WO2019197896A1 - Electro-optical package and method of fabrication - Google Patents

Electro-optical package and method of fabrication Download PDF

Info

Publication number
WO2019197896A1
WO2019197896A1 PCT/IB2019/000382 IB2019000382W WO2019197896A1 WO 2019197896 A1 WO2019197896 A1 WO 2019197896A1 IB 2019000382 W IB2019000382 W IB 2019000382W WO 2019197896 A1 WO2019197896 A1 WO 2019197896A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
integrated circuit
chip
redistribution layer
electro
Prior art date
Application number
PCT/IB2019/000382
Other languages
French (fr)
Inventor
Vivek Raghunathan
Vivek Raghuraman
Karlheinz Muth
David Arlo NELSON
Chia-Te Chou
Brett Michael Dunn SAWYER
Seungjae Lee
Original Assignee
Rockley Photonics Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockley Photonics Limited filed Critical Rockley Photonics Limited
Priority to GB2017774.7A priority Critical patent/GB2587961B/en
Priority to CN201980038846.5A priority patent/CN112368621B/en
Publication of WO2019197896A1 publication Critical patent/WO2019197896A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers

Definitions

  • One or more aspects of embodiments according to the present disclosure relate to packages, and more particularly to an electro-optical package and a method for fabricating such a package.
  • a system including: a first electro-optical chip coupled to an array of optical fibers; and a first physical medium dependent integrated circuit coupled to the first electro-optical chip.
  • the system further includes a first redistribution layer and a second redistribution layer, parallel to the first redistribution layer, the first physical medium dependent integrated circuit being between the first
  • redistribution layer and the second redistribution layer a first via core between the first redistribution layer and the second redistribution layer; a first optical interposer chip coupled to the array of optical fibers, the first electro-optical chip being coupled to the array of optical fibers through the first optical interposer chip; a first array of conductors secured to the first redistribution layer and to the first optical interposer chip; and a second array of conductors on an outer surface of the second
  • the first physical medium dependent integrated circuit and the first via core are part of a single silicon integrated circuit.
  • the system further includes an overmold between the first redistribution layer and the second redistribution layer, the overmold encapsulating the first physical medium dependent integrated circuit and the first via core.
  • the first optical interposer chip includes an array of V-grooves, each optical fiber of the array of optical fibers being in a respective V- groove.
  • the system further includes an organic substrate having, on its surface, a plurality of conductive pads, and a socket, between the second array of conductors and the conductive pads.
  • the socket includes an insulating layer of elastomer and a plurality of conductors extending through the insulating layer of elastomer.
  • the first electro-optical chip includes a modulator, the system further including: a second electro-optical chip including a photodetector; and a second physical medium dependent integrated circuit coupled to the second electro-optical chip.
  • the system includes an organic substrate and a socket, between the second array of conductors and the conductive pads; a conductive path between the first physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the socket; and a conductive path between the second physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the socket.
  • the second electro-optical chip is coupled to the array of optical fibers through the first optical interposer chip.
  • a conductive path between the first physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the first via core; and a conductive path between the second physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the first via core.
  • the system further includes a second optical interposer chip, wherein the second electro-optical chip is coupled to the array of optical fibers through the second optical interposer chip.
  • the system further includes a second via core, wherein: a conductive path between the first physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the first via core; and a conductive path between the second physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the second via core.
  • a conductive path extending from the first electro- optical chip to the first physical medium dependent integrated circuit has a length of less than 500 microns.
  • the conductive path extending from the first electro-optical chip to the first physical medium dependent integrated circuit has a length of less than 350 microns.
  • a method for fabricating a package including: forming a first redistribution layer on a carrier wafer; attaching a via core to the first redistribution layer; attaching a physical medium dependent integrated circuit to the first
  • redistribution layer molding an overmold onto the via core and onto the physical medium dependent integrated circuit; grinding an upper surface of the overmold; and forming a second redistribution layer on the upper surface of the overmold.
  • the method further includes: removing, from the carrier wafer, an intermediate product including: the first redistribution layer the via core the physical medium dependent integrated circuit the overmold; and the second redistribution layer.
  • the method further includes forming a plurality of conductive pillars on the second redistribution layer.
  • the method further includes attaching an electro- optical chip to an optical interposer chip including a plurality of conductive traces, and a plurality of V-grooves.
  • the method further includes attaching, to the optical interposer chip, an intermediate product including: the first redistribution layer; the via core; the physical medium dependent integrated circuit; the overmold; and the second redistribution layer, so as to form a conductive path through a trace of the plurality of conductive traces, from the physical medium dependent integrated circuit to the electro-optical chip.
  • the method further includes securing an optical fiber in one of the plurality of V-grooves.
  • FIG. 1 is a side cross-sectional view of a fan out wafer level package, according to an embodiment of the present disclosure
  • FIG. 2A is a top cross-sectional view of a package on chip structure, according to an embodiment of the present disclosure
  • FIG. 2B is a side cross-sectional view of a package on chip structure, according to an embodiment of the present disclosure
  • FIG. 2C is a side cross-sectional view of a portion of a system including a package on chip structure, according to an embodiment of the present disclosure
  • FIG. 3 is a side cross-sectional view of a portion of a system including a package on chip structure, according to an embodiment of the present disclosure
  • FIG. 4A is a top view of a portion of a system including a package on chip structure, according to an embodiment of the present disclosure
  • FIG. 4B is a top view of a portion of a system including a package on chip structure, according to an embodiment of the present disclosure
  • FIG. 4C is a top view of a portion of a system including a package on chip structure, according to an embodiment of the present disclosure
