WO2019196943A1 - 低温消融导管、低温消融操作装置及低温消融设备 - Google Patents

低温消融导管、低温消融操作装置及低温消融设备 Download PDF

Info

Publication number
WO2019196943A1
WO2019196943A1 PCT/CN2019/082540 CN2019082540W WO2019196943A1 WO 2019196943 A1 WO2019196943 A1 WO 2019196943A1 CN 2019082540 W CN2019082540 W CN 2019082540W WO 2019196943 A1 WO2019196943 A1 WO 2019196943A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
capsule
cryoablation
fluid
core tube
Prior art date
Application number
PCT/CN2019/082540
Other languages
English (en)
French (fr)
Inventor
肖家华
德·拉·拉马·阿兰
哈塔⋅凯利·邦彦
Original Assignee
山前(珠海)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山前(珠海)医疗科技有限公司 filed Critical 山前(珠海)医疗科技有限公司
Priority to EP19785353.4A priority Critical patent/EP3777737B1/en
Priority to US17/046,873 priority patent/US11925403B2/en
Priority to JP2021504568A priority patent/JP7067825B2/ja
Priority to ES19785353T priority patent/ES2934837T3/es
Publication of WO2019196943A1 publication Critical patent/WO2019196943A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00041Heating, e.g. defrosting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00101Thermal conductivity low, i.e. thermally insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • A61B2018/0025Multiple balloons
    • A61B2018/00255Multiple balloons arranged one inside another
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • A61B2018/0025Multiple balloons
    • A61B2018/00261Multiple balloons arranged in a line
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00375Ostium, e.g. ostium of pulmonary vein or artery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0237Characteristics of handpieces or probes with a thermoelectric element in the probe for cooling purposes
    • A61B2018/0243Characteristics of handpieces or probes with a thermoelectric element in the probe for cooling purposes cooling of the hot side of the junction, e.g. heat sink
    • A61B2018/025Characteristics of handpieces or probes with a thermoelectric element in the probe for cooling purposes cooling of the hot side of the junction, e.g. heat sink by circulating liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0293Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle

Definitions

  • the present application relates to the field of ablation technology, and in particular, to a cryoablation catheter, a cryoablation operation device, and a cryoablation device.
  • Atrial fibrillation is a medical condition in which the electrical activity of the heart is abnormal.
  • the medical community tends to think that the electrical signal that causes atrial fibrillation originates from the muscle sleeves outside the four pulmonary veins (two left veins and two right veins). Therefore, one way to treat atrial fibrillation is to isolate the electrical signals between the muscle sleeves on the outside of the pulmonary vein and the atrial tissue, usually by ablating part of the myocardial tissue.
  • Catheter ablation is currently the most commonly used method of ablating myocardial tissue.
  • Low-temperature ablation is a kind of catheter ablation that has emerged in recent years. It has the advantages of less pain and less sequelae during the operation, and has the advantages of low operation difficulty and short training process.
  • hypothermia ablation is performed by feeding a balloon ablation catheter into the atria through the peripheral venous vessels.
  • the capsule is filled with cryogenic fluid, and the capsule opens to the pulmonary vein opening.
  • the low-temperature adsorption effect is used to avoid relative sliding of the capsule and the myocardial tissue, and then the myocardial tissue is necroticized by using the low temperature, and the abnormal activation of the pulmonary vein causing the onset of atrial fibrillation is blocked in the pulmonary vein.
  • cryoablation has the advantages of stable target and good abutment. More importantly, because of low temperature ablation, necrotic myocardial tissue is absorbed by the body, which can effectively reduce postoperative embolism. Probability.
  • the prior art cryoablation catheter tip is generally in the form of a spherical soft capsule for storing cryogenic fluids, which is a drawback in practical use. Due to the need to store cryogenic fluids in the globular soft sac during freezing, the globular soft vesicles are always immersed in the blood of the atrium during the entire freezing process except for the part that is in contact with the cardiomyocytes, so that during the freezing process, the blood and The soft capsule has a large area of contact, and a large area of contact heat exchange occurs immediately, and the temperature of the blood is greatly reduced. These low temperature blood is pumped to other organs of the body along with the beating of the heart, thereby affecting the normality of these organs. Operation has a negative impact on the health of patients.
  • the technical problem to be solved by the present application is to overcome the defect that the low-temperature ablation catheter in the prior art generates excessive heat exchange with the blood in the atrium when the myocardial tissue is subjected to low-temperature ablation, thereby providing a method capable of reducing blood and blood.
  • Another technical problem to be solved by the present application is to overcome the defect that the cryoablation operation device of the prior art generates excessive heat exchange with the blood in the atrium when the myocardial tissue is cryoablated, thereby providing a reduction.
  • a cryoablation device that exchanges heat with blood is
  • Another technical problem to be solved by the present application is to overcome the shortcomings of the prior art cryoablation apparatus which cause excessive heat exchange with the blood in the atrium during cryoablation of myocardial tissue, thereby providing a A cryoablation device that exchanges heat between blood.
  • a cryoablation catheter comprising:
  • a first balloon mounted at a front end of the core tube, the first balloon having a front end region adapted to conform to myocardial tissue during cryoablation and a rear end region exposed to blood;
  • a core tube having a first circuit therein, the first circuit being adapted to charge or discharge a low temperature first fluid into the first capsule;
  • the heat insulating portion is at least partially adhered to the rear end region and is adapted to reduce heat exchange efficiency between the first fluid and the blood in the atrium.
  • the heat insulating portion covers at least a partial region of the rear end region, the heat insulating portion is filled with a second fluid, and the temperature of the second fluid is higher than the temperature of the first fluid.
  • the first capsule is provided with a diaphragm, and the diaphragm is adapted to divide a space in the first capsule into a freezing chamber adapted to accommodate the first fluid and a second chamber adapted to accommodate the second fluid.
  • Thermal insulation department is provided.
  • the heat insulating portion is a second capsule disposed inside the first capsule, and at least a portion of the second capsule conforms to an inner wall of the rear end region.
  • the second capsule has an opening communicating with the interior of the first capsule, and the first fluid outflow end of the first loop is located inside the second capsule.
  • the second capsule has an elastic force that propels the first capsule in a stepped shape.
  • the method further includes:
  • a sleeve disposed outside the core tube, adapted to receive the first balloon and the second balloon in a collapsed state
  • the core tube is adapted to drive the first balloon body and the second balloon body to extend or retract the sleeve;
  • the sleeve is adapted to constrain the elastic deformation of the second balloon.
  • the second capsule is not in communication with the first capsule, and the second capsule is adapted to accommodate a second temperature higher than the temperature of the first fluid during low temperature ablation fluid.
  • the heat insulating portion is a third capsule disposed outside the rear end region, and an outer wall of the third capsule is at least partially adhered to the rear end region, the third capsule
  • the body contains a second fluid during cryoablation.
  • the maximum outer diameter of the third capsule is larger than the maximum outer diameter of the first capsule.
  • the core tube is provided with a second circuit adapted to charge or discharge the second fluid into the heat insulating portion.
  • the front end of the core tube is provided with at least one telescopic structure, and the telescopic structure is adapted to drive an increase in the distance between the first combined end of the first capsule and the core tube when extended.
  • a cryoablation operating device comprising:
  • the actuator is connected to the core tube described in the above technical solution.
  • a cryoablation device comprising the cryoablation catheter described in the above technical solution, or a cryoablation operating device.
  • the low temperature ablation catheter comprises a first capsule, a core tube and a thermal insulation portion
  • the first capsule is mounted at a front end of the core tube, and the first capsule has a suitable a front end region that is in contact with the myocardial tissue during the cryoablation process and a rear end region that is exposed to the blood
  • the core tube has a first loop therein, and the first loop is adapted to be filled or discharged into the first capsule
  • the first fluid; the thermal insulation portion and the rear end region at least partially conform to each other, and is adapted to reduce heat exchange efficiency between the first fluid and the blood in the atrium.
  • the first capsule is collapsed and attached to the front end of the tube due to being evacuated.
  • the core tube drives the first balloon to extend into the atrium along the blood vessel, and then the first fluid is filled into the first capsule with the first fluid for cryoablation, and the first capsule is opened and then utilized.
  • Contact between the anterior region and the myocardial tissue is ablation of the myocardial tissue at a low temperature.
  • the rear end region of the first capsule has a heat insulating portion, the heat exchange efficiency between the low temperature fluid and the blood in the first capsule is reduced by the heat insulating portion, and the heat exchange speed is lowered.
  • the first fluid does not take away excessive heat of the blood through the rear end region, thereby effectively relieving the pressure on the patient's body due to the decrease in blood temperature and avoiding adverse effects on the patient's health.
  • the success rate of cryoablation can also be ensured from the side, and the recovery time after surgery is shortened.
  • the first capsule is provided with a diaphragm, and the diaphragm is adapted to divide a space in the first capsule into a freezing chamber adapted to accommodate the first fluid and to accommodate the second The thermal insulation of the fluid.
  • the heat insulating portion of the form is located inside the first capsule, and the diaphragm portion can be integrally formed with the first capsule body, and the manufacturing difficulty is relatively low, which is advantageous for controlling the cost of the low temperature ablation catheter, and at the same time, because the heat insulating portion is filled with The second fluid can effectively block the heat exchange between the first fluid and the blood in the atrium, effectively avoiding a decrease in blood temperature.
  • the heat insulating portion is a second capsule body disposed inside the first capsule body, and at least a partial region of the second capsule body is in contact with an inner wall of the rear end region.
  • the second capsule has an opening communicating with the interior of the first capsule, and the first fluid outflow end of the first loop is located inside the second capsule.
  • the second capsule has an elastic force that supports the first capsule to be stepped.
  • the second capsule since the second capsule and the first capsule are in a connected state, in order to prevent the second capsule from collapsing in the first capsule due to the impact of the first fluid, the second capsule is designed to be
  • the elastic material can avoid the contraction of the second capsule on the one hand, and can also hold the first capsule up to make the positioning of the first capsule and the vein inlet more firm, reducing the difficulty of operation and improving the operation. Success rate.
  • the technical solution provided by the present application further includes a sleeve that is disposed outside the core tube and is adapted to receive the first capsule and the second capsule in a collapsed state; the core tube is adapted to drive the first The balloon and the second balloon extend or retract the cannula; the cannula is adapted to constrain the elastic deformation of the second balloon.
  • the first capsule can be attached to the front end of the core tube after being evacuated, but at this time, since the second capsule has the elastic force of the expansion, the sleeve at this time can restrain the elastic deformation of the second capsule and prevent The second capsule is in a free state and cannot protrude into the blood vessel, ensuring smooth operation.
  • the second capsule is not in communication with the first capsule, and the second capsule is adapted to accommodate a temperature higher than the temperature of the first fluid during a low temperature ablation process.
  • Second fluid After the second capsule is designed to be in a closed form, the second capsule contains the second fluid, and the second capsule is completely independent of the substance in the first capsule, and the temperatures of the first fluid and the second fluid can be separately performed.
  • the control is such that the design provides a structural basis for the temperature within the second fluid to be as close as possible to the body temperature, providing the possibility of minimizing the effects of cryogenic fluids on the blood during cryogenic ablation.
  • the heat insulating portion is a third balloon disposed outside the rear end region, and an outer wall of the third balloon is at least partially adhered to the rear end region, the first The tricapsule contains a second fluid during cryoablation.
  • the third balloon is located outside the rear end region, since the two balloons are relatively independently disposed, on the one hand, the adhesion between the rear end region and the blood can be blocked by the bonding of the third balloon and the first balloon; On the one hand, the two spaced-apart capsules are simpler in the manufacturing process and can reduce the cost of using the consumables of the balloon.
  • the maximum outer diameter of the third capsule is greater than the maximum outer diameter of the first capsule.
  • the third balloon is able to abut the entrance of the pulmonary vein during the cryoablation, and the first balloon is slightly extended Into the pulmonary vein, this form can play a better barrier, so that the third capsule can completely block the contact of the blood with the first capsule on one side of the atrium; on the other hand, the third capsule can still To a certain positioning effect, the entire balloon can be more smoothly abutted at the entrance of the pulmonary vein, reducing the difficulty of operation of the ablation procedure, and preventing the balloon from slipping off the target tissue during the low temperature ablation process.
  • the core tube is provided with a second circuit adapted to charge or discharge the second fluid into the heat insulating portion.
