WO2019198225A1 - 気泡生成装置 - Google Patents

気泡生成装置 Download PDF

Info

Publication number
WO2019198225A1
WO2019198225A1 PCT/JP2018/015505 JP2018015505W WO2019198225A1 WO 2019198225 A1 WO2019198225 A1 WO 2019198225A1 JP 2018015505 W JP2018015505 W JP 2018015505W WO 2019198225 A1 WO2019198225 A1 WO 2019198225A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
containing liquid
output
bubble
generating device
Prior art date
Application number
PCT/JP2018/015505
Other languages
English (en)
French (fr)
Inventor
東吾 保坂
Original Assignee
Hack Japan ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hack Japan ホールディングス株式会社 filed Critical Hack Japan ホールディングス株式会社
Priority to JP2019559849A priority Critical patent/JP6736146B2/ja
Priority to KR1020197034052A priority patent/KR20190139984A/ko
Priority to PCT/JP2018/015505 priority patent/WO2019198225A1/ja
Priority to TW108112136A priority patent/TW201943453A/zh
Publication of WO2019198225A1 publication Critical patent/WO2019198225A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids

Definitions

  • the present invention relates to a bubble generating device, and more particularly to a bubble generating device that generates a gas-containing liquid containing minute bubbles such as microbubbles and nanobubbles.
  • liquids such as water containing microbubbles of gas such as hydrogen, ozone and oxygen have been used for various purposes.
  • a liquid containing microbubbles called microbubbles (for example, a particle size of 1 ⁇ m or more and less than 1000 ⁇ m) is used to remove dust attached to an object, for example. It is used as a cleaning solution.
  • a liquid containing nanobubbles called nanobubbles (for example, a particle size of less than 1000 nm) has properties that are remarkably different from ordinary bubbles, and is expected to have a growth promoting effect, an antioxidant effect, a bactericidal action, and the like. It is used for cleaning agents, cosmetic liquids, drugs, beverages, preservatives, and the like.
  • the generation of the gas-containing liquid containing microbubbles such as microbubbles and nanobubbles is performed by a bubble generator as shown in Patent Document 1.
  • a bubble generator a gas bubble is mixed in a liquid solvent, and the bubble is further crushed and compressed to generate microbubbles and nanobubbles.
  • an object of the present invention is to provide a bubble generating device that can solve the above-described problem that a gas-containing liquid containing microbubbles having a desired bubble size cannot be obtained. .
  • the bubble generating device is: A generating device for generating a gas-containing liquid containing microbubbles; A plurality of output flow channels for circulating the gas-containing liquid generated in the generating device and outputting the liquid to the outside, and Among the plurality of output channels, an ultrasonic transducer that applies ultrasonic waves to generate nano-sized bubbles in the gas-containing liquid is provided in another output channel excluding at least one output channel.
  • the configuration is as follows.
  • the ultrasonic vibrator is provided in a nozzle provided at the tip of the other output channel.
  • the configuration is as follows.
  • the output channel provided with the ultrasonic transducer outputs a gas-containing liquid containing nano-sized bubbles
  • the output channel not provided with the ultrasonic transducer is Configured to output a gas-containing liquid containing micro-sized bubbles
  • the generating device includes a gas-liquid mixing unit that generates a gas-containing liquid by mixing a gas and a liquid, and a gas that generates a gas-containing liquid containing microbubbles by causing collision and pressure fluctuation in the gas-containing liquid.
  • a containing liquid processing section Among the plurality of output channels, the output channel provided with the ultrasonic vibrator collapses the bubbles in the gas-containing liquid generated in the gas-containing liquid processing unit by the ultrasonic vibrator into a nano size. Then, the gas-containing liquid is output, and the output flow path not provided with the ultrasonic transducer is configured to output the gas-containing liquid generated in the gas-containing liquid processing unit as it is.
  • the configuration is as follows.
  • the ultrasonic transducer is configured to apply an ultrasonic wave having a frequency of 45 kHz to the gas-containing liquid.
  • a control device for variably controlling the frequency of the ultrasonic transducer The configuration is as follows.
  • the present invention is configured as described above, so that a gas-containing liquid containing micro bubbles having different bubble sizes can be output to the outside from a plurality of output channels. Therefore, a gas-containing liquid containing bubbles having a desired bubble size can be obtained depending on the application.
  • FIG. 1 It is a block diagram which shows the outline of a structure of the bubble generator in this invention. It is a figure which shows an example of a structure of the gas containing liquid process part disclosed in FIG. It is a figure which shows an example of a structure of the output flow path disclosed in FIG. It is a figure which shows an example of a structure of the output flow path disclosed in FIG.
