WO2019198225A1 - 気泡生成装置 - Google Patents
気泡生成装置 Download PDFInfo
- Publication number
- WO2019198225A1 WO2019198225A1 PCT/JP2018/015505 JP2018015505W WO2019198225A1 WO 2019198225 A1 WO2019198225 A1 WO 2019198225A1 JP 2018015505 W JP2018015505 W JP 2018015505W WO 2019198225 A1 WO2019198225 A1 WO 2019198225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- containing liquid
- output
- bubble
- generating device
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
- B01F31/80—Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F21/00—Dissolving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
Definitions
- the present invention relates to a bubble generating device, and more particularly to a bubble generating device that generates a gas-containing liquid containing minute bubbles such as microbubbles and nanobubbles.
- liquids such as water containing microbubbles of gas such as hydrogen, ozone and oxygen have been used for various purposes.
- a liquid containing microbubbles called microbubbles (for example, a particle size of 1 ⁇ m or more and less than 1000 ⁇ m) is used to remove dust attached to an object, for example. It is used as a cleaning solution.
- a liquid containing nanobubbles called nanobubbles (for example, a particle size of less than 1000 nm) has properties that are remarkably different from ordinary bubbles, and is expected to have a growth promoting effect, an antioxidant effect, a bactericidal action, and the like. It is used for cleaning agents, cosmetic liquids, drugs, beverages, preservatives, and the like.
- the generation of the gas-containing liquid containing microbubbles such as microbubbles and nanobubbles is performed by a bubble generator as shown in Patent Document 1.
- a bubble generator a gas bubble is mixed in a liquid solvent, and the bubble is further crushed and compressed to generate microbubbles and nanobubbles.
- an object of the present invention is to provide a bubble generating device that can solve the above-described problem that a gas-containing liquid containing microbubbles having a desired bubble size cannot be obtained. .
- the bubble generating device is: A generating device for generating a gas-containing liquid containing microbubbles; A plurality of output flow channels for circulating the gas-containing liquid generated in the generating device and outputting the liquid to the outside, and Among the plurality of output channels, an ultrasonic transducer that applies ultrasonic waves to generate nano-sized bubbles in the gas-containing liquid is provided in another output channel excluding at least one output channel.
- the configuration is as follows.
- the ultrasonic vibrator is provided in a nozzle provided at the tip of the other output channel.
- the configuration is as follows.
- the output channel provided with the ultrasonic transducer outputs a gas-containing liquid containing nano-sized bubbles
- the output channel not provided with the ultrasonic transducer is Configured to output a gas-containing liquid containing micro-sized bubbles
- the generating device includes a gas-liquid mixing unit that generates a gas-containing liquid by mixing a gas and a liquid, and a gas that generates a gas-containing liquid containing microbubbles by causing collision and pressure fluctuation in the gas-containing liquid.
- a containing liquid processing section Among the plurality of output channels, the output channel provided with the ultrasonic vibrator collapses the bubbles in the gas-containing liquid generated in the gas-containing liquid processing unit by the ultrasonic vibrator into a nano size. Then, the gas-containing liquid is output, and the output flow path not provided with the ultrasonic transducer is configured to output the gas-containing liquid generated in the gas-containing liquid processing unit as it is.
- the configuration is as follows.
- the ultrasonic transducer is configured to apply an ultrasonic wave having a frequency of 45 kHz to the gas-containing liquid.
- a control device for variably controlling the frequency of the ultrasonic transducer The configuration is as follows.
- the present invention is configured as described above, so that a gas-containing liquid containing micro bubbles having different bubble sizes can be output to the outside from a plurality of output channels. Therefore, a gas-containing liquid containing bubbles having a desired bubble size can be obtained depending on the application.
- FIG. 1 It is a block diagram which shows the outline of a structure of the bubble generator in this invention. It is a figure which shows an example of a structure of the gas containing liquid process part disclosed in FIG. It is a figure which shows an example of a structure of the output flow path disclosed in FIG. It is a figure which shows an example of a structure of the output flow path disclosed in FIG.