  • the second circuit can make the second fluid circulate during the low temperature ablation process, and when the temperature of the second fluid that is introduced is constant, the temperature in the second capsule can be always kept constant, and no excessive temperature is generated. Fluctuations can improve the stability and controllability of the surgical procedure.
  • the front end of the core tube is provided with at least one telescopic structure, and the telescopic structure is adapted to drive the distance between the two combined ends of the first capsule and the core tube when extending. increase.
  • the first capsule is evacuated, and the film-like capsule is attached to the front end of the core tube.
  • the existence of the telescopic structure enables the first capsule to be connected between the two ends of the core tube.
  • the first capsule can be prevented from accumulating at the front end of the core tube to increase the volume of the front end of the core tube, and the low-temperature ablation catheter can be smoothly introduced into the atrium from the blood vessel. To avoid the obstruction of blood vessels.
  • the technical solution provided by the present application can effectively reduce the heat exchange between the low temperature ablation catheter and the blood during the low temperature ablation process, avoid the adverse effects on the health of the patient due to the decrease of the blood temperature, and can also improve the surgical procedure. Stability and controllability, shortening the recovery time of postoperative patients.
  • FIG. 1 is a schematic view showing the structure of a prior art cryoablation catheter working in an atrium
  • Example 2 is a perspective view of a first embodiment of a low temperature ablation catheter provided in Example 1 of the present application;
  • Figure 3 is a perspective view of a second embodiment of the cryoablation catheter provided in Example 1 of the present application.
  • Example 4 is a perspective view of a third embodiment of the cryoablation catheter provided in Example 1 of the present application.
  • Figure 5 is a perspective view of a fourth embodiment of the cryoablation catheter provided in Example 1 of the present application.
  • FIG. 6 is a perspective view of the telescopic structure of the low temperature ablation catheter provided in Embodiment 1 of the present application in an extended state;
  • connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present application can be understood in the specific circumstances for those skilled in the art.
  • Embodiment 1 of the present application provides a cryoablation catheter for ablation of part of myocardial tissue in the atria, which is often used to treat atrial fibrillation.
  • the cryoablation catheter provided in this embodiment comprises a first capsule, a core tube and a thermal insulation portion, the first capsule being mounted at a front end of the core tube, the first capsule having a suitable shape during a low temperature ablation process a front end region to which the myocardial tissue fits and a rear end region exposed to the blood; the core tube has a first loop therein, the first loop being adapted to charge or discharge a low temperature first fluid into the first capsule;
  • the heat insulating portion is at least partially adhered to the rear end region, and is suitable for reducing heat exchange efficiency between the first fluid and the blood in the atrium.
  • the first capsule Before the start of the operation, the first capsule is drawn into a vacuum state, and the first capsule is collapsed and attached to the front end of the traveling tube.
  • the core tube drives the first balloon to extend into the atrium along the blood vessel, and then the first fluid is filled into the first capsule with the first fluid for cryoablation, and the first capsule is opened and then utilized.
  • Contact between the anterior region and the myocardial tissue is ablation of the myocardial tissue at a low temperature.
  • the rear end region of the first capsule has a heat insulating portion, the heat exchange efficiency between the low temperature fluid and the blood in the first capsule is reduced by the heat insulating portion, and the heat exchange speed is lowered.
  • the first fluid does not take away excessive heat of the blood through the rear end region, thereby effectively relieving the pressure on the patient's body due to the decrease in blood temperature and avoiding adverse effects on the patient's health.
  • the success rate of cryoablation can also be ensured from the side, and the recovery time after surgery is shortened.
  • the heat insulating portion covers at least a partial region of the rear end region, the heat insulating portion is filled with a second fluid, and the temperature of the second fluid is higher than that of the first fluid temperature.
  • the first capsule is provided with a diaphragm adapted to divide the space in the first capsule into a freezing suitable for accommodating the first fluid.
  • a chamber and a heat insulating portion adapted to receive the second fluid.
  • the heat insulating portion of the form is located inside the first capsule, and the diaphragm portion can be integrally formed with the first capsule body, and the manufacturing difficulty is relatively low, which is advantageous for controlling the cost of the low temperature ablation catheter, and at the same time, because the heat insulating portion is filled with
  • the second fluid can effectively block the heat exchange between the first fluid and the blood in the atrium, effectively avoiding a decrease in blood temperature.
  • the heat insulating portion is a second capsule placed inside the first capsule, and at least a portion of the second capsule The area fits the inner wall of the rear end area.
  • the second capsule and the rear end region can be combined to increase the wall thickness of the bonding portion, and block the heat exchange between the first fluid and the blood in the capsule.
  • Efficiency slowing down the degree of blood cooling; on the other hand, the presence of the second capsule provides space for the introduction of other fluids in the second capsule at a temperature higher than the temperature of the first fluid, thereby more completely blocking the first fluid and Heat exchange between blood.
  • the second balloon has an opening in communication with the interior of the first balloon, the first fluid outflow end of the first circuit being located The inside of the second capsule.
  • the second capsule has an elastic force that propels the first capsule in a stepped shape.
  • the second capsule since the second capsule and the first capsule are in a connected state, in order to prevent the second capsule from collapsing in the first capsule due to the impact of the first fluid, the second capsule is designed to be
  • the elastic material can avoid the contraction of the second capsule on the one hand, and can also hold the first capsule up to make the positioning of the first capsule and the vein inlet more firm, reducing the difficulty of operation and improving the operation. Success rate.
  • a sleeve is further included, and the sleeve is sleeved outside the core tube, and is adapted to receive the first capsule and the second capsule in a collapsed state; the core tube Suitable for driving the first balloon and the second balloon to extend or retract the cannula; the sleeve is adapted to constrain the elastic deformation of the second balloon.
  • the first capsule can be attached to the front end of the core tube after being evacuated, but at this time, since the second capsule has the elastic force of the expansion, the sleeve at this time can restrain the elastic deformation of the second capsule and prevent The second capsule is in a free state and cannot protrude into the blood vessel, ensuring smooth operation.
  • the second balloon is not in communication with the first balloon, the second balloon being adapted to contain temperature during cryoablation a second fluid that is higher than the temperature of the first fluid.
  • the second capsule contains the second fluid, and the second capsule is completely independent of the substance in the first capsule, and the temperatures of the first fluid and the second fluid can be separately performed.
  • the control is such that the design provides a structural basis for the temperature within the second fluid to be as close as possible to the body temperature, providing the possibility of minimizing the effects of cryogenic fluids on the blood during cryogenic ablation.
  • the heat insulating portion is a third capsule disposed outside the rear end region, and an outer wall of the third capsule and the rear end The region is at least partially conformed, the third balloon containing a second fluid during cryoablation.
  • the third balloon is located outside the rear end region, since the two balloons are relatively independently disposed, on the one hand, the adhesion between the rear end region and the blood can be blocked by the bonding of the third balloon and the first balloon; On the one hand, the two spaced-apart capsules are simpler in the manufacturing process and can reduce the cost of using the consumables of the balloon.
  • the maximum outer diameter of the third balloon is greater than the maximum outer diameter of the first balloon.
  • the third balloon is able to abut the entrance of the pulmonary vein during the cryoablation, and the first balloon is slightly extended Into the pulmonary vein, this form can play a better barrier, so that the third capsule can completely block the contact of the blood with the first capsule on one side of the atrium; on the other hand, the third capsule can still To a certain positioning effect, the entire balloon can be more smoothly abutted at the entrance of the pulmonary vein, reducing the difficulty of operation of the ablation procedure, and preventing the balloon from slipping off the target tissue during the low temperature ablation process.
  • a second circuit adapted to charge or discharge the second fluid into the insulating portion is disposed within the core tube.
  • the second circuit can make the second fluid circulate during the low temperature ablation process, and when the temperature of the second fluid that is introduced is constant, the temperature in the second capsule can be always kept constant, and no excessive temperature is generated. Fluctuations can improve the stability and controllability of the surgical procedure.
  • the front end of the core tube is provided with at least one telescopic structure, and the telescopic structure is adapted to drive the first capsule and the core tube when extended.
  • the distance between the two joint ends increases.
  • the first capsule is evacuated, and the film-like capsule is attached to the front end of the core tube.
  • the existence of the telescopic structure enables the first capsule to be connected between the two ends of the core tube.
  • the first capsule can be prevented from accumulating at the front end of the core tube to increase the volume of the front end of the core tube, and the low-temperature ablation catheter can be smoothly introduced into the atrium from the blood vessel. To avoid the obstruction of blood vessels.
  • the core tube 3 further has a guiding cavity extending along the length of the core tube 3, and the guiding cavity is slidable along a guide wire previously placed in the blood vessel.
  • the guiding cavity can be used to slide the ablation catheter along the guide wire that protrudes into the atrium, ensuring a smooth and rapid entry of the ablation catheter into the atrium.
  • the embodiment provides a cryoablation device comprising: a handle connected to the cryoablation catheter of Embodiment 1; a actuator connected to the core tube 3 of Embodiment 1 and adapted to drive the core tube 3 in the sleeve 1 slides inside.
  • the handle is used to operate the cryoablation catheter along a guidewire that extends into the atrium, and from the opening of the body surface, along the vessel into the vicinity of the targeted tissue.
  • the front end of the core tube 3 is pushed out of the sleeve 1 by the actuator, and the first capsule 2 is filled with a cryogenic fluid, and the first capsule 2 is attached to the targeted tissue to start ablation.
  • the present embodiment includes the cryoablation catheter of Embodiment 1, it also has the corresponding advantages of the cryoablation catheter of Embodiment 1.
  • the embodiment provides a cryoablation device.
  • the cryoablation can be smoothly performed only by connecting with the cryoablation catheter of Embodiment 1.
  • the device itself is not When an operating device such as a real handle or a actuator is provided, it is necessary to connect with the cryoablation operating device provided in Embodiment 2 to perform cryoablation.
  • the present embodiment includes the cryoablation catheter of Embodiment 1 or the cryoablation operation device of Embodiment 2, it also has the low temperature ablation catheter of Embodiment 1 or the cryoablation operation device of Embodiment 2 The corresponding advantages.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种低温消融导管包括第一囊体(4)、芯管(3)和隔热部(5),第一囊体(4)安装在芯管(3)前端,第一囊体(4)具有适于在低温消融过程中与心肌组织相贴合的前端区域(41)和暴露在血液中的后端区域(42);芯管(3)内具有第一回路(31),第一回路(31)适于向第一囊体(4)内充入或流出低温的第一流体;隔热部(5)与后端区域(42)至少局部贴合,适于降低第一流体和心房内血液间的热交换效率。其低温消融操作装置及低温消融设备能够有效的降低低温消融过程中低温消融导管和血液之间的热交换。