  • a gas generating device 1 that generates a gas-containing liquid containing microbubbles by mixing a gas such as air and a liquid such as water and generating microbubbles in the liquid mixture. Generator
  • the liquid used in the gas-containing liquid generated by the bubble generating device 1 of the present invention may be any liquid other than water, and may be an object having a predetermined viscosity such as a gel.
  • the gas contained in the gas-containing liquid and made into microbubbles may be any gas such as air, hydrogen, nitrogen, oxygen, and ozone.
  • the bubble generating device 1 in this embodiment includes a gas-liquid mixing unit 2 and a gas-containing liquid processing unit 3.
  • the bubble generating device 1 includes two output channels 4 and 5, and gas-containing liquids are respectively supplied from nozzles 41 and 51 provided at the tips of the two output channels 4 and 5, respectively. Discharge to the outside.
  • each configuration will be described in detail.
  • the fluid such as water is supplied to the gas-liquid mixing unit 2 through the fluid inlet 21.
  • a gas such as air is supplied to the gas-liquid mixing unit 2 through the gas inlet 22.
  • the gas-liquid mixing part 2 mixes the supplied fluid and gas, and produces
  • the gas-liquid mixing unit 2 is connected to the gas-containing liquid processing unit 3 through the flow path 23, and the gas-containing liquid generated by the gas-liquid mixing unit 2 flows through the flow path 23 to contain the gas. It is supplied to the liquid processing unit 3.
  • the gas-liquid mixing unit 2 is configured to suck the liquid from the fluid inlet 21 with a pump (not shown), form a throttled portion in the liquid flow path, and supply gas to the throttled portion.
  • a pump not shown
  • the gas-containing liquid is generated by mixing the gas and the fluid using the venturi effect at the throttled portion.
  • the gas-liquid mixing unit 2 may have any structure and may mix gas and fluid by any principle.
  • the gas-containing liquid processing unit 3 is formed in, for example, a substantially cylindrical shape having an internal space, and includes a bubble generation module 31 in the inside.
  • the gas-containing liquid flows into the internal space of the gas-containing liquid processing unit 3 from the flow path 23 connected to the gas-liquid mixing unit 2, and the gas-containing liquid flows into the bubble generation module 31.
  • the bubble generation module 31 is formed in a cylindrical shape having a space inside. As shown in FIG. 2, the bubble generation module 31 includes a spiral channel 32 positioned on the inflow side of the gas-containing liquid that has flowed in from the gas-liquid mixing unit 2, and a protrusion 33 connected to the spiral channel 32. And.
  • the spiral channel 32 is a channel formed in a spiral shape.
  • the protrusion 33 is a flow path that continues from the spiral flow path 32, and includes a plurality of protrusions 34 that protrude from the inner wall surface in the flow path.
  • the bubble generation module 31 configured as described above, first, the gas-containing liquid that has flowed into the gas-containing liquid processing unit 3 from the gas-liquid mixing unit 2 enters the spiral flow path 32 that forms the bubble generation module 31. Inflow. Thereby, a spiral flow of the gas-containing liquid is formed and then flows into the protrusion 33. Then, in the protrusion 33, the gas-containing liquid in a spiral flow circulates while the bubbles in the gas-containing liquid collide with the protrusion 34, and between the bubble generation module 31 and the bubble-containing liquid processing unit 3. It flows out into the space formed. Thereby, in the bubble production
  • the gas-containing liquid processing unit 3 in the present embodiment mainly generates a gas-containing liquid containing microbubbles such as so-called microbubbles and nanobubbles.
  • a gas-containing liquid containing a large amount of microbubbles is generated from the start of operation of the bubble generating device 1 to a predetermined time, and when the predetermined time elapses from the start of operation and the bubbles are crushed or compressed.
  • a gas-containing liquid containing a large amount of nanobubbles is generated. That is, the gas-containing liquid generated in the gas-containing liquid processing unit 3 contains a lot of microbubbles from the start of operation until a predetermined time, and contains a lot of nanobubbles after the predetermined time.
  • microbubbles are micro-sized microbubbles having a particle size of, for example, 1 ⁇ m or more and less than 1000 ⁇ m
  • nanobubbles are micro-sized microbubbles having a particle size of, for example, less than 1000 nm.
  • the gas-containing liquid processing unit 3 is not necessarily limited to generating a gas-containing liquid containing bubbles of the size described above.
  • the configuration may be such that only the microbubbles are generated by adjusting the flow rate of the gas-containing liquid into the gas-containing liquid processing unit 3, the degree of spiral of the spiral flow path 32, the arrangement and number of the protrusions 34, and the like.
  • generates the bubble of a bigger size may be sufficient.
  • two output flow paths 4 and 5 are connected to the gas-containing liquid processing section 3 in the present embodiment via throttle sections 40 and 50, respectively.