- a gas generating device 1 that generates a gas-containing liquid containing microbubbles by mixing a gas such as air and a liquid such as water and generating microbubbles in the liquid mixture. Generator
- the liquid used in the gas-containing liquid generated by the bubble generating device 1 of the present invention may be any liquid other than water, and may be an object having a predetermined viscosity such as a gel.
- the gas contained in the gas-containing liquid and made into microbubbles may be any gas such as air, hydrogen, nitrogen, oxygen, and ozone.
- the bubble generating device 1 in this embodiment includes a gas-liquid mixing unit 2 and a gas-containing liquid processing unit 3.
- the bubble generating device 1 includes two output channels 4 and 5, and gas-containing liquids are respectively supplied from nozzles 41 and 51 provided at the tips of the two output channels 4 and 5, respectively. Discharge to the outside.
- each configuration will be described in detail.
- the fluid such as water is supplied to the gas-liquid mixing unit 2 through the fluid inlet 21.
- a gas such as air is supplied to the gas-liquid mixing unit 2 through the gas inlet 22.
- the gas-liquid mixing part 2 mixes the supplied fluid and gas, and produces
- the gas-liquid mixing unit 2 is connected to the gas-containing liquid processing unit 3 through the flow path 23, and the gas-containing liquid generated by the gas-liquid mixing unit 2 flows through the flow path 23 to contain the gas. It is supplied to the liquid processing unit 3.
- the gas-liquid mixing unit 2 is configured to suck the liquid from the fluid inlet 21 with a pump (not shown), form a throttled portion in the liquid flow path, and supply gas to the throttled portion.
- a pump not shown
- the gas-containing liquid is generated by mixing the gas and the fluid using the venturi effect at the throttled portion.
- the gas-liquid mixing unit 2 may have any structure and may mix gas and fluid by any principle.
- the gas-containing liquid processing unit 3 is formed in, for example, a substantially cylindrical shape having an internal space, and includes a bubble generation module 31 in the inside.
- the gas-containing liquid flows into the internal space of the gas-containing liquid processing unit 3 from the flow path 23 connected to the gas-liquid mixing unit 2, and the gas-containing liquid flows into the bubble generation module 31.
- the bubble generation module 31 is formed in a cylindrical shape having a space inside. As shown in FIG. 2, the bubble generation module 31 includes a spiral channel 32 positioned on the inflow side of the gas-containing liquid that has flowed in from the gas-liquid mixing unit 2, and a protrusion 33 connected to the spiral channel 32. And.
- the spiral channel 32 is a channel formed in a spiral shape.
- the protrusion 33 is a flow path that continues from the spiral flow path 32, and includes a plurality of protrusions 34 that protrude from the inner wall surface in the flow path.
- the bubble generation module 31 configured as described above, first, the gas-containing liquid that has flowed into the gas-containing liquid processing unit 3 from the gas-liquid mixing unit 2 enters the spiral flow path 32 that forms the bubble generation module 31. Inflow. Thereby, a spiral flow of the gas-containing liquid is formed and then flows into the protrusion 33. Then, in the protrusion 33, the gas-containing liquid in a spiral flow circulates while the bubbles in the gas-containing liquid collide with the protrusion 34, and between the bubble generation module 31 and the bubble-containing liquid processing unit 3. It flows out into the space formed. Thereby, in the bubble production
- the gas-containing liquid processing unit 3 in the present embodiment mainly generates a gas-containing liquid containing microbubbles such as so-called microbubbles and nanobubbles.
- a gas-containing liquid containing a large amount of microbubbles is generated from the start of operation of the bubble generating device 1 to a predetermined time, and when the predetermined time elapses from the start of operation and the bubbles are crushed or compressed.
- a gas-containing liquid containing a large amount of nanobubbles is generated. That is, the gas-containing liquid generated in the gas-containing liquid processing unit 3 contains a lot of microbubbles from the start of operation until a predetermined time, and contains a lot of nanobubbles after the predetermined time.