Description

低温消融导管、低温消融操作装置及低温消融设备 技术领域
本申请涉及消融技术领域,具体涉及一种低温消融导管、低温消融操作装置及低温消融设备。
背景技术
房颤是一种心脏电活动异常的医学疾病。目前医学界趋向于认为引起房颤的电信号起源于四个肺静脉(两个左静脉和两个右静脉)外侧的肌袖。因此,治疗房颤的一个途径便是隔绝肺静脉外侧的肌袖与心房组织的电信号往来,一般通过消融部分心肌组织来实现。导管消融术是目前最常用的一种消融心肌组织的方法。低温消融术是近年来新兴起的一种导管消融术,具有手术过程中患者痛苦小、后遗症少等优点,还具有操作难度低、培训过程短的优点。
如图1所示,低温消融术是通过周围静脉血管将带有囊体的消融导管送入到心房,当导管到达心房后,向囊体内充入低温流体,囊体张开后与肺静脉开口相抵接,利用低温吸附效果避免囊体与心肌组织发生相对滑动,进而利用低温使心肌组织坏死,进而将引起心房颤动发作的肺静脉的异常激动阻断在肺静脉内。与传统射频消融相比低温消融术具有靶点稳定、贴靠性好等优点,更重要的是因为采用了低温消融,坏死的心肌组织会被身体吸收,因此能够有效的降低术后发生栓塞的概率。
然而,现有技术中的低温消融导管前端一般采用球状的软囊的形式来储存低温流体,这样的做法在实际使用中存在缺陷。由于冷冻过程中球状 软囊中需要存储低温流体,而球状软囊在整个冷冻过程中除了和心肌细胞接触的部分,其余的部分始终浸泡在心房的血液中,这样在冷冻的过程中,血液和软囊有着大面积的接触,伴随着大面积的接触热交换随即产生,血液的温度会被大幅降低,这些低温血液伴随着心脏的跳动被泵送到身体的其他器官,进而影响这些器官的正常运转,对患者的健康带来不利的影响。
申请内容
因此,本申请要解决的技术问题在于克服现有技术中的低温消融导管在对心肌组织进行低温消融时会和心房内的血液产生过多的热交换的缺陷,进而提供一种能够减少与血液之间发生热交换的低温消融导管。
本申请所要解决的另一个技术问题在于,克服现有技术中的低温消融操作装置在对心肌组织进行低温消融时会和心房内的血液产生过多的热交换的缺陷,进而提供一种能够减少与血液之间发生热交换的低温消融操作装置。
本申请所要解决的另一个技术问题在于,克服现有技术中的低温消融设备在对心肌组织进行低温消融时会和心房内的血液产生过多的热交换的缺陷,进而提供一种能够减少与血液之间发生热交换的低温消融设备。
为此,本申请提供的技术方案如下:
一种低温消融导管,包括:
第一囊体,安装在芯管前端,所述第一囊体具有适于在低温消融过程中与心肌组织相贴合的前端区域和暴露在血液中的后端区域;
芯管,所述芯管内具有第一回路,所述第一回路适于向第一囊体内充入或流出低温的第一流体;
隔热部,与所述后端区域至少局部贴合,适于降低第一流体和心房内 血液间的热交换效率。
作为一种优选的技术方案,所述隔热部至少覆盖后端区域的部分区域,所述隔热部内填充有第二流体,所述第二流体的温度高于第一流体的温度。
作为一种优选的技术方案,所述第一囊体内设置有隔膜,所述隔膜适于将第一囊体内的空间分隔成适于容纳第一流体的冷冻腔室和适于容纳第二流体的隔热部。
作为一种优选的技术方案,所述隔热部为设置于第一囊体内部的第二囊体,所述第二囊体的至少部分区域与后端区域的内壁相贴合。
作为一种优选的技术方案,所述第二囊体具有和第一囊体的内部连通的敞口,所述第一回路的第一流体流出端位于第二囊体内部。
作为一种优选的技术方案,所述第二囊体具有将第一囊体撑起呈台阶型的弹性力。
作为一种优选的技术方案,还包括:
套管,套装在芯管外部,适于容纳坍缩状态下的第一囊体和第二囊体;
所述芯管适于带动第一囊体和第二囊体伸出或缩回套管;
所述套管适于对第二囊体的弹性形变进行约束。
作为一种优选的技术方案,所述第二囊体与所述第一囊体不连通,所述第二囊体适于在低温消融过程中容纳温度高于所述第一流体温度的第二流体。
作为一种优选的技术方案,所述隔热部为设置在后端区域外部的第三囊体,所述第三囊体的外壁与所述后端区域至少局部贴合,所述第三囊体在低温消融过程中容纳有第二流体。
作为一种优选的技术方案,所述第三囊体的最大外径大于所述第一囊体的最大外径。
作为一种优选的技术方案,所述芯管内设置有适于向隔热部内充入或放出第二流体的第二回路。
作为一种优选的技术方案,所述芯管前端在设置有至少一个伸缩结构,所述伸缩结构适于在伸出时带动第一囊体与芯管的两个结合端之间的距离增加。
一种低温消融操作装置,包括:
手柄,与上述技术方案中所述的低温消融导管连接;
至动器,与上述技术方案中所述的芯管相连。
一种低温消融设备,包括上述技术方案中所述的低温消融导管,或低温消融操作器械。
本申请技术方案,具有如下优点:
1、本申请提供的技术方案中,所述低温消融导管,包括第一囊体、芯管和隔热部,所述第一囊体安装在芯管前端,所述第一囊体具有适于在低温消融过程中与心肌组织相贴合的前端区域和暴露在血液中的后端区域;所述芯管内具有第一回路,所述第一回路适于向第一囊体内充入或流出低温的第一流体;所述隔热部与所述后端区域至少局部贴合,适于降低第一流体和心房内血液间的热交换效率。在手术开始之前,第一囊体内由于被抽成真空状态,第一囊体坍缩后贴合在行管的前端。开始手术后,芯管带动第一囊体沿血管伸入到心房内,然后利用第一回路向第一囊体内充入用于冷冻消融的第一流体,第一囊体被撑开,然后利用前端区域和心肌组织的接触对心肌组织进行低温消融。此时,第一囊体的后端区域由于具有隔热部,在隔热部的作用下,第一囊体内的低温流体和血液之间的热交换效率得到降低,降低了热交换的速度,保证第一流体不会通过后端区域带走血液的过多热量,进而有效缓解由于血液温度的降低而对患者身体带来的 压力,避免对患者健康的不利影响。从侧面上也能够保证低温消融术的手术成功率,缩短术后的康复时间。
2、本申请提供的技术方案中,所述第一囊体内设置有隔膜,所述隔膜适于将第一囊体内的空间分隔成适于容纳第一流体的冷冻腔室和适于容纳第二流体的隔热部。此种形式的隔热部位于第一囊体的内部,并且隔膜部分可以和第一囊体一体成型,制造难度相对较低,有利于控制低温消融导管的成本,同时,由于隔热部内填充有第二流体,因此能有效阻隔第一流体和心房内血液的热交换,有效地避免血液温度的降低。
3、本申请提供的技术方案中,所述隔热部为置于第一囊体内部的第二囊体,所述第二囊体的至少部分区域与后端区域的内壁相贴合。通过在第一囊体内部设置第二囊体,一方面,第二囊体和后端区域贴合后能够使贴合处的壁厚增加,阻隔囊体内第一流体和血液之间的热交换效率,减缓血液降温的程度;另一方面,第二囊体的存在为在第二囊体内通入温度高于第一流体温度的其他流体提供了空间,进而更加彻底的的阻隔第一流体和血液之间的热交换。
4、本申请提供的技术方案中,所述第二囊体具有和第一囊体的内部连通的敞口,所述第一回路的第一流体流出端位于第二囊体内部。通过将第二囊体设计成上述形式,当第一流体流入到第一囊体内部和心肌组织接触后温度上升。此时温度升高的第一流体通过第二囊体上的敞口进入到第二囊体内后,能使第二囊体内的温度高于第一囊体内的温度,因而组织低温的第一流体与血液之间产生热交换,进而避免血液温度的降低。
5、本申请提供的技术方案中,所述第二囊体具有将第一囊体撑起呈台阶型的弹性力。在这一技术方案中,由于第二囊体和第一囊体内部为连通状态,为了避免第二囊体在第一囊体内由于第一流体的冲击而坍缩,因此 将第二囊体设计成具有弹性的材质,一方面能够避免第二囊体的坍缩,另一方面还能将第一囊体撑起使第一囊体和静脉入口处的定位更加牢固,降低手术的操作难度、提高手术成功率。
6、本申请提供的技术方案中还包括套管,所述套管套装在芯管外部,适于容纳坍缩状态下的第一囊体和第二囊体;所述芯管适于带动第一囊体和第二囊体伸出或缩回套管;所述套管适于对第二囊体的弹性形变进行约束。第一囊体可以在抽真空后贴合在芯管的前端,但是此时由于第二囊体具有撑开的弹性力,此时的套管能够对第二囊体的弹性形变进行约束,防止第二囊体在自由状态下而无法伸入血管内,保证手术顺利进行。
7、本申请提供的技术方案中,所述第二囊体与所述第一囊体不连通,所述第二囊体适于在低温消融过程中容纳温度高于所述第一流体温度的第二流体。通过将第二囊体设计成封闭形式后,第二囊体内容纳第二流体,此时的第二囊体和第一囊体内的物质完全独立,第一流体和第二流体的温度可以进行单独的控制,因此这样的设计能够为第二流体内的温度尽量贴近人体温度提供结构基础,为低温消融过程中的低温流体对血液的影响降到最低提供可能性。
8、本申请提供的技术方案中,所述隔热部为设置在后端区域外部的第三囊体,所述第三囊体的外壁与所述后端区域至少局部贴合,所述第三囊体在低温消融过程中容纳有第二流体。当第三囊体位于后端区域外部时,由于两个球囊相对独立设置,一方面通过第三囊体和第一囊体的贴合能够阻隔后端区域和血液之间的热量传导;另一方面,两个间隔设置的囊体在制造过程中更加简单,能够降低球囊这种耗材的使用成本。
9、本申请提供的技术方案中,所述第三囊体的最大外径大于所述第一囊体的最大外径。当第三囊体的最大外径大于第一囊体的最大外径时,一 方面,在低温消融过程中第三囊体在能够抵接在肺静脉的入口处,而第一囊体则略伸入肺静脉中,这样的形式能够起到更好的阻隔作用,让第三囊体在心房的一侧可以完全阻挡住血液同第一囊体的接触;另一方面,第三囊体还能起到一定的定位作用,让整个球囊能够更加顺利的抵接在肺静脉的入口处,降低消融手术的操作难度,并且防止球囊在低温消融过程中从靶组织处滑脱。