  • the throttle portions 40 and 50 are configured so that the gas-containing liquid passes through a portion narrower than the output flow paths 4 and 5, and are configured to limit the flow of the gas-containing liquid.
  • the throttle portions 40 and 50 may have a function of closing the output flow paths 4 and 5.
  • the two output channels 4 and 5 circulate the gas-containing liquid generated in the gas-containing liquid processing unit 3, and the gas-containing liquid is provided at each end.
  • the nozzles 41 and 51 are configured to discharge to the outside.
  • generated in the gas-containing liquid process part 3 is discharged as it is from the nozzle 41 of the 1st output flow path 4 (refer code
  • a gas-containing liquid mainly containing a large amount of micro-sized microbubbles is discharged from the start of operation of the bubble generating device 1 to a predetermined time.
  • the ultrasonic vibrator 52 is provided in the nozzle 51 of the second output flow path 5.
  • One or a plurality of ultrasonic transducers 52 are provided on the outer periphery or inside of the nozzle 51.
  • vibrator 52 has applied the ultrasonic wave to the gas containing liquid just before discharging from the nozzle 51, and, thereby, the bubble in a bubble containing liquid is forcedly crushed. Then, the bubbles in the gas-containing liquid are further reduced in size by forced crushing by ultrasonic waves, and a large amount of nano-sized nano bubbles are mainly generated.
  • a gas-containing liquid containing a large amount of nanobubbles generated immediately before the discharge is discharged from the nozzle 52 of the second output flow path 5 (see reference numeral F2 in FIG. 3).
  • the second output flow path From 5 it is possible to discharge a gas-containing liquid containing a large amount of nano-sized bubbles. For this reason, when the gas containing liquid containing nanobubble is required, the gas containing liquid output from the 2nd output flow path 5 should just be utilized.
  • the bubble size of the bubble-containing liquid generated in the bubble-containing liquid processing unit 3 can be set to a micro size.
  • the bubble-containing liquid containing microbubbles is always discharged from the nozzle 41 of the first output flow path 4.
  • the bubble-containing liquid always containing nanobubbles is discharged from the nozzle 51 of the second output flow path 5 by the ultrasonic vibrator 52. Accordingly, it is possible to simultaneously discharge bubble-containing liquids containing different bubble sizes.
  • the amount of the gas-containing liquid discharged from each output channel 4, 5 can be adjusted by adjusting the degree of throttling of each throttle unit 40, 50 connected to each output channel 4, 5.
  • the gas-containing liquid can be discharged only from any one of the output flow paths.
  • the ultrasonic vibrator 52 is preferably configured to apply an ultrasonic wave having a frequency of 45 kHz to the gas-containing liquid.
  • an ultrasonic wave having a frequency of 45 kHz to the gas-containing liquid, a large amount of hydroxyl radicals (OH radicals) can be efficiently generated from the microbubbles in the gas-containing liquid.
  • OH radicals hydroxyl radicals
  • the reactivity and oxidizing power can be used, and for example, it can be used for applications such as decomposition and removal of pollutants in sewage.
  • the ultrasonic vibrator 52 is disposed in the nozzle 51 at the tip of the second output flow path 5
  • OH radicals can be generated immediately before discharge, and a large amount of OH radicals are generated.
  • a gas-containing liquid can be used.
  • the bubble generator 1 is generated by the frequency of the ultrasonic vibrator 52 provided in the nozzle 51 of the second output flow path 5, that is, the ultrasonic vibrator 52.
  • the ultrasonic control part 6 control apparatus which variably controls the frequency of the ultrasonic wave applied to a gas containing liquid.
  • ultrasonic waves of all frequencies can be applied to the gas-containing liquid that flows through the second output flow path 5 and is discharged from the nozzle 51, and contains microbubbles by applying a specific frequency. Special properties and effects generated in the gas-containing liquid can be used.
  • the ultrasonic transducer 52 is arranged in the nozzle 51 positioned at the tip of the second output flow path 5 .
  • the ultrasonic transducer 52 is positioned at any position in the second output flow path 5. You may arrange in.
  • the ultrasonic transducer 52 may be disposed inside or on the outer periphery of the pipe of the second output flow path 5 located between the gas-containing liquid 3 and the nozzle 51.
  • an ultrasonic transducer may not be disposed in one or a plurality of output channels, and an ultrasonic transducer may be disposed in the other one or a plurality of output channels.
  • ultrasonic transducers When ultrasonic transducers are arranged in a plurality of output channels, ultrasonic waves having different frequencies may be generated from the ultrasonic transducers.
  • a single bubble generator 1 can output a plurality of types of bubble sizes or gas-containing liquids having a plurality of types of properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

