WO2019198293A1 - Microscope system and medical light source device - Google Patents

Microscope system and medical light source device Download PDF

Info

Publication number
WO2019198293A1
WO2019198293A1 PCT/JP2019/001376 JP2019001376W WO2019198293A1 WO 2019198293 A1 WO2019198293 A1 WO 2019198293A1 JP 2019001376 W JP2019001376 W JP 2019001376W WO 2019198293 A1 WO2019198293 A1 WO 2019198293A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source device
medical
lens
Prior art date
Application number
PCT/JP2019/001376
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 祐一
聡史 長江
智之 大木
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2019198293A1 publication Critical patent/WO2019198293A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • This technology relates to a microscope system and a medical light source device.
  • an endoscope system in which an inside (in vivo) of an observation target such as a person is imaged and the inside of the living body is observed.
  • the endoscope system includes an endoscope inserted into a living body and a light source device (see, for example, Patent Document 1).
  • An optical fiber that transmits light emitted from the light source device is provided in the endoscope, and light from the light source device that has passed through the endoscope is irradiated to the observation target portion from the distal end of the endoscope.
  • the endoscope light source device of Patent Document 1 is configured to be able to combine white illumination light and narrowband light and emit as illumination light.
  • an object of the present technology is to provide a microscope system and a medical light source device with high light use efficiency.
  • a microscope system includes a medical light source device and a microscope.
  • the medical light source device includes: a broadband light source that emits broadband light having a wavelength band including a visible region; a plurality of narrow band light sources that emit narrow band light having a narrower wavelength band than the broadband light; and a plurality of the narrow bands The narrow band light emitted from each light source and having the same polarization direction and an optical element including a dielectric multilayer film on which the broadband light is incident.
  • the microscope is connected to the medical light source device and guides output light from the medical light source device.
  • the plurality of narrow band lights have the same polarization direction and are incident on the optical element, so that the light use efficiency of the narrow band light is good.
  • the light quantity of the combined light formed by combining the incident narrowband light and broadband light with the optical element can be increased. Therefore, it is possible to increase the amount of light irradiated to the irradiated object.
  • a medical light source device includes a broadband light source, a plurality of narrow-band light sources, and an optical element.
  • the broadband light source emits broadband light having a wavelength band including a visible region.
  • the narrowband light source emits narrowband light having a narrower wavelength band than the broadband light.
  • the optical element includes a dielectric multilayer film that is emitted from each of the plurality of narrowband light sources and into which the narrowband light and the broadband light that are in the same polarization direction are incident.
  • a plurality of narrowband lights having the same polarization direction are incident on the optical element, so that the light use efficiency of the narrowband light is improved.
  • the light quantity of the combined light formed by combining the incident narrowband light and broadband light with the optical element can be increased.
  • the optical element may transmit a plurality of the narrowband light whose incident polarization directions are all P-polarized light and reflect the incident broadband light.
  • the transmission wavelength band of P-polarized light is wider than the transmission wavelength band of S-polarized light, when combining with the narrow band light of P-polarized light, the narrow band light of P-polarized light is transmitted. It is preferable to dispose an optical element in this, and the light utilization efficiency of narrowband light is improved.
  • the optical element may reflect a plurality of the narrowband light whose incident polarization directions are all S-polarized light and transmit the incident broadband light.
  • the reflection wavelength band of S-polarized light is wider than the reflection wavelength band of P-polarized light, when combining using S-polarized narrow band light, S-polarized narrow band light is reflected. It is preferable to arrange the optical elements in this manner, and the light utilization efficiency of narrowband light is improved.
  • the optical element may be a wavelength selection element. As a result, light in which the narrow band light having the same polarization direction and the non-polarized broadband light are combined by the optical element is generated.
  • the optical element may be a polarization selection element.
  • the optical element generates light in which narrowband light having the same polarization direction and broadband light having a polarization that is orthogonal to the narrowband light are combined.
  • a first lens group that is positioned between the broadband light source and the optical element, collimates the incident broadband light, and emits the light toward the optical element, and between the narrow band light source and the optical element.
  • a second lens group that collimates the plurality of narrow-band lights having the same polarization direction and is emitted toward the optical element; and the light from the optical element is incident; And a third lens group that emits as illumination light.
  • the first lens group, the second lens group, and the third lens group have a refractive index Nd greater than 1.70 and 1.85.
  • the glass material may be smaller and the Abbe number ⁇ d may be greater than 40 and less than 55.
  • the first lens group, the second lens group, and the third lens group may have an antireflection film having the same antireflection characteristics. Since the first lens group, the second lens group, and the third lens group can be configured using the same glass material having the same refractive index and the same Abbe number, an antireflection film having the same characteristics is used for each glass material. Films can be formed and manufacturing efficiency is good.
  • the broadband light may be white light.
  • the narrowband light may be laser light.
  • the medical light source device may be configured to be connectable to a microscope or an endoscope.
  • FIG. 8 is a partial view of the configuration shown in FIG. 7, which is a schematic diagram for explaining an optical system on an optical path of light from a narrow-band light source unit.
  • FIG. 8 is a partial view of the configuration shown in FIG. 7, which is a schematic diagram for explaining an optical system on an optical path of light from a broadband light source.
  • FIG. 11 is a partial view of the configuration shown in FIG.
  • FIG. 10 is a schematic diagram for explaining an optical system on an optical path of light from a narrow-band light source unit.
  • FIG. 11 is a partial view of the configuration shown in FIG. 10 and is a schematic diagram for explaining an optical system on an optical path of light from a broadband light source. It is a figure showing roughly the whole operation room system composition. It is a figure which shows the example of a display of the operation screen in a concentrated operation panel. It is a figure which shows an example of the mode of the surgery to which the operating room system was applied. It is a block diagram which shows an example of a function structure of the camera head shown in FIG. 15, and CCU. It is a figure which shows an example of a schematic structure of a microscope operation system. It is a figure which shows the mode of an operation using the microscope operation system shown in FIG.
  • the endoscope system 1 is a system that is used in the medical field and observes the inside (in vivo) of an observation object such as a person.
  • the endoscope system 1 includes an endoscope 2, a camera 4, a medical light source device 5 (hereinafter referred to as a light source device 5), and a light guide cable 6.
  • the endoscope 2 includes an insertion tube 21 that is inserted into a living body, an optical system 22, an objective lens 23, and a light guide 24.
  • the endoscope 2 irradiates the observation target site 3 that is an irradiated body from the distal end of the insertion tube 21 with the irradiation light 7 supplied from the light source device 5.
  • the insertion tube 21 is hard or at least partly soft and has an elongated shape.
  • a connection connector 25 is provided on the outer peripheral surface of the insertion tube 21 so as to protrude along the radial direction and to which the other end of the light guide cable 6 is connected.
  • the objective lens 23 is provided at the distal end inside the insertion tube 21 and condenses the subject image.
  • the optical system 22 is provided inside the insertion tube 21 and guides the subject image condensed by the objective lens 23 to the proximal end of the insertion tube 21.
  • the light guide 24 as a light guide is constituted by an optical fiber, for example.
  • the light guide 24 is routed from the distal end to the proximal end side in the insertion tube 21 and further extends to be bent at a substantially right angle toward the connection connector 25 side.
  • the light supplied from the light source device 5 is guided by the light guide cable 6 and the light guide 24, emitted from the distal end of the insertion tube 21, and observed in the living body. Irradiation toward the target region 3.
  • the light source device 5 is connected to one end of a light guide cable 6.
  • the light source device 5 supplies light for irradiating the observation target portion 3 to the light guide cable 6. Details of the light source device 5 will be described later.
  • the light guide cable 6 has one end detachably connected to the light source device 5 and the other end detachably connected to the connection connector 25 of the insertion tube 21.
  • the light guide cable 6 transmits light supplied from the light source device 5 from one end to the other end and supplies the light to the insertion tube 21.
  • the camera 4 is detachably connected to the proximal end of the insertion tube 21.
  • the camera 4 has an image sensor (not shown) and images the observation target portion 3.
  • FIG. 2 is a schematic diagram illustrating a configuration example of the light source device 5.
  • the light source device 5 includes a broadband light source 51, a narrow-band light source unit 52, a dichroic mirror 53 as an optical element, a first collimating lens 54, a second collimating lens 55, And an optical lens 56.
  • the first collimating lens 54 constitutes a first lens group.
  • the condensing lens 56 constitutes a third lens group.
  • the light from the broadband light source 51 and the light from the narrow band light source unit 52 are incident on the dichroic mirror 53.
  • the first collimating lens 54 is located between the broadband light source 51 and the dichroic mirror 53 on the optical path.
  • the second collimating lens 55 is located between the narrow-band light source unit 52 and the dichroic mirror 53 on the optical path.
  • the second collimating lens 55 constitutes a second lens group.
  • the lens group is also referred to as a lens group.
  • the broadband light source 51 is composed of a white LED (Light Emitting Diode) and emits broadband light having a wide wavelength band including the visible region, for example, white light in a band of 400 nm to 700 nm. This white light is unpolarized light. White light emitted from the broadband light source 51 is incident on the first collimating lens 54.
  • a white LED Light Emitting Diode
  • the narrow-band light source unit 52 includes laser light sources 52R, 52G, 52B, and 52IR as a plurality of narrow-band light sources. These laser light sources emit narrowband light having a narrower wavelength band than broadband light.
  • the narrow-band light source unit 52 includes a red laser light source (hereinafter referred to as R light source) 52R, a green laser light source (hereinafter referred to as G light source) 52G, a blue laser light source (hereinafter referred to as B light source) 52B, and an infrared ray.
  • a laser light source (hereinafter referred to as an IR light source) 52IR, an IR light source dichroic mirror 521, an R light source dichroic mirror 522, a G light source dichroic mirror 523, and a B light source dichroic mirror 524 are provided.
  • an example in which one IR light source, one R light source, one G light source, and one B light source are provided.
  • the type of laser light source and the number of light sources of each color are not limited to this, and may be set as appropriate. it can.
  • the IR light source 52IR is, for example, two IR light sources that emit laser light in an infrared band of 790 nm to 820 nm with a center wavelength of 808 nm and laser light in an infrared band of 905 to 970 nm with a center wavelength of 940 nm.
  • the IR light source dichroic mirror 521 reflects light in the infrared band and transmits light of other wavelengths. Infrared light emitted from the IR light source 52IR is reflected by the IR light source dichroic mirror 521, sequentially passes through the dichroic mirrors 522, 523, and 524, and enters the second collimating lens 55.
  • the R light source 52R emits laser light in the red band of 630 nm to 645 nm, for example, having a center wavelength of 638 nm.
  • the R light source dichroic mirror 522 reflects light in the red band and transmits light of other wavelengths.
  • the red light emitted from the R light source 52 ⁇ / b> R is reflected by the R light source dichroic mirror 522, sequentially passes through the dichroic mirrors 523 and 524, and enters the second collimating lens 55.
  • the G light source 52G emits a laser beam in a green band of 515 nm to 540 nm with a center wavelength of 525 nm, for example.
  • the G light source dichroic mirror 523 reflects light in the green band and transmits light of other wavelengths.
  • the green light emitted from the G light source 52G is reflected by the G light source dichroic mirror 523, passes through the dichroic mirror 524, and enters the second collimating lens 55.
  • the B light source 52B emits a laser beam in a blue band of 435 nm to 465 nm with a center wavelength of 445 nm, for example.
  • the dichroic mirror 524 for the B light source reflects blue band light and transmits light of other wavelengths.
  • the blue light emitted from the B light source 52 ⁇ / b> B is reflected by the B light source dichroic mirror 524 and enters the second collimating lens 55.
  • White light can be generated by combining light respectively emitted from the R light source 52R, the G light source 52G, and the B light source 52B. By controlling the output intensity of each color (each wavelength), it is possible to adjust the white balance of the captured image and adjust the amount of emitted light.
  • the white light from the broadband light source 51 is collimated by passing through the first collimating lens 54 to become substantially parallel light, and enters the dichroic mirror 53 serving as a multiplexing unit.
  • Laser light which is narrowband light of a plurality of different bands from the narrowband light source unit 52, is collimated by passing through the second collimating lens 55, becomes substantially parallel light, and enters the dichroic mirror 53.
  • white light is not emitted from the broadband light source 51, but laser light in a predetermined wavelength band corresponding to special light observation is emitted from the narrow-band light source unit 52.
  • narrow band imaging Narrow Band Imaging
  • a predetermined tissue such as a blood vessel on the mucous membrane surface
  • autofluorescence observation in which an image is obtained by fluorescence generated by irradiating excitation light may be performed.
  • infrared light observation may be performed in which a substance having a change in absorbance in the infrared light region is expressed by color using two infrared light beams having different wavelength bands as irradiation light.
  • the combined white light is irradiated to the observation target part 3.
  • the laser light of the predetermined wavelength band from the narrow band light source unit 52 is irradiated.
  • the output is adjusted to an intensity suitable for autofluorescence observation, for example. Thereby, an image in which the normal light observation image and the special light observation image are superimposed is obtained.
  • all the laser beams from the narrow-band light source unit 52 are configured such that their polarization directions are aligned with P-polarized light and are incident on the second collimating lens 55.
  • the laser light emitted from each of the light sources 52IR, 52R, 52G, and 52B is configured to be P-polarized light.
  • the dichroic mirror 53 is a wavelength selection element configured to transmit the narrowband light emitted from the narrowband light source unit 52 and reflect the white light emitted from the broadband light source 51.
  • the white light emitted from the broadband light source 51 is incident on the dichroic mirror 53, so that the same wavelength band component as that of the narrow band light emitted from the narrow band light source unit 52 is transmitted, and the other wavelength bands are transmitted. The component will be reflected.
  • the dichroic mirror 53 combines the incident red laser light, blue laser light, and green laser light from the narrow-band light source unit 52 and the light reflected by the dichroic mirror 53 among the white light from the broadband light source 51.
  • the generated combined white light is configured to be a desired white light.
  • the dichroic mirror 53 is configured by forming a dielectric multilayer film on a glass material.
  • FIG. 3 is a diagram showing the transmittance / reflectance characteristics of a general dichroic mirror, in which the horizontal axis represents wavelength and the vertical axis represents transmittance or reflectance.
  • a broken line with a narrow line spacing indicates a transmission spectrum of P-polarized light
  • a dashed-dotted line indicates a transmission spectrum of S-polarized light
  • a solid line indicates a non-polarized transmission spectrum
  • a broken line with a wide line spacing indicates a non-polarized reflection spectrum.
  • FIG. 4 shows a case where the polarization direction of the laser light from the narrow-band light source unit 52 incident on the dichroic mirror 53 is not considered and when the polarization direction is all considered as the P-polarization in the design, the dichroic mirror 53 in each blue light band. The transmittance at is shown.
  • the non-consideration of the polarization direction in FIG. 4 is an example in which the polarization directions of the laser beams from all the narrow-band light sources do not coincide with each other.
  • the P-polarized light from the IR light source 52IR the S-polarized light from the R light source 52R, G
  • P-polarized laser light is emitted from the light source 52G and P-polarized laser light is emitted from the B light source 52B is shown.
  • the transmittance of light incident on the dichroic mirror 53 in the blue light band was 98.87%.
  • the transmittance in the blue light band is 99.67%.
  • the polarization directions of the plurality of laser beams from the narrowband light source unit 52 incident on the dichroic mirror 53 are all aligned with the P-polarized light.
  • Light utilization efficiency can be improved.
  • the site to be observed can be imaged under irradiation light with an increased amount of light, a bright image as a whole can be obtained, and more accurate endoscopic diagnosis can be performed.
  • the first collimator lens 54, the second collimator lens 55, and the condenser lens 56 all have a refractive index Nd of greater than 1.70 and less than 1.85, and an Abbe number ⁇ d of greater than 40 and 55.
  • Nd refractive index
  • ⁇ d Abbe number
  • the refractive index Nd and the Abbe number ⁇ d are the refractive index and Abbe number defined by the d line 587.56 nm.
  • the radiation angle of illumination light is wide, and thus it is necessary to collect light with a high NA in the condenser lens 56.
  • a high refractive index glass In order to realize a high NA, it is conceivable to use a high refractive index glass.
  • a high refractive index glass has a low transmittance in a short wavelength band, for example, an ultraviolet region.
  • the light source device has an ultraviolet light source as a narrow-band light source, the utilization efficiency of light from the ultraviolet laser light can be improved.
  • the same glass material whose refractive index and Abbe number satisfy the above ranges can be applied to the first collimating lens 54, the second collimating lens 55, and the condensing lens 56, and antireflection deposited on each lens. Since the design of the coating film can be made common, the manufacturing efficiency is good and the cost can be reduced.
  • the dichroic mirror 53 when the narrowband light incident on the dichroic mirror 53 is P-polarized light, the dichroic mirror 53 transmits the P-polarized light of the narrowband light (laser light), and the white light from the broadband light source 51 is transmitted. It is preferable to arrange each light source so as to reflect, and the light efficiency is improved.
  • the dichroic mirror 53 is set so that the narrow band light of P-polarized light is transmitted. This is because the light efficiency is improved by the arrangement.
  • combined white light can be generated by P-polarized narrow band light and non-polarized broadband light (white light).
  • white light since it is possible to multiplex without the need to align the polarization of the broadband light, an optical element such as a PS converter is not necessary, and the apparatus can be miniaturized.
  • FIG. 5 is a schematic diagram illustrating a configuration example of the light source device 105. Components similar to those in the first embodiment are denoted by the same reference numerals, and description thereof may be omitted.
  • the laser light from the narrow-band light source unit 52 is emitted while being aligned with the P-polarized light, and the P-polarized laser light from the narrow-band light source unit 52 is transmitted through the dichroic mirror 53 and the broadband light source 51.
  • the white light from the dichroic mirror 53 was reflected.
  • the laser light from the narrow-band light source unit 52 is emitted while being aligned with S-polarized light, and the S-polarized laser light from the narrow-band light source unit 52 is reflected by a dichroic mirror 153 described later.
  • the white light from the broadband light source 51 is configured to pass through the dichroic mirror 153.
  • the endoscope system 101 includes an endoscope 2, a camera 4, a medical light source device 105 (hereinafter referred to as a light source device 105), and a light guide cable 6.
  • the light source device 105 includes a broadband light source 51, a narrow-band light source unit 52, a dichroic mirror 153 as an optical element, a first collimating lens 54, a second collimating lens 55, And an optical lens 56.
  • the dichroic mirror 153 is a wavelength selection element configured to reflect the narrow-band laser light emitted from the narrow-band light source unit 52 and transmit the white light emitted from the broadband light source 51.
  • the white light emitted from the broadband light source 51 is incident on the dichroic mirror 153, so that the same wavelength band component as the wavelength band emitted from the narrow band light source unit 52 is reflected, and the other wavelength band components. Will be transparent.
  • the dichroic mirror 153 combines the incident red laser light, blue laser light, and green laser light from the narrow-band light source unit 52 and the light reflected by the dichroic mirror 153 among the white light from the broadband light source 51.
  • the generated combined white light is configured to be a desired white light.
  • the dichroic mirror 153 is configured by forming a dielectric multilayer film on a glass material.
  • FIG. 6 is a diagram showing the transmittance / reflectance characteristics of a general dichroic mirror, in which the horizontal axis represents wavelength and the vertical axis represents transmittance or reflectance.
  • a broken line with a narrow line interval indicates a reflection spectrum of P-polarized light
  • a dashed-dotted line indicates a reflection / transmission spectrum of S-polarized light
  • a solid line indicates a non-polarization reflection spectrum
  • a broken line with a large line interval indicates an unpolarized transmission spectrum.
  • the dichroic mirror 153 is incident with laser light whose polarization direction is aligned so that the polarization direction of the laser light from the narrow-band light source unit 52 is all S-polarized light.
  • the light utilization efficiency of narrowband light can be improved as compared with the case where the polarization direction is not taken into consideration.
  • the dichroic mirror 153 when the light incident on the dichroic mirror 153 is S-polarized light, the dichroic mirror 153 reflects the S-polarized light of the narrow band light (laser light) and transmits the white light from the broadband light source 51.
  • the dichroic mirror 153 reflects the S-polarized light of the narrow band light (laser light) and transmits the white light from the broadband light source 51.
  • the reflection wavelength band of S-polarized light is wider than the reflection wavelength band of P-polarized light, and therefore when combining using S-polarized narrow band light, the dichroic mirror 153 is reflected so that the S-polarized narrow band light is reflected. This is because the light efficiency is improved by disposing.
  • combined white light can be generated by S-polarized narrow-band light and non-polarized broadband light (white light).
  • white light since it is possible to multiplex without the need to align the polarization of the broadband light, an optical element such as a PS converter is not necessary, and the apparatus can be miniaturized.
  • the dichroic mirror 153 that reflects the predetermined narrow band light is difficult to produce and is likely to be expensive in cost as compared with the dichroic mirror 53 that transmits the predetermined narrow band light.
  • the configuration shown in the form is desirable.
  • the wavelength selection element is used as the optical element including the dielectric multilayer film, but a polarization selection element may be used.
  • a polarization beam splitter (PBS; Polarizing Beam Splitter) as a polarization selection element can be used.
  • PBS Polarizing Beam Splitter
  • This polarization beam splitter transmits P-polarized light and reflects S-polarized light.
  • the P-polarized narrow-band light from the narrow-band light source unit 52 is transmitted through the polarization beam splitter and is incident on the condenser lens 56.
  • white light from the broadband light source 51 is separated into S-polarized light and P-polarized light by the polarization beam splitter, and the S-polarized component of the white light is incident on the condenser lens 56.
  • a polarization beam splitter as a polarization selection element can be used. This polarizing beam splitter transmits S-polarized light and reflects P-polarized light.
  • the S-polarized narrow-band light from the narrow-band light source unit 52 is reflected by the polarization beam splitter and is incident on the condenser lens 56.
  • white light from the broadband light source 51 is separated into S-polarized light and P-polarized light by the polarization beam splitter, and the P-polarized component of the white light is incident on the condenser lens 56.
  • a polarization selection element when used as an optical element, combined white light is generated by narrow band light of P polarization (S polarization) and broadband light (white light) of S polarization (P polarization). That is, narrowband light and broadband light whose polarization directions are orthogonal to each other are multiplexed. For this reason, since broadband light can always use only one polarization component, the efficiency is greatly reduced. However, if the polarization of broadband light is made uniform with a PS converter or the like, the efficiency can be greatly recovered.
  • Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
  • the monitor observation by the camera 4 is possible.
  • the medical light source device may be applied to a surgical microscope, and illumination light suitable for visual observation. Can be obtained.
  • the plurality of narrow-band light sources are configured to have the same polarization direction.
  • the present invention is not limited to this.
  • an optical element for converting P-polarized light (S-polarized light) into S-polarized light (P-polarized light) is provided between a narrow-band light source and a dichroic mirror corresponding to the light source, and finally enters the second collimating lens 55.
  • the narrow band light may be configured to have the same polarization direction.
  • FIG. 7 is a configuration example of the medical light source device 205 according to the present embodiment, from when the light from the narrow-band light source unit 52 and the light from the broadband light source 51 are combined and enter the light guide cable 6. It is a figure explaining an optical system. In FIG. 7, the illustration of light rays is omitted to make the drawing easier to see.
  • FIG. 8 is a partial view of the configuration shown in FIG. 7, and is a schematic diagram for explaining an optical system until light from the narrow-band light source unit 52 reaches the light guide cable 6. This optical system is referred to as a first illumination optical system.
  • FIG. 9 is a partial view of the configuration shown in FIG. 7, and is a schematic diagram for explaining an optical system until light from the broadband light source 51 reaches the light guide cable 6. This optical system is referred to as a second illumination optical system.
  • the medical light source device 205 of the present embodiment includes a broadband light source 51, a narrow-band light source unit 52, a dichroic mirror 53 as an optical element, a first lens group 254, A collimator lens G1, a third lens group 256, a diffusion plate 251, a diaphragm S1, and a diaphragm S2 are provided.
  • the second collimating lens G1 constitutes a second lens group.
  • the diffuser plate 251 is arranged at the rear stage of the emission part of the narrow band light source part 52. Laser light from the narrow-band light source unit 52 is applied to the diffusion plate 251.
  • the diffusion plate 251 diffuses the laser light from the narrow-band light source unit 52 at a diffusion angle corresponding to NA 0.164.
  • the emission size is ⁇ 11.0.
  • the diffused light is incident on the second collimating lens G1.
  • the light from the broadband light source 51 and the light from the narrow band light source unit 52 are incident on the dichroic mirror 53.
  • the first lens group 254 is located between the broadband light source 51 and the dichroic mirror 53 on the optical path.
  • the first lens group 254 collimates the white light from the broadband light source 51 into substantially parallel light, and enters the dichroic mirror 53 serving as a multiplexing unit.
  • the second collimating lens G1 is located between the narrow-band light source unit 52 and the dichroic mirror 53 on the optical path.
  • the second collimating lens G1 collimates the laser light from the narrow-band light source unit 52 into substantially parallel light, and enters the dichroic mirror 53 serving as a multiplexing unit.
  • the third lens group 256 is located between the dichroic mirror 53 and the light guide cable 6 on the optical path.
  • the third lens group 256 makes the combined light combined by the dichroic mirror 53 enter the incident end face 61 of the light guide cable 6.
  • an image plane (image plane) on the incident end face 61 of the light guide cable 6 for the combined light is denoted by I.
  • the first lens group 254 includes a lens G4, a lens G5, and a lens G6 in order from the object side (broadband light source 51 side). Lens data for each lens will be described later.
  • the third lens group 256 includes a lens G2 and a lens G3 in order from the object side (narrowband light source 52 side).
  • all of the lenses G1 to G6 have the same refractive index Nd and the same Abbe number vd, the refractive index Nd is larger than 1.70 and smaller than 1.85, and the Abbe number ⁇ d is 40. It is made of a glass material that is larger and smaller than 55.
  • the second collimating lens G ⁇ b> 1, the lens G ⁇ b> 2, and the lens G ⁇ b> 3 are positioned on the optical path until the light from the narrow band light source unit 52 reaches the incident end surface 61 of the light guide cable 6.
  • the object-side numerical aperture is 0.164, the object height is 5.500 mm, the image-side numerical aperture is 0.495, and the image height is 1.903 mm.
  • Table 1 shows lens data of lenses located on the optical path until the light from the narrow-band light source unit 52 shown in FIG. 8 reaches the incident end face 61 of the light guide cable 6.
  • the object surface is the object surface
  • the surface number is the lens surface number counted from the object side
  • r is the radius of curvature (mm) of the lens
  • d is the lens surface distance ( mm)
  • the effective radius is the effective radius (mm) of the lens
  • (aperture) is
  • the aperture stop S1 the aperture stop S2 in Tables 2 and 4) and the image plane represent the image plane I, respectively.
  • surface numbers 1 and 2 are surface numbers of the second collimating lens G1
  • surface numbers 4 and 5 are surface numbers of the lens G2
  • surface numbers 6 and 7 are surface numbers of the lens G3.
  • a lens G4 As shown in FIG. 9, a lens G4, a lens G5, a lens G6, an aperture S2, a lens G2, and a lens G3 are on the optical path until the light from the broadband light source 51 reaches the incident end face 61 of the light guide cable 6. To position. In FIG. 9, the diaphragm S2 is not shown.
  • the object-side numerical aperture is 0.731
  • the object height is 1.500 mm
  • the image-side numerical aperture is 0.553
  • the image height is 2.045 mm.
  • Table 2 shows lens data of lenses located on the optical path until the light from the broadband light source 51 shown in FIG. 9 reaches the incident end face 61 of the light guide cable 6.
  • surface numbers 1 and 2 are surface numbers of the lens G4
  • surface numbers 3 and 4 are surface numbers of the lens G5
  • surface numbers 5 and 6 are surface numbers of the lens G6
  • surface numbers 8 and 9 is the surface number of the lens G2
  • surface numbers 10 and 11 are the surface numbers of the lens G3.
  • the dichroic mirror 53 is illustrated as a simple reflecting surface.
  • Surface number 7 in lens data in Table 2 and Table 4 described later corresponds to a dichroic mirror surface.
  • Tables 2 and 4 since the seventh and subsequent surfaces are optical systems after reflection, a minus sign is included in the radius of curvature and the surface interval.
  • all of the lenses G1 to G6 have the same refractive index Nd and the same Abbe number vd, and the refractive index Nd is larger than 1.70 and smaller than 1.85.
  • the Abbe number ⁇ d is larger than 40 and smaller than 55, which is 54.6735.
  • the first illumination optical system will be described.
  • nine light emitting points on the diffusion plate 251 are set. Specifically, a total of 9 points on the light emitting surface of the diffuser plate 251 in the 0% direction (center), ⁇ 40% direction, ⁇ 70% direction, ⁇ 90% direction, and ⁇ 100% direction are set as the emission points. Yes.
  • the ⁇ 100% direction is set to 5.5 mm.
  • three rays of an upper ray, a principal ray, and a lower ray are illustrated.
  • the light diffused by the diffusing plate 251 is converted into substantially parallel light by the second collimating lens G1, and then enters a dichroic mirror (reference numeral 53 in FIG. 7) disposed with an inclination of 45 degrees with respect to the optical axis.
  • the dichroic mirror 53 is arranged at the position of surface number 3 in Table 1.
  • the dichroic mirror 53 has a characteristic of transmitting laser light bands such as red light, green light, blue light, violet light, and infrared light from the narrow-band light source 52 and reflecting other bands.
  • a dichroic mirror having such characteristics may be referred to as a bandpass dichroic mirror.
  • the diffused light diffused by the diffuser plate 251 is converted into substantially parallel light by the second collimating lens G1, so that the incident angle of the light beam to the bandpass dichroic mirror is set. , Upper light, lower light, and principal light. Thereby, the angle-dependent characteristics can be sufficiently suppressed.
  • the laser beam that has passed through the bandpass dichroic mirror is imaged by the lens G2 and the lens G3 with an image side NA (image side numerical aperture) of 0.495 and a spot radius (image height) of 1.903 mm.
  • An incident end face 61 of the light guide cable 6 for guiding illumination light (combined light) is disposed on the imaging plane (image plane I in FIG. 7).
  • the end of the light guide cable 6 opposite to the incident end face 61 is connected to various medical observation devices such as an endoscope and a surgical microscope.
  • the image side NA (numerical aperture) is set to a value that is substantially the same as or smaller than the numerical aperture of the light guide cable 6 used. Thereby, the optical transmission loss inside the light guide cable 6 can be suppressed.
  • the lenses G2 and G3 are both convex lenses and have a convex meniscus shape.
  • one convex lens as the third lens group 256 and guide the light to the light guide cable 6, by using two lenses such as lenses G2 and G3 as in the present embodiment, a spherical surface is obtained. Occurrence of aberration and coma can be suppressed. Thereby, illumination quality can be improved.
  • NA errors When absorption aberration and coma occur, these aberration components appear as NA errors.
  • the spherical aberration generated in the convex lens is a high aperture component having an NA of 0.495 or more, it is lost without being guided to the light guide cable 6, or even if the light is guided, the luminance of the illumination light It appears as unevenness, and the illumination quality deteriorates.
  • the convex lens is used, and a Petzval sum minus field curvature is generated.
  • the longitudinal chromatic aberration, the lateral chromatic aberration, and the curvature aberration including the field curvature are not problematic. This is because in order to guide the light to the light guide cable 6, it is sufficient that the specification of the image side NA is satisfied, and the above-described aberration that appears in the form of the shift of the image formation point is unlikely to be a problem.
  • the broadband light source 51 is composed of a white LED having a light emission size of ⁇ 3.0 mm, for example.
  • the light generated from the broadband light source 51 is converted into substantially parallel light by the lens G3, the lens G4, and the lens G5, and then enters the dichroic mirror 53 disposed at an inclination of 45 degrees with respect to the optical axis.
  • the medical light source device is suitable as a medical light source device used in a medical observation device that requires high color reproducibility.
  • the optical path of the white LED light reflected by the dichroic mirror 53 is the same as the optical path of the light passing through the lens G2 and the lens G3 described in the first illumination optical system. That is, white LED light is imaged by the lens G2 and the lens G3 so that the image side NA (image side numerical aperture) is 0.553 and the spot radius (image height) is 2.045 mm.
  • White LED light is characterized by a Lambert distribution and a wide radiation angle. For this reason, in this embodiment, in order to ensure output power as illumination, the object-side numerical aperture is set to a relatively large value of 0.731.
  • the power of the convex lens is divided into three parts using the three lenses G3, G4, and G5, so that spherical aberration and coma are obtained.
  • a high numerical aperture is achieved while suppressing the occurrence of.
  • the image-side numerical apertures in the first illumination optical system and the second illumination optical system are substantially the same. If there is a difference in the image-side numerical aperture between the two optical systems, it appears as a difference in the radiation angle of the illumination light, resulting in uneven color and brightness, resulting in a reduction in illumination quality. Are preferably substantially the same.
  • substantially the same means that one image-side numerical aperture is in a range of ⁇ 3% of the other image-side numerical aperture.
  • high refractive index glass in order to achieve both high numerical aperture and aberration correction.
  • high refractive index glass has low transmittance in the short wavelength region. Therefore, if the refractive index is excessively increased, the transmittance of short wavelength light such as violet laser light is reduced although it is advantageous in correcting aberrations. The brightness will be reduced. This is not preferable in an illumination system light source device that requires high output.
  • the lenses G1 to G6 a glass material having a refractive index Nd larger than 1.70 and smaller than 1.85 and an Abbe number ⁇ d larger than 40 and smaller than 55 is used.
  • the transmittance in the short wavelength region can be improved.
  • the refractive index Nd is 1.85 or more or the Abbe number ⁇ d is 40 or less
  • the transmittance of short wavelength light such as violet laser light
  • the luminance of short wavelength light is reduced.
  • the refractive index Nd is 1.70 or less and the Abbe number ⁇ d is 55 or more
  • a decrease in transmittance of short-wavelength light is suppressed, but it becomes difficult to correct spherical aberration and coma aberration.
  • the design of the antireflection coating film deposited on the lenses is common. The cost can be reduced.
  • FIG. 10 is a configuration example of the medical light source device 305 according to the present embodiment, from when the light from the narrow-band light source unit 52 and the light from the broadband light source 51 are combined and enter the light guide cable 6. It is a figure explaining an optical system. In FIG. 10, illustration of light rays is omitted to make the drawing easier to see.
  • FIG. 11 is a partial view of the configuration shown in FIG. 10, and is a schematic diagram for explaining an optical system until light from the narrow band light source unit 52 reaches the light guide cable 6. This optical system is referred to as a first illumination optical system.
  • FIG. 12 is a partial view of the configuration shown in FIG. 10, and is a schematic diagram for explaining an optical system until light from the broadband light source 51 reaches the light guide cable 6. This optical system is referred to as a second illumination optical system.
  • the same reference numerals are given to the same configurations as those in the above-described embodiment, and the description will be omitted.
  • the medical light source device 305 of this embodiment includes a broadband light source 51, a narrow-band light source unit 52, a dichroic mirror 53 as an optical element, a first lens group 354, a second lens group 354, and a second lens group 354.
  • a collimator lens G31, a third lens group 356, a diffusion plate 251, a diaphragm S1, and a diaphragm S2 are provided.
  • the second collimating lens G31 constitutes a second lens group.
  • the diffusing plate 251 is arranged at the rear stage of the emission part of the narrow band light source part 52.
  • Laser light from the narrow-band light source unit 52 is applied to the diffusion plate 251.
  • the diffusion plate 251 diffuses the laser light from the narrow band light source unit 52.
  • the diffused light is incident on the second collimating lens G1.
  • the light from the broadband light source 51 and the light from the narrow band light source unit 52 are incident on the dichroic mirror 53.
  • the first lens group 354 is located between the broadband light source 51 and the dichroic mirror 53 on the optical path.
  • the first lens group 354 collimates the white light from the broadband light source 51 into substantially parallel light and makes it incident on the dichroic mirror 53 serving as a multiplexing unit.
  • the second collimating lens G31 is located between the narrow-band light source unit 52 and the dichroic mirror 53 on the optical path.
  • the second collimating lens G1 collimates the laser light from the narrow-band light source unit 52 into substantially parallel light, and enters the dichroic mirror 53 serving as a multiplexing unit.
  • the third lens group 356 is located between the dichroic mirror 53 and the light guide cable 6 on the optical path.
  • the third lens group 356 causes the combined light combined by the dichroic mirror 53 to enter the incident end surface 61 of the light guide cable 6.
  • an image plane (image plane) on the incident end face 61 of the light guide cable 6 for the combined light is denoted by I.
  • the first lens group 354 includes a lens G34, a lens G35, and a lens G36 in order from the object side (broadband light source 51 side). Lens data for each lens will be described later.
  • the third lens group 356 includes a lens G32 and a lens G33 in order from the object side (narrowband light source 52 side).
  • all of the lenses G31 to G36 have the same refractive index Nd and the same Abbe number vd, the refractive index Nd is larger than 1.70 and smaller than 1.85, and the Abbe number ⁇ d is 40. It is made of a glass material that is larger and smaller than 55.
  • the second collimating lens G31, the lens G32, and the lens G33 are positioned on the optical path until the light from the narrow-band light source unit 52 reaches the incident end face 61 of the light guide cable 6.
  • the object-side numerical aperture is 0.164, the object height is 5.500 mm, the image-side numerical aperture is 0.496, and the image height is 1.8353 mm.
  • Table 3 shows lens data of lenses located on the optical path until the light from the narrow-band light source unit 52 shown in FIG. 11 reaches the incident end face 61 of the light guide cable 6.
  • surface numbers 1 and 2 are surface numbers of the second collimating lens G31
  • surface numbers 34 and 35 are surface numbers of the lens G32
  • surface numbers 6 and 7 are surface numbers of the lens G33.
  • a lens G34, a lens G35, a lens G36, an aperture S2, a lens G32, and a lens G33 are arranged on the optical path until the light from the broadband light source 51 reaches the incident end face 61 of the light guide cable 6. To position. In FIG. 12, illustration of the diaphragm S2 is omitted.
  • the object-side numerical aperture is 0.731
  • the object height is 1.500 mm
  • the image-side numerical aperture is 0.553
  • the image height is 2.045 mm.
  • Table 4 shows lens data of lenses located on the optical path until the light from the broadband light source 51 shown in FIG. 9 reaches the incident end face 61 of the light guide cable 6.
  • surface numbers 1 and 2 are surface numbers of the lens G34
  • surface numbers 3 and 4 are surface numbers of the lens G35
  • surface numbers 5 and 6 are surface numbers of the lens G36
  • surface numbers 8 and 9 is the surface number of the lens G32
  • surface numbers 10 and 11 are the surface numbers of the lens G33.
  • all of the lenses G31 to G36 have the same refractive index Nd and the same Abbe number vd, and the refractive index Nd is larger than 1.70 and smaller than 1.85.
  • the Abbe number ⁇ d is larger than 40 and smaller than 55, which is 54.6735.
  • the basic concept of lens design is the same as in the third embodiment.
  • the cost can be further reduced by adopting a configuration in which a part of the plurality of lenses to be used is made common.
  • the second collimating lens G31, the lens G32, and the lens G36 are shared, and the lens G33 and the lens G34 are also shared.
  • an optical system that combines the laser light from the narrow-band light source unit 52 and the white LED light from the broadband light source 51 can be configured using substantially three types of lenses.
  • the numerical aperture (object-side numerical aperture) of the second collimating lens G31 is 0.164
  • the numerical aperture of the third lens group 256 is 0.496 to 0.500
  • the numerical aperture of one lens group 254 is 0.731.
  • the numerical aperture increases in the order of the lens group including the second collimating lens G31, the third lens group 256, and the first lens group 254.
  • the higher the numerical aperture the more the number of lenses increases in the order of this lens group in order to divide the power of the convex lens and reduce the power of the convex lens to form a meniscus shape for aberration correction. ing.
  • the third lens group 356 is configured to use the same lens G32 as the second collimating lens G31, and the lens G33 is used to correct the numerical aperture in the third lens group 356. 31 and the lens G33 are designed.
  • the first lens group 354 is configured to use the same lens G36 as the lens G32 of the third lens group 356 and the same lens G34 as the lens G33, and the numerical aperture in the first lens group 354 by the lens G35.
  • the lens G35 is designed so as to correct the above.
  • the second collimating lens G31, the lens G32, and the lens G36 can be shared, and the lens G33 and the lens G34 can be shared.
  • the medical light source device can be applied to an endoscope system and a microscope system.
  • the endoscopic surgery system will be described below with reference to FIGS. 13 to 16 and the microscopic surgery system with reference to FIGS. 17 and 18.
  • FIG. 13 to 16 The endoscopic surgery system will be described below with reference to FIGS. 13 to 16 and the microscopic surgery system with reference to FIGS. 17 and 18.
  • FIG. 17 and 18 The endoscopic surgery system will be described below with reference to FIGS. 13 to 16 and the microscopic surgery system with reference to FIGS. 17 and 18.
  • the light source device denoted by reference numeral 5157 in FIG. 15 corresponds to the medical light source device according to the present disclosure.
  • an endoscope is provided that is connected to a medical light source device, guides output light from the medical light source device, and irradiates an observation target site.
  • FIG. 13 is a diagram schematically showing an overall configuration of an operating room system 5100 to which the technology according to the present disclosure can be applied.
  • the operating room system 5100 is configured by connecting a group of apparatuses installed in the operating room so as to cooperate with each other via an audiovisual controller 5107 and an operating room control apparatus 5109.
  • FIG. 13 As an example, various apparatus groups 5101 for endoscopic surgery, a ceiling camera 5187 provided on the ceiling of the operating room and imaging the operator's hand, and an operating room provided on the operating room ceiling.
  • An operating field camera 5189 that images the entire situation, a plurality of display devices 5103A to 5103D, a recorder 5105, a patient bed 5183, and an illumination 5191 are illustrated.
  • the device group 5101 belongs to an endoscopic surgery system 5113 described later, and includes an endoscope, a display device that displays an image captured by the endoscope, and the like.
  • Each device belonging to the endoscopic surgery system 5113 is also referred to as a medical device.
  • the display devices 5103A to 5103D, the recorder 5105, the patient bed 5183, and the illumination 5191 are devices provided in an operating room, for example, separately from the endoscopic surgery system 5113.
  • These devices that do not belong to the endoscopic surgery system 5113 are also referred to as non-medical devices.
  • the audiovisual controller 5107 and / or the operating room control device 5109 controls the operations of these medical devices and non-medical devices in cooperation with each other.
  • the audiovisual controller 5107 comprehensively controls processing related to image display in medical devices and non-medical devices.
  • the device group 5101, the ceiling camera 5187, and the surgical field camera 5189 have a function of transmitting information to be displayed during surgery (hereinafter also referred to as display information). It may be a device (hereinafter also referred to as a source device).
  • Display devices 5103A to 5103D can be devices that output display information (hereinafter also referred to as output destination devices).
  • the recorder 5105 may be a device that corresponds to both a transmission source device and an output destination device.
  • the audiovisual controller 5107 controls the operation of the transmission source device and the output destination device, acquires display information from the transmission source device, and transmits the display information to the output destination device for display or recording.
  • the display information includes various images captured during the operation, various types of information related to the operation (for example, patient physical information, past examination results, information on a surgical procedure, and the like).
  • the audiovisual controller 5107 can transmit information about the image of the surgical site in the patient's body cavity captured by the endoscope from the device group 5101 as display information.
  • information about the image at hand of the surgeon captured by the ceiling camera 5187 can be transmitted from the ceiling camera 5187 as display information.
  • information about an image showing the entire operating room imaged by the operating field camera 5189 can be transmitted from the operating field camera 5189 as display information.
  • the audiovisual controller 5107 acquires information about an image captured by the other device from the other device as display information. May be.
  • information about these images captured in the past is recorded by the audiovisual controller 5107 in the recorder 5105.
  • the audiovisual controller 5107 can acquire information about the image captured in the past from the recorder 5105 as display information.
  • the recorder 5105 may also record various types of information related to surgery in advance.
  • the audiovisual controller 5107 displays the acquired display information (that is, images taken during the operation and various information related to the operation) on at least one of the display devices 5103A to 5103D that are output destination devices.
  • the display device 5103A is a display device that is suspended from the ceiling of the operating room
  • the display device 5103B is a display device that is installed on the wall surface of the operating room
  • the display device 5103C is installed in the operating room.
  • the display device 5103D is a mobile device (for example, a tablet PC (Personal Computer)) having a display function.
  • the operating room system 5100 may include a device outside the operating room.
  • the device outside the operating room can be, for example, a server connected to a network constructed inside or outside the hospital, a PC used by medical staff, a projector installed in a conference room of the hospital, or the like.
  • the audio-visual controller 5107 can display the display information on a display device of another hospital via a video conference system or the like for telemedicine.