10、本申请提供的技术方案中,所述芯管内设置有适于向隔热部内充入或放出第二流体的第二回路。利用第二回路能够使第二流体在低温消融过程中处于循环状态,当通入的第二流体温度恒定时,能够保证第二囊体内的温度可以始终处于恒定状态,不会产生过多的温度波动,因而能够提高手术过程的稳定性以及可控性。
11、本申请提供的技术方案中,所述芯管前端在设置有至少一个伸缩结构,所述伸缩结构适于在伸出时带动第一囊体与芯管的两个结合端之间的距离增加。在手术开始的初始阶段,第一囊体内被抽真空,薄膜状的囊体贴合在芯管的前端,此时伸缩结构的存在能够让第一囊体与芯管的两个结合端之间的距离增加,如此一来,在伸缩端的带动下能够避免坍缩后的第一囊体堆积在芯管前端使芯管前端的体积增大,进而使低温消融导管能够顺利的从血管中导入到心房中,避免血管的阻碍。
综上,本申请提供的技术方案能够有效的降低低温消融过程中低温消融导管和血液之间的热交换,避免因血液温度降低而对患者的健康带来的不利影响,同时还能够提高手术过程的稳定性及可控性,缩短术后患者康复时间。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中低温消融导管在心房内进行工作时的结构示意图;
图2为本申请实施例1中提供的低温消融导管的第一种实施方式的立体图;
图3为本申请实施例1中提供的低温消融导管的第二种实施方式的立体图;
图4为本申请实施例1中提供的低温消融导管的第三种实施方式的立体图;
图5为本申请实施例1中提供的低温消融导管的第四种实施方式的立体图;
图6为本申请实施例1中提供的低温消融导管的伸缩结构在伸出状态下的立体图;
附图标记说明:
1-套管,2-隔膜,3-芯管,31-第一回路,32-第二回路,4-第一囊体,41-前端区域,42-后端区域,43-冷冻腔室,5-隔热部,51-第二囊体,52-第三囊体,6-伸缩结构。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申 请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1:
如图2至图5所示,为本申请的实施例1。本实施例提供了一种低温消融导管,用来对心房内的部分心肌组织进行消融,多用于治疗房颤。
本实施例中提供的低温消融导管,包括第一囊体、芯管和隔热部,所述第一囊体安装在芯管前端,所述第一囊体具有适于在低温消融过程中与心肌组织相贴合的前端区域和暴露在血液中的后端区域;所述芯管内具有第一回路,所述第一回路适于向第一囊体内充入或流出低温的第一流体;所述隔热部与所述后端区域至少局部贴合,适于降低第一流体和心房内血 液间的热交换效率。
在手术开始之前,第一囊体由于被抽成真空状态,第一囊体坍缩后贴合在行管的前端。开始手术后,芯管带动第一囊体沿血管伸入到心房内,然后利用第一回路向第一囊体内充入用于冷冻消融的第一流体,第一囊体被撑开,然后利用前端区域和心肌组织的接触对心肌组织进行低温消融。此时,第一囊体的后端区域由于具有隔热部,在隔热部的作用下,第一囊体内的低温流体和血液之间的热交换效率得到降低,降低了热交换的速度,保证第一流体不会通过后端区域带走血液的过多热量,进而有效缓解由于血液温度的降低而对患者身体带来的压力,避免对患者健康的不利影响。从侧面上也能够保证低温消融术的手术成功率,缩短术后的康复时间。
作为隔热部的一种进一步改进实施方式,所述隔热部至少覆盖后端区域的部分区域,所述隔热部内填充有第二流体,所述第二流体的温度高于第一流体的温度。
如图2所示,作为隔热部的一种可替代实施方式,所述第一囊体内设置有隔膜,所述隔膜适于将第一囊体内的空间分隔成适于容纳第一流体的冷冻腔室和适于容纳第二流体的隔热部。此种形式的隔热部位于第一囊体的内部,并且隔膜部分可以和第一囊体一体成型,制造难度相对较低,有利于控制低温消融导管的成本,同时,由于隔热部内填充有第二流体,因此能有效阻隔第一流体和心房内血液的热交换,有效地避免血液温度的降低。
如图3和图4所示,作为隔热部的另一种可替代实施方式,所述隔热部为置于第一囊体内部的第二囊体,所述第二囊体的至少部分区域与后端区域的内壁相贴合。通过在第一囊体内部设置第二囊体,一方面,第二囊体和后端区域贴合后能够使贴合处的壁厚增加,阻隔囊体内第一流体和血 液之间的热交换效率,减缓血液降温的程度;另一方面,第二囊体的存在为在第二囊体内通入温度高于第一流体温度的其他流体提供了空间,进而更加彻底的的阻隔第一流体和血液之间的热交换。
如图3所示,作为第二囊体的一种可替代实施方式,所述第二囊体具有和第一囊体的内部连通的敞口,所述第一回路的第一流体流出端位于第二囊体内部。通过将第二囊体设计成上述形式,当第一流体流入到第一囊体内部和心肌组织接触后温度上升。此时温度升高的第一流体通过第二囊体上的敞口进入到第二囊体内后,能使第二囊体内的温度高于第一囊体内的温度,因而组织低温的第一流体与血液之间产生热交换,进而避免血液温度的降低。
作为上述第二囊体的一种进一步改进实施方式,所述第二囊体具有将第一囊体撑起呈台阶型的弹性力。在这一技术方案中,由于第二囊体和第一囊体内部为连通状态,为了避免第二囊体在第一囊体内由于第一流体的冲击而坍缩,因此将第二囊体设计成具有弹性的材质,一方面能够避免第二囊体的坍缩,另一方面还能将第一囊体撑起使第一囊体和静脉入口处的定位更加牢固,降低手术的操作难度、提高手术成功率。
为了保证上述第二囊体能够顺利的进入血管中,还包括套管,所述套管套装在芯管外部,适于容纳坍缩状态下的第一囊体和第二囊体;所述芯管适于带动第一囊体和第二囊体伸出或缩回套管;所述套管适于对第二囊体的弹性形变进行约束。第一囊体可以在抽真空后贴合在芯管的前端,但是此时由于第二囊体具有撑开的弹性力,此时的套管能够对第二囊体的弹性形变进行约束,防止第二囊体在自由状态下而无法伸入血管内,保证手术顺利进行。
如图4所示作为第二囊体的另一种可替代实施方式,所述第二囊体与 所述第一囊体不连通,所述第二囊体适于在低温消融过程中容纳温度高于所述第一流体温度的第二流体。通过将第二囊体设计成封闭形式后,第二囊体内容纳第二流体,此时的第二囊体和第一囊体内的物质完全独立,第一流体和第二流体的温度可以进行单独的控制,因此这样的设计能够为第二流体内的温度尽量贴近人体温度提供结构基础,为低温消融过程中的低温流体对血液的影响降到最低提供可能性。
如图5所示,作为隔热部的另一种可替代实施方式,所述隔热部为设置在后端区域外部的第三囊体,所述第三囊体的外壁与所述后端区域至少局部贴合,所述第三囊体在低温消融过程中容纳有第二流体。当第三囊体位于后端区域外部时,由于两个球囊相对独立设置,一方面通过第三囊体和第一囊体的贴合能够阻隔后端区域和血液之间的热量传导;另一方面,两个间隔设置的囊体在制造过程中更加简单,能够降低球囊这种耗材的使用成本。
作为第三囊体的一种改进实施方式,所述第三囊体的最大外径大于所述第一囊体的最大外径。当第三囊体的最大外径大于第一囊体的最大外径时,一方面,在低温消融过程中第三囊体在能够抵接在肺静脉的入口处,而第一囊体则略伸入肺静脉中,这样的形式能够起到更好的阻隔作用,让第三囊体在心房的一侧可以完全阻挡住血液同第一囊体的接触;另一方面,第三囊体还能起到一定的定位作用,让整个球囊能够更加顺利的抵接在肺静脉的入口处,降低消融手术的操作难度,并且防止球囊在低温消融过程中从靶组织处滑脱。
作为低温消融导管的一种进一步改进实施方式,所述芯管内设置有适于向隔热部内充入或放出第二流体的第二回路。利用第二回路能够使第二流体在低温消融过程中处于循环状态,当通入的第二流体温度恒定时,能 够保证第二囊体内的温度可以始终处于恒定状态,不会产生过多的温度波动,因而能够提高手术过程的稳定性以及可控性。
如图6所示,作为低温消融导管的一种进一步改进实施方式,所述芯管前端在设置有至少一个伸缩结构,所述伸缩结构适于在伸出时带动第一囊体与芯管的两个结合端之间的距离增加。在手术开始的初始阶段,第一囊体内被抽真空,薄膜状的囊体贴合在芯管的前端,此时伸缩结构的存在能够让第一囊体与芯管的两个结合端之间的距离增加,如此一来,在伸缩端的带动下能够避免坍缩后的第一囊体堆积在芯管前端使芯管前端的体积增大,进而使低温消融导管能够顺利的从血管中导入到心房中,避免血管的阻碍。
作为低温消融导管的一种改进实施方式,所述芯管3内还具有沿芯管3长度方向延伸的导向腔,所述导向腔可沿预先置在血管内的导丝进行滑动。利用导向腔可以使消融导管沿预先伸入心房中的导丝进行滑动,保证消融导管顺利、快速的进入到心房中。
实施例2:
本实施例提供了一种低温消融装置,包括:手柄,与实施例1中的低温消融导管连接;至动器,与实施例1的芯管3相连,并适于带动芯管3在套管1内滑动。手术过程中,手柄用来操作低温消融导管沿预先伸入心房中的导丝,从体表的开口处顺着血管进入到靶向组织附近。然后,利用至动器推动芯管3的前端伸出套管1,并对第一囊体2中充入低温流体,第一囊体2贴在靶向组织上后开始消融。
由于本实施例包括实施例1中的低温消融导管,因此也便具有了实施例1中的低温消融导管所具有的相应优点。
实施例3:
本实施例提供了一种低温消融设备,当设备本身具有手柄和至动器等操作装置时,仅需和实施例1中的低温消融导管相连便可顺利的进行低温消融术;当设备本身不具备实手柄、至动器等操作装置时,便需要和实施例2中提供的低温消融操作装置相连来进行低温消融术。
由于本实施例包括实施例1中的低温消融导管或实施例2中的低温消融操作装置,因此也便具有了实施例1中的低温消融导管或实施例2中的低温消融操作装置所具有的相应优点。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (14)