本発明である気泡発生装置は、微小気泡を含有する気体含有液を生成する生成装置と、生成装置にて生成された気体含有液を流通させて外部に出力する複数の出力流路と、を備える。そして、上記複数の出力流路のうち、少なくとも1つの出力流路を除いた他の出力流路に、気体含有液中にナノサイズの気泡を発生させるよう超音波を印加する超音波振動子を備えた。

Description

気泡生成装置
 本発明は、気泡生成装置に関し、特に、マイクロバブルやナノバブルといった微小な気泡を含有した気体含有液を生成する気泡生成装置に関する。
 近年、水などの液体に、水素やオゾン、酸素などの気体の微小気泡を含有させたものが様々な用途で利用されている。このような微小気泡を含有した液体のうち、マイクロバブルと呼ばれるマイクロサイズ(例えば、粒径が1μm以上1000μm未満)の微小気泡を含有した液体は、例えば、物体に対して付着したゴミを取り除くための洗浄液に利用される。また、ナノバブルと呼ばれるナノサイズ(例えば、粒径1000nm未満)の微小気泡を含有した液体は、通常の気泡とは著しく異なった性質を有し、成長促進効果や抗酸化作用、殺菌作用などが期待されており、洗浄剤、化粧液、薬剤、飲料物、保存液、などに利用される。
 ここで、マイクロバブルやナノバブルといった微小気泡を含有した気体含有液の生成は、特許文献1に示すような気泡発生装置で行う。このような気泡発生装置では、液体である溶媒中に気体の気泡を混入させ、かかる気泡をさらに圧壊、圧縮することで、マイクロバブルやナノバブルを発生させている。
特許第3762206号公報
 しかしながら、上述したような液体中に混入させた気泡を圧壊、圧縮ことで微小気泡を発生させる機構では、ナノバブルを発生させるまでに時間がかかる、という問題がある。つまり、気泡発生装置の運転を開始した直後では、液体中の気泡の圧壊、圧縮が進んでおらず、ナノサイズの微小気泡を含有する液体を得ることができない。一方で、運転開始から所定時間が経過してナノバブルが生成されてしまうと、その後も常にナノバブルが生成されてしまい、マイクロバブルを必要とする場合であっても、かかるサイズの微小気泡含有液を得ることができない。従って、所望の気泡サイズの気泡を含有する気体含有液を得ることができない、という問題が生じる。
 このため、本発明の目的は、上述した課題である、所望の気泡サイズの微小気泡を含有する気体含有液を得ることができない、ことを解決することができる気泡発生装置を提供することにある。
 本発明の一形態である気泡発生装置は、
 微小気泡を含有する気体含有液を生成する生成装置と、
 前記生成装置にて生成された気体含有液を流通させて外部に出力する複数の出力流路と、を備え、
 前記複数の出力流路のうち、少なくとも1つの出力流路を除いた他の出力流路に、気体含有液中にナノサイズの気泡を発生させるよう超音波を印加する超音波振動子を備えた、
という構成をとる。
 また、上記気泡発生装置では、
 前記複数の出力流路のうち、前記他の出力流路の先端に設けられたノズルに前記超音波振動子を設けた、
という構成をとる。
 また、上記気泡発生装置では、
 前記複数の出力流路のうち、前記超音波振動子を設けた出力流路は、ナノサイズの気泡を含有する気体含有液を出力し、前記超音波振動子を設けていない出力流路は、マイクロサイズの気泡を含有する気体含有液を出力するよう構成されている、
という構成をとる。
 また、上記気泡発生装置では、
 前記生成装置は、気体と液体とを混合して気体含有液を生成する気液混合部と、気体含有液に衝突及び圧力変動を生じさせることにより微小気泡を含有する気体含有液を生成する気体含有液処理部と、を備え、
 前記複数の出力流路のうち、前記超音波振動子を設けた出力流路は、当該超音波振動子により前記気体含有液処理部にて生成された気体含有液中の気泡をナノサイズに圧壊して当該気体含有液を出力し、前記超音波振動子を設けていない出力流路は、前記気体含有液処理部にて生成された気体含有液をそのまま出力するよう構成されている、
という構成をとる。
 また、上記気泡発生装置では、
 前記超音波振動子は、周波数が45kHzの超音波を気体含有液に対して印加するよう構成されている。
 また、上記気泡発生装置では、
 前記超音波振動子の周波数を可変制御する制御装置を備えた、
という構成をとる。
 本発明は、以上のように構成されることにより、複数の出力流路からそれぞれ気泡サイズが異なる微小気泡を含有した気体含有液を外部に出力することができる。従って、用途に応じて所望の気泡サイズの気泡を含有した気体含有液を得ることができる。
本発明における気泡発生装置の構成の概略を示すブロック図である。 図1に開示した気体含有液処理部の構成の一例を示す図である。 図1に開示した出力流路の構成の一例を示す図である。 図1に開示した出力流路の構成の一例を示す図である。
 <実施形態1>
 本発明の第1の実施形態を、図1乃至図4を参照して説明する。本実施形態では、空気などの気体と、水などの液体と、を混合し、かかる混合液中に微小気泡を発生させることで、微小気泡を含有した気体含有液を生成する気泡生成装置1(生成装置)について説明する。但し、本発明の気泡生成装置1で生成する気体含有液で使用される液体は、水以外のいかなる液体でもよく、ゲル状など所定の粘性を有する物体であってもよい。また、気体含有液に含有され微小気泡化される気体は、空気、水素、窒素、酸素、オゾンなど、いかなる気体であってもよい。