  • the operating room control device 5109 comprehensively controls processing other than processing related to image display in non-medical devices.
  • the operating room control device 5109 controls the driving of the patient bed 5183, the ceiling camera 5187, the operating field camera 5189, and the illumination 5191.
  • the operating room system 5100 is provided with a centralized operation panel 5111, and the user gives an instruction for image display to the audiovisual controller 5107 via the centralized operation panel 5111, or the operating room control apparatus 5109. An instruction about the operation of the non-medical device can be given.
  • the central operation panel 5111 is configured by providing a touch panel on the display surface of the display device.
  • FIG. 14 is a diagram showing a display example of an operation screen on the centralized operation panel 5111.
  • an operation screen corresponding to a case where the operating room system 5100 is provided with two display devices as output destination devices is illustrated.
  • a transmission source selection area 5195, a preview area 5197, and a control area 5201 are provided on the operation screen 5193.
  • a transmission source device provided in the operating room system 5100 and a thumbnail screen representing display information of the transmission source device are displayed in association with each other. The user can select display information to be displayed on the display device from any of the transmission source devices displayed in the transmission source selection area 5195.
  • the preview area 5197 displays a preview of the screen displayed on the two display devices (Monitor 1 and Monitor 2) that are output destination devices.
  • four images are displayed as PinP on one display device.
  • the four images correspond to display information transmitted from the transmission source device selected in the transmission source selection area 5195. Of the four images, one is displayed as a relatively large main image, and the remaining three are displayed as a relatively small sub image. The user can switch the main image and the sub image by appropriately selecting an area in which four images are displayed.
  • a status display area 5199 is provided below the area where the four images are displayed, and the status relating to the surgery (for example, the elapsed time of the surgery, the patient's physical information, etc.) is appropriately displayed in the area. obtain.
  • a GUI (Graphical User Interface) part for displaying a GUI (Graphical User Interface) part for operating the source apparatus and a GUI part for operating the output destination apparatus are displayed.
  • the transmission source operation area 5203 is provided with GUI parts for performing various operations (panning, tilting, and zooming) on the camera in the transmission source device having an imaging function. The user can operate the operation of the camera in the transmission source device by appropriately selecting these GUI components.
  • the transmission source device selected in the transmission source selection area 5195 is a recorder (that is, in the preview area 5197, images recorded in the past are displayed on the recorder).
  • a GUI component for performing operations such as playback, stop playback, rewind, and fast forward of the image can be provided in the transmission source operation area 5203.
  • GUI parts for performing various operations are provided. Is provided. The user can operate the display on the display device by appropriately selecting these GUI components.
  • the operation screen displayed on the centralized operation panel 5111 is not limited to the example shown in the figure, and the user can use the audiovisual controller 5107 and the operating room control device 5109 provided in the operating room system 5100 via the centralized operation panel 5111. Operation input for each device that can be controlled may be possible.
  • FIG. 15 is a diagram showing an example of a state of surgery to which the operating room system described above is applied.
  • the ceiling camera 5187 and the operating field camera 5189 are provided on the ceiling of the operating room, and can photograph the state of the operator (doctor) 5181 who performs treatment on the affected part of the patient 5185 on the patient bed 5183 and the entire operating room. It is.
  • the ceiling camera 5187 and the surgical field camera 5189 may be provided with a magnification adjustment function, a focal length adjustment function, a photographing direction adjustment function, and the like.
  • the illumination 5191 is provided on the ceiling of the operating room and irradiates at least the hand of the operator 5181.
  • the illumination 5191 may be capable of appropriately adjusting the irradiation light amount, the wavelength (color) of the irradiation light, the light irradiation direction, and the like.
  • Endoscopic surgery system 5113, patient bed 5183, ceiling camera 5187, operating field camera 5189 and illumination 5191 are connected via audiovisual controller 5107 and operating room controller 5109 (not shown in FIG. 15) as shown in FIG. Are connected to each other.
  • a centralized operation panel 5111 is provided in the operating room. As described above, the user can appropriately operate these devices existing in the operating room via the centralized operating panel 5111.
  • an endoscopic surgery system 5113 includes an endoscope 5115, other surgical tools 5131, a support arm device 5141 that supports the endoscope 5115, and various devices for endoscopic surgery. And a cart 5151 on which is mounted.
  • trocars 5139a to 5139d are punctured into the abdominal wall. Then, the lens barrel 5117 of the endoscope 5115 and other surgical tools 5131 are inserted into the body cavity of the patient 5185 from the trocars 5139a to 5139d.
  • an insufflation tube 5133, an energy treatment tool 5135, and forceps 5137 are inserted into the body cavity of the patient 5185.
  • the energy treatment instrument 5135 is a treatment instrument that performs incision and detachment of a tissue, sealing of a blood vessel, and the like by high-frequency current and ultrasonic vibration.
  • the illustrated surgical tool 5131 is merely an example, and as the surgical tool 5131, for example, various surgical tools generally used in endoscopic surgery such as a lever and a retractor may be used.
  • An image of the surgical site in the body cavity of the patient 5185 taken by the endoscope 5115 is displayed on the display device 5155.
  • the surgeon 5181 performs a treatment such as excision of the affected part using the energy treatment tool 5135 and the forceps 5137 while viewing the image of the surgical part displayed on the display device 5155 in real time.
  • the pneumoperitoneum tube 5133, the energy treatment tool 5135, and the forceps 5137 are supported by an operator 5181 or an assistant during surgery.
  • the support arm device 5141 includes an arm portion 5145 extending from the base portion 5143.
  • the arm portion 5145 includes joint portions 5147a, 5147b, and 5147c, and links 5149a and 5149b, and is driven by control from the arm control device 5159.
  • the endoscope 5115 is supported by the arm unit 5145, and its position and posture are controlled. Thereby, the stable position fixing of the endoscope 5115 can be realized.
  • the endoscope 5115 includes a lens barrel 5117 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 5185, and a camera head 5119 connected to the proximal end of the lens barrel 5117.
  • an endoscope 5115 configured as a so-called rigid mirror having a rigid lens barrel 5117 is illustrated, but the endoscope 5115 is configured as a so-called flexible mirror having a flexible lens barrel 5117. Also good.
  • An opening into which an objective lens is fitted is provided at the tip of the lens barrel 5117.
  • a light source device 5157 is connected to the endoscope 5115, and the light generated by the light source device 5157 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 5117, and the objective Irradiation is performed toward the observation target in the body cavity of the patient 5185 through the lens.
  • the endoscope 5115 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 5119, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU) 5153 as RAW data.
  • CCU camera control unit
  • the camera head 5119 has a function of adjusting the magnification and the focal length by appropriately driving the optical system.
  • a plurality of image sensors may be provided in the camera head 5119 in order to cope with, for example, stereoscopic viewing (3D display).
  • a plurality of relay optical systems are provided inside the lens barrel 5117 in order to guide observation light to each of the plurality of imaging elements.
  • the CCU 5153 includes a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 5115 and the display device 5155. Specifically, the CCU 5153 performs various image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example, on the image signal received from the camera head 5119. The CCU 5153 provides the display device 5155 with the image signal subjected to the image processing. Further, the audiovisual controller 5107 shown in FIG. 13 is connected to the CCU 5153. The CCU 5153 also provides an image signal subjected to image processing to the audiovisual controller 5107.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the CCU 5153 transmits a control signal to the camera head 5119 to control the driving thereof.
  • the control signal can include information regarding imaging conditions such as magnification and focal length. Information regarding the imaging conditions may be input via the input device 5161 or may be input via the above-described centralized operation panel 5111.
  • the display device 5155 displays an image based on an image signal subjected to image processing by the CCU 5153 under the control of the CCU 5153.
  • the endoscope 5115 is compatible with high-resolution imaging such as 4K (horizontal pixel number 3840 ⁇ vertical pixel number 2160) or 8K (horizontal pixel number 7680 ⁇ vertical pixel number 4320), and / or 3D display.
  • high-resolution imaging such as 4K (horizontal pixel number 3840 ⁇ vertical pixel number 2160) or 8K (horizontal pixel number 7680 ⁇ vertical pixel number 4320), and / or 3D display.
  • a display device 5155 that can display a high resolution and / or a device that can display 3D can be used.
  • 4K or 8K high resolution imaging a more immersive feeling can be obtained by using a display device 5155 having a size of 55 inches or more.
  • a plurality of display devices 5155 having different resolutions and sizes may be provided depending on applications.
  • the light source device 5157 is composed of a light source such as an LED (light emitting diode), for example, and supplies the endoscope 5115 with irradiation light when photographing a surgical site.
  • a light source such as an LED (light emitting diode)
  • the arm control device 5159 is configured by a processor such as a CPU, for example, and operates according to a predetermined program to control driving of the arm portion 5145 of the support arm device 5141 according to a predetermined control method.
  • the input device 5161 is an input interface to the endoscopic surgery system 5113.
  • a user can input various information and instructions to the endoscopic surgery system 5113 via the input device 5161.
  • the user inputs various types of information related to the operation, such as the patient's physical information and information about the surgical technique, via the input device 5161.
  • the user instructs to drive the arm unit 5145 via the input device 5161 or an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 5115.
  • An instruction to drive the energy treatment instrument 5135 is input.
  • the type of the input device 5161 is not limited, and the input device 5161 may be various known input devices.
  • the input device 5161 for example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5171 and / or a lever can be applied.
  • the touch panel may be provided on the display surface of the display device 5155.
  • the input device 5161 is a device worn by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), for example, and various inputs according to the user's gesture and line of sight detected by these devices. Is done.
  • the input device 5161 includes a camera capable of detecting a user's movement, and various inputs are performed according to a user's gesture and line of sight detected from an image captured by the camera.
  • the input device 5161 includes a microphone that can pick up the voice of the user, and various inputs are performed by voice through the microphone.
  • the input device 5161 is configured to be able to input various types of information without contact, so that a user belonging to the clean area (for example, an operator 5181) operates a device belonging to the unclean area without contact. Is possible.
  • a user belonging to the clean area for example, an operator 5181
  • the user can operate the device without releasing his / her hand from the surgical tool he / she has, the convenience for the user is improved.
  • the treatment instrument control device 5163 controls driving of the energy treatment instrument 5135 for tissue cauterization, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 5165 passes gas into the body cavity via the pneumothorax tube 5133 Send in.
  • the recorder 5167 is an apparatus capable of recording various types of information related to surgery.
  • the printer 5169 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
  • the support arm device 5141 includes a base portion 5143 which is a base, and an arm portion 5145 extending from the base portion 5143.
  • the arm portion 5145 includes a plurality of joint portions 5147a, 5147b, and 5147c and a plurality of links 5149a and 5149b connected by the joint portion 5147b.
  • FIG. The structure of the arm part 5145 is shown in a simplified manner. Actually, the shape, number and arrangement of the joint portions 5147a to 5147c and the links 5149a and 5149b, the direction of the rotation axis of the joint portions 5147a to 5147c, and the like are appropriately set so that the arm portion 5145 has a desired degree of freedom. obtain.
  • the arm portion 5145 can be preferably configured to have six or more degrees of freedom. Accordingly, the endoscope 5115 can be freely moved within the movable range of the arm unit 5145, and therefore the lens barrel 5117 of the endoscope 5115 can be inserted into the body cavity of the patient 5185 from a desired direction. It becomes possible.
  • the joint portions 5147a to 5147c are provided with actuators, and the joint portions 5147a to 5147c are configured to be rotatable around a predetermined rotation axis by driving the actuators.
  • the drive of the actuator is controlled by the arm control device 5159
  • the rotation angles of the joint portions 5147a to 5147c are controlled, and the drive of the arm portion 5145 is controlled.
  • control of the position and posture of the endoscope 5115 can be realized.
  • the arm control device 5159 can control the driving of the arm unit 5145 by various known control methods such as force control or position control.
  • the arm controller 5159 appropriately controls the driving of the arm unit 5145 according to the operation input.
  • the position and posture of the endoscope 5115 may be controlled. With this control, the endoscope 5115 at the distal end of the arm portion 5145 can be moved from an arbitrary position to an arbitrary position and then fixedly supported at the position after the movement.
  • the arm unit 5145 may be operated by a so-called master slave method. In this case, the arm unit 5145 can be remotely operated by the user via the input device 5161 installed at a location away from the operating room.
  • the arm control device 5159 When force control is applied, the arm control device 5159 receives the external force from the user and moves the actuators of the joint portions 5147a to 5147c so that the arm portion 5145 moves smoothly according to the external force. You may perform what is called power assist control to drive. Accordingly, when the user moves the arm unit 5145 while directly touching the arm unit 5145, the arm unit 5145 can be moved with a relatively light force. Therefore, the endoscope 5115 can be moved more intuitively and with a simpler operation, and the convenience for the user can be improved.
  • an endoscope 5115 is supported by a doctor called a scopist.
  • the position of the endoscope 5115 can be more reliably fixed without relying on human hands, so that an image of the surgical site can be stably obtained. It becomes possible to perform the operation smoothly.
  • the arm control device 5159 is not necessarily provided in the cart 5151. Further, the arm control device 5159 does not necessarily have to be one device. For example, the arm control device 5159 may be provided in each of the joint portions 5147a to 5147c of the arm portion 5145 of the support arm device 5141, and the plurality of arm control devices 5159 cooperate to drive the arm portion 5145. Control may be realized.
  • the light source device 5157 supplies irradiation light for imaging the surgical site to the endoscope 5115.
  • the light source device 5157 is constituted by a white light source constituted by, for example, an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Adjustments can be made.
  • the laser light from each of the RGB laser light sources is irradiated onto the observation target in a time-sharing manner, and the driving of the image sensor of the camera head 5119 is controlled in synchronization with the irradiation timing, thereby corresponding to each RGB. It is also possible to take the images that have been taken in time division. According to this method, a color image can be obtained without providing a color filter in the image sensor.
  • the driving of the light source device 5157 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the driving of the image sensor of the camera head 5119 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure is obtained. A range image can be generated.
  • the light source device 5157 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation.
  • narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue.
  • a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue.
  • ICG indocyanine green
  • the light source device 5157 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 15 is a block diagram illustrating an example of functional configurations of the camera head 5119 and the CCU 5153 illustrated in FIG.
  • the camera head 5119 has a lens unit 5121, an imaging unit 5123, a drive unit 5125, a communication unit 5127, and a camera head control unit 5129 as its functions.
  • the CCU 5153 includes a communication unit 5173, an image processing unit 5175, and a control unit 5177 as its functions.
  • the camera head 5119 and the CCU 5153 are connected to each other via a transmission cable 5179 so that they can communicate with each other.
  • the lens unit 5121 is an optical system provided at a connection portion with the lens barrel 5117. Observation light taken from the tip of the lens barrel 5117 is guided to the camera head 5119 and enters the lens unit 5121.
  • the lens unit 5121 is configured by combining a plurality of lenses including a zoom lens and a focus lens. The optical characteristics of the lens unit 5121 are adjusted so that the observation light is condensed on the light receiving surface of the image sensor of the imaging unit 5123. Further, the zoom lens and the focus lens are configured such that their positions on the optical axis are movable in order to adjust the magnification and focus of the captured image.
  • the imaging unit 5123 is configured by an imaging element, and is arranged at the rear stage of the lens unit 5121.
  • the observation light that has passed through the lens unit 5121 is collected on the light receiving surface of the imaging element, and an image signal corresponding to the observation image is generated by photoelectric conversion.
  • the image signal generated by the imaging unit 5123 is provided to the communication unit 5127.
  • the image pickup element constituting the image pickup unit 5123 for example, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor that can perform color photographing having a Bayer array is used.
  • the imaging element for example, an element capable of capturing a high-resolution image of 4K or more may be used.
  • the image sensor that constitutes the image capturing unit 5123 is configured to have a pair of image sensors for acquiring right-eye and left-eye image signals corresponding to 3D display. By performing the 3D display, the operator 5181 can more accurately grasp the depth of the living tissue in the surgical site. Note that in the case where the imaging unit 5123 is configured as a multi-plate type, a plurality of lens units 5121 are also provided corresponding to each imaging element.
  • the imaging unit 5123 is not necessarily provided in the camera head 5119.
  • the imaging unit 5123 may be provided inside the lens barrel 5117 immediately after the objective lens.
  • the driving unit 5125 includes an actuator, and moves the zoom lens and the focus lens of the lens unit 5121 by a predetermined distance along the optical axis under the control of the camera head control unit 5129. Thereby, the magnification and focus of the image captured by the imaging unit 5123 can be adjusted as appropriate.
  • the communication unit 5127 includes a communication device for transmitting and receiving various types of information to and from the CCU 5153.
  • the communication unit 5127 transmits the image signal obtained from the imaging unit 5123 to the CCU 5153 via the transmission cable 5179 as RAW data.
  • the image signal is preferably transmitted by optical communication.
  • the surgeon 5181 performs the surgery while observing the state of the affected part with the captured image, so that a moving image of the surgical part is displayed in real time as much as possible for safer and more reliable surgery. Because it is required.
  • the communication unit 5127 is provided with a photoelectric conversion module that converts an electrical signal into an optical signal.
  • the image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5153 via the transmission cable 5179.
  • the communication unit 5127 receives a control signal for controlling the driving of the camera head 5119 from the CCU 5153.
  • the control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
  • the communication unit 5127 provides the received control signal to the camera head control unit 5129.
  • the control signal from the CCU 5153 may also be transmitted by optical communication.
  • the communication unit 5127 is provided with a photoelectric conversion module that converts an optical signal into an electrical signal.
  • the control signal is converted into an electrical signal by the photoelectric conversion module and then provided to the camera head control unit 5129.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus are automatically set by the control unit 5177 of the CCU 5153 based on the acquired image signal. That is, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 5115.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Automatic White Balance
  • the camera head control unit 5129 controls driving of the camera head 5119 based on a control signal from the CCU 5153 received via the communication unit 5127. For example, the camera head control unit 5129 controls driving of the image sensor of the imaging unit 5123 based on information indicating that the frame rate of the captured image is specified and / or information indicating that the exposure at the time of imaging is specified. For example, the camera head control unit 5129 appropriately moves the zoom lens and the focus lens of the lens unit 5121 via the drive unit 5125 based on information indicating that the magnification and focus of the captured image are designated.
  • the camera head control unit 5129 may further have a function of storing information for identifying the lens barrel 5117 and the camera head 5119.
  • the camera head 5119 can be resistant to autoclave sterilization by arranging the lens unit 5121, the imaging unit 5123, and the like in a sealed structure with high airtightness and waterproofness.
  • the communication unit 5173 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 5119.
  • the communication unit 5173 receives an image signal transmitted from the camera head 5119 via the transmission cable 5179.
  • the image signal can be suitably transmitted by optical communication.
  • the communication unit 5173 is provided with a photoelectric conversion module that converts an optical signal into an electric signal.
  • the communication unit 5173 provides the image processing unit 5175 with the image signal converted into the electrical signal.
  • the communication unit 5173 transmits a control signal for controlling the driving of the camera head 5119 to the camera head 5119.
  • the control signal may also be transmitted by optical communication.
  • the image processing unit 5175 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 5119. Examples of the image processing include development processing, high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing). Various known signal processing is included. Further, the image processing unit 5175 performs detection processing on the image signal for performing AE, AF, and AWB.
  • the image processing unit 5175 is configured by a processor such as a CPU or a GPU, and the above-described image processing and detection processing can be performed by the processor operating according to a predetermined program. Note that when the image processing unit 5175 includes a plurality of GPUs, the image processing unit 5175 appropriately divides information related to the image signal, and performs image processing in parallel with the plurality of GPUs.
  • the control unit 5177 performs various controls relating to imaging of the surgical site by the endoscope 5115 and display of the captured image. For example, the control unit 5177 generates a control signal for controlling driving of the camera head 5119. At this time, when the imaging condition is input by the user, the control unit 5177 generates a control signal based on the input by the user. Alternatively, when the endoscope 5115 is equipped with the AE function, the AF function, and the AWB function, the control unit 5177 determines the optimum exposure value, focal length, and the distance according to the detection processing result by the image processing unit 5175. A white balance is appropriately calculated and a control signal is generated.
  • control unit 5177 causes the display device 5155 to display an image of the surgical site based on the image signal subjected to image processing by the image processing unit 5175.
  • the control unit 5177 recognizes various objects in the surgical unit image using various image recognition techniques. For example, the control unit 5177 detects the shape and color of the edge of the object included in the surgical part image, thereby removing surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 5135, and the like. Can be recognized.
  • the control unit 5177 causes various types of surgery support information to be superimposed and displayed on the image of the surgical site using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 5181, so that the surgery can be performed more safely and reliably.
  • the transmission cable 5179 connecting the camera head 5119 and the CCU 5153 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 5179, but communication between the camera head 5119 and the CCU 5153 may be performed wirelessly.
  • communication between the two is performed wirelessly, there is no need to install the transmission cable 5179 in the operating room, so that the situation where the movement of the medical staff in the operating room is hindered by the transmission cable 5179 can be solved.
  • the operating room system 5100 to which the technology according to the present disclosure can be applied has been described.
  • the medical system to which the operating room system 5100 is applied is the endoscopic operating system 5113 is described here as an example
  • the configuration of the operating room system 5100 is not limited to such an example.
  • the operating room system 5100 may be applied to an examination flexible endoscope system or a microscope operation system instead of the endoscope operation system 5113.
  • the medical light source device capable of increasing the amount of output light of the present technology, it is possible to image the observation target site under the irradiation light with the increased amount of light, and a bright image as a whole. It is possible to obtain a more accurate endoscopic diagnosis.
  • the light source device denoted by reference numeral 5350 in FIG. 18 corresponds to the medical light source device according to the present disclosure. As shown in FIG. 18, the light source device 5350 is installed on the side surface of a fifth link 5313e described later of the microscope device 5301. In FIG. 17, the light source device is not shown.
  • the output light from the light source device 5350 passes through a light guide cable constituted by an optical fiber or the like provided in an arm portion 5309 described later, and covers glass from a lower end opening surface of a cylindrical portion 5305 of the microscope portion 5303 described later. It irradiates with respect to an observation object via.
  • the microscope system includes a microscope unit 5303 as a microscope, a light source device 5350 connected to the microscope unit 5303, and a light guide cable.
  • the microscope unit 5303 guides the output light from the light source device 5350 and irradiates the site to be observed.
  • FIG. 17 is a diagram illustrating an example of a schematic configuration of a microscopic surgery system 5300 to which the technology according to the present disclosure can be applied.
  • the microscope surgery system 5300 includes a microscope device 5301, a control device 5317, and a display device 5319.
  • “user” means any medical staff who uses the microscope surgery system 5300, such as an operator and an assistant.
  • the microscope apparatus 5301 includes a microscope unit 5303 for magnifying and observing an observation target (a patient's surgical site), an arm unit 5309 that supports the microscope unit 5303 at the distal end, and a base unit 5315 that supports the proximal end of the arm unit 5309. Have.
  • the microscope unit 5303 includes a substantially cylindrical cylindrical part 5305, an imaging unit (not shown) provided inside the cylindrical part 5305, and an operation unit 5307 provided in a partial area on the outer periphery of the cylindrical part 5305. And.
  • the microscope unit 5303 is an electronic imaging type microscope unit (so-called video type microscope unit) in which a captured image is electronically captured by the imaging unit.
  • a cover glass that protects the internal imaging unit is provided on the opening surface at the lower end of the cylindrical part 5305.
  • Light from the observation target (hereinafter also referred to as observation light) passes through the cover glass and enters the imaging unit inside the cylindrical part 5305.
  • a light source such as an LED (Light Emitting Diode) may be provided inside the cylindrical portion 5305, and light is emitted from the light source to the observation target through the cover glass during imaging. May be.
  • the imaging unit includes an optical system that collects the observation light and an image sensor that receives the observation light collected by the optical system.
  • the optical system is configured by combining a plurality of lenses including a zoom lens and a focus lens, and the optical characteristics thereof are adjusted so that the observation light is imaged on the light receiving surface of the image sensor.
  • the imaging element receives the observation light and photoelectrically converts it to generate a signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • an element having a Bayer array capable of color photography is used.
  • the image sensor may be various known image sensors such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor.
  • the image signal generated by the image sensor is transmitted to the control device 5317 as RAW data.
  • the transmission of the image signal may be preferably performed by optical communication.
  • the surgeon performs the operation while observing the state of the affected area with the captured image.
  • the moving image of the surgical site should be displayed in real time as much as possible. Because it is.
  • a captured image can be displayed with low latency.
  • the imaging unit may have a drive mechanism that moves the zoom lens and focus lens of the optical system along the optical axis. By appropriately moving the zoom lens and the focus lens by the drive mechanism, the enlargement magnification of the captured image and the focal length at the time of imaging can be adjusted.
  • the imaging unit may be equipped with various functions that can be generally provided in an electronic imaging microscope unit, such as an AE (Auto Exposure) function and an AF (Auto Focus) function.
  • the imaging unit may be configured as a so-called single-plate imaging unit having one imaging element, or may be configured as a so-called multi-plate imaging unit having a plurality of imaging elements.
  • image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them.
  • the said imaging part may be comprised so that it may have a pair of image sensor for each acquiring the image signal for right eyes and left eyes corresponding to a stereoscopic vision (3D display). By performing the 3D display, the surgeon can more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of optical systems can be provided corresponding to each imaging element.
  • the operation unit 5307 is configured by, for example, a cross lever or a switch, and is an input unit that receives a user operation input.
  • the user can input an instruction to change the magnification of the observation image and the focal length to the observation target via the operation unit 5307.
  • the magnification ratio and the focal length can be adjusted by appropriately moving the zoom lens and the focus lens by the drive mechanism of the imaging unit in accordance with the instruction.
  • the user can input an instruction to switch the operation mode (all-free mode and fixed mode described later) of the arm unit 5309 via the operation unit 5307.
  • the operation unit 5307 may be provided at a position where the user can easily operate with a finger while holding the tubular portion 5305 so that the operation portion 5307 can be operated while the tubular portion 5305 is moved. preferable.
  • the arm portion 5309 is configured by a plurality of links (first link 5313a to sixth link 5313f) being connected to each other by a plurality of joint portions (first joint portion 5311a to sixth joint portion 5311f). Is done.
  • the first joint portion 5311a has a substantially cylindrical shape, and at its tip (lower end), the upper end of the cylindrical portion 5305 of the microscope portion 5303 is a rotation axis (first axis) parallel to the central axis of the cylindrical portion 5305. O 1 ) is supported so as to be rotatable around.
  • the first joint portion 5311a may be configured such that the first axis O 1 coincides with the optical axis of the imaging unit of the microscope unit 5303.
  • the first link 5313a fixedly supports the first joint portion 5311a at the tip. More specifically, the first link 5313a is a rod-shaped member having a substantially L-shaped, while stretching in the direction in which one side of the front end side is perpendicular to the first axis O 1, the end portion of the one side is first It connects to the 1st joint part 5311a so that it may contact
  • the second joint portion 5311b is connected to the end portion on the other side of the substantially L-shaped base end side of the first link 5313a.
  • the second joint portion 5311b has a substantially cylindrical shape, and at the tip thereof, the base end of the first link 5313a can be rotated around a rotation axis (second axis O 2 ) orthogonal to the first axis O 1. To support.
  • the distal end of the second link 5313b is fixedly connected to the proximal end of the second joint portion 5311b.
  • the second link 5313b is a rod-shaped member having a substantially L-shaped, while stretching in the direction in which one side of the front end side is perpendicular to the second axis O 2, the ends of the one side of the second joint portion 5311b Fixedly connected to the proximal end.
  • a third joint portion 5311c is connected to the other side of the base end side of the substantially L-shaped base of the second link 5313b.
  • the third joint portion 5311c has a substantially cylindrical shape, and at its tip, the base end of the second link 5313b is a rotation axis (third axis O 3) orthogonal to the first axis O 1 and the second axis O 2. ) Support so that it can rotate around.
  • the distal end of the third link 5313c is fixedly connected to the proximal end of the third joint portion 5311c.
  • the microscope unit 5303 is moved so as to change the position of the microscope unit 5303 in the horizontal plane by rotating the configuration on the distal end side including the microscope unit 5303 around the second axis O 2 and the third axis O 3. Can be made. That is, by controlling the rotation around the second axis O 2 and the third axis O 3 , the field of view of the captured image can be moved in a plane.
  • the third link 5313c is configured such that the distal end side thereof has a substantially cylindrical shape, and the proximal end of the third joint portion 5311c has substantially the same central axis at the distal end of the cylindrical shape. Fixedly connected.
  • the proximal end side of the third link 5313c has a prismatic shape, and the fourth joint portion 5311d is connected to the end portion thereof.
  • the fourth joint portion 5311d has a substantially cylindrical shape, and at the tip thereof, the base end of the third link 5313c can be rotated around a rotation axis (fourth axis O 4 ) orthogonal to the third axis O 3. To support.
  • the distal end of the fourth link 5313d is fixedly connected to the proximal end of the fourth joint portion 5311d.
  • Fourth link 5313d is a rod-shaped member extending substantially in a straight line, while stretched so as to be orthogonal to the fourth axis O 4, the end of the tip side of the substantially cylindrical shape of the fourth joint portion 5311d It is fixedly connected to the fourth joint portion 5311d so as to abut.
  • the fifth joint portion 5311e is connected to the base end of the fourth link 5313d.
  • the fifth joint portion 5311e has a substantially cylindrical shape, and on the distal end side thereof, the base end of the fourth link 5313d can be rotated around a rotation axis (fifth axis O 5 ) parallel to the fourth axis O 4. To support.
  • the distal end of the fifth link 5313e is fixedly connected to the proximal end of the fifth joint portion 5311e.
  • the fourth axis O 4 and the fifth axis O 5 are rotation axes that can move the microscope unit 5303 in the vertical direction.
  • the fifth link 5313e includes a first member having a substantially L shape in which one side extends in the vertical direction and the other side extends in the horizontal direction, and a portion extending in the horizontal direction of the first member in a vertically downward direction. A rod-shaped second member that extends is combined.
  • the proximal end of the fifth joint portion 5311e is fixedly connected in the vicinity of the upper end of the portion of the fifth link 5313e extending in the vertical direction of the first member.
  • the sixth joint portion 5311f is connected to the proximal end (lower end) of the second member of the fifth link 5313e.
  • the sixth joint portion 5311f has a substantially cylindrical shape, and supports the base end of the fifth link 5313e on the distal end side thereof so as to be rotatable about a rotation axis (sixth axis O 6 ) parallel to the vertical direction. .
  • the distal end of the sixth link 5313f is fixedly connected to the proximal end of the sixth joint portion 5311f.
  • the sixth link 5313f is a rod-like member extending in the vertical direction, and its base end is fixedly connected to the upper surface of the base portion 5315.
  • the rotatable range of the first joint portion 5311a to the sixth joint portion 5311f is appropriately set so that the microscope portion 5303 can perform a desired movement.
  • a total of 6 degrees of freedom of translational 3 degrees of freedom and 3 degrees of freedom of rotation can be realized with respect to the movement of the microscope unit 5303.
  • the position and posture of the microscope unit 5303 can be freely controlled within the movable range of the arm unit 5309. It becomes possible. Therefore, the surgical site can be observed from any angle, and the surgery can be performed more smoothly.
  • the configuration of the arm portion 5309 shown in the figure is merely an example, and the number and shape (length) of the links constituting the arm portion 5309, the number of joint portions, the arrangement position, the direction of the rotation axis, and the like are desired. It may be designed as appropriate so that the degree can be realized.
  • the arm unit 5309 in order to freely move the microscope unit 5303, the arm unit 5309 is preferably configured to have six degrees of freedom, but the arm unit 5309 has a greater degree of freedom (ie, redundant freedom). Degree).
  • the arm unit 5309 can change the posture of the arm unit 5309 while the position and posture of the microscope unit 5303 are fixed. Therefore, for example, control that is more convenient for the operator can be realized, such as controlling the posture of the arm unit 5309 so that the arm unit 5309 does not interfere with the field of view of the operator who views the display device 5319.
  • the first joint portion 5311a to the sixth joint portion 5311f may be provided with actuators mounted with a drive mechanism such as a motor, an encoder for detecting a rotation angle at each joint portion, and the like. Then, the drive of each actuator provided in the first joint portion 5311a to the sixth joint portion 5311f is appropriately controlled by the control device 5317, whereby the posture of the arm portion 5309, that is, the position and posture of the microscope portion 5303 can be controlled. . Specifically, the control device 5317 grasps the current posture of the arm unit 5309 and the current position and posture of the microscope unit 5303 based on information about the rotation angle of each joint unit detected by the encoder. Can do.
  • a drive mechanism such as a motor, an encoder for detecting a rotation angle at each joint portion, and the like.
  • the control device 5317 calculates the control value (for example, rotation angle or generated torque) for each joint unit that realizes the movement of the microscope unit 5303 according to the operation input from the user, using the grasped information. And the drive mechanism of each joint part is driven according to the said control value.
  • the control method of the arm unit 5309 by the control device 5317 is not limited, and various known control methods such as force control or position control may be applied.
  • the drive of the arm unit 5309 is appropriately controlled by the control device 5317 according to the operation input, and the position and posture of the microscope unit 5303 are controlled. May be.
  • the microscope unit 5303 can be moved from an arbitrary position to an arbitrary position and then fixedly supported at the position after the movement.
  • an input device that can be operated even if the operator has a surgical tool in his / her hand.
  • non-contact operation input may be performed based on gesture detection or gaze detection using a wearable device or a camera provided in an operating room.
  • the arm portion 5309 may be operated by a so-called master slave method.
  • the arm unit 5309 can be remotely operated by the user via an input device installed at a location away from the operating room.
  • the actuators of the first joint portion 5311a to the sixth joint portion 5311f are driven so that the external force from the user is received and the arm portion 5309 moves smoothly according to the external force.
  • so-called power assist control may be performed.
  • the driving of the arm portion 5309 may be controlled so as to perform a pivoting operation.
  • the pivoting operation is an operation of moving the microscope unit 5303 so that the optical axis of the microscope unit 5303 always faces a predetermined point in space (hereinafter referred to as a pivot point). According to the pivot operation, the same observation position can be observed from various directions, so that more detailed observation of the affected area is possible.
  • the pivot operation is performed in a state where the distance between the microscope unit 5303 and the pivot point is fixed. In this case, the distance between the microscope unit 5303 and the pivot point may be adjusted to a fixed focal length of the microscope unit 5303.
  • the microscope unit 5303 moves on a hemispherical surface (schematically illustrated in FIG. 18) having a radius corresponding to the focal length centered on the pivot point, and is clear even if the observation direction is changed. A captured image is obtained.
  • the microscope unit 5303 is configured to be adjustable in focal length
  • the pivot operation may be performed in a state where the distance between the microscope unit 5303 and the pivot point is variable.
  • the control device 5317 calculates the distance between the microscope unit 5303 and the pivot point based on the information about the rotation angle of each joint unit detected by the encoder, and based on the calculation result, the microscope 5317
  • the focal length of the unit 5303 may be automatically adjusted.
  • the microscope unit 5303 is provided with an AF function
  • the focal length may be automatically adjusted by the AF function every time the distance between the microscope unit 5303 and the pivot point is changed by the pivot operation. .
  • the first joint portion 5311a to the sixth joint portion 5311f may be provided with a brake that restrains the rotation thereof.
  • the operation of the brake can be controlled by the control device 5317.
  • the control device 5317 activates the brake of each joint unit. Accordingly, since the posture of the arm unit 5309, that is, the position and posture of the microscope unit 5303 can be fixed without driving the actuator, power consumption can be reduced.
  • the control device 5317 may release the brake of each joint unit and drive the actuator according to a predetermined control method.
  • Such an operation of the brake can be performed according to an operation input by the user via the operation unit 5307 described above.
  • the user wants to move the position and posture of the microscope unit 5303, the user operates the operation unit 5307 to release the brakes of the joint units.
  • the operation mode of the arm part 5309 shifts to a mode (all free mode) in which the rotation at each joint part can be freely performed.
  • the user wants to fix the position and posture of the microscope unit 5303, the user operates the operation unit 5307 to activate the brakes of the joint units.
  • the operation mode of the arm part 5309 shifts to a mode (fixed mode) in which rotation at each joint part is restricted.
  • the control device 5317 comprehensively controls the operation of the microscope operation system 5300 by controlling the operations of the microscope device 5301 and the display device 5319.
  • the control device 5317 controls the driving of the arm portion 5309 by operating the actuators of the first joint portion 5311a to the sixth joint portion 5311f according to a predetermined control method.
  • the control device 5317 changes the operation mode of the arm portion 5309 by controlling the brake operation of the first joint portion 5311a to the sixth joint portion 5311f.
  • the control device 5317 performs various kinds of signal processing on the image signal acquired by the imaging unit of the microscope unit 5303 of the microscope device 5301 to generate image data for display and display the image data. It is displayed on the device 5319.
  • the signal processing for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.) and / or enlargement processing (that is, Various known signal processing such as electronic zoom processing may be performed.
  • communication between the control device 5317 and the microscope unit 5303 and communication between the control device 5317 and the first joint unit 5311a to the sixth joint unit 5311f may be wired communication or wireless communication.
  • wired communication communication using electrical signals may be performed, or optical communication may be performed.
  • a transmission cable used for wired communication can be configured as an electric signal cable, an optical fiber, or a composite cable thereof depending on the communication method.
  • wireless communication there is no need to lay a transmission cable in the operating room, so that the situation where the transmission cable prevents the medical staff from moving in the operating room can be eliminated.
  • the control device 5317 may be a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), or a microcomputer or a control board in which a processor and a storage element such as a memory are mixedly mounted.
  • the various functions described above can be realized by the processor of the control device 5317 operating according to a predetermined program.
  • the control device 5317 is provided as a separate device from the microscope device 5301, but the control device 5317 is installed inside the base portion 5315 of the microscope device 5301 and integrated with the microscope device 5301. May be configured.
  • the control device 5317 may be configured by a plurality of devices.
  • a microcomputer, a control board, and the like are arranged in the microscope unit 5303 and the first joint unit 5311a to the sixth joint unit 5311f of the arm unit 5309, and these are communicably connected to each other. Similar functions may be realized.
  • the display device 5319 is provided in the operating room, and displays an image corresponding to the image data generated by the control device 5317 under the control of the control device 5317. In other words, the display device 5319 displays an image of the surgical part taken by the microscope unit 5303.
  • the display device 5319 may display various types of information related to the surgery, such as information about the patient's physical information and the surgical technique, for example, instead of or together with the image of the surgical site. In this case, the display of the display device 5319 may be switched as appropriate by a user operation.
  • a plurality of display devices 5319 may be provided, and each of the plurality of display devices 5319 may display an image of the surgical site and various types of information regarding surgery.
  • various known display devices such as a liquid crystal display device or an EL (Electro Luminescence) display device may be applied.
  • FIG. 18 is a diagram showing a state of surgery using the microscope surgery system 5300 shown in FIG.
  • a state in which an operator 5321 performs an operation on a patient 5325 on a patient bed 5323 using a microscope operation system 5300 is schematically shown.
  • the control device 5317 is omitted from the configuration of the microscope surgery system 5300 and the microscope device 5301 is illustrated in a simplified manner.
  • an image of the surgical part taken by the microscope apparatus 5301 is enlarged and displayed on the display device 5319 installed on the wall of the operating room using the microscope operation system 5300.
  • the display device 5319 is installed at a position facing the surgeon 5321, and the surgeon 5321 observes the state of the surgical site by an image projected on the display device 5319, for example, the surgical site such as excision of the affected site.
  • Various treatments are performed on
  • the microscopic surgery system 5300 to which the technology according to the present disclosure can be applied has been described.
  • the microscopic surgery system 5300 has been described as an example, but a system to which the technology according to the present disclosure can be applied is not limited to such an example.
  • the microscope apparatus 5301 can function as a support arm apparatus that supports another observation apparatus or another surgical tool instead of the microscope unit 5303 at the tip.
  • an endoscope can be applied.
  • the other surgical tools forceps, a lever, an insufflation tube for insufflation, or an energy treatment instrument for incising a tissue or sealing a blood vessel by cauterization can be applied.
  • the technology according to the present disclosure may be applied to a support arm device that supports a configuration other than the microscope unit.
  • the medical light source device capable of increasing the amount of output light according to the present technology, it is possible to image an observation target region under irradiation light with an increased amount of light.
  • various treatments can be performed on the surgical site more accurately, for example, excision of the affected area, while observing the state of the surgical site displayed in a bright image.
  • a broadband light source that emits broadband light having a wavelength band including a visible region, a plurality of narrow band light sources that emit narrow band light having a narrower wavelength band than the broadband light, and a plurality of narrow band light sources respectively.
  • a medical light source device comprising: the narrow band light having the same polarization direction; and an optical element comprising a dielectric multilayer film on which the broadband light is incident;
  • a microscope system comprising: a microscope that is connected to the medical light source device and guides output light from the medical light source device.
  • a broadband light source that emits broadband light having a wavelength band including the visible region;
  • a plurality of narrowband light sources that emit narrowband light having a narrower wavelength band than the broadband light;
  • a medical light source device comprising: the narrow band light emitted from each of the plurality of narrow band light sources and having the same polarization direction and an optical element including a dielectric multilayer film on which the broadband light is incident.
  • the optical element transmits a plurality of the narrow-band lights whose incident polarization directions are all P-polarized light and reflects the incident broadband light.
  • the optical element reflects a plurality of the narrow-band lights whose incident polarization directions are all S-polarized light and transmits the incident broadband lights.
  • the optical element is a wavelength selection element.
  • the optical element is a polarization selection element.
  • Each of the first lens group, the second lens group, and the third lens group is made of a glass material having a refractive index Nd of greater than 1.70 and less than 1.85, and an Abbe number ⁇ d of greater than 40 and less than 55.
  • the medical light source device according to (7) above, The medical light source device, wherein the first lens group, the second lens group, and the third lens group include an antireflection film having the same antireflection characteristic.
  • the medical light source device according to any one of (2) to (8) above, The medical light source device, wherein the broadband light is white light.
  • the medical light source device according to any one of (2) to (9), The narrow-band light is a laser beam.