  • FIG. 5A is flow chart of a method for fabricating a package, according to an embodiment of the present disclosure
  • FIG. 5B is flow chart of a method for fabricating a package, according to an embodiment of the present disclosure.
  • FIG. 6A is a perspective view of a system including a package on chip structure, according to an embodiment of the present disclosure
  • FIG. 6B is a top view of a system including a package on chip structure, according to an embodiment of the present disclosure
  • FIG. 7A is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure
  • FIG. 7B is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure
  • FIG. 7C is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure.
  • FIG. 7D is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure.
  • FIG. 7E is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure
  • FIG. 7F is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure
  • FIG. 7G is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure.
  • FIG. 7H is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure.
  • FIG. 7I is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure.
  • FIG. 1 shows a fan out wafer level package according to some
  • the fan out wafer level package includes (i) a physical medium dependent (PMD) application-specific integrated circuit (ASIC) 105, and a via core 110, sandwiched between two redistribution layers (RDLs), an upper RDL 115 and a lower RDL 120, (ii) an interconnect 125, which may be used as a first level interconnect or as a second level interconnect, on the upper RDL 115, and (iii) a plurality of copper pillars with solder cap 130, for first level interconnection, on the lower surface of the lower RDL 120.
  • a ball grid array or a socket may be used as a second level interconnect on the upper RDL 115.
  • the interconnect 125 on the upper RDL 115 is another plurality of copper pillars with solder cap, and may be suitable for use as a first level interconnect.
  • the via core 110 may include an array of relatively tall (e.g., 150 micron - 200 micron tall) copper pillars or copper vias (e.g., a square array on a 350 micron pitch) in a dielectric such as epoxy (or“mold”), copper clad FR4, glass, or silicon.
  • the PMD ASIC 105 and the via core 110 may be part of a single silicon integrated circuit (e.g., they may be fabricated in or on a single silicon substrate) (which may be referred to as a silicon interposer with active circuits).
  • Each RDL 115, 120 may consist of a layer of polyimide with conductive traces and conductive vias; each RDL 115, 120 may in turn include a plurality of layers, i.e. , it may include one or more RDLs.
  • Each of the upper RDL 115 and the lower RDL 120 may be a composite RDL including up to four single-layer RDLs (a single layer RDL having one insulating layer, and possibly having (i) conductive traces on or both of its surfaces and (ii) conductive vias through the insulating layer).
  • the PMD ASIC 105 may have electrical connections on its“front surface” or lower surface (in the orientation of FIG. 1 ), i.e., on the surface in contact with the lower RDL 120.
  • An overmold 135 e.g., an epoxy overmold
  • FIGs. 2A and 2B show a“package on chip” structure according to some embodiments.
  • the package on chip structure includes a fan out wafer level package and a photonic integrated circuit (PIC), which in turn includes an optical interposer 210, a fiber lid 215, and an electro-optical chip 220.
  • PIC photonic integrated circuit
  • the electro-optical chip 220 may include a modulator array (e.g., an array of electro-absorption modulators (EAMs) as shown) and/or laser arrays (in which case the photonic integrated circuit may be referred to as a“transmitter PIC” or“TX PIC”) or a photodetector array (in which case the photonic integrated circuit may be referred to as a“receiver PIC” or“RX PIC”), or both modulators (and/or lasers) and photodectors.
  • a modulator array e.g., an array of electro-absorption modulators (EAMs) as shown
  • laser arrays in which case the photonic integrated circuit may be referred to as a“transmitter PIC” or“TX PIC”
  • a photodetector array in which case the photonic integrated circuit may be referred to as a“receiver PIC” or“RX PIC”
  • the optical interposer 210 may include an array of V-grooves for aligning a plurality of optical fibers secured in place by the fiber lid 215 (and secured in place with epoxy, which may also secure the fiber lid 215), an array of mode converters (e.g., tapered waveguides), and a cavity for the electro-optical chip and/or laser chip.
  • Light travelling in either direction may be coupled between first waveguides on the optical interposer 210 and second waveguides on the electro-optical chip 220; one end of each first waveguide may be sufficiently close to, and sufficiently well aligned and mode matched with, the corresponding end of a second waveguide for light to couple between the waveguides with minimum loss.
  • the PMD ASIC 105 may include an array of transimpedance amplifiers for amplifying the signals from the photodetectors; if the electro-optical chip 220 includes a modulator array, the PMD ASIC 105 may include an array of modulator drive circuits.
  • the electro-optical chip 220 includes a photodetector array
  • light arrives on the optical fibers, is coupled into the mode converters, propagates to the photodetector array and is converted to electrical signals, which are amplified by the PMD ASIC 105.
  • the electro-optical chip includes a modulator array
  • FIG. 2C shows the package on chip structure connected to an organic package or printed circuit board 225 through a socket 230 as described in further detail below.
  • the package on chip structure can be used for in-package integration of a switch and optics.
  • FIG. 3 shows a system including the package on chip structure, connected to an organic package 225 (e.g., to a plurality of conductive pads on an upper surface of an organic substrate of the organic package 225), through a socket 230.
  • the socket 230 may include an insulating layer of elastomer and a plurality of conductors extending through the layer of elastomer.
  • the socket 230 may be, for example, any of several varieties of conductor-in-elastomer sockets available from Ironwood Electronics (ironwoodelectronics.com).
  • no socket 230 is used, and the package on chip structure is instead connected to the organic package 225 by a reflow process.
  • a switch ASIC 305 or“main” ASIC, which may be a CMOS ASIC providing packet switching functions.
  • the organic package may include, instead of, or in addition to, the switch ASIC, one or more GPUs, FPGAs, or other integrated digital circuits.
  • the switch ASIC 305 is connected directly to the organic package 225 as shown; in other embodiments it is connected directly to a high density package (e.g., it is packaged in a high density package) which is in turn connected to the organic package.
  • a PFIY circuit may be part of the switch ASIC 305, or it may be implemented in a separate PHY chip.
  • the interface between the switch ASIC 305 and each PMD ASIC 105 may be a high-speed serial interface, in which case the switch ASIC 305 may include a plurality of
  • serializer/deserializer circuits or the interface may be a parallel interface, in which case the circuits in the switch ASIC 305 for interfacing to each PMD ASIC 105 may be retiming circuits, or it may be the case that no additional circuits are needed in the switch ASIC 305 for interfacing to each PMD ASIC 105.