 図1に示すように、本実施形態における気泡発生装置1(生成装置)は、気液混合部2と気体含有液処理部3と、を備えている。また、気泡発生装置1は、2本の出力流路4,5を備えており、当該2本の出力流路4,5の先端にそれぞれ設けられたノズル41,51から、それぞれ気体含有液を外部に吐出する。以下、各構成について詳述する。
 上記気液混合部2には、流体流入口21を介して水などの流体が供給される。また、気液混合部2には、気体流入口22を介して空気などの気体が供給される。そして、気液混合部2は、供給された流体と気体とを混合して気体含有液を生成する。また、気液混合部2は、流路23を介して気体含有液処理部3と連結しており、気液混合部2が生成した気体含有液は、かかる流路23を流通して気体含有液処理部3へと供給される。
 ここで、気液混合部2は、例えば、図示しないポンプにて流体流入口21から液体を吸引すると共に、液体の流路に絞り箇所を形成して、かかる絞り箇所に気体を供給するよう構成されている。これにより、絞り箇所のベンチュリ効果を利用して、気体と流体とを混ぜ合わせ気体含有液を生成する。但し、気液混合部2は、いかなる構造であってもよく、いかなる原理で気体と流体とを混合してもよい。
 上記気体含有液処理部3は、図2の断面図に示すように、例えば、内部空間を有する略円柱形状に形成されており、かかる内部に気泡生成モジュール31を備えている。そして、気体含有液処理部3の内部空間には、気液混合部2と連結された流路23から気体含有液が流入し、かかる気体含有液が気泡生成モジュール31に流入することとなる。
 気泡生成モジュール31は、内部に空間を有する円筒形状に形成されている。そして、気泡生成モジュール31は、図2に示すように、気液混合部2から流入した気体含有液の流入側に位置する螺旋流路32と、かかる螺旋流路32に連結された突起部33と、を備えている。
 上記螺旋流路32は、螺旋状に形成された流路である。また、上記突起部33は、螺旋流路32から連続する流路であり、当該流路内に内壁面から突出する複数の突起34を備えている。
 上述したように構成された気泡生成モジュール31によると、まず、気液混合部2から気体含有液処理部3の内部に流入した気体含有液は、気泡生成モジュール31を形成する螺旋流路32に流入する。これにより、気体含有液の螺旋流が形成され、その後、突起部33に流入する。すると、突起部33内では、螺旋流となった気体含有液が、当該気体含有液内の気泡が突起34と衝突しながら流通して、気泡生成モジュール31から気泡含有液処理部3との間に形成された空間に流出する。これにより、気泡生成モジュール31内では、気体含有液内の気泡に対して衝突や圧力変動が生じ、かかる気泡が圧壊や圧縮されることで、微小気泡化される。
 このとき、本実施形態における気体含有液処理部3では、主に、いわゆるマイクロバブル及びナノバブルといった微小気泡を含有する気体含有液を生成する。特に、本実施形態では、気泡発生装置1の運転開始から所定時間までは、マイクロバブルを多く含んだ気体含有液を生成し、運転開始から所定時間が経過して気泡の圧壊や圧縮が進むと、ナノバブルを多く含んだ気体含有液を生成する。つまり、気体含有液処理部3で生成される気体含有液は、運用開始から所定時間までは、マイクロバブルを多く含んでおり、所定時間以降は、ナノバブルを多く含んでいる。なお、本実施形態では、マイクロバブルは、例えば、粒径が1μm以上1000μm未満といったマイクロサイズの微小気泡であり、ナノバブルは、例えば、粒径が1000nm未満といったマイクロサイズの微小気泡である。
 但し、気体含有液処理部3は、必ずしも上述したサイズの気泡を含有する気体含有液を生成することに限定されない。例えば、気体含有液処理部3に対する気体含有液の流入速度や、螺旋流路32の螺旋度合い、突起34の配置や数などを調整することで、マイクロバブルのみを生成する構成であってもよく、また、さらに大きなサイズの気泡を生成する構成であってもよい。
 また、図2に示すように、本実施形態における気体含有液処理部3には、それぞれ絞り部40,50を介して、2本の出力流路4,5が連結されている。絞り部40,50は、出力流路4,5よりも狭い箇所を気体含有液が通過するよう構成されており、気体含有液の流れを制限するよう構成されている。なお、絞り部40,50は、出力流路4,5を閉じる機能を有していてもよい。
 上記2本の出力流路4,5は、図3に示すように、気体含有液処理部3にて生成された気体含有液を流通させ、当該気体含有液を、それぞれの端部に設けられたノズル41,51から外部に吐出するよう構成されている。このとき、第1の出力流路4のノズル41からは、気体含有液処理部3にて生成された気体含有液がそのまま吐出される(図3の符号F1参照)。このため、気泡発生装置1の運用開始直後から所定時間までは、主にマイクロサイズのマイクロバブルを多量に含んだ気体含有液が吐出されることとなる。