- microbubbles are micro-sized microbubbles having a particle size of, for example, 1 ⁇ m or more and less than 1000 ⁇ m
- nanobubbles are micro-sized microbubbles having a particle size of, for example, less than 1000 nm.
- the gas-containing liquid processing unit 3 is not necessarily limited to generating a gas-containing liquid containing bubbles of the size described above.
- the configuration may be such that only the microbubbles are generated by adjusting the flow rate of the gas-containing liquid into the gas-containing liquid processing unit 3, the degree of spiral of the spiral flow path 32, the arrangement and number of the protrusions 34, and the like.
- generates the bubble of a bigger size may be sufficient.
- two output flow paths 4 and 5 are connected to the gas-containing liquid processing section 3 in the present embodiment via throttle sections 40 and 50, respectively.
- the throttle portions 40 and 50 are configured so that the gas-containing liquid passes through a portion narrower than the output flow paths 4 and 5, and are configured to limit the flow of the gas-containing liquid.
- the throttle portions 40 and 50 may have a function of closing the output flow paths 4 and 5.
- the two output channels 4 and 5 circulate the gas-containing liquid generated in the gas-containing liquid processing unit 3, and the gas-containing liquid is provided at each end.
- the nozzles 41 and 51 are configured to discharge to the outside.
- generated in the gas-containing liquid process part 3 is discharged as it is from the nozzle 41 of the 1st output flow path 4 (refer code
- a gas-containing liquid mainly containing a large amount of micro-sized microbubbles is discharged from the start of operation of the bubble generating device 1 to a predetermined time.
- the ultrasonic vibrator 52 is provided in the nozzle 51 of the second output flow path 5.
- One or a plurality of ultrasonic transducers 52 are provided on the outer periphery or inside of the nozzle 51.
- vibrator 52 has applied the ultrasonic wave to the gas containing liquid just before discharging from the nozzle 51, and, thereby, the bubble in a bubble containing liquid is forcedly crushed. Then, the bubbles in the gas-containing liquid are further reduced in size by forced crushing by ultrasonic waves, and a large amount of nano-sized nano bubbles are mainly generated.
- a gas-containing liquid containing a large amount of nanobubbles generated immediately before the discharge is discharged from the nozzle 52 of the second output flow path 5 (see reference numeral F2 in FIG. 3).
- the second output flow path From 5 it is possible to discharge a gas-containing liquid containing a large amount of nano-sized bubbles. For this reason, when the gas containing liquid containing nanobubble is required, the gas containing liquid output from the 2nd output flow path 5 should just be utilized.
- the bubble size of the bubble-containing liquid generated in the bubble-containing liquid processing unit 3 can be set to a micro size.
- the bubble-containing liquid containing microbubbles is always discharged from the nozzle 41 of the first output flow path 4.
- the bubble-containing liquid always containing nanobubbles is discharged from the nozzle 51 of the second output flow path 5 by the ultrasonic vibrator 52. Accordingly, it is possible to simultaneously discharge bubble-containing liquids containing different bubble sizes.
- the amount of the gas-containing liquid discharged from each output channel 4, 5 can be adjusted by adjusting the degree of throttling of each throttle unit 40, 50 connected to each output channel 4, 5.
- the gas-containing liquid can be discharged only from any one of the output flow paths.
- the ultrasonic vibrator 52 is preferably configured to apply an ultrasonic wave having a frequency of 45 kHz to the gas-containing liquid.
- an ultrasonic wave having a frequency of 45 kHz to the gas-containing liquid, a large amount of hydroxyl radicals (OH radicals) can be efficiently generated from the microbubbles in the gas-containing liquid.
- OH radicals hydroxyl radicals
- the reactivity and oxidizing power can be used, and for example, it can be used for applications such as decomposition and removal of pollutants in sewage.
- the ultrasonic vibrator 52 is disposed in the nozzle 51 at the tip of the second output flow path 5
- OH radicals can be generated immediately before discharge, and a large amount of OH radicals are generated.
- a gas-containing liquid can be used.