  • One or more integrated heat spreaders (IHS) 310 may provide thermal management (i) for the optical interposer 210, and (ii) through the optical interposer 210 and the array of short copper pillars with solder cap 130, for the PMD ASIC 105.
  • the stack consisting of (i) the IHS 310 on the optical interposer, (ii) the fan out wafer level package, and (iii) the socket 230 may be secured to the organic package 225 by mechanical means such as a suitable clamp.
  • the electrical path from the PMD ASIC 105 to the electro-optical chip 220 may be a short path (e.g., a path shorter than 500 microns or shorter than 300 microns) from the front surface of the PMD ASIC 105, through the lower RDL 120 (which is adjacent to the front surface of the PMD ASIC 105), through the short copper pillars with solder cap 130, and through a short conductive trace on the optical interposer 210, which may be connected to the electro-optical chip 220 by eutectic bonds.
  • a short path e.g., a path shorter than 500 microns or shorter than 300 microns
  • Heat may flow from the PMD ASIC 105 upward through the lower RDL 120, through the array of short copper pillars with solder cap 130, and through the optical interposer 210, to the IHS 310 on the optical interposer.
  • Electrical connections between the switch ASIC 305 (or the PHY chip if present) and the package on chip structure may be formed by conductive traces in the organic package 225 and the conductors extending through the layer of elastomer within the socket 230.
  • high speed serial links between the switch ASIC 305 (or the PHY chip if present) and the PMD ASIC 105 may extend from the switch ASIC 305 (or the PHY chip if present) through traces in or on the organic package 225, through the socket 230, through the interconnect 125, through the layers of the an upper RDL 115, through the copper pillars with solder cap 130, through the lower RDL 120, and into the PMD ASIC 105.
  • the total length of such connections may be scalable (e.g., by moving the package on chip structures nearer the switch ASIC 305, to the extent that there is sufficient clearance between the package on chip structures, and that heat dissipated by the switch ASIC does not degrade the performance of the package on chip structures to an unacceptable extent) to, for example, ultra short reach (USR), very short reach (VSR) or extra short reach (XSR) requirements.
  • USR ultra short reach
  • VSR very short reach
  • XSR extra short reach
  • FIG. 4A shows a system, according to one embodiment (which may be referred to as Light driver 1 (LD1 ), Option 1 ), in which separate receiver and transmitter package on chip structures are connected to the organic package 225, e.g., through a shared socket 230.
  • LD1 Light driver 1
  • Option 1 separate receiver and transmitter package on chip structures are connected to the organic package 225, e.g., through a shared socket 230.
  • the optical interposer 210 and the lower RDL 120 are drawn transparent so that the relative positions of parts below these elements may be seen.
  • Alignment pins 405 may be used to maintain alignment between the package on chip structures and the organic package 225 or between the socket 230 and the organic package 225.
  • FIG. 4A shows a system, according to one embodiment (which may be referred to as Light driver 1 (LD1 ), Option 1 ), in which separate receiver and transmitter package on chip structures are connected to the organic package 225, e.g., through a shared socket 230.
  • the separate receiver and transmitter package on chip structures may be separately tested before being installed on the socket 230.
  • FIG. 4B shows a system, according to one embodiment (which may be referred to as Light driver 1 (LD1 ), Option 2), in which a single package on chip structure, that includes separate receiver (photodetector (“PD”)) and transmitter (modulator (“Mod”)) electro-optical chips which share an optical interposer 210 and a via core 110, is connected to the switch ASIC 305 through a socket 230.
  • FIG. 4C shows a system, according to one embodiment (which may be referred to as Light driver 2), differing from that of FIG. 4B in that the PHY circuits 410 (a transmit PHY circuit (“Tx Phy”) and a receive PHY circuit (“Rx Phy”)) are integrated into the package on chip structure.
  • the embodiments of FIGs. 4B and 4C may have the advantage, over the embodiment of FIG. 4A, of having lower fabrication cost; the embodiment of FIG. 4A may have the advantage of enabling independent
  • FIG. 5A shows a method, according to some embodiments, for fabricating a package on chip structure, or“light driver”.
  • FIG. 5B shows a system integration method, according to some embodiments.
  • FIGs. 6A and 6B show an integrated system, according to some embodiments including co-packaged switch ASIC 305 and package on chip structures for up to 51.2 Tb/s operation.
  • FIGs. 7A - 7I show a method for fabricating a fan out wafer level package, securing it to a subassembly including an optical interposer and an electro-optical chip, and attaching optical fibers, according to some embodiments.
  • the lower RDL 120 is formed (e.g., by spin coating) on a carrier wafer (FIGs. 7A and 7B), the via core 110 and PMD ASIC 105 are attached to the lower RDL 120 (FIG. 7C), the overmold 135 is molded onto the intermediate product and ground flat (FIG.
  • the an upper RDL 115 is formed on the upper surface of the overmold 135 and the intermediate product is detaped from the carrier wafer and the intermediate product is inverted (or“flipped”) (FIG. 7E). Copper pillars with solder cap 130 are formed (FIG. 7F), the intermediate product is inverted again and attached to the PIC in a “package on chip attach” operation (FIG. 7G), the interconnect 125 (e.g., balls forming a ball grid array) is formed (FIG. 7H), and optical fibers are placed in the V- grooves (e.g., passively aligned to the optical interposer 210) and the fiber lid 215 is secured in place (FIG. 7I).
  • the interconnect 125 e.g., balls forming a ball grid array
  • spatially relative terms such as“beneath”,“below”,“lower”,“under”, “above”,“upper” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that such spatially relative terms are intended to encompass different orientations of the device in use or in operation, in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as“below” or“beneath” or“under” other elements or features would then be oriented“above” the other elements or features. Thus, the example terms“below” and“under” can encompass both an orientation of above and below.
  • the device may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein should be interpreted accordingly.
  • a layer is referred to as being“between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
  • any numerical range recited herein is intended to include all sub-ranges of the same numerical precision subsumed within the recited range.
  • a range of "1.0 to 10.0" is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6.
  • Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An electro-optical package. In some embodiments, the electro-optical package includes a first electro-optical chip coupled to an array of optical fibers, and a first physical medium dependent integrated circuit coupled to the first electro-optical chip.