 これに対して、第2の出力流路5のノズル51には、超音波振動子52が設けられている。超音波振動子52は、1つあるいは複数が、ノズル51の外周あるいは内部に設けられている。そして、超音波振動子52は、ノズル51から吐出される直前の気体含有液に超音波を印加しており、これにより、気泡含有液内の気泡が強制圧壊される。すると、気体含有液内の気泡は、超音波による強制圧壊でさらに小さいサイズとなり、主にナノサイズのナノバブルが多量に発生されることとなる。これにより、第2の出力流路5のノズル52からは、吐出直前に生成されたナノバブルを多量に含有する気体含有液が吐出されることとなる(図3の符号F2参照)。
 このように、気泡発生装置1の運転開始直後であり、気体含有液処理部3からはマイクロサイズの気泡を含有する気体含有液しか生成されていない場合であっても、第2の出力流路5からは、ナノサイズの気泡を多く含有する気体含有液を吐出することができる。このため、ナノバブルを含有する気体含有液を必要とする場合には、第2の出力流路5から出力される気体含有液を利用すればよいこととなる。
 なお、上述したように、気泡含有液処理部3において生成される気泡含有液の気泡サイズを、マイクロサイズに設定しておくこともできる。このようにすることで、第1の出力流路4のノズル41からは、常にマイクロバブルを含有した気泡含有液が吐出されることとなる。そして、第2の出力流路5のノズル51からは、超音波振動子52により、常にナノバブルを含有した気泡含有液が吐出されることとなる。従って、同時に異なる気泡サイズを含有する気泡含有液をそれぞれ吐出させることができる。なお、各出力流路4,5に連結された各絞り部40,50の絞り具合を調節することで、各出力流路4,5から吐出される気体含有液の量を調節することができ、また、いずれか一方の出力流路からのみ気体含有液を吐出させることもできる。
 ここで、上記超音波振動子52は、周波数が45kHzの超音波を気体含有液に対して印加するよう構成されることが望ましい。このように、周波数が45kHzの超音波を気体含有液に対して印加することで、気体含有液中の微小気泡からヒドロキシルラジカル(OHラジカル)を効率よく多量に発生させることができる。このように、OHラジカルを多量に発生させることにより、その反応性、酸化力を利用することができ、例えば、汚水中の汚染物質の分解除去などの用途に利用することができる。特に、本実施形態においては、第2の出力流路5の先端のノズル51に超音波振動子52を配置しているため、吐出直前にOHラジカルを発生させることができ、多量のOHラジカルを含む気体含有液を利用することができる。
 なお、周波数が45kHzの超音波を気体含有液に対して印加することでOHラジカルが増加することについては、下記の学会の講演により発表された論文に記載されている。
(参考資料)
 化学工学会第80年会 2015年3月19日(木)~21日(土)
  芝浦工業大学豊洲キャンパス
 増田七恵,村上能規
 「超音波/マイクロバブル併用プロセスで生成する活性酸素種の測定」
 (http://aura-tec.com/pdf/microbubble2015.pdfを参照)
 また、本発明における気泡発生装置1は、図4に示すように、第2の出力流路5のノズル51に設けた超音波振動子52の周波数、つまり、超音波振動子52にて発生させ気体含有液に印加する超音波の周波数、を可変制御する超音波制御部6(制御装置)を備えていてもよい。これにより、第2の出力流路5を流通してノズル51から吐出される気体含有液に、あらゆる周波数の超音波を印加することができ、特定の周波数が印加されることによって微小気泡を含有した気体含有液に生じる特別な性質や効果を利用することができる。
 なお、上記では、超音波振動子52を第2の出力流路5の先端に位置するノズル51に配置する場合を例示したが、超音波振動子52を第2の出力流路5のいかなる位置に配置してもよい。例えば、気体含有液3とノズル51との間に位置する第2の出力流路5の配管の内部あるいは外周に、超音波振動子52を配置してもよい。
 また、上記では、気体含有液処理部3から気体含有液を出力させる出力流路4,5を2本のみ装備することを記載したが、さらに多くの出力流路を設けてもよい。この場合、1本又は複数本の出力流路には超音波振動子を配置せず、他の1本又は複数本の出力流路には超音波振動子を配置してもよい。そして、複数本の出力流路に超音波振動子を配置する場合には、各超音波振動子からそれぞれ異なる周波数の超音波を発生させてもよい。これにより、1台の気泡発生装置1にて、複数種類の気泡サイズ、あるいは、複数種類の性質を有する気体含有液を出力させることができる。
 以上、上記実施形態等を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることができる。
1 気泡発生装置
2 気液混合部
21 流体流入口
22 気体流入口
23 流路
3 気体含有液処理部
31 気泡生成モジュール
32 螺旋流路
33 突起部
34 突起
4 第1の出力流路
40 絞り部
41 ノズル
5 第2の出力流路
50 絞り部
51 ノズル
52 超音波振動子
6 超音波制御部
 

