WO2019198304A1 - Ferrite particles, carrier core material for electrophotographic developers, ferrite carrier for electrophotographic developers, and electrophotographic developer - Google Patents

Ferrite particles, carrier core material for electrophotographic developers, ferrite carrier for electrophotographic developers, and electrophotographic developer Download PDF

Info

Publication number
WO2019198304A1
WO2019198304A1 PCT/JP2019/002767 JP2019002767W WO2019198304A1 WO 2019198304 A1 WO2019198304 A1 WO 2019198304A1 JP 2019002767 W JP2019002767 W JP 2019002767W WO 2019198304 A1 WO2019198304 A1 WO 2019198304A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
ferrite particles
carrier
core material
electrophotographic
Prior art date
Application number
PCT/JP2019/002767
Other languages
French (fr)
Japanese (ja)
Inventor
一隆 石井
康二 安賀
Original Assignee
パウダーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パウダーテック株式会社 filed Critical パウダーテック株式会社
Priority to JP2020513081A priority Critical patent/JPWO2019198304A1/en
Publication of WO2019198304A1 publication Critical patent/WO2019198304A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/108Ferrite carrier, e.g. magnetite
    • G03G9/1085Ferrite carrier, e.g. magnetite with non-ferrous metal oxide, e.g. MgO-Fe2O3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto

Definitions

  • the present invention relates to a ferrite particle, a carrier core material for an electrophotographic developer, a ferrite carrier for an electrophotographic developer, and an electrophotographic developer.
  • Ferrite is a magnetic oxide mainly composed of ferric oxide, and ferrite powder is its powder. Since ferrite is a metal oxide, it exhibits insulating properties. Further, the ferrite powder can be easily mixed with other materials. Therefore, ferrite powder has been used as a functional material in various applications that require magnetism and insulation.
  • an electrophotographic developer based on a two-component development system generally includes a toner and a carrier, and the carrier generally uses a ferrite powder as a core material and the periphery thereof is coated with a resin.
  • the carrier functions as a charge imparting agent that charges the toner by being mixed and stirred with the toner, and also functions as a carrier that conveys the charged toner to the electrostatic latent image position.
  • the carrier that has functioned as a carrier is recovered, mixed and stirred with toner, and reused.
  • an electrophotographic developing machine is required to print an image with a high printing rate such as a photograph at high speed with high image quality.
  • a high printing rate such as a photograph at high speed with high image quality.
  • the number of times of toner replenishment is larger than when an image with a low printing rate such as a document is printed.
  • the toner is replenished in a short cycle.
  • the charge amount of the carrier temporarily decreases at the timing of toner replenishment, it is necessary to quickly return the charge amount of the carrier to the level before toner replenishment. is there. That is, in order to obtain good image characteristics from the initial stage, a carrier having a quick charge rising in a predetermined frequency band corresponding to the applied bias voltage is required.
  • the printing rate is the ratio of the printing area per page.
  • the electrical resistance of the core material is not too high in order to realize the long life of the electrophotographic developer while satisfying the demand for high image quality and high speed printing.
  • the electrical resistance of the core material is required to be an appropriate height that can suppress the occurrence of the charge leakage phenomenon and can suppress the occurrence of the charge-down phenomenon.
  • the subject of this invention is the ferrite particle which has a magnetic characteristic suitable for the carrier core material for electrophotographic developers, and the electrical property,
  • the carrier core material for electrophotographic developers using the said ferrite particle The ferrite for electrophotographic developers It is to provide a carrier and an electrophotographic developer.
  • the inventors of the present invention paid attention to the crystal structure of ferrite particles and adopted the following crystal structure, while maintaining suitable magnetic properties for the carrier core material for electrophotographic developer, The inventors have found that ferrite particles having a quick charge rise can be obtained, and have solved the above problems.
  • the ferrite particles according to the present invention preferably have a y / x value of 1.95 or more and 2.05 or less in the composition formula.
  • the true density of the ferrite particles according to the present invention is 4.6 g / cm 3 or more and 5.0 g / cm 3 or less.
  • the volume average particle size of the ferrite particles according to the present invention is preferably 15 ⁇ m or more and 100 ⁇ m or less.
  • the carrier core material for an electrophotographic developer according to the present invention includes the above ferrite particles.
  • the ferrite carrier for an electrophotographic developer according to the present invention includes the ferrite particles and a resin coating layer provided on the surface of the ferrite particles.
  • the electrophotographic developer according to the present invention includes the above-described ferrite carrier for an electrophotographic developer and a toner.
  • the electrophotographic developer according to the present invention is preferably used as a replenishment developer.
  • ferrite particles having magnetic and electrical properties suitable for a carrier core material for an electrophotographic developer, a carrier core material for an electrophotographic developer using the ferrite particles, a ferrite carrier for an electrophotographic developer, and An electrophotographic developer can be provided.
  • ferrite particles according to the present invention a carrier core material for electrophotographic developer (hereinafter referred to as “core material” or “core material of carrier”), and a ferrite carrier for electrophotographic developer (hereinafter referred to as “carrier”). ) And an embodiment of an electrophotographic developer.
  • core material or “core material of carrier”
  • carrier for electrophotographic developer
  • carrier ferrite carrier for electrophotographic developer
  • the term “ferrite particles” means an aggregate (powder) of ferrite particles, and when referring to individual ferrite particles, they are simply referred to as particles.
  • the “occupancy ratio” refers to a ratio of a predetermined atom existing at a predetermined lattice point at a predetermined lattice point.
  • the ferrite particles referred to in the present invention are composed of three kinds of elements of Mn, Fe, and O, and are substantially free of other elements except for inevitable impurities (accompanying impurities) caused by raw materials. .
  • the spinel crystal structure has the same crystal structure as that of the natural mineral spinel belonging to the cubic system, and its unit cell is represented by 8 (MeFe 2 O 4 ).
  • the unit cell contains 8 divalent metals, 16 trivalent metals, and 32 oxygen.
  • 8 (MeFe 2 O 4 ) “Me” means a divalent metal.
  • Thirty-two oxygens form a close cubic lattice. There are two types of lattice points where metal ions are arranged, which are referred to as A site (or 8a position) and B site (or 16d position), respectively.
  • the A site is a position corresponding to the center of a tetrahedron surrounded by four oxygens
  • the B site is a position corresponding to the center of an octahedron surrounded by six oxygens.
  • Mn ferrite when a divalent metal ion (Me 2+ ) is arranged at the A site, it is called a positive spinel, and when a divalent metal ion is arranged at the B site, It is called reverse spinel and is represented by the following chemical formula.
  • the divalent metal ion (Me 2+ ) is Mn 2+ or Fe 2+
  • the trivalent metal ion is Fe 3+ . Therefore, the Mn occupancy at the A site corresponds to the proportion of Mn 2+ existing (occupied) among the eight A sites in the unit cell.
  • Reverse spinel Fe 3+ ⁇ [Me 2+ Fe 3+ ⁇ ] O 4
  • the Mn ferrite represented by the composition formula of MnFe 2 O 4 is a positive spinel having a Mn occupation ratio of about 0.8 to 0.9, that is, 80 to 90% at the A site (for example, (1975 ) “Magnetic Handbook” Asakura Shoten, p610-p612).
  • the inventors of the present invention have found that the ferrite particles in which the Mn occupancy in the A site is within the above range have magnetic characteristics and electrical characteristics suitable for the carrier core, and have come to the present invention. .
  • description will be made in the order of Mn occupation ratio, composition, and powder characteristics.
  • the Mn occupancy at the A site indicates the proportion of Mn present at the A site.
  • Mn occupation ratio at the A site is “1”, it means that Mn2 + is present in all of the eight A sites.
  • the Fe occupation ratio at the A site is 0.800 or less and 0.345 or more.
  • the sum of the Mn occupancy and the Fe occupancy at the A site is not necessarily “1”.
  • the “occupancy ratio” here refers to a value obtained by analyzing a diffraction pattern of a sample obtained by a neutron diffraction method based on Rietveld analysis.
  • An X-ray diffraction method is known as a method for analyzing a crystal structure.
  • the industrial-use beamline iMATERIA installed in the MLF Materials and Life Sciences Research Facility MLF at the J-PARC (Ibaraki Prefecture) High-Intensity Proton Acceleration Facility, or owned by the Japan Atomic Energy Agency
  • the beam line SANS-J of the research reactor JRR-3 can be used.
  • analysis software “Z-Rietveld” distributed from J-PARC can be used.
  • the ferrite particles whose Mn occupancy at the A site measured in the above manner is within the above range have magnetic characteristics and electrical characteristics suitable for the core material of the carrier.
  • the Mn occupation ratio at the A site is larger than 0.655, it is difficult to obtain magnetic characteristics and electrical characteristics suitable for the core material of the carrier. That is, when the Mn occupancy at the A site is larger than 0.655, for example, the magnetization is high, but the electrical resistance and / or dielectric constant is higher or lower than the range suitable for the carrier core, Although the electrical resistance and / or dielectric constant are within the range suitable for the carrier core material, it is difficult to obtain magnetic characteristics and electrical characteristics suitable for the carrier core material, such as low magnetization.
  • the Mn ferrite represented by the above composition formula it is difficult to produce ferrite particles having a Mn occupation ratio at the A site smaller than 0.200.
  • the Mn occupation ratio at the A site is more preferably 0.630 or less.
  • the lower limit value of the Mn occupancy ratio at the A site is preferably 0.350 or more, more preferably 0.450 or more, and 0.500 or more. Further preferred.
  • the value is not particularly limited.
  • the value of y / x is preferably 1.90 or more and 2.10 or less, more preferably 1.92 or more and 2.08 or less, and particularly preferably 1.95 or more and 2.05 or less. preferable.
  • Ferrite particles having a composition with a y / x value within the above range can easily control the Mn occupancy at the A site within the above range, and can provide magnetic and electrical characteristics suitable for the carrier core material. It is because it is easy to be done.
  • the value of y / x is less than or equal to the lower limit value, the Mn content is small, and the electric resistance and dielectric constant tend to be lower than those suitable for the carrier core material. For this reason, it is difficult to sufficiently suppress image defects caused by low electrical resistance of the core material such as the leak phenomenon, which is not preferable.
  • the value of y / x is equal to or greater than the upper limit value, the Mn content increases, and the saturation magnetization tends to be lower than the range suitable for the carrier core material. As a result, it is difficult to sufficiently suppress image defects caused by the saturation magnetization of the core material, such as carrier scattering, being not preferable.
  • x and y are composition ratios in terms of Mn and Fe in terms of moles determined based on the contents (mass%) of Mn and Fe measured by inductively coupled plasma (ICP) emission spectroscopic analysis.
  • ICP inductively coupled plasma
  • the true density of the ferrite particles is preferably 4.5 g / cm 3 to 5.5 g / cm 3 .
  • the true density is less than 4.5 g / cm 3 , the magnetization per ferrite particle is lowered, and carrier scattering tends to occur.
  • the true density of the ferrite particles is more preferably 4.6 g / cm 3 to 5.0 g / cm 3 .
  • the true density here is a value measured according to JIS R 1620: 1995 by the pycnometer method.
  • volume average particle size of the ferrite particles can be appropriately adjusted according to the application.
  • the volume average particle diameter is preferably 15 ⁇ m or more and 100 ⁇ m or less. If the volume average particle size of the ferrite particles is less than 15 ⁇ m, carrier scattering tends to occur, which is not preferable. On the other hand, if the volume average particle diameter of the ferrite particles exceeds 100 ⁇ m, image defects are likely to occur, which is not preferable. From these viewpoints, the volume average particle diameter is more preferably 20 ⁇ m or more and 65 ⁇ m or less, and further preferably 25 ⁇ m or more and 50 ⁇ m or less.
  • volume average particle diameter here is a value measured in accordance with JIS Z 8825: 2013 by a laser diffraction / scattering method.
  • the saturation magnetization when 1000 oersted (Oe) is applied is preferably 50 emu / g or more, more preferably 60 emu / g or more, and 65 emu. / G or more is more preferable. Further, the saturation magnetization when 3000 oersted (Oe) is applied is preferably 50 emu / g or more, more preferably 60 emu / g or more, and further preferably 80 emu / g or more.
  • the saturation magnetization at the time of applying 5000 oersted (Oe) is preferably 50 emu / g or more, more preferably 65 emu / g or more, and further preferably 75 emu / g or more.
  • the saturation magnetization is lower than these lower limit values, the magnetic force is low and carrier scattering tends to occur, which is not preferable.
  • the saturation magnetization becomes too high, the magnetic brush becomes stiff and undesirably caused by scratches and roughness, and the developed image quality deteriorates. From this point of view, the saturation magnetization when 1000 oersted (Oe) is applied is preferably 80 emu / g or less.
  • the saturation magnetization when 3000 oersted (Oe) is applied is preferably 90 emu / g or less
  • the saturation magnetization when 5000 oersted (Oe) is applied is preferably 90 emu / g or less.
  • the saturation magnetization is a value measured using a vibrating sample magnetometer.
  • volume resistivity When the ferrite particles are used as a carrier core material or carrier, the volume resistivity at an applied voltage of 50 V is preferably 1 ⁇ 10 2 to 1 ⁇ 10 10 ⁇ ⁇ cm. When the volume resistivity exceeds 1 ⁇ 10 10 ⁇ ⁇ cm, the electric resistance becomes too high, and there is a possibility that the movement of electric charge accompanying frictional charging is hindered. In the case of a volume resistance of less than 1 ⁇ 10 2 ⁇ ⁇ cm, the resistance is too low, and a leak phenomenon is likely to occur in a high-temperature and high-humidity environment, which may cause a decrease in charging. If the volume resistance of the ferrite particles is within the above range, an electrophotographic image can be developed with high image quality.
  • the volume resistivity of the ferrite particles is preferably 1.8 ⁇ 10 9 ⁇ ⁇ cm or less in order to suppress a decrease in the charge amount of the electrophotographic developer even when printing is repeated at a high printing rate. It is more preferably 1 ⁇ 10 8 ⁇ ⁇ cm or less, and further preferably 1 ⁇ 10 7 ⁇ ⁇ cm or less.
  • the electrical resistance of the ferrite particles is not too high and is reasonably high, so that when the ferrite particles are used as a carrier core material or carrier, charge transfer from the inside of the ferrite particles to the carrier surface is performed quickly, The charge rising of the developer is also improved.
  • the volume resistivity means a value at an applied voltage of 50 V measured using an electrometer.
  • the dielectric constant ( ⁇ ) is represented by a complex dielectric constant ( ⁇ ′ ⁇ j ⁇ ′′) (where “j” is an imaginary unit).
  • the real part ( ⁇ ') of the complex dielectric constant is a physical quantity indicating the ease of polarization of the substance, that is, the ease of change of the charge distribution due to the external electric field, and the imaginary part ( ⁇ '') It is a physical quantity that represents the amount of loss that part of the electrical energy is lost as heat when an alternating electric field is applied.
  • the real part is expressed as relative permittivity, and the imaginary part is also called dielectric loss.
  • an electrophotographic developer by a two-component development system includes a toner and a carrier.
  • the toner and the carrier are always stirred and mixed. That is, the toner and the carrier are always in a fluid state. For this reason, it is considered that the movement of charges due to contact charging between the toner and the carrier is performed in an extremely short time of about 10 ⁇ 6 to 10 ⁇ 9 seconds.
  • the carrier is generally composed of a core material and a resin coating layer that covers the surface of the core material. At the time of contact charging, the charge generated by the polarization of the core material moves to the toner through the resin coating layer.
  • the charge generated on the surface of the core material moves directly to the toner. Therefore, in order to evaluate the charging ability of the core material, it is necessary to evaluate the ease of polarization (relative dielectric constant) of the core material in the above extremely short time.
  • the relative permittivity of the ferrite particles is low, the core material is difficult to polarize and a carrier having sufficient charging ability cannot be obtained. Therefore, when the ferrite particles are used as the core material of the carrier, it is preferable that the relative dielectric constant has an appropriate height in a high frequency band of 1 MHz or higher.
  • the complex dielectric constant of the dielectric generally decreases as the frequency of the applied AC voltage increases.
  • the relative dielectric constant ( ⁇ ′) at 1 MHz is preferably 30.0 to 125.0
  • the dielectric loss factor ( ⁇ ′′) is The relative dielectric constant ( ⁇ ′) at 1 GHz is preferably 10.0 to 28.0
  • the dielectric loss factor ( ⁇ ′′) is preferably 5. It is preferably 0 to 28.0.
  • the carrier when the ferrite particles are used as the core material of the carrier, the carrier is polarized in a very short time when a bias AC voltage is applied, and the carrier surface is charged (or positive). Hole) can be easily generated, charge rising of the carrier is good, and occurrence of the charge-up phenomenon can be suppressed.
  • the ferrite particles can be used for the various applications described above in addition to the carrier core material.
  • the ferrite particles according to the present invention have a large electromagnetic wave attenuation rate in the frequency range of 0.1 GHz to 1.0 GHz as compared with the ferrite particles whose Mn occupancy at the A site is outside the range of the present invention, in particular, 0.1 GHz.
  • the electromagnetic wave attenuation rate in the range of ⁇ 0.5 GHz is large. Therefore, the ferrite particles according to the present invention can be suitably used as an electromagnetic shielding material or the like in the frequency band.
  • the electromagnetic wave attenuation rate is a value measured in accordance with IEC62333-3.
  • the ferrite particles can employ a general method for producing ferrite particles used for applications such as a carrier core material, except that the binder removal treatment is performed in a non-oxidizing atmosphere.
  • Fe raw material and Mn raw material are respectively prepared and weighed so as to obtain a predetermined molar ratio.
  • Fe raw material iron oxide such as Fe 2 O 3 is used.
  • Mn raw material it can be used MnCO 3, Mn 3 O 4 and the like.
  • Each of the weighed raw materials is pulverized and mixed for 1 hour or more, preferably 1 to 20 hours in a ball mill, sand mill, vibration mill or the like in a wet or dry manner.
  • the slurry thus obtained is dried, further pulverized and then calcined at a temperature of 700 to 1200 ° C.
  • the dispersion is further pulverized with a wet bead mill, wet ball mill, wet vibration mill or the like until the volume average particle size becomes 0.5 to 5.0 ⁇ m, more preferably 1.0 to 3.0 ⁇ m.
  • various additives such as a binder are added, the viscosity is adjusted, and then granulated and dried.
  • a binder removal treatment is performed for 2 to 4 hours at a predetermined temperature lower than that during the main firing.
  • the strength reduction of the ferrite particles can be prevented by performing the binder removal treatment.
  • the granulated product that has been subjected to the binder removal treatment is held at 1150 ° C. to 1350 ° C. for 1 to 24 hours, and then subjected to main baking.
  • the firing atmosphere at this time is performed in an inert gas (for example, N 2 gas) atmosphere having an oxygen concentration of less than 0.1 vol%, preferably 0.05 vol% or less.
  • an inert gas for example, N 2 gas
  • the ferritization reaction proceeds and Mn ferrite is generated.
  • the temperature during the main firing is more preferably 1150 ° C. to 1300 ° C., and further preferably 1180 ° C. to 1250 ° C.
  • the fired product obtained in this way is crushed and classified, and adjusted to a desired particle size. Thereafter, the magnetization and resistance can be appropriately adjusted by subjecting the fired product after pulverization and classification to surface oxidation treatment in the air or in an atmosphere in which the oxygen concentration is controlled as necessary.
  • Binder removal Ferrite particles are generally produced by the method described above.
  • the binder removal treatment is generally performed in the atmosphere.
  • the inventors of the present invention have the same composition by performing the binder removal treatment in a non-oxidizing atmosphere, and the Mn occupancy at the A site is the same as that of the conventional Mn ferrite even if the main firing conditions are the same. It has been found that different ferrite particles can be obtained.
  • the non-oxidizing atmosphere refers to an inert gas (for example, N 2 gas) atmosphere having an oxygen concentration of less than 0.1 vol%, preferably 0.05 vol% or less.
  • the binder removal treatment is performed at a temperature lower than the temperature during the main firing.
  • the temperature lower than the temperature at the time of the main firing is a temperature lower than 1150 ° C. at which Mn ferrite starts to be generated, preferably about 600 ° C. to 1050 ° C., and preferably about 650 ° C. to 950 ° C. More preferably, the temperature is about 700 to 900 ° C.
  • Magnetite has an inverse spinel crystal structure and is represented by Fe 3+ ⁇ [Fe 2+ Fe 3+ ⁇ ] O 4 .
  • the magnetite partially substituted with Mn means a magnetite in which a part of lattice points (mainly B sites) where Fe should originally exist are substituted with Mn.
  • Mn ferrite having a positive spinel crystal structure is generated.
  • a Mn ferrite having a higher ratio of reverse spinel phase than that of a conventional Mn ferrite can be obtained.
  • the ferrite particles according to the present invention described above can be used as a carrier for an electrophotographic developer by itself.
  • the ferrite particles are used as a core material of a carrier, and a resin coating layer is provided on the surface of the ferrite particles.
  • a developer carrier is preferred.
  • the resin constituting the resin coating layer is not particularly limited, and various resins can be used.
  • a fluorine resin, a fluorine-acrylic resin, a silicone resin, a modified silicone resin, or the like can be used.
  • a fluorine resin, a fluorine-acrylic resin, a silicone resin, a modified silicone resin, or the like can be used.
  • acrylic resins, acrylic-styrene resins, mixed resins of acrylic-styrene resins and melamine resins, cured resins thereof, silicone resins, modified silicone resins, polyester resins Resins, epoxy resins, urethane resins, polyethylene resins, and the like can be used.
  • charge control agents and resistance control agents include various silane coupling agents, various titanium coupling agents, borides such as conductive carbon and titanium boride, titanium oxide, iron oxide, aluminum oxide, chromium oxide, and silicon oxide. Examples of the oxide include, but are not particularly limited to.
  • the coating amount of such a resin is preferably 0.05% by mass to 10.0% by mass, and particularly preferably 0.5% by mass to 7.0% by mass with respect to the core material. If it is less than 0.05% by mass, it is difficult to form a uniform coating layer on the surface of the carrier, and if it exceeds 10.0% by mass, aggregation between carriers occurs.
  • the resin is generally diluted with a solvent and coated on the surface of the core material.
  • the solvent used here include toluene, xylene, butyl cellosolve (ethylene glycol monobutyl ether acetate), methyl ethyl ketone, methyl isobutyl ketone, methanol, and the like when the resin is soluble in an organic solvent.
  • water may be used if it is an emulsion resin.
  • known methods such as brush coating method, dry method, spray drying method using fluidized bed, rotary drying method, immersion drying method using universal agitator It can coat
  • an external heating method or an internal heating method may be used, for example, a fixed or fluid electric furnace, a rotary electric furnace, a burner furnace, or a microwave baking. Good.
  • a temperature equal to or higher than the melting point or the glass transition point is necessary.
  • a thermosetting resin or a condensation-crosslinking resin it is necessary to raise the temperature to a point where the curing proceeds sufficiently.
  • the resin is coated and baked on the surface of the core, it is cooled, crushed, and the particle size is adjusted to obtain a resin-coated carrier.
  • the carrier of the present invention obtained as described above is mixed with toner and used as a two-component developer.
  • the electrophotographic developer according to the present invention uses the carrier according to the present invention.
  • the electrophotographic developer according to the present invention is preferably a two-component electrophotographic developer containing the carrier and toner.
  • the toner used together with the carrier is not particularly limited.
  • various toners produced by a known method such as a suspension polymerization method, an emulsion polymerization method, or a pulverization method can be used.
  • a binder resin, a colorant, a charge control agent, etc. are sufficiently mixed with a mixer such as a Henschel mixer, then melt-kneaded with a twin screw extruder or the like and uniformly dispersed, and after cooling, finely pulverized with a jet mill or the like.
  • a toner classified by an air classifier or the like to have a desired particle size can be used.
  • a wax, magnetic powder, a viscosity modifier, and other additives may be included as necessary. Further, an external additive can be added after classification.
  • the binder resin used for producing the toner is not particularly limited, but polystyrene, chloropolystyrene, styrene-chlorostyrene copolymer, styrene-acrylic acid ester copolymer, styrene-methacrylic acid copolymer. Furthermore, resins such as rosin-modified maleic resin, epoxy resin, polyester, polyethylene, polypropylene, polyurethane, and silicone resin can be used alone or as a mixture as required.
  • Examples of the charge control agent used in the production of the toner include nigrosine dyes, quaternary ammonium salts, organometallic complexes, chelate complexes, and metal-containing monoazo dyes.
  • a conventionally known dye and / or pigment can be used as the colorant used in producing the toner.
  • carbon black, phthalocyanine blue, permanent red, chrome yellow, phthalocyanine green, etc. can be used.
  • silica, titanium oxide, barium titanate, fluororesin fine particles, acrylic resin fine particles and the like can be used alone or in combination.
  • surfactant a polymeric agent, etc. suitably.
  • the electrophotographic developer according to the present invention is characterized by using the carrier according to the present invention, and other matters are optional. That is, the above-described electrophotographic developer is only one aspect of the present invention, and can be appropriately changed within a range that does not depart from the spirit of the present invention, such as a toner configuration.
  • the ferrite particles of Example 1 were produced as follows. First, Fe 2 O 3 powder and Mn 3 O 4 powder were prepared as Fe raw material and Mn raw material, respectively. Then, a Fe 2 O 3, and a Mn 3 O 4 1 molar ratio: were weighed each raw material so that 0.334. After the raw materials were weighed, water was added thereto, and the slurry was prepared by pulverizing and mixing with a wet ball mill. Next, the slurry was dried, further pulverized, and calcined in the air (oxygen concentration 20.8 vol%) at a temperature of 1000 ° C.
  • Example 2 ferrite particles were produced in the same manner as in Example 1 except that the firing temperature during main firing was 1250 ° C. (see Table 1).
  • Example 3 ferrite particles were produced in the same manner as in Example 1 except that the firing temperature during main firing was 1300 ° C. (see Table 1).
  • Example 4 ferrite particles were produced in the same manner as in Example 1 except that the binder removal treatment was performed using a rotary kiln instead of an electric furnace (see Table 1).
  • Comparative Example 1 In Comparative Example 1, ferrite particles were produced in the same manner as in Example 1 except that the binder removal treatment and main firing were performed in the atmosphere (see Table 1).
  • Comparative Example 2 In Comparative Example 2, ferrite particles were produced in the same manner as in Example 1 except that the main calcination was performed in the air (see Table 1).
  • Comparative Example 3 In Comparative Example 3, ferrite particles were produced in the same manner as in Example 1 except that the firing temperature during the main firing was 1000 ° C. (see Table 1).
  • Comparative Example 4 In Comparative Example 4, ferrite particles were produced in the same manner as in Example 1 except that the binder removal treatment was performed in the atmosphere (see Table 1).
  • composition of each ferrite particle was determined by ICP emission spectroscopy / mass spectrometry as follows. First, 0.2 g of ferrite particles were weighed, and 60 ml of pure water plus 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid was heated to prepare an aqueous solution in which the ferrite particles were completely dissolved. This aqueous solution was set in an ICP analyzer (ICPS-1000IV, Shimadzu Corporation), and the content (mass%) of each metal component in the ferrite particles was determined. Further, the content of each metal component was converted into a molar ratio, and the values of “x” and “y” in the above composition formula were obtained, and the value of “y / x” was calculated. The results are shown in Table 2.
  • X-ray diffractometer “X'PertPRO MPD” manufactured by Panalical Co., Ltd. was used.
  • a Co tube (CoK ⁇ ray) was used as the X-ray source.
  • the optical system a concentrated optical system and a high-speed detector “X'Celarator” were used. The measurement was performed by continuous scanning at 0.2 ° / sec. The measurement results are processed using data for analysis “X'Pert HighScore”, the crystal structure is identified, and the obtained crystal structure is refined so that the abundance ratio in terms of mass is used as the phase composition ratio of each crystal phase. Calculated.
  • the phase composition ratio of the “spinel phase” shown in Table 3 is that Mn ferrite (MnFe 2 O 3 ) phase having a spinel type crystal structure, magnetite (Fe 3 O 4 ), part of Fe is substituted with Mn. It means the total phase composition ratio of the phase in which a part of Fe is substituted with Mn in maghemite ( ⁇ -Fe 2 O 4 ).
  • Table 3 shows the peak position (° 2 ⁇ ), peak surface area, and half-value width (° 2 ⁇ ) of the (311) plane, which is the main peak of the spinel phase.
  • Table 4 shows the lattice constants (a-axis, b-axis, c-axis) of each ferrite particle for each crystal phase.
  • the X-ray source can be measured without problems even with a Cu tube, but in the case of a sample containing a large amount of Fe, the background becomes larger than the peak to be measured, so it is better to use a Co tube. preferable.
  • the optical system may obtain the same result even when the parallel method is used, but measurement with a concentrated optical system is preferable because the X-ray intensity is low and measurement takes time.
  • the speed of the continuous scan is not particularly limited, but the peak intensity of the (311) plane which is the main peak of the spinel structure is 50,000 cps or more in order to obtain a sufficient S / N ratio when analyzing the crystal structure. Then, the ferrite particles were set in the sample cell so that the particles were not oriented in a specific preferred direction.
  • the proton accelerator was operated at 125 kW, and double-frame measurement was performed by a TOF (Time Of Flight) method so that the neutron count was 70 Mcount or more at room temperature and in the atmosphere (300 K) to obtain a neutron diffraction pattern.
  • TOF Time Of Flight
  • the obtained diffraction pattern was analyzed using analysis software “Z-Rietveld” (Windows (registered trademark) version, ver 1.0.2).
  • a diffraction peak in a region of q> 6 ⁇ ⁇ 1 and d ⁇ 1 ⁇ was designated.
  • the space group Fd-3m, 227_1 representing the spinel crystal structure is designated, “Fe” and “Mn” occupy the A site or the B site, respectively, and the temperature factor is isotropic.
  • the atomic coordinates of “O”, the lattice constant, and the occupancy at each site of each atom (Fe, Mn, O) were fitted.
  • the sum of the occupation ratios of “Fe” and “Mn” at the A site and the B site was set to “1”.
  • Table 3 shows the Mn occupancy and Fe occupancy at the A site analyzed in this manner.
  • BET specific surface area of each ferrite particle was measured using a specific surface area measuring device (Macsorb HM model-1208, manufactured by Mountec Co., Ltd.). First, about 10 g of each ferrite particle was placed on a medicine wrapping paper, and deaerated with a vacuum dryer until the degree of vacuum became ⁇ 0.1 MPa or less. Then, it heated at 200 degreeC for 2 hours, and removed the water
  • a specific surface area measuring device Macsorb HM model-1208, manufactured by Mountec Co., Ltd.
  • the weighed ferrite particles were set in the measurement port of the apparatus and measured.
  • the measurement was performed by a one-point method.
  • the measurement atmosphere was a temperature of 10 to 30 ° C. and a relative humidity of 20 to 80% (no condensation).
  • volume average particle size The volume average particle size of each ferrite particle was measured using a Microtrac particle size analyzer (Model 9320-X100) manufactured by Nikkiso Co., Ltd.
  • the sample was prepared as follows. Water was used as a dispersion medium. 10 g of sample and 80 ml of water were placed in a 100 ml beaker, and 2 to 3 drops of a dispersant (sodium hexametaphosphate) were added. Next, using an ultrasonic homogenizer (UH-150 type, manufactured by SMT Co. LTD.), The output level was set to 4 and dispersion was performed for 20 seconds. Thereafter, bubbles formed on the beaker surface were removed. The sample thus prepared was measured with the above-mentioned Microtrac particle size analyzer. Table 2 shows the measurement results for the true density, BET specific surface area, and volume average particle diameter of each ferrite particle.
  • VSM measurement (1 kOe, 5 kOe) Using a vibrating sample magnetometer (VSM-C7-10A, manufactured by Toei Kogyo Co., Ltd.), saturation magnetization, residual magnetization, and coercive force were measured when 1 kOe and 5 kOe were applied.
  • VSM-C7-10A vibrating sample magnetometer
  • saturation magnetization, residual magnetization, and coercive force were measured when 1 kOe and 5 kOe were applied.
  • the specific procedure is as follows. First, the obtained ferrite particles were filled in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in the apparatus. In the above apparatus, saturation magnetization, residual magnetization, and coercivity when the applied magnetic field was 1 kOe were obtained. Specifically, the following procedure was followed.
  • the applied magnetic field was decreased to create a hysteresis curve on the recording paper.
  • the magnetization when the applied magnetic field is 1K ⁇ 1000 / 4 ⁇ ⁇ A / m is the saturation magnetization, and the magnetization when the applied magnetic field is 0K ⁇ 1000 / 4 ⁇ ⁇ A / m is the residual magnetization. did.
  • the coercive force is the strength of the external magnetic field when the residual magnetization becomes zero when the applied magnetic field is decreased.
  • the measurement conditions were as follows: sample filling amount: about 1 g, sample filling cell: inner diameter 7 mm ⁇ ⁇ 0.02 mm, height 10 mm ⁇ 0.1 mm, 4 ⁇ I coil: 30 turns.
  • sample filling amount about 1 g
  • sample filling cell inner diameter 7 mm ⁇ ⁇ 0.02 mm
  • 4 ⁇ I coil 30 turns.
  • the magnetization when the applied magnetic field is 0K ⁇ 1000 / 4 ⁇ ⁇ A / m.
  • the coercive force is the strength of the external magnetic field when the residual magnetization becomes zero when the applied magnetic field is decreased.
  • Table 5 shows the magnetic properties of each ferrite particle.
  • volume resistivity The volume resistivity of each ferrite particle was measured as follows. First, after filling a sample into a cylinder made of fluororesin having a cross-sectional area of 4 cm 2 so as to be 4 mm in height, electrodes were attached to both ends, and a weight of 1 kg was placed thereon to measure resistance. The resistance is measured by using an electrometer (insulation resistance meter model 6517A manufactured by KEITHLEY), increasing the applied voltage stepwise by 50 V every 5 seconds up to an applied voltage of 1000 V (electric field of 2500 V / cm). The current value after 2 seconds was read, and the resistance value at each voltage was calculated. Then, volume resistivity was calculated
  • the sample was molded by the following method. First, 90 wt% of the ferrite particles produced in each of Examples and Comparative Examples were mixed with 10 wt% of a fluororesin, and then about 1 g was sampled. Each obtained mixture was put into a mold having a diameter of 13 mm, pressure-molded at 50 kN, and then heat-cured at 180 ° C. for 2 hours as a sample.
  • Electromagnetic attenuation rate A sample was prepared using each ferrite particle, and the electromagnetic wave attenuation rate was measured in accordance with IEC62333-3. Specifically, the measurement was performed as follows. First, 7 g of ferrite particles were added to 30 g of 10 wt% PVA aqueous solution to prepare a paste. The content of ferrite particles in the paste is 70 wt% with respect to the solid content (PVA and ferrite particles) in the paste. The paste was molded with a baker type applicator and dried to form a 0.5 mm thick sheet. This was cut into a 30 mm square to prepare a sample.
  • the sample is attached to a measuring jig (Line Decoupling Measuring Equipment model: KLD-1) manufactured by Kanto Electronics Application Development Co., Ltd., and a network analyzer (E5071C) manufactured by KeyLight Technology is used as a measurement range between 0.1 GHz and 1.0 GHz.
  • the electromagnetic wave attenuation rate of each sample was measured.
  • the ferrite particles of Examples 1 to 4 account for 99.9% of the spinel phase.
  • the ferrite particles of Examples 1 to 4 have an Fe 2+ amount of 0.22% by mass to 0.11% by mass (see Table 2), and the spinel phase is mainly composed of the Mn ferrite phase. The content is considered low.
  • the ferrite particles of Examples 1 to 4 were subjected to binder removal treatment at a lower temperature (850 ° C.) than the main firing in a non-oxidizing atmosphere (N 2 gas atmosphere), and Mn ferrite in an N 2 gas atmosphere It was obtained by carrying out the main firing at a temperature suitable for the production of. Therefore, it was confirmed that ferrite particles having a spinel phase with a phase composition ratio of 99.9% are generated by performing main firing at a temperature suitable for generation of Mn ferrite in an N 2 gas atmosphere.
  • the proportion of the spinel phase is as small as 1.2% and 0.6%.
  • the ferrite particles of Comparative Example 1 and Comparative Example 2 have a large proportion of the hematite phase (Fe 2 O 3 ) and the Mn 2 O 3 phase. I think this is due to the following reasons. First, in Comparative Example 1, since the binder removal process and the main baking process are performed in the atmosphere, magnetite and Mn ferrite are not generated, and as a result, the proportion of the spinel phase is considered to be small.
  • Comparative Example 2 Although the binder removal treatment is performed in an N 2 gas atmosphere, the magnetite once produced during the binder removal treatment is oxidized during the firing to Fe 2 O 3 by performing the firing in the atmosphere. I think. Therefore, it is confirmed from Comparative Example 1 and Comparative Example 2 that it is difficult to obtain a spinel phase when the atmosphere during the main baking is air, regardless of the atmosphere during the binder removal treatment.
  • Comparative Example 3 both the binder removal treatment and the main calcination are performed in an N 2 gas atmosphere.
  • the main baking temperature is as low as 1000 ° C. It is considered that Mn ferrite (MnFe 2 O 4 ) is generated in a temperature range of about 1150 ° C. to 1350 ° C. Therefore, in Comparative Example 3, although magnetite is generated at a certain rate during the binder removal treatment, the firing temperature is lower than the temperature at which Mn ferrite is considered to be generated, so that the composition ratio of the spinel phase in the ferrite particles is from Example 1 to Compared with Example 4, it is thought that it was as low as 77.0%.
  • the ferrite particles of Comparative Example 4 have a high phase composition ratio of the spinel phase of 99.9%.
  • the ferrite particles of Comparative Example 4 were obtained in the same manner as in Example 1 except that the atmosphere during the binder removal treatment was different. As described above, it is difficult to separate the peaks of Mn ferrite and magnetite (Fe 3 O 4 ) by powder XRD diffraction. Therefore, when confirming the amount of Fe 2+ of the ferrite particles of Comparative Example 4, Fe 2+ content of the ferrite particles of Comparative Example 4 is greater when compared with ferrite particles in Examples 1 to 4.
  • the ferrite particles of Comparative Example 4 are obtained by performing a binder removal treatment in the atmosphere.
  • the ferrite particles of Comparative Example 4 have a spinel phase composition ratio of 99.9%, while the ferrite particles of Comparative Example 4 have a magnetite phase and / or maghemite phase content of Examples 1 to 4. It is thought that it is large compared with the ferrite particles.
  • the ferrite particles of Examples 1 to 4 are 0.6056 to 0.6504, and the scope of the present invention Is within.
  • the Mn occupancy at the A site in Comparative Examples 1 to 4 in which the main calcination was performed in the atmosphere or the main calcination temperature was less than 1150 ° C. was 0.655 or more. It is confirmed that the crystal structure is different from Example 4.
  • the ferrite particles of Comparative Example 1 and Comparative Example 2 have a low phase composition ratio of the spinel phase as described above, and the Mn occupancy at the A site is also different from the ferrite particles of Examples 1 to 4.
  • the ferrite particles of Comparative Example 3 have a low main firing temperature, Mn ferrite is not generated, and maghemite in which part of Fe is substituted with Mn is generated. It is thought that it was about 97.
  • the ferrite particles of Comparative Example 4 were fired at the same firing temperature as in Example 1, but the atmosphere during the binder removal treatment was different from that in Example 1, and the binder removal treatment was performed in the air. Yes.
  • the Mn ferrite phase was generated while partly becoming a magnetite phase and / or a maghemite phase during the main firing.
  • the spinel phase composition ratio of the ferrite particles of Comparative Example 4 was almost the same as that of Examples 1 to 4, but the Mn occupancy at the A site was higher than that of Examples 1 to 4. it is conceivable that.
  • the volume resistivity of the ferrite particles of Examples 1 to 4 is 1.65 ⁇ 10 6 ⁇ ⁇ cm to 1.55. ⁇ 10 9 ⁇ ⁇ cm, which has an electric resistance suitable for the core material of the carrier.
  • the volume resistivity of the ferrite particles of Examples 2 to 4 is not too high and is suitable for the carrier core material.
  • the volume resistivity of the ferrite particles of Comparative Examples 1 to 4 is slightly higher than the ferrite particles of Examples 2 to 4, but the ferrite particles of Comparative Examples 1 to 4 are also used as the core material of the carrier. Appropriate volume resistivity is shown.
  • the relative dielectric constant ( ⁇ ′) and dielectric loss ( ⁇ ′′) of the ferrite particles of Examples 1 to 4 are 1 MHz (10 6 Hz) to 1 GHz ( It shows a high value at any frequency of 10 9 Hz). Therefore, if a bias voltage is applied to the ferrite particles of Examples 1 to 4, it can be rapidly polarized in an extremely short time. Therefore, if the ferrite particles are used as the core material of the carrier, it is possible to obtain a carrier that has excellent charging ability and quick charge rising.
  • the ferrite particles of Comparative Examples 1 to 3 are both too low in relative dielectric constant ( ⁇ ′) and dielectric loss ( ⁇ ′′) compared to the ferrite particles of Examples 1 to 4. . Therefore, the core material is difficult to polarize when a bias voltage is applied, and a carrier having sufficient charging ability cannot be obtained.
  • both of the relative permittivity ( ⁇ ′) and the dielectric loss ( ⁇ ′′) of the ferrite particles of Comparative Example 4 are too high. For this reason, the charging ability of the carrier becomes too high, and therefore, a charge-up phenomenon is likely to occur when printing of an image with a high printing rate is repeated. Therefore, it is difficult to extend the life of the carrier.
  • Electromagnetic wave attenuation rate When the electromagnetic wave attenuation rate was measured for the samples prepared using the ferrite particles of the examples and the comparative examples, the electromagnetic waves at frequencies of 0.1 GHz to 1.0 GHz of Examples 1 to 4 were measured. The attenuation rate was 0.95 dB to 3.27 dB, and the electromagnetic wave attenuation rate at 0.1 GHz to 0.5 GHz was 1.53 dB to 3.27 dB. On the other hand, the electromagnetic wave attenuation rate at frequencies of 0.1 GHz to 1.0 GHz in Comparative Examples 1 and 2 is 0.00 dB to 0.24 dB, and the electromagnetic wave attenuation rate at 0.1 GHz to 0.5 GHz is 0.00 dB to 0.
  • Example 3 the electromagnetic wave attenuation rate at a frequency of 0.1 GHz to 1.0 GHz is 0.58 dB to 1.75 dB, and the electromagnetic wave attenuation rate at 0.1 GHz to 0.5 GHz is 0.75 dB to 1.75 dB.
  • Comparative Example 4 the electromagnetic wave attenuation rate at a frequency of 0.1 GHz to 1.0 GHz was 0.90 dB to 2.93 dB, and the electromagnetic wave attenuation rate at 0.1 GHz to 0.5 GHz was 1.62 dB to 2.93 dB. .
  • the electromagnetic wave attenuation rate at a frequency of 0.25 GHz is shown below.
  • the electromagnetic wave attenuation rate is particularly high in the frequency band of 0.1 GHz to 0.5 GHz. It was confirmed that the electromagnetic shielding characteristics are high in the band. Note that the Mn occupation ratio at the A site of the ferrite particles of Comparative Example 4 is 0.6560, and the samples using the ferrite particles of Comparative Example 4 are almost the same as the samples using the ferrite particles of Examples 1 to 4. The electromagnetic wave attenuation rate was shown. As described above, the ferrite particles of Comparative Example 4 do not have electrical characteristics suitable for the core material of the carrier, but are more suitable for use as an electromagnetic shielding material than the ferrite particles of Comparative Examples 1 to 3.
  • ferrite particles having magnetic and electrical characteristics suitable for a carrier core material for an electrophotographic developer, a carrier core material for an electrophotographic developer using the ferrite particles, and an electrophotographic developer Ferrite carrier and electrophotographic developer can be provided.
  • the ferrite particles according to the present invention are different from the conventional Mn ferrite in that the Mn occupancy at the A site is within the scope of the present invention, while having magnetic properties and electrical resistance equivalent to the conventional Mn ferrite, In a high frequency band of 1 MHz or higher, the relative dielectric constant can be set to a value suitable for a carrier core material for an electrophotographic developer.
  • the ferrite particles according to the present invention to the carrier core material of the electrophotographic developer, it is possible to obtain good image characteristics from the initial stage even when repeatedly printing images with a high printing rate, It becomes possible to achieve a long life of the carrier. Further, the ferrite particles have high electromagnetic shielding properties and can be suitably used for electromagnetic shielding materials.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)