Description

ELECTRO-OPTICAL PACKAGE AND METHOD OF FABRICATION
CROSS-REFERENCE TO RELATED APPLICATION(S)
[0001] The present application claims priority to and the benefit of U.S.
Provisional Application No. 62/656,757, filed April 12, 2018, entitled "PACKAGING OF OPTICAL AND ELECTRONIC COMPONENTS", and claims priority to and the benefit of U.S. Provisional Application No. 62/829,519, filed April 4, 2019, entitled "OPTICAL ENGINE", the entire contents of both of which are incorporated herein by reference.
FIELD
[0002] One or more aspects of embodiments according to the present disclosure relate to packages, and more particularly to an electro-optical package and a method for fabricating such a package.
BACKGROUND
[0003] Systems combining electronic circuits with electro-optic systems for modulating light, detecting modulated light, and interfacing to optical fibers have a wide range of applications. In the design of such systems, achieving compactness and low cost may be challenging for various reasons, including the need for alignment between optical elements, thermal management, and, in some
applications, requirements for high-speed operation.
[0004] Thus, there is a need for an improved electro-optical package and a method for fabricating such a package.
SUMMARY
[0005] According to some embodiments of the present invention, there is provided a system, including: a first electro-optical chip coupled to an array of optical fibers; and a first physical medium dependent integrated circuit coupled to the first electro-optical chip.
[0006] In some embodiments, the system further includes a first redistribution layer and a second redistribution layer, parallel to the first redistribution layer, the first physical medium dependent integrated circuit being between the first
redistribution layer and the second redistribution layer; a first via core between the first redistribution layer and the second redistribution layer; a first optical interposer chip coupled to the array of optical fibers, the first electro-optical chip being coupled to the array of optical fibers through the first optical interposer chip; a first array of conductors secured to the first redistribution layer and to the first optical interposer chip; and a second array of conductors on an outer surface of the second
redistribution layer.
[0007] In some embodiments, the first physical medium dependent integrated circuit and the first via core are part of a single silicon integrated circuit.
[0008] In some embodiments, the system further includes an overmold between the first redistribution layer and the second redistribution layer, the overmold encapsulating the first physical medium dependent integrated circuit and the first via core.
[0009] In some embodiments, the first optical interposer chip includes an array of V-grooves, each optical fiber of the array of optical fibers being in a respective V- groove.
[0010] In some embodiments, the system further includes an organic substrate having, on its surface, a plurality of conductive pads, and a socket, between the second array of conductors and the conductive pads.
[0011] In some embodiments, the socket includes an insulating layer of elastomer and a plurality of conductors extending through the insulating layer of elastomer.
[0012] In some embodiments, the first electro-optical chip includes a modulator, the system further including: a second electro-optical chip including a photodetector; and a second physical medium dependent integrated circuit coupled to the second electro-optical chip.
[0013] In some embodiments: the system includes an organic substrate and a socket, between the second array of conductors and the conductive pads; a conductive path between the first physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the socket; and a conductive path between the second physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the socket.
[0014] In some embodiments, the second electro-optical chip is coupled to the array of optical fibers through the first optical interposer chip.
[0015] In some embodiments: a conductive path between the first physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the first via core; and a conductive path between the second physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the first via core.
[0016] In some embodiments, the system further includes a second optical interposer chip, wherein the second electro-optical chip is coupled to the array of optical fibers through the second optical interposer chip.
[0017] In some embodiments, the system further includes a second via core, wherein: a conductive path between the first physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the first via core; and a conductive path between the second physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the second via core.
[0018] In some embodiments, a conductive path extending from the first electro- optical chip to the first physical medium dependent integrated circuit has a length of less than 500 microns.
[0019] In some embodiments, the conductive path extending from the first electro-optical chip to the first physical medium dependent integrated circuit has a length of less than 350 microns.
[0020] According to some embodiments of the present invention, there is provided a method for fabricating a package, the method including: forming a first redistribution layer on a carrier wafer; attaching a via core to the first redistribution layer; attaching a physical medium dependent integrated circuit to the first
redistribution layer; molding an overmold onto the via core and onto the physical medium dependent integrated circuit; grinding an upper surface of the overmold; and forming a second redistribution layer on the upper surface of the overmold.
[0021] In some embodiments, the method further includes: removing, from the carrier wafer, an intermediate product including: the first redistribution layer the via core the physical medium dependent integrated circuit the overmold; and the second redistribution layer.
[0022] In some embodiments, the method further includes forming a plurality of conductive pillars on the second redistribution layer.
[0023] In some embodiments, the method further includes attaching an electro- optical chip to an optical interposer chip including a plurality of conductive traces, and a plurality of V-grooves.
[0024] In some embodiments, the method further includes attaching, to the optical interposer chip, an intermediate product including: the first redistribution layer; the via core; the physical medium dependent integrated circuit; the overmold; and the second redistribution layer, so as to form a conductive path through a trace of the plurality of conductive traces, from the physical medium dependent integrated circuit to the electro-optical chip.
[0025] In some embodiments, the method further includes securing an optical fiber in one of the plurality of V-grooves. BRIEF DESCRIPTION OF THE DRAWINGS
[0026] These and other features and advantages of the present disclosure will be appreciated and understood with reference to the specification, claims, and appended drawings wherein:
[0027] FIG. 1 is a side cross-sectional view of a fan out wafer level package, according to an embodiment of the present disclosure;
[0028] FIG. 2A is a top cross-sectional view of a package on chip structure, according to an embodiment of the present disclosure;
[0029] FIG. 2B is a side cross-sectional view of a package on chip structure, according to an embodiment of the present disclosure;
[0030] FIG. 2C is a side cross-sectional view of a portion of a system including a package on chip structure, according to an embodiment of the present disclosure;
[0031] FIG. 3 is a side cross-sectional view of a portion of a system including a package on chip structure, according to an embodiment of the present disclosure;
[0032] FIG. 4A is a top view of a portion of a system including a package on chip structure, according to an embodiment of the present disclosure;
[0033] FIG. 4B is a top view of a portion of a system including a package on chip structure, according to an embodiment of the present disclosure;