Claims (6)

  1.  微小気泡を含有する気体含有液を生成する生成装置と、
     前記生成装置にて生成された気体含有液を流通させて外部に出力する複数の出力流路と、を備え、
     前記複数の出力流路のうち、少なくとも1つの出力流路を除いた他の出力流路に、気体含有液中にナノサイズの気泡を発生させるよう超音波を印加する超音波振動子を備えた、
    気泡発生装置。
  2.  請求項1に記載の気泡発生装置であって、
     前記複数の出力流路のうち、前記他の出力流路の先端に設けられたノズルに前記超音波振動子を設けた、
    気泡発生装置。
  3.  請求項1又は2に記載の気泡発生装置であって、
     前記複数の出力流路のうち、前記超音波振動子を設けた出力流路は、ナノサイズの気泡を含有する気体含有液を出力し、前記超音波振動子を設けていない出力流路は、マイクロサイズの気泡を含有する気体含有液を出力するよう構成されている、
    気泡発生装置。
  4.  請求項3に記載の気泡発生装置であって、
     前記生成装置は、気体と液体とを混合して気体含有液を生成する気液混合部と、気体含有液に衝突及び圧力変動を生じさせることにより微小気泡を含有する気体含有液を生成する気体含有液処理部と、を備え、
     前記複数の出力流路のうち、前記超音波振動子を設けた出力流路は、当該超音波振動子により前記気体含有液処理部にて生成された気体含有液中の気泡をナノサイズに圧壊して当該気体含有液を出力し、前記超音波振動子を設けていない出力流路は、前記気体含有液処理部にて生成された気体含有液をそのまま出力するよう構成されている、
    気泡発生装置。
  5.  請求項1乃至4のいずれかに記載の気泡発生装置であって、
     前記超音波振動子は、周波数が45kHzの超音波を気体含有液に対して印加するよう構成されている、
    気泡発生装置。
  6.  請求項1乃至5のいずれかに記載の気泡発生装置であって、
     前記超音波振動子の周波数を可変制御する制御装置を備えた、
    気泡発生装置。
     
PCT/JP2018/015505 2018-04-13 2018-04-13 気泡生成装置 WO2019198225A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019559849A JP6736146B2 (ja) 2018-04-13 2018-04-13 気泡生成装置
KR1020197034052A KR20190139984A (ko) 2018-04-13 2018-04-13 기포 생성 장치
PCT/JP2018/015505 WO2019198225A1 (ja) 2018-04-13 2018-04-13 気泡生成装置
TW108112136A TW201943453A (zh) 2018-04-13 2019-04-08 氣泡生成裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015505 WO2019198225A1 (ja) 2018-04-13 2018-04-13 気泡生成装置