- the bubble generator 1 is generated by the frequency of the ultrasonic vibrator 52 provided in the nozzle 51 of the second output flow path 5, that is, the ultrasonic vibrator 52.
- the ultrasonic control part 6 control apparatus which variably controls the frequency of the ultrasonic wave applied to a gas containing liquid.
- ultrasonic waves of all frequencies can be applied to the gas-containing liquid that flows through the second output flow path 5 and is discharged from the nozzle 51, and contains microbubbles by applying a specific frequency. Special properties and effects generated in the gas-containing liquid can be used.
- the ultrasonic transducer 52 is arranged in the nozzle 51 positioned at the tip of the second output flow path 5 .
- the ultrasonic transducer 52 is positioned at any position in the second output flow path 5. You may arrange in.
- the ultrasonic transducer 52 may be disposed inside or on the outer periphery of the pipe of the second output flow path 5 located between the gas-containing liquid 3 and the nozzle 51.
- an ultrasonic transducer may not be disposed in one or a plurality of output channels, and an ultrasonic transducer may be disposed in the other one or a plurality of output channels.
- ultrasonic transducers When ultrasonic transducers are arranged in a plurality of output channels, ultrasonic waves having different frequencies may be generated from the ultrasonic transducers.
- a single bubble generator 1 can output a plurality of types of bubble sizes or gas-containing liquids having a plurality of types of properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
Abstract
Description
微小気泡を含有する気体含有液を生成する生成装置と、
前記生成装置にて生成された気体含有液を流通させて外部に出力する複数の出力流路と、を備え、
前記複数の出力流路のうち、少なくとも1つの出力流路を除いた他の出力流路に、気体含有液中にナノサイズの気泡を発生させるよう超音波を印加する超音波振動子を備えた、
という構成をとる。
前記複数の出力流路のうち、前記他の出力流路の先端に設けられたノズルに前記超音波振動子を設けた、
という構成をとる。
前記複数の出力流路のうち、前記超音波振動子を設けた出力流路は、ナノサイズの気泡を含有する気体含有液を出力し、前記超音波振動子を設けていない出力流路は、マイクロサイズの気泡を含有する気体含有液を出力するよう構成されている、
という構成をとる。
前記生成装置は、気体と液体とを混合して気体含有液を生成する気液混合部と、気体含有液に衝突及び圧力変動を生じさせることにより微小気泡を含有する気体含有液を生成する気体含有液処理部と、を備え、
前記複数の出力流路のうち、前記超音波振動子を設けた出力流路は、当該超音波振動子により前記気体含有液処理部にて生成された気体含有液中の気泡をナノサイズに圧壊して当該気体含有液を出力し、前記超音波振動子を設けていない出力流路は、前記気体含有液処理部にて生成された気体含有液をそのまま出力するよう構成されている、
という構成をとる。
前記超音波振動子は、周波数が45kHzの超音波を気体含有液に対して印加するよう構成されている。
前記超音波振動子の周波数を可変制御する制御装置を備えた、
という構成をとる。
本発明の第1の実施形態を、図1乃至図4を参照して説明する。本実施形態では、空気などの気体と、水などの液体と、を混合し、かかる混合液中に微小気泡を発生させることで、微小気泡を含有した気体含有液を生成する気泡生成装置1(生成装置)について説明する。但し、本発明の気泡生成装置1で生成する気体含有液で使用される液体は、水以外のいかなる液体でもよく、ゲル状など所定の粘性を有する物体であってもよい。また、気体含有液に含有され微小気泡化される気体は、空気、水素、窒素、酸素、オゾンなど、いかなる気体であってもよい。
(参考資料)