[0034] FIG. 4C is a top view of a portion of a system including a package on chip structure, according to an embodiment of the present disclosure;
[0035] FIG. 5A is flow chart of a method for fabricating a package, according to an embodiment of the present disclosure;
[0036] FIG. 5B is flow chart of a method for fabricating a package, according to an embodiment of the present disclosure;
[0037] FIG. 6A is a perspective view of a system including a package on chip structure, according to an embodiment of the present disclosure;
[0038] FIG. 6B is a top view of a system including a package on chip structure, according to an embodiment of the present disclosure;
[0039] FIG. 7A is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure;
[0040] FIG. 7B is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure;
[0041] FIG. 7C is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure;
[0042] FIG. 7D is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure;
[0043] FIG. 7E is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure; [0044] FIG. 7F is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure;
[0045] FIG. 7G is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure;
[0046] FIG. 7H is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure; and
[0047] FIG. 7I is a side cross-sectional view of an intermediate product in the fabrication of a package, according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
[0048] The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments of an electro- optical package and method of fabrication provided in accordance with the present disclosure and is not intended to represent the only forms in which the present disclosure may be constructed or utilized. The description sets forth the features of the present disclosure in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and structures may be accomplished by different embodiments that are also intended to be encompassed within the scope of the disclosure. As denoted elsewhere herein, like element numbers are intended to indicate like elements or features.
[0049] FIG. 1 shows a fan out wafer level package according to some
embodiments. The fan out wafer level package includes (i) a physical medium dependent (PMD) application-specific integrated circuit (ASIC) 105, and a via core 110, sandwiched between two redistribution layers (RDLs), an upper RDL 115 and a lower RDL 120, (ii) an interconnect 125, which may be used as a first level interconnect or as a second level interconnect, on the upper RDL 115, and (iii) a plurality of copper pillars with solder cap 130, for first level interconnection, on the lower surface of the lower RDL 120. A ball grid array or a socket may be used as a second level interconnect on the upper RDL 115. In some embodiments the interconnect 125 on the upper RDL 115 is another plurality of copper pillars with solder cap, and may be suitable for use as a first level interconnect. The via core 110 may include an array of relatively tall (e.g., 150 micron - 200 micron tall) copper pillars or copper vias (e.g., a square array on a 350 micron pitch) in a dielectric such as epoxy (or“mold”), copper clad FR4, glass, or silicon. In some embodiments, the PMD ASIC 105 and the via core 110 may be part of a single silicon integrated circuit (e.g., they may be fabricated in or on a single silicon substrate) (which may be referred to as a silicon interposer with active circuits). Each RDL 115, 120 may consist of a layer of polyimide with conductive traces and conductive vias; each RDL 115, 120 may in turn include a plurality of layers, i.e. , it may include one or more RDLs. Each of the upper RDL 115 and the lower RDL 120 may be a composite RDL including up to four single-layer RDLs (a single layer RDL having one insulating layer, and possibly having (i) conductive traces on or both of its surfaces and (ii) conductive vias through the insulating layer). The PMD ASIC 105 may have electrical connections on its“front surface” or lower surface (in the orientation of FIG. 1 ), i.e., on the surface in contact with the lower RDL 120. An overmold 135 (e.g., an epoxy overmold) may encapsulate the PMD ASIC 105 and the via core 110.
[0050] FIGs. 2A and 2B show a“package on chip” structure according to some embodiments. The package on chip structure includes a fan out wafer level package and a photonic integrated circuit (PIC), which in turn includes an optical interposer 210, a fiber lid 215, and an electro-optical chip 220. The electro-optical chip 220 may include a modulator array (e.g., an array of electro-absorption modulators (EAMs) as shown) and/or laser arrays (in which case the photonic integrated circuit may be referred to as a“transmitter PIC” or“TX PIC”) or a photodetector array (in which case the photonic integrated circuit may be referred to as a“receiver PIC” or“RX PIC”), or both modulators (and/or lasers) and photodectors.
[0051] The optical interposer 210 may include an array of V-grooves for aligning a plurality of optical fibers secured in place by the fiber lid 215 (and secured in place with epoxy, which may also secure the fiber lid 215), an array of mode converters (e.g., tapered waveguides), and a cavity for the electro-optical chip and/or laser chip. Light travelling in either direction may be coupled between first waveguides on the optical interposer 210 and second waveguides on the electro-optical chip 220; one end of each first waveguide may be sufficiently close to, and sufficiently well aligned and mode matched with, the corresponding end of a second waveguide for light to couple between the waveguides with minimum loss. If the electro-optical chip 220 includes a photodetector array, the PMD ASIC 105 may include an array of transimpedance amplifiers for amplifying the signals from the photodetectors; if the electro-optical chip 220 includes a modulator array, the PMD ASIC 105 may include an array of modulator drive circuits.
[0052] In operation, if the electro-optical chip 220 includes a photodetector array, light arrives on the optical fibers, is coupled into the mode converters, propagates to the photodetector array and is converted to electrical signals, which are amplified by the PMD ASIC 105. If the electro-optical chip includes a modulator array,
unmodulated light arrives on a first subset of the optical fibers, is coupled into a first subset of the mode converters, propagates to the modulator array and is modulated according to signals supplied by the PMD ASIC 105, and the modulated light propagates back through a second subset of the mode converters and is fed out through a second subset of the optical fibers. FIG. 2C shows the package on chip structure connected to an organic package or printed circuit board 225 through a socket 230 as described in further detail below.
[0053] The package on chip structure can be used for in-package integration of a switch and optics. FIG. 3 shows a system including the package on chip structure, connected to an organic package 225 (e.g., to a plurality of conductive pads on an upper surface of an organic substrate of the organic package 225), through a socket 230. The socket 230 may include an insulating layer of elastomer and a plurality of conductors extending through the layer of elastomer. The socket 230 may be, for example, any of several varieties of conductor-in-elastomer sockets available from Ironwood Electronics (ironwoodelectronics.com). In some embodiments, no socket 230 is used, and the package on chip structure is instead connected to the organic package 225 by a reflow process. Also on the organic package 225 is a switch ASIC 305, or“main” ASIC, which may be a CMOS ASIC providing packet switching functions. In some embodiments the organic package may include, instead of, or in addition to, the switch ASIC, one or more GPUs, FPGAs, or other integrated digital circuits. In some embodiments the switch ASIC 305 is connected directly to the organic package 225 as shown; in other embodiments it is connected directly to a high density package (e.g., it is packaged in a high density package) which is in turn connected to the organic package. A PFIY circuit may be part of the switch ASIC 305, or it may be implemented in a separate PHY chip. For example, the interface between the switch ASIC 305 and each PMD ASIC 105 may be a high-speed serial interface, in which case the switch ASIC 305 may include a plurality of