  1. 一种低温消融导管,其特征在于包括:
    第一囊体,安装在芯管前端,所述第一囊体具有适于在低温消融过程中与心肌组织相贴合的前端区域和暴露在血液中的后端区域;
    芯管,所述芯管内具有第一回路,所述第一回路适于向第一囊体内充入或流出低温的第一流体;
    隔热部,与所述后端区域至少局部贴合,适于降低第一流体和心房内血液间的热交换效率。
  2. 根据权利要求1所述的低温消融导管,其特征在于,所述隔热部至少覆盖后端区域的部分区域,所述隔热部内填充有第二流体,所述第二流体的温度高于第一流体的温度。
  3. 根据权利要求2所述的低温消融导管,其特征在于,所述第一囊体内设置有隔膜,所述隔膜适于将第一囊体内的空间分隔成适于容纳第一流体的冷冻腔室和适于容纳第二流体的隔热部。
  4. 根据权利要求2所述的低温消融导管,其特征在于,所述隔热部为设置于第一囊体内部的第二囊体,所述第二囊体的至少部分区域与后端区域的内壁相贴合。
  5. 根据权利要求4所述的低温消融导管,其特征在于,所述第二囊体具有和第一囊体的内部连通的敞口,所述第一回路的第一流体流出端位于第二囊体内部。
  6. 根据权利要求5所述的低温消融导管,其特征在于,所述第二囊体具有将第一囊体撑起呈台阶型的弹性力。
  7. 根据权利要求6所述的低温消融导管,其特征在于还包括:
    套管,套装在芯管外部,适于容纳坍缩状态下的第一囊体和第二囊体;
    所述芯管适于带动第一囊体和第二囊体伸出或缩回套管;
    所述套管适于对第二囊体的弹性形变进行约束。
  8. 根据权利要求4所述的低温消融导管,其特征在于,所述第二囊体与所述第一囊体不连通,所述第二囊体适于在低温消融过程中容纳温度高于所述第一流体温度的第二流体。
  9. 根据权利要求2所述的低温消融导管,其特征在于,所述隔热部为设置在后端区域外部的第三囊体,所述第三囊体的外壁与所述后端区域至少局部贴合,所述第三囊体在低温消融过程中容纳有第二流体。
  10. 根据权利要求9所述的低温消融导管,其特征在于,所述第三囊体的最大外径大于所述第一囊体的最大外径。
  11. 根据权利要求3、8、9、10中任意一项所述的低温消融导管,其特征在于,所述芯管内设置有适于向隔热部内充入或放出第二流体的第二回路。
  12. 根据权利要求1所述的低温消融导管,其特征在于,所述芯管前端在设置有至少一个伸缩结构,所述伸缩结构适于在伸出时带动第一囊体与芯管的两个结合端之间的距离增加。
  13. 一种低温消融操作装置,其特征在于,包括:
    手柄,与权利要求1至12中任意一项所述的低温消融导管连接;
    至动器,与权利要求1至12中任意一项所述的芯管相连。
  14. 一种低温消融设备,其特征在于,包括权利要求1至12中任一项所述的低温消融导管,或权利要求13中所述的低温消融操作器械。
PCT/CN2019/082540 2018-04-13 2019-04-12 低温消融导管、低温消融操作装置及低温消融设备 WO2019196943A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19785353.4A EP3777737B1 (en) 2018-04-13 2019-04-12 Cryoablation catheter, cryoablation operating apparatus and cryoablation equipment
US17/046,873 US11925403B2 (en) 2018-04-13 2019-04-12 Cryoablation catheter, cryoablation operating apparatus and cryoablation equipment
JP2021504568A JP7067825B2 (ja) 2018-04-13 2019-04-12 低温アブレーションカテーテル、低温アブレーション操作装置及び低温アブレーションデバイス
ES19785353T ES2934837T3 (es) 2018-04-13 2019-04-12 Catéter de crioablación, aparato operativo de crioablación y equipo de crioablación