化学工学会第80年会 2015年3月19日(木)~21日(土)
芝浦工業大学豊洲キャンパス
増田七恵,村上能規
「超音波/マイクロバブル併用プロセスで生成する活性酸素種の測定」
(http://aura-tec.com/pdf/microbubble2015.pdfを参照)
2 気液混合部
21 流体流入口
22 気体流入口
23 流路
3 気体含有液処理部
31 気泡生成モジュール
32 螺旋流路
33 突起部
34 突起
4 第1の出力流路
40 絞り部
41 ノズル
5 第2の出力流路
50 絞り部
51 ノズル
52 超音波振動子
6 超音波制御部
Claims (6)
- 微小気泡を含有する気体含有液を生成する生成装置と、
前記生成装置にて生成された気体含有液を流通させて外部に出力する複数の出力流路と、を備え、
前記複数の出力流路のうち、少なくとも1つの出力流路を除いた他の出力流路に、気体含有液中にナノサイズの気泡を発生させるよう超音波を印加する超音波振動子を備えた、
気泡発生装置。 - 請求項1に記載の気泡発生装置であって、
前記複数の出力流路のうち、前記他の出力流路の先端に設けられたノズルに前記超音波振動子を設けた、
気泡発生装置。 - 請求項1又は2に記載の気泡発生装置であって、
前記複数の出力流路のうち、前記超音波振動子を設けた出力流路は、ナノサイズの気泡を含有する気体含有液を出力し、前記超音波振動子を設けていない出力流路は、マイクロサイズの気泡を含有する気体含有液を出力するよう構成されている、
気泡発生装置。 - 請求項3に記載の気泡発生装置であって、
前記生成装置は、気体と液体とを混合して気体含有液を生成する気液混合部と、気体含有液に衝突及び圧力変動を生じさせることにより微小気泡を含有する気体含有液を生成する気体含有液処理部と、を備え、
前記複数の出力流路のうち、前記超音波振動子を設けた出力流路は、当該超音波振動子により前記気体含有液処理部にて生成された気体含有液中の気泡をナノサイズに圧壊して当該気体含有液を出力し、前記超音波振動子を設けていない出力流路は、前記気体含有液処理部にて生成された気体含有液をそのまま出力するよう構成されている、
気泡発生装置。 - 請求項1乃至4のいずれかに記載の気泡発生装置であって、
前記超音波振動子は、周波数が45kHzの超音波を気体含有液に対して印加するよう構成されている、
気泡発生装置。 - 請求項1乃至5のいずれかに記載の気泡発生装置であって、
前記超音波振動子の周波数を可変制御する制御装置を備えた、
気泡発生装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019559849A JP6736146B2 (ja) | 2018-04-13 | 2018-04-13 | 気泡生成装置 |
KR1020197034052A KR20190139984A (ko) | 2018-04-13 | 2018-04-13 | 기포 생성 장치 |
PCT/JP2018/015505 WO2019198225A1 (ja) | 2018-04-13 | 2018-04-13 | 気泡生成装置 |
TW108112136A TW201943453A (zh) | 2018-04-13 | 2019-04-08 | 氣泡生成裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/015505 WO2019198225A1 (ja) | 2018-04-13 | 2018-04-13 | 気泡生成装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019198225A1 true WO2019198225A1 (ja) | 2019-10-17 |
Family
ID=68163209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015505 WO2019198225A1 (ja) | 2018-04-13 | 2018-04-13 | 気泡生成装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6736146B2 (ja) |
KR (1) | KR20190139984A (ja) |
TW (1) | TW201943453A (ja) |
WO (1) | WO2019198225A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230156867A (ko) | 2022-05-06 | 2023-11-15 | 중앙대학교 산학협력단 | 계면활성제 혼합장치와 초음파를 이용한 고농도 초미세버블 생성장치 및 생성방법 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102215787B1 (ko) * | 2020-06-16 | 2021-02-16 | 동명대학교산학협력단 | 초음파를 이용한 마이크로 버블 발생장치 |
KR102596667B1 (ko) * | 2022-10-11 | 2023-11-01 | 한울이엔텍 주식회사 | 나노버블 발생장치 및 이를 구비하는 정수장 및 하수처리장용 가압부상조 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006289183A (ja) * | 2005-04-06 | 2006-10-26 | Nano Bubble Kk | ナノバブル生成方法とその装置 |
JP2011218308A (ja) * | 2010-04-12 | 2011-11-04 | Asupu:Kk | 気体溶解液生成装置及び生成方法 |