Abstract

[Problem] To provide a microscope system and a medical light source device which have good light utilization efficiency. [Solution] The microscope system is provided with a medical light source device and a microscope. The medical light source device is provided with: a broadband light source which emits broadband light having a wavelength band including a visible light range; a plurality of narrowband light sources which emit narrowband light having a wavelength band narrower than the broadband light; and an optical element having a dielectric multilayer onto which the broadband light and the narrowband light, emitted from each of the plurality of narrowband light sources and considered to have the same polarization direction, are incident. The microscope is connected with the medical light source device and guides the light emitted from the medical light source device.

Description

顕微鏡システム及び医療用光源装置Microscope system and medical light source device
 本技術は、顕微鏡システム及び医療用光源装置に関する。 This technology relates to a microscope system and a medical light source device.
 医療分野において、人等の観察対象物の内部(生体内)を撮像し、当該生体内を観察する内視鏡システムが知られている。内視鏡システムは、生体内に挿入される内視鏡と、光源装置を備えている(例えば、特許文献1参照)。内視鏡内には光源装置から出射された光を伝達する光ファイバが設けられ、内視鏡の先端からは内視鏡内を通過した光源装置からの光が観察対象部位に対して照射される。 In the medical field, an endoscope system is known in which an inside (in vivo) of an observation target such as a person is imaged and the inside of the living body is observed. The endoscope system includes an endoscope inserted into a living body and a light source device (see, for example, Patent Document 1). An optical fiber that transmits light emitted from the light source device is provided in the endoscope, and light from the light source device that has passed through the endoscope is irradiated to the observation target portion from the distal end of the endoscope. The
 内視鏡システムや顕微鏡システムといった医療用観察システムでは、照明光により照明された観察対象部位を撮像して得られた画像を用いて診断が行なわれる。特許文献1の内視鏡用光源装置は、白色照明光と狭帯域光とを合波し照明光として出射することが可能に構成されている。 In a medical observation system such as an endoscope system or a microscope system, diagnosis is performed using an image obtained by imaging an observation target portion illuminated with illumination light. The endoscope light source device of Patent Document 1 is configured to be able to combine white illumination light and narrowband light and emit as illumination light.
特開2012-81133号公報JP 2012-81133 A
 より正確な診断には、画像全体を明るくすることが望ましい。
 以上のような事情に鑑み、本技術の目的は、光利用効率のよい顕微鏡システム及び医療用光源装置を提供することにある。
For more accurate diagnosis, it is desirable to brighten the entire image.
In view of the circumstances as described above, an object of the present technology is to provide a microscope system and a medical light source device with high light use efficiency.
 上記目的を達成するため、本技術の一形態に係る顕微鏡システムは、医療用光源装置と、顕微鏡とを具備する。
 上記医療用光源装置は、可視領域を含む波長帯域を持つ広帯域光を出射する広帯域光源と、上記広帯域光より狭い波長帯域の狭帯域光を出射する複数の狭帯域光源と、複数の上記狭帯域光源それぞれから出射され、互いに偏光方向が同じ状態とされた上記狭帯域光と上記広帯域光が入射される誘電体多層膜を備えた光学素子とを備える。
 上記顕微鏡は、上記医療用光源装置と接続し、上記医療用光源装置からの出力光を導光する。
In order to achieve the above object, a microscope system according to an embodiment of the present technology includes a medical light source device and a microscope.
The medical light source device includes: a broadband light source that emits broadband light having a wavelength band including a visible region; a plurality of narrow band light sources that emit narrow band light having a narrower wavelength band than the broadband light; and a plurality of the narrow bands The narrow band light emitted from each light source and having the same polarization direction and an optical element including a dielectric multilayer film on which the broadband light is incident.
The microscope is connected to the medical light source device and guides output light from the medical light source device.
 このような構成によれば、医療用光源装置は、複数の狭帯域光は互いに偏光方向が同一となって光学素子に入射されるので、狭帯域光の光利用効率がよいものとなる。これにより、入射される狭帯域光と広帯域光とを光学素子で合波してなる合波光の光量を増加させることができる。したがって、被照射体に照射する光の光量を増加させることができる。 According to such a configuration, in the medical light source device, the plurality of narrow band lights have the same polarization direction and are incident on the optical element, so that the light use efficiency of the narrow band light is good. Thereby, the light quantity of the combined light formed by combining the incident narrowband light and broadband light with the optical element can be increased. Therefore, it is possible to increase the amount of light irradiated to the irradiated object.
 上記目的を達成するため、本技術の一形態に係る医療用光源装置は、広帯域光源と、複数の狭帯域光源と、光学素子とを具備する。
 上記広帯域光源は、可視領域を含む波長帯域を持つ広帯域光を出射する。
 上記狭帯域光源は、上記広帯域光より狭い波長帯域の狭帯域光を出射する。
 上記光学素子は、複数の上記狭帯域光源それぞれから出射され、互いに偏光方向が同じ状態とされた上記狭帯域光と上記広帯域光が入射される誘電体多層膜を備える。
In order to achieve the above object, a medical light source device according to an embodiment of the present technology includes a broadband light source, a plurality of narrow-band light sources, and an optical element.
The broadband light source emits broadband light having a wavelength band including a visible region.
The narrowband light source emits narrowband light having a narrower wavelength band than the broadband light.
The optical element includes a dielectric multilayer film that is emitted from each of the plurality of narrowband light sources and into which the narrowband light and the broadband light that are in the same polarization direction are incident.
 このような構成によれば、複数の狭帯域光は互いに偏光方向が同一となって光学素子に入射されるので、狭帯域光の光利用効率が向上する。これにより、入射される狭帯域光と広帯域光とを光学素子で合波してなる合波光の光量を増加させることができる。 According to such a configuration, a plurality of narrowband lights having the same polarization direction are incident on the optical element, so that the light use efficiency of the narrowband light is improved. Thereby, the light quantity of the combined light formed by combining the incident narrowband light and broadband light with the optical element can be increased.
 上記光学素子は、入射された偏光方向が全てP偏光である複数の上記狭帯域光を透過させ、入射された上記広帯域光を反射させてもよい。 The optical element may transmit a plurality of the narrowband light whose incident polarization directions are all P-polarized light and reflect the incident broadband light.
 このような構成によれば、P偏光の透過波長帯域はS偏光の透過波長帯域よりも広いため、P偏光の狭帯域光を用いて合波する場合、P偏光の狭帯域光が透過するように光学素子を配置することが好ましく、狭帯域光の光利用効率が向上する。 According to such a configuration, since the transmission wavelength band of P-polarized light is wider than the transmission wavelength band of S-polarized light, when combining with the narrow band light of P-polarized light, the narrow band light of P-polarized light is transmitted. It is preferable to dispose an optical element in this, and the light utilization efficiency of narrowband light is improved.
 上記光学素子は、入射された偏光方向が全てS偏光である複数の上記狭帯域光を反射させ、入射された上記広帯域光を透過させてもよい。 The optical element may reflect a plurality of the narrowband light whose incident polarization directions are all S-polarized light and transmit the incident broadband light.
 このような構成によれば、S偏光の反射波長帯域はP偏光の反射波長帯域よりも広いため、S偏光の狭帯域光を用いて合波する場合は、S偏光の狭帯域光が反射するように光学素子を配置することが好ましく、狭帯域光の光利用効率が向上する。 According to such a configuration, since the reflection wavelength band of S-polarized light is wider than the reflection wavelength band of P-polarized light, when combining using S-polarized narrow band light, S-polarized narrow band light is reflected. It is preferable to arrange the optical elements in this manner, and the light utilization efficiency of narrowband light is improved.
 上記光学素子は波長選択素子であってもよい。
 これにより、光学素子で偏光方向が同一の狭帯域光と無偏光の広帯域光が合波された光が生成される。
The optical element may be a wavelength selection element.
As a result, light in which the narrow band light having the same polarization direction and the non-polarized broadband light are combined by the optical element is generated.
 上記光学素子は偏光選択素子であってもよい。
 これにより、光学素子で、偏光方向が同一の狭帯域光と、狭帯域光と偏光方向が直交する偏光の広帯域光が合波された光が生成される。
The optical element may be a polarization selection element.
As a result, the optical element generates light in which narrowband light having the same polarization direction and broadband light having a polarization that is orthogonal to the narrowband light are combined.
 上記広帯域光源と上記光学素子との間に位置し、入射された上記広帯域光をコリメートし、上記光学素子に向かって出射する第1のレンズ群と、上記狭帯域光源と上記光学素子との間に位置し、入射された偏光方向が同じ状態とされた複数の上記狭帯域光をコリメートし、上記光学素子に向かって出射する第2のレンズ群と、上記光学素子からの光が入射され、照明光として出射する第3のレンズ群とを更に具備し、上記第1のレンズ群、上記第2のレンズ群及び上記第3のレンズ群は、屈折率Ndが1.70より大きく1.85より小さく、アッベ数νdが40より大きく55より小さい硝材を有してもよい。 A first lens group that is positioned between the broadband light source and the optical element, collimates the incident broadband light, and emits the light toward the optical element, and between the narrow band light source and the optical element. A second lens group that collimates the plurality of narrow-band lights having the same polarization direction and is emitted toward the optical element; and the light from the optical element is incident; And a third lens group that emits as illumination light. The first lens group, the second lens group, and the third lens group have a refractive index Nd greater than 1.70 and 1.85. The glass material may be smaller and the Abbe number νd may be greater than 40 and less than 55.
 上記第1のレンズ群、上記第2のレンズ群及び上記第3のレンズ群は、同一の反射防止特性を有する反射防止膜を有してもよい。
 第1のレンズ群、第2のレンズ群及び第3のレンズ群は、屈折率及びアッベ数が同じ同一の硝材を用いて構成可能であるので、同一の特性の反射防止膜をそれぞれの硝材に成膜することができ、製造効率が良い。
The first lens group, the second lens group, and the third lens group may have an antireflection film having the same antireflection characteristics.
Since the first lens group, the second lens group, and the third lens group can be configured using the same glass material having the same refractive index and the same Abbe number, an antireflection film having the same characteristics is used for each glass material. Films can be formed and manufacturing efficiency is good.
 上記広帯域光は白色光であってもよい。
 上記狭帯域光はレーザ光であってもよい。
 上記医療用光源装置は、顕微鏡又は内視鏡に接続可能に構成されてもよい。
The broadband light may be white light.
The narrowband light may be laser light.
The medical light source device may be configured to be connectable to a microscope or an endoscope.
 以上のように、本技術によれば、照射光の光量の低減が抑制された内視鏡システム及び医療用光源装置を得ることができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 As described above, according to the present technology, it is possible to obtain an endoscope system and a medical light source device in which a reduction in the amount of irradiation light is suppressed. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の第1及び第2の実施形態に係る医療用光源装置を適用した内視鏡システムの構成の一例について模式的に説明するための説明図である。It is explanatory drawing for demonstrating typically an example of a structure of the endoscope system to which the medical light source device which concerns on 1st and 2nd embodiment of this technique is applied. 第1の実施形態に係る医療用光源装置の一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the medical light source device which concerns on 1st Embodiment. 図2の医療用光源装置に用いられるダイクロイックミラーの特性を示す図である。It is a figure which shows the characteristic of the dichroic mirror used for the medical light source device of FIG. 狭帯域光の偏光方向を考慮しない場合とP偏光に揃えた場合における、青色光の波長帯でのダイクロイックミラーの透過率の違いを示す図である。It is a figure which shows the difference in the transmittance | permeability of the dichroic mirror in the wavelength band of blue light in the case where it does not consider the polarization direction of narrow-band light, and the case where it arranges to P polarization. 第2の実施形態に係る医療用光源装置の一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the medical light source device which concerns on 2nd Embodiment. 図5の医療用光源装置に用いられるダイクロイックミラーの特性を示す図である。It is a figure which shows the characteristic of the dichroic mirror used for the medical light source device of FIG. 第3の実施形態に係る医療用光源装置の一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the medical light source device which concerns on 3rd Embodiment. 図7に示す構成の部分図であり、狭帯域光源部からの光の光路上における光学系を説明するための模式図である。FIG. 8 is a partial view of the configuration shown in FIG. 7, which is a schematic diagram for explaining an optical system on an optical path of light from a narrow-band light source unit. 図7に示す構成の部分図であり、広帯域光源からの光の光路上における光学系を説明するための模式図である。FIG. 8 is a partial view of the configuration shown in FIG. 7, which is a schematic diagram for explaining an optical system on an optical path of light from a broadband light source. 第4の実施形態に係る医療用光源装置の一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the medical light source device which concerns on 4th Embodiment. 図10に示す構成の部分図であり、狭帯域光源部からの光の光路上における光学系を説明するための模式図である。FIG. 11 is a partial view of the configuration shown in FIG. 10, and is a schematic diagram for explaining an optical system on an optical path of light from a narrow-band light source unit. 図10に示す構成の部分図であり、広帯域光源からの光の光路上における光学系を説明するための模式図である。FIG. 11 is a partial view of the configuration shown in FIG. 10 and is a schematic diagram for explaining an optical system on an optical path of light from a broadband light source. 手術室システムの全体構成を概略的に示す図である。It is a figure showing roughly the whole operation room system composition. 集中操作パネルにおける操作画面の表示例を示す図である。It is a figure which shows the example of a display of the operation screen in a concentrated operation panel. 手術室システムが適用された手術の様子の一例を示す図である。It is a figure which shows an example of the mode of the surgery to which the operating room system was applied. 図15に示すカメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of a function structure of the camera head shown in FIG. 15, and CCU. 顕微鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of a schematic structure of a microscope operation system. 図17に示す顕微鏡手術システムを用いた手術の様子を示す図である。It is a figure which shows the mode of an operation using the microscope operation system shown in FIG.
 以下、本技術の一実施形態に係る医療用光源装置を適用した内視鏡システムを、図面を参照しながら説明する。 Hereinafter, an endoscope system to which a medical light source device according to an embodiment of the present technology is applied will be described with reference to the drawings.
 (第1の実施形態)
 [内視鏡システムの構成]
 図1を用いて、本実施形態に係る内視鏡システム1について説明する。
 内視鏡システム1は、医療分野において用いられ、人等の観察対象物の内部(生体内)を観察するシステムである。内視鏡システム1は、内視鏡2と、カメラ4と、医療用光源装置5(以下、光源装置5と称す。)と、ライトガイドケーブル6とを有する。
(First embodiment)
[Configuration of endoscope system]
An endoscope system 1 according to the present embodiment will be described with reference to FIG.
The endoscope system 1 is a system that is used in the medical field and observes the inside (in vivo) of an observation object such as a person. The endoscope system 1 includes an endoscope 2, a camera 4, a medical light source device 5 (hereinafter referred to as a light source device 5), and a light guide cable 6.
 内視鏡2は、生体内に挿入される挿入管21と、光学系22と、対物レンズ23と、ライトガイド24とを有する。内視鏡2は、光源装置5から供給された照射光7を、挿入管21の先端から被照射体である観察対象部位3に照射する。 The endoscope 2 includes an insertion tube 21 that is inserted into a living body, an optical system 22, an objective lens 23, and a light guide 24. The endoscope 2 irradiates the observation target site 3 that is an irradiated body from the distal end of the insertion tube 21 with the irradiation light 7 supplied from the light source device 5.
 挿入管21は、硬質又は少なくとも一部が軟質で細長形状を有する。挿入管21の外周面には、径方向に沿って突出し、ライトガイドケーブル6の他端が接続される接続コネクタ25が設けられている。 The insertion tube 21 is hard or at least partly soft and has an elongated shape. A connection connector 25 is provided on the outer peripheral surface of the insertion tube 21 so as to protrude along the radial direction and to which the other end of the light guide cable 6 is connected.
 対物レンズ23は、挿入管21内部の先端に設けられ、被写体像を集光する。
 光学系22は、挿入管21内部に設けられ、対物レンズ23にて集光された被写体像を挿入管21の基端まで導く。
The objective lens 23 is provided at the distal end inside the insertion tube 21 and condenses the subject image.
The optical system 22 is provided inside the insertion tube 21 and guides the subject image condensed by the objective lens 23 to the proximal end of the insertion tube 21.
 導光体としてのライトガイド24は、例えば光ファイバ等により構成される。ライトガイド24は、挿入管21内部において、先端から基端側まで引き回され、更に、接続コネクタ25側に略直角に屈曲するように延在する。 The light guide 24 as a light guide is constituted by an optical fiber, for example. The light guide 24 is routed from the distal end to the proximal end side in the insertion tube 21 and further extends to be bent at a substantially right angle toward the connection connector 25 side.
 ライトガイドケーブル6が接続コネクタ25に接続された状態では、光源装置5から供給される光は、ライトガイドケーブル6及びライトガイド24によって導光され、挿入管21先端から出射され、生体内の観察対象部位3に向かって照射される。 In a state where the light guide cable 6 is connected to the connection connector 25, the light supplied from the light source device 5 is guided by the light guide cable 6 and the light guide 24, emitted from the distal end of the insertion tube 21, and observed in the living body. Irradiation toward the target region 3.
 光源装置5にはライトガイドケーブル6の一端が接続される。光源装置5はライトガイドケーブル6に観察対象部位3に照射するための光を供給する。光源装置5の詳細については後述する。 The light source device 5 is connected to one end of a light guide cable 6. The light source device 5 supplies light for irradiating the observation target portion 3 to the light guide cable 6. Details of the light source device 5 will be described later.
 ライトガイドケーブル6は、一端が光源装置5に着脱自在に接続されるとともに、他端が挿入管21の接続コネクタ25に着脱自在に接続される。ライトガイドケーブル6は、光源装置5から供給された光を一端から他端に伝達し、挿入管21に供給する。 The light guide cable 6 has one end detachably connected to the light source device 5 and the other end detachably connected to the connection connector 25 of the insertion tube 21. The light guide cable 6 transmits light supplied from the light source device 5 from one end to the other end and supplies the light to the insertion tube 21.
 カメラ4は、挿入管21の基端に着脱自在に接続される。カメラ4はイメージセンサ(図示せず)を有し、観察対象部位3を撮像する。 The camera 4 is detachably connected to the proximal end of the insertion tube 21. The camera 4 has an image sensor (not shown) and images the observation target portion 3.
 [光源装置の構成]
 図2は、光源装置5の一構成例を示す模式図である。
 図2に示すように、光源装置5は、広帯域光源51と、狭帯域光源部52と、光学素子としてのダイクロイックミラー53と、第1のコリメートレンズ54と、第2のコリメートレンズ55と、集光レンズ56とを有する。第1のコリメートレンズ54は第1のレンズ群を構成する。集光レンズ56は第3のレンズ群を構成する。
[Configuration of light source device]
FIG. 2 is a schematic diagram illustrating a configuration example of the light source device 5.
As shown in FIG. 2, the light source device 5 includes a broadband light source 51, a narrow-band light source unit 52, a dichroic mirror 53 as an optical element, a first collimating lens 54, a second collimating lens 55, And an optical lens 56. The first collimating lens 54 constitutes a first lens group. The condensing lens 56 constitutes a third lens group.
 ダイクロイックミラー53へは、広帯域光源51からの光と、狭帯域光源部52からの光が入射される。第1のコリメートレンズ54は、光路上、広帯域光源51とダイクロイックミラー53との間に位置する。第2のコリメートレンズ55は、光路上、狭帯域光源部52とダイクロイックミラー53との間に位置する。第2のコリメートレンズ55は第2のレンズ群を構成する。
 尚、複数のレンズから構成される場合の他、1つのレンズから構成される場合においてもレンズ群と称する。
The light from the broadband light source 51 and the light from the narrow band light source unit 52 are incident on the dichroic mirror 53. The first collimating lens 54 is located between the broadband light source 51 and the dichroic mirror 53 on the optical path. The second collimating lens 55 is located between the narrow-band light source unit 52 and the dichroic mirror 53 on the optical path. The second collimating lens 55 constitutes a second lens group.
In addition, in the case where the lens is composed of a plurality of lenses, the lens group is also referred to as a lens group.
 広帯域光源51は、白色LED(Light Emitting Diode)から構成され、可視領域を含む広い波長帯域を持つ広帯域光、例えば400nm~700nmの帯域の白色光を出射する。この白色光は無偏光である。広帯域光源51から出射された白色光は、第1のコリメートレンズ54に入射する。 The broadband light source 51 is composed of a white LED (Light Emitting Diode) and emits broadband light having a wide wavelength band including the visible region, for example, white light in a band of 400 nm to 700 nm. This white light is unpolarized light. White light emitted from the broadband light source 51 is incident on the first collimating lens 54.
 狭帯域光源部52は、複数の狭帯域光源としてのレーザ光源52R、52G、52B、52IRを有する。これらレーザ光源は、広帯域光より狭い波長帯域の狭帯域光を出射する。 The narrow-band light source unit 52 includes laser light sources 52R, 52G, 52B, and 52IR as a plurality of narrow-band light sources. These laser light sources emit narrowband light having a narrower wavelength band than broadband light.
 狭帯域光源部52は、赤色レーザ光源(以下、R光源と称す。)52R、緑色レーザ光源(以下、G光源と称す。)52G、青色レーザ光源(以下、B光源と称す。)52B、赤外線レーザ光源(以下、IR光源と称す。)52IRと、IR光源用ダイクロイックミラー521と、R光源用ダイクロイックミラー522と、G光源用ダイクロイックミラー523と、B光源用ダイクロイックミラー524と、を有する。
 尚、本実施形態では、IR光源、R光源、G光源、B光源を1つずつ設ける例をあげたが、レーザ光源の種類、各色の光源数はこれに限定されず、適宜設定することができる。
The narrow-band light source unit 52 includes a red laser light source (hereinafter referred to as R light source) 52R, a green laser light source (hereinafter referred to as G light source) 52G, a blue laser light source (hereinafter referred to as B light source) 52B, and an infrared ray. A laser light source (hereinafter referred to as an IR light source) 52IR, an IR light source dichroic mirror 521, an R light source dichroic mirror 522, a G light source dichroic mirror 523, and a B light source dichroic mirror 524 are provided.
In the present embodiment, an example in which one IR light source, one R light source, one G light source, and one B light source are provided. However, the type of laser light source and the number of light sources of each color are not limited to this, and may be set as appropriate. it can.
 IR光源52IRは、例えば中心波長が808nmの790nm~820nmの赤外線帯域のレーザ光と、中心波長が940nmの905~970nmの赤外線帯域のレーザ光をそれぞれ出射する2つのIR光源である。
 IR光源用ダイクロイックミラー521は、赤外線帯域の光を反射し、それ以外の波長の光を透過する。IR光源52IRから出射された赤外光はIR光源用ダイクロイックミラー521で反射し、ダイクロイックミラー522,523,524を順に透過して、第2のコリメートレンズ55に入射する。
The IR light source 52IR is, for example, two IR light sources that emit laser light in an infrared band of 790 nm to 820 nm with a center wavelength of 808 nm and laser light in an infrared band of 905 to 970 nm with a center wavelength of 940 nm.
The IR light source dichroic mirror 521 reflects light in the infrared band and transmits light of other wavelengths. Infrared light emitted from the IR light source 52IR is reflected by the IR light source dichroic mirror 521, sequentially passes through the dichroic mirrors 522, 523, and 524, and enters the second collimating lens 55.
 R光源52Rは、例えば中心波長が638nmの630nm~645nmの赤色帯域のレーザ光を出射する。R光源用ダイクロイックミラー522は、赤色帯域の光を反射し、それ以外の波長の光を透過する。R光源52Rから出射された赤色光はR光源用ダイクロイックミラー522で反射し、ダイクロイックミラー523,524を順に透過して、第2のコリメートレンズ55に入射する。 The R light source 52R emits laser light in the red band of 630 nm to 645 nm, for example, having a center wavelength of 638 nm. The R light source dichroic mirror 522 reflects light in the red band and transmits light of other wavelengths. The red light emitted from the R light source 52 </ b> R is reflected by the R light source dichroic mirror 522, sequentially passes through the dichroic mirrors 523 and 524, and enters the second collimating lens 55.
 G光源52Gは、例えば中心波長が525nmの515nm~540nmの緑色帯域のレーザ光を出射する。G光源用ダイクロイックミラー523は、緑色帯域の光を反射し、それ以外の波長の光を透過する。G光源52Gから出射された緑色光はG光源用ダイクロイックミラー523で反射し、ダイクロイックミラー524を透過して、第2のコリメートレンズ55に入射する。 The G light source 52G emits a laser beam in a green band of 515 nm to 540 nm with a center wavelength of 525 nm, for example. The G light source dichroic mirror 523 reflects light in the green band and transmits light of other wavelengths. The green light emitted from the G light source 52G is reflected by the G light source dichroic mirror 523, passes through the dichroic mirror 524, and enters the second collimating lens 55.
 B光源52Bは、例えば中心波長が445nmの435nm~465nmの青色帯域のレーザ光を出射する。B光源用ダイクロイックミラー524は、青色帯域の光を反射し、それ以外の波長の光を透過する。B光源52Bから出射された青色光はB光源用ダイクロイックミラー524で反射し、第2のコリメートレンズ55に入射する。 The B light source 52B emits a laser beam in a blue band of 435 nm to 465 nm with a center wavelength of 445 nm, for example. The dichroic mirror 524 for the B light source reflects blue band light and transmits light of other wavelengths. The blue light emitted from the B light source 52 </ b> B is reflected by the B light source dichroic mirror 524 and enters the second collimating lens 55.
 R光源52R、G光源52G、B光源52Bからそれぞれ出射される光を組み合わせることにより白色光を生成することができる。各色(各波長)の出力強度を制御することにより、撮像画像のホワイトバランスの調整を行うとともに出射光の光量を調整することができる。 White light can be generated by combining light respectively emitted from the R light source 52R, the G light source 52G, and the B light source 52B. By controlling the output intensity of each color (each wavelength), it is possible to adjust the white balance of the captured image and adjust the amount of emitted light.
 広帯域光源51からの白色光は、第1のコリメートレンズ54を通過することによってコリメートされ略平行光となって、合波部となるダイクロイックミラー53に入射する。
 狭帯域光源部52からの複数の異なる帯域の狭帯域光であるレーザ光は、第2のコリメートレンズ55を通過することによってコリメートされ略平行光となって、ダイクロイックミラー53に入射する。
The white light from the broadband light source 51 is collimated by passing through the first collimating lens 54 to become substantially parallel light, and enters the dichroic mirror 53 serving as a multiplexing unit.
Laser light, which is narrowband light of a plurality of different bands from the narrowband light source unit 52, is collimated by passing through the second collimating lens 55, becomes substantially parallel light, and enters the dichroic mirror 53.
 通常光観察では、広帯域光源51からの白色光と、狭帯域光源部52からの赤色レーザ光、緑色レーザ光、青色レーザ光とが、ダイクロイックミラー53で合波されて生成された合波白色光が、観察対象部位3に向かって照射光7として照射される。赤色、緑色、青色それぞれのレーザ光を用いて白色光を生成し、更に、広帯域光源51からの白色光を合波することにより、合波白色光を太陽光に近くすることができ、演色性が向上する。 In normal light observation, combined white light generated by combining white light from the broadband light source 51 and red laser light, green laser light, and blue laser light from the narrow-band light source unit 52 by the dichroic mirror 53 is generated. Is irradiated as irradiation light 7 toward the observation target region 3. White light is generated by using red, green, and blue laser lights, and the white light from the broadband light source 51 is combined, so that the combined white light can be made close to sunlight, thereby rendering the color rendering property. Will improve.
 特殊光観察では、広帯域光源51から白色光は出射されず、狭帯域光源部52から特殊光観察に対応した所定の波長帯域のレーザ光が出射される。 In special light observation, white light is not emitted from the broadband light source 51, but laser light in a predetermined wavelength band corresponding to special light observation is emitted from the narrow-band light source unit 52.
 特殊光観察では、例えば体組織における光の吸収の波長依存性を利用して、通常光観察時における照明光(すなわち白色光)に比べて狭帯域の光である青色光と緑色光を照射光に用いることにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。 In special light observation, for example, by utilizing the wavelength dependency of light absorption in body tissue, blue light and green light, which are narrowband light compared to illumination light (ie white light) during normal light observation, are irradiated. As a result, so-called narrow band imaging (Narrow Band Imaging) is performed in which a predetermined tissue such as a blood vessel on the mucous membrane surface is imaged with high contrast.
 或いは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る自家蛍光観察が行われても良い。また、互いに波長帯域が異なる2つの赤外光を照射光として用いて、赤外光域での吸光度変化を持つ物質を色で表現する赤外光観察が行われても良い。 Alternatively, in special light observation, autofluorescence observation in which an image is obtained by fluorescence generated by irradiating excitation light may be performed. Further, infrared light observation may be performed in which a substance having a change in absorbance in the infrared light region is expressed by color using two infrared light beams having different wavelength bands as irradiation light.
 通常光・特殊光観察では、通常光観察と同様に、合波白色光が観察対象部位3に対して照射されるが、その際、狭帯域光源部52からの所定の波長帯域のレーザ光の出力が、例えば自家蛍光観察に適した強度に調整される。これにより、通常光観察像と特殊光観察像とが重ね合わされた画像が得られる。 In the normal light / special light observation, similarly to the normal light observation, the combined white light is irradiated to the observation target part 3. At this time, the laser light of the predetermined wavelength band from the narrow band light source unit 52 is irradiated. The output is adjusted to an intensity suitable for autofluorescence observation, for example. Thereby, an image in which the normal light observation image and the special light observation image are superimposed is obtained.
 本実施形態においては、狭帯域光源部52からのレーザ光は全て偏光方向がP偏光に揃えられて、第2のコリメートレンズ55に入射されるように構成される。具体的には、各光源52IR、52R、52G、52Bから出射されるレーザ光がいずれもP偏光となるように構成されている。 In the present embodiment, all the laser beams from the narrow-band light source unit 52 are configured such that their polarization directions are aligned with P-polarized light and are incident on the second collimating lens 55. Specifically, the laser light emitted from each of the light sources 52IR, 52R, 52G, and 52B is configured to be P-polarized light.
 ダイクロイックミラー53は、狭帯域光源部52から出射される狭帯域光を透過し、広帯域光源51から出射される白色光を反射するように構成された波長選択素子である。 The dichroic mirror 53 is a wavelength selection element configured to transmit the narrowband light emitted from the narrowband light source unit 52 and reflect the white light emitted from the broadband light source 51.
 詳細には、広帯域光源51から出射される白色光は、ダイクロイックミラー53に入射することにより、狭帯域光源部52から出射される狭帯域光と同じ波長帯域成分は透過し、それ以外の波長帯域成分は反射することになる。 Specifically, the white light emitted from the broadband light source 51 is incident on the dichroic mirror 53, so that the same wavelength band component as that of the narrow band light emitted from the narrow band light source unit 52 is transmitted, and the other wavelength bands are transmitted. The component will be reflected.
 ダイクロイックミラー53は、入射される狭帯域光源部52からの赤色レーザ光と青色レーザ光と緑色レーザ光と、広帯域光源51からの白色光のうちダイクロイックミラー53で反射した光とを合波させて生成される合波白色光が所望の白色光となるように構成される。 The dichroic mirror 53 combines the incident red laser light, blue laser light, and green laser light from the narrow-band light source unit 52 and the light reflected by the dichroic mirror 53 among the white light from the broadband light source 51. The generated combined white light is configured to be a desired white light.
 ダイクロイックミラー53は、硝材上に誘電体多層膜が形成されて構成される。
 図3は、一般的なダイクロイックミラーの透過率・反射率特性を示す図であり、横軸は波長、縦軸は透過率又は反射率を示す。線間隔の狭い破線はP偏光の透過スペクトル、一点鎖線はS偏光の透過スペクトル、実線は無偏光透過スペクトル、線間隔の広い破線は無偏光反射スペクトルを示す。
The dichroic mirror 53 is configured by forming a dielectric multilayer film on a glass material.
FIG. 3 is a diagram showing the transmittance / reflectance characteristics of a general dichroic mirror, in which the horizontal axis represents wavelength and the vertical axis represents transmittance or reflectance. A broken line with a narrow line spacing indicates a transmission spectrum of P-polarized light, a dashed-dotted line indicates a transmission spectrum of S-polarized light, a solid line indicates a non-polarized transmission spectrum, and a broken line with a wide line spacing indicates a non-polarized reflection spectrum.
 図4は、ダイクロイックミラー53に入射される狭帯域光源部52からのレーザ光の偏光方向を考慮しない場合と偏光方向をすべてP偏光として設計に考慮した場合それぞれの青色光帯域でのダイクロイックミラー53における透過率を示す。 FIG. 4 shows a case where the polarization direction of the laser light from the narrow-band light source unit 52 incident on the dichroic mirror 53 is not considered and when the polarization direction is all considered as the P-polarization in the design, the dichroic mirror 53 in each blue light band. The transmittance at is shown.
 図4の偏光方向考慮なしは、すべての狭帯域光源からのレーザ光の偏光方向が一致しない一例であり、ここでは、IR光源52IRからはP偏光の、R光源52RからはS偏光の、G光源52GからはP偏光の、B光源52BからはP偏光のレーザ光が出射される場合を示す。この例では、ダイクロイックミラー53に入射される光の青色光帯域における透過率は98.87%であった。 The non-consideration of the polarization direction in FIG. 4 is an example in which the polarization directions of the laser beams from all the narrow-band light sources do not coincide with each other. Here, the P-polarized light from the IR light source 52IR, the S-polarized light from the R light source 52R, G A case where P-polarized laser light is emitted from the light source 52G and P-polarized laser light is emitted from the B light source 52B is shown. In this example, the transmittance of light incident on the dichroic mirror 53 in the blue light band was 98.87%.
 これに対し、全ての光源52IR、52R,52G、52Bから出射される光が全てP偏光となってダイクロイックミラー53に入射される場合、青色光帯域における透過率は99.67%であった。 On the other hand, when all the light emitted from all the light sources 52IR, 52R, 52G, and 52B becomes P-polarized light and enters the dichroic mirror 53, the transmittance in the blue light band is 99.67%.
 このように、狭帯域光の偏光方向を考慮し、ダイクロイックミラー53に入射される狭帯域光源部52からの複数のレーザ光の偏光方向がいずれもP偏光に揃えられることにより、狭帯域光の光利用効率を向上させることができる。これにより、光量を増加させた照射光下で観察対象部位を撮像することができ、全体が明るい画像を得ることができ、より正確な内視鏡診断を行うことができる。 In this way, in consideration of the polarization direction of the narrowband light, the polarization directions of the plurality of laser beams from the narrowband light source unit 52 incident on the dichroic mirror 53 are all aligned with the P-polarized light. Light utilization efficiency can be improved. As a result, the site to be observed can be imaged under irradiation light with an increased amount of light, a bright image as a whole can be obtained, and more accurate endoscopic diagnosis can be performed.
 また、第1のコリメートレンズ54、第2のコリメートレンズ55、集光レンズ56には、いずれも、屈折率Ndが1.70より大きく1.85よりも小さく、アッベ数νdが40より大きく55より小さい硝材を用いることにより、高NA(Numerical Aperture)かつ短波長領域の透過率の向上を実現することができる。屈折率Nd、アッベ数νdは、d線587.56nmで定義された屈折率、アッベ数である。 The first collimator lens 54, the second collimator lens 55, and the condenser lens 56 all have a refractive index Nd of greater than 1.70 and less than 1.85, and an Abbe number νd of greater than 40 and 55. By using a smaller glass material, it is possible to realize high NA (Numerical Aperture) and improved transmittance in a short wavelength region. The refractive index Nd and the Abbe number νd are the refractive index and Abbe number defined by the d line 587.56 nm.
 本実施形態の光源装置5を内視鏡システムや顕微鏡に適用する場合、照明光の放射角は広いため、集光レンズ56において高NAで集光する必要がある。高NAを実現するために、高屈折率ガラスを用いることが考えられるが、一般に高屈折率ガラスは短波長帯域、例えば紫外域の透過率が低い。 When the light source device 5 of the present embodiment is applied to an endoscope system or a microscope, the radiation angle of illumination light is wide, and thus it is necessary to collect light with a high NA in the condenser lens 56. In order to realize a high NA, it is conceivable to use a high refractive index glass. Generally, a high refractive index glass has a low transmittance in a short wavelength band, for example, an ultraviolet region.
 そこで、屈折率及びアッベ数が上記範囲内である硝材を用いることにより、高NA、かつ、短波長領域の透過率の向上の双方をバランスよく実現でき、内視鏡システムや顕微鏡に適した照明光を得ることができる。特に、光源装置が、狭帯域光源として紫外光源を有する場合、紫外レーザ光からの光の利用効率を向上させることができる。 Therefore, by using a glass material whose refractive index and Abbe number are within the above ranges, it is possible to achieve both a high NA and improved transmittance in the short wavelength region in a balanced manner, and illumination suitable for endoscope systems and microscopes. Light can be obtained. In particular, when the light source device has an ultraviolet light source as a narrow-band light source, the utilization efficiency of light from the ultraviolet laser light can be improved.
 また、屈折率及びアッベ数が上記範囲を満たした同一の硝材を、第1のコリメートレンズ54、第2のコリメートレンズ55、集光レンズ56に適用することができ、各レンズに蒸着する反射防止コーティング膜の設計を共通化することができるので、製造効率がよく、コストダウンすることができる。 Further, the same glass material whose refractive index and Abbe number satisfy the above ranges can be applied to the first collimating lens 54, the second collimating lens 55, and the condensing lens 56, and antireflection deposited on each lens. Since the design of the coating film can be made common, the manufacturing efficiency is good and the cost can be reduced.
 本実施形態のように、ダイクロイックミラー53に入射される狭帯域光がP偏光の場合、ダイクロイックミラー53で、狭帯域光(レーザ光)のP偏光が透過し、広帯域光源51からの白色光が反射するように各光源を配置することが好ましく、光効率が向上する。 As in the present embodiment, when the narrowband light incident on the dichroic mirror 53 is P-polarized light, the dichroic mirror 53 transmits the P-polarized light of the narrowband light (laser light), and the white light from the broadband light source 51 is transmitted. It is preferable to arrange each light source so as to reflect, and the light efficiency is improved.
 これは、P偏光の透過波長帯域はS偏光の透過波長帯域よりも広いため、P偏光の狭帯域光を用いて合波する場合、P偏光の狭帯域光が透過するようにダイクロイックミラー53を配置することにより光効率が向上するためである。 This is because the transmission wavelength band of P-polarized light is wider than the transmission wavelength band of S-polarized light. Therefore, when combining using P-polarized narrow band light, the dichroic mirror 53 is set so that the narrow band light of P-polarized light is transmitted. This is because the light efficiency is improved by the arrangement.