serializer/deserializer circuits, or the interface may be a parallel interface, in which case the circuits in the switch ASIC 305 for interfacing to each PMD ASIC 105 may be retiming circuits, or it may be the case that no additional circuits are needed in the switch ASIC 305 for interfacing to each PMD ASIC 105.
[0054] One or more integrated heat spreaders (IHS) 310 may provide thermal management (i) for the optical interposer 210, and (ii) through the optical interposer 210 and the array of short copper pillars with solder cap 130, for the PMD ASIC 105. The stack consisting of (i) the IHS 310 on the optical interposer, (ii) the fan out wafer level package, and (iii) the socket 230 may be secured to the organic package 225 by mechanical means such as a suitable clamp. The electrical path from the PMD ASIC 105 to the electro-optical chip 220 may be a short path (e.g., a path shorter than 500 microns or shorter than 300 microns) from the front surface of the PMD ASIC 105, through the lower RDL 120 (which is adjacent to the front surface of the PMD ASIC 105), through the short copper pillars with solder cap 130, and through a short conductive trace on the optical interposer 210, which may be connected to the electro-optical chip 220 by eutectic bonds. Heat may flow from the PMD ASIC 105 upward through the lower RDL 120, through the array of short copper pillars with solder cap 130, and through the optical interposer 210, to the IHS 310 on the optical interposer. Electrical connections between the switch ASIC 305 (or the PHY chip if present) and the package on chip structure may be formed by conductive traces in the organic package 225 and the conductors extending through the layer of elastomer within the socket 230. For example, high speed serial links between the switch ASIC 305 (or the PHY chip if present) and the PMD ASIC 105 may extend from the switch ASIC 305 (or the PHY chip if present) through traces in or on the organic package 225, through the socket 230, through the interconnect 125, through the layers of the an upper RDL 115, through the copper pillars with solder cap 130, through the lower RDL 120, and into the PMD ASIC 105. The total length of such connections may be scalable (e.g., by moving the package on chip structures nearer the switch ASIC 305, to the extent that there is sufficient clearance between the package on chip structures, and that heat dissipated by the switch ASIC does not degrade the performance of the package on chip structures to an unacceptable extent) to, for example, ultra short reach (USR), very short reach (VSR) or extra short reach (XSR) requirements.
[0055] FIG. 4A shows a system, according to one embodiment (which may be referred to as Light driver 1 (LD1 ), Option 1 ), in which separate receiver and transmitter package on chip structures are connected to the organic package 225, e.g., through a shared socket 230. In FIG. 4A the optical interposer 210 and the lower RDL 120 are drawn transparent so that the relative positions of parts below these elements may be seen. Alignment pins 405 may be used to maintain alignment between the package on chip structures and the organic package 225 or between the socket 230 and the organic package 225. In the embodiment of FIG.
4A, the separate receiver and transmitter package on chip structures may be separately tested before being installed on the socket 230.
[0056] FIG. 4B shows a system, according to one embodiment (which may be referred to as Light driver 1 (LD1 ), Option 2), in which a single package on chip structure, that includes separate receiver (photodetector (“PD”)) and transmitter (modulator (“Mod”)) electro-optical chips which share an optical interposer 210 and a via core 110, is connected to the switch ASIC 305 through a socket 230. FIG. 4C shows a system, according to one embodiment (which may be referred to as Light driver 2), differing from that of FIG. 4B in that the PHY circuits 410 (a transmit PHY circuit (“Tx Phy”) and a receive PHY circuit (“Rx Phy”)) are integrated into the package on chip structure. The embodiments of FIGs. 4B and 4C may have the advantage, over the embodiment of FIG. 4A, of having lower fabrication cost; the embodiment of FIG. 4A may have the advantage of enabling independent
replacement of the separate receiver and transmitter package on chip structures.
[0057] FIG. 5A shows a method, according to some embodiments, for fabricating a package on chip structure, or“light driver”. FIG. 5B shows a system integration method, according to some embodiments. FIGs. 6A and 6B show an integrated system, according to some embodiments including co-packaged switch ASIC 305 and package on chip structures for up to 51.2 Tb/s operation.
[0058] FIGs. 7A - 7I show a method for fabricating a fan out wafer level package, securing it to a subassembly including an optical interposer and an electro-optical chip, and attaching optical fibers, according to some embodiments. The lower RDL 120 is formed (e.g., by spin coating) on a carrier wafer (FIGs. 7A and 7B), the via core 110 and PMD ASIC 105 are attached to the lower RDL 120 (FIG. 7C), the overmold 135 is molded onto the intermediate product and ground flat (FIG. 7D), the an upper RDL 115 is formed on the upper surface of the overmold 135 and the intermediate product is detaped from the carrier wafer and the intermediate product is inverted (or“flipped”) (FIG. 7E). Copper pillars with solder cap 130 are formed (FIG. 7F), the intermediate product is inverted again and attached to the PIC in a “package on chip attach” operation (FIG. 7G), the interconnect 125 (e.g., balls forming a ball grid array) is formed (FIG. 7H), and optical fibers are placed in the V- grooves (e.g., passively aligned to the optical interposer 210) and the fiber lid 215 is secured in place (FIG. 7I).
[0059] Spatially relative terms, such as“beneath”,“below”,“lower”,“under”, “above”,“upper” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that such spatially relative terms are intended to encompass different orientations of the device in use or in operation, in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as“below” or“beneath” or“under” other elements or features would then be oriented“above” the other elements or features. Thus, the example terms“below” and“under” can encompass both an orientation of above and below. The device may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein should be interpreted accordingly. In addition, it will also be understood that when a layer is referred to as being“between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
[0060] It will be understood that when an element or layer is referred to as being “on”,“connected to”,“coupled to”, or“adjacent to” another element or layer, it may be directly on, connected to, coupled to, or adjacent to the other element or layer, or one or more intervening elements or layers may be present. In contrast, when an element or layer is referred to as being“directly on”,“directly connected to”,“directly coupled to”, or“immediately adjacent to” another element or layer, there are no intervening elements or layers present.
[0061] Any numerical range recited herein is intended to include all sub-ranges of the same numerical precision subsumed within the recited range. For example, a range of "1.0 to 10.0" is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein.
[0062] Although exemplary embodiments of an electro-optical package and method of fabrication have been specifically described and illustrated herein, many modifications and variations will be apparent to those skilled in the art. Accordingly, it is to be understood that an electro-optical package and method of fabrication according to principles of this disclosure may be embodied other than as specifically described herein. The invention is also defined in the following claims, and
equivalents thereof.

