してペレットを得た。得られた液晶ポリエステル樹脂のペレットを、熱風乾燥機を用いて150℃3時間熱風乾燥した後、上記(1)および(4)~(6)の評価を行った。結果は表2に示す。 Examples 3-12, Comparative Examples 9-12
Using Toshiba Machine's TEM35B type twin screw extruder equipped with a side feeder, a side feeder is installed at C3 part of cylinder C1 (former feeder side heater) to C6 (die side heater), and a vacuum vent is provided at C5 part. Was installed. A screw arrangement in which kneading blocks were incorporated in C2 part and C4 part was used. Liquid crystal polyester resins (A-3) to (A-9) and additives (a-1) to (a'-5) were charged from the feed feeder in the blending amounts shown in Table 2, and the cylinder temperature was set to liquid crystal polyester. The melting point of the resin + 10 ° C., the screw rotation speed was set to 200 rpm, and melt kneading was performed to obtain pellets. The obtained liquid crystal polyester resin pellets were hot-air dried at 150 ° C. for 3 hours using a hot-air dryer, and then evaluated (1) and (4) to (6) above. The results are shown in Table 2.
サイドフィーダーを備えた東芝機械製TEM35B型2軸押出機を用いて、シリンダーC1(元込めフィーダー側ヒーター)~C6(ダイ側ヒーター)の、C3部にサイドフィーダーを設置し、C5部に真空ベントを設置した。ニーディングブロックをC2部およびC4部に組み込んだスクリューアレンジを用いた。液晶ポリエステル樹脂(A-3)~(A-9)、および添加剤(a-1)~(a’-5)を表2に示す配合量で元込めフィーダーから投入し、シリンダー温度を液晶ポリエステル樹脂の融点+10℃、スクリュー回転数を200rpmに設定し、溶融混練してペレットを得た。得られた液晶ポリエステル樹脂のペレットを、熱風乾燥機を用いて150℃3時間熱風乾燥した後、上記(1)および(4)~(6)の評価を行った。結果は表2に示す。 Examples 3-12, Comparative Examples 9-12
Using Toshiba Machine's TEM35B type twin screw extruder equipped with a side feeder, a side feeder is installed at C3 part of cylinder C1 (former feeder side heater) to C6 (die side heater), and a vacuum vent is provided at C5 part. Was installed. A screw arrangement in which kneading blocks were incorporated in C2 part and C4 part was used. Liquid crystal polyester resins (A-3) to (A-9) and additives (a-1) to (a'-5) were charged from the feed feeder in the blending amounts shown in Table 2, and the cylinder temperature was set to liquid crystal polyester. The melting point of the resin + 10 ° C., the screw rotation speed was set to 200 rpm, and melt kneading was performed to obtain pellets. The obtained liquid crystal polyester resin pellets were hot-air dried at 150 ° C. for 3 hours using a hot-air dryer, and then evaluated (1) and (4) to (6) above. The results are shown in Table 2.
続いて、上記により得られた液晶ポリエステル樹脂(A-1)~(A-10)に対して、無機充填材を配合して、液晶ポリエステル樹脂を作製した。各実施例および比較例において用いた、無機充填材(b-1)~(b-3)を次に示す。
(b-1):ヤマグチマイカ(株)製 マイカ “NJ-030”
(b-2):富士タルク工業(株)製 タルク “RL217”
(b-3):日本電気硝子(株)製 EPG(70MD-01N)/P9W。 Subsequently, an inorganic filler was blended into the liquid crystal polyester resins (A-1) to (A-10) obtained as described above to prepare liquid crystal polyester resins. The inorganic fillers (b-1) to (b-3) used in the examples and comparative examples are shown below.
(B-1): Mica “NJ-030” manufactured by Yamaguchi Mica Co., Ltd.
(B-2): Talc “RL217” manufactured by Fuji Talc Industry Co., Ltd.
(B-3): EPG (70MD-01N) / P9W manufactured by Nippon Electric Glass Co., Ltd.
(b-1):ヤマグチマイカ(株)製 マイカ “NJ-030”
(b-2):富士タルク工業(株)製 タルク “RL217”
(b-3):日本電気硝子(株)製 EPG(70MD-01N)/P9W。 Subsequently, an inorganic filler was blended into the liquid crystal polyester resins (A-1) to (A-10) obtained as described above to prepare liquid crystal polyester resins. The inorganic fillers (b-1) to (b-3) used in the examples and comparative examples are shown below.