 また、本実施形態では、P偏光の狭帯域光と無偏光の広帯域光(白色光)とにより合波白色光が生成可能である。これにより、広帯域光の偏光を揃える必要なく合波できるため、PSコンバータなどの光学素子が必要なく、装置の小型化が可能である。 In this embodiment, combined white light can be generated by P-polarized narrow band light and non-polarized broadband light (white light). As a result, since it is possible to multiplex without the need to align the polarization of the broadband light, an optical element such as a PS converter is not necessary, and the apparatus can be miniaturized.
 (第2の実施形態)
 図1及び図5を用いて、本実施形態に係る内視鏡システム101及びこれに用いられる光源装置105について説明する。図5は、光源装置105の一構成例を示す模式図である。第1の実施形態と同様の構成については同様の符号を付し、説明を省略する場合がある。
(Second Embodiment)
The endoscope system 101 according to the present embodiment and the light source device 105 used therefor will be described with reference to FIGS. 1 and 5. FIG. 5 is a schematic diagram illustrating a configuration example of the light source device 105. Components similar to those in the first embodiment are denoted by the same reference numerals, and description thereof may be omitted.
 第1の実施形態においては、狭帯域光源部52からのレーザ光はP偏光に揃えられて出射され、狭帯域光源部52からのP偏光のレーザ光はダイクロイックミラー53を透過し、広帯域光源51からの白色光はダイクロイックミラー53で反射されるように構成されていた。 In the first embodiment, the laser light from the narrow-band light source unit 52 is emitted while being aligned with the P-polarized light, and the P-polarized laser light from the narrow-band light source unit 52 is transmitted through the dichroic mirror 53 and the broadband light source 51. The white light from the dichroic mirror 53 was reflected.
 これに対し、本実施形態においては、狭帯域光源部52からのレーザ光はS偏光に揃えられて出射され、狭帯域光源部52からのS偏光のレーザ光は後述するダイクロイックミラー153で反射され、広帯域光源51からの白色光はダイクロイックミラー153で透過するように構成されている。
 以下、第1の実施形態と異なる構成を中心に説明する。
On the other hand, in the present embodiment, the laser light from the narrow-band light source unit 52 is emitted while being aligned with S-polarized light, and the S-polarized laser light from the narrow-band light source unit 52 is reflected by a dichroic mirror 153 described later. The white light from the broadband light source 51 is configured to pass through the dichroic mirror 153.
Hereinafter, a description will be given focusing on the configuration different from the first embodiment.
 図1に示すように、内視鏡システム101は、内視鏡2と、カメラ4と、医療用光源装置105(以下、光源装置105と称す。)と、ライトガイドケーブル6とを有する。図5に示すように、光源装置105は、広帯域光源51と、狭帯域光源部52と、光学素子としてのダイクロイックミラー153と、第1のコリメートレンズ54と、第2のコリメートレンズ55と、集光レンズ56とを有する。 As shown in FIG. 1, the endoscope system 101 includes an endoscope 2, a camera 4, a medical light source device 105 (hereinafter referred to as a light source device 105), and a light guide cable 6. As shown in FIG. 5, the light source device 105 includes a broadband light source 51, a narrow-band light source unit 52, a dichroic mirror 153 as an optical element, a first collimating lens 54, a second collimating lens 55, And an optical lens 56.
 ダイクロイックミラー153は、狭帯域光源部52から出射される狭帯域光のレーザ光を反射し、広帯域光源51から出射される白色光を透過するように構成された波長選択素子である。 The dichroic mirror 153 is a wavelength selection element configured to reflect the narrow-band laser light emitted from the narrow-band light source unit 52 and transmit the white light emitted from the broadband light source 51.
 詳細には、広帯域光源51から出射される白色光は、ダイクロイックミラー153に入射することにより、狭帯域光源部52から出射される波長帯域と同じ波長帯域成分は反射し、それ以外の波長帯域成分は透過することになる。 Specifically, the white light emitted from the broadband light source 51 is incident on the dichroic mirror 153, so that the same wavelength band component as the wavelength band emitted from the narrow band light source unit 52 is reflected, and the other wavelength band components. Will be transparent.
 ダイクロイックミラー153は、入射される狭帯域光源部52からの赤色レーザ光と青色レーザ光と緑色レーザ光と、広帯域光源51からの白色光のうちダイクロイックミラー153で反射した光とを合波させて生成される合波白色光が所望の白色光となるように構成される。 The dichroic mirror 153 combines the incident red laser light, blue laser light, and green laser light from the narrow-band light source unit 52 and the light reflected by the dichroic mirror 153 among the white light from the broadband light source 51. The generated combined white light is configured to be a desired white light.
 ダイクロイックミラー153は、硝材上に誘電体多層膜が形成されて構成される。
 図6は、一般的なダイクロイックミラーの透過率・反射率特性を示す図であり、横軸は波長、縦軸は透過率又は反射率を示す。線間隔の狭い破線はP偏光の反射スペクトル、一点鎖線はS偏光の反射透過スペクトル、実線は無偏光反射スペクトル、線間隔の広い破線は無偏光透過スペクトルを示す。
The dichroic mirror 153 is configured by forming a dielectric multilayer film on a glass material.
FIG. 6 is a diagram showing the transmittance / reflectance characteristics of a general dichroic mirror, in which the horizontal axis represents wavelength and the vertical axis represents transmittance or reflectance. A broken line with a narrow line interval indicates a reflection spectrum of P-polarized light, a dashed-dotted line indicates a reflection / transmission spectrum of S-polarized light, a solid line indicates a non-polarization reflection spectrum, and a broken line with a large line interval indicates an unpolarized transmission spectrum.
 本実施形態においても、第1の実施形態と同様に、ダイクロイックミラー153には、狭帯域光源部52からのレーザ光の偏光方向が全てS偏光というように偏光方向が揃えられたレーザ光が入射されることにより、偏光方向を考慮しない場合と比較して、狭帯域光の光利用効率を向上させることができる。 Also in the present embodiment, similarly to the first embodiment, the dichroic mirror 153 is incident with laser light whose polarization direction is aligned so that the polarization direction of the laser light from the narrow-band light source unit 52 is all S-polarized light. As a result, the light utilization efficiency of narrowband light can be improved as compared with the case where the polarization direction is not taken into consideration.
 本実施形態のように、ダイクロイックミラー153に入射される光がS偏光の場合、ダイクロイックミラー153で、狭帯域光(レーザ光)のS偏光が反射し、広帯域光源51からの白色光が透過するように各光源を配置することが好ましく、光効率が向上する。 As in the present embodiment, when the light incident on the dichroic mirror 153 is S-polarized light, the dichroic mirror 153 reflects the S-polarized light of the narrow band light (laser light) and transmits the white light from the broadband light source 51. Thus, it is preferable to arrange each light source so that the light efficiency is improved.
 これは、S偏光の反射波長帯域はP偏光の反射波長帯域よりも広いため、S偏光の狭帯域光を用いて合波する場合は、S偏光の狭帯域光が反射するようにダイクロイックミラー153を配置することにより光効率が向上するためである。 This is because the reflection wavelength band of S-polarized light is wider than the reflection wavelength band of P-polarized light, and therefore when combining using S-polarized narrow band light, the dichroic mirror 153 is reflected so that the S-polarized narrow band light is reflected. This is because the light efficiency is improved by disposing.
 また、本実施形態では、S偏光の狭帯域光と無偏光の広帯域光(白色光)とにより合波白色光が生成可能である。これにより、広帯域光の偏光を揃える必要なく合波できるため、PSコンバータなどの光学素子が必要なく、装置の小型化が可能である。 In this embodiment, combined white light can be generated by S-polarized narrow-band light and non-polarized broadband light (white light). As a result, since it is possible to multiplex without the need to align the polarization of the broadband light, an optical element such as a PS converter is not necessary, and the apparatus can be miniaturized.
 尚、所定の狭帯域光を反射させるダイクロイックミラー153は、所定の狭帯域光を透過させるダイクロイックミラー53と比較して、生産するのが難しく、コスト的に高価になりやすいため、第1の実施形態に示す構成とすることが望ましい。 The dichroic mirror 153 that reflects the predetermined narrow band light is difficult to produce and is likely to be expensive in cost as compared with the dichroic mirror 53 that transmits the predetermined narrow band light. The configuration shown in the form is desirable.
(他の実施形態)
 上述の実施形態においては、誘電体多層膜を備えた光学素子として、波長選択素子を用いたが、偏光選択素子を用いてもよい。
(Other embodiments)
In the above-described embodiment, the wavelength selection element is used as the optical element including the dielectric multilayer film, but a polarization selection element may be used.
 例えば、第1の実施形態のダイクロイックミラー53の代わりに、偏光選択素子としての偏光ビームスプリッタ(PBS;Polarizing Beam Splitter)を用いることができる。この偏光ビームスプリッタは、P偏光を透過し、S偏光を反射する。 For example, instead of the dichroic mirror 53 of the first embodiment, a polarization beam splitter (PBS; Polarizing Beam Splitter) as a polarization selection element can be used. This polarization beam splitter transmits P-polarized light and reflects S-polarized light.
 この構成では、狭帯域光源部52からのP偏光の狭帯域光は偏光ビームスプリッタを透過し集光レンズ56に入射される。一方、広帯域光源51からの白色光は、偏光ビームスプリッタでS偏光とP偏光に分離され、白色光のS偏光成分が集光レンズ56に入射される。 In this configuration, the P-polarized narrow-band light from the narrow-band light source unit 52 is transmitted through the polarization beam splitter and is incident on the condenser lens 56. On the other hand, white light from the broadband light source 51 is separated into S-polarized light and P-polarized light by the polarization beam splitter, and the S-polarized component of the white light is incident on the condenser lens 56.
 また、第2の実施形態のダイクロイックミラー153の代わりに、偏光選択素子としての偏光ビームスプリッタを用いることができる。この偏光ビームスプリッタは、S偏光を透過し、P偏光を反射する。 Further, instead of the dichroic mirror 153 of the second embodiment, a polarization beam splitter as a polarization selection element can be used. This polarizing beam splitter transmits S-polarized light and reflects P-polarized light.
 この構成では、狭帯域光源部52からのS偏光の狭帯域光は偏光ビームスプリッタを反射し集光レンズ56に入射される。一方、広帯域光源51からの白色光は、偏光ビームスプリッタでS偏光とP偏光に分離され、白色光のP偏光成分が集光レンズ56に入射される。 In this configuration, the S-polarized narrow-band light from the narrow-band light source unit 52 is reflected by the polarization beam splitter and is incident on the condenser lens 56. On the other hand, white light from the broadband light source 51 is separated into S-polarized light and P-polarized light by the polarization beam splitter, and the P-polarized component of the white light is incident on the condenser lens 56.
 このように、光学素子として偏光選択素子を用いる場合、P偏光(S偏光)の狭帯域光とS偏光(P偏光)の広帯域光(白色光)とにより合波白色光が生成される。すなわち互いに偏光方向が直交する狭帯域光と広帯域光とが合波される。このため、広帯域光は常に片方の偏光成分しか使用できないため、効率は大幅に低下してしまう。しかし、PSコンバータなどで広帯域光の偏光を揃えれば、効率を大きく回復できる。 Thus, when a polarization selection element is used as an optical element, combined white light is generated by narrow band light of P polarization (S polarization) and broadband light (white light) of S polarization (P polarization). That is, narrowband light and broadband light whose polarization directions are orthogonal to each other are multiplexed. For this reason, since broadband light can always use only one polarization component, the efficiency is greatly reduced. However, if the polarization of broadband light is made uniform with a PS converter or the like, the efficiency can be greatly recovered.
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、上述の内視鏡システム1,101では、カメラ4によるモニタ観察が可能な構成となっていたが、医療用光源装置を手術用顕微鏡に適用してもよく、肉眼観察に適した照明光を得ることができる。
Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
For example, in the endoscope systems 1 and 101 described above, the monitor observation by the camera 4 is possible. However, the medical light source device may be applied to a surgical microscope, and illumination light suitable for visual observation. Can be obtained.
 また、上述の実施形態においては、複数の狭帯域光源が同じ偏光方向となるように構成されていたが、これに限定されない。例えば狭帯域光源とこの光源に対応するダイクロイックミラーとの間に、P偏光(S偏光)をS偏光(P偏光)に変換する光学素子を設け、最終的に第2のコリメートレンズ55に入射される狭帯域光が全て同じ偏光方向となるように構成してもよい。 In the above-described embodiment, the plurality of narrow-band light sources are configured to have the same polarization direction. However, the present invention is not limited to this. For example, an optical element for converting P-polarized light (S-polarized light) into S-polarized light (P-polarized light) is provided between a narrow-band light source and a dichroic mirror corresponding to the light source, and finally enters the second collimating lens 55. The narrow band light may be configured to have the same polarization direction.
 次に、狭帯域光源からの光と広帯域光源からの光が合波してライトガイドケーブルに入射するときの光学系の具体例について第3及び第4の実施形態を用いて以下に説明する。以下の実施形態の説明において、上述の実施形態と同様の構成については同様の符号を付し、説明を省略する場合がある。
 尚、第3及び第4の実施形態においては、具体的なレンズデータを挙げているが、これらは一例であり、これらに限定されない。
Next, specific examples of the optical system when the light from the narrow-band light source and the light from the broadband light source are combined and incident on the light guide cable will be described below using the third and fourth embodiments. In the description of the following embodiments, the same reference numerals are given to the same configurations as those of the above-described embodiments, and the description may be omitted.
In the third and fourth embodiments, specific lens data is given, but these are examples and are not limited to these.
 (第3の実施形態)
 図7は、本実施形態に係る医療用光源装置205の一構成例であり、狭帯域光源部52からの光と広帯域光源51からの光が合波してライトガイドケーブル6に入射するまでの光学系を説明する図である。図7においては、図面を見やすくするために光線の図示を省略している。
 図8は、図7に示す構成の部分図であり、狭帯域光源部52からの光がライトガイドケーブル6に到達するまでの光学系を説明するための模式図である。この光学系を第1の照明光学系と称する。
 図9は、図7に示す構成の部分図であり、広帯域光源51からの光がライトガイドケーブル6に到達するまでの光学系を説明するための模式図である。この光学系を第2の照明光学系と称する。
(Third embodiment)
FIG. 7 is a configuration example of the medical light source device 205 according to the present embodiment, from when the light from the narrow-band light source unit 52 and the light from the broadband light source 51 are combined and enter the light guide cable 6. It is a figure explaining an optical system. In FIG. 7, the illustration of light rays is omitted to make the drawing easier to see.
FIG. 8 is a partial view of the configuration shown in FIG. 7, and is a schematic diagram for explaining an optical system until light from the narrow-band light source unit 52 reaches the light guide cable 6. This optical system is referred to as a first illumination optical system.
FIG. 9 is a partial view of the configuration shown in FIG. 7, and is a schematic diagram for explaining an optical system until light from the broadband light source 51 reaches the light guide cable 6. This optical system is referred to as a second illumination optical system.
 まず、本実施形態の医療用光源装置205の概略構成について説明する。
 図7に示すように、本実施形態の医療用光源装置205は、広帯域光源51と、狭帯域光源部52と、光学素子としてのダイクロイックミラー53と、第1のレンズ群254と、第2のコリメートレンズG1と、第3のレンズ群256と、拡散板251と、絞りS1と、絞りS2と、を有する。第2のコリメートレンズG1は第2のレンズ群を構成する。
First, a schematic configuration of the medical light source device 205 of the present embodiment will be described.
As shown in FIG. 7, the medical light source device 205 of the present embodiment includes a broadband light source 51, a narrow-band light source unit 52, a dichroic mirror 53 as an optical element, a first lens group 254, A collimator lens G1, a third lens group 256, a diffusion plate 251, a diaphragm S1, and a diaphragm S2 are provided. The second collimating lens G1 constitutes a second lens group.
 拡散板251は、狭帯域光源部52の出射部の後段に配置される。狭帯域光源部52からのレーザ光は拡散板251に照射される。拡散板251は、NA0.164に相当する拡散角で狭帯域光源部52からのレーザ光を拡散させる。発光サイズはφ11.0である。拡散された光は第2のコリメートレンズG1に入射する。 The diffuser plate 251 is arranged at the rear stage of the emission part of the narrow band light source part 52. Laser light from the narrow-band light source unit 52 is applied to the diffusion plate 251. The diffusion plate 251 diffuses the laser light from the narrow-band light source unit 52 at a diffusion angle corresponding to NA 0.164. The emission size is φ11.0. The diffused light is incident on the second collimating lens G1.
 ダイクロイックミラー53へは、広帯域光源51からの光と、狭帯域光源部52からの光が入射される。 The light from the broadband light source 51 and the light from the narrow band light source unit 52 are incident on the dichroic mirror 53.
 第1のレンズ群254は、光路上、広帯域光源51とダイクロイックミラー53との間に位置する。第1のレンズ群254は、広帯域光源51からの白色光をコリメートし略平行光とし、合波部となるダイクロイックミラー53へ入射させる。 The first lens group 254 is located between the broadband light source 51 and the dichroic mirror 53 on the optical path. The first lens group 254 collimates the white light from the broadband light source 51 into substantially parallel light, and enters the dichroic mirror 53 serving as a multiplexing unit.
 第2のコリメートレンズG1は、光路上、狭帯域光源部52とダイクロイックミラー53との間に位置する。第2のコリメートレンズG1は、狭帯域光源部52からのレーザ光をコリメートし略平行光とし、合波部となるダイクロイックミラー53へ入射させる。 The second collimating lens G1 is located between the narrow-band light source unit 52 and the dichroic mirror 53 on the optical path. The second collimating lens G1 collimates the laser light from the narrow-band light source unit 52 into substantially parallel light, and enters the dichroic mirror 53 serving as a multiplexing unit.
 第3のレンズ群256は、光路上、ダイクロイックミラー53とライトガイドケーブル6との間に位置する。第3のレンズ群256は、ダイクロイックミラー53で合波された合波光をライトガイドケーブル6の入射端面61へ入射させる。図において、合波光のライトガイドケーブル6の入射端面61における結像面(像面)をIで表している。 The third lens group 256 is located between the dichroic mirror 53 and the light guide cable 6 on the optical path. The third lens group 256 makes the combined light combined by the dichroic mirror 53 enter the incident end face 61 of the light guide cable 6. In the drawing, an image plane (image plane) on the incident end face 61 of the light guide cable 6 for the combined light is denoted by I.
 第1のレンズ群254は、物体側(広帯域光源51側)から順にレンズG4と、レンズG5と、レンズG6とを有する。各レンズのレンズデータについては後述する。
 第3のレンズ群256は、物体側(狭帯域光源52側)から順にレンズG2と、レンズG3とを有する。
The first lens group 254 includes a lens G4, a lens G5, and a lens G6 in order from the object side (broadband light source 51 side). Lens data for each lens will be described later.
The third lens group 256 includes a lens G2 and a lens G3 in order from the object side (narrowband light source 52 side).
 本実施形態では、レンズG1~G6のいずれもが、互いに同じ屈折率Nd、互いに同じアッベ数vdとなっており、屈折率Ndが1.70より大きく1.85より小さく、アッベ数νdが40より大きく55より小さい硝材から構成されている。 In the present embodiment, all of the lenses G1 to G6 have the same refractive index Nd and the same Abbe number vd, the refractive index Nd is larger than 1.70 and smaller than 1.85, and the Abbe number νd is 40. It is made of a glass material that is larger and smaller than 55.
 次に、第1の照明光学系について説明する。
 図8に示すように、狭帯域光源部52からの光がライトガイドケーブル6の入射端面61まで到達するまでの光路上には、第2のコリメートレンズG1、レンズG2、レンズG3が位置する。
Next, the first illumination optical system will be described.
As shown in FIG. 8, the second collimating lens G <b> 1, the lens G <b> 2, and the lens G <b> 3 are positioned on the optical path until the light from the narrow band light source unit 52 reaches the incident end surface 61 of the light guide cable 6.
 図8に示す第1の照明光学系において、物体側開口数は0.164、物体高は5.500mm、像側開口数は0.495、像高は1.903mmとなっている。
 図8に示す狭帯域光源部52からの光がライトガイドケーブル6の入射端面61まで到達するまでの光路上に位置するレンズのレンズデータを表1に示す。
In the first illumination optical system shown in FIG. 8, the object-side numerical aperture is 0.164, the object height is 5.500 mm, the image-side numerical aperture is 0.495, and the image height is 1.903 mm.
Table 1 shows lens data of lenses located on the optical path until the light from the narrow-band light source unit 52 shown in FIG. 8 reaches the incident end face 61 of the light guide cable 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び後述する表2~4中の面データにおいて、物面は物体面、面番号は物体側から数えたレンズ面の番号、rはレンズの曲率半径(mm)、dはレンズ面間隔(mm)、ndはd線(波長λ=587.6nm)に対する屈折率、vdはd線(波長λ=587.6nm)に対するアッベ数、有効半径はレンズの有効半径(mm)、(絞り)は開口絞りS1(表2、表4においては開口絞りS2)、像面は像面Iをそれぞれ表している。 In the surface data in Table 1 and Tables 2 to 4 to be described later, the object surface is the object surface, the surface number is the lens surface number counted from the object side, r is the radius of curvature (mm) of the lens, and d is the lens surface distance ( mm), nd is the refractive index for the d-line (wavelength λ = 587.6 nm), vd is the Abbe number for the d-line (wavelength λ = 587.6 nm), the effective radius is the effective radius (mm) of the lens, and (aperture) is The aperture stop S1 (the aperture stop S2 in Tables 2 and 4) and the image plane represent the image plane I, respectively.
 表1において、面番号1、2は第2のコリメートレンズG1の面番号であり、面番号4、5はレンズG2の面番号であり、面番号6、7はレンズG3の面番号である。 In Table 1, surface numbers 1 and 2 are surface numbers of the second collimating lens G1, surface numbers 4 and 5 are surface numbers of the lens G2, and surface numbers 6 and 7 are surface numbers of the lens G3.
 次に、第2の照明光学系について説明する。
 図9に示すように、広帯域光源51からの光がライトガイドケーブル6の入射端面61まで到達するまでの光路上には、レンズG4、レンズG5、レンズG6、絞りS2、レンズG2、レンズG3が位置する。図9においては、絞りS2の図示を省略している。
Next, the second illumination optical system will be described.
As shown in FIG. 9, a lens G4, a lens G5, a lens G6, an aperture S2, a lens G2, and a lens G3 are on the optical path until the light from the broadband light source 51 reaches the incident end face 61 of the light guide cable 6. To position. In FIG. 9, the diaphragm S2 is not shown.
 図9に示す第2の照明光学系において、物体側開口数は0.731、物体高は1.500mm、像側開口数は0.553、像高は2.045mmとなっている。
 図9に示す広帯域光源51からの光がライトガイドケーブル6の入射端面61まで到達するまでの光路上に位置するレンズのレンズデータを表2に示す。
In the second illumination optical system shown in FIG. 9, the object-side numerical aperture is 0.731, the object height is 1.500 mm, the image-side numerical aperture is 0.553, and the image height is 2.045 mm.
Table 2 shows lens data of lenses located on the optical path until the light from the broadband light source 51 shown in FIG. 9 reaches the incident end face 61 of the light guide cable 6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、面番号1、2はレンズG4の面番号であり、面番号3、4はレンズG5の面番号であり、面番号5、6はレンズG6の面番号であり、面番号8、9はレンズG2の面番号であり、面番号10、11はレンズG3の面番号である。 In Table 2, surface numbers 1 and 2 are surface numbers of the lens G4, surface numbers 3 and 4 are surface numbers of the lens G5, surface numbers 5 and 6 are surface numbers of the lens G6, surface numbers 8 and 9 is the surface number of the lens G2, and surface numbers 10 and 11 are the surface numbers of the lens G3.
 尚、図7及び図9、後述する図10及び図12においては、ダイクロイックミラー53は単純な反射面として図示している。表2及び後述する表4のレンズデータにおける面番号7はダイクロイックミラー面に相当する。また、表2及び表4において、第7面以降は、反射後の光学系なので、曲率半径と面間隔にマイナス符号をいれている。 In FIGS. 7 and 9 and FIGS. 10 and 12 described later, the dichroic mirror 53 is illustrated as a simple reflecting surface. Surface number 7 in lens data in Table 2 and Table 4 described later corresponds to a dichroic mirror surface. In Tables 2 and 4, since the seventh and subsequent surfaces are optical systems after reflection, a minus sign is included in the radius of curvature and the surface interval.
 表1及び表2に示すように、レンズG1~G6のいずれもが、互いに同じ屈折率Nd、互いに同じアッベ数vdとなっており、屈折率Ndが1.70より大きく1.85より小さい値である1.72916であり、アッベ数νdが40より大きく55より小さい54.6735となっている。 As shown in Tables 1 and 2, all of the lenses G1 to G6 have the same refractive index Nd and the same Abbe number vd, and the refractive index Nd is larger than 1.70 and smaller than 1.85. The Abbe number νd is larger than 40 and smaller than 55, which is 54.6735.
 次に、本実施形態の医療用光源装置205の狭帯域光源部52からのレーザ光と広帯域光源51からの白色LED光との合波について説明する。 Next, the combination of the laser light from the narrow band light source unit 52 of the medical light source device 205 of the present embodiment and the white LED light from the broadband light source 51 will be described.
 まず、第1の照明光学系について説明する。
 図8に示す光線図では、拡散板251上の発光点を9点に設定している。具体的には、拡散板251の出射面上の0割方向(中心)、±4割方向、±7割方向、±9割方向、±10割方向の計9点を発光点として設定している。±10割方向を5.5mmに設定している。
 また、各発光点からの光においては、上光線、主光線、下光線の3本を図示している。
First, the first illumination optical system will be described.
In the ray diagram shown in FIG. 8, nine light emitting points on the diffusion plate 251 are set. Specifically, a total of 9 points on the light emitting surface of the diffuser plate 251 in the 0% direction (center), ± 40% direction, ± 70% direction, ± 90% direction, and ± 100% direction are set as the emission points. Yes. The ± 100% direction is set to 5.5 mm.
In addition, in the light from each light emitting point, three rays of an upper ray, a principal ray, and a lower ray are illustrated.
 拡散板251で拡散した光は、第2のコリメートレンズG1で略平行光化された後、光軸に対して45度傾けて配置したダイクロイックミラー(図7における符号53)へ入射する。図8において、ダイクロイックミラー53は、表1における面番号3の位置に配置される。 The light diffused by the diffusing plate 251 is converted into substantially parallel light by the second collimating lens G1, and then enters a dichroic mirror (reference numeral 53 in FIG. 7) disposed with an inclination of 45 degrees with respect to the optical axis. In FIG. 8, the dichroic mirror 53 is arranged at the position of surface number 3 in Table 1.
 ダイクロイックミラー53は、狭帯域光源52からの赤色光、緑色光、青色光、紫色光、赤外光などのレーザ光の帯域を透過させ、それ以外の帯域を反射する特性を有する。以後、このような特性を有するダイクロイックミラーをバンドパス・ダイクロイックミラーと称する場合がある。 The dichroic mirror 53 has a characteristic of transmitting laser light bands such as red light, green light, blue light, violet light, and infrared light from the narrow-band light source 52 and reflecting other bands. Hereinafter, a dichroic mirror having such characteristics may be referred to as a bandpass dichroic mirror.
 一般に、ダイクロイックミラーへの光線入射角度が、設計中央値から逸脱して大きくなっていくと、分光特性が短波長側へシフトするという現象が生じ、所望の分光特性が発揮できないということが生じる。
 しかしながら、本実施形態においては、上述したように、拡散板251で拡散された拡散光は第2のコリメートレンズG1で略平行光化されているので、バンドパス・ダイクロイックミラーへの光線入射角度を、上光線、下光線、主光線で同一にすることができる。
 これにより、角度依存特性を十分に抑えることができる。
In general, when the incident angle of light on the dichroic mirror increases and deviates from the design median value, the phenomenon that the spectral characteristics shift to the short wavelength side occurs, and the desired spectral characteristics cannot be exhibited.
However, in the present embodiment, as described above, the diffused light diffused by the diffuser plate 251 is converted into substantially parallel light by the second collimating lens G1, so that the incident angle of the light beam to the bandpass dichroic mirror is set. , Upper light, lower light, and principal light.
Thereby, the angle-dependent characteristics can be sufficiently suppressed.
 バンドパス・ダイクロイックミラーを透過したレーザ光は、レンズG2、レンズG3によって、像側NA(像側開口数)が0.495、スポット半径(像高)が1.903mmで結像する。結像面(図7上の像面I)には、照明光(合波光)を導光するためのライトガイドケーブル6の入射端面61が配置される。ライトガイドケーブル6の入射端面61とは反対側の端部は、内視鏡や手術顕微鏡といった各種医療用観察装置に接続される。 The laser beam that has passed through the bandpass dichroic mirror is imaged by the lens G2 and the lens G3 with an image side NA (image side numerical aperture) of 0.495 and a spot radius (image height) of 1.903 mm. An incident end face 61 of the light guide cable 6 for guiding illumination light (combined light) is disposed on the imaging plane (image plane I in FIG. 7). The end of the light guide cable 6 opposite to the incident end face 61 is connected to various medical observation devices such as an endoscope and a surgical microscope.
 像側NA(開口数)は、用いられるライトガイドケーブル6の開口数と略同一かこれより小さい値に設定される。これにより、ライトガイドケーブル6内部での光伝送ロスを抑制することができる。 The image side NA (numerical aperture) is set to a value that is substantially the same as or smaller than the numerical aperture of the light guide cable 6 used. Thereby, the optical transmission loss inside the light guide cable 6 can be suppressed.
 本実施形態において、レンズG2、G3は、ともに凸レンズであり、かつ、凸メニスカス形状となっている。第3のレンズ群256として1つの凸レンズを用いてライトガイドケーブル6に導光することも考えられるが、本実施形態のように、レンズG2、G3というように2つのレンズを用いることにより、球面収差とコマ収差の発生を抑制することができる。これにより照明品位を向上させることができる。 In this embodiment, the lenses G2 and G3 are both convex lenses and have a convex meniscus shape. Although it is conceivable to use one convex lens as the third lens group 256 and guide the light to the light guide cable 6, by using two lenses such as lenses G2 and G3 as in the present embodiment, a spherical surface is obtained. Occurrence of aberration and coma can be suppressed. Thereby, illumination quality can be improved.
 吸面収差とコマ収差が発生した場合、これら収差成分はNA誤差として現れる。例えば、凸レンズで発生する球面収差はNAが0.495以上の高開口成分となるため、ライトガイドケーブル6に導光されずにロスとなるか、または、導光されても、照明光の輝度むらとなって現れてしまい、照明品位が低下してしまう。 When absorption aberration and coma occur, these aberration components appear as NA errors. For example, since the spherical aberration generated in the convex lens is a high aperture component having an NA of 0.495 or more, it is lost without being guided to the light guide cable 6, or even if the light is guided, the luminance of the illumination light It appears as unevenness, and the illumination quality deteriorates.
 また、本実施形態では、凸レンズだけを用いることにより、ペッツバール和マイナスの像面湾曲が発生するが、像面湾曲を含む、軸上色収差、倍率色収差、湾曲収差に関しては問題となりにくい。これは、ライトガイドケーブル6へ導光するためには、像側NAの仕様を満たせていればよく、結像点のシフトという形で現れる上述の収差は問題となりにくいからである。 Further, in this embodiment, only the convex lens is used, and a Petzval sum minus field curvature is generated. However, the longitudinal chromatic aberration, the lateral chromatic aberration, and the curvature aberration including the field curvature are not problematic. This is because in order to guide the light to the light guide cable 6, it is sufficient that the specification of the image side NA is satisfied, and the above-described aberration that appears in the form of the shift of the image formation point is unlikely to be a problem.
 次に、第2の照明光学系について説明する。
 広帯域光源51は例えばφ3.0mmの発光サイズを有する白色LEDから構成される。広帯域光源51から発生する光は、レンズG3、レンズG4、レンズG5で略略平行光化された後、光軸に対して45度傾けて配置したダイクロイックミラー53へ入射する。
Next, the second illumination optical system will be described.
The broadband light source 51 is composed of a white LED having a light emission size of φ3.0 mm, for example. The light generated from the broadband light source 51 is converted into substantially parallel light by the lens G3, the lens G4, and the lens G5, and then enters the dichroic mirror 53 disposed at an inclination of 45 degrees with respect to the optical axis.
 第1の照明光学系におけるレーザ光と、第2の照明光学系における白色LED光とは、バンドバス・ダイクロイックミラー53により合波されることで、単なる白色LED光と比較して演色指数の高い照明光を得ることができる。
 このように、本実施形態に係る医療用光源装置は、高い色再現性が要求される医療用観察装置で使用される医療用光源装置として好適なものとなっている。
The laser light in the first illumination optical system and the white LED light in the second illumination optical system are combined by the band bus dichroic mirror 53, so that the color rendering index is higher than that of mere white LED light. Illumination light can be obtained.
Thus, the medical light source device according to the present embodiment is suitable as a medical light source device used in a medical observation device that requires high color reproducibility.
 ダイクロイックミラー53で反射した白色LED光の光路は、第1の照明光学系で説明したレンズG2、レンズG3を通る光の光路と同様である。すなわち、白色LED光は、レンズG2、レンズG3によって、像側NA(像側開口数)が0.553、スポット半径(像高)が2.045mmで結像する。 The optical path of the white LED light reflected by the dichroic mirror 53 is the same as the optical path of the light passing through the lens G2 and the lens G3 described in the first illumination optical system. That is, white LED light is imaged by the lens G2 and the lens G3 so that the image side NA (image side numerical aperture) is 0.553 and the spot radius (image height) is 2.045 mm.
 白色LED光はランバード分布であり、放射角が広いことが特徴である。このため、本実施形態では、照明としての出力パワーを確保するために、物体側開口数が0.731という比較的大きなものとしている。 White LED light is characterized by a Lambert distribution and a wide radiation angle. For this reason, in this embodiment, in order to ensure output power as illumination, the object-side numerical aperture is set to a relatively large value of 0.731.
 また、開口数が大きくなるほど、球面収差、コマ収差が発生しやすいが、本実施形態では、3つのレンズG3、G4、G5を用いて凸レンズのパワーを3分割することにより、球面収差、コマ収差の発生を抑制しつつ、高開口数を実現している。 Also, as the numerical aperture increases, spherical aberration and coma are more likely to occur. However, in this embodiment, the power of the convex lens is divided into three parts using the three lenses G3, G4, and G5, so that spherical aberration and coma are obtained. A high numerical aperture is achieved while suppressing the occurrence of.
 医療用光源装置205とする場合、第1の照明光学系と第2の照明光学系とにおける像側開口数を略同一とすることが重要である。両光学系間に像側開口数の差分が存在すると、照明光の放射角度の差分として現れるため、色むら、輝度むらとなって照明品位が低下するため、両光学系間で像側開口数が略同一とすることが好ましい。
 ここで、略同一とは、一方の像側開口数が、他方の像側開口数の±3%の範囲にあることをいう。
In the case of the medical light source device 205, it is important that the image-side numerical apertures in the first illumination optical system and the second illumination optical system are substantially the same. If there is a difference in the image-side numerical aperture between the two optical systems, it appears as a difference in the radiation angle of the illumination light, resulting in uneven color and brightness, resulting in a reduction in illumination quality. Are preferably substantially the same.
Here, “substantially the same” means that one image-side numerical aperture is in a range of ± 3% of the other image-side numerical aperture.
 ここで、高開口数と収差補正を両立するために高屈折率ガラスを用いることが考えられる。一般的に高屈折率ガラスは短波長領域の透過率が低いため、屈折率を過分にあげると、収差補正上有利ではあるものの紫レーザ光といった短波長光の透過率が低下し、短波長光の輝度が低下してしまう。これは、高出力が求められる照明系光源装置においては好ましくない。 Here, it is conceivable to use a high refractive index glass in order to achieve both high numerical aperture and aberration correction. In general, high refractive index glass has low transmittance in the short wavelength region. Therefore, if the refractive index is excessively increased, the transmittance of short wavelength light such as violet laser light is reduced although it is advantageous in correcting aberrations. The brightness will be reduced. This is not preferable in an illumination system light source device that requires high output.
 これに対し、本実施形態では、レンズG1~G6として、屈折率Ndが1.70より大きく1.85よりも小さく、アッベ数νdが40より大きく55より小さい硝材を用いることにより、高開口数としつつ短波長領域の透過率を向上させることができる。 On the other hand, in the present embodiment, as the lenses G1 to G6, a glass material having a refractive index Nd larger than 1.70 and smaller than 1.85 and an Abbe number νd larger than 40 and smaller than 55 is used. The transmittance in the short wavelength region can be improved.
 例えば、屈折率Ndが1.85以上であったり、アッベ数νdが40以下であったりすると、紫レーザ光といった短波長光の透過率が低下し、短波長光の輝度が低下する。
 また、屈折率Ndが1.70以下であったり、アッベ数νdが55以上であったりすると、短波長光の透過率の低下は抑制されるものの、球面収差、コマ収差の補正が困難となる。
For example, when the refractive index Nd is 1.85 or more or the Abbe number νd is 40 or less, the transmittance of short wavelength light such as violet laser light is reduced, and the luminance of short wavelength light is reduced.
Further, when the refractive index Nd is 1.70 or less and the Abbe number νd is 55 or more, a decrease in transmittance of short-wavelength light is suppressed, but it becomes difficult to correct spherical aberration and coma aberration. .
 また、本実施形態においては、レンズG1~G6の全てのレンズにおいて、屈折率Ndとアッベ数νdが同一となるようにレンズ設計されているので、レンズに蒸着する反射防止コーティング膜の設計を共通化することができ、コストダウンをすることができる。 In the present embodiment, since all the lenses G1 to G6 are designed so that the refractive index Nd and the Abbe number νd are the same, the design of the antireflection coating film deposited on the lenses is common. The cost can be reduced.
 (第4の実施形態)
 図10は、本実施形態に係る医療用光源装置305の一構成例であり、狭帯域光源部52からの光と広帯域光源51からの光が合波してライトガイドケーブル6に入射するまでの光学系を説明する図である。図10においては、図面を見やすくするために光線の図示を省略している。
 図11は、図10に示す構成の部分図であり、狭帯域光源部52からの光がライトガイドケーブル6に到達するまでの光学系を説明するための模式図である。この光学系を第1の照明光学系と称する。
 図12は、図10に示す構成の部分図であり、広帯域光源51からの光がライトガイドケーブル6に到達するまでの光学系を説明するための模式図である。この光学系を第2の照明光学系と称する。
 上述の実施形態と同様の構成については同様の符号を付し、説明を省略する。
(Fourth embodiment)
FIG. 10 is a configuration example of the medical light source device 305 according to the present embodiment, from when the light from the narrow-band light source unit 52 and the light from the broadband light source 51 are combined and enter the light guide cable 6. It is a figure explaining an optical system. In FIG. 10, illustration of light rays is omitted to make the drawing easier to see.
FIG. 11 is a partial view of the configuration shown in FIG. 10, and is a schematic diagram for explaining an optical system until light from the narrow band light source unit 52 reaches the light guide cable 6. This optical system is referred to as a first illumination optical system.
FIG. 12 is a partial view of the configuration shown in FIG. 10, and is a schematic diagram for explaining an optical system until light from the broadband light source 51 reaches the light guide cable 6. This optical system is referred to as a second illumination optical system.
The same reference numerals are given to the same configurations as those in the above-described embodiment, and the description will be omitted.
 まず、本実施形態の医療用光源装置305の概略構成について説明する。
 図10に示すように、本実施形態の医療用光源装置305は、広帯域光源51と、狭帯域光源部52と、光学素子としてのダイクロイックミラー53と、第1のレンズ群354と、第2のコリメートレンズG31と、第3のレンズ群356と、拡散板251と、絞りS1と、絞りS2と、を有する。第2のコリメートレンズG31は第2のレンズ群を構成する。
First, a schematic configuration of the medical light source device 305 of the present embodiment will be described.
As shown in FIG. 10, the medical light source device 305 of this embodiment includes a broadband light source 51, a narrow-band light source unit 52, a dichroic mirror 53 as an optical element, a first lens group 354, a second lens group 354, and a second lens group 354. A collimator lens G31, a third lens group 356, a diffusion plate 251, a diaphragm S1, and a diaphragm S2 are provided. The second collimating lens G31 constitutes a second lens group.
 拡散板251は、狭帯域光源部52の出射部の後段に配置される。狭帯域光源部52からのレーザ光は拡散板251に照射される。拡散板251は、狭帯域光源部52からのレーザ光を拡散させる。拡散された光は第2のコリメートレンズG1に入射する。