Abstract

The present invention addresses the problem of providing: ferrite particles having magnetic properties and electric properties suitable as a carrier core material for electrophotographic developers; and a carrier core material for electrophotographic developers, a ferrite carrier for electrophotographic developers and an electrophotographic developer, in each of which the ferrite particles are used. For the purpose of solving the problem, ferrite particles are provided, each of which has a spinel-type crystalline structure represented by the compositional formula: MnxFeyO4 (wherein 0 < x, y = 3-x), the ferrite particles being characterized in that the Mn occupation ratio in site A is 0.200 to 0.655 inclusive. Also provided are a carrier core material for electrophotographic developers, a ferrite carrier for electrophotographic developers, and an electrophotographic developer, each of which contains the ferrite particles.

Description

フェライト粒子、電子写真現像剤用キャリア芯材、電子写真現像剤用フェライトキャリア及び電子写真現像剤Ferrite particles, carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, and electrophotographic developer
 本件発明は、フェライト粒子、電子写真現像剤用キャリア芯材、電子写真現像剤用フェライトキャリア及び電子写真現像剤に関する。 The present invention relates to a ferrite particle, a carrier core material for an electrophotographic developer, a ferrite carrier for an electrophotographic developer, and an electrophotographic developer.
 フェライトは酸化第二鉄を主成分とする磁性酸化物であり、フェライト粉はその粉体である。フェライトは金属酸化物であるため絶縁性を示す。また、フェライト粉は他の材料と混合して用いることが容易である。そのため、フェライト粉は、磁性と絶縁性が要求される種々の用途において、機能性材料として用いられてきた。 Ferrite is a magnetic oxide mainly composed of ferric oxide, and ferrite powder is its powder. Since ferrite is a metal oxide, it exhibits insulating properties. Further, the ferrite powder can be easily mixed with other materials. Therefore, ferrite powder has been used as a functional material in various applications that require magnetism and insulation.
 例えば、2成分系現像方式による電子写真現像剤はトナーとキャリアとを含み、キャリアはフェライト粉を芯材とし、その周囲を樹脂で被覆したものが一般に用いられる。電子写真現像剤において、キャリアは、トナーと混合・撹拌されることによりトナーを帯電させる帯電付与剤として機能すると共に、帯電したトナーを静電潜像位置まで搬送する担持体としての機能を果たす。担持体としての機能を果たしたキャリアは回収され、トナーと混合・撹拌されて再利用される。 For example, an electrophotographic developer based on a two-component development system generally includes a toner and a carrier, and the carrier generally uses a ferrite powder as a core material and the periphery thereof is coated with a resin. In the electrophotographic developer, the carrier functions as a charge imparting agent that charges the toner by being mixed and stirred with the toner, and also functions as a carrier that conveys the charged toner to the electrostatic latent image position. The carrier that has functioned as a carrier is recovered, mixed and stirred with toner, and reused.
 近年、2成分系現像方式を採用する複写機、或いは、印刷装置(以後、「電子写真現像機」と称する。)のほとんどは、反転現像方式を採用しており、現像時に高い交流バイアス電圧がキャリアに印加される。マグネタイトのようにキャリアの電気抵抗が低いと、電荷のリーク現象が発生しやすく、感光体上に形成された静電潜像が破壊され、トナーを所定の画像濃度で均一に付着させることが困難になる。そのため、ベタ部の画像濃度にムラが生じ、画像上にいわゆるハケスジが発生するなどの画像欠陥が生じる。 In recent years, most copiers or printing apparatuses (hereinafter referred to as “electrophotographic developing machines”) adopting a two-component development system have adopted a reversal development system, and a high AC bias voltage is applied during development. Applied to the carrier. When the electrical resistance of the carrier is low, such as magnetite, a charge leakage phenomenon is likely to occur, the electrostatic latent image formed on the photoreceptor is destroyed, and it is difficult to uniformly deposit toner at a predetermined image density. become. As a result, unevenness in the image density of the solid portion occurs, and image defects such as so-called scratches occur on the image.
 そこで、従来広く用いられてきたマグネタイトに代わり、近年では、「MnFe」(但し、0<x≦1、y=3-xである。)等の組成式で表されるMnフェライトが用いられるようになってきた(例えば、特許文献1参照)。Mnフェライトはマグネタイトと比較すると電気抵抗が高いため、電荷のリーク現象が発生しにくく、ハケスジ等の発生は見られない。 Therefore, instead of magnetite that has been widely used conventionally, in recent years, Mn represented by a composition formula such as “Mn x Fe y O 4 ” (where 0 <x ≦ 1, y = 3-x) and the like. Ferrite has been used (for example, see Patent Document 1). Since Mn ferrite has a higher electrical resistance than magnetite, the phenomenon of charge leakage is less likely to occur, and the occurrence of scratches or the like is not observed.
特開2011-248311号公報JP 2011-248311 A
 ところで、近年、電子写真現像機では、写真等の印字率の高い画像を高画質に高速に印刷することが求められている。印字率の高い画像を繰り返し印刷する場合、文書などの印字率の低い画像を印刷する場合と比較するとトナーの補給回数が多い。換言すれば短いサイクルでトナーが補給される。その際、初期の段階から良好な画像特性を得るには、トナー補給のタイミングでキャリアの帯電量が一時的に低下したとしても、キャリアの帯電量を速やかにトナー補給前のレベルに戻す必要がある。すなわち、初期の段階から良好な画像特性を得るためには、印加されるバイアス電圧に応じた所定の周波数帯域において帯電立ち上がりの早いキャリアが要求される。なお、印字率とは、1頁当りの印字面積の割合をいう。 By the way, in recent years, an electrophotographic developing machine is required to print an image with a high printing rate such as a photograph at high speed with high image quality. When an image with a high printing rate is repeatedly printed, the number of times of toner replenishment is larger than when an image with a low printing rate such as a document is printed. In other words, the toner is replenished in a short cycle. At that time, in order to obtain good image characteristics from the initial stage, even if the charge amount of the carrier temporarily decreases at the timing of toner replenishment, it is necessary to quickly return the charge amount of the carrier to the level before toner replenishment. is there. That is, in order to obtain good image characteristics from the initial stage, a carrier having a quick charge rising in a predetermined frequency band corresponding to the applied bias voltage is required. The printing rate is the ratio of the printing area per page.
 また、電気抵抗の高い芯材を用いた場合、印字率の高い画像の印刷を繰り返し行うと、芯材内部からキャリア表面への帯電に必要な電荷の供給が不足する場合がある。このようなキャリアのチャージダウン現象が生じた場合、カブリ等の画像欠陥が発生する。そのため、高画質・高速印刷への要求を満たしつつ、電子写真現像剤の長寿命化を実現するには、芯材の電気抵抗は高すぎないことが求められる。これらのことから、芯材の電気抵抗は、上記電荷リーク現象の発生を抑制しつつ、且つ、上記チャージダウン現象の発生を抑制することが可能な適度な高さであることが求められる。 Also, when a core material with high electrical resistance is used, if an image with a high printing rate is repeatedly printed, the charge necessary for charging from the inside of the core material to the carrier surface may be insufficient. When such a carrier charge-down phenomenon occurs, image defects such as fogging occur. Therefore, it is required that the electrical resistance of the core material is not too high in order to realize the long life of the electrophotographic developer while satisfying the demand for high image quality and high speed printing. For these reasons, the electrical resistance of the core material is required to be an appropriate height that can suppress the occurrence of the charge leakage phenomenon and can suppress the occurrence of the charge-down phenomenon.
 そこで、本件発明の課題は、電子写真現像剤用キャリア芯材に好適な磁気特性及び電気特性を有するフェライト粒子、当該フェライト粒子を用いた電子写真現像剤用キャリア芯材、電子写真現像剤用フェライトキャリア及び電子写真現像剤を提供することにある。 Then, the subject of this invention is the ferrite particle which has a magnetic characteristic suitable for the carrier core material for electrophotographic developers, and the electrical property, The carrier core material for electrophotographic developers using the said ferrite particle, The ferrite for electrophotographic developers It is to provide a carrier and an electrophotographic developer.
 本件発明者等は、鋭意研究を行った結果、フェライト粒子の結晶構造に着目し、以下の結晶構造を採用することで、電子写真現像剤用キャリア芯材に好適な磁気特性を維持しつつ、帯電立ち上がりの早いフェライト粒子が得られることを見出し、上記課題を解決するに到った。 As a result of diligent research, the inventors of the present invention paid attention to the crystal structure of ferrite particles and adopted the following crystal structure, while maintaining suitable magnetic properties for the carrier core material for electrophotographic developer, The inventors have found that ferrite particles having a quick charge rise can be obtained, and have solved the above problems.
 本件発明に係るフェライト粒子は、組成式がMnFe(但し、0<x、y=3-x)で表されるスピネル型結晶構造を有するフェライト粒子であって、AサイトにおけるMn占有率が0.200以上0.655以下であることを特徴とする。 The ferrite particles according to the present invention are ferrite particles having a spinel crystal structure represented by a composition formula of Mn x Fe y O 4 (where 0 <x, y = 3-x), The occupation ratio is 0.200 or more and 0.655 or less.
 本件発明に係るフェライト粒子は、前記組成式において、y/xの値が1.95以上2.05以下であることが好ましい。 The ferrite particles according to the present invention preferably have a y / x value of 1.95 or more and 2.05 or less in the composition formula.
 本件発明に係るフェライト粒子の真密度が4.6g/cm以上5.0g/cm以下であることが好ましい。 It is preferable that the true density of the ferrite particles according to the present invention is 4.6 g / cm 3 or more and 5.0 g / cm 3 or less.
 本件発明に係るフェライト粒子の体積平均粒径が15μm以上100μm以下であることが好ましい。 The volume average particle size of the ferrite particles according to the present invention is preferably 15 μm or more and 100 μm or less.
 本件発明に係る電子写真現像剤用キャリア芯材は、上記フェライト粒子を含むことを特徴とする。 The carrier core material for an electrophotographic developer according to the present invention includes the above ferrite particles.
 本件発明に係る電子写真現像剤用フェライトキャリアは、上記フェライト粒子と、上記フェライト粒子の表面に設けられた樹脂被覆層とを備えることを特徴とする。 The ferrite carrier for an electrophotographic developer according to the present invention includes the ferrite particles and a resin coating layer provided on the surface of the ferrite particles.
 本件発明に係る電子写真現像剤は、上記電子写真現像剤用フェライトキャリアとトナーとを含むことを特徴とする。 The electrophotographic developer according to the present invention includes the above-described ferrite carrier for an electrophotographic developer and a toner.
 本件発明に係る電子写真現像剤は、補給用現像剤として用いられることが好ましい。 The electrophotographic developer according to the present invention is preferably used as a replenishment developer.
 本件発明によれば、電子写真現像剤用キャリア芯材に好適な磁気特性及び電気特性を有するフェライト粒子、当該フェライト粒子を用いた電子写真現像剤用キャリア芯材、電子写真現像剤用フェライトキャリア及び電子写真現像剤を提供することができる。 According to the present invention, ferrite particles having magnetic and electrical properties suitable for a carrier core material for an electrophotographic developer, a carrier core material for an electrophotographic developer using the ferrite particles, a ferrite carrier for an electrophotographic developer, and An electrophotographic developer can be provided.
 以下、本件発明に係るフェライト粒子、電子写真現像剤用キャリア芯材(以下、「芯材」又は「キャリアの芯材」と称する)、電子写真現像剤用フェライトキャリア(以下、「キャリア」と称する)及び電子写真現像剤の実施の形態を説明する。なお、以下に説明する実施の形態では、本件発明に係るフェライト粒子を上記芯材等に適用する場合を例に挙げて説明する。しかしながら、本件発明に係るフェライト粒子の用途はこれらに限定されるものではなく、例えば、磁性インク、磁性流体、磁性フィラー、ボンド磁石用フィラー及び電磁波シールド材用フィラー等の各種機能性フィラー、電子部品材料等の各種電子材料として用いることができる。 Hereinafter, ferrite particles according to the present invention, a carrier core material for electrophotographic developer (hereinafter referred to as “core material” or “core material of carrier”), and a ferrite carrier for electrophotographic developer (hereinafter referred to as “carrier”). ) And an embodiment of an electrophotographic developer. In the embodiment described below, a case where the ferrite particles according to the present invention are applied to the core material and the like will be described as an example. However, the use of the ferrite particles according to the present invention is not limited to these, for example, various functional fillers such as magnetic ink, magnetic fluid, magnetic filler, bond magnet filler, and electromagnetic shielding material filler, and electronic components. It can be used as various electronic materials such as materials.
〈フェライト粒子の実施の形態〉
1.フェライト粒子
 まず、本件発明に係るフェライト粒子の実施の形態を説明する。本件発明にいうフェライト粒子は、組成式がMnFe(但し、0<x、y=3-x)で表されるスピネル型結晶構造を有するフェライト粒子であって、AサイトにおけるMn占有率が0.200以上0.655以下であることを特徴とする。なお、ここでいうフェライト粒子とは、特記しない限り、フェライト粒子の集合体(粉体)を意味し、個々のフェライト粒子をいうときには、単に粒子というものとする。また、「占有率」とは、所定の格子点において所定の原子がその所定の格子点に存在する割合をいうものとする。また、本件発明にいうフェライト粒子はMn,Fe,Oの3種類の元素から構成され、原料等に起因する不可避不純物(随伴不純物)を除いて、実質的に他の元素を含まないものとする。
<Embodiment of ferrite particles>
1. First, an embodiment of a ferrite particle according to the present invention will be described. The ferrite particles referred to in the present invention are ferrite particles having a spinel crystal structure represented by the composition formula Mn x Fe y O 4 (where 0 <x, y = 3-x), The occupation ratio is 0.200 or more and 0.655 or less. Here, unless otherwise specified, the term “ferrite particles” means an aggregate (powder) of ferrite particles, and when referring to individual ferrite particles, they are simply referred to as particles. Further, the “occupancy ratio” refers to a ratio of a predetermined atom existing at a predetermined lattice point at a predetermined lattice point. Further, the ferrite particles referred to in the present invention are composed of three kinds of elements of Mn, Fe, and O, and are substantially free of other elements except for inevitable impurities (accompanying impurities) caused by raw materials. .
 スピネル型結晶構造は立方晶系に属する天然鉱物スピネルと同型の結晶構造を有し、その単位格子は8(MeFe)で表される。単位格子には、2価金属が8個、3価金属が16個、酸素が32個含まれる。なお、「8(MeFe)」において「Me」は2価金属を意味する。32個の酸素は最密立方格子を形成する。金属イオンが配置される格子点は2種類あり、それぞれAサイト(又は8a位置)、Bサイト(又は16d位置)と称される。Aサイトは4個の酸素に囲まれた四面体の中心に相当する位置であり、Bサイトは6個の酸素に囲まれた八面体の中心に相当する位置である。単位格子中にAサイトは8カ所、Bサイトは16カ所ある。 The spinel crystal structure has the same crystal structure as that of the natural mineral spinel belonging to the cubic system, and its unit cell is represented by 8 (MeFe 2 O 4 ). The unit cell contains 8 divalent metals, 16 trivalent metals, and 32 oxygen. In “8 (MeFe 2 O 4 )”, “Me” means a divalent metal. Thirty-two oxygens form a close cubic lattice. There are two types of lattice points where metal ions are arranged, which are referred to as A site (or 8a position) and B site (or 16d position), respectively. The A site is a position corresponding to the center of a tetrahedron surrounded by four oxygens, and the B site is a position corresponding to the center of an octahedron surrounded by six oxygens. There are 8 A sites and 16 B sites in the unit cell.
 スピネル型結晶構造を有するフェライトでは、2価の金属イオン(Me2+)がAサイトに配置される場合、それを正スピネルといい、2価の金属イオンがBサイトに配置される場合、それを逆スピネルといい、以下の化学式で表される。Mnフェライトでは2価の金属イオン(Me2+)はMn2+又はFe2+であり、3価の金属イオンはFe3+である。従って、AサイトにおけるMn占有率は、単位格子内の8カ所のAサイトのうち、Mn2+が存在(占有)している割合に相当する。
 正スピネル:Me2+↓[Fe3+ ↑]O
 逆スピネル:Fe3+↓[Me2+Fe3+↑]O
In ferrite having a spinel crystal structure, when a divalent metal ion (Me 2+ ) is arranged at the A site, it is called a positive spinel, and when a divalent metal ion is arranged at the B site, It is called reverse spinel and is represented by the following chemical formula. In Mn ferrite, the divalent metal ion (Me 2+ ) is Mn 2+ or Fe 2+ , and the trivalent metal ion is Fe 3+ . Therefore, the Mn occupancy at the A site corresponds to the proportion of Mn 2+ existing (occupied) among the eight A sites in the unit cell.
Positive spinel: Me 2+ ↓ [Fe 3+ 2 ↑] O 4
Reverse spinel: Fe 3+ ↓ [Me 2+ Fe 3+ ↑] O 4
 MnFeの組成式で表されるMnフェライトは、AサイトにおけるMn占有率が0.8~0.9程度、すなわち80~90%の正スピネルであるという報告がある(例えば、(1975)「磁性体ハンドブック」朝倉書店、p610~p612)。 There is a report that the Mn ferrite represented by the composition formula of MnFe 2 O 4 is a positive spinel having a Mn occupation ratio of about 0.8 to 0.9, that is, 80 to 90% at the A site (for example, (1975 ) “Magnetic Handbook” Asakura Shoten, p610-p612).
 しかしながら、本件発明者等は、上記組成式MnFe(但し、0<x、y=3-x)で表され、且つ、x及びyの値が同じであるフェライト粒子であっても、本焼成前の脱バインダー処理条件を変化させることで、AサイトにおけるMn占有率が従来のMnフェライトとは異なるフェライト粒子が得られることを見出した。その際、原料をフェライト化させる上で好適な本焼成条件を採用しつつ、脱バインダー処理条件のみを変化させることで、従来のMnフェライトと同等の磁気特性を維持しつつ、従来のMnフェライトとは異なる電気特性を示すフェライト粒子が得られることを見出した。そして、本件発明者等は、AサイトにおけるMn占有率が上記範囲内となるフェライト粒子は、キャリアの芯材に好適な磁気特性及び電気特性を有することを見出し、本件発明に想到するに至った。以下、Mn占有率、組成、粉体特性の順に説明する。 However, the inventors of the present invention are ferrite particles represented by the above composition formula Mn x Fe y O 4 (where 0 <x, y = 3-x), and the values of x and y are the same. In addition, it was found that by changing the binder removal treatment conditions before the main firing, ferrite particles having a Mn occupation ratio at the A site different from that of the conventional Mn ferrite can be obtained. At that time, while adopting the main firing conditions suitable for ferritizing the raw material, by changing only the binder removal treatment conditions, while maintaining the same magnetic characteristics as the conventional Mn ferrite, Found that ferrite particles exhibiting different electrical characteristics can be obtained. The inventors of the present invention have found that the ferrite particles in which the Mn occupancy in the A site is within the above range have magnetic characteristics and electrical characteristics suitable for the carrier core, and have come to the present invention. . Hereinafter, description will be made in the order of Mn occupation ratio, composition, and powder characteristics.
(1)Mn占有率
 本件発明において、AサイトにおけるMn占有率は、AサイトにMnが存在する割合を示す。AサイトにおけるMn占有率が「1」である場合、8カ所のAサイトの全てにMn2が存在していることを意味する。本件発明に係るフェライト粒子の組成から、AサイトにおけるMn占有率が0.200以上0.655以下である場合、AサイトにおけるFe占有率は0.800以下0.345以上になる。但し、AサイトにおけるMn占有率とFe占有率との和は必ずしも「1」である必要はない。ある格子点に本来配置されるはずのMn2+又はFe2+が不純物(原子)によって置換されている場合や、その格子点が空孔である場合など、種々の格子欠陥が存在し得るためである。
(1) Mn Occupancy In the present invention, the Mn occupancy at the A site indicates the proportion of Mn present at the A site. When the Mn occupation ratio at the A site is “1”, it means that Mn2 + is present in all of the eight A sites. From the composition of the ferrite particles according to the present invention, when the Mn occupation ratio at the A site is 0.200 or more and 0.655 or less, the Fe occupation ratio at the A site is 0.800 or less and 0.345 or more. However, the sum of the Mn occupancy and the Fe occupancy at the A site is not necessarily “1”. This is because various lattice defects may be present, such as when Mn 2+ or Fe 2+ originally supposed to be arranged at a certain lattice point is replaced by an impurity (atom), or when the lattice point is a vacancy. .
 ここでいう「占有率」は、中性子回折法により得た試料の回折パターンをリートベルト解析に基づき解析した値をいうものとする。結晶構造を解析する手法として、X線回折法が知られている。しかしながら、本件発明に係るフェライト粒子は、上述したとおり、MnFe(但し、0<x、y=3-x)の組成式で表される。MnとFeのイオン半径や原子量は同程度であるため、X線回折法ではフェライトを構成するこれらの原子がどのサイトにどのような価数で存在しているかを精確に解析することは困難である。一方、中性子線を試料に照射すると、Mnからは負の散乱長を有する回折パターンが得られ、Feからは正の散乱長を有する回折パターンが得られる。そのため、中性子回折法によればMnとFeとを区別することが容易であり、X線回折法と比較すると各サイトにおける各原子の占有率を精確に解析することができる。 The “occupancy ratio” here refers to a value obtained by analyzing a diffraction pattern of a sample obtained by a neutron diffraction method based on Rietveld analysis. An X-ray diffraction method is known as a method for analyzing a crystal structure. However, as described above, the ferrite particles according to the present invention are represented by the composition formula of Mn x Fe y O 4 (where 0 <x, y = 3-x). Since the ionic radii and atomic weights of Mn and Fe are approximately the same, it is difficult to accurately analyze at what site and at what valence the atoms constituting the ferrite exist in the X-ray diffraction method. is there. On the other hand, when a sample is irradiated with a neutron beam, a diffraction pattern having a negative scattering length is obtained from Mn, and a diffraction pattern having a positive scattering length is obtained from Fe. Therefore, according to the neutron diffraction method, it is easy to distinguish between Mn and Fe, and the occupancy of each atom at each site can be accurately analyzed as compared with the X-ray diffraction method.
 中性子回折装置として、例えば、大強度陽子加速施設J-PARC(茨城県)の物質・生命科学研究施設MLFに設置されている産業利用ビームラインiMATERIA、又は、独立行政法人日本原子力研究開発機構所有の研究用原子炉JRR-3のビームラインSANS-Jなどを使用することができる。また、回折パターンを解析する際には、J-PARCから配布されている解析ソフト「Z-Rietveld」を用いることができる。 As a neutron diffractometer, for example, the industrial-use beamline iMATERIA installed in the MLF Materials and Life Sciences Research Facility MLF at the J-PARC (Ibaraki Prefecture) High-Intensity Proton Acceleration Facility, or owned by the Japan Atomic Energy Agency The beam line SANS-J of the research reactor JRR-3 can be used. Further, when analyzing a diffraction pattern, analysis software “Z-Rietveld” distributed from J-PARC can be used.
 以上のようにして測定したAサイトにおけるMn占有率が上記範囲内であるフェライト粒子は、上述したとおり、キャリアの芯材に好適な磁気特性及び電気特性を有する。これに対して、AサイトにおけるMn占有率が0.655より大きい場合、キャリアの芯材に好適な磁気特性及び電気特性を得ることが困難になるため、好ましくない。すなわち、AサイトにおけるMn占有率が0.655より大きくなると、例えば、磁化は高いが、電気抵抗及び/又は誘電率がキャリアの芯材に好適な範囲を超えて高く、或いは、低くなったり、電気抵抗及び/又は誘電率がキャリアの芯材に好適な範囲内であるが、磁化が低いなど、キャリアの芯材に好適な磁気特性及び電気特性を得ることが困難になる。一方、上記組成式で表されるMnフェライトにおいて、AサイトにおけるMn占有率が0.200よりも小さいフェライト粒子を製造することは困難である。 As described above, the ferrite particles whose Mn occupancy at the A site measured in the above manner is within the above range have magnetic characteristics and electrical characteristics suitable for the core material of the carrier. On the other hand, when the Mn occupation ratio at the A site is larger than 0.655, it is difficult to obtain magnetic characteristics and electrical characteristics suitable for the core material of the carrier. That is, when the Mn occupancy at the A site is larger than 0.655, for example, the magnetization is high, but the electrical resistance and / or dielectric constant is higher or lower than the range suitable for the carrier core, Although the electrical resistance and / or dielectric constant are within the range suitable for the carrier core material, it is difficult to obtain magnetic characteristics and electrical characteristics suitable for the carrier core material, such as low magnetization. On the other hand, in the Mn ferrite represented by the above composition formula, it is difficult to produce ferrite particles having a Mn occupation ratio at the A site smaller than 0.200.
 キャリアの芯材により好適な磁気特性及び電気特性を有するフェライト粒子を得るという観点から、AサイトにおけるMn占有率は0.630以下であることがより好ましい。また、スピネル型結晶構造において、従来公知の方法で焼成した場合、MnはAサイトにおいてより安定に存在する。そのため、製造が容易であるという観点から、AサイトにおけるMn占有率の下限値は0.350以上であることが好ましく、0.450以上であることがより好ましく、0.500以上であることがさらに好ましい。 From the viewpoint of obtaining ferrite particles having suitable magnetic properties and electrical properties by the carrier core material, the Mn occupation ratio at the A site is more preferably 0.630 or less. In the spinel crystal structure, when fired by a conventionally known method, Mn exists more stably at the A site. Therefore, from the viewpoint of easy production, the lower limit value of the Mn occupancy ratio at the A site is preferably 0.350 or more, more preferably 0.450 or more, and 0.500 or more. Further preferred.
(2)組成
 当該フェライト粒子は上記組成式で表わされ、0<x、y=3-xの条件を満たし、且つ、AサイトにおけるMn占有率が上記範囲内となる限り、xとyの値は特に限定されるものではない。しかしながら、y/xの値は1.90以上2.10以下であることが好ましく、1.92以上2.08以下であることがより好ましく、1.95以上2.05以下であることが特に好ましい。y/xの値が上記範囲内の組成を有するフェライト粒子は、AサイトにおけるMn占有率を上記範囲内に制御することが容易であり、キャリアの芯材に好適な磁気特性及び電気特性が得られやすいためである。
(2) Composition The ferrite particles are represented by the above composition formula, satisfying the conditions of 0 <x, y = 3-x, and as long as the Mn occupancy at the A site is within the above range, x and y The value is not particularly limited. However, the value of y / x is preferably 1.90 or more and 2.10 or less, more preferably 1.92 or more and 2.08 or less, and particularly preferably 1.95 or more and 2.05 or less. preferable. Ferrite particles having a composition with a y / x value within the above range can easily control the Mn occupancy at the A site within the above range, and can provide magnetic and electrical characteristics suitable for the carrier core material. It is because it is easy to be done.
 これに対して、y/xの値が下限値以下であると、Mn含有量が少なく、キャリアの芯材に好適な範囲よりも電気抵抗や誘電率が低くなる傾向にある。そのため、上記リーク現象等の芯材の電気抵抗等が低いことに起因する画像欠陥を十分に抑制することが困難になるため、好ましくない。一方、y/xの値が上限値以上になると、Mn含有量が多くなり、キャリアの芯材に好適な範囲よりも飽和磁化が低くなる傾向にある。その結果、キャリア飛散等の芯材の飽和磁化が低くなることに起因する画像欠陥を十分に抑制することが困難になるため、好ましくない。 On the other hand, if the value of y / x is less than or equal to the lower limit value, the Mn content is small, and the electric resistance and dielectric constant tend to be lower than those suitable for the carrier core material. For this reason, it is difficult to sufficiently suppress image defects caused by low electrical resistance of the core material such as the leak phenomenon, which is not preferable. On the other hand, when the value of y / x is equal to or greater than the upper limit value, the Mn content increases, and the saturation magnetization tends to be lower than the range suitable for the carrier core material. As a result, it is difficult to sufficiently suppress image defects caused by the saturation magnetization of the core material, such as carrier scattering, being not preferable.