(B-1): Mica “NJ-030” manufactured by Yamaguchi Mica Co., Ltd.
(B-2): Talc “RL217” manufactured by Fuji Talc Industry Co., Ltd.
(B-3): EPG (70MD-01N) / P9W manufactured by Nippon Electric Glass Co., Ltd.
実施例13、14、比較例13~20
液晶ポリエステル樹脂(A-1)~(A-10)を表3に示す配合量で元込めフィーダーから投入し、無機充填材(b-1)~(b-3)を表3に示す配合量でサイドフィーダーから投入した以外は、実施例3~12および比較例9~12と同様に溶融混練してペレットを得て、上記(4)~(6)の評価を行った。結果は表3に示す。 Examples 13 and 14, Comparative Examples 13 to 20
Liquid crystalline polyester resins (A-1) to (A-10) were charged from the feed-in feeder at the blending amounts shown in Table 3, and the inorganic fillers (b-1) to (b-3) were blended as shown in Table 3. The pellets were obtained by melt-kneading in the same manner as in Examples 3 to 12 and Comparative Examples 9 to 12 except that they were charged from the side feeder, and the evaluations (4) to (6) were performed. The results are shown in Table 3.
液晶ポリエステル樹脂(A-1)~(A-10)を表3に示す配合量で元込めフィーダーから投入し、無機充填材(b-1)~(b-3)を表3に示す配合量でサイドフィーダーから投入した以外は、実施例3~12および比較例9~12と同様に溶融混練してペレットを得て、上記(4)~(6)の評価を行った。結果は表3に示す。 Examples 13 and 14, Comparative Examples 13 to 20
Liquid crystalline polyester resins (A-1) to (A-10) were charged from the feed-in feeder at the blending amounts shown in Table 3, and the inorganic fillers (b-1) to (b-3) were blended as shown in Table 3. The pellets were obtained by melt-kneading in the same manner as in Examples 3 to 12 and Comparative Examples 9 to 12 except that they were charged from the side feeder, and the evaluations (4) to (6) were performed. The results are shown in Table 3.
実施例15~25、比較例21~24
無機充填材(b-1)~(b-3)を表4に示す配合量でサイドフィーダーから投入した以外は、実施例3~12および比較例9~12と同様に溶融混練してペレットを得て、上記(1)および(4)~(6)の評価を行った。結果は表4に示す。 Examples 15 to 25, Comparative Examples 21 to 24
The pellets were melt-kneaded in the same manner as in Examples 3 to 12 and Comparative Examples 9 to 12, except that the inorganic fillers (b-1) to (b-3) were added from the side feeder in the amounts shown in Table 4. The above (1) and (4) to (6) were evaluated. The results are shown in Table 4.
無機充填材(b-1)~(b-3)を表4に示す配合量でサイドフィーダーから投入した以外は、実施例3~12および比較例9~12と同様に溶融混練してペレットを得て、上記(1)および(4)~(6)の評価を行った。結果は表4に示す。 Examples 15 to 25, Comparative Examples 21 to 24
The pellets were melt-kneaded in the same manner as in Examples 3 to 12 and Comparative Examples 9 to 12, except that the inorganic fillers (b-1) to (b-3) were added from the side feeder in the amounts shown in Table 4. The above (1) and (4) to (6) were evaluated. The results are shown in Table 4.
表1~4の結果から、本発明の液晶ポリエステル樹脂および液晶ポリエステル樹脂組成物は、金型汚れを抑制しつつ、薄肉流動性および寸法安定性に優れていることが分かる。そのため、薄肉の箱型や筒型形状を有するコネクタ、リレー、スイッチ、コイルボビン、ランプソケット、カメラモジュール、集積回路封止材などの電気・電子部品や機械部品用途への使用に適しているといえる。
From the results shown in Tables 1 to 4, it can be seen that the liquid crystal polyester resin and the liquid crystal polyester resin composition of the present invention are excellent in thin wall fluidity and dimensional stability while suppressing mold contamination. Therefore, it can be said that it is suitable for use in electrical / electronic parts and mechanical parts applications such as connectors, relays, switches, coil bobbins, lamp sockets, camera modules, integrated circuit sealing materials having a thin box shape or cylindrical shape. .