Claims

WHAT IS CLAIMED IS:
1. A system, comprising:
a first electro-optical chip coupled to an array of optical fibers; and
a first physical medium dependent integrated circuit coupled to the first electro-optical chip.
2. The system of claim 1 , further comprising:
a first redistribution layer and a second redistribution layer, parallel to the first redistribution layer, the first physical medium dependent integrated circuit being between the first redistribution layer and the second redistribution layer;
a first via core between the first redistribution layer and the second redistribution layer;
a first optical interposer chip coupled to the array of optical fibers, the first electro- optical chip being coupled to the array of optical fibers through the first optical interposer chip;
a first array of conductors secured to the first redistribution layer and to the first optical interposer chip; and
a second array of conductors on an outer surface of the second redistribution layer.
3. The system of claim 2, wherein the first physical medium dependent integrated circuit and the first via core are part of a single silicon integrated circuit.
4. The system of any one of the preceding claims, further comprising an overmold between the first redistribution layer and the second redistribution layer, the overmold encapsulating the first physical medium dependent integrated circuit and the first via core.
5. The system of any one of the preceding claims, wherein the first optical interposer chip comprises an array of V-grooves, each optical fiber of the array of optical fibers being in a respective V-groove.
6. The system of any one of the preceding claims, further comprising an organic substrate having, on its surface, a plurality of conductive pads, and a socket, between the second array of conductors and the conductive pads.
7. The system of claim 6, wherein the socket comprises an insulating layer of elastomer and a plurality of conductors extending through the insulating layer of elastomer.
8. The system of any one of claims 2 to 7, wherein the first electro-optical chip comprises a modulator, the system further comprising:
a second electro-optical chip comprising a photodetector; and
a second physical medium dependent integrated circuit coupled to the second electro-optical chip.
9. The system of claim 8, wherein:
the system comprises an organic substrate and a socket, between the second array of conductors and the conductive pads;
a conductive path between the first physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the socket; and
a conductive path between the second physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the socket.
10. The system of claim 8 or claim 9, wherein the second electro-optical chip is coupled to the array of optical fibers through the first optical interposer chip.
11. The system of any one of claims 8 to 11 , wherein
a conductive path between the first physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the first via core; and
a conductive path between the second physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the first via core.
12. The system of claim 8 or claim 9, further comprising a second optical interposer chip, wherein the second electro-optical chip is coupled to the array of optical fibers through the second optical interposer chip.
13. The system of any one of claims 8 to 12, further comprising a second via core, wherein:
a conductive path between the first physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the first via core; and
a conductive path between the second physical medium dependent integrated circuit and the organic substrate includes a portion in a conductor of the second via core.
14. The system of any one of the preceding claims, wherein a conductive path extending from the first electro-optical chip to the first physical medium dependent integrated circuit has a length of less than 500 microns.
15. The system of any one of the preceding claims, wherein the conductive path extending from the first electro-optical chip to the first physical medium dependent integrated circuit has a length of less than 350 microns.
16. A method for fabricating a package, the method comprising:
forming a first redistribution layer on a carrier wafer;
attaching a via core to the first redistribution layer;
attaching a physical medium dependent integrated circuit to the first redistribution layer;
molding an overmold onto the via core and onto the physical medium dependent integrated circuit;
grinding an upper surface of the overmold; and
forming a second redistribution layer on the upper surface of the overmold.
17. The method of claim 16, further comprising:
removing, from the carrier wafer, an intermediate product comprising:
the first redistribution layer
the via core
the physical medium dependent integrated circuit
the overmold; and
the second redistribution layer.
18. The method of claim 16 or claim 17, further comprising forming a plurality of conductive pillars on the second redistribution layer.
19. The method of any one of claims 16 to 18, further comprising attaching an electro-optical chip to an optical interposer chip comprising a plurality of conductive traces, and a plurality of V-grooves.
20. The method of claim 19, further comprising attaching, to the optical interposer chip, an intermediate product comprising: the first redistribution layer
the via core
the physical medium dependent integrated circuit
the overmold; and
the second redistribution layer
so as to form a conductive path through a trace of the plurality of conductive traces, from the physical medium dependent integrated circuit to the electro-optical chip.
21. The method of claim 19 or claim 20, further comprising securing an optical fiber in one of the plurality of V-grooves.
PCT/IB2019/000382 2018-04-12 2019-04-11 Electro-optical package and method of fabrication WO2019197896A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2017774.7A GB2587961B (en) 2018-04-12 2019-04-11 Electro-optical package and method of fabrication
CN201980038846.5A CN112368621B (en) 2018-04-12 2019-04-11 Electro-optic package and method of manufacture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862656757P 2018-04-12 2018-04-12
US62/656,757 2018-04-12
US201962829519P 2019-04-04 2019-04-04
US62/829,519 2019-04-04

Publications (1)

Publication Number Publication Date
WO2019197896A1 true WO2019197896A1 (en) 2019-10-17

Family

ID=66998449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000382 WO2019197896A1 (en) 2018-04-12 2019-04-11 Electro-optical package and method of fabrication

Country Status (4)

Country Link
US (1) US11054597B2 (en)
CN (1) CN112368621B (en)
GB (1) GB2587961B (en)
WO (1) WO2019197896A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2587888A (en) * 2019-07-10 2021-04-14 Rockley Photonics Ltd Through mold via frame
GB2587962B (en) * 2018-04-12 2022-12-14 Rockley Photonics Ltd Optical engine

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10930628B2 (en) * 2018-06-27 2021-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Photonic semiconductor device and method
US10788638B2 (en) * 2019-01-10 2020-09-29 Inphi Corporation Silicon photonics based fiber coupler
WO2020201539A1 (en) * 2019-04-04 2020-10-08 Rockley Photonics Limited Optical engine
US11217573B2 (en) 2020-03-04 2022-01-04 Intel Corporation Dual-sided co-packaged optics for high bandwidth networking applications
US11347001B2 (en) * 2020-04-01 2022-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and method of fabricating the same
US11682745B2 (en) * 2020-05-27 2023-06-20 Texas Instruments Incorporated Photon detector array assembly
WO2022061160A1 (en) 2020-09-18 2022-03-24 Nubis Communications Inc. Data processing systems including optical communication modules
EP4226195A1 (en) 2020-10-07 2023-08-16 Nubis Communications, Inc. Data processing systems including optical communication modules
US20220114121A1 (en) * 2020-10-09 2022-04-14 Intel Corporation Processor package with universal optical input/output
US11637211B2 (en) * 2021-02-02 2023-04-25 Rockwell Collins, Inc. Optically clear thermal spreader for status indication within an electronics package
US11966090B2 (en) * 2021-03-03 2024-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Heterogeneous packaging integration of photonic and electronic elements
KR20240000525A (en) * 2021-04-26 2024-01-02 어드밴스드 마이크로 디바이시즈, 인코포레이티드 Fan-out module incorporating photonic integrated circuit
US11709327B2 (en) * 2021-04-26 2023-07-25 Advanced Micro Devices, Inc. Fanout module integrating a photonic integrated circuit
US11894354B2 (en) 2021-05-13 2024-02-06 Advanced Semiconductor Engineering, Inc. Optoelectronic device package and method of manufacturing the same
WO2022266376A1 (en) 2021-06-17 2022-12-22 Nubis Communications, Inc. Communication systems having pluggable modules
US20230122292A1 (en) * 2021-10-20 2023-04-20 Advanced Semiconductor Engineering, Inc. Optoelectronic package and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140064659A1 (en) * 2012-08-28 2014-03-06 Acacia Communications Inc. Electronic and optical co-packaging of coherent transceiver
US20140203175A1 (en) * 2011-12-30 2014-07-24 Mauro J. Kobrinsky Optical i/o system using planar light-wave integrated circuit
US20160013866A1 (en) * 2014-07-11 2016-01-14 Acacia Communications, Inc. Multichannel coherent transceiver and related apparatus and methods
US20160124164A1 (en) * 2014-10-29 2016-05-05 Acacia Communications, Inc. Optoelectronic ball grid array package with fiber
US9575267B1 (en) * 2015-11-03 2017-02-21 Cisco Technology, Inc. Passive alignment of optical components using optical fiber stubs