Publications (1)

Publication Number Publication Date
WO2019198225A1 true WO2019198225A1 (ja) 2019-10-17

Family

ID=68163209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015505 WO2019198225A1 (ja) 2018-04-13 2018-04-13 気泡生成装置

Country Status (4)

Country Link
JP (1) JP6736146B2 (ja)
KR (1) KR20190139984A (ja)
TW (1) TW201943453A (ja)
WO (1) WO2019198225A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230156867A (ko) 2022-05-06 2023-11-15 중앙대학교 산학협력단 계면활성제 혼합장치와 초음파를 이용한 고농도 초미세버블 생성장치 및 생성방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102215787B1 (ko) * 2020-06-16 2021-02-16 동명대학교산학협력단 초음파를 이용한 마이크로 버블 발생장치
KR102596667B1 (ko) * 2022-10-11 2023-11-01 한울이엔텍 주식회사 나노버블 발생장치 및 이를 구비하는 정수장 및 하수처리장용 가압부상조

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289183A (ja) * 2005-04-06 2006-10-26 Nano Bubble Kk ナノバブル生成方法とその装置
JP2011218308A (ja) * 2010-04-12 2011-11-04 Asupu:Kk 気体溶解液生成装置及び生成方法
JP2013135661A (ja) * 2011-07-25 2013-07-11 Mg Grow Up:Kk 高濃度酸素処理水生成法、及び、高濃度酸素処理水、並びに、生鮮魚介類の鮮度保持処理法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4250650B2 (ja) * 2006-09-28 2009-04-08 シャープ株式会社 マイクロナノバブル浴槽水作製方法およびマイクロナノバブル浴槽

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289183A (ja) * 2005-04-06 2006-10-26 Nano Bubble Kk ナノバブル生成方法とその装置
JP2011218308A (ja) * 2010-04-12 2011-11-04 Asupu:Kk 気体溶解液生成装置及び生成方法
JP2013135661A (ja) * 2011-07-25 2013-07-11 Mg Grow Up:Kk 高濃度酸素処理水生成法、及び、高濃度酸素処理水、並びに、生鮮魚介類の鮮度保持処理法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230156867A (ko) 2022-05-06 2023-11-15 중앙대학교 산학협력단 계면활성제 혼합장치와 초음파를 이용한 고농도 초미세버블 생성장치 및 생성방법

Also Published As

Publication number Publication date
KR20190139984A (ko) 2019-12-18
TW201943453A (zh) 2019-11-16
JP6736146B2 (ja) 2020-08-05
JPWO2019198225A1 (ja) 2020-04-30

Similar Documents

Publication Publication Date Title
US10596528B2 (en) Nanobubble-producing apparatus
WO2019198225A1 (ja) 気泡生成装置
KR101937133B1 (ko) 마이크로·나노 버블의 발생 방법, 발생 노즐 및 발생 장치
US20070257381A1 (en) Cavitation generating system
JP5038600B2 (ja) 微細気泡発生装置
JP2006289183A (ja) ナノバブル生成方法とその装置
US20210001287A1 (en) Gas-dissolved water generating apparatus
KR20150040134A (ko) 미세버블 생성장치
JP2008086868A (ja) マイクロバブル発生装置
JP2014076425A (ja) 気液混合液生成装置、微細気泡水の製造方法、微細気泡液および電子機器
JP2012139646A (ja) マイクロ・ナノバブル生成装置及びマイクロ・ナノバブル水の生成装置
KR20170104351A (ko) 미세기포 발생장치
JP2007209953A (ja) 微細気泡発生システム
CN102861366A (zh) 利用超声波技术进行臭氧气液混合的创面灭菌清洗装置
KR101667492B1 (ko) 미세기포 발생장치
KR20100045422A (ko) 다단펌프를 이용한 마이크로버블 장치
KR101944684B1 (ko) 나노버블 발생장치
JP2011194390A (ja) 気液混合装置、気液混合システムおよび気液混合システムを用いた気体成分含有水の製造方法
JP6449531B2 (ja) 微細気泡発生装置
CN113351041A (zh) 直线旋流式高能超微细气泡生成器
JP7193826B2 (ja) 微細気泡発生装置
KR101241760B1 (ko) 하이브리드 미세유체를 이용한 친환경 무약품 살균시스템
JPS6148970B2 (ja)
JP2011183350A (ja) 気液混合装置
US4141939A (en) Aerator for generating fine bubbles by supersonic wave action

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019559849

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197034052

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914267

Country of ref document: EP

Kind code of ref document: A1