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810330832.8 2018-04-13
CN201810330832.8A CN108309432B (zh) 2018-04-13 2018-04-13 低温消融导管、低温消融操作装置及低温消融设备

Publications (1)

Publication Number Publication Date
WO2019196943A1 true WO2019196943A1 (zh) 2019-10-17

Family

ID=62898376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082540 WO2019196943A1 (zh) 2018-04-13 2019-04-12 低温消融导管、低温消融操作装置及低温消融设备

Country Status (6)

Country Link
US (1) US11925403B2 (zh)
EP (1) EP3777737B1 (zh)
JP (1) JP7067825B2 (zh)
CN (1) CN108309432B (zh)
ES (1) ES2934837T3 (zh)
WO (1) WO2019196943A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116898558A (zh) * 2023-06-26 2023-10-20 苏州海宇新辰医疗科技有限公司 一种心脏冷冻消融用球囊导管

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108309432B (zh) * 2018-04-13 2024-04-09 山前(珠海)医疗科技有限公司 低温消融导管、低温消融操作装置及低温消融设备
KR102170109B1 (ko) * 2019-01-04 2020-10-26 (주) 타우피엔유메디칼 비후성 심근증 시술용 냉동절제 카테터
CN112294420B (zh) * 2019-08-02 2022-02-22 深圳北芯医疗科技有限公司 带有传感器阵列的冷冻消融装置
CN112971964B (zh) * 2021-03-02 2022-04-05 首都医科大学附属北京安贞医院 一种用于心脏手术的球囊和消融装置
CN113926062A (zh) * 2021-11-18 2022-01-14 苏州海宇新辰医疗科技有限公司 球囊导管