本発明の液晶ポリエステル樹脂および液晶ポリエステル樹脂組成物は、金型汚れを抑制しつつ、薄肉流動性および寸法安定性に優れるため、薄肉の箱型や筒型形状を有するコネクタ、リレー、スイッチ、コイルボビン、ランプソケット、カメラモジュール、集積回路封止材などの電気・電子部品や機械部品用途に好適である。
Since the liquid crystal polyester resin and the liquid crystal polyester resin composition of the present invention are excellent in thin-wall flowability and dimensional stability while suppressing mold contamination, a connector, relay, switch, coil bobbin having a thin-walled box shape or cylindrical shape It is suitable for electrical / electronic parts and machine parts such as lamp sockets, camera modules and integrated circuit sealing materials.
1 長尺面
2 短尺面
3 長さ(30mm)
4 高さ(2mm)
5 幅(3mm)
6 ピッチ間距離(0.4mm)
7 最小肉厚部(0.2mm)
8 ソリ量
G1 ピンゲート
a 基準面
b 最大変形面 1Long surface 2 Short surface 3 Length (30mm)
4 Height (2mm)
5 width (3mm)
6 Distance between pitches (0.4mm)
7 Minimum wall thickness (0.2mm)
8 Saw amount G1 Pin gate a Reference surface b Maximum deformation surface
2 短尺面
3 長さ(30mm)
4 高さ(2mm)
5 幅(3mm)
6 ピッチ間距離(0.4mm)
7 最小肉厚部(0.2mm)
8 ソリ量
G1 ピンゲート
a 基準面
b 最大変形面 1
4 Height (2mm)
5 width (3mm)
6 Distance between pitches (0.4mm)
7 Minimum wall thickness (0.2mm)
8 Saw amount G1 Pin gate a Reference surface b Maximum deformation surface
Claims (9)
- 液晶ポリエステル樹脂の全構造単位100モル%に対して、芳香族ヒドロキシカルボン酸に由来する構造単位を15~80モル%、芳香族ジオールに由来する構造単位を7~40モル%、芳香族ジカルボン酸に由来する構造単位を7~40モル%、下記構造単位(I)および(II)から選ばれる少なくとも1種の構造単位を0.01~5モル%含む液晶ポリエステル樹脂。
- 液晶ポリエステル樹脂が、芳香族ヒドロキシカルボン酸に由来する構造単位として、下記構造単位(III)を含み、芳香族ジカルボン酸に由来する構造単位として、下記構造単位(IV)を含み、構造単位(III)および構造単位(IV)の合計が、液晶ポリエステル樹脂の全構造単位100モル%に対して60~80モル%である請求項1記載の液晶ポリエステル樹脂。
- 液晶ポリエステル樹脂が、芳香族ジオールに由来する構造単位として、下記構造単位(V)を含み、構造単位(V)が、液晶ポリエステル樹脂の全構造単位100モル%に対して2~20%である請求項1または2に記載の液晶ポリエステル樹脂。
- 前記構造単位(I)および(II)から選ばれる少なくとも1種の構造単位は、構造単位(II)を必須成分として含む、請求項1~3のいずれかに記載の液晶ポリエステル樹脂。 The liquid crystal polyester resin according to any one of claims 1 to 3, wherein at least one structural unit selected from the structural units (I) and (II) contains the structural unit (II) as an essential component.
- 前記構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂および、前記構造単位(I)および(II)から選ばれる少なくとも1種の構造を有する化合物を配合することにより得られる請求項1~4のいずれかに記載の液晶ポリエステル樹脂。 It is obtained by blending a liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II) and a compound having at least one structure selected from the structural units (I) and (II). The liquid crystal polyester resin according to claim 1, wherein the liquid crystal polyester resin is used.
- 前記構造単位(I)および(II)から選ばれる構造単位を含まない液晶ポリエステル樹脂および、前記構造単位(I)および(II)から選ばれる少なくとも1種の構造を有する化合物を溶融混練する請求項1~4のいずれかに記載の液晶ポリエステル樹脂の製造方法。 A liquid crystal polyester resin not containing a structural unit selected from the structural units (I) and (II) and a compound having at least one structure selected from the structural units (I) and (II) are melt-kneaded. 5. A method for producing a liquid crystal polyester resin according to any one of 1 to 4.
- 請求項1~5のいずれかに記載の液晶ポリエステル樹脂100重量部に対し、充填材を10~200重量部含む、液晶ポリエステル樹脂組成物。 A liquid crystal polyester resin composition comprising 10 to 200 parts by weight of a filler per 100 parts by weight of the liquid crystal polyester resin according to any one of claims 1 to 5.