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060177173A1 (en) 2005-02-04 2006-08-10 Sioptical, Inc. Vertical stacking of multiple integrated circuits including SOI-based optical components
US9082745B2 (en) 2010-04-30 2015-07-14 Hewlett-Packard Development Company, L.P. Circuit module
US8488921B2 (en) 2010-07-16 2013-07-16 International Business Machines Corporation Packaged multicore fiber optical transceiver module
US8824837B2 (en) * 2010-08-26 2014-09-02 The Board Of Trustees Of The Leland Stanford Junior University Integration of optoelectronics with waveguides using interposer layer
US9195079B2 (en) * 2012-01-01 2015-11-24 Acacia Communications, Inc. Three port transceiver
US8781267B2 (en) 2012-01-27 2014-07-15 Telefonaktiebolaget L M Ericsson Optical physical interface module
US20130230272A1 (en) 2012-03-01 2013-09-05 Oracle International Corporation Chip assembly configuration with densely packed optical interconnects
US9874688B2 (en) 2012-04-26 2018-01-23 Acacia Communications, Inc. Co-packaging photonic integrated circuits and application specific integrated circuits
WO2013165344A1 (en) 2012-04-30 2013-11-07 Hewlett-Packard Development Company, L.P. Transceiver module
EP2873175B1 (en) 2012-07-15 2023-05-17 OE Solutions America Inc. Control systems for optical devices and subassemblies
US9490240B2 (en) 2012-09-28 2016-11-08 Intel Corporation Film interposer for integrated circuit devices
CN103794581B (en) * 2012-10-29 2016-12-21 中芯国际集成电路制造(上海)有限公司 A kind of thermoelectric radiating device
US9406552B2 (en) * 2012-12-20 2016-08-02 Advanced Semiconductor Engineering, Inc. Semiconductor device having conductive via and manufacturing process
CN104051390A (en) * 2013-03-12 2014-09-17 台湾积体电路制造股份有限公司 Package-on-package joint structure with molding open bumps
CN104051399B (en) * 2013-03-15 2018-06-08 台湾积体电路制造股份有限公司 Crystal wafer chip dimension encapsulation intermediate structure device and method
US9515746B2 (en) 2013-09-27 2016-12-06 Finisar Corporation Optically enabled multi-chip modules
US8971676B1 (en) * 2013-10-07 2015-03-03 Oracle International Corporation Hybrid-integrated photonic chip package
US9252065B2 (en) * 2013-11-22 2016-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for forming package structure
US9496248B2 (en) 2014-01-06 2016-11-15 Fujitsu Limited Interposer for integrated circuit chip package
US9391708B2 (en) 2014-05-21 2016-07-12 Stmicroelectronics S.R.L. Multi-substrate electro-optical interconnection system
US10001599B2 (en) 2014-11-11 2018-06-19 Finisar Corporation Two-stage adiabatically coupled photonic systems
US9786641B2 (en) 2015-08-13 2017-10-10 International Business Machines Corporation Packaging optoelectronic components and CMOS circuitry using silicon-on-insulator substrates for photonics applications
TW201717343A (en) * 2015-11-04 2017-05-16 華亞科技股份有限公司 Package-on-package assembly and method for manufacturing the same
US9829626B2 (en) * 2016-01-13 2017-11-28 Oracle International Corporation Hybrid-integrated multi-chip module
US9922920B1 (en) * 2016-09-19 2018-03-20 Nanya Technology Corporation Semiconductor package and method for fabricating the same
CN106980159B (en) * 2017-03-07 2019-01-22 中国科学院微电子研究所 Optical-electric module encapsulating structure based on photoelectricity hybrid integrated

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203175A1 (en) * 2011-12-30 2014-07-24 Mauro J. Kobrinsky Optical i/o system using planar light-wave integrated circuit
US20140064659A1 (en) * 2012-08-28 2014-03-06 Acacia Communications Inc. Electronic and optical co-packaging of coherent transceiver
US20160013866A1 (en) * 2014-07-11 2016-01-14 Acacia Communications, Inc. Multichannel coherent transceiver and related apparatus and methods
US20160124164A1 (en) * 2014-10-29 2016-05-05 Acacia Communications, Inc. Optoelectronic ball grid array package with fiber
US9575267B1 (en) * 2015-11-03 2017-02-21 Cisco Technology, Inc. Passive alignment of optical components using optical fiber stubs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2587962B (en) * 2018-04-12 2022-12-14 Rockley Photonics Ltd Optical engine
GB2587888A (en) * 2019-07-10 2021-04-14 Rockley Photonics Ltd Through mold via frame
GB2587888B (en) * 2019-07-10 2022-07-06 Rockley Photonics Ltd Through mold via frame

Also Published As

Publication number Publication date
GB2587961B (en) 2022-05-18
US11054597B2 (en) 2021-07-06
CN112368621B (en) 2024-06-21
US20190317287A1 (en) 2019-10-17
GB2587961A (en) 2021-04-14
CN112368621A (en) 2021-02-12
GB202017774D0 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
US11054597B2 (en) Electro-optical package and method of fabrication
US10962728B2 (en) Co-packaged optics and transceiver
US10365447B2 (en) Method and system for a chip-on-wafer-on-substrate assembly
US10523337B2 (en) Method and system for large silicon photonic interposers by stitching
US20210392419A1 (en) Assembly of network switch asic with optical transceivers
US20220109075A1 (en) Optoelectronic module package
US20160274316A1 (en) Active-optical ic-package socket
US20140270629A1 (en) Optical waveguide network of an interconnecting ic module
US20090016670A1 (en) System and method for the fabrication of an electro-optical module
US10447407B2 (en) High-frequency optoelectronic module
US20140270621A1 (en) Photonic multi-chip module
US20220158736A1 (en) Optical Module and Method of Fabrication
US20210048587A1 (en) Photonic optoelectronic module packaging
CN114063229B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
US11177219B1 (en) Photonic integrated circuit with integrated optical transceiver front-end circuitry for photonic devices and methods of fabricating the same
TWI485455B (en) Optoelectronic hybrid interconnect
CN113841075B (en) Connector plug and active optical cable assembly using same
US11573387B2 (en) Optical engine
CN113994470A (en) Co-packaged optical device and transceiver
US20060024067A1 (en) Optical I/O chip for use with distinct electronic chip
Uemura et al. Backside optical I/O module for Si photonics integrated with electrical ICs using fan-out wafer level packaging technology
US20220262962A1 (en) Optoelectronic module package
KR20230122572A (en) Optical Module and Optical Transceiver Using the Optical System In Package
CN113811804A (en) Optical engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19732113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202017774

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190411

122 Ep: pct application non-entry in european phase

Ref document number: 19732113

Country of ref document: EP

Kind code of ref document: A1