 ダイクロイックミラー53へは、広帯域光源51からの光と、狭帯域光源部52からの光が入射される。
The diffusing plate 251 is arranged at the rear stage of the emission part of the narrow band light source part 52. Laser light from the narrow-band light source unit 52 is applied to the diffusion plate 251. The diffusion plate 251 diffuses the laser light from the narrow band light source unit 52. The diffused light is incident on the second collimating lens G1.
The light from the broadband light source 51 and the light from the narrow band light source unit 52 are incident on the dichroic mirror 53.
 第1のレンズ群354は、光路上、広帯域光源51とダイクロイックミラー53との間に位置する。第1のレンズ群354は、広帯域光源51からの白色光をコリメートし略平行光とし、合波部となるダイクロイックミラー53へ入射させる。 The first lens group 354 is located between the broadband light source 51 and the dichroic mirror 53 on the optical path. The first lens group 354 collimates the white light from the broadband light source 51 into substantially parallel light and makes it incident on the dichroic mirror 53 serving as a multiplexing unit.
 第2のコリメートレンズG31は、光路上、狭帯域光源部52とダイクロイックミラー53との間に位置する。第2のコリメートレンズG1は、狭帯域光源部52からのレーザ光をコリメートし略平行光とし、合波部となるダイクロイックミラー53へ入射させる。 The second collimating lens G31 is located between the narrow-band light source unit 52 and the dichroic mirror 53 on the optical path. The second collimating lens G1 collimates the laser light from the narrow-band light source unit 52 into substantially parallel light, and enters the dichroic mirror 53 serving as a multiplexing unit.
 第3のレンズ群356は、光路上、ダイクロイックミラー53とライトガイドケーブル6との間に位置する。第3のレンズ群356は、ダイクロイックミラー53で合波された合波光をライトガイドケーブル6の入射端面61へ入射させる。図において、合波光のライトガイドケーブル6の入射端面61における結像面(像面)をIで表している。 The third lens group 356 is located between the dichroic mirror 53 and the light guide cable 6 on the optical path. The third lens group 356 causes the combined light combined by the dichroic mirror 53 to enter the incident end surface 61 of the light guide cable 6. In the drawing, an image plane (image plane) on the incident end face 61 of the light guide cable 6 for the combined light is denoted by I.
 第1のレンズ群354は、物体側(広帯域光源51側)から順にレンズG34と、レンズG35と、レンズG36とを有する。各レンズのレンズデータについては後述する。
 第3のレンズ群356は、物体側(狭帯域光源52側)から順にレンズG32と、レンズG33とを有する。
The first lens group 354 includes a lens G34, a lens G35, and a lens G36 in order from the object side (broadband light source 51 side). Lens data for each lens will be described later.
The third lens group 356 includes a lens G32 and a lens G33 in order from the object side (narrowband light source 52 side).
 本実施形態では、レンズG31~G36のいずれもが、互いに同じ屈折率Nd、互いに同じアッベ数vdとなっており、屈折率Ndが1.70より大きく1.85より小さく、アッベ数νdが40より大きく55より小さい硝材から構成されている。 In this embodiment, all of the lenses G31 to G36 have the same refractive index Nd and the same Abbe number vd, the refractive index Nd is larger than 1.70 and smaller than 1.85, and the Abbe number νd is 40. It is made of a glass material that is larger and smaller than 55.
 次に、第1の照明光学系について説明する。
 図11に示すように、狭帯域光源部52からの光がライトガイドケーブル6の入射端面61まで到達するまでの光路上には、第2のコリメートレンズG31、レンズG32、レンズG33が位置する。
Next, the first illumination optical system will be described.
As shown in FIG. 11, the second collimating lens G31, the lens G32, and the lens G33 are positioned on the optical path until the light from the narrow-band light source unit 52 reaches the incident end face 61 of the light guide cable 6.
 図11に示す第1の照明光学系において、物体側開口数は0.164、物体高は5.500mm、像側開口数は0.496、像高は1.8353mmとなっている。
 図11に示す狭帯域光源部52からの光がライトガイドケーブル6の入射端面61まで到達するまでの光路上に位置するレンズのレンズデータを表3に示す。
In the first illumination optical system shown in FIG. 11, the object-side numerical aperture is 0.164, the object height is 5.500 mm, the image-side numerical aperture is 0.496, and the image height is 1.8353 mm.
Table 3 shows lens data of lenses located on the optical path until the light from the narrow-band light source unit 52 shown in FIG. 11 reaches the incident end face 61 of the light guide cable 6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3において、面番号1、2は第2のコリメートレンズG31の面番号であり、面番号34、35はレンズG32の面番号であり、面番号6、7はレンズG33の面番号である。 In Table 3, surface numbers 1 and 2 are surface numbers of the second collimating lens G31, surface numbers 34 and 35 are surface numbers of the lens G32, and surface numbers 6 and 7 are surface numbers of the lens G33.
 次に、第2の照明光学系について説明する。
 図12に示すように、広帯域光源51からの光がライトガイドケーブル6の入射端面61まで到達するまでの光路上には、レンズG34、レンズG35、レンズG36、絞りS2、レンズG32、レンズG33が位置する。図12においては、絞りS2の図示を省略している。
Next, the second illumination optical system will be described.
As shown in FIG. 12, a lens G34, a lens G35, a lens G36, an aperture S2, a lens G32, and a lens G33 are arranged on the optical path until the light from the broadband light source 51 reaches the incident end face 61 of the light guide cable 6. To position. In FIG. 12, illustration of the diaphragm S2 is omitted.
 図12に示す第2の照明光学系において、物体側開口数は0.731、物体高は1.500mm、像側開口数は0.553、像高は2.045mmとなっている。
 図9に示す広帯域光源51からの光がライトガイドケーブル6の入射端面61まで到達するまでの光路上に位置するレンズのレンズデータを表4に示す。
In the second illumination optical system shown in FIG. 12, the object-side numerical aperture is 0.731, the object height is 1.500 mm, the image-side numerical aperture is 0.553, and the image height is 2.045 mm.
Table 4 shows lens data of lenses located on the optical path until the light from the broadband light source 51 shown in FIG. 9 reaches the incident end face 61 of the light guide cable 6.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4において、面番号1、2はレンズG34の面番号であり、面番号3、4はレンズG35の面番号であり、面番号5、6はレンズG36の面番号であり、面番号8、9はレンズG32の面番号であり、面番号10、11はレンズG33の面番号である。 In Table 4, surface numbers 1 and 2 are surface numbers of the lens G34, surface numbers 3 and 4 are surface numbers of the lens G35, surface numbers 5 and 6 are surface numbers of the lens G36, surface numbers 8 and 9 is the surface number of the lens G32, and surface numbers 10 and 11 are the surface numbers of the lens G33.
 表3及び表4に示すように、レンズG31~G36のいずれもが、互いに同じ屈折率Nd、互いに同じアッベ数vdとなっており、屈折率Ndが1.70より大きく1.85より小さい値である1.72916であり、アッベ数νdが40より大きく55より小さい54.6735となっている。 As shown in Tables 3 and 4, all of the lenses G31 to G36 have the same refractive index Nd and the same Abbe number vd, and the refractive index Nd is larger than 1.70 and smaller than 1.85. The Abbe number νd is larger than 40 and smaller than 55, which is 54.6735.
 本実施形態において、基本的なレンズ設計に係る考え方は第3の実施形態と同様である。本実施形態では、用いる複数のレンズの一部を共通化する構成とすることで、更にコストダウンすることができる。 In this embodiment, the basic concept of lens design is the same as in the third embodiment. In this embodiment, the cost can be further reduced by adopting a configuration in which a part of the plurality of lenses to be used is made common.
 具体的には、第2のコリメートレンズG31とレンズG32とレンズG36とを共通化し、更に、レンズG33とレンズG34とを共通化している。これにより、狭帯域光源部52からのレーザ光と広帯域光源51からの白色LED光との合波を行う光学系を、実質上3種類のレンズを用いて構成することができる。 Specifically, the second collimating lens G31, the lens G32, and the lens G36 are shared, and the lens G33 and the lens G34 are also shared. Thereby, an optical system that combines the laser light from the narrow-band light source unit 52 and the white LED light from the broadband light source 51 can be configured using substantially three types of lenses.
 第3の実施形態では、第2のコリメートレンズG31の開口数(物体側開口数)は0.164であり、第3のレンズ群256の開口数は0.496~0.500であり、第1のレンズ群254の開口数は0.731となっている。このように、第2のコリメートレンズG31からなるレンズ群、第3のレンズ群256、第1のレンズ群254の順番で開口数は大きくなっている。
 第3の実施形態で説明したように、高開口数になるほど、収差補正上、凸レンズのパワーを分割して凸レンズのパワーを緩め、メニスカス形状にするため、レンズの枚数もこのレンズ群の順に増えている。
In the third embodiment, the numerical aperture (object-side numerical aperture) of the second collimating lens G31 is 0.164, the numerical aperture of the third lens group 256 is 0.496 to 0.500, The numerical aperture of one lens group 254 is 0.731. As described above, the numerical aperture increases in the order of the lens group including the second collimating lens G31, the third lens group 256, and the first lens group 254.
As described in the third embodiment, the higher the numerical aperture, the more the number of lenses increases in the order of this lens group in order to divide the power of the convex lens and reduce the power of the convex lens to form a meniscus shape for aberration correction. ing.
 第4の実施形態においては、第3のレンズ群356を、第2のコリメートレンズG31と同じレンズG32を用いる構成とし、レンズG33によって第3のレンズ群356における開口数を補正するように、レンズ31及びレンズG33を設計している。
 同様に、第1のレンズ群354を、第3のレンズ群356のレンズG32と同じレンズG36と、レンズG33と同じレンズG34とを用いる構成として、レンズG35によって第1のレンズ群354における開口数を補正するように、レンズG35を設計している。
In the fourth embodiment, the third lens group 356 is configured to use the same lens G32 as the second collimating lens G31, and the lens G33 is used to correct the numerical aperture in the third lens group 356. 31 and the lens G33 are designed.
Similarly, the first lens group 354 is configured to use the same lens G36 as the lens G32 of the third lens group 356 and the same lens G34 as the lens G33, and the numerical aperture in the first lens group 354 by the lens G35. The lens G35 is designed so as to correct the above.
 このようにレンズ設計を行うことにより、第2のコリメートレンズG31とレンズG32とレンズG36とを共通化し、更に、レンズG33とレンズG34とを共通化することができる。 By designing the lens in this way, the second collimating lens G31, the lens G32, and the lens G36 can be shared, and the lens G33 and the lens G34 can be shared.
 本開示に係る医療用光源装置は内視鏡システム、顕微鏡システムに応用することができる。以下、図13~図16を用いて内視鏡手術システムについて、図17及び図18を用いて顕微鏡手術システムについて説明する。 The medical light source device according to the present disclosure can be applied to an endoscope system and a microscope system. The endoscopic surgery system will be described below with reference to FIGS. 13 to 16 and the microscopic surgery system with reference to FIGS. 17 and 18. FIG.
 [内視鏡手術システム]
 以下、図13~図16を用いて、本開示に係る技術が適用され得る内視鏡手術システムについて説明する。
 図15において符号5157が付されている光源装置が、本開示に係る医療用光源装置に相当する。内視鏡手術システムでは、医療用光源装置に接続し、医療用光源装置からの出力光を導光し、観察対象部位に照射する内視鏡が設けられている。
[Endoscopic surgery system]
Hereinafter, an endoscopic surgery system to which the technology according to the present disclosure can be applied will be described with reference to FIGS.
The light source device denoted by reference numeral 5157 in FIG. 15 corresponds to the medical light source device according to the present disclosure. In the endoscopic surgery system, an endoscope is provided that is connected to a medical light source device, guides output light from the medical light source device, and irradiates an observation target site.
 図13は、本開示に係る技術が適用され得る手術室システム5100の全体構成を概略的に示す図である。図13を参照すると、手術室システム5100は、手術室内に設置される装置群が視聴覚コントローラ(AV Controller)5107及び手術室制御装置5109を介して互いに連携可能に接続されることにより構成される。 FIG. 13 is a diagram schematically showing an overall configuration of an operating room system 5100 to which the technology according to the present disclosure can be applied. Referring to FIG. 13, the operating room system 5100 is configured by connecting a group of apparatuses installed in the operating room so as to cooperate with each other via an audiovisual controller 5107 and an operating room control apparatus 5109.
 手術室には、様々な装置が設置され得る。図13では、一例として、内視鏡下手術のための各種の装置群5101と、手術室の天井に設けられ術者の手元を撮像するシーリングカメラ5187と、手術室の天井に設けられ手術室全体の様子を撮像する術場カメラ5189と、複数の表示装置5103A~5103Dと、レコーダ5105と、患者ベッド5183と、照明5191と、を図示している。 Various devices can be installed in the operating room. In FIG. 13, as an example, various apparatus groups 5101 for endoscopic surgery, a ceiling camera 5187 provided on the ceiling of the operating room and imaging the operator's hand, and an operating room provided on the operating room ceiling. An operating field camera 5189 that images the entire situation, a plurality of display devices 5103A to 5103D, a recorder 5105, a patient bed 5183, and an illumination 5191 are illustrated.
 ここで、これらの装置のうち、装置群5101は、後述する内視鏡手術システム5113に属するものであり、内視鏡や当該内視鏡によって撮像された画像を表示する表示装置等からなる。内視鏡手術システム5113に属する各装置は医療用機器とも呼称される。一方、表示装置5103A~5103D、レコーダ5105、患者ベッド5183及び照明5191は、内視鏡手術システム5113とは別個に、例えば手術室に備え付けられている装置である。これらの内視鏡手術システム5113に属さない各装置は非医療用機器とも呼称される。視聴覚コントローラ5107及び/又は手術室制御装置5109は、これら医療機器及び非医療機器の動作を互いに連携して制御する。 Here, among these devices, the device group 5101 belongs to an endoscopic surgery system 5113 described later, and includes an endoscope, a display device that displays an image captured by the endoscope, and the like. Each device belonging to the endoscopic surgery system 5113 is also referred to as a medical device. On the other hand, the display devices 5103A to 5103D, the recorder 5105, the patient bed 5183, and the illumination 5191 are devices provided in an operating room, for example, separately from the endoscopic surgery system 5113. These devices that do not belong to the endoscopic surgery system 5113 are also referred to as non-medical devices. The audiovisual controller 5107 and / or the operating room control device 5109 controls the operations of these medical devices and non-medical devices in cooperation with each other.
 視聴覚コントローラ5107は、医療機器及び非医療機器における画像表示に関する処理を、統括的に制御する。具体的には、手術室システム5100が備える装置のうち、装置群5101、シーリングカメラ5187及び術場カメラ5189は、手術中に表示すべき情報(以下、表示情報ともいう)を発信する機能を有する装置(以下、発信元の装置とも呼称する)であり得る。また、表示装置5103A~5103Dは、表示情報が出力される装置(以下、出力先の装置とも呼称する)であり得る。また、レコーダ5105は、発信元の装置及び出力先の装置の双方に該当する装置であり得る。視聴覚コントローラ5107は、発信元の装置及び出力先の装置の動作を制御し、発信元の装置から表示情報を取得するとともに、当該表示情報を出力先の装置に送信し、表示又は記録させる機能を有する。なお、表示情報とは、手術中に撮像された各種の画像や、手術に関する各種の情報(例えば、患者の身体情報や、過去の検査結果、術式についての情報等)等である。 The audiovisual controller 5107 comprehensively controls processing related to image display in medical devices and non-medical devices. Specifically, among the devices included in the operating room system 5100, the device group 5101, the ceiling camera 5187, and the surgical field camera 5189 have a function of transmitting information to be displayed during surgery (hereinafter also referred to as display information). It may be a device (hereinafter also referred to as a source device). Display devices 5103A to 5103D can be devices that output display information (hereinafter also referred to as output destination devices). The recorder 5105 may be a device that corresponds to both a transmission source device and an output destination device. The audiovisual controller 5107 controls the operation of the transmission source device and the output destination device, acquires display information from the transmission source device, and transmits the display information to the output destination device for display or recording. Have. The display information includes various images captured during the operation, various types of information related to the operation (for example, patient physical information, past examination results, information on a surgical procedure, and the like).
 具体的には、視聴覚コントローラ5107には、装置群5101から、表示情報として、内視鏡によって撮像された患者の体腔内の術部の画像についての情報が送信され得る。また、シーリングカメラ5187から、表示情報として、当該シーリングカメラ5187によって撮像された術者の手元の画像についての情報が送信され得る。また、術場カメラ5189から、表示情報として、当該術場カメラ5189によって撮像された手術室全体の様子を示す画像についての情報が送信され得る。なお、手術室システム5100に撮像機能を有する他の装置が存在する場合には、視聴覚コントローラ5107は、表示情報として、当該他の装置からも当該他の装置によって撮像された画像についての情報を取得してもよい。 Specifically, the audiovisual controller 5107 can transmit information about the image of the surgical site in the patient's body cavity captured by the endoscope from the device group 5101 as display information. In addition, information about the image at hand of the surgeon captured by the ceiling camera 5187 can be transmitted from the ceiling camera 5187 as display information. Further, information about an image showing the entire operating room imaged by the operating field camera 5189 can be transmitted from the operating field camera 5189 as display information. When there is another device having an imaging function in the operating room system 5100, the audiovisual controller 5107 acquires information about an image captured by the other device from the other device as display information. May be.
 あるいは、例えば、レコーダ5105には、過去に撮像されたこれらの画像についての情報が視聴覚コントローラ5107によって記録されている。視聴覚コントローラ5107は、表示情報として、レコーダ5105から当該過去に撮像された画像についての情報を取得することができる。なお、レコーダ5105には、手術に関する各種の情報も事前に記録されていてもよい。 Alternatively, for example, information about these images captured in the past is recorded by the audiovisual controller 5107 in the recorder 5105. The audiovisual controller 5107 can acquire information about the image captured in the past from the recorder 5105 as display information. Note that the recorder 5105 may also record various types of information related to surgery in advance.
 視聴覚コントローラ5107は、出力先の装置である表示装置5103A~5103Dの少なくともいずれかに、取得した表示情報(すなわち、手術中に撮影された画像や、手術に関する各種の情報)を表示させる。図示する例では、表示装置5103Aは手術室の天井から吊り下げられて設置される表示装置であり、表示装置5103Bは手術室の壁面に設置される表示装置であり、表示装置5103Cは手術室内の机上に設置される表示装置であり、表示装置5103Dは表示機能を有するモバイル機器(例えば、タブレットPC(Personal Computer))である。 The audiovisual controller 5107 displays the acquired display information (that is, images taken during the operation and various information related to the operation) on at least one of the display devices 5103A to 5103D that are output destination devices. In the example shown in the figure, the display device 5103A is a display device that is suspended from the ceiling of the operating room, the display device 5103B is a display device that is installed on the wall surface of the operating room, and the display device 5103C is installed in the operating room. The display device 5103D is a mobile device (for example, a tablet PC (Personal Computer)) having a display function.
 また、図13では図示を省略しているが、手術室システム5100には、手術室の外部の装置が含まれてもよい。手術室の外部の装置は、例えば、病院内外に構築されたネットワークに接続されるサーバや、医療スタッフが用いるPC、病院の会議室に設置されるプロジェクタ等であり得る。このような外部装置が病院外にある場合には、視聴覚コントローラ5107は、遠隔医療のために、テレビ会議システム等を介して、他の病院の表示装置に表示情報を表示させることもできる。 Although not shown in FIG. 13, the operating room system 5100 may include a device outside the operating room. The device outside the operating room can be, for example, a server connected to a network constructed inside or outside the hospital, a PC used by medical staff, a projector installed in a conference room of the hospital, or the like. When such an external device is outside the hospital, the audio-visual controller 5107 can display the display information on a display device of another hospital via a video conference system or the like for telemedicine.
 手術室制御装置5109は、非医療機器における画像表示に関する処理以外の処理を、統括的に制御する。例えば、手術室制御装置5109は、患者ベッド5183、シーリングカメラ5187、術場カメラ5189及び照明5191の駆動を制御する。 The operating room control device 5109 comprehensively controls processing other than processing related to image display in non-medical devices. For example, the operating room control device 5109 controls the driving of the patient bed 5183, the ceiling camera 5187, the operating field camera 5189, and the illumination 5191.
 手術室システム5100には、集中操作パネル5111が設けられており、ユーザは、当該集中操作パネル5111を介して、視聴覚コントローラ5107に対して画像表示についての指示を与えたり、手術室制御装置5109に対して非医療機器の動作についての指示を与えることができる。集中操作パネル5111は、表示装置の表示面上にタッチパネルが設けられて構成される。 The operating room system 5100 is provided with a centralized operation panel 5111, and the user gives an instruction for image display to the audiovisual controller 5107 via the centralized operation panel 5111, or the operating room control apparatus 5109. An instruction about the operation of the non-medical device can be given. The central operation panel 5111 is configured by providing a touch panel on the display surface of the display device.
 図14は、集中操作パネル5111における操作画面の表示例を示す図である。図14では、一例として、手術室システム5100に、出力先の装置として、2つの表示装置が設けられている場合に対応する操作画面を示している。図14を参照すると、操作画面5193には、発信元選択領域5195と、プレビュー領域5197と、コントロール領域5201と、が設けられる。 FIG. 14 is a diagram showing a display example of an operation screen on the centralized operation panel 5111. In FIG. 14, as an example, an operation screen corresponding to a case where the operating room system 5100 is provided with two display devices as output destination devices is illustrated. Referring to FIG. 14, a transmission source selection area 5195, a preview area 5197, and a control area 5201 are provided on the operation screen 5193.
 発信元選択領域5195には、手術室システム5100に備えられる発信元装置と、当該発信元装置が有する表示情報を表すサムネイル画面と、が紐付けられて表示される。ユーザは、表示装置に表示させたい表示情報を、発信元選択領域5195に表示されているいずれかの発信元装置から選択することができる。 In the transmission source selection area 5195, a transmission source device provided in the operating room system 5100 and a thumbnail screen representing display information of the transmission source device are displayed in association with each other. The user can select display information to be displayed on the display device from any of the transmission source devices displayed in the transmission source selection area 5195.
 プレビュー領域5197には、出力先の装置である2つの表示装置(Monitor1、Monitor2)に表示される画面のプレビューが表示される。図示する例では、1つの表示装置において4つの画像がPinP表示されている。当該4つの画像は、発信元選択領域5195において選択された発信元装置から発信された表示情報に対応するものである。4つの画像のうち、1つはメイン画像として比較的大きく表示され、残りの3つはサブ画像として比較的小さく表示される。ユーザは、4つの画像が表示された領域を適宜選択することにより、メイン画像とサブ画像を入れ替えることができる。また、4つの画像が表示される領域の下部には、ステータス表示領域5199が設けられており、当該領域に手術に関するステータス(例えば、手術の経過時間や、患者の身体情報等)が適宜表示され得る。 The preview area 5197 displays a preview of the screen displayed on the two display devices (Monitor 1 and Monitor 2) that are output destination devices. In the illustrated example, four images are displayed as PinP on one display device. The four images correspond to display information transmitted from the transmission source device selected in the transmission source selection area 5195. Of the four images, one is displayed as a relatively large main image, and the remaining three are displayed as a relatively small sub image. The user can switch the main image and the sub image by appropriately selecting an area in which four images are displayed. In addition, a status display area 5199 is provided below the area where the four images are displayed, and the status relating to the surgery (for example, the elapsed time of the surgery, the patient's physical information, etc.) is appropriately displayed in the area. obtain.
 コントロール領域5201には、発信元の装置に対して操作を行うためのGUI(Graphical User Interface)部品が表示される発信元操作領域5203と、出力先の装置に対して操作を行うためのGUI部品が表示される出力先操作領域5205と、が設けられる。図示する例では、発信元操作領域5203には、撮像機能を有する発信元の装置におけるカメラに対して各種の操作(パン、チルト及びズーム)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、発信元の装置におけるカメラの動作を操作することができる。なお、図示は省略しているが、発信元選択領域5195において選択されている発信元の装置がレコーダである場合(すなわち、プレビュー領域5197において、レコーダに過去に記録された画像が表示されている場合)には、発信元操作領域5203には、当該画像の再生、再生停止、巻き戻し、早送り等の操作を行うためのGUI部品が設けられ得る。 In the control area 5201, a GUI (Graphical User Interface) part for displaying a GUI (Graphical User Interface) part for operating the source apparatus and a GUI part for operating the output destination apparatus are displayed. And an output destination operation area 5205 in which is displayed. In the illustrated example, the transmission source operation area 5203 is provided with GUI parts for performing various operations (panning, tilting, and zooming) on the camera in the transmission source device having an imaging function. The user can operate the operation of the camera in the transmission source device by appropriately selecting these GUI components. Although illustration is omitted, when the transmission source device selected in the transmission source selection area 5195 is a recorder (that is, in the preview area 5197, images recorded in the past are displayed on the recorder). In the case of GUI), a GUI component for performing operations such as playback, stop playback, rewind, and fast forward of the image can be provided in the transmission source operation area 5203.
 また、出力先操作領域5205には、出力先の装置である表示装置における表示に対する各種の操作(スワップ、フリップ、色調整、コントラスト調整、2D表示と3D表示の切り替え)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、表示装置における表示を操作することができる。 In the output destination operation area 5205, GUI parts for performing various operations (swap, flip, color adjustment, contrast adjustment, switching between 2D display and 3D display) on the display device that is the output destination device are provided. Is provided. The user can operate the display on the display device by appropriately selecting these GUI components.
 なお、集中操作パネル5111に表示される操作画面は図示する例に限定されず、ユーザは、集中操作パネル5111を介して、手術室システム5100に備えられる、視聴覚コントローラ5107及び手術室制御装置5109によって制御され得る各装置に対する操作入力が可能であってよい。 Note that the operation screen displayed on the centralized operation panel 5111 is not limited to the example shown in the figure, and the user can use the audiovisual controller 5107 and the operating room control device 5109 provided in the operating room system 5100 via the centralized operation panel 5111. Operation input for each device that can be controlled may be possible.
 図15は、以上説明した手術室システムが適用された手術の様子の一例を示す図である。シーリングカメラ5187及び術場カメラ5189は、手術室の天井に設けられ、患者ベッド5183上の患者5185の患部に対して処置を行う術者(医者)5181の手元及び手術室全体の様子を撮影可能である。シーリングカメラ5187及び術場カメラ5189には、倍率調整機能、焦点距離調整機能、撮影方向調整機能等が設けられ得る。照明5191は、手術室の天井に設けられ、少なくとも術者5181の手元を照射する。照明5191は、その照射光量、照射光の波長(色)及び光の照射方向等を適宜調整可能であってよい。 FIG. 15 is a diagram showing an example of a state of surgery to which the operating room system described above is applied. The ceiling camera 5187 and the operating field camera 5189 are provided on the ceiling of the operating room, and can photograph the state of the operator (doctor) 5181 who performs treatment on the affected part of the patient 5185 on the patient bed 5183 and the entire operating room. It is. The ceiling camera 5187 and the surgical field camera 5189 may be provided with a magnification adjustment function, a focal length adjustment function, a photographing direction adjustment function, and the like. The illumination 5191 is provided on the ceiling of the operating room and irradiates at least the hand of the operator 5181. The illumination 5191 may be capable of appropriately adjusting the irradiation light amount, the wavelength (color) of the irradiation light, the light irradiation direction, and the like.
 内視鏡手術システム5113、患者ベッド5183、シーリングカメラ5187、術場カメラ5189及び照明5191は、図13に示すように、視聴覚コントローラ5107及び手術室制御装置5109(図15では図示せず)を介して互いに連携可能に接続されている。手術室内には、集中操作パネル5111が設けられており、上述したように、ユーザは、当該集中操作パネル5111を介して、手術室内に存在するこれらの装置を適宜操作することが可能である。 Endoscopic surgery system 5113, patient bed 5183, ceiling camera 5187, operating field camera 5189 and illumination 5191 are connected via audiovisual controller 5107 and operating room controller 5109 (not shown in FIG. 15) as shown in FIG. Are connected to each other. A centralized operation panel 5111 is provided in the operating room. As described above, the user can appropriately operate these devices existing in the operating room via the centralized operating panel 5111.
 以下、内視鏡手術システム5113の構成について詳細に説明する。図示するように、内視鏡手術システム5113は、内視鏡5115と、その他の術具5131と、内視鏡5115を支持する支持アーム装置5141と、内視鏡下手術のための各種の装置が搭載されたカート5151と、から構成される。 Hereinafter, the configuration of the endoscopic surgery system 5113 will be described in detail. As shown in the figure, an endoscopic surgery system 5113 includes an endoscope 5115, other surgical tools 5131, a support arm device 5141 that supports the endoscope 5115, and various devices for endoscopic surgery. And a cart 5151 on which is mounted.
 内視鏡手術では、腹壁を切って開腹する代わりに、トロッカ5139a~5139dと呼ばれる筒状の開孔器具が腹壁に複数穿刺される。そして、トロッカ5139a~5139dから、内視鏡5115の鏡筒5117や、その他の術具5131が患者5185の体腔内に挿入される。図示する例では、その他の術具5131として、気腹チューブ5133、エネルギー処置具5135及び鉗子5137が、患者5185の体腔内に挿入されている。また、エネルギー処置具5135は、高周波電流や超音波振動により、組織の切開及び剥離、又は血管の封止等を行う処置具である。ただし、図示する術具5131はあくまで一例であり、術具5131としては、例えば攝子、レトラクタ等、一般的に内視鏡下手術において用いられる各種の術具が用いられてよい。 In endoscopic surgery, instead of cutting and opening the abdominal wall, a plurality of cylindrical opening devices called trocars 5139a to 5139d are punctured into the abdominal wall. Then, the lens barrel 5117 of the endoscope 5115 and other surgical tools 5131 are inserted into the body cavity of the patient 5185 from the trocars 5139a to 5139d. In the illustrated example, as other surgical tools 5131, an insufflation tube 5133, an energy treatment tool 5135, and forceps 5137 are inserted into the body cavity of the patient 5185. The energy treatment instrument 5135 is a treatment instrument that performs incision and detachment of a tissue, sealing of a blood vessel, and the like by high-frequency current and ultrasonic vibration. However, the illustrated surgical tool 5131 is merely an example, and as the surgical tool 5131, for example, various surgical tools generally used in endoscopic surgery such as a lever and a retractor may be used.
 内視鏡5115によって撮影された患者5185の体腔内の術部の画像が、表示装置5155に表示される。術者5181は、表示装置5155に表示された術部の画像をリアルタイムで見ながら、エネルギー処置具5135や鉗子5137を用いて、例えば患部を切除する等の処置を行う。なお、図示は省略しているが、気腹チューブ5133、エネルギー処置具5135及び鉗子5137は、手術中に、術者5181又は助手等によって支持される。 An image of the surgical site in the body cavity of the patient 5185 taken by the endoscope 5115 is displayed on the display device 5155. The surgeon 5181 performs a treatment such as excision of the affected part using the energy treatment tool 5135 and the forceps 5137 while viewing the image of the surgical part displayed on the display device 5155 in real time. Although not shown, the pneumoperitoneum tube 5133, the energy treatment tool 5135, and the forceps 5137 are supported by an operator 5181 or an assistant during surgery.
 (支持アーム装置)
 支持アーム装置5141は、ベース部5143から延伸するアーム部5145を備える。図示する例では、アーム部5145は、関節部5147a、5147b、5147c、及びリンク5149a、5149bから構成されており、アーム制御装置5159からの制御により駆動される。アーム部5145によって内視鏡5115が支持され、その位置及び姿勢が制御される。これにより、内視鏡5115の安定的な位置の固定が実現され得る。
(Support arm device)
The support arm device 5141 includes an arm portion 5145 extending from the base portion 5143. In the illustrated example, the arm portion 5145 includes joint portions 5147a, 5147b, and 5147c, and links 5149a and 5149b, and is driven by control from the arm control device 5159. The endoscope 5115 is supported by the arm unit 5145, and its position and posture are controlled. Thereby, the stable position fixing of the endoscope 5115 can be realized.
 (内視鏡)
 内視鏡5115は、先端から所定の長さの領域が患者5185の体腔内に挿入される鏡筒5117と、鏡筒5117の基端に接続されるカメラヘッド5119と、から構成される。図示する例では、硬性の鏡筒5117を有するいわゆる硬性鏡として構成される内視鏡5115を図示しているが、内視鏡5115は、軟性の鏡筒5117を有するいわゆる軟性鏡として構成されてもよい。
(Endoscope)
The endoscope 5115 includes a lens barrel 5117 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 5185, and a camera head 5119 connected to the proximal end of the lens barrel 5117. In the illustrated example, an endoscope 5115 configured as a so-called rigid mirror having a rigid lens barrel 5117 is illustrated, but the endoscope 5115 is configured as a so-called flexible mirror having a flexible lens barrel 5117. Also good.
 鏡筒5117の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡5115には光源装置5157が接続されており、当該光源装置5157によって生成された光が、鏡筒5117の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者5185の体腔内の観察対象に向かって照射される。なお、内視鏡5115は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening into which an objective lens is fitted is provided at the tip of the lens barrel 5117. A light source device 5157 is connected to the endoscope 5115, and the light generated by the light source device 5157 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 5117, and the objective Irradiation is performed toward the observation target in the body cavity of the patient 5185 through the lens. Note that the endoscope 5115 may be a direct endoscope, a perspective mirror, or a side endoscope.
 カメラヘッド5119の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)5153に送信される。なお、カメラヘッド5119には、その光学系を適宜駆動させることにより、倍率及び焦点距離を調整する機能が搭載される。 An optical system and an image sensor are provided inside the camera head 5119, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted to a camera control unit (CCU) 5153 as RAW data. Note that the camera head 5119 has a function of adjusting the magnification and the focal length by appropriately driving the optical system.
 なお、例えば立体視(3D表示)等に対応するために、カメラヘッド5119には撮像素子が複数設けられてもよい。この場合、鏡筒5117の内部には、当該複数の撮像素子のそれぞれに観察光を導光するために、リレー光学系が複数系統設けられる。 Note that a plurality of image sensors may be provided in the camera head 5119 in order to cope with, for example, stereoscopic viewing (3D display). In this case, a plurality of relay optical systems are provided inside the lens barrel 5117 in order to guide observation light to each of the plurality of imaging elements.
 (カートに搭載される各種の装置)
 CCU5153は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡5115及び表示装置5155の動作を統括的に制御する。具体的には、CCU5153は、カメラヘッド5119から受け取った画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。CCU5153は、当該画像処理を施した画像信号を表示装置5155に提供する。また、CCU5153には、図13に示す視聴覚コントローラ5107が接続される。CCU5153は、画像処理を施した画像信号を視聴覚コントローラ5107にも提供する。また、CCU5153は、カメラヘッド5119に対して制御信号を送信し、その駆動を制御する。当該制御信号には、倍率や焦点距離等、撮像条件に関する情報が含まれ得る。当該撮像条件に関する情報は、入力装置5161を介して入力されてもよいし、上述した集中操作パネル5111を介して入力されてもよい。
(Various devices mounted on the cart)
The CCU 5153 includes a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 5115 and the display device 5155. Specifically, the CCU 5153 performs various image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example, on the image signal received from the camera head 5119. The CCU 5153 provides the display device 5155 with the image signal subjected to the image processing. Further, the audiovisual controller 5107 shown in FIG. 13 is connected to the CCU 5153. The CCU 5153 also provides an image signal subjected to image processing to the audiovisual controller 5107. In addition, the CCU 5153 transmits a control signal to the camera head 5119 to control the driving thereof. The control signal can include information regarding imaging conditions such as magnification and focal length. Information regarding the imaging conditions may be input via the input device 5161 or may be input via the above-described centralized operation panel 5111.
 表示装置5155は、CCU5153からの制御により、当該CCU5153によって画像処理が施された画像信号に基づく画像を表示する。内視鏡5115が例えば4K(水平画素数3840×垂直画素数2160)又は8K(水平画素数7680×垂直画素数4320)等の高解像度の撮影に対応したものである場合、及び/又は3D表示に対応したものである場合には、表示装置5155としては、それぞれに対応して、高解像度の表示が可能なもの、及び/又は3D表示可能なものが用いられ得る。4K又は8K等の高解像度の撮影に対応したものである場合、表示装置5155として55インチ以上のサイズのものを用いることで一層の没入感が得られる。また、用途に応じて、解像度、サイズが異なる複数の表示装置5155が設けられてもよい。 The display device 5155 displays an image based on an image signal subjected to image processing by the CCU 5153 under the control of the CCU 5153. For example, the endoscope 5115 is compatible with high-resolution imaging such as 4K (horizontal pixel number 3840 × vertical pixel number 2160) or 8K (horizontal pixel number 7680 × vertical pixel number 4320), and / or 3D display. In the case of the display device 5155, a display device 5155 that can display a high resolution and / or a device that can display 3D can be used. In the case of 4K or 8K high resolution imaging, a more immersive feeling can be obtained by using a display device 5155 having a size of 55 inches or more. Further, a plurality of display devices 5155 having different resolutions and sizes may be provided depending on applications.
 光源装置5157は、例えばLED(light emitting diode)等の光源から構成され、術部を撮影する際の照射光を内視鏡5115に供給する。 The light source device 5157 is composed of a light source such as an LED (light emitting diode), for example, and supplies the endoscope 5115 with irradiation light when photographing a surgical site.
 アーム制御装置5159は、例えばCPU等のプロセッサによって構成され、所定のプログラムに従って動作することにより、所定の制御方式に従って支持アーム装置5141のアーム部5145の駆動を制御する。 The arm control device 5159 is configured by a processor such as a CPU, for example, and operates according to a predetermined program to control driving of the arm portion 5145 of the support arm device 5141 according to a predetermined control method.
 入力装置5161は、内視鏡手術システム5113に対する入力インタフェースである。ユーザは、入力装置5161を介して、内視鏡手術システム5113に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、入力装置5161を介して、患者の身体情報や、手術の術式についての情報等、手術に関する各種の情報を入力する。また、例えば、ユーザは、入力装置5161を介して、アーム部5145を駆動させる旨の指示や、内視鏡5115による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示、エネルギー処置具5135を駆動させる旨の指示等を入力する。 The input device 5161 is an input interface to the endoscopic surgery system 5113. A user can input various information and instructions to the endoscopic surgery system 5113 via the input device 5161. For example, the user inputs various types of information related to the operation, such as the patient's physical information and information about the surgical technique, via the input device 5161. In addition, for example, the user instructs to drive the arm unit 5145 via the input device 5161 or an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 5115. An instruction to drive the energy treatment instrument 5135 is input.