- 請求項1~5のいずれかに記載の液晶ポリエステル樹脂、または請求項7に記載の液晶ポリエステル樹脂組成物からなる成形品。 A molded article comprising the liquid crystal polyester resin according to any one of claims 1 to 5 or the liquid crystal polyester resin composition according to claim 7.
- 成形品が、コネクタ、リレー、スイッチ、コイルボビン、ランプソケット、カメラモジュール、および集積回路封止材からなる群から選択される、請求項8に記載の成形品。 The molded article according to claim 8, wherein the molded article is selected from the group consisting of a connector, a relay, a switch, a coil bobbin, a lamp socket, a camera module, and an integrated circuit sealing material.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019521856A JP6652223B1 (en) | 2018-04-13 | 2019-04-08 | Liquid crystal polyester resin, method for producing the same, and molded article comprising the same |
CN201980023017.XA CN111936547B (en) | 2018-04-13 | 2019-04-08 | Liquid crystal polyester resin, method for producing same, and molded article formed from same |
KR1020207027917A KR102644138B1 (en) | 2018-04-13 | 2019-04-08 | Liquid crystal polyester resin, manufacturing method thereof, and molded article containing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018077265 | 2018-04-13 | ||
JP2018-077265 | 2018-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019198665A1 true WO2019198665A1 (en) | 2019-10-17 |
Family
ID=68164081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015328 WO2019198665A1 (en) | 2018-04-13 | 2019-04-08 | Liquid crystal polyester resin, method for manufacturing same, and molded article comprising same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6652223B1 (en) |
KR (1) | KR102644138B1 (en) |
CN (1) | CN111936547B (en) |
TW (1) | TWI797308B (en) |
WO (1) | WO2019198665A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11912817B2 (en) | 2019-09-10 | 2024-02-27 | Ticona Llc | Polymer composition for laser direct structuring |
US11917753B2 (en) | 2019-09-23 | 2024-02-27 | Ticona Llc | Circuit board for use at 5G frequencies |
US11646760B2 (en) | 2019-09-23 | 2023-05-09 | Ticona Llc | RF filter for use at 5G frequencies |
CN115700014A (en) | 2020-02-26 | 2023-02-03 | 提克纳有限责任公司 | Circuit structure |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04348154A (en) * | 1991-05-27 | 1992-12-03 | Toray Ind Inc | Polyester resin composition |
JPH09183891A (en) * | 1995-10-31 | 1997-07-15 | Toray Ind Inc | Thermoplastic resin composition and its molded article |
JPH10206637A (en) * | 1997-01-17 | 1998-08-07 | Nippon Oil Co Ltd | Film for optical element |
JP2004352862A (en) * | 2003-05-29 | 2004-12-16 | Toray Ind Inc | Liquid crystalline polyester, method for producing the same, composition of the same and its application |
JP2005097591A (en) * | 2003-08-28 | 2005-04-14 | Sumitomo Chemical Co Ltd | Aromatic liquid crystalline polyester film |
JP2017179042A (en) * | 2016-03-29 | 2017-10-05 | 上野製薬株式会社 | Liquid crystal polymer composition |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04348156A (en) * | 1991-05-27 | 1992-12-03 | Hitachi Chem Co Ltd | Unsaturated polyester resin composition for molding fiber reinforced plastics and molded article |
KR19980070467A (en) * | 1997-01-17 | 1998-10-26 | 오오자와 슈지로 | Optical film |
US6294618B1 (en) | 1998-04-09 | 2001-09-25 | E. I. Du Pont De Nemours And Company | Low viscosity liquid crystalline polymer compositions |
TWI367910B (en) * | 2003-08-28 | 2012-07-11 | Sumitomo Chemical Co | Aromatic liquid crystalline polyester film |
JP5909508B2 (en) | 2012-01-31 | 2016-04-26 | Jxエネルギー株式会社 | Liquid crystal polyester amide, liquid crystal polyester amide resin composition and molded article |
WO2015016141A1 (en) * | 2013-07-31 | 2015-02-05 | 東レ株式会社 | Method for producing liquid crystalline polyester, and liquid crystalline polyester |
US20170179042A1 (en) * | 2015-12-17 | 2017-06-22 | International Business Machines Corporation | Protection of elements on a laminate surface |
JP6829035B2 (en) | 2016-09-16 | 2021-02-10 | ポリプラスチックス株式会社 | Liquid crystal resin composition and high fluidizing agent for liquid crystal resin |
-
2019
- 2019-04-08 JP JP2019521856A patent/JP6652223B1/en active Active
- 2019-04-08 CN CN201980023017.XA patent/CN111936547B/en active Active
- 2019-04-08 WO PCT/JP2019/015328 patent/WO2019198665A1/en active Application Filing
- 2019-04-08 KR KR1020207027917A patent/KR102644138B1/en active IP Right Grant
- 2019-04-10 TW TW108112456A patent/TWI797308B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04348154A (en) * | 1991-05-27 | 1992-12-03 | Toray Ind Inc | Polyester resin composition |
JPH09183891A (en) * | 1995-10-31 | 1997-07-15 | Toray Ind Inc | Thermoplastic resin composition and its molded article |
JPH10206637A (en) * | 1997-01-17 | 1998-08-07 | Nippon Oil Co Ltd | Film for optical element |
JP2004352862A (en) * | 2003-05-29 | 2004-12-16 | Toray Ind Inc | Liquid crystalline polyester, method for producing the same, composition of the same and its application |
JP2005097591A (en) * | 2003-08-28 | 2005-04-14 | Sumitomo Chemical Co Ltd | Aromatic liquid crystalline polyester film |
JP2017179042A (en) * | 2016-03-29 | 2017-10-05 | 上野製薬株式会社 | Liquid crystal polymer composition |
Also Published As
Publication number | Publication date |
---|---|
KR20200141991A (en) | 2020-12-21 |
JP6652223B1 (en) | 2020-02-19 |
KR102644138B1 (en) | 2024-03-07 |
TW201943761A (en) | 2019-11-16 |
CN111936547A (en) | 2020-11-13 |
JPWO2019198665A1 (en) | 2020-04-30 |
TWI797308B (en) | 2023-04-01 |
CN111936547B (en) | 2022-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5560714B2 (en) | Liquid crystalline polyester and method for producing the same | |
JP5062381B2 (en) | Totally aromatic liquid crystal polyester and method for producing the same | |
JP5241956B2 (en) | Liquid crystalline polyester resin composition, method for producing the same, and molded article comprising the same | |
JP6652223B1 (en) | Liquid crystal polyester resin, method for producing the same, and molded article comprising the same | |
US9850343B2 (en) | Method for producing liquid crystalline polyester, and liquid crystalline polyester | |
WO2012090410A1 (en) | Liquid-crystalline polyester resin composition, method for producing same, and molded article made thereof | |
JP5098168B2 (en) | Totally aromatic liquid crystalline polyester and composition thereof | |
JP2017193704A (en) | Liquid crystal polyester resin composition and molding comprising the same | |
JP2004256656A (en) | Liquid crystalline polyester and composition containing the same | |
JP2015063641A (en) | Liquid crystalline polyester resin composition and molded article comprising the same | |
JP2021059670A (en) | Liquid crystal polyester resin composition, molded article and production method of liquid crystal polyester resin composition | |
JP2019183040A (en) | Liquid crystal polyester resin, production method of the same, molded article made of the resin | |
JP6206174B2 (en) | Liquid crystalline polyester resin composition and molded product thereof | |
JP2018104527A (en) | Liquid crystal polyester resin composition and molded article made of the same | |
JP2011116834A (en) | Liquid crystalline polyester, resin composition thereof, and molded product made of the same | |
JP2019183041A (en) | Liquid crystal polyester resin, production method of the same and molded article made of the resin | |
JP2002201344A (en) | Liquid crystalline resin composition, method for producing the same and molded product | |
JP5742567B2 (en) | Liquid crystalline polyester composition and molded article comprising the same | |
JP6131638B2 (en) | Liquid crystal polyester and method for producing the same | |
JP6507783B2 (en) | Liquid crystalline polyester resin composition and molded article thereof | |
JP2017066353A (en) | Liquid crystal polyester resin composition and molded article made of the same | |
JP4696351B2 (en) | Resin composition for precision molded products | |
JP2015178598A (en) | Production method of liquid crystalline polyester, and the liquid crystalline polyester | |
JP2015048408A (en) | Liquid crystalline polyester resin compositions and molded article thereof | |
JP2011132282A (en) | Liquid crystalline polyester composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019521856 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19785136 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19785136 Country of ref document: EP Kind code of ref document: A1 |