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458574A (en) * 1994-03-16 1995-10-17 Heartport, Inc. System for performing a cardiac procedure
CN102098972A (zh) * 2008-07-15 2011-06-15 Dgs计算机株式会社 冷冻治疗计划装置和冷冻治疗装置
US20110184400A1 (en) * 2010-01-28 2011-07-28 Medtronic Cryocath Lp Triple balloon catheter
CN105581838A (zh) * 2015-12-31 2016-05-18 宁波胜杰康生物科技有限公司 一种新型肿瘤冷冻消融导管
EP3120792A1 (en) * 2015-07-22 2017-01-25 Fiorenzo Gaita Catheter for cryogenic ablation
WO2017047543A1 (ja) * 2015-09-14 2017-03-23 テルモ株式会社 アブレーションカテーテル
CN106691676A (zh) * 2017-02-22 2017-05-24 上海导向医疗系统有限公司 冷冻球囊导管冷冻消融肺静脉过程中保护食道的保温装置
CN107440782A (zh) * 2017-09-12 2017-12-08 康沣生物科技(上海)有限公司 一种带绝热囊体的冷冻消融导管
CN108309432A (zh) * 2018-04-13 2018-07-24 山前(珠海)医疗科技有限公司 低温消融导管、低温消融操作装置及低温消融设备
CN208926581U (zh) * 2018-04-13 2019-06-04 山前(珠海)医疗科技有限公司 低温消融导管、低温消融操作装置及低温消融设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024740A (en) 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6245064B1 (en) 1997-07-08 2001-06-12 Atrionix, Inc. Circumferential ablation device assembly
US7001378B2 (en) * 1998-03-31 2006-02-21 Innercool Therapies, Inc. Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6602276B2 (en) * 1998-03-31 2003-08-05 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6575966B2 (en) * 1999-08-23 2003-06-10 Cryocath Technologies Inc. Endovascular cryotreatment catheter
JP4702704B2 (ja) * 2005-11-01 2011-06-15 有限会社日本エレクテル バルーンカテーテルシステム
US8465481B2 (en) * 2008-10-20 2013-06-18 Boston Scientific Scimed, Inc. Providing cryotherapy with a balloon catheter having a non-uniform thermal profile
US8636728B2 (en) * 2009-03-11 2014-01-28 Boston Scientific Scimed, Inc. Apparatus and methods for retracting a catheter balloon
US9033965B2 (en) * 2010-02-01 2015-05-19 Boston Scientific Scimed, Inc. Nested balloon cryotherapy
EP2600784B1 (en) * 2010-08-05 2021-12-29 Medtronic Ireland Manufacturing Unlimited Company Cryoablation apparatuses, systems, and methods for renal neuromodulation
US9060754B2 (en) * 2010-10-26 2015-06-23 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
JP2013132364A (ja) * 2011-12-26 2013-07-08 Nippon Erekuteru:Kk バルーンカテーテル
US9220556B2 (en) * 2012-01-27 2015-12-29 Medtronic Cryocath Lp Balloon design to enhance cooling uniformity
US20140200639A1 (en) * 2013-01-16 2014-07-17 Advanced Neuromodulation Systems, Inc. Self-expanding neurostimulation leads having broad multi-electrode arrays
CN107440781B (zh) * 2017-09-12 2020-04-28 康沣生物科技(上海)有限公司 一种头端带绝热保护的冷冻消融导管
CN107411815B (zh) 2017-09-12 2020-06-12 康沣生物科技(上海)有限公司 一种冷冻消融导管及系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458574A (en) * 1994-03-16 1995-10-17 Heartport, Inc. System for performing a cardiac procedure
CN102098972A (zh) * 2008-07-15 2011-06-15 Dgs计算机株式会社 冷冻治疗计划装置和冷冻治疗装置
US20110184400A1 (en) * 2010-01-28 2011-07-28 Medtronic Cryocath Lp Triple balloon catheter
EP3120792A1 (en) * 2015-07-22 2017-01-25 Fiorenzo Gaita Catheter for cryogenic ablation
WO2017047543A1 (ja) * 2015-09-14 2017-03-23 テルモ株式会社 アブレーションカテーテル
CN105581838A (zh) * 2015-12-31 2016-05-18 宁波胜杰康生物科技有限公司 一种新型肿瘤冷冻消融导管
CN106691676A (zh) * 2017-02-22 2017-05-24 上海导向医疗系统有限公司 冷冻球囊导管冷冻消融肺静脉过程中保护食道的保温装置
CN107440782A (zh) * 2017-09-12 2017-12-08 康沣生物科技(上海)有限公司 一种带绝热囊体的冷冻消融导管
CN108309432A (zh) * 2018-04-13 2018-07-24 山前(珠海)医疗科技有限公司 低温消融导管、低温消融操作装置及低温消融设备
CN208926581U (zh) * 2018-04-13 2019-06-04 山前(珠海)医疗科技有限公司 低温消融导管、低温消融操作装置及低温消融设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116898558A (zh) * 2023-06-26 2023-10-20 苏州海宇新辰医疗科技有限公司 一种心脏冷冻消融用球囊导管
CN116898558B (zh) * 2023-06-26 2024-04-30 苏州海宇新辰医疗科技有限公司 一种心脏冷冻消融用球囊导管

Also Published As

Publication number Publication date
JP2021520967A (ja) 2021-08-26
JP7067825B2 (ja) 2022-05-16
US20210045795A1 (en) 2021-02-18
US11925403B2 (en) 2024-03-12
CN108309432B (zh) 2024-04-09
EP3777737A1 (en) 2021-02-17
ES2934837T3 (es) 2023-02-27
EP3777737A4 (en) 2021-06-09
EP3777737B1 (en) 2022-10-05
CN108309432A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2019196943A1 (zh) 低温消融导管、低温消融操作装置及低温消融设备
US7001378B2 (en) Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
CN107411815B (zh) 一种冷冻消融导管及系统
US6605055B1 (en) Balloon catheter with irrigation sheath
US6491039B1 (en) Medical procedure
US7288089B2 (en) Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
JP3650122B2 (ja) 心臓停止カテーテルシステム
US7449018B2 (en) Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
EP0741546B1 (en) Cryogenic mapping and ablation catheter
JP2562861B2 (ja) 冷却電極によるラジオ周波数切除用カテーテルおよび方法
US20040220559A1 (en) Preparation of working fluid for use in cryotherapies
US20080312642A1 (en) Tissue ablation system including guidewire with sensing element
CN109223169A (zh) 肺静脉电隔离球囊结构
US20030014095A1 (en) Preparation of working fluid for use in cryotherapies
WO2003028524A2 (en) Preparation of working fluid for use in cryotherapies
CN112244994A (zh) 一种带有冷却功能的射频消融导管及血管内介入治疗系统
CN208926581U (zh) 低温消融导管、低温消融操作装置及低温消融设备
CN116271298A (zh) 一种房间隔穿刺双腔va-ecmo插管
JP2018515311A (ja) 非閉塞性の周方向血管切除デバイス
CN208693432U (zh) 低温消融导管、低温消融操作装置及低温消融设备
CN207785273U (zh) 一种带推送装置的冷冻消融导管
CN213787826U (zh) 体外循环机耗材保温装置
RU2749632C1 (ru) Способ двусторонней криоденервации легочных артерий и устройство для его осуществления
CN112354031A (zh) 体外循环机耗材保温装置
CN114699163A (zh) 一种具有冷却囊的射频消融导管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019785353

Country of ref document: EP