 入力装置5161の種類は限定されず、入力装置5161は各種の公知の入力装置であってよい。入力装置5161としては、例えば、マウス、キーボード、タッチパネル、スイッチ、フットスイッチ5171及び/又はレバー等が適用され得る。入力装置5161としてタッチパネルが用いられる場合には、当該タッチパネルは表示装置5155の表示面上に設けられてもよい。 The type of the input device 5161 is not limited, and the input device 5161 may be various known input devices. As the input device 5161, for example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5171 and / or a lever can be applied. In the case where a touch panel is used as the input device 5161, the touch panel may be provided on the display surface of the display device 5155.
 あるいは、入力装置5161は、例えばメガネ型のウェアラブルデバイスやHMD(Head Mounted Display)等の、ユーザによって装着されるデバイスであり、これらのデバイスによって検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。また、入力装置5161は、ユーザの動きを検出可能なカメラを含み、当該カメラによって撮像された映像から検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。更に、入力装置5161は、ユーザの声を収音可能なマイクロフォンを含み、当該マイクロフォンを介して音声によって各種の入力が行われる。このように、入力装置5161が非接触で各種の情報を入力可能に構成されることにより、特に清潔域に属するユーザ(例えば術者5181)が、不潔域に属する機器を非接触で操作することが可能となる。また、ユーザは、所持している術具から手を離すことなく機器を操作することが可能となるため、ユーザの利便性が向上する。 Alternatively, the input device 5161 is a device worn by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), for example, and various inputs according to the user's gesture and line of sight detected by these devices. Is done. The input device 5161 includes a camera capable of detecting a user's movement, and various inputs are performed according to a user's gesture and line of sight detected from an image captured by the camera. Furthermore, the input device 5161 includes a microphone that can pick up the voice of the user, and various inputs are performed by voice through the microphone. As described above, the input device 5161 is configured to be able to input various types of information without contact, so that a user belonging to the clean area (for example, an operator 5181) operates a device belonging to the unclean area without contact. Is possible. In addition, since the user can operate the device without releasing his / her hand from the surgical tool he / she has, the convenience for the user is improved.
 処置具制御装置5163は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具5135の駆動を制御する。気腹装置5165は、内視鏡5115による視野の確保及び術者の作業空間の確保の目的で、患者5185の体腔を膨らめるために、気腹チューブ5133を介して当該体腔内にガスを送り込む。レコーダ5167は、手術に関する各種の情報を記録可能な装置である。プリンタ5169は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 5163 controls driving of the energy treatment instrument 5135 for tissue cauterization, incision, blood vessel sealing, or the like. In order to inflate the body cavity of the patient 5185 for the purpose of securing the visual field by the endoscope 5115 and securing the operator's work space, the pneumoperitoneum device 5165 passes gas into the body cavity via the pneumothorax tube 5133 Send in. The recorder 5167 is an apparatus capable of recording various types of information related to surgery. The printer 5169 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
 以下、内視鏡手術システム5113において特に特徴的な構成について、更に詳細に説明する。 Hereinafter, a particularly characteristic configuration in the endoscopic surgery system 5113 will be described in more detail.
 (支持アーム装置)
 支持アーム装置5141は、基台であるベース部5143と、ベース部5143から延伸するアーム部5145と、を備える。図示する例では、アーム部5145は、複数の関節部5147a、5147b、5147cと、関節部5147bによって連結される複数のリンク5149a、5149bと、から構成されているが、図15では、簡単のため、アーム部5145の構成を簡略化して図示している。実際には、アーム部5145が所望の自由度を有するように、関節部5147a~5147c及びリンク5149a、5149bの形状、数及び配置、並びに関節部5147a~5147cの回転軸の方向等が適宜設定され得る。例えば、アーム部5145は、好適に、6自由度以上の自由度を有するように構成され得る。これにより、アーム部5145の可動範囲内において内視鏡5115を自由に移動させることが可能になるため、所望の方向から内視鏡5115の鏡筒5117を患者5185の体腔内に挿入することが可能になる。
(Support arm device)
The support arm device 5141 includes a base portion 5143 which is a base, and an arm portion 5145 extending from the base portion 5143. In the illustrated example, the arm portion 5145 includes a plurality of joint portions 5147a, 5147b, and 5147c and a plurality of links 5149a and 5149b connected by the joint portion 5147b. However, in FIG. The structure of the arm part 5145 is shown in a simplified manner. Actually, the shape, number and arrangement of the joint portions 5147a to 5147c and the links 5149a and 5149b, the direction of the rotation axis of the joint portions 5147a to 5147c, and the like are appropriately set so that the arm portion 5145 has a desired degree of freedom. obtain. For example, the arm portion 5145 can be preferably configured to have six or more degrees of freedom. Accordingly, the endoscope 5115 can be freely moved within the movable range of the arm unit 5145, and therefore the lens barrel 5117 of the endoscope 5115 can be inserted into the body cavity of the patient 5185 from a desired direction. It becomes possible.
 関節部5147a~5147cにはアクチュエータが設けられており、関節部5147a~5147cは当該アクチュエータの駆動により所定の回転軸まわりに回転可能に構成されている。当該アクチュエータの駆動がアーム制御装置5159によって制御されることにより、各関節部5147a~5147cの回転角度が制御され、アーム部5145の駆動が制御される。これにより、内視鏡5115の位置及び姿勢の制御が実現され得る。この際、アーム制御装置5159は、力制御又は位置制御等、各種の公知の制御方式によってアーム部5145の駆動を制御することができる。 The joint portions 5147a to 5147c are provided with actuators, and the joint portions 5147a to 5147c are configured to be rotatable around a predetermined rotation axis by driving the actuators. When the drive of the actuator is controlled by the arm control device 5159, the rotation angles of the joint portions 5147a to 5147c are controlled, and the drive of the arm portion 5145 is controlled. Thereby, control of the position and posture of the endoscope 5115 can be realized. At this time, the arm control device 5159 can control the driving of the arm unit 5145 by various known control methods such as force control or position control.
 例えば、術者5181が、入力装置5161(フットスイッチ5171を含む)を介して適宜操作入力を行うことにより、当該操作入力に応じてアーム制御装置5159によってアーム部5145の駆動が適宜制御され、内視鏡5115の位置及び姿勢が制御されてよい。当該制御により、アーム部5145の先端の内視鏡5115を任意の位置から任意の位置まで移動させた後、その移動後の位置で固定的に支持することができる。なお、アーム部5145は、いわゆるマスタースレイブ方式で操作されてもよい。この場合、アーム部5145は、手術室から離れた場所に設置される入力装置5161を介してユーザによって遠隔操作され得る。 For example, when the surgeon 5181 appropriately inputs an operation via the input device 5161 (including the foot switch 5171), the arm controller 5159 appropriately controls the driving of the arm unit 5145 according to the operation input. The position and posture of the endoscope 5115 may be controlled. With this control, the endoscope 5115 at the distal end of the arm portion 5145 can be moved from an arbitrary position to an arbitrary position and then fixedly supported at the position after the movement. The arm unit 5145 may be operated by a so-called master slave method. In this case, the arm unit 5145 can be remotely operated by the user via the input device 5161 installed at a location away from the operating room.
 また、力制御が適用される場合には、アーム制御装置5159は、ユーザからの外力を受け、その外力にならってスムーズにアーム部5145が移動するように、各関節部5147a~5147cのアクチュエータを駆動させる、いわゆるパワーアシスト制御を行ってもよい。これにより、ユーザが直接アーム部5145に触れながらアーム部5145を移動させる際に、比較的軽い力で当該アーム部5145を移動させることができる。従って、より直感的に、より簡易な操作で内視鏡5115を移動させることが可能となり、ユーザの利便性を向上させることができる。 When force control is applied, the arm control device 5159 receives the external force from the user and moves the actuators of the joint portions 5147a to 5147c so that the arm portion 5145 moves smoothly according to the external force. You may perform what is called power assist control to drive. Accordingly, when the user moves the arm unit 5145 while directly touching the arm unit 5145, the arm unit 5145 can be moved with a relatively light force. Therefore, the endoscope 5115 can be moved more intuitively and with a simpler operation, and the convenience for the user can be improved.
 ここで、一般的に、内視鏡下手術では、スコピストと呼ばれる医師によって内視鏡5115が支持されていた。これに対して、支持アーム装置5141を用いることにより、人手によらずに内視鏡5115の位置をより確実に固定することが可能になるため、術部の画像を安定的に得ることができ、手術を円滑に行うことが可能になる。 Here, in general, in an endoscopic operation, an endoscope 5115 is supported by a doctor called a scopist. In contrast, by using the support arm device 5141, the position of the endoscope 5115 can be more reliably fixed without relying on human hands, so that an image of the surgical site can be stably obtained. It becomes possible to perform the operation smoothly.
 なお、アーム制御装置5159は必ずしもカート5151に設けられなくてもよい。また、アーム制御装置5159は必ずしも1つの装置でなくてもよい。例えば、アーム制御装置5159は、支持アーム装置5141のアーム部5145の各関節部5147a~5147cにそれぞれ設けられてもよく、複数のアーム制御装置5159が互いに協働することにより、アーム部5145の駆動制御が実現されてもよい。 Note that the arm control device 5159 is not necessarily provided in the cart 5151. Further, the arm control device 5159 does not necessarily have to be one device. For example, the arm control device 5159 may be provided in each of the joint portions 5147a to 5147c of the arm portion 5145 of the support arm device 5141, and the plurality of arm control devices 5159 cooperate to drive the arm portion 5145. Control may be realized.
 (光源装置)
 光源装置5157は、内視鏡5115に術部を撮影する際の照射光を供給する。光源装置5157は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成される。このとき、RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置5157において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド5119の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
(Light source device)
The light source device 5157 supplies irradiation light for imaging the surgical site to the endoscope 5115. The light source device 5157 is constituted by a white light source constituted by, for example, an LED, a laser light source, or a combination thereof. At this time, when a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Adjustments can be made. In this case, the laser light from each of the RGB laser light sources is irradiated onto the observation target in a time-sharing manner, and the driving of the image sensor of the camera head 5119 is controlled in synchronization with the irradiation timing, thereby corresponding to each RGB. It is also possible to take the images that have been taken in time division. According to this method, a color image can be obtained without providing a color filter in the image sensor.
 また、光源装置5157は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド5119の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the driving of the light source device 5157 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the driving of the image sensor of the camera head 5119 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure is obtained. A range image can be generated.
 また、光源装置5157は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察するもの(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得るもの等が行われ得る。光源装置5157は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 5157 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation. So-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. What obtains a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent can be performed. The light source device 5157 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
 (カメラヘッド及びCCU)
 図15を参照して、内視鏡5115のカメラヘッド5119及びCCU5153の機能についてより詳細に説明する。図15は、図14に示すカメラヘッド5119及びCCU5153の機能構成の一例を示すブロック図である。
(Camera head and CCU)
The functions of the camera head 5119 and the CCU 5153 of the endoscope 5115 will be described in more detail with reference to FIG. FIG. 15 is a block diagram illustrating an example of functional configurations of the camera head 5119 and the CCU 5153 illustrated in FIG.
 図15を参照すると、カメラヘッド5119は、その機能として、レンズユニット5121と、撮像部5123と、駆動部5125と、通信部5127と、カメラヘッド制御部5129と、を有する。また、CCU5153は、その機能として、通信部5173と、画像処理部5175と、制御部5177と、を有する。カメラヘッド5119とCCU5153とは、伝送ケーブル5179によって双方向に通信可能に接続されている。 Referring to FIG. 15, the camera head 5119 has a lens unit 5121, an imaging unit 5123, a drive unit 5125, a communication unit 5127, and a camera head control unit 5129 as its functions. Further, the CCU 5153 includes a communication unit 5173, an image processing unit 5175, and a control unit 5177 as its functions. The camera head 5119 and the CCU 5153 are connected to each other via a transmission cable 5179 so that they can communicate with each other.
 まず、カメラヘッド5119の機能構成について説明する。レンズユニット5121は、鏡筒5117との接続部に設けられる光学系である。鏡筒5117の先端から取り込まれた観察光は、カメラヘッド5119まで導光され、当該レンズユニット5121に入射する。レンズユニット5121は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。レンズユニット5121は、撮像部5123の撮像素子の受光面上に観察光を集光するように、その光学特性が調整されている。また、ズームレンズ及びフォーカスレンズは、撮像画像の倍率及び焦点の調整のため、その光軸上の位置が移動可能に構成される。 First, the functional configuration of the camera head 5119 will be described. The lens unit 5121 is an optical system provided at a connection portion with the lens barrel 5117. Observation light taken from the tip of the lens barrel 5117 is guided to the camera head 5119 and enters the lens unit 5121. The lens unit 5121 is configured by combining a plurality of lenses including a zoom lens and a focus lens. The optical characteristics of the lens unit 5121 are adjusted so that the observation light is condensed on the light receiving surface of the image sensor of the imaging unit 5123. Further, the zoom lens and the focus lens are configured such that their positions on the optical axis are movable in order to adjust the magnification and focus of the captured image.
 撮像部5123は撮像素子によって構成され、レンズユニット5121の後段に配置される。レンズユニット5121を通過した観察光は、当該撮像素子の受光面に集光され、光電変換によって、観察像に対応した画像信号が生成される。撮像部5123によって生成された画像信号は、通信部5127に提供される。 The imaging unit 5123 is configured by an imaging element, and is arranged at the rear stage of the lens unit 5121. The observation light that has passed through the lens unit 5121 is collected on the light receiving surface of the imaging element, and an image signal corresponding to the observation image is generated by photoelectric conversion. The image signal generated by the imaging unit 5123 is provided to the communication unit 5127.
 撮像部5123を構成する撮像素子としては、例えばCMOS(Complementary Metal Oxide Semiconductor)タイプのイメージセンサであり、Bayer配列を有するカラー撮影可能なものが用いられる。なお、当該撮像素子としては、例えば4K以上の高解像度の画像の撮影に対応可能なものが用いられてもよい。術部の画像が高解像度で得られることにより、術者5181は、当該術部の様子をより詳細に把握することができ、手術をより円滑に進行することが可能となる。 As the image pickup element constituting the image pickup unit 5123, for example, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor that can perform color photographing having a Bayer array is used. In addition, as the imaging element, for example, an element capable of capturing a high-resolution image of 4K or more may be used. By obtaining an image of the surgical site with high resolution, the surgeon 5181 can grasp the state of the surgical site in more detail, and can proceed with the surgery more smoothly.
 また、撮像部5123を構成する撮像素子は、3D表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成される。3D表示が行われることにより、術者5181は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部5123が多板式で構成される場合には、各撮像素子に対応して、レンズユニット5121も複数系統設けられる。 Also, the image sensor that constitutes the image capturing unit 5123 is configured to have a pair of image sensors for acquiring right-eye and left-eye image signals corresponding to 3D display. By performing the 3D display, the operator 5181 can more accurately grasp the depth of the living tissue in the surgical site. Note that in the case where the imaging unit 5123 is configured as a multi-plate type, a plurality of lens units 5121 are also provided corresponding to each imaging element.
 また、撮像部5123は、必ずしもカメラヘッド5119に設けられなくてもよい。例えば、撮像部5123は、鏡筒5117の内部に、対物レンズの直後に設けられてもよい。 Further, the imaging unit 5123 is not necessarily provided in the camera head 5119. For example, the imaging unit 5123 may be provided inside the lens barrel 5117 immediately after the objective lens.
 駆動部5125は、アクチュエータによって構成され、カメラヘッド制御部5129からの制御により、レンズユニット5121のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部5123による撮像画像の倍率及び焦点が適宜調整され得る。 The driving unit 5125 includes an actuator, and moves the zoom lens and the focus lens of the lens unit 5121 by a predetermined distance along the optical axis under the control of the camera head control unit 5129. Thereby, the magnification and focus of the image captured by the imaging unit 5123 can be adjusted as appropriate.
 通信部5127は、CCU5153との間で各種の情報を送受信するための通信装置によって構成される。通信部5127は、撮像部5123から得た画像信号をRAWデータとして伝送ケーブル5179を介してCCU5153に送信する。この際、術部の撮像画像を低レイテンシで表示するために、当該画像信号は光通信によって送信されることが好ましい。手術の際には、術者5181が撮像画像によって患部の状態を観察しながら手術を行うため、より安全で確実な手術のためには、術部の動画像が可能な限りリアルタイムに表示されることが求められるからである。光通信が行われる場合には、通信部5127には、電気信号を光信号に変換する光電変換モジュールが設けられる。画像信号は当該光電変換モジュールによって光信号に変換された後、伝送ケーブル5179を介してCCU5153に送信される。 The communication unit 5127 includes a communication device for transmitting and receiving various types of information to and from the CCU 5153. The communication unit 5127 transmits the image signal obtained from the imaging unit 5123 to the CCU 5153 via the transmission cable 5179 as RAW data. At this time, in order to display a captured image of the surgical site with low latency, the image signal is preferably transmitted by optical communication. At the time of surgery, the surgeon 5181 performs the surgery while observing the state of the affected part with the captured image, so that a moving image of the surgical part is displayed in real time as much as possible for safer and more reliable surgery. Because it is required. When optical communication is performed, the communication unit 5127 is provided with a photoelectric conversion module that converts an electrical signal into an optical signal. The image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5153 via the transmission cable 5179.
 また、通信部5127は、CCU5153から、カメラヘッド5119の駆動を制御するための制御信号を受信する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。通信部5127は、受信した制御信号をカメラヘッド制御部5129に提供する。なお、CCU5153からの制御信号も、光通信によって伝送されてもよい。この場合、通信部5127には、光信号を電気信号に変換する光電変換モジュールが設けられ、制御信号は当該光電変換モジュールによって電気信号に変換された後、カメラヘッド制御部5129に提供される。 The communication unit 5127 receives a control signal for controlling the driving of the camera head 5119 from the CCU 5153. The control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition. The communication unit 5127 provides the received control signal to the camera head control unit 5129. Note that the control signal from the CCU 5153 may also be transmitted by optical communication. In this case, the communication unit 5127 is provided with a photoelectric conversion module that converts an optical signal into an electrical signal. The control signal is converted into an electrical signal by the photoelectric conversion module and then provided to the camera head control unit 5129.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、取得された画像信号に基づいてCCU5153の制御部5177によって自動的に設定される。つまり、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡5115に搭載される。 The imaging conditions such as the frame rate, exposure value, magnification, and focus are automatically set by the control unit 5177 of the CCU 5153 based on the acquired image signal. That is, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 5115.
 カメラヘッド制御部5129は、通信部5127を介して受信したCCU5153からの制御信号に基づいて、カメラヘッド5119の駆動を制御する。例えば、カメラヘッド制御部5129は、撮像画像のフレームレートを指定する旨の情報及び/又は撮像時の露光を指定する旨の情報に基づいて、撮像部5123の撮像素子の駆動を制御する。また、例えば、カメラヘッド制御部5129は、撮像画像の倍率及び焦点を指定する旨の情報に基づいて、駆動部5125を介してレンズユニット5121のズームレンズ及びフォーカスレンズを適宜移動させる。カメラヘッド制御部5129は、更に、鏡筒5117やカメラヘッド5119を識別するための情報を記憶する機能を備えてもよい。 The camera head control unit 5129 controls driving of the camera head 5119 based on a control signal from the CCU 5153 received via the communication unit 5127. For example, the camera head control unit 5129 controls driving of the image sensor of the imaging unit 5123 based on information indicating that the frame rate of the captured image is specified and / or information indicating that the exposure at the time of imaging is specified. For example, the camera head control unit 5129 appropriately moves the zoom lens and the focus lens of the lens unit 5121 via the drive unit 5125 based on information indicating that the magnification and focus of the captured image are designated. The camera head control unit 5129 may further have a function of storing information for identifying the lens barrel 5117 and the camera head 5119.
 なお、レンズユニット5121や撮像部5123等の構成を、気密性及び防水性が高い密閉構造内に配置することで、カメラヘッド5119について、オートクレーブ滅菌処理に対する耐性を持たせることができる。 It should be noted that the camera head 5119 can be resistant to autoclave sterilization by arranging the lens unit 5121, the imaging unit 5123, and the like in a sealed structure with high airtightness and waterproofness.
 次に、CCU5153の機能構成について説明する。通信部5173は、カメラヘッド5119との間で各種の情報を送受信するための通信装置によって構成される。通信部5173は、カメラヘッド5119から、伝送ケーブル5179を介して送信される画像信号を受信する。この際、上記のように、当該画像信号は好適に光通信によって送信され得る。この場合、光通信に対応して、通信部5173には、光信号を電気信号に変換する光電変換モジュールが設けられる。通信部5173は、電気信号に変換した画像信号を画像処理部5175に提供する。 Next, the functional configuration of the CCU 5153 will be described. The communication unit 5173 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 5119. The communication unit 5173 receives an image signal transmitted from the camera head 5119 via the transmission cable 5179. At this time, as described above, the image signal can be suitably transmitted by optical communication. In this case, corresponding to optical communication, the communication unit 5173 is provided with a photoelectric conversion module that converts an optical signal into an electric signal. The communication unit 5173 provides the image processing unit 5175 with the image signal converted into the electrical signal.
 また、通信部5173は、カメラヘッド5119に対して、カメラヘッド5119の駆動を制御するための制御信号を送信する。当該制御信号も光通信によって送信されてよい。 Also, the communication unit 5173 transmits a control signal for controlling the driving of the camera head 5119 to the camera head 5119. The control signal may also be transmitted by optical communication.
 画像処理部5175は、カメラヘッド5119から送信されたRAWデータである画像信号に対して各種の画像処理を施す。当該画像処理としては、例えば現像処理、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の公知の信号処理が含まれる。また、画像処理部5175は、AE、AF及びAWBを行うための、画像信号に対する検波処理を行う。 The image processing unit 5175 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 5119. Examples of the image processing include development processing, high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing). Various known signal processing is included. Further, the image processing unit 5175 performs detection processing on the image signal for performing AE, AF, and AWB.
 画像処理部5175は、CPUやGPU等のプロセッサによって構成され、当該プロセッサが所定のプログラムに従って動作することにより、上述した画像処理や検波処理が行われ得る。なお、画像処理部5175が複数のGPUによって構成される場合には、画像処理部5175は、画像信号に係る情報を適宜分割し、これら複数のGPUによって並列的に画像処理を行う。 The image processing unit 5175 is configured by a processor such as a CPU or a GPU, and the above-described image processing and detection processing can be performed by the processor operating according to a predetermined program. Note that when the image processing unit 5175 includes a plurality of GPUs, the image processing unit 5175 appropriately divides information related to the image signal, and performs image processing in parallel with the plurality of GPUs.
 制御部5177は、内視鏡5115による術部の撮像、及びその撮像画像の表示に関する各種の制御を行う。例えば、制御部5177は、カメラヘッド5119の駆動を制御するための制御信号を生成する。この際、撮像条件がユーザによって入力されている場合には、制御部5177は、当該ユーザによる入力に基づいて制御信号を生成する。あるいは、内視鏡5115にAE機能、AF機能及びAWB機能が搭載されている場合には、制御部5177は、画像処理部5175による検波処理の結果に応じて、最適な露出値、焦点距離及びホワイトバランスを適宜算出し、制御信号を生成する。 The control unit 5177 performs various controls relating to imaging of the surgical site by the endoscope 5115 and display of the captured image. For example, the control unit 5177 generates a control signal for controlling driving of the camera head 5119. At this time, when the imaging condition is input by the user, the control unit 5177 generates a control signal based on the input by the user. Alternatively, when the endoscope 5115 is equipped with the AE function, the AF function, and the AWB function, the control unit 5177 determines the optimum exposure value, focal length, and the distance according to the detection processing result by the image processing unit 5175. A white balance is appropriately calculated and a control signal is generated.
 また、制御部5177は、画像処理部5175によって画像処理が施された画像信号に基づいて、術部の画像を表示装置5155に表示させる。この際、制御部5177は、各種の画像認識技術を用いて術部画像内における各種の物体を認識する。例えば、制御部5177は、術部画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具5135使用時のミスト等を認識することができる。制御部5177は、表示装置5155に術部の画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させる。手術支援情報が重畳表示され、術者5181に提示されることにより、より安全かつ確実に手術を進めることが可能になる。 Also, the control unit 5177 causes the display device 5155 to display an image of the surgical site based on the image signal subjected to image processing by the image processing unit 5175. At this time, the control unit 5177 recognizes various objects in the surgical unit image using various image recognition techniques. For example, the control unit 5177 detects the shape and color of the edge of the object included in the surgical part image, thereby removing surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 5135, and the like. Can be recognized. When displaying an image of the surgical site on the display device 5155, the control unit 5177 causes various types of surgery support information to be superimposed and displayed on the image of the surgical site using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 5181, so that the surgery can be performed more safely and reliably.
 カメラヘッド5119及びCCU5153を接続する伝送ケーブル5179は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 5179 connecting the camera head 5119 and the CCU 5153 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル5179を用いて有線で通信が行われていたが、カメラヘッド5119とCCU5153との間の通信は無線で行われてもよい。両者の間の通信が無線で行われる場合には、伝送ケーブル5179を手術室内に敷設する必要がなくなるため、手術室内における医療スタッフの移動が当該伝送ケーブル5179によって妨げられる事態が解消され得る。 Here, in the illustrated example, communication is performed by wire using the transmission cable 5179, but communication between the camera head 5119 and the CCU 5153 may be performed wirelessly. When communication between the two is performed wirelessly, there is no need to install the transmission cable 5179 in the operating room, so that the situation where the movement of the medical staff in the operating room is hindered by the transmission cable 5179 can be solved.
 以上、本開示に係る技術が適用され得る手術室システム5100の一例について説明した。なお、ここでは、一例として手術室システム5100が適用される医療用システムが内視鏡手術システム5113である場合について説明したが、手術室システム5100の構成はかかる例に限定されない。例えば、手術室システム5100は、内視鏡手術システム5113に代えて、検査用軟性内視鏡システムや顕微鏡手術システムに適用されてもよい。 Heretofore, an example of the operating room system 5100 to which the technology according to the present disclosure can be applied has been described. Note that although the case where the medical system to which the operating room system 5100 is applied is the endoscopic operating system 5113 is described here as an example, the configuration of the operating room system 5100 is not limited to such an example. For example, the operating room system 5100 may be applied to an examination flexible endoscope system or a microscope operation system instead of the endoscope operation system 5113.
 このように、本技術の出力光の光量の増加が可能な医療用光源装置が用いられることにより、光量を増加させた照射光下で観察対象部位を撮像することができ、全体が明るい画像を得ることができ、より正確な内視鏡診断を行うことができる。 In this way, by using the medical light source device capable of increasing the amount of output light of the present technology, it is possible to image the observation target site under the irradiation light with the increased amount of light, and a bright image as a whole. It is possible to obtain a more accurate endoscopic diagnosis.
 [顕微鏡手術システム]
 以下、図17及び図18を用いて、本開示に係る技術が適用され得る顕微鏡手術システムについて説明する。
[Microscopic surgery system]
Hereinafter, a microscopic surgery system to which the technology according to the present disclosure can be applied will be described with reference to FIGS. 17 and 18.
 図18において符号5350が付されている光源装置が、本開示に係る医療用光源装置に相当する。図18に示すように、光源装置5350は、顕微鏡装置5301の後述する第5リンク5313eの側面に設置される。尚、図17においては、光源装置の図示を省略している。 The light source device denoted by reference numeral 5350 in FIG. 18 corresponds to the medical light source device according to the present disclosure. As shown in FIG. 18, the light source device 5350 is installed on the side surface of a fifth link 5313e described later of the microscope device 5301. In FIG. 17, the light source device is not shown.
 光源装置5350からの出力光は、後述するアーム部5309の内部に設けられる光ファイバ等により構成されるライトガイドケーブルを通り、後述する顕微鏡部5303の筒状部5305の下端の開口面からカバーガラスを介して観察対象に対して照射される。
 顕微鏡システムは、顕微鏡としての顕微鏡部5303と、顕微鏡部5303と接続する光源装置5350と、ライトガイドケーブルを有する。顕微鏡部5303は、光源装置5350からの出力光を導光し、観察対象部位に照射する。
The output light from the light source device 5350 passes through a light guide cable constituted by an optical fiber or the like provided in an arm portion 5309 described later, and covers glass from a lower end opening surface of a cylindrical portion 5305 of the microscope portion 5303 described later. It irradiates with respect to an observation object via.
The microscope system includes a microscope unit 5303 as a microscope, a light source device 5350 connected to the microscope unit 5303, and a light guide cable. The microscope unit 5303 guides the output light from the light source device 5350 and irradiates the site to be observed.
 図17は、本開示に係る技術が適用され得る顕微鏡手術システム5300の概略的な構成の一例を示す図である。図17を参照すると、顕微鏡手術システム5300は、顕微鏡装置5301と、制御装置5317と、表示装置5319と、から構成される。なお、以下の顕微鏡手術システム5300についての説明において、「ユーザ」とは、術者及び助手等、顕微鏡手術システム5300を使用する任意の医療スタッフのことを意味する。 FIG. 17 is a diagram illustrating an example of a schematic configuration of a microscopic surgery system 5300 to which the technology according to the present disclosure can be applied. Referring to FIG. 17, the microscope surgery system 5300 includes a microscope device 5301, a control device 5317, and a display device 5319. In the following description of the microscope surgery system 5300, “user” means any medical staff who uses the microscope surgery system 5300, such as an operator and an assistant.
 顕微鏡装置5301は、観察対象(患者の術部)を拡大観察するための顕微鏡部5303と、顕微鏡部5303を先端で支持するアーム部5309と、アーム部5309の基端を支持するベース部5315と、を有する。 The microscope apparatus 5301 includes a microscope unit 5303 for magnifying and observing an observation target (a patient's surgical site), an arm unit 5309 that supports the microscope unit 5303 at the distal end, and a base unit 5315 that supports the proximal end of the arm unit 5309. Have.
 顕微鏡部5303は、略円筒形状の筒状部5305と、当該筒状部5305の内部に設けられる撮像部(図示せず)と、筒状部5305の外周の一部領域に設けられる操作部5307と、から構成される。顕微鏡部5303は、撮像部によって電子的に撮像画像を撮像する、電子撮像式の顕微鏡部(いわゆるビデオ式の顕微鏡部)である。 The microscope unit 5303 includes a substantially cylindrical cylindrical part 5305, an imaging unit (not shown) provided inside the cylindrical part 5305, and an operation unit 5307 provided in a partial area on the outer periphery of the cylindrical part 5305. And. The microscope unit 5303 is an electronic imaging type microscope unit (so-called video type microscope unit) in which a captured image is electronically captured by the imaging unit.
 筒状部5305の下端の開口面には、内部の撮像部を保護するカバーガラスが設けられる。観察対象からの光(以下、観察光ともいう)は、当該カバーガラスを通過して、筒状部5305の内部の撮像部に入射する。なお、筒状部5305の内部には例えばLED(Light Emitting Diode)等からなる光源が設けられてもよく、撮像時には、当該カバーガラスを介して、当該光源から観察対象に対して光が照射されてもよい。 A cover glass that protects the internal imaging unit is provided on the opening surface at the lower end of the cylindrical part 5305. Light from the observation target (hereinafter also referred to as observation light) passes through the cover glass and enters the imaging unit inside the cylindrical part 5305. A light source such as an LED (Light Emitting Diode) may be provided inside the cylindrical portion 5305, and light is emitted from the light source to the observation target through the cover glass during imaging. May be.
 撮像部は、観察光を集光する光学系と、当該光学系が集光した観察光を受光する撮像素子と、から構成される。当該光学系は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成され、その光学特性は、観察光を撮像素子の受光面上に結像するように調整されている。当該撮像素子は、観察光を受光して光電変換することにより、観察光に対応した信号、すなわち観察像に対応した画像信号を生成する。当該撮像素子としては、例えばBayer配列を有するカラー撮影可能なものが用いられる。当該撮像素子は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ又はCCD(Charge Coupled Device)イメージセンサ等、各種の公知の撮像素子であってよい。撮像素子によって生成された画像信号は、RAWデータとして制御装置5317に送信される。ここで、この画像信号の送信は、好適に光通信によって行われてもよい。手術現場では、術者が撮像画像によって患部の状態を観察しながら手術を行うため、より安全で確実な手術のためには、術部の動画像が可能な限りリアルタイムに表示されることが求められるからである。光通信で画像信号が送信されることにより、低レイテンシで撮像画像を表示することが可能となる。 The imaging unit includes an optical system that collects the observation light and an image sensor that receives the observation light collected by the optical system. The optical system is configured by combining a plurality of lenses including a zoom lens and a focus lens, and the optical characteristics thereof are adjusted so that the observation light is imaged on the light receiving surface of the image sensor. The imaging element receives the observation light and photoelectrically converts it to generate a signal corresponding to the observation light, that is, an image signal corresponding to the observation image. As the imaging element, for example, an element having a Bayer array capable of color photography is used. The image sensor may be various known image sensors such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor. The image signal generated by the image sensor is transmitted to the control device 5317 as RAW data. Here, the transmission of the image signal may be preferably performed by optical communication. At the surgical site, the surgeon performs the operation while observing the state of the affected area with the captured image. For safer and more reliable surgery, the moving image of the surgical site should be displayed in real time as much as possible. Because it is. By transmitting an image signal by optical communication, a captured image can be displayed with low latency.
 なお、撮像部は、その光学系のズームレンズ及びフォーカスレンズを光軸に沿って移動させる駆動機構を有してもよい。当該駆動機構によってズームレンズ及びフォーカスレンズが適宜移動されることにより、撮像画像の拡大倍率及び撮像時の焦点距離が調整され得る。また、撮像部には、AE(Auto Exposure)機能やAF(Auto Focus)機能等、一般的に電子撮像式の顕微鏡部に備えられ得る各種の機能が搭載されてもよい。 The imaging unit may have a drive mechanism that moves the zoom lens and focus lens of the optical system along the optical axis. By appropriately moving the zoom lens and the focus lens by the drive mechanism, the enlargement magnification of the captured image and the focal length at the time of imaging can be adjusted. The imaging unit may be equipped with various functions that can be generally provided in an electronic imaging microscope unit, such as an AE (Auto Exposure) function and an AF (Auto Focus) function.
 また、撮像部は、1つの撮像素子を有するいわゆる単板式の撮像部として構成されてもよいし、複数の撮像素子を有するいわゆる多板式の撮像部として構成されてもよい。撮像部が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、当該撮像部は、立体視(3D表示)に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、当該撮像部が多板式で構成される場合には、各撮像素子に対応して、光学系も複数系統が設けられ得る。 In addition, the imaging unit may be configured as a so-called single-plate imaging unit having one imaging element, or may be configured as a so-called multi-plate imaging unit having a plurality of imaging elements. When the imaging unit is configured as a multi-plate type, for example, image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them. Or the said imaging part may be comprised so that it may have a pair of image sensor for each acquiring the image signal for right eyes and left eyes corresponding to a stereoscopic vision (3D display). By performing the 3D display, the surgeon can more accurately grasp the depth of the living tissue in the surgical site. When the imaging unit is configured as a multi-plate type, a plurality of optical systems can be provided corresponding to each imaging element.
 操作部5307は、例えば十字レバー又はスイッチ等によって構成され、ユーザの操作入力を受け付ける入力手段である。例えば、ユーザは、操作部5307を介して、観察像の拡大倍率及び観察対象までの焦点距離を変更する旨の指示を入力することができる。当該指示に従って撮像部の駆動機構がズームレンズ及びフォーカスレンズを適宜移動させることにより、拡大倍率及び焦点距離が調整され得る。また、例えば、ユーザは、操作部5307を介して、アーム部5309の動作モード(後述するオールフリーモード及び固定モード)を切り替える旨の指示を入力することができる。なお、ユーザが顕微鏡部5303を移動させようとする場合には、当該ユーザは筒状部5305を握るように把持した状態で当該顕微鏡部5303を移動させる様態が想定される。従って、操作部5307は、ユーザが筒状部5305を移動させている間でも操作可能なように、ユーザが筒状部5305を握った状態で指によって容易に操作しやすい位置に設けられることが好ましい。 The operation unit 5307 is configured by, for example, a cross lever or a switch, and is an input unit that receives a user operation input. For example, the user can input an instruction to change the magnification of the observation image and the focal length to the observation target via the operation unit 5307. The magnification ratio and the focal length can be adjusted by appropriately moving the zoom lens and the focus lens by the drive mechanism of the imaging unit in accordance with the instruction. Further, for example, the user can input an instruction to switch the operation mode (all-free mode and fixed mode described later) of the arm unit 5309 via the operation unit 5307. Note that when the user attempts to move the microscope unit 5303, it is assumed that the user moves the microscope unit 5303 while holding the cylindrical unit 5305. Therefore, the operation unit 5307 may be provided at a position where the user can easily operate with a finger while holding the tubular portion 5305 so that the operation portion 5307 can be operated while the tubular portion 5305 is moved. preferable.