JP2013135661A (ja) * | 2011-07-25 | 2013-07-11 | Mg Grow Up:Kk | 高濃度酸素処理水生成法、及び、高濃度酸素処理水、並びに、生鮮魚介類の鮮度保持処理法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4250650B2 (ja) * | 2006-09-28 | 2009-04-08 | シャープ株式会社 | マイクロナノバブル浴槽水作製方法およびマイクロナノバブル浴槽 |
-
2018
- 2018-04-13 KR KR1020197034052A patent/KR20190139984A/ko not_active Application Discontinuation
- 2018-04-13 JP JP2019559849A patent/JP6736146B2/ja not_active Expired - Fee Related
- 2018-04-13 WO PCT/JP2018/015505 patent/WO2019198225A1/ja active Application Filing
-
2019
- 2019-04-08 TW TW108112136A patent/TW201943453A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006289183A (ja) * | 2005-04-06 | 2006-10-26 | Nano Bubble Kk | ナノバブル生成方法とその装置 |
JP2011218308A (ja) * | 2010-04-12 | 2011-11-04 | Asupu:Kk | 気体溶解液生成装置及び生成方法 |
JP2013135661A (ja) * | 2011-07-25 | 2013-07-11 | Mg Grow Up:Kk | 高濃度酸素処理水生成法、及び、高濃度酸素処理水、並びに、生鮮魚介類の鮮度保持処理法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230156867A (ko) | 2022-05-06 | 2023-11-15 | 중앙대학교 산학협력단 | 계면활성제 혼합장치와 초음파를 이용한 고농도 초미세버블 생성장치 및 생성방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20190139984A (ko) | 2019-12-18 |
TW201943453A (zh) | 2019-11-16 |
JP6736146B2 (ja) | 2020-08-05 |
JPWO2019198225A1 (ja) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10596528B2 (en) | Nanobubble-producing apparatus | |
WO2019198225A1 (ja) | 気泡生成装置 | |
KR101937133B1 (ko) | 마이크로·나노 버블의 발생 방법, 발생 노즐 및 발생 장치 | |
US20070257381A1 (en) | Cavitation generating system | |
JP5038600B2 (ja) | 微細気泡発生装置 | |
JP2006289183A (ja) | ナノバブル生成方法とその装置 | |
US20210001287A1 (en) | Gas-dissolved water generating apparatus | |
KR20150040134A (ko) | 미세버블 생성장치 | |
JP2008086868A (ja) | マイクロバブル発生装置 | |
JP2014076425A (ja) | 気液混合液生成装置、微細気泡水の製造方法、微細気泡液および電子機器 | |
JP2012139646A (ja) | マイクロ・ナノバブル生成装置及びマイクロ・ナノバブル水の生成装置 | |
KR20170104351A (ko) | 미세기포 발생장치 | |
JP2007209953A (ja) | 微細気泡発生システム | |
CN102861366A (zh) | 利用超声波技术进行臭氧气液混合的创面灭菌清洗装置 | |
KR101667492B1 (ko) | 미세기포 발생장치 | |
KR20100045422A (ko) | 다단펌프를 이용한 마이크로버블 장치 | |
KR101944684B1 (ko) | 나노버블 발생장치 | |
JP2011194390A (ja) | 気液混合装置、気液混合システムおよび気液混合システムを用いた気体成分含有水の製造方法 | |
JP6449531B2 (ja) | 微細気泡発生装置 | |
CN113351041A (zh) | 直线旋流式高能超微细气泡生成器 | |
JP7193826B2 (ja) | 微細気泡発生装置 | |
KR101241760B1 (ko) | 하이브리드 미세유체를 이용한 친환경 무약품 살균시스템 | |
JPS6148970B2 (ja) | ||
JP2011183350A (ja) | 気液混合装置 | |
US4141939A (en) | Aerator for generating fine bubbles by supersonic wave action |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019559849 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197034052 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18914267 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18914267 Country of ref document: EP Kind code of ref document: A1 |