 ここで「x」、「y」は、誘導結合プラズマ(ICP)発光分光分析により測定したMn及びFeの含有量(質量%)に基づき求めたMn及びFeのモル換算による組成比である。 Here, “x” and “y” are composition ratios in terms of Mn and Fe in terms of moles determined based on the contents (mass%) of Mn and Fe measured by inductively coupled plasma (ICP) emission spectroscopic analysis.
(3)真密度
 当該フェライト粒子の真密度は、4.5g/cm~5.5g/cmであることが好ましい。当該フェライト粒子をキャリアの芯材又はキャリアとして使用した際に、真密度が4.5g/cm未満の場合は、フェライト1粒子当りの磁化が下がるため、キャリア飛散が生じやすくなるため好ましくない。一方、当該フェライト粒子の組成から5.5g/cmを超える真密度とすることは困難である。但し、当該フェライト粒子をキャリア以外の用途に用いる場合、それぞれの用途に応じた真密度とすることが好ましい。当該観点から、当該フェライト粒子の真密度は、4.6g/cm~5.0g/cmであることがより好ましい。
(3) True density The true density of the ferrite particles is preferably 4.5 g / cm 3 to 5.5 g / cm 3 . When the ferrite particles are used as a carrier core material or carrier, if the true density is less than 4.5 g / cm 3 , the magnetization per ferrite particle is lowered, and carrier scattering tends to occur. On the other hand, it is difficult to obtain a true density exceeding 5.5 g / cm 3 from the composition of the ferrite particles. However, when the ferrite particles are used for uses other than the carrier, it is preferable to have a true density corresponding to each use. From this viewpoint, the true density of the ferrite particles is more preferably 4.6 g / cm 3 to 5.0 g / cm 3 .
 但し、ここでいう真密度は、ピクノメーター法によりJIS R 1620:1995に準拠して測定した値とする。 However, the true density here is a value measured according to JIS R 1620: 1995 by the pycnometer method.
(4)体積平均粒径
 フェライト粒子の体積平均粒径は、その用途に応じて適宜調整することができる。本件発明に係るフェライト粒子をキャリアの芯材又はキャリアとして使用する場合、体積平均粒径は15μm以上100μm以下であることが好ましい。フェライト粒子の体積平均粒径が15μm未満であるとキャリア飛散が生じやすくなるため、好ましくない。一方、フェライト粒子の体積平均粒径が100μmを超えると画像欠陥を生じやすくなるため、好ましくない。これらの観点から体積平均粒径は20μm以上65μm以下であることがより好ましく、25μm以上50μm以下であることがさらに好ましい。
(4) Volume average particle size The volume average particle size of the ferrite particles can be appropriately adjusted according to the application. When the ferrite particles according to the present invention are used as a carrier core or carrier, the volume average particle diameter is preferably 15 μm or more and 100 μm or less. If the volume average particle size of the ferrite particles is less than 15 μm, carrier scattering tends to occur, which is not preferable. On the other hand, if the volume average particle diameter of the ferrite particles exceeds 100 μm, image defects are likely to occur, which is not preferable. From these viewpoints, the volume average particle diameter is more preferably 20 μm or more and 65 μm or less, and further preferably 25 μm or more and 50 μm or less.
 但し、ここでいう体積平均粒径は、レーザ回折・散乱法によりJIS Z 8825:2013に準拠して測定した値とする。 However, the volume average particle diameter here is a value measured in accordance with JIS Z 8825: 2013 by a laser diffraction / scattering method.
2.物性
2-1.磁気特性
 当該フェライト粒子をキャリアの芯材又はキャリアとして使用する場合、1000エルステッド(Oe)印加時の飽和磁化が50emu/g以上であることが好ましく、60emu/g以上であることがより好ましく、65emu/g以上であることがさらに好ましい。また、3000エルステッド(Oe)印加時の飽和磁化が50emu/g以上であることが好ましく、60emu/g以上であることがより好ましく、80emu/g以上であることがさらに好ましい。さらに、5000エルステッド(Oe)印加時の飽和磁化が50emu/g以上であることが好ましく、65emu/g以上であることがより好ましく、75emu/g以上であることがさらに好ましい。飽和磁化がこれらの下限値よりも低い場合、磁力が低く、キャリア飛散が生じやすくなるため、好ましくない。また、飽和磁化が高くなりすぎると、磁気ブラシが硬くなるため、ハケスジやガサツキが生じ、現像画質が低下するため好ましくない。当該観点から、1000エルステッド(Oe)印加時の飽和磁化は80emu/g以下であることが好ましい。同様に、3000エルステッド(Oe)印加時の飽和磁化は90emu/g以下であることが好ましく、5000エルステッド(Oe)印加時の飽和磁化は90emu/g以下であることが好ましい。
2. Physical properties 2-1. Magnetic Properties When the ferrite particles are used as a carrier core material or carrier, the saturation magnetization when 1000 oersted (Oe) is applied is preferably 50 emu / g or more, more preferably 60 emu / g or more, and 65 emu. / G or more is more preferable. Further, the saturation magnetization when 3000 oersted (Oe) is applied is preferably 50 emu / g or more, more preferably 60 emu / g or more, and further preferably 80 emu / g or more. Further, the saturation magnetization at the time of applying 5000 oersted (Oe) is preferably 50 emu / g or more, more preferably 65 emu / g or more, and further preferably 75 emu / g or more. When the saturation magnetization is lower than these lower limit values, the magnetic force is low and carrier scattering tends to occur, which is not preferable. On the other hand, if the saturation magnetization becomes too high, the magnetic brush becomes stiff and undesirably caused by scratches and roughness, and the developed image quality deteriorates. From this point of view, the saturation magnetization when 1000 oersted (Oe) is applied is preferably 80 emu / g or less. Similarly, the saturation magnetization when 3000 oersted (Oe) is applied is preferably 90 emu / g or less, and the saturation magnetization when 5000 oersted (Oe) is applied is preferably 90 emu / g or less.
 ここでいう飽和磁化は、振動試料型磁気測定装置を用いて測定した値をいう。 Here, the saturation magnetization is a value measured using a vibrating sample magnetometer.
2-2.電気特性
(1)体積抵抗率
 当該フェライト粒子をキャリアの芯材又はキャリアとして使用する場合、印加電圧50Vにおける体積抵抗率が1×10~1×1010Ω・cmであることが好ましい。体積抵抗率が1×1010Ω・cmを超えると電気抵抗が高くなりすぎ、摩擦帯電に伴う電荷の移動が阻害される恐れがある。また、1×10Ω・cm未満の体積抵抗の場合は抵抗が低すぎ、高温高湿環境下でリーク現象が発生し易く、帯電低下を起こす可能性がある。当該フェライト粒子の体積抵抗は上記範囲内であれば、電子写真を高画質で現像することができる。
2-2. Electrical Characteristics (1) Volume resistivity When the ferrite particles are used as a carrier core material or carrier, the volume resistivity at an applied voltage of 50 V is preferably 1 × 10 2 to 1 × 10 10 Ω · cm. When the volume resistivity exceeds 1 × 10 10 Ω · cm, the electric resistance becomes too high, and there is a possibility that the movement of electric charge accompanying frictional charging is hindered. In the case of a volume resistance of less than 1 × 10 2 Ω · cm, the resistance is too low, and a leak phenomenon is likely to occur in a high-temperature and high-humidity environment, which may cause a decrease in charging. If the volume resistance of the ferrite particles is within the above range, an electrophotographic image can be developed with high image quality.
 さらに、高印字率で印刷を繰り返した場合も電子写真現像剤の帯電量の低下を抑制する上で、フェライト粒子の体積抵抗率は、1.8×10Ω・cm以下であることが好ましく、1×10Ω・cm以下であることがより好ましく、1×10Ω・cm以下であることがさらに好ましい。フェライト粒子の電気抵抗が高すぎず、適度に高いことで、当該フェライト粒子をキャリアの芯材又はキャリアとして使用したときに、フェライト粒子の内部からキャリア表面にかけての電荷の移動が速やかに行われ、現像剤の帯電立ち上がりも向上する。 Furthermore, the volume resistivity of the ferrite particles is preferably 1.8 × 10 9 Ω · cm or less in order to suppress a decrease in the charge amount of the electrophotographic developer even when printing is repeated at a high printing rate. It is more preferably 1 × 10 8 Ω · cm or less, and further preferably 1 × 10 7 Ω · cm or less. The electrical resistance of the ferrite particles is not too high and is reasonably high, so that when the ferrite particles are used as a carrier core material or carrier, charge transfer from the inside of the ferrite particles to the carrier surface is performed quickly, The charge rising of the developer is also improved.
 ここでいう体積抵抗率は、エレクトロメーターを用いて測定した印加電圧50Vのときの値をいう。 Here, the volume resistivity means a value at an applied voltage of 50 V measured using an electrometer.
(2)誘電率
 ここで、誘電率(ε)を複素誘電率(ε’-jε’’)で表す(但し、「j」は虚数単位である)。複素誘電率の実数部(ε’)はその物質の分極のしやすさ、すなわち外部電場による電荷分布の変化のしやすさを表す物理量であり、その虚数部(ε’’)は誘電体に交流電場を加えたとき、電気エネルギーの一部が熱となって失われる損失量を表す物理量である。実数部は比誘電率として表され、虚数部は誘電損失とも称される。
(2) Dielectric Constant Here, the dielectric constant (ε) is represented by a complex dielectric constant (ε′−jε ″) (where “j” is an imaginary unit). The real part (ε ') of the complex dielectric constant is a physical quantity indicating the ease of polarization of the substance, that is, the ease of change of the charge distribution due to the external electric field, and the imaginary part (ε'') It is a physical quantity that represents the amount of loss that part of the electrical energy is lost as heat when an alternating electric field is applied. The real part is expressed as relative permittivity, and the imaginary part is also called dielectric loss.
 ところで、2成分系現像方式による電子写真現像剤はトナーとキャリアとを含む。電子写真現像機の現像剤ボックスの中で、トナーとキャリアとは常に撹拌・混合されている。すなわち、トナーとキャリアとは常に流動状態にある。そのため、トナーとキャリアとの間の接触帯電による電荷の移動は、10-6~10-9秒程度の極めて短い時間で行われると考えられている。キャリアは、一般に、芯材と、芯材の表面を被覆する樹脂被覆層とから構成されている。接触帯電の際は、芯材の分極により発生した電荷が樹脂被覆層を介してトナーに移動する。なお、樹脂被覆層が薄い部分又は樹脂被覆層が存在しない部分では、芯材の表面に発生した電荷が直接トナーに移動することになる。そこで、芯材の帯電能力を評価するためには、上記のような極短時間における芯材の分極のしやすさ(比誘電率)を評価する必要がある。しかしながら、例えば、10-6~10-9秒といった極短時間だけ電圧を印加して芯材の比誘電率を評価することは、実際には困難である。そこで、本件発明では、比誘電率の時間応答性を評価するのではなく、10~10Hzの交流電圧を印加したときの比誘電率の周波数応答性に基づき、芯材としてのフェライト粒子の帯電立ち上がりの速さを評価することにした。 By the way, an electrophotographic developer by a two-component development system includes a toner and a carrier. In the developer box of the electrophotographic developing machine, the toner and the carrier are always stirred and mixed. That is, the toner and the carrier are always in a fluid state. For this reason, it is considered that the movement of charges due to contact charging between the toner and the carrier is performed in an extremely short time of about 10 −6 to 10 −9 seconds. The carrier is generally composed of a core material and a resin coating layer that covers the surface of the core material. At the time of contact charging, the charge generated by the polarization of the core material moves to the toner through the resin coating layer. Note that, in a portion where the resin coating layer is thin or a portion where the resin coating layer does not exist, the charge generated on the surface of the core material moves directly to the toner. Therefore, in order to evaluate the charging ability of the core material, it is necessary to evaluate the ease of polarization (relative dielectric constant) of the core material in the above extremely short time. However, for example, it is actually difficult to evaluate the relative dielectric constant of the core material by applying a voltage for an extremely short time such as 10 −6 to 10 −9 seconds. Therefore, in the present invention, the ferrite particles as the core material are not evaluated based on the frequency response of the relative permittivity when an AC voltage of 10 6 to 10 9 Hz is applied, rather than evaluating the time response of the relative permittivity. We decided to evaluate the speed of charge rise.
 つまり、高い周波数において、より高い誘電率を有するフェライト粒子を芯材として用いれば、帯電立ち上がりの早いキャリアを得ることができる。その結果、印字率の高い画像を繰り返し印刷するような場合などであっても、トナー補給の際も初期の段階から良好な画像特性を得ることができる。一方、フェライト粒子の誘電率が高くなりすぎると、芯材の帯電能力が高くなりすぎるため、印字率の高い画像の印刷を繰り返した場合、チャージアップ現象が発生しやすくなる。そのため、キャリアの長寿命化を図ることが困難になる。これに対して、フェライト粒子の比誘電率が低いと、芯材が分極しにくくなり、十分な帯電能力を有するキャリアを得ることができない。従って、当該フェライト粒子をキャリアの芯材として用いる場合には、1MHz以上の高周波帯域において適度な高さの比誘電率を有することが好ましい。 That is, if ferrite particles having a higher dielectric constant are used as a core material at a high frequency, carriers with a quick charge rise can be obtained. As a result, even when an image with a high printing rate is repeatedly printed, good image characteristics can be obtained from the initial stage even when toner is replenished. On the other hand, if the dielectric constant of the ferrite particles becomes too high, the charging ability of the core material becomes too high, and therefore, when an image with a high printing rate is repeatedly printed, a charge-up phenomenon tends to occur. For this reason, it is difficult to extend the life of the carrier. On the other hand, if the relative permittivity of the ferrite particles is low, the core material is difficult to polarize and a carrier having sufficient charging ability cannot be obtained. Therefore, when the ferrite particles are used as the core material of the carrier, it is preferable that the relative dielectric constant has an appropriate height in a high frequency band of 1 MHz or higher.
 誘電体の複素誘電率は、印加される交流電圧の周波数が大きくなるにつれて一般に小さくなる。当該観点から、当該フェライト粒子をキャリアの芯材又はキャリアとして使用する場合、1MHzにおける比誘電率(ε’)は30.0~125.0であることが好ましく、誘電損率(ε”)は、10.0~80.0であることが好ましい。また、1GHzにおける比誘電率(ε’)は10.0~28.0であることが好ましく、誘電損率(ε”)は、5.0~28.0であることが好ましい。 The complex dielectric constant of the dielectric generally decreases as the frequency of the applied AC voltage increases. From this point of view, when the ferrite particles are used as the core material or carrier of the carrier, the relative dielectric constant (ε ′) at 1 MHz is preferably 30.0 to 125.0, and the dielectric loss factor (ε ″) is The relative dielectric constant (ε ′) at 1 GHz is preferably 10.0 to 28.0, and the dielectric loss factor (ε ″) is preferably 5. It is preferably 0 to 28.0.
 複素誘電率が上記範囲内であれば、当該フェライト粒子をキャリアの芯材として使用した際にバイアス交流電圧が印加されたときにごく短時間にキャリアを分極させて、キャリア表面に電荷(または正孔)を生じさせやすくすることができ、キャリアの帯電の立ち上がりが良好であると共に、チャージアップ現象の発生を抑制することができる。 If the complex dielectric constant is within the above range, when the ferrite particles are used as the core material of the carrier, the carrier is polarized in a very short time when a bias AC voltage is applied, and the carrier surface is charged (or positive). Hole) can be easily generated, charge rising of the carrier is good, and occurrence of the charge-up phenomenon can be suppressed.
2-3.電磁波減衰率
 当該フェライト粒子は、キャリアの芯材以外に上述した種々の用途に用いることができる。本件発明に係るフェライト粒子は、AサイトにおけるMn占有率が本件発明の範囲外であるフェライト粒子と比較すると周波数が0.1GHz~1.0GHzの範囲における電磁波減衰率が大きく、特に、0.1GHz~0.5GHzの範囲における電磁波減衰率が大きい。そのため、本件発明に係るフェライト粒子は当該周波数帯域において、電磁波シールド材等として好適に用いることができる。なお、電磁波減衰率はIEC62333-3に準拠して測定した値とする。
2-3. Electromagnetic attenuation factor The ferrite particles can be used for the various applications described above in addition to the carrier core material. The ferrite particles according to the present invention have a large electromagnetic wave attenuation rate in the frequency range of 0.1 GHz to 1.0 GHz as compared with the ferrite particles whose Mn occupancy at the A site is outside the range of the present invention, in particular, 0.1 GHz. The electromagnetic wave attenuation rate in the range of ~ 0.5 GHz is large. Therefore, the ferrite particles according to the present invention can be suitably used as an electromagnetic shielding material or the like in the frequency band. The electromagnetic wave attenuation rate is a value measured in accordance with IEC62333-3.
3.フェライト粒子の製造方法
(1)概略
 次に、上記説明したフェライト粒子の製造方法を説明する。上記フェライト粒子は、脱バインダー処理を非酸化性雰囲気で行う点を除いて、キャリアの芯材などの用途に用いられるフェライト粒子の一般的な製造方法を採用することができる。
3. Method for Producing Ferrite Particles (1) Outline Next, a method for producing the ferrite particles described above will be described. The ferrite particles can employ a general method for producing ferrite particles used for applications such as a carrier core material, except that the binder removal treatment is performed in a non-oxidizing atmosphere.
 まず、フェライト粒子の一般的な製造方法を説明する。Fe原料、Mn原料をそれぞれ準備し、所定のモル比となるようにそれらを秤量する。Fe原料としては、Fe等の酸化鉄を用いる。また、Mn原料としては、MnCO、Mn等を用いることができる。 First, a general method for producing ferrite particles will be described. Fe raw material and Mn raw material are respectively prepared and weighed so as to obtain a predetermined molar ratio. As the Fe raw material, iron oxide such as Fe 2 O 3 is used. As the Mn raw material, it can be used MnCO 3, Mn 3 O 4 and the like.
 秤量された各原料を、湿式あるいは乾式で、ボールミル、サンドミル又は振動ミル等で1時間以上、好ましくは1~20時間粉砕混合する。このようにして得られたスラリーを乾燥し、さらに粉砕した後700~1200℃の温度で仮焼成する。仮焼成後さらに湿式ビーズミル、湿式ボールミル又は湿式振動ミル等で体積平均粒径が0.5~5.0μmになるまで、より好ましくは1.0~3.0μmになるまで粉砕した後、分散剤、バインダー等の各種添加剤を添加し、粘度調整後、造粒乾燥する。 Each of the weighed raw materials is pulverized and mixed for 1 hour or more, preferably 1 to 20 hours in a ball mill, sand mill, vibration mill or the like in a wet or dry manner. The slurry thus obtained is dried, further pulverized and then calcined at a temperature of 700 to 1200 ° C. After calcination, the dispersion is further pulverized with a wet bead mill, wet ball mill, wet vibration mill or the like until the volume average particle size becomes 0.5 to 5.0 μm, more preferably 1.0 to 3.0 μm. Then, various additives such as a binder are added, the viscosity is adjusted, and then granulated and dried.
 次いで、本焼成時よりも低い所定の温度で2~4時間脱バインダー処理を行う。脱バインダー処理を行うことによりフェライト粒子の強度低下を防止することができる。 Next, a binder removal treatment is performed for 2 to 4 hours at a predetermined temperature lower than that during the main firing. The strength reduction of the ferrite particles can be prevented by performing the binder removal treatment.
 次に、脱バインダー処理を行った造粒物を1150℃~1350℃、1~24時間保持し、本焼成を行う。このときの焼成雰囲気は、酸素濃度が0.1vol%未満、好ましくは0.05vol%以下の不活性ガス(例えば、Nガス)雰囲気下で行う。この本焼成時に、フェライト化反応が進行し、Mnフェライトが生成する。なお、本焼成時の温度は1150℃~1300℃であることがより好ましく、1180℃~1250℃であることがさらに好ましい。 Next, the granulated product that has been subjected to the binder removal treatment is held at 1150 ° C. to 1350 ° C. for 1 to 24 hours, and then subjected to main baking. The firing atmosphere at this time is performed in an inert gas (for example, N 2 gas) atmosphere having an oxygen concentration of less than 0.1 vol%, preferably 0.05 vol% or less. During the main firing, the ferritization reaction proceeds and Mn ferrite is generated. The temperature during the main firing is more preferably 1150 ° C. to 1300 ° C., and further preferably 1180 ° C. to 1250 ° C.
 こうして得られた焼成物を解砕、分級し、所望の粒径に調整する。その後、必要に応じて大気中若しくは酸素濃度の制御された雰囲気下で、解砕・分級後の焼成物の表面酸化処理を行うことにより、磁化と抵抗を適宜、調整することができる。 The fired product obtained in this way is crushed and classified, and adjusted to a desired particle size. Thereafter, the magnetization and resistance can be appropriately adjusted by subjecting the fired product after pulverization and classification to surface oxidation treatment in the air or in an atmosphere in which the oxygen concentration is controlled as necessary.
(2)脱バインダー処理
 フェライト粒子は概ね上記のような方法で製造される。従来、脱バインダー処理は一般に大気下で行われていた。本件発明者等は、脱バインダー処理を非酸化性雰囲気で行うことにより、同じ組成を有し、且つ、本焼成条件が同じであっても、AサイトにおけるMn占有率が従来のMnフェライトとは異なるフェライト粒子が得られることを見出した。ここで、非酸化性雰囲気とは、酸素濃度が0.1vol%未満、好ましくは0.05vol%以下の不活性ガス(例えば、Nガス)雰囲気をいう。
(2) Binder removal Ferrite particles are generally produced by the method described above. Conventionally, the binder removal treatment is generally performed in the atmosphere. The inventors of the present invention have the same composition by performing the binder removal treatment in a non-oxidizing atmosphere, and the Mn occupancy at the A site is the same as that of the conventional Mn ferrite even if the main firing conditions are the same. It has been found that different ferrite particles can be obtained. Here, the non-oxidizing atmosphere refers to an inert gas (for example, N 2 gas) atmosphere having an oxygen concentration of less than 0.1 vol%, preferably 0.05 vol% or less.
 また、脱バインダー処理は本焼成時の温度よりも低い温度で行うものとする。本焼成時の温度よりも低い温度とは、Mnフェライトの生成が始まる1150℃より低い温度であるものとし、600℃~1050℃程度であることが好ましく、650℃~950℃程度であることがより好ましく、700~900℃程度であることがさらに好ましい。非酸化性雰囲気下で本焼成よりも低い温度で脱バインダー処理を行うことにより、Mnフェライトの生成を抑制しつつ、一部がMnで置換されたマグネタイトを生成させることができる。なお、マグネタイトは逆スピネル型結晶構造を有し、Fe3+↓[Fe2+Fe3+↑]O で表される。一部がMnで置換されたマグネタイトとは、本来、Feが存在すべき格子点(主にBサイト)の一部がMnで置換されたマグネタイトをいう。 Further, the binder removal treatment is performed at a temperature lower than the temperature during the main firing. The temperature lower than the temperature at the time of the main firing is a temperature lower than 1150 ° C. at which Mn ferrite starts to be generated, preferably about 600 ° C. to 1050 ° C., and preferably about 650 ° C. to 950 ° C. More preferably, the temperature is about 700 to 900 ° C. By performing the binder removal treatment in a non-oxidizing atmosphere at a temperature lower than that of the main firing, it is possible to generate magnetite partially substituted with Mn while suppressing the generation of Mn ferrite. Magnetite has an inverse spinel crystal structure and is represented by Fe 3+ ↓ [Fe 2+ Fe 3+ ↑] O 4 . The magnetite partially substituted with Mn means a magnetite in which a part of lattice points (mainly B sites) where Fe should originally exist are substituted with Mn.
 その後、本焼成を行うことで、結晶構造が変化し、正スピネル型結晶構造を有するMnフェライトが生成する。その結果、従来のMnフェライトと比較すると逆スピネル相の比率の高いMnフェライトが得られる。脱バインダー処理時の温度、本焼成時の温度を適宜調整することにより、AサイトにおけるMn占有率を適宜調整することができ、本件発明に係るフェライト粒子を得ることができる。 Thereafter, by carrying out the main firing, the crystal structure changes, and Mn ferrite having a positive spinel crystal structure is generated. As a result, a Mn ferrite having a higher ratio of reverse spinel phase than that of a conventional Mn ferrite can be obtained. By appropriately adjusting the temperature during the binder removal treatment and the temperature during the main firing, the Mn occupancy at the A site can be appropriately adjusted, and the ferrite particles according to the present invention can be obtained.
〈電子写真現像剤用キャリア芯材及び電子写真現像剤用フェライトキャリアの実施の形態〉
 上記説明した本件発明に係るフェライト粒子はそれ自体で電子写真現像剤用キャリアとして使用することができるが、好ましくはこのフェライト粒子をキャリアの芯材とし、その表面に樹脂被覆層を設け、電子写真現像剤用キャリアとすることが好ましい。
<Embodiment of carrier core material for electrophotographic developer and ferrite carrier for electrophotographic developer>
The ferrite particles according to the present invention described above can be used as a carrier for an electrophotographic developer by itself. Preferably, the ferrite particles are used as a core material of a carrier, and a resin coating layer is provided on the surface of the ferrite particles. A developer carrier is preferred.
 樹脂被覆層を構成する樹脂は、特に制限されるものではなく、各種の樹脂を用いることができる。正帯電性トナーに対しては、例えばフッ素系樹脂、フッ素-アクリル系樹脂、シリコーン系樹脂、変性シリコーン系樹脂等を用いることができる。また、負帯電性トナーに対しては、例えばアクリル系樹脂、アクリル-スチレン系樹脂、アクリル-スチレン系樹脂とメラミン系樹脂の混合樹脂及びその硬化樹脂、シリコーン系樹脂、変性シリコーン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリエチレン系樹脂等を用いることができる。 The resin constituting the resin coating layer is not particularly limited, and various resins can be used. For the positively chargeable toner, for example, a fluorine resin, a fluorine-acrylic resin, a silicone resin, a modified silicone resin, or the like can be used. For negatively chargeable toners, for example, acrylic resins, acrylic-styrene resins, mixed resins of acrylic-styrene resins and melamine resins, cured resins thereof, silicone resins, modified silicone resins, polyester resins Resins, epoxy resins, urethane resins, polyethylene resins, and the like can be used.
 また必要に応じて、帯電制御剤、密着性向上剤、プライマー処理剤あるいは抵抗制御剤等を添加してもよい。帯電制御剤や抵抗制御剤の例としては、各種シランカップリング剤、各種チタンカップリング剤、導電性カーボン、ホウ化チタン等のホウ化物、酸化チタンや酸化鉄、酸化アルミニウム、酸化クロム、酸化珪素等の酸化物等が挙げられるが、特に限定されるものではない。 If necessary, a charge control agent, an adhesion improver, a primer treatment agent or a resistance control agent may be added. Examples of charge control agents and resistance control agents include various silane coupling agents, various titanium coupling agents, borides such as conductive carbon and titanium boride, titanium oxide, iron oxide, aluminum oxide, chromium oxide, and silicon oxide. Examples of the oxide include, but are not particularly limited to.
 このような樹脂の被覆量としては、芯材に対して0.05質量%~10.0質量%が好ましく、特に0.5質量%~7.0質量%が好ましい。0.05質量%未満ではキャリア表面に均一な被覆層を形成することが難しく、また10.0質量%を超えるとキャリア同士の凝集が発生してしまう。 The coating amount of such a resin is preferably 0.05% by mass to 10.0% by mass, and particularly preferably 0.5% by mass to 7.0% by mass with respect to the core material. If it is less than 0.05% by mass, it is difficult to form a uniform coating layer on the surface of the carrier, and if it exceeds 10.0% by mass, aggregation between carriers occurs.
 また、樹脂の被覆方法としては、樹脂を溶剤に希釈し、上記芯材の表面に被覆するのが一般的である。ここに用いられる溶剤としては、有機溶剤に可溶性のある樹脂である場合は、トルエン、キシレン、酢酸ブチルセロソルブ(エチレングリコールモノブチルエーテルアセタート)、メチルエチルケトン、メチルイソブチルケトン、メタノール等が挙げられ、水溶性樹脂あるいはエマルジョン系樹脂であれば水を用いればよい。また上記芯材に、上述のような被覆樹脂を被覆する方法としては、公知の方法、例えば刷毛塗り法、乾式法、流動床によるスプレードライ方式、ロータリドライ方式、万能撹拌機による液浸乾燥法等により、被覆することができる。被覆率を向上させるためには、流動床による方法が好ましい。 Further, as a resin coating method, the resin is generally diluted with a solvent and coated on the surface of the core material. Examples of the solvent used here include toluene, xylene, butyl cellosolve (ethylene glycol monobutyl ether acetate), methyl ethyl ketone, methyl isobutyl ketone, methanol, and the like when the resin is soluble in an organic solvent. Alternatively, water may be used if it is an emulsion resin. Further, as a method for coating the core material with the coating resin as described above, known methods such as brush coating method, dry method, spray drying method using fluidized bed, rotary drying method, immersion drying method using universal agitator It can coat | cover by etc. In order to improve the coverage, a fluidized bed method is preferred.
 樹脂を芯材に被覆後、焼き付けする場合は、外部加熱方式又は内部加熱方式のいずれでもよく、例えば固定式又は流動式電気炉、ロータリ式電気炉、バーナー炉でもよく、もしくはマイクロウェーブによる焼き付けでもよい。焼き付けの温度は使用する樹脂により異なるが、融点又はガラス転移点以上の温度は必要であり、熱硬化性樹脂又は縮合架橋型樹脂等では、充分硬化が進む温度まで上げる必要がある。 When the resin is coated on the core material and then baked, either an external heating method or an internal heating method may be used, for example, a fixed or fluid electric furnace, a rotary electric furnace, a burner furnace, or a microwave baking. Good. Although the baking temperature varies depending on the resin to be used, a temperature equal to or higher than the melting point or the glass transition point is necessary. For a thermosetting resin or a condensation-crosslinking resin, it is necessary to raise the temperature to a point where the curing proceeds sufficiently.
 このようにして、芯材の表面に樹脂が被覆、焼き付けられた後、冷却され、解砕、粒度調整を経て樹脂被覆キャリアが得られる。 Thus, after the resin is coated and baked on the surface of the core, it is cooled, crushed, and the particle size is adjusted to obtain a resin-coated carrier.
 上述のようにして得られた本件発明のキャリアは、トナーと混合して二成分系現像剤として用いられる。 The carrier of the present invention obtained as described above is mixed with toner and used as a two-component developer.
〈電子写真現像剤の実施の形態〉
 本件発明に係る電子写真現像剤は、上記本件発明に係るキャリアを用いることを特徴とする。本件発明に係る電子写真現像剤は上記キャリアとトナーとを含む二成分系電子写真現像剤であることが好ましい。
<Embodiment of electrophotographic developer>
The electrophotographic developer according to the present invention uses the carrier according to the present invention. The electrophotographic developer according to the present invention is preferably a two-component electrophotographic developer containing the carrier and toner.
 本件発明の電子写真現像剤において、上記キャリアと共に用いられるトナーは特に限定されるものではない。例えば、懸濁重合法、乳化重合法、粉砕法等の公知の方法で製造された種々のトナーを用いることができる。例えば、バインダー樹脂、着色剤、帯電制御剤等を、例えばヘンシェルミキサー等の混合機で充分混合し、次いで二軸押出機等で溶融混練して均一分散し、冷却後に、ジェットミル等により微粉砕化し、分級後、例えば風力分級機等により分級して所望の粒径にしたトナーを用いることができる。当該トナーを製造する際には、必要に応じて、ワックス、磁性粉、粘度調節剤、その他の添加剤を含有させてもよい。さらに分級後に外添剤を添加することもできる。 In the electrophotographic developer of the present invention, the toner used together with the carrier is not particularly limited. For example, various toners produced by a known method such as a suspension polymerization method, an emulsion polymerization method, or a pulverization method can be used. For example, a binder resin, a colorant, a charge control agent, etc. are sufficiently mixed with a mixer such as a Henschel mixer, then melt-kneaded with a twin screw extruder or the like and uniformly dispersed, and after cooling, finely pulverized with a jet mill or the like Then, after classification, for example, a toner classified by an air classifier or the like to have a desired particle size can be used. When the toner is produced, a wax, magnetic powder, a viscosity modifier, and other additives may be included as necessary. Further, an external additive can be added after classification.
 上記トナーを製造する際に用いるバインダー樹脂は、特に限定されるものではないが、ポリスチレン、クロロポリスチレン、スチレン-クロロスチレン共重合体、スチレン-アクリル酸エステル共重合体、スチレン-メタクリル酸共重合体、さらにはロジン変性マレイン酸樹脂、エポキシ樹脂、ポリエステル、ポリエチレン、ポリプロピレン、ポリウレタン、シリコーン樹脂等の樹脂を必要に応じて、単独又は混合して使用することができる。 The binder resin used for producing the toner is not particularly limited, but polystyrene, chloropolystyrene, styrene-chlorostyrene copolymer, styrene-acrylic acid ester copolymer, styrene-methacrylic acid copolymer. Furthermore, resins such as rosin-modified maleic resin, epoxy resin, polyester, polyethylene, polypropylene, polyurethane, and silicone resin can be used alone or as a mixture as required.
 上記トナーを製造する際に用いる帯電制御剤としては、ニグロシン系染料、4級アンモニウム塩、有機金属錯体、キレート錯体、含金属モノアゾ染料等が挙げられる。 Examples of the charge control agent used in the production of the toner include nigrosine dyes, quaternary ammonium salts, organometallic complexes, chelate complexes, and metal-containing monoazo dyes.
 上記トナーを製造する際に用いる着色剤としては、従来より知られている染料及び/又は顔料が使用可能である。例えばカーボンブラック、フタロシアニンブルー、パーマネントレッド、クロムイエロー、フタロシアニングリーン等を使用することができる。 A conventionally known dye and / or pigment can be used as the colorant used in producing the toner. For example, carbon black, phthalocyanine blue, permanent red, chrome yellow, phthalocyanine green, etc. can be used.
 その他外添剤としては、シリカ、酸化チタン、チタン酸バリウム、フッ素樹脂微粒子、アクリル樹脂微粒子等を単独又は併用して用いることができる。また、界面活性剤、重合剤等を適宜添加してもよい。 As other external additives, silica, titanium oxide, barium titanate, fluororesin fine particles, acrylic resin fine particles and the like can be used alone or in combination. Moreover, you may add surfactant, a polymeric agent, etc. suitably.
 なお、本件発明に係る電子写真現像剤は、本件発明に係るキャリアを用いることを特徴とし、その他の事項は任意である。すなわち、上述した電子写真現像剤は、本件発明の一態様に過ぎず、トナーの構成等、本件発明の趣旨を逸脱しない範囲において適宜変更することができる。 The electrophotographic developer according to the present invention is characterized by using the carrier according to the present invention, and other matters are optional. That is, the above-described electrophotographic developer is only one aspect of the present invention, and can be appropriately changed within a range that does not depart from the spirit of the present invention, such as a toner configuration.
 次に、実施例および比較例を示して本件発明を具体的に説明する。但し、本件発明は以下の実施例に限定されるものではない。 Next, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to the following examples.
 実施例1のフェライト粒子は次のようにして製造した。まず、Fe原料、Mn原料として、それぞれFe粉と、Mn粉とを準備した。そして、Feと、Mnとがモル比で1:0.334となるように各原料を秤量した。原料を秤量した後、これらに水を加え、湿式ボールミルで粉砕、混合することにより、スラリーを調製した。次に、スラリーを乾燥し、さらに粉砕した後、1000℃の温度で大気(酸素濃度20.8vol%)中で仮焼成した。仮焼成後、ビーズミルで体積平均粒径が1.5μmになるまで粉砕した後、分散剤、バインダー等の各種添加剤を添加し、粘度調整後、造粒乾燥して、乾燥造粒粉を得た。次いで、乾燥造粒粉を電気炉で850℃の温度で酸素濃度が0.1vol%以下のNガス雰囲気下で2時間脱バインダー処理を行った後、電気炉で1200℃の温度で酸素濃度が0.1vol%以下のNガス雰囲気下で4時間本焼成を行った。その後、焼成物をハンマーミルで解砕し、さらに分級してフェライト粒子を製造した。上記製造条件を表1に示す。 The ferrite particles of Example 1 were produced as follows. First, Fe 2 O 3 powder and Mn 3 O 4 powder were prepared as Fe raw material and Mn raw material, respectively. Then, a Fe 2 O 3, and a Mn 3 O 4 1 molar ratio: were weighed each raw material so that 0.334. After the raw materials were weighed, water was added thereto, and the slurry was prepared by pulverizing and mixing with a wet ball mill. Next, the slurry was dried, further pulverized, and calcined in the air (oxygen concentration 20.8 vol%) at a temperature of 1000 ° C. After pre-baking, after pulverizing with a bead mill until the volume average particle size becomes 1.5 μm, various additives such as a dispersant and a binder are added, and after adjusting the viscosity, granulated and dried to obtain dry granulated powder. It was. Next, the dried granulated powder was debindered for 2 hours in an electric furnace at a temperature of 850 ° C. in an N 2 gas atmosphere with an oxygen concentration of 0.1 vol% or less, and then the oxygen concentration at a temperature of 1200 ° C. in an electric furnace. Was fired for 4 hours in an N 2 gas atmosphere of 0.1 vol% or less. Thereafter, the fired product was crushed with a hammer mill and further classified to produce ferrite particles. Table 1 shows the production conditions.
 実施例2では、本焼成時の焼成温度を1250℃とした以外は、実施例1と同様にしてフェライト粒子を製造した(表1参照)。 In Example 2, ferrite particles were produced in the same manner as in Example 1 except that the firing temperature during main firing was 1250 ° C. (see Table 1).
 実施例3では、本焼成時の焼成温度を1300℃とした以外は、実施例1と同様にしてフェライト粒子を製造した(表1参照)。 In Example 3, ferrite particles were produced in the same manner as in Example 1 except that the firing temperature during main firing was 1300 ° C. (see Table 1).
 実施例4では、電気炉ではなくロータリーキルンを用いて脱バインダー処理を行った以外は、実施例1と同様にしてフェライト粒子を製造した(表1参照)。 In Example 4, ferrite particles were produced in the same manner as in Example 1 except that the binder removal treatment was performed using a rotary kiln instead of an electric furnace (see Table 1).
比較例Comparative example
[比較例1]
 比較例1では、脱バインダー処理及び本焼成を大気下で行った以外は、実施例1と同様にしてフェライト粒子を製造した(表1参照)。
[Comparative Example 1]
In Comparative Example 1, ferrite particles were produced in the same manner as in Example 1 except that the binder removal treatment and main firing were performed in the atmosphere (see Table 1).
[比較例2]
 比較例2では、本焼成を大気下で行った以外は、実施例1と同様にしてフェライト粒子を製造した(表1参照)。
[Comparative Example 2]
In Comparative Example 2, ferrite particles were produced in the same manner as in Example 1 except that the main calcination was performed in the air (see Table 1).
[比較例3]
 比較例3では、本焼成時の焼成温度を1000℃とした以外は、実施例1と同様にしてフェライト粒子を製造した(表1参照)。
[Comparative Example 3]
In Comparative Example 3, ferrite particles were produced in the same manner as in Example 1 except that the firing temperature during the main firing was 1000 ° C. (see Table 1).
[比較例4]
 比較例4では、脱バインダー処理を大気下で行った以外は、実施例1と同様にしてフェライト粒子を製造した(表1参照)。
[Comparative Example 4]
In Comparative Example 4, ferrite particles were produced in the same manner as in Example 1 except that the binder removal treatment was performed in the atmosphere (see Table 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〈評価〉
1.評価方法
 上記のようにして製造した実施例1~実施例4及び比較例1~比較例4のフェライト粒子について、化学分析を行うと共に、粉末X線回折法及び粉末中性子回折法に基づき結晶構造を解析した。さらに、各フェライト粒子について、粉体特性、磁気特性及び電気特性を評価した。以下、各評価項目及び測定方法について説明する。
<Evaluation>
1. Evaluation Method The ferrite particles of Examples 1 to 4 and Comparative Examples 1 to 4 manufactured as described above were subjected to chemical analysis and crystal structures were determined based on the powder X-ray diffraction method and the powder neutron diffraction method. Analyzed. Further, the powder characteristics, magnetic characteristics, and electrical characteristics were evaluated for each ferrite particle. Hereinafter, each evaluation item and measurement method will be described.
1-1.化学分析
(1)組成
 各フェライト粒子の組成をICP発光分光・質量分析により次のように求めた。まず、フェライト粒子0.2gを秤量し、純水60mlに1Nの塩酸20ml及び1Nの硝酸20mlを加えたものを加熱し、フェライト粒子を完全溶解させた水溶液を調製した。この水溶液をICP分析装置(ICPS-1000IV、株式会社島津製作所)にセットし、フェライト粒子における各金属成分の含有量(質量%)を求めた。また、各金属成分の含有量をモル比に換算し、上記組成式における「x」、「y」の値を求めると共に、「y/x」の値を算出した。結果を表2に示す。
1-1. Chemical Analysis (1) Composition The composition of each ferrite particle was determined by ICP emission spectroscopy / mass spectrometry as follows. First, 0.2 g of ferrite particles were weighed, and 60 ml of pure water plus 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid was heated to prepare an aqueous solution in which the ferrite particles were completely dissolved. This aqueous solution was set in an ICP analyzer (ICPS-1000IV, Shimadzu Corporation), and the content (mass%) of each metal component in the ferrite particles was determined. Further, the content of each metal component was converted into a molar ratio, and the values of “x” and “y” in the above composition formula were obtained, and the value of “y / x” was calculated. The results are shown in Table 2.
(2)Fe2+
 各フェライト粒子中のFe2+量を過マンガン酸カリウム溶液による酸化還元滴定によって求めた。酸化還元滴定は、JIS M 8213-1995に準拠して行い、二クロム酸カリウム溶液に代えて、過マンガン酸カリウム溶液を用いた。結果を表2に示す。各フェライト粒子中のFe2+は、フェライト粒子中のマグネタイトに起因する。よって、各フェライト粒子中のFe2+量を評価することにより、Mnフェライトの生成の有無を確認することができる。
(2) the amount of Fe 2+ Fe 2+ content in the ferrite particles was determined by oxidation-reduction titration with potassium permanganate solution. The oxidation-reduction titration was performed according to JIS M 8213-1995, and a potassium permanganate solution was used instead of the potassium dichromate solution. The results are shown in Table 2. Fe 2+ in each ferrite particle is caused by magnetite in the ferrite particle. Therefore, by evaluating the amount of Fe 2+ in each ferrite particle, it can be confirmed whether or not Mn ferrite is generated.
1-2.結晶構造解析
1-2-1.粉末X線回折
 粉末X線回折法により、各フェライト粒子の結晶相組成比(質量%)を解析すると共に、スピネル相のメインピークである(311)面のピーク位置(°2θ)、ピーク面面積及び半値幅(°2θ)、格子定数(a軸、b軸、c軸)を測定した。
1-2. Crystal structure analysis 1-2-1. Powder X-Ray Diffraction Analyzes the crystal phase composition ratio (% by mass) of each ferrite particle by the powder X-ray diffraction method, the peak position (° 2θ) of the (311) plane which is the main peak of the spinel phase, and the peak plane area The half width (° 2θ) and the lattice constant (a axis, b axis, c axis) were measured.
 X線回折装置として、パナリティカル社製「X’PertPRO MPD」を用いた。X線源としてCo管球(CoKα線)を用いた。光学系として集中光学系及び高速検出器「X‘Celarator」を用いた。測定は0.2°/secの連続スキャンで行った。測定結果を解析用ソフト「X’Pert HighScore」を用いてデータ処理し、結晶構造を同定し、得られた結晶構造を精密化することで質量換算の存在比率を各結晶相の相組成比として算出した。粉末X線回折では、上述のとおり、Mnフェライトとマグネタイト(Fe)のピークの分離が難しいため、スピネル相として取り扱い、それ以外の結晶構造(Fe、Mn)はそれぞれの存在比率を算出した。従って、表3に示す「スピネル相」の相組成比は、スピネル型結晶構造を有する、Mnフェライト(MnFe)相、マグネタイト(Fe)においてFeの一部がMnで置換された相及びマグヘマイト(γ-Fe)においてFeの一部がMnで置換された相の総相組成比を意味する。その他、スピネル相のメインピークである(311)面のピーク位置(°2θ)、ピーク面面積及び半値幅(°2θ)とを表3に示す。また、表4には各フェライト粒子の格子定数(a軸、b軸、c軸)を各結晶相毎に示す。 As an X-ray diffractometer, “X'PertPRO MPD” manufactured by Panalical Co., Ltd. was used. A Co tube (CoKα ray) was used as the X-ray source. As the optical system, a concentrated optical system and a high-speed detector “X'Celarator” were used. The measurement was performed by continuous scanning at 0.2 ° / sec. The measurement results are processed using data for analysis “X'Pert HighScore”, the crystal structure is identified, and the obtained crystal structure is refined so that the abundance ratio in terms of mass is used as the phase composition ratio of each crystal phase. Calculated. In the powder X-ray diffraction, as described above, since it is difficult to separate the peaks of Mn ferrite and magnetite (Fe 3 O 4 ), it is handled as a spinel phase, and other crystal structures (Fe 2 O 3 , Mn 2 O 3 ) are Each abundance ratio was calculated. Therefore, the phase composition ratio of the “spinel phase” shown in Table 3 is that Mn ferrite (MnFe 2 O 3 ) phase having a spinel type crystal structure, magnetite (Fe 3 O 4 ), part of Fe is substituted with Mn. It means the total phase composition ratio of the phase in which a part of Fe is substituted with Mn in maghemite (γ-Fe 2 O 4 ). In addition, Table 3 shows the peak position (° 2θ), peak surface area, and half-value width (° 2θ) of the (311) plane, which is the main peak of the spinel phase. Table 4 shows the lattice constants (a-axis, b-axis, c-axis) of each ferrite particle for each crystal phase.
 なお、結晶構造の同定を行う際に「O」を必須元素とし「Fe」、「Mn」は含有する可能性のある元素とした。また、X線源についてはCu管球でも問題なく測定できるが、Feを多く含んだサンプルの場合には測定対象となるピークと比較してバックグラウンドが大きくなるので、Co管球を用いる方が好ましい。また、光学系は平行法でも同様の結果が得られる可能性があるが、X線強度が低く測定に時間がかかるため集中光学系での測定が好ましい。さらに、連続スキャンの速度は特に制限はないが結晶構造の解析を行う際に十分なS/N比を得るためにスピネル構造のメインピークである(311)面のピーク強度が50000cps以上となるようにし、粒子の特定の優先方向への配向がないようにサンプルセルにフェライト粒子をセットし測定を行った。 In identifying the crystal structure, “O” is an essential element, and “Fe” and “Mn” are elements that may be contained. In addition, the X-ray source can be measured without problems even with a Cu tube, but in the case of a sample containing a large amount of Fe, the background becomes larger than the peak to be measured, so it is better to use a Co tube. preferable. In addition, the optical system may obtain the same result even when the parallel method is used, but measurement with a concentrated optical system is preferable because the X-ray intensity is low and measurement takes time. Further, the speed of the continuous scan is not particularly limited, but the peak intensity of the (311) plane which is the main peak of the spinel structure is 50,000 cps or more in order to obtain a sufficient S / N ratio when analyzing the crystal structure. Then, the ferrite particles were set in the sample cell so that the particles were not oriented in a specific preferred direction.
1-2-2.粉末中性子回折
 各フェライト粒子のスピネル相のAサイトにおけるMn占有率を粉末中性子回折により得た回折パターンをZ-Rietbeld法により解析することで求めた。中性子回折装置として、大強度陽子加速施設J-PARC(茨城県)の物質・生命科学研究施設MLFに設置されている産業利用ビームラインiMATERIA BL-20を用いた。
 そして、直径6mm×高さ50mmの円筒型のバナジウム製標準試料セルに各試料を充填した。陽子加速器を125kWで運転し、室温・大気(300K)下において、TOF(Time Of Flight)法により中性子のカウント数が70Mcount以上となるように、ダブルフレーム測定を行い、中性子回折パターンを得た。その際、検出器として、背面検出器バンク、90度検出器バンク及び低角検出バンクの3つの検出器を用いた。
1-2-2. Powder Neutron Diffraction The Mn occupancy at the A site of the spinel phase of each ferrite particle was determined by analyzing the diffraction pattern obtained by powder neutron diffraction by the Z-Rietbeld method. As a neutron diffractometer, an industrial use beam line iMATERIA BL-20 installed at the MLF, Materials and Life Science Research Facility, J-PARC (Ibaraki), a high-intensity proton acceleration facility was used.
Each sample was filled in a cylindrical standard sample cell made of vanadium having a diameter of 6 mm and a height of 50 mm. The proton accelerator was operated at 125 kW, and double-frame measurement was performed by a TOF (Time Of Flight) method so that the neutron count was 70 Mcount or more at room temperature and in the atmosphere (300 K) to obtain a neutron diffraction pattern. At that time, three detectors, a back detector bank, a 90 degree detector bank, and a low angle detector bank, were used as detectors.
 得られた回折パターンを解析ソフト「Z-Rietveld」(Windows(登録商標)版、ver1.0.2)を用いて解析した。解析対象として、q>6Å-1、d<1Åの領域の回折ピークを指定した。その際、スピネル型結晶構造を表す空間群Fd-3m,227_1を指定し、「Fe」、「Mn」はそれぞれAサイト又はBサイトを占有し、温度因子は等方性であるものとし、「O」の原子座標、格子定数及び各原子(Fe,Mn,O)の各サイトにおける占有率をフィッティングした。その際の制約条件として、Aサイト及びBサイトにおける「Fe」と「Mn」の占有率の和が「1」になるように設定した。このようにして解析したAサイトにおけるMn占有率及びFe占有率を表3に示す。 The obtained diffraction pattern was analyzed using analysis software “Z-Rietveld” (Windows (registered trademark) version, ver 1.0.2). As an analysis target, a diffraction peak in a region of q> 6 < −1 and d <1Å was designated. At this time, the space group Fd-3m, 227_1 representing the spinel crystal structure is designated, “Fe” and “Mn” occupy the A site or the B site, respectively, and the temperature factor is isotropic. The atomic coordinates of “O”, the lattice constant, and the occupancy at each site of each atom (Fe, Mn, O) were fitted. As a constraint condition at that time, the sum of the occupation ratios of “Fe” and “Mn” at the A site and the B site was set to “1”. Table 3 shows the Mn occupancy and Fe occupancy at the A site analyzed in this manner.
1-3.粉体特性
(1)真密度
 真密度は、ピクノメーター法によりJIS R 1620-1995に準拠して、分散媒としてメタノールを用いて、温度25℃で測定を行った。
1-3. Powder Characteristics (1) True Density True density was measured at 25 ° C. using methanol as a dispersion medium according to JIS R 1620-1995 by a pycnometer method.
(2)BET比表面積
 各フェライト粒子のBET比表面積を比表面積測定装置(Macsorb HM model-1208、株式会社マウンテック製)を用いて測定した。まず、各フェライト粒子約10gを薬包紙に載せ、真空乾燥機で真空度が-0.1MPa以下になるまで脱気した。その後、200℃で2時間加熱し、フェライト粒子の表面に付着している水分を除去した。続いて、水分が除去されたフェライト粒子を当該装置専用の標準サンプルセルに約0.5~4g入れ、精密天秤で精確に秤量した。続いて、秤量したフェライト粒子を当該装置の測定ポートにセットして測定した。測定は1点法で行った。測定雰囲気は、温度10~30℃、相対湿度20~80%(結露なし)とした。
(2) BET specific surface area The BET specific surface area of each ferrite particle was measured using a specific surface area measuring device (Macsorb HM model-1208, manufactured by Mountec Co., Ltd.). First, about 10 g of each ferrite particle was placed on a medicine wrapping paper, and deaerated with a vacuum dryer until the degree of vacuum became −0.1 MPa or less. Then, it heated at 200 degreeC for 2 hours, and removed the water | moisture content adhering to the surface of a ferrite particle. Subsequently, about 0.5 to 4 g of ferrite particles from which moisture was removed were placed in a standard sample cell dedicated to the apparatus, and accurately weighed with a precision balance. Subsequently, the weighed ferrite particles were set in the measurement port of the apparatus and measured. The measurement was performed by a one-point method. The measurement atmosphere was a temperature of 10 to 30 ° C. and a relative humidity of 20 to 80% (no condensation).
(3)体積平均粒径
 各フェライト粒子の体積平均粒径を日機装株式会社製マイクロトラック粒度分析計(Model9320-X100)を用いて測定した。試料の調製は次のように行った。分散媒として水を用いた。試料10gと水80mlを100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2滴~3滴添加した。次いで超音波ホモジナイザー(SMT.Co.LTD.製UH-150型)を用い、出力レベル4に設定し、20秒間分散を行った。その後、ビーカー表面にできた泡を取り除いた。このようにして調製した試料を上記マイクロトラック粒度分析計により測定した。
 各フェライト粒子の真密度、BET比表面積、体積平均粒径についての測定結果を表2に示す。
(3) Volume average particle size The volume average particle size of each ferrite particle was measured using a Microtrac particle size analyzer (Model 9320-X100) manufactured by Nikkiso Co., Ltd. The sample was prepared as follows. Water was used as a dispersion medium. 10 g of sample and 80 ml of water were placed in a 100 ml beaker, and 2 to 3 drops of a dispersant (sodium hexametaphosphate) were added. Next, using an ultrasonic homogenizer (UH-150 type, manufactured by SMT Co. LTD.), The output level was set to 4 and dispersion was performed for 20 seconds. Thereafter, bubbles formed on the beaker surface were removed. The sample thus prepared was measured with the above-mentioned Microtrac particle size analyzer.
Table 2 shows the measurement results for the true density, BET specific surface area, and volume average particle diameter of each ferrite particle.
1-4.磁気特性
 各フェライト粒子の1000エルステッド(以下、1kOe)印加時、3000エルステッド(以下、3kOe)印加時、5000エルステッド(以下、5kOe)印加時における飽和磁化、残留磁化、保磁力を次のようにして測定した。
1-4. Magnetic Properties Saturation magnetization, residual magnetization, and coercive force of each ferrite particle when 1000 oersted (hereinafter 1 kOe) is applied, 3000 oersted (hereinafter 3 kOe) is applied, and 5000 oersted (hereinafter 5 kOe) are applied as follows. It was measured.
(i)VSM測定(1kOe,5kOe)
 振動試料型磁気測定装置(VSM-C7-10A、東英工業株式会社製)を用いて、1kOe印加時及び5kOe印加時の飽和磁化、残留磁化及び保磁力の測定を行った。
 具体的な手順は次のとおりである。まず、得られたフェライト粒子を内径5mm、高さ2mmのセルに充填し、上記装置にセットした。上記装置において、印加磁場が1kOeにおける飽和磁化、残留磁化及び保磁力を求めた。具体的には、次の手順に従った。まず、磁場を印加し、1K・1000/4π・A/m(=1kOe)まで掃引した。次いで、印加磁場を減少させ、記録紙上にヒステリシスカーブを作成した。このヒステリシスカーブにおいて、印加磁場が1K・1000/4π・A/mであるときの磁化を飽和磁化とすると共に、印加磁場が0K・1000/4π・A/mであるときの磁化を残留磁化とした。また、このヒステリシスカーブにおいて、印加磁場を減少させたときに残留磁化がゼロになったときの外部磁場の強さを保磁力とした。また、磁場を印加する際に、5K・1000/4π・A/m(=5kOe)まで掃引した以外は、上記と同様にして、印加磁場5kOeにおける飽和磁化、残留磁化及び保磁力を求めた。
(I) VSM measurement (1 kOe, 5 kOe)
Using a vibrating sample magnetometer (VSM-C7-10A, manufactured by Toei Kogyo Co., Ltd.), saturation magnetization, residual magnetization, and coercive force were measured when 1 kOe and 5 kOe were applied.
The specific procedure is as follows. First, the obtained ferrite particles were filled in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in the apparatus. In the above apparatus, saturation magnetization, residual magnetization, and coercivity when the applied magnetic field was 1 kOe were obtained. Specifically, the following procedure was followed. First, a magnetic field was applied and sweeped to 1K · 1000 / 4π · A / m (= 1 kOe). Next, the applied magnetic field was decreased to create a hysteresis curve on the recording paper. In this hysteresis curve, the magnetization when the applied magnetic field is 1K · 1000 / 4π · A / m is the saturation magnetization, and the magnetization when the applied magnetic field is 0K · 1000 / 4π · A / m is the residual magnetization. did. In this hysteresis curve, the coercive force is the strength of the external magnetic field when the residual magnetization becomes zero when the applied magnetic field is decreased. Further, the saturation magnetization, the residual magnetization, and the coercive force in the applied magnetic field of 5 kOe were obtained in the same manner as described above except that the magnetic field was swept up to 5 K · 1000 / 4π · A / m (= 5 kOe).
(ii)BHH測定(3kOe)
 直流磁化性自動測定・解析装置(BHH-15、株式会社理研電子製)を用いて、3kOe印加時における飽和磁化、残留磁化及び保磁力の測定を行った。具体的な手順は次のとおりである。まず、電磁石間に磁場測定用Hコイル及び磁化測定用4πIコイルを設置した。ここで、試料は4πIコイルに入れた。電磁石の電流を変化させ磁場Hを変化させたHコイル及び4πIコイルの出力をそれぞれ積分し、H出力をX軸に、4πIコイルの出力をY軸にして記録紙上にヒステリシスカーブを作成した。ここで測定条件は、試料充填量:約1g、試料充填セル:内径7mmφ±0.02mm、高さ10mm±0.1mm、4πIコイル:巻数30回とした。このヒステリシスカーブにおいて、印加磁場が3K・1000/4π・A/m(=3kOe)であるときの磁化を飽和磁化とすると共に、印加磁場が0K・1000/4π・A/mであるときの磁化を残留磁化とした。また、このヒステリシスカーブにおいて、印加磁場を減少させたときに残留磁化がゼロになったときの外部磁場の強さを保磁力とした。
 各フェライト粒子の磁気特性を表5に示す。
(Ii) BHH measurement (3kOe)
Using a DC magnetism automatic measurement / analysis device (BHH-15, manufactured by Riken Denshi Co., Ltd.), saturation magnetization, residual magnetization, and coercive force were measured when 3 kOe was applied. The specific procedure is as follows. First, a magnetic field measuring H coil and a magnetization measuring 4πI coil were installed between the electromagnets. Here, the sample was placed in a 4πI coil. The outputs of the H coil and the 4πI coil whose magnetic field H was changed by changing the current of the electromagnet were integrated, and a hysteresis curve was created on the recording paper with the H output as the X axis and the 4πI coil as the Y axis. Here, the measurement conditions were as follows: sample filling amount: about 1 g, sample filling cell: inner diameter 7 mmφ ± 0.02 mm, height 10 mm ± 0.1 mm, 4πI coil: 30 turns. In this hysteresis curve, the magnetization when the applied magnetic field is 3K · 1000 / 4π · A / m (= 3 kOe) is the saturation magnetization, and the magnetization when the applied magnetic field is 0K · 1000 / 4π · A / m. Was defined as remanent magnetization. In this hysteresis curve, the coercive force is the strength of the external magnetic field when the residual magnetization becomes zero when the applied magnetic field is decreased.
Table 5 shows the magnetic properties of each ferrite particle.
1-5.電気特性
(1)体積抵抗率
 各フェライト粒子の体積抵抗率を次のようにして測定した。まず、 断面積が4cmのフッ素樹脂製のシリンダーに高さ4mmとなるように試料を充填した後、両端に電極を取り付け、さらにその上から1kgの分銅を乗せて抵抗を測定した。抵抗の測定はエレクトロメーター(KEITHLEY社製 絶縁抵抗計model6517A)を用いて、印加電圧1000V(電界2500V/cm)まで5秒毎に50Vずつ段階的に印加電圧を上げながら、各電圧における電圧印加5秒後の電流値を読み取り、各電圧における抵抗値を算出した。その後、断面積、高さから体積抵抗率を求めた。
1-5. Electrical characteristics (1) Volume resistivity The volume resistivity of each ferrite particle was measured as follows. First, after filling a sample into a cylinder made of fluororesin having a cross-sectional area of 4 cm 2 so as to be 4 mm in height, electrodes were attached to both ends, and a weight of 1 kg was placed thereon to measure resistance. The resistance is measured by using an electrometer (insulation resistance meter model 6517A manufactured by KEITHLEY), increasing the applied voltage stepwise by 50 V every 5 seconds up to an applied voltage of 1000 V (electric field of 2500 V / cm). The current value after 2 seconds was read, and the resistance value at each voltage was calculated. Then, volume resistivity was calculated | required from the cross-sectional area and height.
(2)誘電率
 KeySightTechnology社製マテリアル・インピーダンスアナライザE4991B及び誘電率テストフィクスチャ16453Aを用いて、下記に示す方法で成型したサンプルの複素誘電率(ε=ε’-jε’’)の周波数応答性を測定した。この時、周波数は1MHz~3GHzまで対数スケールで掃引し、測定電圧の振幅は100mVとした。また、直流バイアス電圧は印加しなかった。
(2) Dielectric constant Frequency response of a complex dielectric constant (ε = ε′−jε ″) of a sample molded by the following method using a material impedance analyzer E4991B and a dielectric constant test fixture 16453A manufactured by KeyLight Technology Was measured. At this time, the frequency was swept from 1 MHz to 3 GHz on a logarithmic scale, and the amplitude of the measurement voltage was 100 mV. Further, no DC bias voltage was applied.
 サンプルは次の方法で成型した。まず、フッ素樹脂10wt%に各実施例及び各比較例で製造したフェライト粒子をそれぞれ90wt%混合した後、それぞれ約1gをサンプリングした。得られた各混合物を直径φ13mmの金型に投入した後、50kNで加圧成型し、その後、180℃で2時間加熱硬化させたものをサンプルとして使用した。 The sample was molded by the following method. First, 90 wt% of the ferrite particles produced in each of Examples and Comparative Examples were mixed with 10 wt% of a fluororesin, and then about 1 g was sampled. Each obtained mixture was put into a mold having a diameter of 13 mm, pressure-molded at 50 kN, and then heat-cured at 180 ° C. for 2 hours as a sample.
1-6.電磁波減衰率
 各フェライト粒子を用いてサンプルを作製し、その電磁波減衰率をIEC62333-3に準拠して測定した。具体的には、次のようにして測定を行った。まず、10wt%PVA水溶液30gにフェライト粒子を7g加えてペーストを調製した。当該ペースト中のフェライト粒子の含有量は、当該ペースト中の固形分含有量(PVA及びフェライト粒子)に対して70wt%である。当該ペーストをベーカー式アプリケーターにより成型し、それを乾燥して0.5mm厚のシート状にした。これを30mm角に切り取ってサンプルとした。当該サンプルを株式会社関東電子応用開発製の測定冶具(Line Decoupling Measureing Equipment model:KLD-1)に取り付け、KeySightTechnology社製ネットワークアナライザー(E5071C)により周波数0.1GHz~1.0GHzの間を測定範囲として、各サンプルの電磁波減衰率を測定した。
1-6. Electromagnetic attenuation rate A sample was prepared using each ferrite particle, and the electromagnetic wave attenuation rate was measured in accordance with IEC62333-3. Specifically, the measurement was performed as follows. First, 7 g of ferrite particles were added to 30 g of 10 wt% PVA aqueous solution to prepare a paste. The content of ferrite particles in the paste is 70 wt% with respect to the solid content (PVA and ferrite particles) in the paste. The paste was molded with a baker type applicator and dried to form a 0.5 mm thick sheet. This was cut into a 30 mm square to prepare a sample. The sample is attached to a measuring jig (Line Decoupling Measuring Equipment model: KLD-1) manufactured by Kanto Electronics Application Development Co., Ltd., and a network analyzer (E5071C) manufactured by KeyLight Technology is used as a measurement range between 0.1 GHz and 1.0 GHz. The electromagnetic wave attenuation rate of each sample was measured.
2.評価結果
(1)フェライト粒子の組成とMn占有率
 実施例1~実施例4のフェライト粒子は、850℃の温度で酸素濃度が0.1vol%以下のNガス雰囲気下で脱バインダー処理を行い、1200℃~1300℃の温度範囲で酸素濃度が0.1vol%以下のNガス雰囲気下で本焼成を行うことにより得たものである。一方、比較例1~比較例4のフェライト粒子は脱バインダー処理条件及び/又は本焼成条件が実施例とは相違するが、その他の製造条件は実施例1と共通する。
2. Evaluation Results (1) Ferrite Particle Composition and Mn Occupancy Rate The ferrite particles of Examples 1 to 4 were subjected to binder removal treatment in an N 2 gas atmosphere with an oxygen concentration of 0.1 vol% or less at a temperature of 850 ° C. It is obtained by performing the main firing in an N 2 gas atmosphere having an oxygen concentration of 0.1 vol% or less in a temperature range of 1200 ° C. to 1300 ° C. On the other hand, the ferrite particles of Comparative Examples 1 to 4 are different from the examples in the binder removal treatment conditions and / or the main firing conditions, but the other production conditions are the same as those in Example 1.
 表2に示す化学分析結果を参照すると、実施例1~実施例4及び比較例1~比較例4のフェライト粒子は、上記組成式における「x」、「y」の値が概ね同じであり、化学分析上、同等の組成を有するフェライト粒子であることが確認される。 Referring to the chemical analysis results shown in Table 2, the ferrite particles of Examples 1 to 4 and Comparative Examples 1 to 4 have substantially the same values of “x” and “y” in the above composition formulas, Chemical analysis confirms that the ferrite particles have the same composition.
 一方、表3に示す粉末XRD回折による結晶構造解析を行った結果から、各フェライト粒子の結晶相の相組成比は脱バインダー処理条件及び/又は本焼成条件によって相違することが確認された。 On the other hand, from the results of the crystal structure analysis by powder XRD diffraction shown in Table 3, it was confirmed that the phase composition ratio of the crystal phase of each ferrite particle differs depending on the binder removal treatment conditions and / or the main firing conditions.
 具体的には、次のとおりである。表3から実施例1~実施例4のフェライト粒子はスピネル相が99.9%を占めることが確認される。
 実施例1~実施例4のフェライト粒子は、Fe2+量が0.22質量%~0.11質量%であり(表2参照)、スピネル相はMnフェライト相が大部分を占め、マグネタイト相の含有割合は低いと考えられる。実施例1~実施例4のフェライト粒子は、非酸化性雰囲気(Nガス雰囲気)下で本焼成よりも低い温度(850℃)で脱バインダー処理を行うと共に、Nガス雰囲気下でMnフェライトの生成に適した温度で本焼成を行うことにより得たものである。よって、Nガス雰囲気下でMnフェライトの生成に適した温度で本焼成を行うことにより99.9%の相組成比でスピネル相を有するフェライト粒子が生成されることが確認された。
Specifically, it is as follows. From Table 3, it is confirmed that the ferrite particles of Examples 1 to 4 account for 99.9% of the spinel phase.
The ferrite particles of Examples 1 to 4 have an Fe 2+ amount of 0.22% by mass to 0.11% by mass (see Table 2), and the spinel phase is mainly composed of the Mn ferrite phase. The content is considered low. The ferrite particles of Examples 1 to 4 were subjected to binder removal treatment at a lower temperature (850 ° C.) than the main firing in a non-oxidizing atmosphere (N 2 gas atmosphere), and Mn ferrite in an N 2 gas atmosphere It was obtained by carrying out the main firing at a temperature suitable for the production of. Therefore, it was confirmed that ferrite particles having a spinel phase with a phase composition ratio of 99.9% are generated by performing main firing at a temperature suitable for generation of Mn ferrite in an N 2 gas atmosphere.
 これに対して、比較例1及び比較例2のフェライト粒子では、スピネル相の占める割合は1.2%、0.6%と小さい。その一方、比較例1及び比較例2のフェライト粒子は、ヘマタイト相(Fe)及びMn相が占める割合が大きい。これは次の理由によると考える。まず、比較例1では、脱バインダー処理及び本焼成処理を大気下で行っているため、マグネタイトやMnフェライトが生成しておらず、その結果、スピネル相の占める割合が小さくなったと考える。比較例2は脱バインダー処理をNガス雰囲気下で行っているものの、大気下で本焼成したことにより、脱バインダー処理時に一旦生成されたマグネタイトが本焼成時に酸化されてFeとなったものと考える。従って、比較例1及び比較例2から、脱バインダー処理時の雰囲気によらず、本焼成時の雰囲気が大気であるとスピネル相を得ることが困難であることが確認される。 On the other hand, in the ferrite particles of Comparative Example 1 and Comparative Example 2, the proportion of the spinel phase is as small as 1.2% and 0.6%. On the other hand, the ferrite particles of Comparative Example 1 and Comparative Example 2 have a large proportion of the hematite phase (Fe 2 O 3 ) and the Mn 2 O 3 phase. I think this is due to the following reasons. First, in Comparative Example 1, since the binder removal process and the main baking process are performed in the atmosphere, magnetite and Mn ferrite are not generated, and as a result, the proportion of the spinel phase is considered to be small. In Comparative Example 2, although the binder removal treatment is performed in an N 2 gas atmosphere, the magnetite once produced during the binder removal treatment is oxidized during the firing to Fe 2 O 3 by performing the firing in the atmosphere. I think. Therefore, it is confirmed from Comparative Example 1 and Comparative Example 2 that it is difficult to obtain a spinel phase when the atmosphere during the main baking is air, regardless of the atmosphere during the binder removal treatment.
 比較例3は脱バインダー処理及び本焼成をいずれもNガス雰囲気下で行っている。しかしながら、比較例3では本焼成の温度が1000℃と低い。Mnフェライト(MnFe)は1150℃~1350℃程度の温度範囲で生成されると考えられている。従って、比較例3では脱バインダー処理時に一定の割合でマグネタイトが生成するものの、焼成温度がMnフェライトの生成すると考えられる温度よりも低いため、フェライト粒子中のスピネル相の組成比が実施例1~実施例4と比較すると77.0%と低くなったものと考えられる。 In Comparative Example 3, both the binder removal treatment and the main calcination are performed in an N 2 gas atmosphere. However, in Comparative Example 3, the main baking temperature is as low as 1000 ° C. It is considered that Mn ferrite (MnFe 2 O 4 ) is generated in a temperature range of about 1150 ° C. to 1350 ° C. Therefore, in Comparative Example 3, although magnetite is generated at a certain rate during the binder removal treatment, the firing temperature is lower than the temperature at which Mn ferrite is considered to be generated, so that the composition ratio of the spinel phase in the ferrite particles is from Example 1 to Compared with Example 4, it is thought that it was as low as 77.0%.
 比較例4のフェライト粒子は、実施例1~実施例4のフェライト粒子と同様にスピネル相の相組成比が99.9%と高い。比較例4のフェライト粒子は脱バインダー処理時の雰囲気が相違する点を除いて、実施例1と同様にして得たものである。上述のとおり、粉末XRD回折ではMnフェライトとマグネタイト(Fe)のピークの分離が困難である。そこで、比較例4のフェライト粒子のFe2+量を確認すると、比較例4のフェライト粒子のFe2+量は実施例1~実施例4のフェライト粒子と比較すると多い。比較例4のフェライト粒子は、大気下で脱バインダー処理を行うことにより得ている。従って、比較例4のフェライト粒子は、スピネル相の相組成比が99.9%であるが、比較例4のフェライト粒子はマグネタイト相及び/又はマグヘマイト相の含有割合が実施例1~実施例4のフェライト粒子と比較すると大きいと考えられる。 Similar to the ferrite particles of Examples 1 to 4, the ferrite particles of Comparative Example 4 have a high phase composition ratio of the spinel phase of 99.9%. The ferrite particles of Comparative Example 4 were obtained in the same manner as in Example 1 except that the atmosphere during the binder removal treatment was different. As described above, it is difficult to separate the peaks of Mn ferrite and magnetite (Fe 3 O 4 ) by powder XRD diffraction. Therefore, when confirming the amount of Fe 2+ of the ferrite particles of Comparative Example 4, Fe 2+ content of the ferrite particles of Comparative Example 4 is greater when compared with ferrite particles in Examples 1 to 4. The ferrite particles of Comparative Example 4 are obtained by performing a binder removal treatment in the atmosphere. Therefore, the ferrite particles of Comparative Example 4 have a spinel phase composition ratio of 99.9%, while the ferrite particles of Comparative Example 4 have a magnetite phase and / or maghemite phase content of Examples 1 to 4. It is thought that it is large compared with the ferrite particles.
 次に、各フェライト粒子のスピネル相のAサイトにおけるMn占有率をみると(表3参照)、実施例1~実施例4のフェライト粒子は0.6056~0.6504であり、本件発明の範囲内である。これに対して、本焼成を大気下で行った、或いは本焼成温度が1150℃未満の比較例1~比較例4の上記AサイトにおけるMn占有率は0.655以上であり、実施例1~実施例4とは結晶構造が相違することが確認される。 Next, looking at the Mn occupancy at the A site of the spinel phase of each ferrite particle (see Table 3), the ferrite particles of Examples 1 to 4 are 0.6056 to 0.6504, and the scope of the present invention Is within. On the other hand, the Mn occupancy at the A site in Comparative Examples 1 to 4 in which the main calcination was performed in the atmosphere or the main calcination temperature was less than 1150 ° C. was 0.655 or more. It is confirmed that the crystal structure is different from Example 4.
 比較例1及び比較例2のフェライト粒子は、上述のとおりスピネル相の相組成比が低く、AサイトにおけるMn占有率も実施例1~実施例4のフェライト粒子とは相違する。
 比較例3のフェライト粒子は、上述したとおり本焼成温度が低く、Mnフェライトが生成せず、Feの一部がMnで置換されたマグヘマイトが生成されることにより、AサイトにおけるMn占有率が0.97程度となったと考えられる。
 比較例4のフェライト粒子は、実施例1と同じ本焼成温度で本焼成が行われたが、実施例1とは脱バインダー処理時の雰囲気が相違し、大気下で脱バインダー処理が行われている。そのため、本焼成時に、一部がマグネタイト相及び/又はマグヘマイト相になりながら、Mnフェライト相が生成したものと考えられる。その結果、比較例4のフェライト粒子のスピネル相組成比は実施例1~実施例4と同程度であるが、AサイトにおけるMn占有率は実施例1~4と比べて高い値となったものと考えられる。
The ferrite particles of Comparative Example 1 and Comparative Example 2 have a low phase composition ratio of the spinel phase as described above, and the Mn occupancy at the A site is also different from the ferrite particles of Examples 1 to 4.
As described above, the ferrite particles of Comparative Example 3 have a low main firing temperature, Mn ferrite is not generated, and maghemite in which part of Fe is substituted with Mn is generated. It is thought that it was about 97.
The ferrite particles of Comparative Example 4 were fired at the same firing temperature as in Example 1, but the atmosphere during the binder removal treatment was different from that in Example 1, and the binder removal treatment was performed in the air. Yes. Therefore, it is considered that the Mn ferrite phase was generated while partly becoming a magnetite phase and / or a maghemite phase during the main firing. As a result, the spinel phase composition ratio of the ferrite particles of Comparative Example 4 was almost the same as that of Examples 1 to 4, but the Mn occupancy at the A site was higher than that of Examples 1 to 4. it is conceivable that.
(2)磁気特性
 次に各フェライト粒子の磁気特性をみると(表5参照)、実施例1~実施例4のフェライト粒子はいずれも飽和磁化が高く、キャリアの芯材に適した磁気特性を有することが確認できる。比較例1~比較例3のフェライト粒子は、上述のとおり、スピネル相の相組成比が低いため、磁気特性は低い。一方、比較例4のフェライト粒子はスピネル相の相組成比が高く、実施例1~実施例4のフェライト粒子と同等の磁気特性を有する。
(2) Magnetic properties Next, when looking at the magnetic properties of each ferrite particle (see Table 5), all of the ferrite particles of Examples 1 to 4 have high saturation magnetization, and have magnetic properties suitable for the carrier core material. Can be confirmed. As described above, the ferrite particles of Comparative Examples 1 to 3 have a low magnetic property because the phase composition ratio of the spinel phase is low. On the other hand, the ferrite particles of Comparative Example 4 have a high phase composition ratio of the spinel phase, and have the same magnetic characteristics as the ferrite particles of Examples 1 to 4.
(3)電気特性
 また、各フェライト粒子の電気特性をみると(表6参照)、実施例1~実施例4のフェライト粒子の体積抵抗率は1.65×10Ω・cm~1.55×10Ω・cmであり、キャリアの芯材に適した電気抵抗を有する。特に、実施例2~実施例4のフェライト粒子の体積抵抗率は高すぎず、キャリアの芯材に好適である。一方、比較例1~比較例4のフェライト粒子の体積抵抗率は実施例2~実施例4のフェライト粒子と比較するとやや高いものの、比較例1~比較例4のフェライト粒子もキャリアの芯材に適した体積抵抗率を示す。
(3) Electrical Characteristics In addition, looking at the electrical characteristics of each ferrite particle (see Table 6), the volume resistivity of the ferrite particles of Examples 1 to 4 is 1.65 × 10 6 Ω · cm to 1.55. × 10 9 Ω · cm, which has an electric resistance suitable for the core material of the carrier. In particular, the volume resistivity of the ferrite particles of Examples 2 to 4 is not too high and is suitable for the carrier core material. On the other hand, the volume resistivity of the ferrite particles of Comparative Examples 1 to 4 is slightly higher than the ferrite particles of Examples 2 to 4, but the ferrite particles of Comparative Examples 1 to 4 are also used as the core material of the carrier. Appropriate volume resistivity is shown.
 その一方、各フェライト粒子の複素誘電率をみると、実施例1~実施例4のフェライト粒子の比誘電率(ε’)及び誘電損失(ε’’)は1MHz(10Hz)~1GHz(10Hz)のどの周波数においても高い値を示す。従って、実施例1~実施例4のフェライト粒子にバイアス電圧を印加すれば、極短時間で速やかに分極させることができる。そのため、当該フェライト粒子をキャリアの芯材として用いれば、帯電能力に優れ、帯電立ち上がりの早いキャリアを得ることができる。これに対して、比較例1~比較例3のフェライト粒子は実施例1~実施例4のフェライト粒子と比較すると、比誘電率(ε’)及び誘電損失(ε’’)のいずれも低すぎる。そのため、バイアス電圧が印加された際に芯材が分極しにくくなり、十分な帯電能力を有するキャリアを得ることができない。一方、比較例4のフェライト粒子は実施例1~実施例4のフェライト粒子と比較すると、比誘電率(ε’)及び誘電損失(ε’’)のいずれも高すぎる。そのため、キャリアの帯電能力が高くなりすぎるため、印字率の高い画像の印刷を繰り返した場合、チャージアップ現象が発生しやすくなる。従って、キャリアの長寿命化を図ることが困難になる。 On the other hand, looking at the complex dielectric constant of each ferrite particle, the relative dielectric constant (ε ′) and dielectric loss (ε ″) of the ferrite particles of Examples 1 to 4 are 1 MHz (10 6 Hz) to 1 GHz ( It shows a high value at any frequency of 10 9 Hz). Therefore, if a bias voltage is applied to the ferrite particles of Examples 1 to 4, it can be rapidly polarized in an extremely short time. Therefore, if the ferrite particles are used as the core material of the carrier, it is possible to obtain a carrier that has excellent charging ability and quick charge rising. In contrast, the ferrite particles of Comparative Examples 1 to 3 are both too low in relative dielectric constant (ε ′) and dielectric loss (ε ″) compared to the ferrite particles of Examples 1 to 4. . Therefore, the core material is difficult to polarize when a bias voltage is applied, and a carrier having sufficient charging ability cannot be obtained. On the other hand, when compared with the ferrite particles of Examples 1 to 4, both of the relative permittivity (ε ′) and the dielectric loss (ε ″) of the ferrite particles of Comparative Example 4 are too high. For this reason, the charging ability of the carrier becomes too high, and therefore, a charge-up phenomenon is likely to occur when printing of an image with a high printing rate is repeated. Therefore, it is difficult to extend the life of the carrier.
(4)電磁波減衰率
 各実施例及び各比較例のフェライト粒子を用いて作製したサンプルについて、電磁波減衰率を測定したところ、実施例1~実施例4の周波数0.1GHz~1.0GHzにおける電磁波減衰率は0.95dB~3.27dBであり、0.1GHz~0.5GHzにおける電磁波減衰率は1.53dB~3.27dBであった。一方、比較例1及び比較例2の周波数0.1GHz~1.0GHzにおける電磁波減衰率は0.00dB~0.24dBであり、0.1GHz~0.5GHzにおける電磁波減衰率は0.00dB~0.24dBであった。また、比較例3の周波数0.1GHz~1.0GHzにおける電磁波減衰率は0.58dB~1.75dBであり、0.1GHz~0.5GHzにおける電磁波減衰率は0.75dB~1.75dBであり、比較例4の周波数0.1GHz~1.0GHzにおける電磁波減衰率は0.90dB~2.93dBであり、0.1GHz~0.5GHzにおける電磁波減衰率は1.62dB~2.93dBであった。また、以下に周波数0.25GHzのときの電磁波減衰率を示す。本実施例のフェライト粒子を用いたサンプルでは、比較例1~比較例3のフェライト粒子を用いたサンプルと比較すると、特に0.1GHz~0.5GHzの周波数帯域における電磁波減衰率が高く、当該周波数帯域において電磁波シールド特性が高いことが確認された。なお、比較例4のフェライト粒子のAサイトにおけるMn占有率は0.6560であり、比較例4のフェライト粒子を用いたサンプルは実施例1~実施例4のフェライト粒子を用いたサンプルと同程度の電磁波減衰率を示した。上述のとおり、比較例4のフェライト粒子はキャリアの芯材に適した電気特性を有さないが、比較例1~比較例3のフェライト粒子よりも電磁波シールド材用途には好適である。
(4) Electromagnetic wave attenuation rate When the electromagnetic wave attenuation rate was measured for the samples prepared using the ferrite particles of the examples and the comparative examples, the electromagnetic waves at frequencies of 0.1 GHz to 1.0 GHz of Examples 1 to 4 were measured. The attenuation rate was 0.95 dB to 3.27 dB, and the electromagnetic wave attenuation rate at 0.1 GHz to 0.5 GHz was 1.53 dB to 3.27 dB. On the other hand, the electromagnetic wave attenuation rate at frequencies of 0.1 GHz to 1.0 GHz in Comparative Examples 1 and 2 is 0.00 dB to 0.24 dB, and the electromagnetic wave attenuation rate at 0.1 GHz to 0.5 GHz is 0.00 dB to 0. .24 dB. Further, in Example 3, the electromagnetic wave attenuation rate at a frequency of 0.1 GHz to 1.0 GHz is 0.58 dB to 1.75 dB, and the electromagnetic wave attenuation rate at 0.1 GHz to 0.5 GHz is 0.75 dB to 1.75 dB. In Comparative Example 4, the electromagnetic wave attenuation rate at a frequency of 0.1 GHz to 1.0 GHz was 0.90 dB to 2.93 dB, and the electromagnetic wave attenuation rate at 0.1 GHz to 0.5 GHz was 1.62 dB to 2.93 dB. . The electromagnetic wave attenuation rate at a frequency of 0.25 GHz is shown below. In the sample using the ferrite particles of this example, compared with the samples using the ferrite particles of Comparative Examples 1 to 3, the electromagnetic wave attenuation rate is particularly high in the frequency band of 0.1 GHz to 0.5 GHz. It was confirmed that the electromagnetic shielding characteristics are high in the band. Note that the Mn occupation ratio at the A site of the ferrite particles of Comparative Example 4 is 0.6560, and the samples using the ferrite particles of Comparative Example 4 are almost the same as the samples using the ferrite particles of Examples 1 to 4. The electromagnetic wave attenuation rate was shown. As described above, the ferrite particles of Comparative Example 4 do not have electrical characteristics suitable for the core material of the carrier, but are more suitable for use as an electromagnetic shielding material than the ferrite particles of Comparative Examples 1 to 3.
 各実施例及び各比較例の0.25GHzにおける電磁波減衰率(dB)
 実施例1:1.8(dB)    比較例1:0.1(dB)
 実施例2:2.0(dB)    比較例2:0.0(dB)
 実施例3:2.4(dB)    比較例3:1.2(dB)
 実施例4:2.5(dB)    比較例4:2.2(dB)
Electromagnetic wave attenuation rate (dB) of each example and each comparative example at 0.25 GHz
Example 1: 1.8 (dB) Comparative Example 1: 0.1 (dB)
Example 2: 2.0 (dB) Comparative Example 2: 0.0 (dB)
Example 3: 2.4 (dB) Comparative Example 3: 1.2 (dB)
Example 4: 2.5 (dB) Comparative Example 4: 2.2 (dB)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本件発明に係るフェライト粒子によれば、電子写真現像剤用キャリア芯材に好適な磁気特性及び電気特性を有するフェライト粒子、当該フェライト粒子を用いた電子写真現像剤用キャリア芯材、電子写真現像剤用フェライトキャリア及び電子写真現像剤を提供することができる。
 本件発明に係るフェライト粒子は、AサイトにおけるMn占有率が本件発明の範囲内である点において従来のMnフェライトとは相違し、従来のMnフェライトと同等の磁気特性及び電気抵抗を有しつつ、1MHz以上の高周波帯域において比誘電率を電子写真現像剤用のキャリア芯材に適した値にすることができる。その結果、所定のバイアス電圧が印加されたときに速やかに分極させることができ、帯電立ち上がりの早いキャリアを得ることができる。従って、本件発明に係るフェライト粒子を電子写真現像剤のキャリア芯材に適用すれば、印字率の高い画像を繰り返し印刷する際にも、初期の段階から良好な画像特性を得ることができると共に、キャリアの長寿命化を達成することが可能になる。
 また、当該フェライト粒子は、電磁波シールド特性が高く、電磁波シールド材にも好適に用いることができる。
According to the ferrite particles according to the present invention, ferrite particles having magnetic and electrical characteristics suitable for a carrier core material for an electrophotographic developer, a carrier core material for an electrophotographic developer using the ferrite particles, and an electrophotographic developer Ferrite carrier and electrophotographic developer can be provided.
The ferrite particles according to the present invention are different from the conventional Mn ferrite in that the Mn occupancy at the A site is within the scope of the present invention, while having magnetic properties and electrical resistance equivalent to the conventional Mn ferrite, In a high frequency band of 1 MHz or higher, the relative dielectric constant can be set to a value suitable for a carrier core material for an electrophotographic developer. As a result, it is possible to quickly polarize when a predetermined bias voltage is applied, and it is possible to obtain a carrier having a quick charge rise. Therefore, by applying the ferrite particles according to the present invention to the carrier core material of the electrophotographic developer, it is possible to obtain good image characteristics from the initial stage even when repeatedly printing images with a high printing rate, It becomes possible to achieve a long life of the carrier.
Further, the ferrite particles have high electromagnetic shielding properties and can be suitably used for electromagnetic shielding materials.

Claims (8)

  1.  組成式がMnFe(但し、0<x、y=3-x)で表されるスピネル型結晶構造を有するフェライト粒子であって、
     AサイトにおけるMn占有率が0.200以上0.655以下であることを特徴とするフェライト粒子。
    Ferrite particles having a spinel type crystal structure represented by a composition formula Mn x Fe y O 4 (where 0 <x, y = 3-x),
    A ferrite particle having a Mn occupancy at A site of 0.200 or more and 0.655 or less.
  2.  前記組成式において、y/xの値が1.95以上2.05以下である請求項1に記載のフェライト粒子。 The ferrite particle according to claim 1, wherein in the composition formula, a value of y / x is 1.95 or more and 2.05 or less.
  3.  当該フェライト粒子の真密度が4.6g/cm以上5.0g/cm以下である請求項1又は請求項2に記載のフェライト粒子。 The ferrite particle according to claim 1 or 2, wherein the true density of the ferrite particle is 4.6 g / cm 3 or more and 5.0 g / cm 3 or less.
  4.  当該フェライト粒子の体積平均粒径が15μm以上100μm以下である請求項1~請求項3のいずれか一項に記載のフェライト粒子。 The ferrite particles according to any one of claims 1 to 3, wherein the ferrite particles have a volume average particle size of 15 µm or more and 100 µm or less.
  5.  請求項1~請求項4のいずれか一項に記載のフェライト粒子を含むことを特徴とする電子写真現像剤用キャリア芯材。 A carrier core material for an electrophotographic developer comprising the ferrite particles according to any one of claims 1 to 4.
  6.  請求項1~請求項4のいずれか一項に記載のフェライト粒子と、当該フェライト粒子の表面に設けられた樹脂被覆層とを備えることを特徴とする電子写真現像剤用フェライトキャリア。 A ferrite carrier for an electrophotographic developer, comprising: the ferrite particles according to any one of claims 1 to 4; and a resin coating layer provided on a surface of the ferrite particles.
  7.  請求項6に記載の電子写真現像剤用フェライトキャリアとトナーとを含むことを特徴とする電子写真現像剤。 An electrophotographic developer comprising the ferrite carrier for an electrophotographic developer according to claim 6 and a toner.
  8.  補給用現像剤として用いられる請求項7に記載の電子写真現像剤。 The electrophotographic developer according to claim 7, which is used as a replenishment developer.
PCT/JP2019/002767 2018-04-10 2019-01-28 Ferrite particles, carrier core material for electrophotographic developers, ferrite carrier for electrophotographic developers, and electrophotographic developer WO2019198304A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020513081A JPWO2019198304A1 (en) 2018-04-10 2019-01-28 Ferrite particles, carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer and electrophotographic developer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-075367 2018-04-10
JP2018075367 2018-04-10

Publications (1)

Publication Number Publication Date
WO2019198304A1 true WO2019198304A1 (en) 2019-10-17

Family

ID=68163954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002767 WO2019198304A1 (en) 2018-04-10 2019-01-28 Ferrite particles, carrier core material for electrophotographic developers, ferrite carrier for electrophotographic developers, and electrophotographic developer

Country Status (2)

Country Link
JP (1) JPWO2019198304A1 (en)
WO (1) WO2019198304A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250149A1 (en) * 2021-05-28 2022-12-01 パウダーテック株式会社 Ferrite particles, carrier for electrophotographic developer, electrophotographic developer, and ferrite particle production method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345170A (en) * 1991-05-22 1992-12-01 Ricoh Co Ltd Dry developer for electrostatic latent image
JPH0720657A (en) * 1993-07-06 1995-01-24 Minolta Co Ltd Developer
JP2003156887A (en) * 2001-11-22 2003-05-30 Canon Inc Resin-coated carrier, two-component developer and replenishing developer
JP2008089869A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Carrier powder for electrophotographic development, method for manufacturing the same, and electrophotographic developer containing the carrier powder
JP2009064008A (en) * 2007-08-10 2009-03-26 Ricoh Co Ltd Carrier for electrophotographic developer, method for manufacturing the same and electrophotographic developer
JP2010085762A (en) * 2008-09-30 2010-04-15 Dowa Electronics Materials Co Ltd Carrier core material and method for manufacturing the same, and magnetic carrier for electrophotographic developer
CN102923786A (en) * 2012-11-29 2013-02-13 江苏技术师范学院 Method for preparing nano ferrate in fused salt manner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345170A (en) * 1991-05-22 1992-12-01 Ricoh Co Ltd Dry developer for electrostatic latent image
JPH0720657A (en) * 1993-07-06 1995-01-24 Minolta Co Ltd Developer
JP2003156887A (en) * 2001-11-22 2003-05-30 Canon Inc Resin-coated carrier, two-component developer and replenishing developer
JP2008089869A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Carrier powder for electrophotographic development, method for manufacturing the same, and electrophotographic developer containing the carrier powder
JP2009064008A (en) * 2007-08-10 2009-03-26 Ricoh Co Ltd Carrier for electrophotographic developer, method for manufacturing the same and electrophotographic developer
JP2010085762A (en) * 2008-09-30 2010-04-15 Dowa Electronics Materials Co Ltd Carrier core material and method for manufacturing the same, and magnetic carrier for electrophotographic developer
CN102923786A (en) * 2012-11-29 2013-02-13 江苏技术师范学院 Method for preparing nano ferrate in fused salt manner

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AMIR, MD. ET AL.: "Polyol synthesis of Mn3+ substituted Fe304 nanoparticles: Cation distribution, structural and electrical properties", SUPERLATTICES AND MICROSTRUCTURES, vol. 85, 2 July 2015 (2015-07-02), pages 747 - 760, XP029246987, DOI: 10.1016/j.spmi.2015.07.001 *
MORRISH, A. H. ET AL.: "Origin of Elevated Ordering Temperature in MnFe2O4 Nanometer Particles", JOURNAL DE PHYSIQUE IV FRANCE, vol. 7, March 1997 (1997-03-01), pages Cl-513 - Cl-516 *
TAKAOBUSHI, J. ET AL.: "Electronic structures of Fe3-xMxO4 (M=Mn, Zn) spinel oxide thin films investigated by x-ray photoemission spectroscopy and x-ray magnetic circular dichroism", PHYSICAL REVIEW B, vol. 76, 15 November 2007 (2007-11-15), pages 2, XP55641743 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250149A1 (en) * 2021-05-28 2022-12-01 パウダーテック株式会社 Ferrite particles, carrier for electrophotographic developer, electrophotographic developer, and ferrite particle production method
JP7426166B2 (en) 2021-05-28 2024-02-01 パウダーテック株式会社 Ferrite particles, carrier for electrophotographic developer, method for producing electrophotographic developer and ferrite particles

Also Published As

Publication number Publication date
JPWO2019198304A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP4668574B2 (en) Mg-based ferrite, electrophotographic developer carrier and developer using the ferrite
JP4779141B2 (en) Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier
JP5194194B2 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5377386B2 (en) Carrier core material for electrophotographic developer, production method thereof, carrier for electrophotographic developer, and electrophotographic developer
JP4474561B2 (en) Carrier core material for electrophotographic developer, carrier powder for electrophotographic developer, and production method thereof
JP2008241742A5 (en)
JP6766134B2 (en) Method for manufacturing ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, ferrite carrier core material for electrophotographic developer and electrophotographic developer
JP4897916B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
US8592123B2 (en) Carrier core material for electrophotographic developer, and manufacturing method of the same, carrier for electrophotographic developer, and electrophotographic developer
JP4540668B2 (en) Mg-based ferrite material, carrier for electrophotographic development containing the ferrite material, and developer containing the carrier
JP2008175883A (en) Ferrite carrier for electrophotographic developer and electrophotographic developer
JP6757872B1 (en) Ferrite particles, carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
WO2019198304A1 (en) Ferrite particles, carrier core material for electrophotographic developers, ferrite carrier for electrophotographic developers, and electrophotographic developer
WO2021200172A1 (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP5804656B2 (en) Mn ferrite particles, carrier for electrophotographic developer using the same, developer for electrophotography
JP2003034533A (en) Ferromagnetic material powder and carrier of developing agent for electronic photograph
US10775711B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for manufacturing ferrite carrier core material for electrophotographic developer
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2009244788A (en) Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer
US20230152726A1 (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP2021193062A (en) Ferrite particle, carrier for electrophotographic developing agent and electrophotographic developing agent, and method of manufacturing ferrite particle
JP2012053287A (en) Carrier core material for electrophotographic developer and manufacturing method of carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785864

Country of ref document: EP

Kind code of ref document: A1