 アーム部5309は、複数のリンク(第1リンク5313a~第6リンク5313f)が、複数の関節部(第1関節部5311a~第6関節部5311f)によって互いに回動可能に連結されることによって構成される。 The arm portion 5309 is configured by a plurality of links (first link 5313a to sixth link 5313f) being connected to each other by a plurality of joint portions (first joint portion 5311a to sixth joint portion 5311f). Is done.
 第1関節部5311aは、略円柱形状を有し、その先端(下端)で、顕微鏡部5303の筒状部5305の上端を、当該筒状部5305の中心軸と平行な回転軸(第1軸O)まわりに回動可能に支持する。ここで、第1関節部5311aは、第1軸Oが顕微鏡部5303の撮像部の光軸と一致するように構成され得る。これにより、第1軸Oまわりに顕微鏡部5303を回動させることにより、撮像画像を回転させるように視野を変更することが可能になる。 The first joint portion 5311a has a substantially cylindrical shape, and at its tip (lower end), the upper end of the cylindrical portion 5305 of the microscope portion 5303 is a rotation axis (first axis) parallel to the central axis of the cylindrical portion 5305. O 1 ) is supported so as to be rotatable around. Here, the first joint portion 5311a may be configured such that the first axis O 1 coincides with the optical axis of the imaging unit of the microscope unit 5303. Thus, by rotating the microscope section 5303 to the first about the shaft O 1, it is possible to change the view to rotate the captured image.
 第1リンク5313aは、先端で第1関節部5311aを固定的に支持する。具体的には、第1リンク5313aは略L字形状を有する棒状の部材であり、その先端側の一辺が第1軸Oと直交する方向に延伸しつつ、当該一辺の端部が第1関節部5311aの外周の上端部に当接するように、第1関節部5311aに接続される。第1リンク5313aの略L字形状の基端側の他辺の端部に第2関節部5311bが接続される。 The first link 5313a fixedly supports the first joint portion 5311a at the tip. More specifically, the first link 5313a is a rod-shaped member having a substantially L-shaped, while stretching in the direction in which one side of the front end side is perpendicular to the first axis O 1, the end portion of the one side is first It connects to the 1st joint part 5311a so that it may contact | abut to the upper end part of the outer periphery of the joint part 5311a. The second joint portion 5311b is connected to the end portion on the other side of the substantially L-shaped base end side of the first link 5313a.
 第2関節部5311bは、略円柱形状を有し、その先端で、第1リンク5313aの基端を、第1軸Oと直交する回転軸(第2軸O)まわりに回動可能に支持する。第2関節部5311bの基端には、第2リンク5313bの先端が固定的に接続される。 The second joint portion 5311b has a substantially cylindrical shape, and at the tip thereof, the base end of the first link 5313a can be rotated around a rotation axis (second axis O 2 ) orthogonal to the first axis O 1. To support. The distal end of the second link 5313b is fixedly connected to the proximal end of the second joint portion 5311b.
 第2リンク5313bは、略L字形状を有する棒状の部材であり、その先端側の一辺が第2軸Oと直交する方向に延伸しつつ、当該一辺の端部が第2関節部5311bの基端に固定的に接続される。第2リンク5313bの略L字形状の基端側の他辺には、第3関節部5311cが接続される。 The second link 5313b is a rod-shaped member having a substantially L-shaped, while stretching in the direction in which one side of the front end side is perpendicular to the second axis O 2, the ends of the one side of the second joint portion 5311b Fixedly connected to the proximal end. A third joint portion 5311c is connected to the other side of the base end side of the substantially L-shaped base of the second link 5313b.
 第3関節部5311cは、略円柱形状を有し、その先端で、第2リンク5313bの基端を、第1軸O及び第2軸Oと互いに直交する回転軸(第3軸O)まわりに回動可能に支持する。第3関節部5311cの基端には、第3リンク5313cの先端が固定的に接続される。第2軸O及び第3軸Oまわりに顕微鏡部5303を含む先端側の構成を回動させることにより、水平面内での顕微鏡部5303の位置を変更するように、当該顕微鏡部5303を移動させることができる。つまり、第2軸O及び第3軸Oまわりの回転を制御することにより、撮像画像の視野を平面内で移動させることが可能になる。 The third joint portion 5311c has a substantially cylindrical shape, and at its tip, the base end of the second link 5313b is a rotation axis (third axis O 3) orthogonal to the first axis O 1 and the second axis O 2. ) Support so that it can rotate around. The distal end of the third link 5313c is fixedly connected to the proximal end of the third joint portion 5311c. The microscope unit 5303 is moved so as to change the position of the microscope unit 5303 in the horizontal plane by rotating the configuration on the distal end side including the microscope unit 5303 around the second axis O 2 and the third axis O 3. Can be made. That is, by controlling the rotation around the second axis O 2 and the third axis O 3 , the field of view of the captured image can be moved in a plane.
 第3リンク5313cは、その先端側が略円柱形状を有するように構成されており、当該円柱形状の先端に、第3関節部5311cの基端が、両者が略同一の中心軸を有するように、固定的に接続される。第3リンク5313cの基端側は角柱形状を有し、その端部に第4関節部5311dが接続される。 The third link 5313c is configured such that the distal end side thereof has a substantially cylindrical shape, and the proximal end of the third joint portion 5311c has substantially the same central axis at the distal end of the cylindrical shape. Fixedly connected. The proximal end side of the third link 5313c has a prismatic shape, and the fourth joint portion 5311d is connected to the end portion thereof.
 第4関節部5311dは、略円柱形状を有し、その先端で、第3リンク5313cの基端を、第3軸Oと直交する回転軸(第4軸O)まわりに回動可能に支持する。第4関節部5311dの基端には、第4リンク5313dの先端が固定的に接続される。 The fourth joint portion 5311d has a substantially cylindrical shape, and at the tip thereof, the base end of the third link 5313c can be rotated around a rotation axis (fourth axis O 4 ) orthogonal to the third axis O 3. To support. The distal end of the fourth link 5313d is fixedly connected to the proximal end of the fourth joint portion 5311d.
 第4リンク5313dは、略直線状に延伸する棒状の部材であり、第4軸Oと直交するように延伸しつつ、その先端の端部が第4関節部5311dの略円柱形状の側面に当接するように、第4関節部5311dに固定的に接続される。第4リンク5313dの基端には、第5関節部5311eが接続される。 Fourth link 5313d is a rod-shaped member extending substantially in a straight line, while stretched so as to be orthogonal to the fourth axis O 4, the end of the tip side of the substantially cylindrical shape of the fourth joint portion 5311d It is fixedly connected to the fourth joint portion 5311d so as to abut. The fifth joint portion 5311e is connected to the base end of the fourth link 5313d.
 第5関節部5311eは、略円柱形状を有し、その先端側で、第4リンク5313dの基端を、第4軸Oと平行な回転軸(第5軸O)まわりに回動可能に支持する。第5関節部5311eの基端には、第5リンク5313eの先端が固定的に接続される。第4軸O及び第5軸Oは、顕微鏡部5303を上下方向に移動させ得る回転軸である。第4軸O及び第5軸Oまわりに顕微鏡部5303を含む先端側の構成を回動させることにより、顕微鏡部5303の高さ、すなわち顕微鏡部5303と観察対象との距離を調整することができる。 The fifth joint portion 5311e has a substantially cylindrical shape, and on the distal end side thereof, the base end of the fourth link 5313d can be rotated around a rotation axis (fifth axis O 5 ) parallel to the fourth axis O 4. To support. The distal end of the fifth link 5313e is fixedly connected to the proximal end of the fifth joint portion 5311e. The fourth axis O 4 and the fifth axis O 5 are rotation axes that can move the microscope unit 5303 in the vertical direction. By rotating the distal end of the side structure including a microscope unit 5303 about the fourth shaft O 4 and the fifth axis O 5, the height of the microscope unit 5303, i.e. by adjusting the distance between the observation target and the microscope section 5303 Can do.
 第5リンク5313eは、一辺が鉛直方向に延伸するとともに他辺が水平方向に延伸する略L字形状を有する第1の部材と、当該第1の部材の水平方向に延伸する部位から鉛直下向きに延伸する棒状の第2の部材と、が組み合わされて構成される。第5リンク5313eの第1の部材の鉛直方向に延伸する部位の上端近傍に、第5関節部5311eの基端が固定的に接続される。第5リンク5313eの第2の部材の基端(下端)には、第6関節部5311fが接続される。 The fifth link 5313e includes a first member having a substantially L shape in which one side extends in the vertical direction and the other side extends in the horizontal direction, and a portion extending in the horizontal direction of the first member in a vertically downward direction. A rod-shaped second member that extends is combined. The proximal end of the fifth joint portion 5311e is fixedly connected in the vicinity of the upper end of the portion of the fifth link 5313e extending in the vertical direction of the first member. The sixth joint portion 5311f is connected to the proximal end (lower end) of the second member of the fifth link 5313e.
 第6関節部5311fは、略円柱形状を有し、その先端側で、第5リンク5313eの基端を、鉛直方向と平行な回転軸(第6軸O)まわりに回動可能に支持する。第6関節部5311fの基端には、第6リンク5313fの先端が固定的に接続される。 The sixth joint portion 5311f has a substantially cylindrical shape, and supports the base end of the fifth link 5313e on the distal end side thereof so as to be rotatable about a rotation axis (sixth axis O 6 ) parallel to the vertical direction. . The distal end of the sixth link 5313f is fixedly connected to the proximal end of the sixth joint portion 5311f.
 第6リンク5313fは鉛直方向に延伸する棒状の部材であり、その基端はベース部5315の上面に固定的に接続される。 The sixth link 5313f is a rod-like member extending in the vertical direction, and its base end is fixedly connected to the upper surface of the base portion 5315.
 第1関節部5311a~第6関節部5311fの回転可能範囲は、顕微鏡部5303が所望の動きを可能であるように適宜設定されている。これにより、以上説明した構成を有するアーム部5309においては、顕微鏡部5303の動きに関して、並進3自由度及び回転3自由度の計6自由度の動きが実現され得る。このように、顕微鏡部5303の動きに関して6自由度が実現されるようにアーム部5309を構成することにより、アーム部5309の可動範囲内において顕微鏡部5303の位置及び姿勢を自由に制御することが可能になる。従って、あらゆる角度から術部を観察することが可能となり、手術をより円滑に実行することができる。 The rotatable range of the first joint portion 5311a to the sixth joint portion 5311f is appropriately set so that the microscope portion 5303 can perform a desired movement. As a result, in the arm portion 5309 having the above-described configuration, a total of 6 degrees of freedom of translational 3 degrees of freedom and 3 degrees of freedom of rotation can be realized with respect to the movement of the microscope unit 5303. In this way, by configuring the arm unit 5309 so that six degrees of freedom are realized with respect to the movement of the microscope unit 5303, the position and posture of the microscope unit 5303 can be freely controlled within the movable range of the arm unit 5309. It becomes possible. Therefore, the surgical site can be observed from any angle, and the surgery can be performed more smoothly.
 なお、図示するアーム部5309の構成はあくまで一例であり、アーム部5309を構成するリンクの数及び形状(長さ)、並びに関節部の数、配置位置及び回転軸の方向等は、所望の自由度が実現され得るように適宜設計されてよい。例えば、上述したように、顕微鏡部5303を自由に動かすためには、アーム部5309は6自由度を有するように構成されることが好ましいが、アーム部5309はより大きな自由度(すなわち、冗長自由度)を有するように構成されてもよい。冗長自由度が存在する場合には、アーム部5309においては、顕微鏡部5303の位置及び姿勢が固定された状態で、アーム部5309の姿勢を変更することが可能となる。従って、例えば表示装置5319を見る術者の視界にアーム部5309が干渉しないように当該アーム部5309の姿勢を制御する等、術者にとってより利便性の高い制御が実現され得る。 The configuration of the arm portion 5309 shown in the figure is merely an example, and the number and shape (length) of the links constituting the arm portion 5309, the number of joint portions, the arrangement position, the direction of the rotation axis, and the like are desired. It may be designed as appropriate so that the degree can be realized. For example, as described above, in order to freely move the microscope unit 5303, the arm unit 5309 is preferably configured to have six degrees of freedom, but the arm unit 5309 has a greater degree of freedom (ie, redundant freedom). Degree). When there is a redundant degree of freedom, the arm unit 5309 can change the posture of the arm unit 5309 while the position and posture of the microscope unit 5303 are fixed. Therefore, for example, control that is more convenient for the operator can be realized, such as controlling the posture of the arm unit 5309 so that the arm unit 5309 does not interfere with the field of view of the operator who views the display device 5319.
 ここで、第1関節部5311a~第6関節部5311fには、モータ等の駆動機構、及び各関節部における回転角度を検出するエンコーダ等が搭載されたアクチュエータが設けられ得る。そして、第1関節部5311a~第6関節部5311fに設けられる各アクチュエータの駆動が制御装置5317によって適宜制御されることにより、アーム部5309の姿勢、すなわち顕微鏡部5303の位置及び姿勢が制御され得る。具体的には、制御装置5317は、エンコーダによって検出された各関節部の回転角度についての情報に基づいて、アーム部5309の現在の姿勢、並びに顕微鏡部5303の現在の位置及び姿勢を把握することができる。制御装置5317は、把握したこれらの情報を用いて、ユーザからの操作入力に応じた顕微鏡部5303の移動を実現するような各関節部に対する制御値(例えば、回転角度又は発生トルク等)を算出し、当該制御値に応じて各関節部の駆動機構を駆動させる。なお、この際、制御装置5317によるアーム部5309の制御方式は限定されず、力制御又は位置制御等、各種の公知の制御方式が適用されてよい。 Here, the first joint portion 5311a to the sixth joint portion 5311f may be provided with actuators mounted with a drive mechanism such as a motor, an encoder for detecting a rotation angle at each joint portion, and the like. Then, the drive of each actuator provided in the first joint portion 5311a to the sixth joint portion 5311f is appropriately controlled by the control device 5317, whereby the posture of the arm portion 5309, that is, the position and posture of the microscope portion 5303 can be controlled. . Specifically, the control device 5317 grasps the current posture of the arm unit 5309 and the current position and posture of the microscope unit 5303 based on information about the rotation angle of each joint unit detected by the encoder. Can do. The control device 5317 calculates the control value (for example, rotation angle or generated torque) for each joint unit that realizes the movement of the microscope unit 5303 according to the operation input from the user, using the grasped information. And the drive mechanism of each joint part is driven according to the said control value. At this time, the control method of the arm unit 5309 by the control device 5317 is not limited, and various known control methods such as force control or position control may be applied.
 例えば、術者が、図示しない入力装置を介して適宜操作入力を行うことにより、当該操作入力に応じて制御装置5317によってアーム部5309の駆動が適宜制御され、顕微鏡部5303の位置及び姿勢が制御されてよい。当該制御により、顕微鏡部5303を任意の位置から任意の位置まで移動させた後、その移動後の位置で固定的に支持することができる。なお、当該入力装置としては、術者の利便性を考慮して、例えばフットスイッチ等、術者が手に術具を有していても操作可能なものが適用されることが好ましい。また、ウェアラブルデバイスや手術室内に設けられるカメラを用いたジェスチャ検出や視線検出に基づいて、非接触で操作入力が行われてもよい。これにより、清潔域に属するユーザであっても、不潔域に属する機器をより自由度高く操作することが可能になる。あるいは、アーム部5309は、いわゆるマスタースレイブ方式で操作されてもよい。この場合、アーム部5309は、手術室から離れた場所に設置される入力装置を介してユーザによって遠隔操作され得る。 For example, when a surgeon performs an appropriate operation input via an input device (not shown), the drive of the arm unit 5309 is appropriately controlled by the control device 5317 according to the operation input, and the position and posture of the microscope unit 5303 are controlled. May be. By this control, the microscope unit 5303 can be moved from an arbitrary position to an arbitrary position and then fixedly supported at the position after the movement. In consideration of the convenience of the operator, it is preferable to use an input device that can be operated even if the operator has a surgical tool in his / her hand. Further, non-contact operation input may be performed based on gesture detection or gaze detection using a wearable device or a camera provided in an operating room. Thereby, even a user belonging to a clean area can operate a device belonging to an unclean area with a higher degree of freedom. Alternatively, the arm portion 5309 may be operated by a so-called master slave method. In this case, the arm unit 5309 can be remotely operated by the user via an input device installed at a location away from the operating room.
 また、力制御が適用される場合には、ユーザからの外力を受け、その外力にならってスムーズにアーム部5309が移動するように第1関節部5311a~第6関節部5311fのアクチュエータが駆動される、いわゆるパワーアシスト制御が行われてもよい。これにより、ユーザが、顕微鏡部5303を把持して直接その位置を移動させようとする際に、比較的軽い力で顕微鏡部5303を移動させることができる。従って、より直感的に、より簡易な操作で顕微鏡部5303を移動させることが可能となり、ユーザの利便性を向上させることができる。 When force control is applied, the actuators of the first joint portion 5311a to the sixth joint portion 5311f are driven so that the external force from the user is received and the arm portion 5309 moves smoothly according to the external force. In other words, so-called power assist control may be performed. Thus, when the user grips the microscope unit 5303 and tries to move the position directly, the microscope unit 5303 can be moved with a relatively light force. Accordingly, the microscope unit 5303 can be moved more intuitively and with a simpler operation, and the convenience for the user can be improved.
 また、アーム部5309は、ピボット動作をするようにその駆動が制御されてもよい。ここで、ピボット動作とは、顕微鏡部5303の光軸が空間上の所定の点(以下、ピボット点という)を常に向くように、顕微鏡部5303を移動させる動作である。ピボット動作によれば、同一の観察位置を様々な方向から観察することが可能となるため、より詳細な患部の観察が可能となる。なお、顕微鏡部5303が、その焦点距離を調整不可能に構成される場合には、顕微鏡部5303とピボット点との距離が固定された状態でピボット動作が行われることが好ましい。この場合には、顕微鏡部5303とピボット点との距離を、顕微鏡部5303の固定的な焦点距離に調整しておけばよい。これにより、顕微鏡部5303は、ピボット点を中心とする焦点距離に対応する半径を有する半球面(図18に概略的に図示する)上を移動することとなり、観察方向を変更しても鮮明な撮像画像が得られることとなる。一方、顕微鏡部5303が、その焦点距離を調整可能に構成される場合には、顕微鏡部5303とピボット点との距離が可変な状態でピボット動作が行われてもよい。この場合には、例えば、制御装置5317は、エンコーダによって検出された各関節部の回転角度についての情報に基づいて、顕微鏡部5303とピボット点との距離を算出し、その算出結果に基づいて顕微鏡部5303の焦点距離を自動で調整してもよい。あるいは、顕微鏡部5303にAF機能が設けられる場合であれば、ピボット動作によって顕微鏡部5303とピボット点との距離が変化するごとに、当該AF機能によって自動で焦点距離の調整が行われてもよい。 Also, the driving of the arm portion 5309 may be controlled so as to perform a pivoting operation. Here, the pivoting operation is an operation of moving the microscope unit 5303 so that the optical axis of the microscope unit 5303 always faces a predetermined point in space (hereinafter referred to as a pivot point). According to the pivot operation, the same observation position can be observed from various directions, so that more detailed observation of the affected area is possible. Note that in the case where the microscope unit 5303 is configured such that its focal length cannot be adjusted, it is preferable that the pivot operation is performed in a state where the distance between the microscope unit 5303 and the pivot point is fixed. In this case, the distance between the microscope unit 5303 and the pivot point may be adjusted to a fixed focal length of the microscope unit 5303. As a result, the microscope unit 5303 moves on a hemispherical surface (schematically illustrated in FIG. 18) having a radius corresponding to the focal length centered on the pivot point, and is clear even if the observation direction is changed. A captured image is obtained. On the other hand, when the microscope unit 5303 is configured to be adjustable in focal length, the pivot operation may be performed in a state where the distance between the microscope unit 5303 and the pivot point is variable. In this case, for example, the control device 5317 calculates the distance between the microscope unit 5303 and the pivot point based on the information about the rotation angle of each joint unit detected by the encoder, and based on the calculation result, the microscope 5317 The focal length of the unit 5303 may be automatically adjusted. Alternatively, if the microscope unit 5303 is provided with an AF function, the focal length may be automatically adjusted by the AF function every time the distance between the microscope unit 5303 and the pivot point is changed by the pivot operation. .
 また、第1関節部5311a~第6関節部5311fには、その回転を拘束するブレーキが設けられてもよい。当該ブレーキの動作は、制御装置5317によって制御され得る。例えば、顕微鏡部5303の位置及び姿勢を固定したい場合には、制御装置5317は各関節部のブレーキを作動させる。これにより、アクチュエータを駆動させなくてもアーム部5309の姿勢、すなわち顕微鏡部5303の位置及び姿勢が固定され得るため、消費電力を低減することができる。顕微鏡部5303の位置及び姿勢を移動したい場合には、制御装置5317は、各関節部のブレーキを解除し、所定の制御方式に従ってアクチュエータを駆動させればよい。 Also, the first joint portion 5311a to the sixth joint portion 5311f may be provided with a brake that restrains the rotation thereof. The operation of the brake can be controlled by the control device 5317. For example, when it is desired to fix the position and posture of the microscope unit 5303, the control device 5317 activates the brake of each joint unit. Accordingly, since the posture of the arm unit 5309, that is, the position and posture of the microscope unit 5303 can be fixed without driving the actuator, power consumption can be reduced. When it is desired to move the position and posture of the microscope unit 5303, the control device 5317 may release the brake of each joint unit and drive the actuator according to a predetermined control method.
 このようなブレーキの動作は、上述した操作部5307を介したユーザによる操作入力に応じて行われ得る。ユーザは、顕微鏡部5303の位置及び姿勢を移動したい場合には、操作部5307を操作し、各関節部のブレーキを解除させる。これにより、アーム部5309の動作モードが、各関節部における回転を自由に行えるモード(オールフリーモード)に移行する。また、ユーザは、顕微鏡部5303の位置及び姿勢を固定したい場合には、操作部5307を操作し、各関節部のブレーキを作動させる。これにより、アーム部5309の動作モードが、各関節部における回転が拘束されたモード(固定モード)に移行する。 Such an operation of the brake can be performed according to an operation input by the user via the operation unit 5307 described above. When the user wants to move the position and posture of the microscope unit 5303, the user operates the operation unit 5307 to release the brakes of the joint units. Thereby, the operation mode of the arm part 5309 shifts to a mode (all free mode) in which the rotation at each joint part can be freely performed. In addition, when the user wants to fix the position and posture of the microscope unit 5303, the user operates the operation unit 5307 to activate the brakes of the joint units. Thereby, the operation mode of the arm part 5309 shifts to a mode (fixed mode) in which rotation at each joint part is restricted.
 制御装置5317は、顕微鏡装置5301及び表示装置5319の動作を制御することにより、顕微鏡手術システム5300の動作を統括的に制御する。例えば、制御装置5317は、所定の制御方式に従って第1関節部5311a~第6関節部5311fのアクチュエータを動作させることにより、アーム部5309の駆動を制御する。また、例えば、制御装置5317は、第1関節部5311a~第6関節部5311fのブレーキの動作を制御することにより、アーム部5309の動作モードを変更する。また、例えば、制御装置5317は、顕微鏡装置5301の顕微鏡部5303の撮像部によって取得された画像信号に各種の信号処理を施すことにより、表示用の画像データを生成するとともに、当該画像データを表示装置5319に表示させる。当該信号処理では、例えば現像処理(デモザイク処理)、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)及び/又は拡大処理(すなわち、電子ズーム処理)等、各種の公知の信号処理が行われてよい。 The control device 5317 comprehensively controls the operation of the microscope operation system 5300 by controlling the operations of the microscope device 5301 and the display device 5319. For example, the control device 5317 controls the driving of the arm portion 5309 by operating the actuators of the first joint portion 5311a to the sixth joint portion 5311f according to a predetermined control method. Further, for example, the control device 5317 changes the operation mode of the arm portion 5309 by controlling the brake operation of the first joint portion 5311a to the sixth joint portion 5311f. Further, for example, the control device 5317 performs various kinds of signal processing on the image signal acquired by the imaging unit of the microscope unit 5303 of the microscope device 5301 to generate image data for display and display the image data. It is displayed on the device 5319. In the signal processing, for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.) and / or enlargement processing (that is, Various known signal processing such as electronic zoom processing may be performed.
 なお、制御装置5317と顕微鏡部5303との通信、及び制御装置5317と第1関節部5311a~第6関節部5311fとの通信は、有線通信であってもよいし無線通信であってもよい。有線通信の場合には、電気信号による通信が行われてもよいし、光通信が行われてもよい。この場合、有線通信に用いられる伝送用のケーブルは、その通信方式に応じて電気信号ケーブル、光ファイバ、又はこれらの複合ケーブルとして構成され得る。一方、無線通信の場合には、手術室内に伝送ケーブルを敷設する必要がなくなるため、当該伝送ケーブルによって医療スタッフの手術室内の移動が妨げられる事態が解消され得る。 Note that communication between the control device 5317 and the microscope unit 5303 and communication between the control device 5317 and the first joint unit 5311a to the sixth joint unit 5311f may be wired communication or wireless communication. In the case of wired communication, communication using electrical signals may be performed, or optical communication may be performed. In this case, a transmission cable used for wired communication can be configured as an electric signal cable, an optical fiber, or a composite cable thereof depending on the communication method. On the other hand, in the case of wireless communication, there is no need to lay a transmission cable in the operating room, so that the situation where the transmission cable prevents the medical staff from moving in the operating room can be eliminated.
 制御装置5317は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等のプロセッサ、又はプロセッサとメモリ等の記憶素子が混載されたマイコン若しくは制御基板等であり得る。制御装置5317のプロセッサが所定のプログラムに従って動作することにより、上述した各種の機能が実現され得る。なお、図示する例では、制御装置5317は、顕微鏡装置5301と別個の装置として設けられているが、制御装置5317は、顕微鏡装置5301のベース部5315の内部に設置され、顕微鏡装置5301と一体的に構成されてもよい。あるいは、制御装置5317は、複数の装置によって構成されてもよい。例えば、顕微鏡部5303や、アーム部5309の第1関節部5311a~第6関節部5311fにそれぞれマイコンや制御基板等が配設され、これらが互いに通信可能に接続されることにより、制御装置5317と同様の機能が実現されてもよい。 The control device 5317 may be a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), or a microcomputer or a control board in which a processor and a storage element such as a memory are mixedly mounted. The various functions described above can be realized by the processor of the control device 5317 operating according to a predetermined program. In the illustrated example, the control device 5317 is provided as a separate device from the microscope device 5301, but the control device 5317 is installed inside the base portion 5315 of the microscope device 5301 and integrated with the microscope device 5301. May be configured. Alternatively, the control device 5317 may be configured by a plurality of devices. For example, a microcomputer, a control board, and the like are arranged in the microscope unit 5303 and the first joint unit 5311a to the sixth joint unit 5311f of the arm unit 5309, and these are communicably connected to each other. Similar functions may be realized.
 表示装置5319は、手術室内に設けられ、制御装置5317からの制御により、当該制御装置5317によって生成された画像データに対応する画像を表示する。つまり、表示装置5319には、顕微鏡部5303によって撮影された術部の画像が表示される。なお、表示装置5319は、術部の画像に代えて、又は術部の画像とともに、例えば患者の身体情報や手術の術式についての情報等、手術に関する各種の情報を表示してもよい。この場合、表示装置5319の表示は、ユーザによる操作によって適宜切り替えられてよい。あるいは、表示装置5319は複数設けられてもよく、複数の表示装置5319のそれぞれに、術部の画像や手術に関する各種の情報が、それぞれ表示されてもよい。なお、表示装置5319としては、液晶ディスプレイ装置又はEL(Electro Luminescence)ディスプレイ装置等、各種の公知の表示装置が適用されてよい。 The display device 5319 is provided in the operating room, and displays an image corresponding to the image data generated by the control device 5317 under the control of the control device 5317. In other words, the display device 5319 displays an image of the surgical part taken by the microscope unit 5303. Note that the display device 5319 may display various types of information related to the surgery, such as information about the patient's physical information and the surgical technique, for example, instead of or together with the image of the surgical site. In this case, the display of the display device 5319 may be switched as appropriate by a user operation. Alternatively, a plurality of display devices 5319 may be provided, and each of the plurality of display devices 5319 may display an image of the surgical site and various types of information regarding surgery. Note that as the display device 5319, various known display devices such as a liquid crystal display device or an EL (Electro Luminescence) display device may be applied.
 図18は、図17に示す顕微鏡手術システム5300を用いた手術の様子を示す図である。図18では、術者5321が、顕微鏡手術システム5300を用いて、患者ベッド5323上の患者5325に対して手術を行っている様子を概略的に示している。なお、図18では、簡単のため、顕微鏡手術システム5300の構成のうち制御装置5317の図示を省略するとともに、顕微鏡装置5301を簡略化して図示している。 FIG. 18 is a diagram showing a state of surgery using the microscope surgery system 5300 shown in FIG. In FIG. 18, a state in which an operator 5321 performs an operation on a patient 5325 on a patient bed 5323 using a microscope operation system 5300 is schematically shown. In FIG. 18, for the sake of simplicity, the control device 5317 is omitted from the configuration of the microscope surgery system 5300 and the microscope device 5301 is illustrated in a simplified manner.
 図18に示すように、手術時には、顕微鏡手術システム5300を用いて、顕微鏡装置5301によって撮影された術部の画像が、手術室の壁面に設置される表示装置5319に拡大表示される。表示装置5319は、術者5321と対向する位置に設置されており、術者5321は、表示装置5319に映し出された映像によって術部の様子を観察しながら、例えば患部の切除等、当該術部に対して各種の処置を行う。 As shown in FIG. 18, at the time of surgery, an image of the surgical part taken by the microscope apparatus 5301 is enlarged and displayed on the display device 5319 installed on the wall of the operating room using the microscope operation system 5300. The display device 5319 is installed at a position facing the surgeon 5321, and the surgeon 5321 observes the state of the surgical site by an image projected on the display device 5319, for example, the surgical site such as excision of the affected site. Various treatments are performed on
 以上、本開示に係る技術が適用され得る顕微鏡手術システム5300の一例について説明した。なお、ここでは、一例として顕微鏡手術システム5300について説明したが、本開示に係る技術が適用され得るシステムはかかる例に限定されない。例えば、顕微鏡装置5301は、その先端に顕微鏡部5303に代えて他の観察装置や他の術具を支持する、支持アーム装置としても機能し得る。当該他の観察装置としては、例えば内視鏡が適用され得る。また、当該他の術具としては、鉗子、攝子、気腹のための気腹チューブ、又は焼灼によって組織の切開や血管の封止を行うエネルギー処置具等が適用され得る。これらの観察装置や術具を支持アーム装置によって支持することにより、医療スタッフが人手で支持する場合に比べて、より安定的に位置を固定することが可能となるとともに、医療スタッフの負担を軽減することが可能となる。本開示に係る技術は、このような顕微鏡部以外の構成を支持する支持アーム装置に適用されてもよい。 Heretofore, an example of the microscopic surgery system 5300 to which the technology according to the present disclosure can be applied has been described. Here, the microscopic surgery system 5300 has been described as an example, but a system to which the technology according to the present disclosure can be applied is not limited to such an example. For example, the microscope apparatus 5301 can function as a support arm apparatus that supports another observation apparatus or another surgical tool instead of the microscope unit 5303 at the tip. As the other observation device, for example, an endoscope can be applied. In addition, as the other surgical tools, forceps, a lever, an insufflation tube for insufflation, or an energy treatment instrument for incising a tissue or sealing a blood vessel by cauterization can be applied. By supporting these observation devices and surgical tools with the support arm device, it is possible to fix the position more stably and reduce the burden on the medical staff than when the medical staff supports it manually. It becomes possible to do. The technology according to the present disclosure may be applied to a support arm device that supports a configuration other than the microscope unit.
 このように、本技術の出力光の光量の増加が可能な医療用光源装置が用いられることにより、光量を増加させた照射光下で観察対象部位を撮像することができる。これにより、明るい映像で映し出された術部の様子を観察しながら、例えば患部の切除等、当該術部に対して各種の処置をより正確に行うことができる。 Thus, by using the medical light source device capable of increasing the amount of output light according to the present technology, it is possible to image an observation target region under irradiation light with an increased amount of light. As a result, various treatments can be performed on the surgical site more accurately, for example, excision of the affected area, while observing the state of the surgical site displayed in a bright image.
 なお、本技術は以下のような構成もとることができる。
(1) 可視領域を含む波長帯域を持つ広帯域光を出射する広帯域光源と、上記広帯域光より狭い波長帯域の狭帯域光を出射する複数の狭帯域光源と、複数の上記狭帯域光源それぞれから出射され、互いに偏光方向が同じ状態とされた上記狭帯域光と上記広帯域光が入射される誘電体多層膜を備えた光学素子とを備える医療用光源装置と、
 上記医療用光源装置と接続し、上記医療用光源装置からの出力光を導光する顕微鏡と
 を具備する顕微鏡システム。
(2) 可視領域を含む波長帯域を持つ広帯域光を出射する広帯域光源と、
 上記広帯域光より狭い波長帯域の狭帯域光を出射する複数の狭帯域光源と、
 複数の上記狭帯域光源それぞれから出射され、互いに偏光方向が同じ状態とされた上記狭帯域光と上記広帯域光が入射される誘電体多層膜を備えた光学素子と
 を具備する医療用光源装置。
(3) 上記(2)に記載の医療用光源装置であって、
 上記光学素子は、入射された偏光方向が全てP偏光である複数の上記狭帯域光を透過させ、入射された上記広帯域光を反射させる
 医療用光源装置。
(4) 上記(2)に記載の医療用光源装置であって、
 上記光学素子は、入射された偏光方向が全てS偏光である複数の上記狭帯域光を反射させ、入射された上記広帯域光を透過させる
 医療用光源装置。
(5) 上記(2)から(4)のうちいずれか1つに記載の医療用光源装置であって、
 上記光学素子は波長選択素子である
 医療用光源装置。
(6) 上記(2)から(4)のうちいずれか1つに記載の医療用光源装置であって、
 上記光学素子は偏光選択素子である
 医療用光源装置。
(7) 上記(2)から(6)のうちいずれか1つに記載の医療用光源装置であって、
 上記広帯域光源と上記光学素子との間に位置し、入射された上記広帯域光をコリメートし、上記光学素子に向かって出射する第1のレンズ群と、
 上記狭帯域光源と上記光学素子との間に位置し、入射された偏光方向が同じ状態とされた複数の上記狭帯域光をコリメートし、上記光学素子に向かって出射する第2のレンズ群と、
 上記光学素子からの光が入射され、照明光として出射する第3のレンズ群と
 を更に具備し、
 上記第1のレンズ群、上記第2のレンズ群及び上記第3のレンズ群はそれぞれ、屈折率Ndが1.70より大きく1.85より小さく、アッベ数νdが40より大きく55より小さい硝材を有する
 医療用光源装置。
(8) 上記(7)に記載の医療用光源装置であって、
 上記第1のレンズ群、上記第2のレンズ群及び上記第3のレンズ群は、同一の反射防止特性を有する反射防止膜を備える
 医療用光源装置。
(9) 上記(2)から(8)のうちいずれか1つに記載の医療用光源装置であって、
 上記広帯域光は白色光である
 医療用光源装置。
(10) 上記(2)から(9)のうちいずれか1つに記載の医療用光源装置であって、
 上記狭帯域光はレーザ光である
 医療用光源装置。
(11) 上記(10)に記載の医療用光源装置であって、上記医療用光源装置は、顕微鏡又は内視鏡に接続可能に構成される医療用光源装置。
In addition, this technique can also take the following structures.
(1) A broadband light source that emits broadband light having a wavelength band including a visible region, a plurality of narrow band light sources that emit narrow band light having a narrower wavelength band than the broadband light, and a plurality of narrow band light sources respectively. A medical light source device comprising: the narrow band light having the same polarization direction; and an optical element comprising a dielectric multilayer film on which the broadband light is incident;
A microscope system comprising: a microscope that is connected to the medical light source device and guides output light from the medical light source device.
(2) a broadband light source that emits broadband light having a wavelength band including the visible region;
A plurality of narrowband light sources that emit narrowband light having a narrower wavelength band than the broadband light;
A medical light source device comprising: the narrow band light emitted from each of the plurality of narrow band light sources and having the same polarization direction and an optical element including a dielectric multilayer film on which the broadband light is incident.
(3) The medical light source device according to (2) above,
The optical element transmits a plurality of the narrow-band lights whose incident polarization directions are all P-polarized light and reflects the incident broadband light.
(4) The medical light source device according to (2) above,
The optical element reflects a plurality of the narrow-band lights whose incident polarization directions are all S-polarized light and transmits the incident broadband lights.
(5) The medical light source device according to any one of (2) to (4) above,
The optical element is a wavelength selection element.
(6) The medical light source device according to any one of (2) to (4) above,
The optical element is a polarization selection element.
(7) The medical light source device according to any one of (2) to (6) above,
A first lens group that is located between the broadband light source and the optical element, collimates the incident broadband light, and emits the light toward the optical element;
A second lens group positioned between the narrow-band light source and the optical element, collimating the plurality of narrow-band lights having the same polarization direction and emitting the collimated light toward the optical element; ,
A third lens group that receives light from the optical element and emits it as illumination light; and
Each of the first lens group, the second lens group, and the third lens group is made of a glass material having a refractive index Nd of greater than 1.70 and less than 1.85, and an Abbe number νd of greater than 40 and less than 55. A medical light source device.
(8) The medical light source device according to (7) above,
The medical light source device, wherein the first lens group, the second lens group, and the third lens group include an antireflection film having the same antireflection characteristic.
(9) The medical light source device according to any one of (2) to (8) above,
The medical light source device, wherein the broadband light is white light.
(10) The medical light source device according to any one of (2) to (9),
The narrow-band light is a laser beam.
(11) The medical light source device according to (10), wherein the medical light source device is configured to be connectable to a microscope or an endoscope.
 1、101…内視鏡システム
 2…内視鏡
 3…観察対象部位(被照射体)
 5、105、205、305、5157、5330…光源装置(医療用光源装置)
 51…広帯域光源
 52IR…IR光源(狭帯域光源)
 52R…R光源(狭帯域光源)
 52G…G光源(狭帯域光源)
 52B…B光源(狭帯域光源)
 53、153…ダイクロイックミラー(光学素子、波長選択素子)
 54…第1のコリメートレンズ(第1のレンズ群)
 55…第2のコリメートレンズ(第2のレンズ群)
 56…集光レンズ(第3のレンズ群)
 254、354…第1のレンズ群
 256、356…第3のレンズ群
 5113…内視鏡手術システム
 5300…顕微鏡手術システム
 5303…顕微鏡部(顕微鏡)
 G1、G31…第2のコリメートレンズ(第2のレンズ群)
DESCRIPTION OF SYMBOLS 1, 101 ... Endoscope system 2 ... Endoscope 3 ... Observation object part (irradiated body)
5, 105, 205, 305, 5157, 5330 ... Light source device (medical light source device)
51: Broadband light source 52IR: IR light source (narrowband light source)
52R ... R light source (narrow band light source)
52G ... G light source (narrowband light source)
52B ... B light source (narrowband light source)
53, 153 ... Dichroic mirror (optical element, wavelength selection element)
54 ... 1st collimating lens (1st lens group)
55. Second collimating lens (second lens group)
56 ... Condensing lens (third lens group)
254, 354 ... First lens group 256, 356 ... Third lens group 5113 ... Endoscopic surgery system 5300 ... Microscopic surgery system 5303 ... Microscope section (microscope)
G1, G31: second collimating lens (second lens group)

Claims (11)

  1.  可視領域を含む波長帯域を持つ広帯域光を出射する広帯域光源と、前記広帯域光より狭い波長帯域の狭帯域光を出射する複数の狭帯域光源と、複数の前記狭帯域光源それぞれから出射され、互いに偏光方向が同じ状態とされた前記狭帯域光と前記広帯域光が入射される誘電体多層膜を備えた光学素子とを備える医療用光源装置と、
     前記医療用光源装置と接続し、前記医療用光源装置からの出力光を導光する顕微鏡と
     を具備する顕微鏡システム。
    A broadband light source that emits broadband light having a wavelength band including a visible region, a plurality of narrow band light sources that emit narrow band light having a narrower wavelength band than the broadband light, and a plurality of narrow band light sources, respectively, A medical light source device comprising: the narrowband light having the same polarization direction; and an optical element including a dielectric multilayer film on which the broadband light is incident;
    A microscope system comprising: a microscope that is connected to the medical light source device and guides output light from the medical light source device.
  2.  可視領域を含む波長帯域を持つ広帯域光を出射する広帯域光源と、
     前記広帯域光より狭い波長帯域の狭帯域光を出射する複数の狭帯域光源と、
     複数の前記狭帯域光源それぞれから出射され、互いに偏光方向が同じ状態とされた前記狭帯域光と前記広帯域光が入射される誘電体多層膜を備えた光学素子と
     を具備する医療用光源装置。
    A broadband light source that emits broadband light having a wavelength band including the visible region;
    A plurality of narrowband light sources that emit narrowband light of a narrower wavelength band than the broadband light;
    A medical light source device comprising: the narrowband light emitted from each of the plurality of narrowband light sources and having the same polarization direction and an optical element including a dielectric multilayer film on which the broadband light is incident.
  3.  請求項2に記載の医療用光源装置であって、
     前記光学素子は、入射された偏光方向が全てP偏光である複数の前記狭帯域光を透過させ、入射された前記広帯域光を反射させる
     医療用光源装置。
    The medical light source device according to claim 2,
    The optical element transmits a plurality of the narrowband light whose incident polarization directions are all P-polarized light and reflects the incident broadband light.
  4.  請求項2に記載の医療用光源装置であって、
     前記光学素子は、入射された偏光方向が全てS偏光である複数の前記狭帯域光を反射させ、入射された前記広帯域光を透過させる
     医療用光源装置。
    The medical light source device according to claim 2,
    The optical element reflects a plurality of the narrowband light whose incident polarization directions are all S-polarized light and transmits the incident broadband light.
  5.  請求項3又は4に記載の医療用光源装置であって、
     前記光学素子は波長選択素子である
     医療用光源装置。
    The medical light source device according to claim 3 or 4,
    The optical element is a wavelength selection element.
  6.  請求項3又は4に記載の医療用光源装置であって、
     前記光学素子は偏光選択素子である
     医療用光源装置。
    The medical light source device according to claim 3 or 4,
    The optical element is a polarization selection element.
  7.  請求項5又は6に記載の医療用光源装置であって、
     前記広帯域光源と前記光学素子との間に位置し、入射された前記広帯域光をコリメートし、前記光学素子に向かって出射する第1のレンズ群と、
     前記狭帯域光源と前記光学素子との間に位置し、入射された偏光方向が同じ状態とされた複数の前記狭帯域光をコリメートし、前記光学素子に向かって出射する第2のレンズ群と、
     前記光学素子からの光が入射され、照明光として出射する第3のレンズ群と
     を更に具備し、
     前記第1のレンズ群、前記第2のレンズ群及び前記第3のレンズ群はそれぞれ、屈折率Ndが1.70より大きく1.85より小さく、アッベ数νdが40より大きく55より小さい硝材を有する
     医療用光源装置。
    The medical light source device according to claim 5 or 6,
    A first lens group positioned between the broadband light source and the optical element, collimating the incident broadband light and emitting it toward the optical element;
    A second lens group positioned between the narrowband light source and the optical element, collimating the plurality of narrowband lights having the same polarization direction and emitting the collimated light toward the optical element; ,
    A third lens group that receives light from the optical element and emits it as illumination light; and
    Each of the first lens group, the second lens group, and the third lens group is made of a glass material having a refractive index Nd of greater than 1.70 and less than 1.85 and an Abbe number νd of greater than 40 and less than 55. A medical light source device.
  8.  請求項7に記載の医療用光源装置であって、
     前記第1のレンズ群、前記第2のレンズ群及び前記第3のレンズ群は、同一の反射防止特性を有する反射防止膜を有する
     医療用光源装置。
    The medical light source device according to claim 7,
    The first lens group, the second lens group, and the third lens group have an antireflection film having the same antireflection characteristic.
  9.  請求項8に記載の医療用光源装置であって、
     前記広帯域光は白色光である
     医療用光源装置。
    The medical light source device according to claim 8,
    The broadband light is white light.
  10.  請求項9に記載の医療用光源装置であって、
     前記狭帯域光はレーザ光である
     医療用光源装置。
    The medical light source device according to claim 9,
    The narrow band light is a laser beam.
  11.  請求項10に記載の医療用光源装置であって、
     前記医療用光源装置は、顕微鏡又は内視鏡に接続可能に構成される
     医療用光源装置。
    The medical light source device according to claim 10,
    The medical light source device is configured to be connectable to a microscope or an endoscope.
PCT/JP2019/001376 2018-04-11 2019-01-18 Microscope system and medical light source device WO2019198293A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018076073 2018-04-11
JP2018-076073 2018-04-11
JP2018185379 2018-09-28
JP2018-185379 2018-09-28

Publications (1)

Publication Number Publication Date
WO2019198293A1 true WO2019198293A1 (en) 2019-10-17

Family

ID=68163527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001376 WO2019198293A1 (en) 2018-04-11 2019-01-18 Microscope system and medical light source device

Country Status (1)

Country Link
WO (1) WO2019198293A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210267446A1 (en) * 2018-08-13 2021-09-02 Sony Corporation Medical system, medical light source apparatus, and method in medical light source apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105143A (en) * 2005-10-12 2007-04-26 Olympus Medical Systems Corp Biological diagnostic apparatus
WO2015152161A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Collimator lens
JP2016120105A (en) * 2014-12-25 2016-07-07 ソニー株式会社 Lighting device, lighting method, and observation device
JP2016120104A (en) * 2014-12-25 2016-07-07 ソニー株式会社 Lighting device, lighting method, and observation device
WO2017145529A1 (en) * 2016-02-26 2017-08-31 Hoya株式会社 Calculation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105143A (en) * 2005-10-12 2007-04-26 Olympus Medical Systems Corp Biological diagnostic apparatus
WO2015152161A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Collimator lens
JP2016120105A (en) * 2014-12-25 2016-07-07 ソニー株式会社 Lighting device, lighting method, and observation device
JP2016120104A (en) * 2014-12-25 2016-07-07 ソニー株式会社 Lighting device, lighting method, and observation device
WO2017145529A1 (en) * 2016-02-26 2017-08-31 Hoya株式会社 Calculation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210267446A1 (en) * 2018-08-13 2021-09-02 Sony Corporation Medical system, medical light source apparatus, and method in medical light source apparatus

Similar Documents

Publication Publication Date Title
US10568499B2 (en) Surgical visualization systems and displays
US11221296B2 (en) Imaging system
US11154378B2 (en) Surgical visualization systems and displays
JP6521982B2 (en) Surgical visualization system and display
US20210076921A1 (en) Microscope system and medical light source apparatus
JP6996518B2 (en) Branch optical system, imaging device, and imaging system
US11653824B2 (en) Medical observation system and medical observation device
US20230221539A1 (en) Surgical microscope having an illumination apparatus
JP6469292B1 (en) Dental 3D digital microscope system and dental display support mechanism for stereoscopic viewing of observed images
WO2019198553A1 (en) Microscope system and medical light source apparatus
US20170041576A1 (en) Medical imaging device, medical image acquisition system, and endoscope device
WO2022044897A1 (en) Medical imaging system, medical imaging device, and operation method
JP7230807B2 (en) SIGNAL PROCESSING DEVICE, IMAGING DEVICE, SIGNAL PROCESSING METHOD AND PROGRAM
JP2010198020A (en) Camera adaptor for medical-optical observation instrument and camera-adaptor combination
US11729493B2 (en) Image capture apparatus and image capture method
WO2017199926A1 (en) Endoscope device
WO2019198293A1 (en) Microscope system and medical light source device
US20230120611A1 (en) Stereoscopic camera with fluorescence strobing based visualization
WO2017221491A1 (en) Control device, control system, and control method
NL2023688B1 (en) Binocular device
WO2020045014A1 (en) Medical system, information processing device and information processing method
WO2024070754A1 (en) Optical system, imaging device, and endoscope system
JP2020163037A (en) Medical system, information processing device and information processing method
JP2004347690A (en) Surgical microscope
WO2019031014A1 (en) Biological tissue imaging apparatus for surgical operation and biological tissue imaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP