WO2019196585A1 - 监测业务质量的方法和装置 - Google Patents

监测业务质量的方法和装置 Download PDF

Info

Publication number
WO2019196585A1
WO2019196585A1 PCT/CN2019/077772 CN2019077772W WO2019196585A1 WO 2019196585 A1 WO2019196585 A1 WO 2019196585A1 CN 2019077772 W CN2019077772 W CN 2019077772W WO 2019196585 A1 WO2019196585 A1 WO 2019196585A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
packet
node
monitoring
indication information
Prior art date
Application number
PCT/CN2019/077772
Other languages
English (en)
French (fr)
Inventor
周汉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19784998.7A priority Critical patent/EP3767890B1/en
Publication of WO2019196585A1 publication Critical patent/WO2019196585A1/zh
Priority to US17/037,098 priority patent/US20210014157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/026Capturing of monitoring data using flow identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/028Capturing of monitoring data by filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/12Network monitoring probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/18Protocol analysers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/142Network analysis or design using statistical or mathematical methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • H04L43/106Active monitoring, e.g. heartbeat, ping or trace-route using time related information in packets, e.g. by adding timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and apparatus for monitoring service quality.
  • the terminal (or the UPF device) periodically sends monitoring packets to monitor the service quality of the service between the terminal and the user plane function (UPF).
  • the UPF device receives the monitoring.
  • the service quality of the service is calculated based on the monitoring packet. For example, the UPF device (or terminal) calculates the delay and jitter of the service according to the arrival time of the monitoring packet, and calculates the packet loss rate of the service according to the number of received packets received in the monitoring packet.
  • the embodiment of the present invention provides a method and device for monitoring service quality, which is used to solve the problem that a large number of monitoring messages need to be transmitted between a terminal and a UPF device, thereby greatly increasing the load of the network system.
  • the first aspect provides a method for monitoring service quality, including: the first node acquires a service packet of the first service; the first node encapsulates the service packet, obtains a monitoring packet, and the monitoring packet is used for the first The monitoring of the service quality of the service; the first node sends a monitoring message to the second node.
  • the first node can obtain the monitoring packet by encapsulating the service packet, so as to monitor the service quality of the service, and the first node can use the monitoring packet according to the service packet encapsulation. Service packets monitor the quality of services to avoid overloading the network system.
  • the method further includes: determining, by the first node, that the service packet of the first service is obtained at a preset time.
  • the first node can use the service packet to monitor the service quality of the first service, so as to avoid burdening the network system.
  • the first node encapsulates the service packet, where the first node adds at least one of the following information to the service packet: the first indication information and the first parameter information, and the first indication information It is used to indicate that the monitoring packet is encapsulated by the service packet, and the first parameter information is used for monitoring the service quality of the first service.
  • the second node may obtain the service packet of the first service according to the first indication information to ensure the correct transmission of the service packet. If the first node adds the first parameter information to the service packet, the second node can monitor the service quality of the first service according to the first parameter information, so as to monitor the service quality by using the service packet to avoid aggravating the network system. The load.
  • the monitoring message includes at least one of the following information: a protocol header having the same format as the service packet, and a first field including the first indication information, where the first indication information is used to indicate the monitoring packet. Obtained by the service packet encapsulation.
  • the second node can obtain the service packet of the first service according to the first indication information, and ensure the correct transmission of the service packet.
  • the monitoring packet includes a protocol header in the same format as the service packet, and the protocol header includes the first indication information, where the first indication information is used to indicate that the monitoring packet is encapsulated by the service packet.
  • the possible implementation manner is to enable the second node to obtain the service packet of the first service according to the first indication information, so as to ensure the correct transmission of the service packet.
  • the monitoring packet includes first parameter information, and the first parameter information is used for monitoring the service quality of the first service.
  • the possible implementation manner of the second node is to monitor the service quality of the first service according to the first parameter information, so as to monitor the service quality by using the service packet to avoid burdening the network system.
  • the method further includes: the first node learns, by the control plane device, the manner in which the monitoring packet is generated, and generates the monitoring packet by using the service packet.
  • the first node may determine to use the service packet to generate the monitoring packet according to the manner in which the monitoring packet is generated. Therefore, the first node may use the service packet to monitor the service quality, thereby avoiding the load on the network system. .
  • the period in which the first node sends the monitoring packet is T.
  • the first node may periodically send a monitoring packet to the second node, so as to monitor the service quality of the first service in real time.
  • the method further includes: the first node learning T from the control plane device.
  • the first node periodically sends a monitoring packet to the second node, so as to monitor the service quality of the first service in real time.
  • the first node is a terminal, the second node is a UPF device, and the monitoring packet is an uplink monitoring packet, and the method further includes: the first node receives the first period information from the second node, the first period The information is used to indicate a period in which the second node sends the downlink monitoring message; the first node determines T according to the first period information.
  • the first node may determine T by using the user plane message, and the number of signaling may be reduced as compared with the manner that the first node determines T by the control plane signaling.
  • the first node is a terminal, the second node is a UPF device, and the first parameter information is parameter information carried in the uplink monitoring packet
  • the method further includes: the first node receives the second node from the second node The parameter information, the second parameter information is parameter information carried in the downlink monitoring packet sent by the second node; the first node determines the first parameter information according to the second parameter information.
  • the first node may determine the first parameter information by using the user plane message, and the number of signaling may be reduced as compared with the manner that the first node determines the first parameter information by the control plane signaling.
  • the first node is a UPF device, and the first indication information is included in a protocol header of the GTP layer of the monitoring packet; the first node is a terminal, and the first indication information is included in the SDAP layer of the monitoring packet or In the protocol header of the PDCP layer, the first node is a base station, and the second node is a terminal.
  • the first indication information is included in a protocol header of the SDAP layer or the PDCP layer of the monitoring packet; the first node is a base station, and the second node is a UPF.
  • the first indication information is included in the protocol header of the GTP layer of the monitoring packet.
  • one of the first node and the second node is a terminal, and the other node is a UPF device or a base station; or, one of the first node and the second node is a UPF device, and the other node is another node.
  • the base station For the base station.
  • a method for monitoring a service quality includes: receiving, by a second node, a monitoring packet from a first node, where the monitoring packet includes a service packet of the first service; and the second node is configured according to the monitoring packet to the first service.
  • the service quality is monitored; the second node obtains the service packet in the monitoring packet.
  • the second node can monitor the service quality according to the service packet to avoid burdening the network system.
  • the monitoring packet includes the first indication information, where the first indication information is used to indicate that the monitoring packet is encapsulated by the service packet
  • the method further includes: determining, by the second node, the monitoring packet according to the first indication information Obtained by the service packet encapsulation.
  • the possible implementation manner is to enable the second node to obtain the service packet of the first service according to the first indication information, so as to ensure the correct transmission of the service packet.
  • the monitoring message includes at least one of the following information: a protocol header having the same format as the service packet, and a first field including the first indication information, where the first indication information is used to indicate the monitoring packet. Obtained by the service packet encapsulation.
  • the possible implementation manner is to enable the second node to obtain the service packet of the first service according to the first indication information, so as to ensure the correct transmission of the service packet.
  • the monitoring packet includes a protocol header in the same format as the service packet, and the protocol header includes the first indication information, where the first indication information is used to indicate that the monitoring packet is encapsulated by the service packet.
  • the possible implementation manner is to enable the second node to obtain the service packet of the first service according to the first indication information, so as to ensure the correct transmission of the service packet.
  • the monitoring packet includes the first parameter information
  • the first parameter information is used for monitoring the service quality of the first service
  • the second node monitors the service quality of the first service according to the monitoring packet, including: The second node monitors the service quality of the first service according to the first parameter information included in the monitoring packet and the local context of the monitoring packet.
  • the second node may monitor the service quality of the first service according to the first parameter information, so as to monitor the service quality by using the service packet to avoid burdening the network system.
  • the monitoring packet includes a first identifier, and the first identifier has a corresponding relationship with the local context of the monitoring packet.
  • the method further includes: the second node according to the first identifier and the corresponding identifier included in the monitoring packet The relationship determines the local context of the monitoring message.
  • the second node is a UPF device, and the first node is a terminal.
  • the method further includes: the second node sends the first period information to the first node, where the first period information is used to indicate that the second node sends the downlink.
  • the period of the monitoring packet is used, and the first period information is used for determining the period in which the first node sends the uplink monitoring packet.
  • the first node may determine T by using the user plane message, and the number of signaling may be reduced as compared with the manner that the first node determines T by the control plane signaling.
  • the second node is a UPF device, and the first node is a terminal.
  • the method further includes: the second node sends the second parameter information to the first node, where the second parameter information is the downlink monitoring sent by the second node.
  • the parameter information carried in the packet, the second parameter information is used for determining the first parameter information carried in the uplink monitoring packet sent by the first node; the first parameter information and the second parameter information are used for the service of the first service. Quality monitoring.
  • the first node may determine the first parameter information by using the user plane message, and the number of signaling may be reduced as compared with the manner that the first node determines the first parameter information by the control plane signaling.
  • the second node is a UPF device, and the first indication information is included in a protocol header of the GTP layer of the monitoring packet; the second node is a terminal, and the first indication information is included in the SDAP layer of the monitoring packet or In the protocol header of the PDCP layer, the second node is the base station, the first node is the terminal, the first indication information is included in the protocol header of the SDAP layer or the PDCP layer of the monitoring packet; the second node is the base station, and the first node is the UPF.
  • the first indication information is included in the protocol header of the GTP layer of the monitoring packet.
  • one of the second node and the first node is a terminal, and the other node is a UPF device or a base station; or, in the second node and the first node, one node is a UPF device, and the other node is another node.
  • the base station For the base station.
  • the third aspect provides a method for monitoring the quality of the service, including: the first node acquiring the service packet of the first service; the first node determining that the service packet of the first service is not obtained at the preset time; the first node The monitoring packet is generated, and the monitoring packet is used for monitoring the service quality of the first service; the first node sends the monitoring packet to the second node.
  • the first node generates the monitoring packet when the service packet of the first service is not obtained, so that the continuity of the service quality monitoring of the first service can be ensured.
  • the monitoring message includes at least one of the following: a protocol header having the same format as the service packet and a second field including the second indication information, where the second indication information is used to indicate the monitoring packet. Generated by the first node.
  • the second node may be configured to determine, according to the second indication information, that the monitoring packet is generated by the first node, and the second node is only based on the monitoring packet. The quality of business of the business can be monitored.
  • the monitoring packet includes a protocol header in the same format as the service packet, the protocol header includes the second indication information, and the second indication information is used to indicate that the monitoring packet is generated by the first node.
  • the second node may determine that the monitoring packet is generated by the first node according to the second indication information, and the second node only monitors the service quality of the first service according to the monitoring packet.
  • the monitoring packet includes first parameter information, and the first parameter information is used for monitoring the service quality of the first service.
  • the period in which the first node sends the monitoring packet is T.
  • the first node may periodically send a monitoring packet to the second node, so as to monitor the service quality of the first service in real time.
  • the method further includes: the first node learning T from the control plane device.
  • the first node periodically sends a monitoring packet to the second node, so as to monitor the service quality of the first service in real time.
  • the first node is a terminal, the second node is a UPF device, and the monitoring packet is an uplink monitoring packet, and the method further includes: the first node receives the first period information from the second node, the first period The information is used to indicate a period in which the second node sends the downlink monitoring message; the first node determines T according to the first period information.
  • the first node may determine T by using the user plane message, and the number of signaling may be reduced as compared with the manner that the first node determines T by the control plane signaling.
  • the first node is a terminal, the second node is a UPF device, and the first parameter information is parameter information carried in the uplink monitoring packet
  • the method further includes: the first node receives the second node from the second node The parameter information, the second parameter information is parameter information carried in the downlink monitoring packet sent by the second node; the first node determines the first parameter information according to the second parameter information.
  • the first node may determine the first parameter information by using the user plane message, and the number of signaling may be reduced as compared with the manner that the first node determines the first parameter information by the control plane signaling.
  • the first node is a UPF device, and the second indication information is included in a protocol header of the GTP layer of the monitoring packet; the first node is a terminal, and the second indication information is included in the SDAP layer of the monitoring packet or In the protocol header of the PDCP layer, the first node is a base station, the second node is a terminal, and the second indication information is included in a protocol header of a SDAP layer or a PDCP layer of the monitoring packet; the first node is a base station, and the second node is a UPF.
  • the second indication information is included in the protocol header of the GTP layer of the monitoring packet.
  • one of the first node and the second node is a terminal, and the other node is a UPF device or a base station; or, one of the first node and the second node is a UPF device, and the other node is another node.
  • the base station For the base station.
  • a fourth aspect provides a method for monitoring service quality, including: receiving, by a second node, a monitoring packet from a first node, where the monitoring packet includes second indication information, where the second indication information is used to indicate that the monitoring packet is first
  • the node generates, according to the second indication information, that the monitoring packet is generated by the first node, and the second node monitors the service quality of the first service according to the monitoring packet.
  • the first node generates the monitoring packet to be sent to the second node when the first node does not obtain the service packet of the first service, so that the service of the second node to the first service can be ensured. Continuity of quality monitoring.
  • the monitoring message includes at least one of the following: a protocol header having the same format as the service packet and a second field including the second indication information, where the second indication information is used to indicate the monitoring packet. Generated by the first node.
  • the second node may determine, according to the second indication information, that the monitoring packet is generated by the first node, and the second node only uses the monitoring packet to the first service. The quality of the business can be monitored.
  • the monitoring packet includes a protocol header in the same format as the service packet, the protocol header includes the second indication information, and the second indication information is used to indicate that the monitoring packet is generated by the first node.
  • the second node may determine, according to the second indication information, that the monitoring packet is generated by the first node, and the second node only monitors the service quality of the first service according to the monitoring packet.
  • the monitoring packet includes the first parameter information
  • the first parameter information is used for monitoring the service quality of the first service
  • the second node monitors the service quality of the first service according to the monitoring packet, including: The second node monitors the service quality of the first service according to the first parameter information included in the monitoring packet and the local context of the monitoring packet.
  • the monitoring packet includes a first identifier, and the first identifier has a corresponding relationship with the local context of the monitoring packet.
  • the method further includes: the second node according to the first identifier and the corresponding identifier included in the monitoring packet The relationship determines the local context of the monitoring message.
  • the second node is a UPF device, and the first node is a terminal.
  • the method further includes: the second node sends the first period information to the first node, where the first period information is used to indicate that the second node sends the downlink.
  • the period of the monitoring packet is used, and the first period information is used for determining the period in which the first node sends the uplink monitoring packet.
  • the first node may determine T by using the user plane message, and the number of signaling may be reduced as compared with the manner that the first node determines T by the control plane signaling.
  • the second node is a UPF device, and the first node is a terminal.
  • the method further includes: the second node sends the second parameter information to the first node, where the second parameter information is the downlink monitoring sent by the second node.
  • the parameter information carried in the packet, the second parameter information is used for determining the first parameter information carried in the uplink monitoring packet sent by the first node; the first parameter information and the second parameter information are used for the service of the first service. Quality monitoring.
  • the first node may determine the first parameter information by using the user plane message, and the number of signaling may be reduced as compared with the manner that the first node determines the first parameter information by the control plane signaling.
  • the second node is a UPF device
  • the second indication information is included in a protocol header of the GTP layer of the monitoring packet
  • the second node is a terminal
  • the second indication information is included in the SDAP layer of the monitoring packet or
  • the protocol header of the PDCP layer the second node is the base station
  • the first node is the terminal
  • the second indication information is included in the protocol header of the SDAP layer or the PDCP layer of the monitoring packet
  • the second node is the base station
  • the first node is the UPF.
  • the second indication information is included in the protocol header of the GTP layer of the monitoring packet.
  • one of the second node and the first node is a terminal, and the other node is a UPF device or a base station; or, in the second node and the first node, one node is a UPF device, and the other node is another node.
  • the base station For the base station.
  • the fifth aspect provides an apparatus for monitoring service quality, including: a processing unit and a communication unit; a processing unit, configured to obtain a service packet of the first service; and a processing unit, configured to encapsulate the service packet, and obtain The monitoring message is used to monitor the service quality of the first service; the communication unit is configured to send the monitoring message to the second node.
  • the processing unit is further configured to determine that the service packet of the first service is obtained at a preset time.
  • the processing unit is specifically configured to: add at least one of the following information to the service packet: the first indication information and the first parameter information, where the first indication information is used to indicate that the monitoring packet is used by the service The packet is encapsulated, and the first parameter information is used for monitoring the service quality of the first service.
  • the monitoring message includes at least one of the following information: a protocol header having the same format as the service packet, and a first field including the first indication information, where the first indication information is used to indicate the monitoring packet. Obtained by the service packet encapsulation.
  • the monitoring packet includes a protocol header in the same format as the service packet, and the protocol header includes the first indication information, where the first indication information is used to indicate that the monitoring packet is encapsulated by the service packet.
  • the monitoring packet includes first parameter information, and the first parameter information is used for monitoring the service quality of the first service.
  • a possible implementation manner is that the communication unit is further configured to learn, by using the control plane device, the manner in which the monitoring packet is generated, and the generating manner is to generate the monitoring packet by using the service packet.
  • the device sends a monitoring packet with a period of T.
  • the communication unit is further configured to learn T from the control plane device.
  • the device is a terminal
  • the second node is a UPF device
  • the monitoring packet is an uplink monitoring message
  • the communication unit is further configured to receive the first period information from the second node, where the first period information is used.
  • the processing unit is further configured to determine T according to the first period information.
  • the device is a terminal
  • the second node is a UPF device
  • the first parameter information is parameter information carried in the uplink monitoring packet
  • the communication unit is further configured to receive the second parameter information from the second node
  • the second parameter information is parameter information carried in the downlink monitoring packet sent by the second node
  • the processing unit is further configured to determine the first parameter information according to the second parameter information.
  • the device is a UPF device, and the first indication information is included in a protocol header of the GTP layer of the monitoring packet; the device is a terminal, and the first indication information is included in the SDAP layer or the PDCP layer of the monitoring packet.
  • the protocol header the device is a base station, and the second node is a terminal, and the first indication information is included in a protocol header of the SDAP layer or the PDCP layer of the monitoring packet; the device is a base station, and the second node is a UPF device, first The indication information is included in the protocol header of the GTP layer of the monitoring message.
  • one of the first node and the second node is a terminal, and the other node is a UPF device or a base station; or, one of the first node and the second node is a UPF device, and the other node is another node.
  • the base station For the base station.
  • the sixth aspect provides an apparatus for monitoring service quality, including: a communication unit and a processing unit; and a communication unit, configured to receive a monitoring packet from the first node, where the monitoring packet includes a service packet of the first service;
  • the device is configured to monitor the service quality of the first service according to the monitoring packet, and the processing unit is further configured to obtain the service packet in the monitoring packet.
  • the monitoring packet includes the first indication information, where the first indication information is used to indicate that the monitoring packet is encapsulated by the service packet, and the processing unit is further configured to determine, according to the first indication information, the monitoring packet by the service.
  • the message is encapsulated.
  • the monitoring message includes at least one of the following information: a protocol header having the same format as the service packet, and a first field including the first indication information, where the first indication information is used to indicate the monitoring packet. Obtained by the service packet encapsulation.
  • the monitoring packet includes a protocol header in the same format as the service packet, and the protocol header includes the first indication information, where the first indication information is used to indicate that the monitoring packet is encapsulated by the service packet.
  • the monitoring packet includes first parameter information
  • the first parameter information is used for monitoring the service quality of the first service
  • the processing unit is specifically configured to use the first parameter information and the monitoring report included in the monitoring packet.
  • the local context of the text monitors the quality of service of the first service.
  • the monitoring packet includes a first identifier, where the first identifier has a corresponding relationship with the local context of the monitoring packet, and the processing unit is further configured to determine, according to the first identifier and the corresponding relationship included in the monitoring packet, Monitor the local context of the message.
  • the device is a UPF device
  • the first node is a terminal
  • the communication unit is further configured to send, to the first node, first cycle information, where the first cycle information is used to indicate that the device sends the downlink monitoring packet.
  • the period, the first period information is used for determining the period in which the first node sends the uplink monitoring message.
  • the device is a UPF device, and the first node is a terminal; the communication unit is further configured to send the second parameter information to the first node, where the second parameter information is carried in the downlink monitoring packet sent by the device.
  • the parameter information is used for determining the first parameter information carried in the uplink monitoring packet sent by the first node; the first parameter information and the second parameter information are used for monitoring the service quality of the first service.
  • the device is a UPF device, and the first indication information is included in a protocol header of the GTP layer of the monitoring packet; the device is a terminal, and the first indication information is included in the SDAP layer or the PDCP layer of the monitoring packet.
  • the protocol header the device is a base station, and the first node is a terminal, and the first indication information is included in a protocol header of the SDAP layer or the PDCP layer of the monitoring packet; the device is a base station, and the first node is a UPF device, first The indication information is included in the protocol header of the GTP layer of the monitoring message.
  • one of the second node and the first node is a terminal, and another node is a UPF device or a base station; or one of the second node and the first node The node is a UPF device and the other node is a base station.
  • an apparatus for monitoring quality of service having the function of implementing any of the methods provided by the third aspect.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the device can exist in the form of a chip product.
  • an apparatus for monitoring quality of service having the function of implementing any of the methods provided by the fourth aspect.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the device can exist in the form of a chip product.
  • a ninth aspect provides an apparatus for monitoring quality of service, comprising: a memory and a processor; a memory for storing a computer to execute an instruction, and a processor executing a computer-executed instruction of the memory storage to enable the apparatus to implement the first or third aspect Any of the methods provided.
  • the device can exist in the form of a chip product.
  • a tenth aspect provides an apparatus for monitoring quality of service, comprising: a memory and a processor; a memory for storing a computer to execute an instruction, and a processor executing a computer-executed instruction of the memory storage to enable the apparatus to implement the second or fourth aspect Any of the methods provided.
  • the device can exist in the form of a chip product.
  • a computer readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform any of the methods provided by the first or third aspect.
  • a computer readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform any one of the methods provided by the second or fourth aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform any of the methods provided by the first or third aspect.
  • a fourteenth aspect there is provided a computer program product comprising instructions which, when run on a computer, cause the computer to perform any of the methods provided by the second or fourth aspect.
  • FIG. 1 is a schematic diagram of a QoS Flow according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a 5G network according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an EPS network according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a service flow according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of loopback monitoring according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a protocol stack according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a method for configuring a local context in a node according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart of a method for monitoring service quality according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a packet structure according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of still another packet structure according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of still another packet structure according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of still another packet structure according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of still another packet structure according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the words “first”, “second”, and the like are used to distinguish the same items or similar items whose functions and functions are substantially the same. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the number and execution order, and the words “first”, “second” and the like are not necessarily limited.
  • the 3GPP standards group developed the next generation mobile communication system (next generation system) network architecture at the end of 2016. It is called the fifth generation (5th generation, 5G for short) network architecture.
  • the 5G network architecture defines an ultra-reliable low latency communication (URLLC) scenario, which mainly includes services such as driverless, industrial automation, and smart grid that require low latency and high reliability. .
  • the above services are carried in different 5G networks through different quality of service (QoS) flows.
  • QoS Flow 1, QoS Flow 2, and QoS Flow 3 may be included between the terminal and the UPF entity.
  • Different QoS flows may have different service requirements, such as delay, packet loss rate, or jitter.
  • 5G networks are required to provide real-time service quality. (Also called business service quality) monitoring, so that when the quality of the service does not meet the preset conditions, corresponding adjustment measures or protection measures can be taken.
  • the existing 5G technical standards (TS) 22.186 stipulates that in the remote driving scenario, the end-to-end delay between the terminal and the server needs to be kept within 5ms, and if the service quality is not satisfied in time, By setting conditions, it is possible to control the vehicle to switch from the remote driving mode to the autonomous driving mode, thereby avoiding an accident caused by a network failure.
  • the terminal and/or the UPF device construct a monitoring packet according to a certain frequency.
  • the transmission frequency of the monitoring message is directly proportional to the URLLC delay index. That is, the higher the delay index requirement of the URLLC service, the higher the frequency of monitoring packets, and the more accurate the quality of the service obtained by the monitoring.
  • the higher the frequency of monitoring packets the more the terminal and/or the UPF device need to generate more monitoring packets, which will bring a certain load to the network system, especially when the network system is already in a high load or congestion state.
  • Monitoring messages can increase the load on the network or congestion, which may affect the business itself.
  • FIG. 2 is a schematic diagram showing the hardware structure of a communication apparatus according to an embodiment of the present application.
  • the communication apparatus may be a first node or a second node in the following.
  • the communication device 20 includes at least one processor 201, a communication bus 202, a memory 203, and at least one communication interface 204.
  • the processor 201 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the program of the present application. Execution of the integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 202 can include a path for communicating information between the components described above.
  • the communication interface 204 uses a device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN) devices, and wireless local area networks (referred to as wireless local area networks). WLAN) and so on.
  • a device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN) devices, and wireless local area networks (referred to as wireless local area networks).
  • WLAN wireless local area networks
  • the memory 203 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or a device that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical discs.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • Storage optical storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures And any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory may be stand-alone and connected to the processor via communication bus 202.
  • the memory can also be integrated with the processor.
  • the memory 203 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 201 for execution.
  • the processor 201 is configured to execute computer-executed instructions stored in the memory 203 to implement the methods provided by the embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as an application code, which is not specifically limited in this embodiment of the present application.
  • processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • communication device 20 may include multiple processors, such as processor 201 and processor 208 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • processors herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • communication device 20 may also include an output device 205 and an input device 206.
  • Output device 205 is in communication with processor 201 and can display information in a variety of ways.
  • the output device 205 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector.
  • Input device 206 is in communication with processor 201 and can receive user input in a variety of ways.
  • input device 206 can be a mouse, keyboard, touch screen device or sensing device, and the like.
  • the 5G network architecture may include multiple network functions (NF functions) devices: an authentication server function (AUSF) device, access and mobility management functions (access and Mobility management function (AMF) device, data network (DN), unified data management (UDM) device, policy control function (PCF) device, (wireless) access A (radio) access network (abbreviated as (R)AN) device, a UPF device, a terminal, an application function (AF) device, and a session management function (SMF) device.
  • NF functions network functions
  • AUSF authentication server function
  • AMF access and mobility management functions
  • DN data network
  • UDM unified data management
  • PCF policy control function
  • R radio access A
  • UPF radio access network
  • AF application function
  • SMF session management function
  • the device may also be referred to as a network element or an entity.
  • the UDM device, the AUSF device, the PCF device, the AMF device, and the SMF device in FIG. 3 may also be collectively referred to as a control plane function (CPF) device, which is not specifically limited in this embodiment of the present application.
  • CPF control plane function
  • AN device functions include: radio resource management, uplink and downlink data classification, user plane data forwarding, and wireless connection.
  • UPF device features include: packet routing and forwarding.
  • the UPF device can also serve as a mobility anchor, an uplink classifier to support routing traffic to a DN, or a branch point (BP) to support a multi-homed packet data unit (PDU) session.
  • the UPF device can also perform data statistics, speed limit, and statistical reporting.
  • the DN can serve operators, Internet access or third party services.
  • the AMF device functions include management user registration, reachability detection, SMF node selection, and mobile state transition management.
  • the SMF device functions include: performing session management functions, such as PDU session establishment, modification or deletion, QoS Flow establishment, user plane resource establishment, and the like.
  • the PCF device includes functions such as providing rules based on traffic data flow and application detection, gating, QoS, and flow-based charging control.
  • the AF device function includes: interacting with the 3GPP core network to provide services to affect service flow routing, access network capability opening, policy control, and the like.
  • the main functions of the AUSF device include: providing authentication services.
  • the main functions of the UDM device include: storing user subscription data.
  • the access network device, the AMF device, the SMF device, the AUSF device, the UDM device, the UPF device, and the PCF device of FIG. 3 are only one name, and the name is not limited to the device itself.
  • the network element or the device corresponding to the access network device, the AMF device, the SMF device, the AUSF device, the UDM device, the UPF device, and the PCF device may also be other names.
  • the UDM device may be replaced with a home subscriber server (HSS) or a user subscription database (USD) or a database device, etc., and is uniformly described herein. Narration.
  • FIG. 3 is only an exemplary architecture diagram.
  • the 5G network architecture may also include other functional devices.
  • the method provided by the embodiment of the present application can also be applied to an evolved packet system (EPS) network shown in FIG. 4 (that is, a so-called fourth generation (4th generation) network).
  • the EPS network may include a plurality of functional network elements: a terminal, an evolved universal terrestrial radio access network (E-UTRAN) (specifically, an eNodeB), and a service.
  • E-UTRAN evolved universal terrestrial radio access network
  • a gateway serving gateway, SGW for short
  • PGW packet data network gateway
  • MME mobility management entity
  • HSS HSS
  • MSC mobile switching center
  • MSC mobile switching center
  • PCRF Policy and charging rules function
  • the SGW and the PGW may be collectively referred to as a gateway (GW).
  • GW gateway user plane function
  • GW-C gateway control plane function
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the terminal involved in the embodiment of the present application may also be referred to as a user equipment (UE).
  • UE user equipment
  • it may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem; and may also include a subscriber unit, a cellular phone, Smart phone, wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld, laptop computer, cordless Cordless phone or wireless local loop (WLL) station, machine type communication (MTC) terminal, mobile station (MS), terminal device, etc.
  • PDA personal digital assistant
  • modem wireless modem
  • WLL cordless Cordless phone or wireless local loop
  • MTC machine type communication
  • MS mobile station
  • the access network device involved in the embodiment of the present application refers to a device that accesses the core network, and may be, for example, a base station, a broadband network gateway (BNG), an aggregation switch, and a non-3GPP. Access network equipment, etc.
  • the base station may include various forms of base stations, such as macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device having a base station function may be different.
  • 3G third-generation
  • eNodeB In the fourth generation system, it is called eNodeB; in the fifth generation system, it is called gNB (gNodeB).
  • the service flow in the embodiment of the present application includes a service aggregation flow and a service sub-flow.
  • the service aggregation flow includes a bearer or packet data network (PDN) connection, and the service sub-flow includes a specific one in the bearer in the 4G or 4.5th generation (4.5G) network.
  • business flow In a 5G network, the service aggregation flow includes a QoS Flow or a packet data unit (PDU) session, and the service sub-flow includes a specific service flow within the QoS Flow.
  • PDN packet data network
  • PDU packet data unit
  • QoS Flow1 is composed of substream 1 and substream 2, and substream 1 and substream 2 respectively correspond to different service flows.
  • the sub-flow 1 corresponds to the vehicle to everything communication (V2X) service flow 1
  • the sub-flow 2 corresponds to the V2X service flow 2
  • the service aggregation flow in FIG. 5 includes the PDU session, QoS Flow1, QoS Flow2 And QoS Flow3, the service subflow of QoS Flow1 includes substream 1 and substream 2.
  • the service sub-flow or the service aggregation flow can be used to transmit service packets and monitoring packets.
  • a service packet is a user packet, that is, a packet transmitted by a terminal or an application server through a mobile network due to execution of a certain service.
  • the monitoring packet is specifically a packet for monitoring the quality of service in the mobile network.
  • the monitoring packet is constructed by the packet sending device (hereinafter referred to as the first node), and the packet sending device can be a terminal in the 5G network.
  • the access network device or the gateway (GW) is not specifically limited in this embodiment.
  • the monitoring types of monitoring service quality in the embodiments of the present application include three types of monitoring: link connectivity monitoring, service transmission performance monitoring, and loopback (LB) monitoring.
  • link connectivity monitoring link connectivity monitoring
  • service transmission performance monitoring service transmission performance monitoring
  • loopback (LB) monitoring loopback monitoring
  • the link connectivity monitoring is performed by the packet sending device periodically sending the monitoring packet.
  • the packet receiving device (hereinafter referred to as the second node) determines whether the link is faulty by monitoring the arrival of the packet.
  • the decision-making basis of the sending period is mainly based on factors such as delay, for example, the packet transmission delay requires end-to-end 6 ms, and the sending period is 2 ms. If the packet receiving device does not receive the monitoring packet for three consecutive periods, The link failure is considered, that is, the arrival interval of the monitoring packet does not meet the service quality requirement of the service.
  • parameters required for the packet sending device include: service flow identifier and sending period.
  • the service flow identifier is used to indicate the service flow of the service, and the sending period is a time interval between consecutively sending two monitoring messages.
  • the service flow identifier may be a PDU session identifier (ID) or a terminal address information or a universal used to carry the PDU session.
  • ID PDU session identifier
  • TEID tunnel endpoint identifier
  • GTP general packet radio service protocol
  • the service flow identifier may be a QoS session identifier (QoS Flow ID, QFI for short), that is, a QoS in a PDU session of the terminal may be determined according to the PDU session identifier + QFI. Flow.
  • QoS Flow ID QoS Flow ID
  • the service flow identifier may be a quintuple or other address information that can uniquely determine a specific service flow in the QoS Flow, such as a source MAC address and a destination MAC address. address.
  • the five-element The group includes an origin network protocol (IP) address, a destination IP address, a source port number, a destination port number, and a transport layer protocol number.
  • IP origin network protocol
  • the service flow identifier may include a PDN connection identifier, that is, a PDN connection of the terminal may be determined according to the PDN connection identifier.
  • the service flow identifier may be a PDN connection identifier + a bearer identifier, that is, one bearer in a PDN connection of the terminal may be determined according to the PDN connection identifier + the bearer identifier.
  • the service flow is a specific service flow in the bearer
  • the service flow identifier may be the above-mentioned five-tuple, that is, a specific service flow may be uniquely determined according to the five-tuple. A unified explanation is given here, and will not be described below.
  • the parameters required by the packet sending device may further include at least one of a context identifier of the monitoring packet and a monitoring type.
  • the type of the service quality monitoring used by the monitoring type to indicate the service is link connectivity monitoring.
  • the context identifier of the monitoring message is used to indicate the local context of the monitoring message.
  • the local context of the monitoring packet in the packet sending device may include at least one of a sending period of the monitoring packet, a monitoring type, a context identifier of the monitoring packet, and a service flow identifier.
  • the parameters required by the packet receiving device include: a service flow identifier, a receiving period, and a fault decision threshold.
  • the service flow identifier is used to indicate the service flow of the service
  • the receiving period is a time interval between consecutively receiving two monitoring messages
  • the fault decision threshold is used for fault identification.
  • the packet transmission delay requires end-to-end 6ms. If the receiving period is 2ms, the fault decision threshold should be set to 3. If the packet receiving device does not receive the monitoring packet for 3 consecutive periods, the chain can be considered as a chain. Road failure.
  • the service flow identifiers in the parameters required by the packet receiving device and the packet sending device are the same, and the sending period and the receiving period are the same, which are uniformly described herein, and are not described here.
  • the parameters required by the message receiving device may further include at least one of an identifier of the context of the monitoring message, a type of monitoring, and an action after the failure.
  • the action after the fault may be, for example, the initiation of the loopback detection for the fault location, or the reporting of the fault to the control plane, etc., which is not specifically limited in this embodiment.
  • the context identifier of the monitoring message is used to indicate the local context of the monitoring message.
  • the local context of the monitoring packet in the packet receiving device may include the monitoring packet receiving period, the fault decision threshold, the monitoring type, the context identifier of the monitoring packet, the service flow identifier, and the fault. At least one of the corresponding actions is collectively described herein, and will not be described below.
  • the packet sending device and the packet receiving device may also pass through an intermediate device.
  • the packet sending device is a terminal
  • the packet receiving device is A UPF device, which may be, for example, an access network device.
  • the parameters required by the intermediate device include: at least one of an identifier of the context of the monitoring packet, a monitoring type, a processing mode, a fault decision threshold, and a corresponding action of the fault.
  • the processing mode of the intermediate device includes transparently transmitting or transmitting a monitoring period of the monitoring packet to the packet receiving device to a receiving period in which the intermediate device receives the monitoring packet from the packet sending device.
  • the monitoring of the service quality can also be performed through the intermediate device, which is not specifically limited in this embodiment.
  • the parameters required by the packet receiving device, the parameters required by the intermediate device, and the parameters required by the packet sending device may further include other parameters, which are not specifically limited in this embodiment of the present application. .
  • Service transmission performance monitoring is mainly used to monitor the service transmission performance of service flows, such as packet loss rate or jitter.
  • the basic principle is to calculate the packet loss rate or jitter condition by exchanging statistics information between the packet sending device and the packet receiving device.
  • parameters required for the packet sending device include: service flow identifier and sending period.
  • the sending period may be time-based, for example, sending a monitoring message in 2 seconds; or the sending period may be based on the amount of data.
  • the packet sending device may send a 1M (mega) service packet to monitor.
  • the statistics of the service packets are sent in the packet.
  • the parameter required by the packet sending device may further include at least one of an identifier of a context of the monitoring packet and a monitoring type.
  • the type of the monitoring type used to indicate the quality of service monitoring of the service is service transmission performance monitoring.
  • the context identifier of the monitoring message is used to indicate the local context of the monitoring message.
  • the local context of the monitoring packet in the packet sending device may include at least one of a service flow identifier, a sending period of the monitoring packet, an identifier of the context of the monitoring packet, and a monitoring type. This is a unified description, which will not be described below.
  • the parameters required by the packet receiving device include: a service flow identifier and a transmission performance threshold.
  • the transmission performance threshold is used for performing transmission performance discrimination, wherein the transmission performance threshold may be, for example, a packet loss rate threshold or a jitter threshold. For example, if the packet loss rate threshold is 0.5%, when the packet receiving device determines that the current packet loss rate is 0.5% or exceeds 0.5%, the service transmission performance may not be considered as satisfactory. Or, for example, if the jitter threshold is 2 ms, when the packet receiving device determines that the current jitter value is 2 ms or exceeds 2 ms, the service transmission performance may be considered as not satisfying the requirement.
  • the parameters required by the message receiving device may further include at least one of an identifier of the context of the monitoring message, a type of monitoring, and an action corresponding to the failure.
  • the corresponding action of the fault may be, for example, initiating loopback detection for fault location, or reporting the fault to the control plane, etc., which is not specifically limited in this embodiment of the present application.
  • the context identifier of the monitoring message is used to indicate the local context of the monitoring message.
  • the local context of the monitoring packet in the packet receiving device may include at least one of a service flow identifier, a transmission performance threshold, an identifier monitoring type of the context of the monitoring packet, and a corresponding action of the fault.
  • the parameters required by the packet receiving device and the parameters required by the packet sending device may further include other parameters, which are not specifically limited in this embodiment.
  • Loopback monitoring is mainly used to monitor the loopback delay and fault location of service flows.
  • the basic principle is to implement loopback delay measurement and fault location by sending monitoring packets through the packet sending and receiving device (both the packet sending device and the packet receiving device).
  • the main difference between loopback monitoring and link connectivity monitoring and service transmission performance monitoring is that loopback monitoring has a loopback device.
  • the function of the loopback device is to return the monitoring packet.
  • the first node in the following embodiment performs loopback monitoring on the service quality
  • the first node may be a packet sending and receiving device
  • the second node may be a loopback device.
  • the second node is After receiving the monitoring packet sent by the first node, the monitoring packet is also returned to the first node.
  • the parameters required for the packet sending and receiving device include the service flow identifier, the loopback path length information, and the context identifier of the monitoring packet.
  • the loopback path length information is used for fault location.
  • the context identifier of the monitoring message is used to indicate the local context of the monitoring message.
  • the local context of the monitoring packet in the packet sending and receiving device may include the service flow identifier, the loopback path length information, and the context identifier of the monitoring packet, which are uniformly described herein, and are not described here.
  • the parameters required for the loopback device include: service flow identifier.
  • the parameters required for the loopback device may further include a context identifier of the monitoring packet.
  • the context identifier of the monitoring message is used to indicate the local context of the monitoring message.
  • the local context of the monitoring packet in the loopback device may include at least one of the service flow identifier or the context identifier of the monitoring packet, which is uniformly described herein, and is not described here.
  • FIG. 6 a schematic diagram of loopback monitoring provided by an embodiment of the present application.
  • the terminal initiates loopback detection, and the context identifier of the monitoring packet is 1. Since the base station includes the context corresponding to the context identifier of the monitoring packet, the base station itself can be determined as the loopback device according to the context of the monitoring packet, and then the base station The monitoring message can be looped back to the terminal. After receiving the monitoring packet, the terminal can continue to initiate the loopback monitoring.
  • the context identifier of the monitoring packet is 2. Since the base station does not include the context corresponding to the context identifier of the monitoring packet, the base station treats the packet as a normal service packet.
  • the UPF device can be configured as a loopback device according to the context of the monitoring packet, and the UPF device can monitor the packet ring. Go back to the terminal. Because the terminal knows the segmentation loopback delay and the end-to-end delay, if a certain path is faulty, it can be detected by loopback monitoring.
  • the parameters required for the packet sending and receiving device and the parameters required for the loopback device may further include other parameters, which are not specifically limited in the embodiment of the present application.
  • the present application is only an exemplary monitoring type for providing quality of service monitoring for several services.
  • other monitoring types may also exist, which are not specifically limited in this embodiment of the present application.
  • the local context may also include the first For information about parameter information, packet generation mode, and service quality decision threshold, refer to the description in related sections below.
  • the format of the packet of the service packet and the monitoring packet is described below.
  • the monitoring packet and the service packet in the embodiment of the present application use the same 3GPP network protocol header.
  • the main difference is that the load type of the monitoring packet is a monitoring packet, and the payload type of the service packet is a service packet.
  • the 3GPP network protocol header corresponds to the protocol stack in FIG. It can be seen from FIG. 7 that the 3GPP network protocol header between the terminal and the access network device includes a service data adaptation protocol (SDAP) header and a packet data convergence protocol (packet data convergence protocol).
  • SDAP service data adaptation protocol
  • packet data convergence protocol packet data convergence protocol
  • the abbreviation (PDCP) header and the lower protocol layer headers, the lower protocol layer headers include a radio link control (RLC) layer, a media access control (MAC) layer and a Layer (level1, referred to as L1).
  • the 3GPP network protocol header between the access network device and the UPF entity includes a GPRS tunnelling protocol for the user plane (GTP-U) header and a lower protocol layer header, and the lower layer protocol layer headers
  • the department includes a user datagram protocol (UDP) or an internet protocol (IP) layer, and two layers (level 2, L2 for short) and L1.
  • UDP user datagram protocol
  • IP internet protocol
  • L2 two layers
  • the service packet corresponding to the monitoring packet is a service packet corresponding to the same service flow as the monitoring packet.
  • the service packet corresponding to the monitoring packet 1 in FIG. 5 is the service packet 1, and the monitoring is performed.
  • the service packet corresponding to the packet 2 is the service packet 2
  • the service packet corresponding to the monitoring packet 3 is the service packet 3, and so on.
  • the monitoring packet in the embodiment of the present application may be referred to as a link quality awareness protocol (LQAP) packet, and may also be referred to as another packet. .
  • LQAP link quality awareness protocol
  • the embodiment of the present application provides a service quality monitoring method for monitoring service quality of a first service by using a first node and a second node.
  • the first service is a service that needs to perform service quality monitoring, and does not specifically refer to a certain service.
  • the local context of the monitoring packet in the first node and/or the second node may be configured, where the first node is the terminal, the second node is the UPF device, and
  • the configuration process is performed in a 5G network as an example to illustrate the configuration process. In the configuration process of FIG.
  • the local context of the monitoring packet in the first node is simply referred to as the local context of the first node
  • the local context of the monitoring packet in the second node is simply referred to as the first context.
  • the local context of the two nodes The context identifier of the local context of the first node is referred to as a first context identifier
  • the context identifier of the local context of the second node is referred to as a second context identifier.
  • the configuration process of the local context of the first node and the second node includes:
  • the SMF determines to establish a local context of the first node and the second node.
  • the first node and the second node are the transceivers of the service packets of the first service.
  • the monitoring packet is an LQAP packet
  • the first node and the first node can be determined by configuring the local context at the first node and the second node. LQAP connection between two nodes.
  • the SMF may determine to establish a local context of the first node and the second node by triggering any one or more of the following conditions: (1), the SMF receives the first sent by another network device (eg, PCF). Monitoring instructions for the business. (2) The SMF is determined according to a local policy (or local configuration information). For example, when the service meets the preset condition in the local policy, the SMF determines to establish the local context of the first node and the second node.
  • a local policy or local configuration information
  • the preset condition may be that the reliability requirement of the service is greater than the preset threshold, and if the terminal determines that the reliability requirement of the QoS flow is greater than a preset threshold according to the QoS requirement of the QoS flow, the SMF determines to establish the QoS flow corresponding to the QoS flow.
  • the local context of the service side of the service's service message For example, if the local policy includes the information about the service quality monitoring of the PDU session of the terminal, the SMF determines to establish and send a service packet corresponding to the service corresponding to the PDU session. The local context of the monitoring message.
  • the SMF determines a local context of the first node and the second node, and assigns a context identifier to the local context of the first node and the second node.
  • the local context may include an identifier of the service flow of the first service, a sending and/or receiving rule of the monitoring packet, and one or more information in the manner of generating the monitoring packet.
  • the information may also include other information. This example does not specifically limit this.
  • the local context of the first node and the second node can be:
  • the first node a service flow identifier + an uplink transmission rule + a downlink reception rule.
  • the second node a service flow identifier + a downlink transmission rule + an uplink reception rule.
  • the uplink sending rule may include one or more information in an uplink sending period and a generating manner of the monitoring packet, where the downlink sending rule may include one or more information in a downlink sending period and a generating manner of the monitoring packet.
  • the downlink receiving rule may include a downlink receiving period, and the uplink receiving rule may include an uplink receiving period.
  • the uplink transmission period is the period in which the uplink monitoring packet is sent, and the downlink receiving period is the period in which the downlink monitoring packet is received.
  • the downlink transmission period is the period in which the downlink monitoring packet is sent, and the uplink receiving period is the period in which the uplink monitoring packet is received.
  • the uplink sending period and the downlink sending period may be the same or different.
  • the downlink receiving period and the uplink receiving period may be the same or different, which is not specifically limited in this embodiment of the present application.
  • the PCF sends a monitoring indication of the first service to the SMF, where the monitoring indication includes: the first service One or more of the identification of the service flow, the uplink transmission and/or the uplink reception period of the monitoring packet, the downlink transmission and/or the downlink reception period of the monitoring packet, and the manner in which the monitoring packet is generated.
  • the SMF receives the monitoring indication of the first service sent by the PCF, determines the service that needs to perform the service quality monitoring according to the service flow identifier in the monitoring indication, and determines the local context of the transceiver end of the service packet that establishes the service.
  • the sending period of the monitoring packet (which may be an uplink sending period or a downlink sending period) may be displayed or implicitly indicated.
  • the monitoring indication may indicate that the transmission period of the monitoring message is 2 seconds.
  • the monitoring indication may indicate the fault-aware time that the first service is expected to reach (that is, how long the network experiences after the link failure occurs, the fault event can be perceived), and the SMF receives the The fault-aware time determines the sending period of the monitoring packet.
  • the sending period of the monitoring packet is less than or equal to the fault-aware time.
  • the SMF can multiply the fault-aware time by a value greater than 0 and less than or equal to 1 to obtain the monitoring packet. cycle.
  • the indication manner of the receiving period of the monitoring packet (which may be the uplink receiving period or the downlink receiving period) is the same, and is not described here.
  • the monitoring packet is generated in the following manner: a) The first node generates a monitoring packet by itself. b) The first node encapsulates the service packet to obtain a monitoring packet.
  • the PCF can determine the generation mode of the monitoring packet according to the current running condition of the network. For example, when the network load is light, the PCF determines that the monitoring packet can be generated in a). When the network load is heavy, the PCF determines the monitoring. The message can be generated in the form b).
  • the SMF may determine the identity of the service flow of the first service, the uplink sending and/or the uplink receiving period of the monitoring packet according to the local policy. And monitoring one or more of the downlink sending and/or the downlink receiving period of the packet and the generating manner of the monitoring packet; or the SMF may negotiate with the first node and/or the second node to determine the uplink sending of the monitoring packet. And/or one or more of the uplink receiving period, the downlink sending and/or the downlink receiving period of the monitoring packet, and the manner of generating the monitoring packet.
  • the SMF sends the first node's local context and the first context identifier to the first node.
  • the first node receives the local context and the first context identifier of the first node from the SMF.
  • the first context identifier is used by the first node to obtain a local context of the first node according to the identifier.
  • the local context and/or the first context identifier of the first node may be included in a non-access stratum (NAS) message sent by the base station to the first node.
  • NAS non-access stratum
  • the first node associates a local context of the first node with the first service.
  • the first node determines the service flow of the first service according to the service flow identifier in the local context of the first node; the first node stores the local context of the first node into the local context of the service flow of the first service.
  • the first node determines the service flow of the first service according to the service flow identifier in the local context of the first node; where the local context includes the identifier of the service flow of the first service.
  • the SMF sends a local context and a second context identifier of the second node to the second node.
  • the second node receives the local context and the second context identifier of the second node from the SMF.
  • the second context identifier is used by the second node to obtain a local context of the second node according to the identifier.
  • the local context and/or second context identifier of the second node may be included in the N4 session message.
  • the second node associates a local context of the second node with the first service.
  • step 806 reference may be made to step 804, and details are not described herein again.
  • the SMF may also send the local context of the base station and the context identifier of the local context of the base station to the base station, where the base station uses the local context of the base station and The first service association, the associated method is similar to the method described in step 804.
  • the local context of the base station and the context identifier of the local context of the base station may be included in the N2 message.
  • the local context of the base station may include: a service flow identifier + an uplink reception rule + a downlink reception rule + a message processing rule.
  • the message processing rule is the processing method shown in Table 1. It should be noted that, if the base station transparently transmits the monitoring message between the UPF device and the terminal, the SMF may not determine the local context of the base station and the context identifier of the local context of the base station.
  • the first node may return to the SMF after receiving the local context of the first node (or the second node, or the base station) and the identity of the local context.
  • a response message the response message is used to notify the SMF that the first node (or the second node, or the base station) has received the local context of the first node (or the second node, or the base station) and the identity of the local context.
  • the SMF may configure a local context for the first node and the second node (in this case, one PDU session or one QoS Flow corresponds to a local context), or Configuring a plurality of local contexts for the first node and the second node (in this case, one PDU session or each specific service flow in a QoS Flow may correspond to one local context), for a specific service flow in the QoS Flow,
  • the SMF generally only configures a local context for the first node and the second node.
  • the SMF may configure a local context for the first node and the second node (in this case, one bearer or one PDN connection corresponds to one local context), or may be the first node and the second node.
  • the node configures multiple local contexts (in this case, each specific traffic flow in a bearer or a PDN connection may correspond to a local context).
  • the SMF is generally only the first one.
  • the node and the second node configure a local context.
  • the embodiment of the present application provides a method for monitoring service quality. As shown in FIG. 9, the method includes:
  • the first node acquires a service packet of the first service.
  • the first node may be a user plane device, and may be an access network device (for example, a relay, a base station, etc.), a user plane gateway (for example, a UPF, a GW, etc.) or a terminal. It can be understood that when the method shown in FIG. 9 is applied in a 5G network, the first node may be a user plane device in the 5G network. When the method shown in FIG. 9 is applied in an EPS network, the first node may be a user plane device in the EPS network.
  • the method shown in FIG. 9 is applied to a 5G network as an example for explanation.
  • the first service is a service that needs to perform service quality monitoring, and does not specifically refer to a certain service.
  • the service that needs to be monitored for the service quality can be preset in the first node.
  • the first node can determine the first service according to the preset service that performs the service quality monitoring.
  • the service that needs to perform the service quality monitoring may also be determined by the first node according to a preset rule.
  • the first node may determine the first service according to the preset rule.
  • the preset rule may be that the reliability requirement of the service is greater than a preset threshold, wherein the preset threshold may be preset.
  • the first node may determine the reliability requirement of the service according to the QoS requirement of the QoS flow.
  • the reliability requirements of the service include requirements such as delay, jitter, and packet loss rate of the service.
  • the service that needs to perform the service quality monitoring may also be indicated by the other node (for example, PCF, SMF, etc.) to the first node.
  • the first node may determine the first service according to the indication.
  • the manner in which the first node determines the first service is not specifically limited in this embodiment of the present application.
  • the service message of the first service is transmitted on the path between the first node and the second node.
  • the first node can determine whether the packet is a service packet of the first service by using the service identifier carried in the obtained packet.
  • the first node encapsulates the service packet, and obtains a monitoring packet, where the monitoring packet is used for monitoring the service quality of the first service.
  • the first node when the first node encapsulates the service packet, the first node may encapsulate part or all of the information related to the service quality monitoring of the first service, and may also encapsulate some other information.
  • the first node sends a monitoring packet to the second node.
  • one of the first node and the second node is a terminal, and the other node may be an access network device or a user plane gateway; or, among the first node and the second node, one node is a user plane gateway, and the other node is a user plane gateway, and the other node
  • the node can be an access network device.
  • one of the first node and the second node is a terminal, and another node may be a UPF device or a base station; or, in the first node and the second node, one node is a UPF device, and another node may be Base station.
  • the first node may send the monitoring message according to the packet sending rule in the local context.
  • the packet sending rule is used to describe one or more rules that need to be met when the monitoring packet is sent.
  • the packet sending rule may include the period in which the packet is sent and the manner in which the packet is generated.
  • the second node receives the monitoring packet from the first node, where the monitoring packet includes the service packet of the first service.
  • the second node monitors the service quality of the first service according to the monitoring packet.
  • the second node may monitor the service quality of the first service according to the information related to the service quality monitoring of the first service included in the monitoring packet.
  • the second node may perform at least one of link connectivity monitoring, service transmission performance monitoring, and loopback monitoring on the first service.
  • link connectivity monitoring, service transmission performance monitoring, and loopback monitoring refer to the previous description, and details are not described here.
  • the service quality of a service includes service delay, jitter, and packet loss rate.
  • the second node may receive the monitoring message according to the message receiving rule in the local context.
  • the packet receiving rule is used to describe one or more rules that need to be met when receiving the monitoring packet.
  • the packet receiving rule may include information such as the packet receiving period.
  • the first node sends a monitoring packet
  • the second node receives the monitoring packet as an example to describe the method provided by the embodiment of the present application.
  • the first node may also receive the first The monitoring packet sent by the two nodes, the local context of the first node may further include a packet receiving rule, and the local context of the second node may further include a packet sending rule.
  • the second node acquires a service packet in the monitoring packet.
  • the corresponding module in the terminal which is configured to perform the action of acquiring the service packet in the monitoring packet, obtains the service packet in the monitoring packet, and then the service packet Sending to the application corresponding to the first service in the terminal; if the second node is the UPF device, the UPF device sends the service packet to the application server corresponding to the first service in the DN; if the second node is the base station, the service report When the packet is a downlink service packet, the base station may send the service packet to the terminal. When the service packet is an uplink service packet, the base station may send the service packet to the UPF device.
  • the intermediate node between the first node and the second node can process the monitoring packet
  • the intermediate node may be a base station, and the intermediate node is receiving
  • the service quality of the first service between the first node and the intermediate node may be determined according to the local context on the intermediate node, and the service quality information is inserted into the monitoring packet.
  • the second node sends, so that the second node obtains more detailed service quality information of the first service.
  • the first node can obtain the monitoring packet by encapsulating the service packet, so as to monitor the service quality of the service, and the monitoring packet is encapsulated according to the service packet, so the first node can Use service packets to monitor service quality and avoid overloading the network system.
  • the first node encapsulates the service packet, where the first node adds at least one of the following information to the service packet: first indication information and first parameter information,
  • the first indication information is used to indicate that the monitoring packet is encapsulated by the service packet
  • the first parameter information is used for monitoring the service quality of the first service.
  • the monitoring message is an LQAP message
  • the first parameter information may be information in the LQAP parameter.
  • the first parameter information may also be included in the local context of the first node, so that the first node carries the first parameter information in the sent monitoring message.
  • the LQAP parameter may include a service flow identifier, a transmission period of the LQAP packet, a context identifier of the LQAP packet, a monitoring type, a receiving period of the LQAP packet, a fault decision threshold required for the service quality monitoring, and a corresponding action of the fault.
  • a service flow identifier a transmission period of the LQAP packet
  • a context identifier of the LQAP packet a monitoring type
  • a receiving period of the LQAP packet a fault decision threshold required for the service quality monitoring, and a corresponding action of the fault.
  • the location of the first indication information in the monitoring packet may be any one of the following two situations:
  • the monitoring message includes at least one of the following information: a protocol header having the same format as the service packet and a first field including the first indication information, where the first indication information is used to indicate that the monitoring packet is used by the service packet. Encapsulation is obtained.
  • the first field may be a preset field that carries the first indication information.
  • the first field may be an LQAP header field, which will be further described in connection with FIG. 10 below.
  • the monitoring packet includes a protocol header in the same format as the service packet, and the protocol header includes the first indication information, where the first indication information is used to indicate that the monitoring packet is encapsulated by the service packet. This will be further described in connection with Figure 11 below.
  • the first indication information is included in a protocol header of the GTP layer of the monitoring message. If the first node is a terminal, the first indication information is included in a protocol header of the SDAP layer or the PDCP layer of the monitoring packet. If the first node is a base station, and the second node is a terminal, the first indication information is included in a protocol header of the SDAP layer or the PDCP layer of the monitoring packet. If the first node is a base station, and the second node is a UPF device, the first indication information is included in a protocol header of the GTP layer of the monitoring packet.
  • the monitoring packet includes the first indication information
  • the method further includes: determining, by the second node, that the monitoring packet is encapsulated by the service packet according to the first indication information. This step can be performed before step 906.
  • the second node determines that the monitoring packet is encapsulated by the service packet, and the first indication information or the monitoring packet is not included in the monitoring packet, and includes the following
  • the second node determines that the monitoring message is generated by the first node.
  • step 902 is performed.
  • the preset time may be a time point at which the first node obtains the service packet of the first service. If the first node determines that the service packet of the first service is not obtained in the preset time, the first node generates a monitoring packet, the first node sends the monitoring packet to the second node, and the second node receives the monitoring from the first node.
  • the packet monitors the service quality of the first service according to the monitoring packet.
  • the monitoring packet is also used for the monitoring of the service quality of the first service.
  • the second node determines whether the monitoring packet is encapsulated by the service packet according to the first indication information or the second indication information in the monitoring packet (see below).
  • a node generated by itself in this application, in order to better understand the present application, the two types of monitoring messages are distinguished in the description, and the monitoring message obtained by the service message encapsulation is hereinafter referred to as the first monitoring message, first.
  • the message generated by the node itself is hereinafter referred to as the second monitoring message.
  • the second monitoring message includes second indication information, where the second indication information is used to indicate that the second monitoring message is generated by the first node.
  • the second node determines, according to the second indication information, that the second monitoring message is generated by the first node.
  • the location of the second indication information in the second monitoring packet may be any one of the following two situations:
  • the second monitoring message includes a protocol header having the same format as the service packet and/or a second field including the second indication information, where the second indication information is used to indicate that the second monitoring packet is used by the first node. generate.
  • the second field may be a preset field that carries the second indication information.
  • the second monitoring message includes a protocol header having the same format as the service packet, the protocol header includes the second indication information, and the second indication information is used to indicate that the second monitoring packet is generated by the first node.
  • the first field and the second field may be the same field or different fields, which is not specifically limited in this embodiment of the present application.
  • the first indication information and the second indication information may be indicated by monitoring different values on one or more bits on a field in the message.
  • the second indication information and the first indication information may be indicated by monitoring a bit in the message. When the value of the bit is 1, the monitoring message is encapsulated by the service packet, when the bit is obtained. If the value of the bit is 0, it indicates that the monitoring packet is generated by the first node; or the value of the bit is 0, indicating that the monitoring packet is encapsulated by the service packet, when the value of the bit is 1 , indicating that the monitoring message is generated by the first node.
  • the second indication information and the first indication information may also be indicated by using a plurality of bits in the monitoring packet, which is not specifically limited in this embodiment of the present application.
  • the second indication information may be included in a protocol header of the GTP layer of the second monitoring packet. If the first node is a terminal, the second indication information may be included in a protocol header of the SDAP layer or the PDCP layer of the second monitoring packet. If the first node is a base station, and the second node is a terminal, the second indication information may be included in a protocol header of the SDAP layer or the PDCP layer of the second monitoring packet. If the first node is a base station, and the second node is a UPF device, the second indication information may be included in a protocol header of the GTP layer of the second monitoring message.
  • the monitoring packet includes first parameter information, where the first parameter information is used for monitoring service quality of the first service.
  • the first parameter information may include a timestamp, statistical information of a service message of the first service received by the first node, and the like.
  • the monitoring packet includes the first parameter information
  • the step 905 may include: the second node performs the service quality of the first service according to the first parameter information included in the monitoring packet and the local context of the monitoring packet. monitor.
  • the local context of the monitoring packet may further include a service quality decision threshold of the first service, and the service quality decision threshold of the first service is a benchmark for performing service quality decision on the first service.
  • the service quality decision threshold may include a delay threshold, a jitter threshold, a packet loss threshold, and the like.
  • the delay threshold is used to determine whether the delay of the first service meets the requirement.
  • the jitter threshold is used to determine whether the jitter of the first service meets the requirement.
  • the packet loss threshold is used to determine whether the packet loss rate of the first service meets the requirement.
  • the delay threshold and the packet receiving period may be the same value or different values. When the delay threshold and the packet receiving period are the same value, the delay threshold may not be set separately, but is characterized by the packet receiving period.
  • the second node may determine the delay of the monitoring packet according to the timestamp in the first parameter information and the actual receiving time of the monitoring packet, according to the delay and The packet receiving period in the local context of the monitoring packet is compared to determine whether the delay of the first service satisfies the requirement. For example, if the second node determines the delay of the monitoring message by 2 ms according to the timestamp in the first parameter information and the actual receiving time of the monitoring message. If the packet receiving period in the local context of the monitoring packet is 1 ms, the delay of the first service does not meet the requirement. If the packet receiving period in the local context of the monitoring packet is 3 ms, the delay of the first service is used.
  • the second node may determine the average delay of the first service according to the delay of the multiple monitoring packets, and then compare with the packet receiving period in the local context, or adopt other methods. Determine if the delay of the first service meets the requirements.
  • the second node may determine the jitter of the first service according to the delay of the multiple monitoring packets, according to the local context of the jitter and the monitoring packet.
  • the jitter threshold in the local context of the monitoring packet is 3 ms, the jitter of the first service satisfies the requirement. If the jitter threshold in the local context of the monitoring packet is 1 ms, the jitter of the first service does not meet the requirement.
  • the second node may determine the first service according to the number of service packets of the first service received by the first node in the first parameter information and the number of service packets of the first service sent by the second node.
  • the packet loss rate is compared according to the packet loss rate and the packet loss rate threshold in the local context of the monitoring packet to determine whether the packet loss rate of the first service meets the requirement. For example, if the second node determines the first service according to the number of service packets of the first service received by the first node in the first parameter information and the number of service packets of the first service sent by the second node,
  • the packet loss rate is 1%.
  • the packet loss rate threshold in the local context of the monitoring packet is 0.9%, the packet loss rate of the first service does not meet the requirement. If the packet loss rate threshold in the local context of the monitoring packet is 1.1%, The packet loss rate of the first service meets the requirements.
  • the second node may acquire the local context of the monitoring message.
  • the monitoring packet includes a first identifier, where the first identifier is associated with the local context of the monitoring packet, and the method further includes: determining, by the second node, the first identifier and the corresponding relationship included in the monitoring packet Monitor the local context of the message.
  • the local context of the monitoring message may be stored in the second node, where the first identifier is the context identifier mentioned above.
  • the second node may receive a correspondence between the first identifier and the local context of the monitoring packet from the control plane device. For details, refer to the related description in FIG. 8.
  • the following takes the monitoring message as the LQAP packet as an example, the location of the first indication information and the first parameter information in the first monitoring message, and the location of the second indication information and the first parameter information in the second monitoring message.
  • the message format of the monitoring message may be referred to as FIG. 10 or FIG. 11.
  • the indication information shown in FIG. 10 and FIG. 11 may be the first indication information or the second indication information according to different situations provided by the foregoing embodiment. .
  • the LQAP header includes the first indication information; or, if the monitoring packet is generated by the first node, the LQAP header includes the second indication information.
  • the first indication information is included in the LQAP header, the first indication information further indicates that the monitoring packet includes a service packet. Therefore, the first indication information may also be described as: indicating information indicating that a service packet exists in the monitoring packet.
  • the second indication information may also be described as: indication information indicating that there is no service packet in the monitoring packet.
  • a new PT may be defined to indicate whether the monitoring packet is encapsulated by the service packet or generated by the first node.
  • the second node may obtain the first indication information or the second indication information in the LQAP Header or the 3GPP network header.
  • the terminal may encapsulate the indication information (the first indication information or the second indication information) and the first parameter information in the load of the monitoring packet and the SDAP layer (or the PDCP layer). )between.
  • the indication information may be included in the LQAP Header, may also be included in the SDAP layer (or PDCP layer), and may also be indicated by a new PT included in the 3GPP network header.
  • the LQAP Header may further include a context identifier, where the second node determines a local context of the monitoring packet.
  • the LQAP header may further include information such as an LQAP length (used to describe the LQAP parameter and/or the length of the LQAP Header), so that the second node strips the LQAP parameter and/or the LQAP Header in the monitoring packet to obtain monitoring. Service packets in the packet.
  • the UPF device may encapsulate the indication information (the first indication information or the second indication information) and the first parameter information between the load of the monitoring message and the GTP layer.
  • the indication information may be included in the LQAP Header, may also be included in the GTP layer, and may also be indicated by a new PT included in the 3GPP network header.
  • the LQAP header may further include information such as an LQAP length (used to describe the LQAP parameter and/or the length of the LQAP Header), so that the second node strips the LQAP parameter and/or the LQAP Header in the monitoring packet to obtain monitoring. Service packets in the packet.
  • LQAP length used to describe the LQAP parameter and/or the length of the LQAP Header
  • the period in which the first node sends the monitoring packet is T.
  • the first node may periodically sample the service packet of the first service, and if the service packet of the first service is sampled at the sampling point, send the first monitoring packet to the second node, otherwise, The second node sends a second monitoring message.
  • the preset time may be one of a plurality of sampling points.
  • T is the message transmission period of the first node mentioned above. If the first node does not obtain the service packet of the first service, the first node may generate a monitoring packet to monitor the service quality of the first service, thereby ensuring the service quality monitoring of the first service. Continuity.
  • the first node can learn T from the control plane device.
  • the control plane device may be an SMF or an AMF, wherein the AMF may send T to the first node through the SMF.
  • the method further includes: the first node learns, by the control plane device, the manner in which the monitoring packet is generated, and generates the monitoring packet by using the service packet.
  • the first node generates a monitoring packet by encapsulating the service packet once the service packet of the first service is sampled at the sampling point. Otherwise, the first node generates the monitoring packet by itself.
  • the method shown in FIG. 8 causes the first node and the second node to obtain the local context of the monitoring message through the control plane.
  • the method in FIG. 8 can also make the terminal determine the monitoring through the user plane.
  • the local context of the packet which can be applied to the mapped QoS attribute (RQA) scenario.
  • the first node When the first node is the terminal, the second node is the UPF device, and the monitoring packet is the uplink monitoring packet, the first node can also obtain the T through the following processes: 11)-13):
  • the second node sends the first period information to the first node, where the first period information is used to indicate a period in which the second node sends the downlink monitoring message.
  • the first node receives the first period information from the second node.
  • the first node determines T according to the first period information.
  • the first node may determine the first period information as T.
  • the first node may also obtain the first parameter information before the monitoring packet is sent, so as to carry the first parameter information in the monitoring packet.
  • the first node is a terminal
  • the second node is a UPF device
  • the first parameter information is parameter information carried in the uplink monitoring packet
  • the first node may also obtain the first parameter information by using the following processes 21)-23):
  • the second node sends the second parameter information to the first node, where the second parameter information is parameter information carried in the downlink monitoring packet sent by the second node; the first parameter information and the second parameter information are used for the first service. Monitoring of the quality of the business.
  • the first node receives the second parameter information from the second node.
  • the first node determines the first parameter information according to the second parameter information.
  • the first node may determine the second parameter information as the first parameter information.
  • the at least one of the first period information and the second parameter information may be included in the downlink LQAP packet.
  • the downlink LQAP packet may be referred to FIG. 14 , where the reflected QoS indication (reflective QoS indication) , RQI for short, indicates that the LQAP packet is a packet in the RQA scenario, and QFI indicates that the current monitoring is a QoS flow.
  • the terminal After receiving the at least one of the first period information and the second parameter information, the terminal determines the local context of the monitoring message of the terminal by referring to the received information.
  • the terminal may further determine, according to the first period information, a period of receiving the downlink monitoring packet.
  • the UPF device may further include the context identifier in the LQAP Header, and the terminal may establish a correspondence between the context identifier and the local context of the monitoring packet.
  • the context identifier may be a service flow identifier.
  • the terminal After the local context of the monitoring packet is created, the terminal receives the packet according to the packet receiving period in the local context of the monitoring packet, and sends the packet according to the packet sending period in the local context of the monitoring packet.
  • the method provided by the embodiment of the present application may create a monitoring report on the terminal by using the user plane packet.
  • the local context of the text avoids the creation of a local context of the monitoring message on the terminal through control plane signaling, thereby reducing the number of signaling.
  • the service quality monitoring device includes corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module of the service quality monitoring apparatus according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 15 shows a possible structural diagram of the service quality monitoring apparatus 150 involved in the foregoing embodiment, and the service quality monitoring apparatus 150 may be the first node or
  • the second node referring to FIG. 15, may include: a processing unit 1501 and a communication unit 1502, and may further include a storage unit 1503.
  • the processing unit 1501 is configured to perform control management on the action of the first node.
  • the processing unit 1501 is configured to support the first node to perform steps 803 and 804 in FIG. 8, the steps in FIG. 901-903, and/or actions performed by the first node in other processes described in the embodiments of the present application.
  • the communication unit 1502 is configured to support the first node to communicate with other network devices, for example, with the second node in FIG.
  • the storage unit 1503 is configured to store program codes and data of the first node.
  • the processing unit 1501 is configured to perform control management on the action of the second node.
  • the processing unit 1501 is configured to support the second node to perform steps 805 and 806 in FIG. 8, the steps in FIG. 904-906, and/or actions performed by a second node in other processes described in the embodiments of the present application.
  • the communication unit 1502 is configured to support the second node to communicate with other network devices, for example, with the first node in FIG.
  • the storage unit 1503 is configured to store program codes and data of the second node.
  • the processing unit 1501 may be a processor or a controller, and the communication unit 1502 may be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and may include one or more interfaces.
  • the storage unit 1503 may be a memory.
  • the processing unit 1501 is a processor
  • the communication unit 1502 is a communication interface
  • the storage unit 1503 is a memory
  • the communication device according to the embodiment of the present application may be the communication device shown in FIG. 2.
  • the processor 201 is configured to perform control management on the action of the first node.
  • the processor 201 is configured to support the first node to perform steps 803 and 804 in FIG. Steps 901-903 in FIG. 9, and/or actions performed by the first node in other processes described in the embodiments of the present application.
  • the communication interface 204 is for supporting the first node to communicate with other network devices, for example, with the second node in FIG.
  • the memory 203 is used to store program codes and data of the first node.
  • the processor 201 is configured to perform control management on the action of the second node.
  • the processor 201 is configured to support the second node to perform steps 805 and 806 in FIG. The actions performed by the second node in steps 904-906 in FIG. 9, and/or other processes described in the embodiments of the present application.
  • the communication interface 204 is for supporting the second node to communicate with other network devices, for example, with the first node in FIG.
  • the memory 203 is used to store program codes and data of the second node.
  • the embodiment of the present application also provides a computer readable storage medium, including instructions, when executed on a computer, causing a computer to execute the above method.
  • the embodiment of the present application also provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the above method.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种监测业务质量的方法和装置,用于解决由于终端和UPF设备之间需要传输很多的监测报文,从而大大加重网络系统的负荷的问题。该方法包括:第一节点获取第一业务的业务报文;第一节点对业务报文进行封装,得到监测报文,监测报文用于第一业务的业务质量的监测;第一节点向第二节点发送监测报文。本申请涉及通信技术领域。

Description

监测业务质量的方法和装置
本申请要求于2018年4月8日提交中国国家知识产权局、申请号为201810308311.2、发明名称为“监测业务质量的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种监测业务质量的方法和装置。
背景技术
目前,为了实现终端和用户面功能(user plane function,简称UPF)设备之间的业务的业务质量监测,终端(或UPF设备)周期性的发送监测报文,UPF设备(或终端)接收到监测报文后,根据监测报文计算业务的业务质量。例如,UPF设备(或终端)根据监测报文的到达时间计算业务的时延和抖动,根据监测报文中携带的统计的接收到的报文数目计算业务的丢包率。
由于在进行业务质量监测的过程中,终端和UPF设备之间需要传输很多的监测报文,因此,会大大加重网络系统的负荷。
发明内容
本申请实施例提供了一种监测业务质量的方法和装置,用于解决由于终端和UPF设备之间需要传输很多的监测报文,从而大大加重网络系统的负荷的问题。
第一方面,提供了一种监测业务质量的方法,包括:第一节点获取第一业务的业务报文;第一节点对业务报文进行封装,得到监测报文,监测报文用于第一业务的业务质量的监测;第一节点向第二节点发送监测报文。第一方面提供的方法,第一节点可以通过对业务报文进行封装得到监测报文,从而对业务的业务质量进行监测,由于监测报文根据业务报文封装得到,因此,第一节点可以利用业务报文对业务质量进行监测,避免加重网络系统的负荷。
一种可能的实现方式,该方法还包括:第一节点确定在预设时间获取到了第一业务的业务报文。该种可能的实现方式,第一节点在能够获取到第一业务的业务报文时,可以利用业务报文对第一业务的业务质量进行监测,避免加重网络系统的负荷。
一种可能的实现方式,第一节点对业务报文进行封装,包括:第一节点在业务报文中添加以下信息中的至少一种:第一指示信息和第一参数信息,第一指示信息用于指示监测报文由业务报文封装得到,第一参数信息用于第一业务的业务质量的监测。该种可能的实现方式,若第一节点在业务报文中添加第一指示信息,可以使得第二节点根据第一指示信息获取第一业务的业务报文,保证业务报文的正确传输。若第一节点在业务报文中添加第一参数信息,可以使得第二节点根据第一参数信息对第一业务的业务质量进行监测,从而利用业务报文对业务质量进行监测,避免加重网络系统的负荷。
一种可能的实现方式,监测报文包括以下信息中的至少一项:与业务报文具有相同格式的协议头和包括第一指示信息的第一字段,第一指示信息用于指示监测报文由业务报文封装 得到。该种可能的实现方式,若监测报文中包括第一指示信息,可以使得第二节点根据第一指示信息获取第一业务的业务报文,保证业务报文的正确传输。
一种可能的实现方式,监测报文包括与业务报文具有相同格式的协议头,协议头包括第一指示信息,第一指示信息用于指示监测报文由业务报文封装得到。该种可能的实现方式,可以使得第二节点根据第一指示信息获取第一业务的业务报文,保证业务报文的正确传输。
一种可能的实现方式,监测报文包括第一参数信息,第一参数信息用于第一业务的业务质量的监测。该种可能的实现方式,可以使得第二节点根据第一参数信息对第一业务的业务质量进行监测,从而利用业务报文对业务质量进行监测,避免加重网络系统的负荷。
一种可能的实现方式,该方法还包括:第一节点从控制面设备获知监测报文的生成方式,生成方式为采用业务报文生成监测报文。该种可能的实现方式,第一节点可以根据监测报文的生成方式确定采用业务报文生成监测报文,因此,第一节点可以利用业务报文对业务质量进行监测,避免加重网络系统的负荷。
一种可能的实现方式,第一节点发送监测报文的周期为T。该种可能的实现方式,第一节点可以周期性的向第二节点发送监测报文,从而实时的对第一业务的业务质量进行监测。
一种可能的实现方式,该方法还包括:第一节点从控制面设备获知T。该种可能的实现方式,可以使得第一节点周期性的向第二节点发送监测报文,从而实时的对第一业务的业务质量进行监测。
一种可能的实现方式,第一节点为终端,第二节点为UPF设备,监测报文为上行监测报文,该方法还包括:第一节点从第二节点接收第一周期信息,第一周期信息用于指示第二节点发送下行监测报文的周期;第一节点根据第一周期信息确定T。该种可能的实现方式,可以通过用户面报文使得第一节点确定T,与通过控制面信令使得第一节点确定T的方式相比,可以减少信令数目。
一种可能的实现方式,第一节点为终端,第二节点为UPF设备,第一参数信息为上行监测报文中携带的参数信息,该方法还包括:第一节点从第二节点接收第二参数信息,第二参数信息为第二节点发送的下行监测报文中携带的参数信息;第一节点根据第二参数信息确定第一参数信息。该种可能的实现方式,可以通过用户面报文使得第一节点确定第一参数信息,与通过控制面信令使得第一节点确定第一参数信息的方式相比,可以减少信令数目。
一种可能的实现方式,第一节点为UPF设备,第一指示信息包含于监测报文的GTP层的协议头中;第一节点为终端,第一指示信息包含于监测报文的SDAP层或PDCP层的协议头中;第一节点为基站,第二节点为终端,第一指示信息包含于监测报文的SDAP层或PDCP层的协议头中;第一节点为基站,第二节点为UPF设备,第一指示信息包含于监测报文的GTP层的协议头中。
一种可能的实现方式,第一节点和第二节点中,一个节点为终端,另一个节点为UPF设备或基站;或者,第一节点和第二节点中,一个节点为UPF设备,另一个节点为基站。
第二方面,一种监测业务质量的方法,包括:第二节点从第一节点接收监测报文,监测报文包括第一业务的业务报文;第二节点根据监测报文对第一业务的业务质量进行监测;第二节点获取监测报文中的业务报文。第二方面提供的方法,第二节点可以根据业务报文对业务质量进行监测,避免加重网络系统的负荷。
一种可能的实现方式,监测报文包括第一指示信息,第一指示信息用于指示监测报文由业务报文封装得到,该方法还包括:第二节点根据第一指示信息确定监测报文由业务报文封装得到。该种可能的实现方式,可以使得第二节点根据第一指示信息获取第一业务的业务报文,保证业务报文的正确传输。
一种可能的实现方式,监测报文包括以下信息中的至少一项:与业务报文具有相同格式的协议头和包括第一指示信息的第一字段,第一指示信息用于指示监测报文由业务报文封装得到。该种可能的实现方式,可以使得第二节点根据第一指示信息获取第一业务的业务报文,保证业务报文的正确传输。
一种可能的实现方式,监测报文包括与业务报文具有相同格式的协议头,协议头包括第一指示信息,第一指示信息用于指示监测报文由业务报文封装得到。该种可能的实现方式,可以使得第二节点根据第一指示信息获取第一业务的业务报文,保证业务报文的正确传输。
一种可能的实现方式,监测报文包括第一参数信息,第一参数信息用于第一业务的业务质量的监测,第二节点根据监测报文对第一业务的业务质量进行监测,包括:第二节点根据监测报文包括的第一参数信息和监测报文的本地上下文对第一业务的业务质量进行监测。该种可能的实现方式,第二节点可以根据第一参数信息对第一业务的业务质量进行监测,从而利用业务报文对业务质量进行监测,避免加重网络系统的负荷。
一种可能的实现方式,监测报文中包括第一标识,第一标识与监测报文的本地上下文存在对应关系,该方法还包括:第二节点根据监测报文中包括的第一标识和对应关系确定监测报文的本地上下文。
一种可能的实现方式,第二节点为UPF设备,第一节点为终端,该方法还包括:第二节点向第一节点发送第一周期信息,第一周期信息用于指示第二节点发送下行监测报文的周期,第一周期信息用于第一节点发送上行监测报文的周期的确定。该种可能的实现方式,可以通过用户面报文使得第一节点确定T,与通过控制面信令使得第一节点确定T的方式相比,可以减少信令数目。
一种可能的实现方式,第二节点为UPF设备,第一节点为终端,该方法还包括:第二节点向第一节点发送第二参数信息,第二参数信息为第二节点发送的下行监测报文中携带的参数信息,第二参数信息用于第一节点发送的上行监测报文中携带的第一参数信息的确定;第一参数信息和第二参数信息均用于第一业务的业务质量的监测。该种可能的实现方式,可以通过用户面报文使得第一节点确定第一参数信息,与通过控制面信令使得第一节点确定第一参数信息的方式相比,可以减少信令数目。
一种可能的实现方式,第二节点为UPF设备,第一指示信息包含于监测报文的GTP层的协议头中;第二节点为终端,第一指示信息包含于监测报文的SDAP层或PDCP层的协议头中;第二节点为基站,第一节点为终端,第一指示信息包含于监测报文的SDAP层或PDCP层的协议头中;第二节点为基站,第一节点为UPF设备,第一指示信息包含于监测报文的GTP层的协议头中。
一种可能的实现方式,第二节点和第一节点中,一个节点为终端,另一个节点为UPF设备或基站;或者,第二节点和第一节点中,一个节点为UPF设备,另一个节点为基站。
第三方面,提供了一种监测业务质量的方法,包括:第一节点获取第一业务的业务报文; 第一节点确定在预设时间未获取到第一业务的业务报文;第一节点生成监测报文,监测报文用于第一业务的业务质量的监测;第一节点向第二节点发送监测报文。第三方面提供的方法,第一节点在未获取到第一业务的业务报文的情况下,生成监测报文,从而可以保证第一业务的业务质量监测的连续性。
一种可能的实现方式,监测报文包括以下信息中的至少一项:与业务报文具有相同格式的协议头和包括第二指示信息的第二字段,第二指示信息用于指示监测报文由第一节点生成。该种可能的实现方式,若监测报文中包括第二指示信息,可以使得第二节点根据第二指示信息确定监测报文由第一节点生成,则第二节点仅根据监测报文对第一业务的业务质量进行监测即可。
一种可能的实现方式,监测报文包括与业务报文具有相同格式的协议头,协议头包括第二指示信息,第二指示信息用于指示监测报文由第一节点生成。该种可能的实现方式,可以使得第二节点根据第二指示信息确定监测报文由第一节点生成,则第二节点仅根据监测报文对第一业务的业务质量进行监测即可。
一种可能的实现方式,监测报文包括第一参数信息,第一参数信息用于第一业务的业务质量的监测。
一种可能的实现方式,第一节点发送监测报文的周期为T。该种可能的实现方式,第一节点可以周期性的向第二节点发送监测报文,从而实时的对第一业务的业务质量进行监测。
一种可能的实现方式,该方法还包括:第一节点从控制面设备获知T。该种可能的实现方式,可以使得第一节点周期性的向第二节点发送监测报文,从而实时的对第一业务的业务质量进行监测。
一种可能的实现方式,第一节点为终端,第二节点为UPF设备,监测报文为上行监测报文,该方法还包括:第一节点从第二节点接收第一周期信息,第一周期信息用于指示第二节点发送下行监测报文的周期;第一节点根据第一周期信息确定T。该种可能的实现方式,可以通过用户面报文使得第一节点确定T,与通过控制面信令使得第一节点确定T的方式相比,可以减少信令数目。
一种可能的实现方式,第一节点为终端,第二节点为UPF设备,第一参数信息为上行监测报文中携带的参数信息,该方法还包括:第一节点从第二节点接收第二参数信息,第二参数信息为第二节点发送的下行监测报文中携带的参数信息;第一节点根据第二参数信息确定第一参数信息。该种可能的实现方式,可以通过用户面报文使得第一节点确定第一参数信息,与通过控制面信令使得第一节点确定第一参数信息的方式相比,可以减少信令数目。
一种可能的实现方式,第一节点为UPF设备,第二指示信息包含于监测报文的GTP层的协议头中;第一节点为终端,第二指示信息包含于监测报文的SDAP层或PDCP层的协议头中;第一节点为基站,第二节点为终端,第二指示信息包含于监测报文的SDAP层或PDCP层的协议头中;第一节点为基站,第二节点为UPF设备,第二指示信息包含于监测报文的GTP层的协议头中。
一种可能的实现方式,第一节点和第二节点中,一个节点为终端,另一个节点为UPF设备或基站;或者,第一节点和第二节点中,一个节点为UPF设备,另一个节点为基站。
第四方面,提供了一种监测业务质量的方法,包括:第二节点从第一节点接收监测报文, 监测报文包括第二指示信息,第二指示信息用于指示监测报文由第一节点生成;第二节点根据第二指示信息确定监测报文由第一节点生成;第二节点根据监测报文对第一业务的业务质量进行监测。第四方面提供的方法,第一节点在未获取到第一业务的业务报文的情况下,第一节点生成监测报文向第二节点发送,从而可以保证第二节点对第一业务的业务质量监测的连续性。
一种可能的实现方式,监测报文包括以下信息中的至少一项:与业务报文具有相同格式的协议头和包括第二指示信息的第二字段,第二指示信息用于指示监测报文由第一节点生成。该种可能的实现方式,若监测报文中包括第二指示信息,第二节点可以根据第二指示信息确定监测报文由第一节点生成,则第二节点仅根据监测报文对第一业务的业务质量进行监测即可。
一种可能的实现方式,监测报文包括与业务报文具有相同格式的协议头,协议头包括第二指示信息,第二指示信息用于指示监测报文由第一节点生成。该种可能的实现方式,第二节点可以根据第二指示信息确定监测报文由第一节点生成,则第二节点仅根据监测报文对第一业务的业务质量进行监测即可。
一种可能的实现方式,监测报文包括第一参数信息,第一参数信息用于第一业务的业务质量的监测,第二节点根据监测报文对第一业务的业务质量进行监测,包括:第二节点根据监测报文包括的第一参数信息和监测报文的本地上下文对第一业务的业务质量进行监测。
一种可能的实现方式,监测报文中包括第一标识,第一标识与监测报文的本地上下文存在对应关系,该方法还包括:第二节点根据监测报文中包括的第一标识和对应关系确定监测报文的本地上下文。
一种可能的实现方式,第二节点为UPF设备,第一节点为终端,该方法还包括:第二节点向第一节点发送第一周期信息,第一周期信息用于指示第二节点发送下行监测报文的周期,第一周期信息用于第一节点发送上行监测报文的周期的确定。该种可能的实现方式,可以通过用户面报文使得第一节点确定T,与通过控制面信令使得第一节点确定T的方式相比,可以减少信令数目。
一种可能的实现方式,第二节点为UPF设备,第一节点为终端,该方法还包括:第二节点向第一节点发送第二参数信息,第二参数信息为第二节点发送的下行监测报文中携带的参数信息,第二参数信息用于第一节点发送的上行监测报文中携带的第一参数信息的确定;第一参数信息和第二参数信息均用于第一业务的业务质量的监测。该种可能的实现方式,可以通过用户面报文使得第一节点确定第一参数信息,与通过控制面信令使得第一节点确定第一参数信息的方式相比,可以减少信令数目。
一种可能的实现方式,第二节点为UPF设备,第二指示信息包含于监测报文的GTP层的协议头中;第二节点为终端,第二指示信息包含于监测报文的SDAP层或PDCP层的协议头中;第二节点为基站,第一节点为终端,第二指示信息包含于监测报文的SDAP层或PDCP层的协议头中;第二节点为基站,第一节点为UPF设备,第二指示信息包含于监测报文的GTP层的协议头中。
一种可能的实现方式,第二节点和第一节点中,一个节点为终端,另一个节点为UPF设备或基站;或者,第二节点和第一节点中,一个节点为UPF设备,另一个节点为基站。
第五方面,提供了一种监测业务质量的装置,包括:处理单元和通信单元;处理单元,用于获取第一业务的业务报文;处理单元,还用于对业务报文进行封装,得到监测报文,监测报文用于第一业务的业务质量的监测;通信单元,用于向第二节点发送监测报文。
一种可能的实现方式,处理单元还用于确定在预设时间获取到了第一业务的业务报文。
一种可能的实现方式,处理单元,具体用于:在业务报文中添加以下信息中的至少一种:第一指示信息和第一参数信息,第一指示信息用于指示监测报文由业务报文封装得到,第一参数信息用于第一业务的业务质量的监测。
一种可能的实现方式,监测报文包括以下信息中的至少一项:与业务报文具有相同格式的协议头和包括第一指示信息的第一字段,第一指示信息用于指示监测报文由业务报文封装得到。
一种可能的实现方式,监测报文包括与业务报文具有相同格式的协议头,协议头包括第一指示信息,第一指示信息用于指示监测报文由业务报文封装得到。
一种可能的实现方式,监测报文包括第一参数信息,第一参数信息用于第一业务的业务质量的监测。
一种可能的实现方式,通信单元,还用于从控制面设备获知监测报文的生成方式,生成方式为采用业务报文生成监测报文。
一种可能的实现方式,该装置发送监测报文的周期为T。
一种可能的实现方式,通信单元,还用于从控制面设备获知T。
一种可能的实现方式,该装置为终端,第二节点为UPF设备,监测报文为上行监测报文,通信单元,还用于从第二节点接收第一周期信息,第一周期信息用于指示第二节点发送下行监测报文的周期;处理单元,还用于根据第一周期信息确定T。
一种可能的实现方式,该装置为终端,第二节点为UPF设备,第一参数信息为上行监测报文中携带的参数信息,通信单元,还用于从第二节点接收第二参数信息,第二参数信息为第二节点发送的下行监测报文中携带的参数信息;处理单元,还用于根据第二参数信息确定第一参数信息。
一种可能的实现方式,该装置为UPF设备,第一指示信息包含于监测报文的GTP层的协议头中;该装置为终端,第一指示信息包含于监测报文的SDAP层或PDCP层的协议头中;该装置为基站,第二节点为终端,第一指示信息包含于监测报文的SDAP层或PDCP层的协议头中;该装置为基站,第二节点为UPF设备,第一指示信息包含于监测报文的GTP层的协议头中。
一种可能的实现方式,第一节点和第二节点中,一个节点为终端,另一个节点为UPF设备或基站;或者,第一节点和第二节点中,一个节点为UPF设备,另一个节点为基站。
第六方面,提供了一种监测业务质量的装置,包括:通信单元和处理单元;通信单元,用于从第一节点接收监测报文,监测报文包括第一业务的业务报文;处理单元,用于根据监测报文对第一业务的业务质量进行监测;处理单元,还用于获取监测报文中的业务报文。
一种可能的实现方式,监测报文包括第一指示信息,第一指示信息用于指示监测报文由业务报文封装得到;处理单元,还用于根据第一指示信息确定监测报文由业务报文封装得到。
一种可能的实现方式,监测报文包括以下信息中的至少一项:与业务报文具有相同格式 的协议头和包括第一指示信息的第一字段,第一指示信息用于指示监测报文由业务报文封装得到。
一种可能的实现方式,监测报文包括与业务报文具有相同格式的协议头,协议头包括第一指示信息,第一指示信息用于指示监测报文由业务报文封装得到。
一种可能的实现方式,监测报文包括第一参数信息,第一参数信息用于第一业务的业务质量的监测,处理单元,具体用于根据监测报文包括的第一参数信息和监测报文的本地上下文对第一业务的业务质量进行监测。
一种可能的实现方式,监测报文中包括第一标识,第一标识与监测报文的本地上下文存在对应关系;处理单元,还用于根据监测报文中包括的第一标识和对应关系确定监测报文的本地上下文。
一种可能的实现方式,该装置为UPF设备,第一节点为终端;通信单元,还用于向第一节点发送第一周期信息,第一周期信息用于指示该装置发送下行监测报文的周期,第一周期信息用于第一节点发送上行监测报文的周期的确定。
一种可能的实现方式,该装置为UPF设备,第一节点为终端;通信单元,还用于向第一节点发送第二参数信息,第二参数信息为该装置发送的下行监测报文中携带的参数信息,第二参数信息用于第一节点发送的上行监测报文中携带的第一参数信息的确定;第一参数信息和第二参数信息均用于第一业务的业务质量的监测。
一种可能的实现方式,该装置为UPF设备,第一指示信息包含于监测报文的GTP层的协议头中;该装置为终端,第一指示信息包含于监测报文的SDAP层或PDCP层的协议头中;该装置为基站,第一节点为终端,第一指示信息包含于监测报文的SDAP层或PDCP层的协议头中;该装置为基站,第一节点为UPF设备,第一指示信息包含于监测报文的GTP层的协议头中。
一种可能的实现方式,所述第二节点和所述第一节点中,一个节点为终端,另一个节点为UPF设备或基站;或者,所述第二节点和所述第一节点中,一个节点为UPF设备,另一个节点为基站。
第七方面,提供了一种监测业务质量的装置,该装置具有实现第三方面提供的任意一种方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该装置可以以芯片的产品形态存在。
第八方面,提供了一种监测业务质量的装置,该装置具有实现第四方面提供的任意一种方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该装置可以以芯片的产品形态存在。
第九方面,提供了一种监测业务质量的装置,包括:存储器和处理器;存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,以使该装置实现第一或第三方面提供的任意一种方法。该装置可以以芯片的产品形态存在。
第十方面,提供了一种监测业务质量的装置,包括:存储器和处理器;存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,以使该装置实现第二或第四方面提供的任意一种方法。该装置可以以芯片的产品形态存在。
第十一方面,提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使 得计算机执行第一或第三方面提供的任意一种方法。
第十二方面,提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第二或第四方面提供的任意一种方法。
第十三方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一或第三方面提供的任意一种方法。
第十四方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第二或第四方面提供的任意一种方法。
第五方面至第十四方面中的任意一个方面中的任意一种实现方式的有益效果可以参见上述第一至第四方面中的相应的实现方式的有益效果,在此不再赘述。
附图说明
图1为本申请实施例提供的一种QoS Flow的示意图;
图2为本申请实施例提供的一种通信装置的硬件结构示意图;
图3为本申请实施例提供的一种5G网络的架构示意图;
图4为本申请实施例提供的一种EPS网络的架构示意图;
图5为本申请实施例提供的一种业务流的示意图;
图6为本申请实施例提供的一种环回监测示意图;
图7为本申请实施例提供的一种协议栈的示意图;
图8为本申请实施例提供的一种节点中的本地上下文的配置方法的流程图;
图9为本申请实施例提供的一种监测业务质量的方法的流程图;
图10为本申请实施例提供的一种报文结构的示意图;
图11为本申请实施例提供的又一种报文结构的示意图;
图12为本申请实施例提供的又一种报文结构的示意图;
图13为本申请实施例提供的又一种报文结构的示意图;
图14为本申请实施例提供的再一种报文结构的示意图;
图15为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
为了应对无线宽带技术的挑战,保持第三代合作伙伴计划(3rd generation partnership project,简称3GPP)网络的领先优势,3GPP标准组在2016年底制定了下一代移动通信系统 (next generation system)网络架构,称为第五代(5th generation,简称5G)网络架构。
5G网络架构中定义了极高可靠性低时延通信(ultra-reliable low latency communication,简称URLLC)场景,主要包括如无人驾驶、工业自动化、智能电网等需要低时延、高可靠连接的业务。上述业务在5G网络中会通过不同的服务质量(quality of service,简称QoS)流(Flow)承载。如图1所示,在终端和UPF实体之间可能包含QoS Flow 1,QoS Flow 2和QoS Flow 3。不同的QoS Flow,可能具有不同的业务需求,比如时延,丢包率或抖动等。
由于上述URLLC场景所涉及的业务多为与生命安全或生产安全相关的业务,因此容不得差错。然而,从网络建设的角度,时延、差错甚至网络故障总是不可避免的,因此当我们使用5G网络服务于上述与生命安全或生产安全相关的业务时,需要5G网络能够提供实时的业务质量(也可以称为业务服务质量)监测,这样,当业务质量不满足预设条件时,可以采取相应的调整措施或者保护措施。比如,现有5G技术标准(technical standards,简称TS)22.186规定远程驾驶场景中,要求终端与服务器之间的端到端时延需要始终保持在5ms以内,若能及时监测到业务质量不满足预设条件,可以控制车辆从远程驾驶模式切换至自主驾驶模式,从而可以规避因为网络故障而导致的事故。
现有技术中,为了监测URLLC业务的服务等级协议(service-level agreement,简称SLA)(通过时延,抖动,丢包率等体现),终端和/或UPF设备按照一定的频率构造监测报文。为了达到实时监测的目的,监测报文的发送频率和URLLC时延指标成正比。即URLLC业务的时延指标要求越高,则监测报文的频率越高,监测获得的业务质量越精确。然而,监测报文的频率越高,终端和/或UPF设备就需要生成更多的监测报文,会给网络系统带来一定的负荷,尤其在网络系统已经处于高负荷或拥塞状态,大量的监测报文更会加重网络负荷或拥塞的程度,从而可能会对业务本身产生影响。
为了在不影响业务质量监测精度的情况下,避免大量的监测报文加重网络系统的负荷,本申请实施例提供了一种通信方法(具体可参见下文)和通信装置。图2所示为本申请实施例提供的通信装置的硬件结构示意图,该通信装置可以为下文中的第一节点或第二节点。该通信装置20包括至少一个处理器201,通信总线202,存储器203以及至少一个通信接口204。
处理器201可以是一个通用中央处理器(central processing unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线202可包括一通路,在上述组件之间传送信息。
通信接口204,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,简称RAN)设备、无线局域网(wireless local area networks,简称WLAN)等。
存储器203可以是只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,简称EEPROM)、只读光盘(compact disc read-only memory,简称CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有 指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信总线202与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器203用于存储执行本申请方案的计算机执行指令,并由处理器201来控制执行。处理器201用于执行存储器203中存储的计算机执行指令,从而实现本申请下述实施例提供的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置20可以包括多个处理器,例如图2中的处理器201和处理器208。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置20还可以包括输出设备205和输入设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,简称LCD)、发光二极管(light emitting diode,简称LED)显示设备、阴极射线管(cathode ray tube,简称CRT)显示设备或投影仪(projector)等。输入设备206和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
本申请实施例提供的方法可以应用于5G网络。如图3所示,5G网络架构可以包括下述多个网络功能(network functions,简称NF)设备:鉴权服务器功能(authentication server function,简称AUSF)设备、接入和移动性管理功能(access and mobility management function,简称AMF)设备、数据网络(data network,简称DN)、统一数据管理(unified data management,简称UDM)设备、策略控制功能(policy control function,简称PCF)设备、(无线)接入网((radio)access network,简称(R)AN)设备、UPF设备、终端、应用功能(application function,简称AF)设备、会话管理功能(session management function,简称SMF)设备。其中,设备也可以称为网元或实体等。
图3中的UDM设备、AUSF设备、PCF设备、AMF设备和SMF设备也可以统称为控制面功能(control plane function,简称CPF)设备,本申请实施例对此不作具体限定。
(R)AN设备功能包括:无线资源管理,上下行数据分类,用户面数据转发,提供无线连接等。UPF设备功能包括:数据包路由和转发。此外,UPF设备还可以作为移动性锚点、上行分类器来支持路由业务流到DN、或分支点(branch point,简称BP)来支持多归属分组数据单元(packet data unit,简称PDU)会话。UPF设备还可以执行数据统计,限速,统计上报等。DN可以为运营商服务,互联网接入或者第三方服务。AMF设备功能包含管理用户注册、可达性检测、SMF节点的选择、移动状态转换管理等。SMF设备功能包括:执行会话管理功能,如PDU会话建立、修改或删除,QoS Flow建立,用户面资源建立等。PCF设备作为策略决策点,功能包括:提供例如基于业务数据流和应用检测、门控、QoS和基于流的计费控制 等规则。AF设备功能包括:与3GPP核心网交互来提供服务,来影响业务流路由、接入网能力开放、策略控制等。AUSF设备主要功能包括:提供鉴权服务。UDM设备主要功能包括:存储用户签约数据。
需要说明的是,图3的接入网设备、AMF设备、SMF设备、AUSF设备、UDM设备、UPF设备和PCF设备等仅是一个名字,名字对设备本身不构成限定。在5G网络以及未来其它的网络中,接入网设备、AMF设备、SMF设备、AUSF设备、UDM设备、UPF设备和PCF设备所对应的网元或设备也可以是其他的名字,本申请实施例对此不作具体限定。例如,该UDM设备还有可能被替换为用户归属服务器(home subscriber server,简称HSS)或者用户签约数据库(user subscription database,简称USD)或者数据库设备,等等,在此进行统一说明,以下不再赘述。
可理解的是,图3仅为示例性架构图,除图3所示功能设备之外,该5G网络架构还可以包括其他功能设备。
具体的,本申请实施例提供的方法还可以应用于图4所示的演进分组系统(evolved packet system,简称EPS)网络(即通常所说的第四代(4th generation,简称4G)网络)。如图4所示,该EPS网络可以包括下述多个功能网元:终端、演进型通用陆地无线接入网(evolved universal terrestrial radio access network,简称E-UTRAN)(具体可以为eNodeB)、业务网关(serving gateway,简称SGW)、分组数据网关(packet data network gateway,简称PGW)、移动性管理网元(mobility management entity,简称MME)、HSS、移动交换中心(mobile switching center,简称MSC)和策略和计费规则功能(policy and charging rules function,简称PCRF)网元。
其中,SGW和PGW可以统称为网关(gateway,简称GW)。在4.5G中,随着用户面功能和控制面功能的分离,GW又进一步被划分为网关用户面功能(gateway user plane function,简称GW-U)和网关控制面功能(gateway control plane function,简称GW-C)。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
可选的,本申请实施例中所涉及到的终端(terminal)还可以称为用户设备(user equipment,简称UE)。具体可以为包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,简称PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,简称WLL)台、机器类型通信(machine type communication,简称MTC)终端、移动台(mobile station,简称MS),终端设备(terminal device)等。为方便描述,本申请中,上面提到的设备统称为终端。
可选的,本申请实施例中所涉及到的接入网设备指的是接入核心网的设备,例如可以是基站,宽带网络业务网关(broadband network gateway,简称BNG),汇聚交换机,非3GPP 接入网设备等。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在第三代(3rd generation,简称3G)系统中,称为节点B(Node B);在第四代系统中,称为eNodeB;在第五代系统中,称为gNB(gNodeB)。
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍,具体如下。
业务流:
本申请实施例中的业务流包括业务聚合流和业务子流。其中,在4G或第4.5代(4.5th generation,简称4.5G)网络中,业务聚合流包括承载或分组数据网络(packet data network,简称PDN)连接,业务子流包括承载内的某个具体的业务流。在5G网络中,业务聚合流包括QoS Flow或分组数据单元(packet data unit,简称PDU)会话,业务子流包括QoS Flow内的某个具体的业务流。
示例性的,以5G网络为例,如图5所示,假设一个PDU会话包含三条QoS Flow,分别为QoS Flow1,QoS Flow2和QoS Flow3。QoS Flow1由子流1和子流2构成,子流1和子流2分别对应不同的业务流。比如,子流1对应车与外界的通信(vehicle to everything communication,简称V2X)业务流1,子流2对应V2X业务流2,则图5中的业务聚合流包括PDU会话,QoS Flow1,QoS Flow2和QoS Flow3,QoS Flow1的业务子流包括子流1和子流2。其中,业务子流或者业务聚合流可以用于传输业务报文和监测报文。业务报文具体是指用户报文,即终端或者应用服务器由于要执行某一业务通过移动网络进行传输的报文。监测报文具体是指移动网络内部用于监测业务质量的报文,其中,监测报文由报文发送设备(下文中为第一节点)构造,该报文发送设备可以为5G网络中的终端、接入网设备或UPF设备;也可以是4.5G网络中的终端、接入网设备或网关用户面功能(gateway user plane function,简称GW-U)实体;还可以是4G网络中的终端、接入网设备或网关(gateway,简称GW)等,本申请实施例对此不作具体限定。
监测类型:
本申请实施例中监测业务质量的监测类型包括链路连通性监测、业务传输性能监测和环回(loopback,简称LB)监测三种监测类型,下面分别对这三种监测类型简要介绍如下:
1)、链路连通性监测
链路连通性监测主要通过报文发送设备周期性发送监测报文,报文接收设备(下文中为第二节点)通过监测报文的到达情况决策链路是否出现了故障。其中,该发送周期的决策依据主要是根据时延等因素决策,比如:报文传输时延要求端到端6ms,发送周期为2ms,若报文接收设备连续三个周期没有收到监测报文,即可认为链路故障,也就是说,监测报文的到达间隔已经不满足业务的服务质量需求。
在进行链路连通性监测时,报文发送设备所需的参数包括:业务流标识和发送周期。其中,业务流标识用于指示业务的业务流,发送周期为连续发送两个监测报文之间的时间间隔。
可选的,本申请实施例中,在5G网络中,若业务流为PDU会话,则业务流标识可以为PDU会话标识(Identity,简称ID)或者终端的地址信息或者用于承载PDU会话的通用分组无线服务技术(general packet radio service,简称GPRS)隧道协议(GPRS tunnelling protocol, 简称GTP)隧道的隧道端点标识(tunnel endpoint identifier,简称TEID)。也就是说,根据PDU会话标识或者终端的地址信息或者用于承载PDU会话的GTP隧道的TEID可以确定终端的一条PDU会话。若业务流为QoS Flow,则业务流标识可以为PDU会话标识+QoS流标识(QoS Flow ID,简称QFI),也就是说,根据PDU会话标识+QFI可以确定终端的一条PDU会话中的一个QoS Flow。若业务流为QoS Flow内的某个具体的业务流,则业务流标识可以为五元组或者其他可以唯一确定QoS Flow内的某个具体的业务流的地址信息,比如源MAC地址和目的MAC地址。也就是说,根据五元组或者其他可以唯一确定QoS Flow内的某个具体的业务流的地址信息可以确定终端的一条PDU会话中的一个QoS Flow内的某个具体的业务流,该五元组包括源网络互连协议(internet protocol,简称IP)地址、目的IP地址、源端口号、目的端口号以及传输层协议号。
在4G或者4.5G网络中,若业务流为PDN连接,则业务流标识可以包括PDN连接标识,也就是说,根据PDN连接标识可以确定终端的一条PDN连接。若业务流为承载,则业务流标识可以为PDN连接标识+承载标识,也就是说,根据PDN连接标识+承载标识可以确定终端的一条PDN连接中的一个承载。若业务流为承载内的某个具体的业务流,则业务流标识可以为上述的五元组,也就是说,根据五元组可以唯一确定一条具体的业务流。在此进行统一说明,以下不再赘述。
可选的,报文发送设备所需的参数还可以包括监测报文的上下文标识以及监测类型中的至少一个。其中,该监测类型用于指示业务的服务质量监测的类型是链路连通性监测。该监测报文的上下文标识用于指示监测报文的本地上下文。在进行链路连通性监测时,报文发送设备中的监测报文的本地上下文具体可以包括监测报文的发送周期、监测类型、监测报文的上下文标识以及业务流标识的至少一个,在此进行统一说明,以下不再赘述。
在进行链路连通性监测时,报文接收设备所需的参数包括:业务流标识、接收周期以及故障决策阈值。其中,业务流标识用于指示业务的业务流,接收周期为连续接收两个监测报文之间的时间间隔,故障决策阈值用于进行故障判别。比如,报文传输时延要求端到端6ms,若接收周期为2ms,则此处故障决策阈值应设置为3,若报文接收设备连续3个周期没有收到监测报文,即可认为链路故障。其中,对业务的服务质量进行监测时,报文接收设备和报文发送设备所需的参数中的业务流标识相同,发送周期和接收周期相同,在此进行统一说明,以下不再赘述。
此外,报文接收设备所需的参数还可以包括监测报文的上下文的标识、监测类型和故障后的动作中的至少一个。其中,该故障后的动作例如可以是发起环回监测进行故障定位,或者将故障上报至控制面等,本申请实施例对此不作具体限定。该监测报文的上下文标识用于指示监测报文的本地上下文。在进行链路连通性监测时,报文接收设备中的监测报文的本地上下文具体可以包括监测报文的接收周期、故障决策阈值、监测类型、监测报文的上下文标识、业务流标识和故障相应的动作中的至少一个,在此进行统一说明,以下不再赘述。
可选的,在进行链路连通性监测时,报文发送设备和报文接收设备之间还可能经过中间设备,例如,在5G网络中,若报文发送设备为终端,报文接收设备为UPF设备,该中间设备例如可以是接入网设备。其中,中间设备所需的参数包括:监测报文的上下文的标识、监测类型、处理方式、故障决策阈值和故障相应的动作中的至少一个。中间设备的处理方式包 括透传或将向报文接收设备发送监测报文的发送周期修改为该中间设备从报文发送设备接收监测报文的接收周期。通过中间设备,也可以进行业务质量的监测,本申请实施例对此不作具体限定。
当然,在进行链路连通性监测时,报文接收设备所需的参数、中间设备所需的参数和报文发送设备所需的参数还可以包括其它参数,本申请实施例对此不作具体限定。
2)、业务传输性能监测
业务传输性能监测主要用于监测业务流的业务传输性能,比如丢包率或抖动情况等。基本原理是通过报文发送设备和报文接收设备交换统计信息实现丢包率或抖动情况的计算。
在进行业务传输性能监测时,报文发送设备所需的参数包括:业务流标识和发送周期。其中,该发送周期可以是基于时间的,比如2秒发送一次监测报文;或者该发送周期可以是基于数据量的,比如,报文发送设备每发送1M(兆)业务报文,可以通过监测报文发送一次业务报文的统计数据。
可选的,报文发送设备所需的参数还可以包括监测报文的上下文的标识以及监测类型中的至少一个。其中,该监测类型用于指示业务的服务质量监测的类型是业务传输性能监测。该监测报文的上下文标识用于指示监测报文的本地上下文。在进行业务传输性能监测时,报文发送设备中的监测报文的本地上下文具体可以包括业务流标识、监测报文的发送周期、监测报文的上下文的标识以及监测类型中的至少一个,在此进行统一说明,以下不再赘述。
在进行业务传输性能监测时,报文接收设备所需的参数包括:业务流标识以及传输性能阈值。该传输性能阈值用于进行传输性能判别,其中,该传输性能阈值例如可以是丢包率阈值或者抖动阈值。比如,若丢包率阈值为0.5%,则在报文接收设备确定当前的丢包率为0.5%或超过0.5%时,可认为业务传输性能不满足要求。或者,比如,若抖动阈值为2ms,则在报文接收设备确定当前的抖动值为2ms或超过2ms时,可认为业务传输性能不满足要求。
此外,报文接收设备所需的参数还可以包括监测报文的上下文的标识、监测类型和故障相应的动作中的至少一个。其中,该故障相应的动作例如可以是发起环回监测进行故障定位,或者将故障上报至控制面等,本申请实施例对此不作具体限定。该监测报文的上下文标识用于指示监测报文的本地上下文。在进行业务传输性能监测时,报文接收设备中的监测报文的本地上下文具体可以包括业务流标识、传输性能阈值、监测报文的上下文的标识监测类型和故障相应的动作中的至少一个,在此进行统一说明,以下不再赘述。
当然,在进行业务传输性能监测时,报文接收设备所需的参数和报文发送设备所需的参数还可以包括其它参数,本申请实施例对此不作具体限定。
3)环回监测
环回监测主要用于监测业务流的环回时延和故障定位。基本原理是通过报文收发设备(既是报文发送设备又是报文接收设备)发送监测报文实现环回时延测量和故障定位。环回监测与链路连通性监测和业务传输性能监测的最主要区别在于环回监测存在环回设备,环回设备的功能是将监测报文原路返回。该情况下,下述实施例中的第一节点在对业务质量进行环回监测时,第一节点可以为报文收发设备,第二节点可以为环回设备,该情况下,第二节点在接收到第一节点发送的监测报文后,还需要将监测报文原路返回给第一节点。
在进行环回监测时,报文收发设备所需的参数包括:业务流标识、环回路径长度信息和 监测报文的上下文标识。其中,环回路径长度信息用于故障定位。该监测报文的上下文标识用于指示监测报文的本地上下文。在进行环回监测时,报文收发设备中的监测报文的本地上下文具体可以包括业务流标识、环回路径长度信息和监测报文的上下文标识,在此进行统一说明,以下不再赘述。
环回设备所需的参数包括:业务流标识。
可选的,环回设备所需的参数还可以包括监测报文的上下文标识。该监测报文的上下文标识用于指示监测报文的本地上下文。在进行环回监测时,环回设备中的监测报文的本地上下文具体可以包括业务流标识或监测报文的上下文标识中的至少一个,在此进行统一说明,以下不再赘述。
示例性的,如图6所示,为本申请实施例提供的一种环回监测示意图。其中,终端发起环回监测,监测报文的上下文标识为1,由于基站中包括该监测报文的上下文标识对应的上下文,因此可以根据监测报文的上下文确定基站自身为环回设备,进而基站可以将监测报文环回到终端。终端接收到监测报文后,可以继续发起环回监测,监测报文的上下文标识为2,由于基站中不包括该监测报文的上下文标识对应的上下文,因此基站将其按照普通业务报文对待,将其传输至UPF设备,由于UPF设备中包括该监测报文的上下文标识对应的上下文,因此可以根据监测报文的上下文确定UPF设备自身为环回设备,进而UPF设备可以将监测报文环回到终端。由于终端获知分段环回时延和端到端时延,因此如果某段路径有故障,可以通过环回监测测出。
当然,在进行环回监测时,报文收发设备所需的参数和环回设备所需的参数还可以包括其它参数,本申请实施例对此不作具体限定。
下面给出上述三种监测类型的对比情况,如表一所示:
表一
Figure PCTCN2019077772-appb-000001
需要说明的是,本申请仅是示例性的提供几种业务的服务质量监测的监测类型,当然, 也可能存在其它的监测类型,本申请实施例对此不作具体限定。
还需要说明的是,上文中仅仅对本地上下文中包含的信息作了示例性说明,并不限定本地上下文中仅包含上述信息,比如,在本申请实施例中,本地上下文中还可以包括第一参数信息、报文生成方式、业务质量决策阈值等信息,具体可参见下文中的相关部分的描述。
下面将对业务报文和监测报文的报文格式进行介绍。
报文格式:
本申请实施例中的监测报文和业务报文使用相同的3GPP网络协议头,主要区别在于监测报文的负载类型为监测报文,业务报文的负载类型为业务报文。以5G网络为例,该3GPP网络协议头对应图7中的协议栈。其中,由图7可以看出,终端和接入网设备之间的3GPP网络协议头包括业务数据适配协议(service data adaptation protocol,简称SDAP)头部,分组数据汇聚层协议(packet data convergence protocol,简称PDCP)头部以及下层各协议层头部,该下层各协议层头部包括无线链路控制(radio link control,简称RLC)层,介质访问控制(media access control,简称MAC)层和一层(level1,简称L1)。接入网设备和UPF实体之间的3GPP网络协议头包括用户面GPRS隧道协议(GPRS tunnelling protocol for the user plane,简称GTP-U)头部以及下层各协议层头部,该下层各协议层头部包括用户数据报协议(user datagram protocol,简称UDP)或网络之间互连的协议(internet protocol,简称IP)层,二层(level2,简称L2)和L1。由于相同的网络协议头可以保证监测报文与相应的业务报文使用相同的端到端管道资源,因此,通过监测报文可以监测业务的服务质量。本申请实施例中,监测报文相应的业务报文是指,与监测报文对应相同业务流的业务报文,比如图5中监测报文1对应的业务报文为业务报文1,监测报文2对应的业务报文为业务报文2,监测报文3对应的业务报文为业务报文3,等等。
可选的,本申请实施例中的监测报文可以称为链路质量感知协议(link quality awareness protocol,简称LQAP)报文,也可以称为其他报文,本申请实施例对此不作具体限定。
本申请实施例提供了一种业务质量监测方法,用于通过第一节点和第二节点对第一业务的业务质量进行监测。其中,第一业务为需要进行业务质量监测的业务,并不特指某个业务。在对第一业务的业务质量进行监测之前,可以对第一节点和/或第二节点中的监测报文的本地上下文进行配置,以下以第一节点为终端,第二节点为UPF设备、且该配置过程执行在5G网络中为例对该配置过程作示例性说明。在图8所述的配置过程中,为了描述方便,将第一节点中的监测报文的本地上下文简称为第一节点的本地上下文,将第二节点中的监测报文的本地上下文简称为第二节点的本地上下文。将第一节点的本地上下文的上下文标识称为第一上下文标识,将第二节点的本地上下文的上下文标识称为第二上下文标识。
如图8所示,第一节点和第二节点的本地上下文的配置过程包括:
801、SMF确定建立第一节点和第二节点的本地上下文。
其中,第一节点和第二节点为第一业务的业务报文的收发端,当监测报文为LQAP报文时,通过在第一节点和第二节点配置本地上下文可以确定第一节点和第二节点之间的LQAP连接。
其中,SMF可以在以下条件中的任意一个或多个条件的触发下确定建立第一节点和第二节点的本地上下文:(1)、SMF接收到了其他网络设备(比如,PCF)发送的第一业务的监测 指示。(2)、SMF根据本地策略(或者称为本地配置信息)确定。比如,业务满足本地策略中的预设条件时,SMF确定建立第一节点和第二节点的本地上下文。示例性的,预设条件可以为业务的可靠性要求大于预设阈值,则若终端根据某QoS流的QoS需求确定该QoS流的可靠性要求大于预设阈值时,SMF确定建立该QoS流对应的业务的业务报文的收发端的本地上下文。示例性的,若本地策略中包括对某个终端的PDU会话进行业务质量监测的信息,则该某个终端新建立一个PDU会话时,SMF确定建立该PDU会话对应的业务的业务报文的收发端的监测报文的本地上下文。
802、SMF确定第一节点和第二节点的本地上下文,并为第一节点和第二节点的本地上下文分配上下文标识。
本地上下文中可以包括第一业务的业务流的标识、监测报文的发送和/或接收规则、监测报文的生成方式中的一个或多个信息,当然,还可以包括其他信息,本申请实施例对此不作具体限定。
第一节点和第二节点的本地上下文可以为:
第一节点:业务流标识+上行发送规则+下行接收规则。
第二节点:业务流标识+下行发送规则+上行接收规则。
其中,上行发送规则可以包括上行发送周期和监测报文的生成方式中的一个或多个信息,下行发送规则可以包括下行发送周期和监测报文的生成方式中的一个或多个信息。下行接收规则可以包括下行接收周期,上行接收规则可以包括上行接收周期。监测报文的生成方式可以参见下文中的相关描述。
其中,上行发送周期即发送上行监测报文的周期,下行接收周期即接收下行监测报文的周期,下行发送周期即发送下行监测报文的周期,上行接收周期即接收上行监测报文的周期。上行发送周期和下行发送周期可以相同,也可以不同;下行接收周期和上行接收周期可以相同,也可以不同,本申请实施例对此不作具体限定。
若SMF在条件(1)的触发下确定建立第一节点和第二节点的本地上下文,一种可能的实现方式,PCF向SMF发送第一业务的监测指示,监测指示中包括:第一业务的业务流的标识、监测报文的上行发送和/或上行接收周期、监测报文的下行发送和/或下行接收周期、监测报文的生成方式中的一个或多个信息。SMF接收PCF发送的第一业务的监测指示,根据该监测指示中的业务流标识确定需要进行业务质量监测的业务,并确定建立该业务的业务报文的收发端的本地上下文。
其中,监测报文的发送周期(可以是上行发送周期,也可以是下行发送周期)可以显示指示也可以隐式指示。示例性的,显示指示时,监测指示中可以指示监测报文的发送周期为2秒。示例性的,隐式指示时,监测指示中可以指示第一业务期望达到的故障感知时间(即在链路故障发生后,网络经历多久的时间能够感知到该故障事件),SMF根据接收到的故障感知时间确定监测报文的发送周期,监测报文的发送周期小于或等于故障感知时间,示例性的,SMF可以将故障感知时间乘以一个大于0小于等于1的数值得到监测报文的发送周期。监测报文的接收周期(可以是上行接收周期,也可以是下行接收周期)的指示方式同理,在此不再赘述。
监测报文的生成方式:a)、第一节点自己生成监测报文。b)、第一节点对业务报文进行封装得到监测报文。PCF可以根据网络的当前运行情况确定监测报文的生成方式,示例性的,当网络负荷较轻时,PCF确定监测报文的生成方式可以为a),当网络负荷较重时,PCF确定监测报文的生成方式可以为b)。
若SMF在条件(2)的触发下确定建立第一节点和第二节点的本地上下文,SMF可以根据本地策略确定第一业务的业务流的标识、监测报文的上行发送和/或上行接收周期、监测报文的下行发送和/或下行接收周期、监测报文的生成方式中的一个或多个信息;或者,SMF可以与第一节点和/或第二节点协商确定监测报文的上行发送和/或上行接收周期、监测报文的下行发送和/或下行接收周期、监测报文的生成方式中的一个或多个信息。
803、SMF向第一节点发送第一节点的本地上下文和第一上下文标识。相应的,第一节点从SMF接收第一节点的本地上下文和第一上下文标识。第一上下文标识用于第一节点根据该标识获取第一节点的本地上下文。
其中,第一节点的本地上下文和/或第一上下文标识可以包含在非接入层(non-access stratum,简称NAS)消息中通过基站向第一节点发送。
804、第一节点将第一节点的本地上下文与第一业务关联。
第一节点根据第一节点的本地上下文中的业务流标识,确定第一业务的业务流;第一节点将第一节点的本地上下文存储至第一业务的业务流的本地上下文中。
或者,第一节点根据第一节点的本地上下文中的业务流标识,确定第一业务的业务流;其中,本地上下文中包括第一业务的业务流的标识。
805、SMF向第二节点发送第二节点的本地上下文和第二上下文标识。相应的,第二节点从SMF接收第二节点的本地上下文和第二上下文标识。第二上下文标识用于第二节点根据该标识获取第二节点的本地上下文。
第二节点的本地上下文和/或第二上下文标识可以包含在N4会话消息中。
806、第二节点将第二节点的本地上下文与第一业务关联。
步骤806在具体实现时,可参照步骤804,此处不再赘述。
当基站需要对第一节点和第二节点之间传输的监测报文进行处理时,SMF还可以向基站发送基站的本地上下文和基站的本地上下文的上下文标识,用于基站将基站的本地上下文与第一业务关联,关联的方法与步骤804描述的方法类似。基站的本地上下文和基站的本地上下文的上下文标识可以包含在N2消息中。
示例性的,基站的本地上下文可以包括:业务流标识+上行接收规则+下行接收规则+报文处理规则。报文处理规则即表一中所示的处理方式。需要说明的是,若基站透传UPF设备和终端之间的监测报文时,SMF可以不确定基站的本地上下文和基站的本地上下文的上下文标识。
图8中所示的方法,第一节点(或第二节点、或基站)在接收到第一节点(或第二节点、或基站)的本地上下文以及该本地上下文的标识之后,可以向SMF返回一个应答消息,应答消息用于通知SMF第一节点(或第二节点、或基站)接收到了第一节点(或第二节点、或基站)的本地上下文以及该本地上下文的标识。
需要说明的是,在5G网络中,针对PDU会话或QoS Flow,SMF可以为第一节点和第二节点配置一个本地上下文(此时,一个PDU会话或一个QoS Flow对应一个本地上下文),也可以为第一节点和第二节点配置多个本地上下文(此时,一个PDU会话或一个QoS Flow中的每个具体的业务流可以对应一个本地上下文),针对QoS Flow中的一个具体的业务流,SMF一般只为第一节点和第二节点配置一个本地上下文。在EPS网络中,针对承载或PDN连接,SMF可以为第一节点和第二节点配置一个本地上下文(此时,一个承载或一个PDN连接对应一个本地上下文),也可以为第一节点和第二节点配置多个本地上下文(此时,一个承载或一个PDN连接中的每个具体的业务流可以对应一个本地上下文),针对承载或PDN连接中的一个具体的业务流,SMF一般只为第一节点和第二节点配置一个本地上下文。
下面将结合图1至图8对本申请实施例提供的监测业务质量的方法进行具体阐述。
本申请实施例提供了一种监测业务质量的方法,如图9所示,该方法包括:
901、第一节点获取第一业务的业务报文。
其中,第一节点可以为用户面设备,具体可以为接入网设备(例如,中继、基站等)、用户面网关(例如,UPF、GW等)或终端。可以理解的是,当图9所示的方法应用在5G网络中时,第一节点可以为5G网络中的用户面设备。当图9所示的方法应用在EPS网络中时,第一节点可以为EPS网络中的用户面设备。下文中以图9所示的方法应用在5G网络中为例进行说明。
第一业务为需要进行业务质量监测的业务,并不特指某个业务。
需要进行业务质量监测的业务可以预设在第一节点中,此时,第一节点可以根据预设的需要进行业务质量监测的业务确定第一业务。需要进行业务质量监测的业务也可以由第一节点根据预设规则确定,此时,第一节点可以根据预设规则确定第一业务。示例性的,预设规则可以为:业务的可靠性要求大于预设阈值,其中,预设阈值可以预先设定。当一个业务的业务流为QoS流时,第一节点可以根据该QoS流的QoS需求确定该业务的可靠性要求。其中,业务的可靠性要求包括业务的时延、抖动、丢包率等要求。需要进行业务质量监测的业务也可以由其他节点(例如,PCF、SMF等)向第一节点指示,此时,第一节点可以根据指示确定第一业务。本申请实施例对第一节点确定第一业务的方式不作具体限定。
第一业务的业务报文在第一节点和第二节点之间的路径上传输。第一节点可以通过获取到的报文携带的业务标识确定该报文是否为第一业务的业务报文。
902、第一节点对业务报文进行封装,得到监测报文,监测报文用于第一业务的业务质量的监测。
具体的,第一节点对业务报文进行封装时,可以封装部分或全部与第一业务的业务质量监测相关的信息,还可以封装一些其他的信息。
监测报文的格式将结合后面的图10至14进一步描述。
903、第一节点向第二节点发送监测报文。
其中,第一节点和第二节点中,一个节点为终端,另一个节点可以为接入网设备或用户面网关;或者,第一节点和第二节点中,一个节点为用户面网关,另一个节点可以为接入网设备。示例性的,第一节点和第二节点中,一个节点为终端,另一个节点可以为UPF设备或基站;或者,第一节点和第二节点中,一个节点为UPF设备,另一个节点可以为基站。
示例性的,第一节点可以根据本地上下文中的报文发送规则发送监测报文。其中,报文发送规则用于描述监测报文发送时需要满足的一个或多个规则,报文发送规则可以包括报文发送的周期、报文的生成方式等信息。
904、第二节点从第一节点接收监测报文,监测报文包括第一业务的业务报文。
905、第二节点根据监测报文对第一业务的业务质量进行监测。
具体的,第二节点可以根据监测报文包括的与第一业务的业务质量监测相关的信息对第一业务的业务质量进行监测。例如,第二节点可对第一业务进行链路连通性监测、业务传输性能监测、环回监测中的至少一项。链路连通性监测、业务传输性能监测、环回监测可参考前面的描述,此处不再赘述。业务的业务质量包括业务的时延、抖动和丢包率等。
示例性的,第二节点可以根据本地上下文中的报文接收规则接收监测报文。报文接收规则用于描述接收监测报文时需要满足的一个或多个规则,报文接收规则可以包括报文接收周期等信息。
需要说明的是,本申请实施例中以第一节点发送监测报文第二节点接收监测报文为例对本申请实施例提供的方法作示例性说明,实际上,第一节点还可以接收从第二节点发送的监测报文,此时,第一节点的本地上下文中还可以包括报文接收规则,第二节点的本地上下文中还可以包括报文发送规则。
906、第二节点获取监测报文中的业务报文。
在步骤906之后,若第二节点为终端,终端中的用于执行获取监测报文中的业务报文的动作的相应模块获取到监测报文中的业务报文后,可以将该业务报文向终端中的第一业务对应的应用发送;若第二节点为UPF设备,UPF设备将该业务报文向DN中的第一业务对应的应用服务器发送;若第二节点为基站,当业务报文为下行业务报文时,基站可以将业务报文向终端发送,当业务报文为上行业务报文时,基站可以将业务报文向UPF设备发送。
可选的,若第一节点和第二节点之间的中间节点能够处理监测报文,比如,第一节点为终端,第二节点为UPF设备时,则中间节点可以为基站,中间节点在接收到第一节点发送的监测报文之后,也可以根据中间节点上的本地上下文确定第一节点和中间节点之间的第一业务的业务质量,并将该业务质量信息插入到监测报文中向第二节点发送,从而使得第二节点获取第一业务的更详细的业务质量信息。
本申请实施例提供的方法,第一节点可以通过对业务报文进行封装得到监测报文,从而对业务的业务质量进行监测,由于监测报文根据业务报文封装得到,因此,第一节点可以利用业务报文对业务质量进行监测,避免加重网络系统的负荷。
可选的,步骤902在具体实现时,第一节点对业务报文进行封装,包括:第一节点在业务报文中添加以下信息中的至少一种:第一指示信息和第一参数信息,第一指示信息用于指示监测报文由业务报文封装得到,第一参数信息用于第一业务的业务质量的监测。示例性的,当监测报文为LQAP报文时,第一参数信息可以为LQAP参数中的信息。该情况下,第一节点的本地上下文中还可以包括第一参数信息,以便第一节点将第一参数信息携带在发送的监测报文中。
示例性的,LQAP参数可以包括业务流标识、LQAP报文的发送周期、LQAP报文的上下文标识、监测类型、LQAP报文的接收周期、业务质量监测所需的故障决策阈值、故障相应 的动作中的一个或多个。
具体的,第一指示信息在监测报文中的位置可以为以下两种情况中的任意一种情况:
情况1、监测报文包括以下信息中的至少一项:与业务报文具有相同格式的协议头和包括第一指示信息的第一字段,第一指示信息用于指示监测报文由业务报文封装得到。其中,第一字段可以为预设的承载第一指示信息的字段。例如,第一字段可以是LQAP头字段,这将结合后面图10进一步描述。
情况2、监测报文包括与业务报文具有相同格式的协议头,协议头包括第一指示信息,第一指示信息用于指示监测报文由业务报文封装得到。这将结合后面图11进一步描述。
在情况2下,若第一节点为UPF设备,第一指示信息包含于监测报文的GTP层的协议头中。若第一节点为终端,第一指示信息包含于监测报文的SDAP层或PDCP层的协议头中。若第一节点为基站,且第二节点为终端,第一指示信息包含于监测报文的SDAP层或PDCP层的协议头中。若第一节点为基站,且第二节点为UPF设备,第一指示信息包含于监测报文的GTP层的协议头中。
可选的,监测报文包括第一指示信息,上述方法还可以包括:第二节点根据第一指示信息确定监测报文由业务报文封装得到。该步骤可以执行在步骤906之前。该情况下,当监测报文中包括第一指示信息时,第二节点确定监测报文由业务报文封装得到,当监测报文中不包括第一指示信息或监测报文中包括下文中所述的第二指示信息时,第二节点确定监测报文由第一节点生成。
可选的,第一节点可以确定在预设时间获取到了第一业务的业务报文的情况下,执行步骤902。其中,预设时间可以为第一节点获取第一业务的业务报文的时间点。若第一节点确定在预设时间未获取到第一业务的业务报文,第一节点生成监测报文,第一节点向第二节点发送该监测报文,第二节点从第一节点接收监测报文,根据监测报文对第一业务的业务质量进行监测。该监测报文同样用于第一业务的业务质量的监测,需要说明的是,不论第一节点发送的监测报文是由业务报文封装得到的还是第一节点自己生成的,对于第二节点来说,接收到的都是监测报文,第二节点根据监测报文中的第一指示信息或第二指示信息(具体内容参见下文)确定监测报文是由业务报文封装得到的还是第一节点自己生成的。不过在本申请中,为了更好的理解本申请,在描述上对两种监测报文进行了区分,通过业务报文封装得到的监测报文在下文中被称为第一监测报文,第一节点自己生成的报文在下文中被称为第二监测报文。在下文中的未对监测报文进行区分的部分,说明该部分描述既适用于第一监测报文也适用于第二监测报文。其中,第二监测报文包括第二指示信息,第二指示信息用于指示第二监测报文由第一节点生成。该情况下,第二节点根据第二指示信息确定第二监测报文由第一节点生成。
具体的,第二指示信息在第二监测报文中的位置可以为以下两种情况中的任意一种情况:
情况(1)、第二监测报文包括与业务报文具有相同格式的协议头和/或包括第二指示信息的第二字段,第二指示信息用于指示第二监测报文由第一节点生成。其中,第二字段可以为预设的承载第二指示信息的字段。
情况(2)、第二监测报文包括与业务报文具有相同格式的协议头,协议头包括第二指示信息,第二指示信息用于指示第二监测报文由第一节点生成。
其中,第一字段和第二字段可以为同一字段,也可以为不同字段,本申请实施例对此不作具体限定。需要说明的是,第一指示信息和第二指示信息可以通过监测报文中的一个字段上的一个或多个比特位上的不同的值指示。示例性的,第二指示信息和第一指示信息可以通过监测报文中的一个比特位指示,当该比特位的值为1时,表示该监测报文由业务报文封装得到,当该比特位的值为0时,表示该监测报文由第一节点生成;或者,该比特位的值为0时,表示该监测报文由业务报文封装得到,当该比特位的值为1时,表示该监测报文由第一节点生成。当然,第二指示信息和第一指示信息也可以通过监测报文中的多个比特位指示,本申请实施例对此不作具体限定。
具体的,若第一节点为UPF设备,第二指示信息可以包含于第二监测报文的GTP层的协议头中。若第一节点为终端,第二指示信息可以包含于第二监测报文的SDAP层或PDCP层的协议头中。若第一节点为基站,且第二节点为终端,第二指示信息可以包含于第二监测报文的SDAP层或PDCP层的协议头中。若第一节点为基站,且第二节点为UPF设备,第二指示信息可以包含于第二监测报文的GTP层的协议头中。
可选的,监测报文包括第一参数信息,第一参数信息用于第一业务的业务质量的监测。例如,第一参数信息可以包括时间戳、第一节点接收到的第一业务的业务报文的统计信息等。
可选的,监测报文包括第一参数信息,步骤905在具体实现时可以包括:第二节点根据监测报文包括的第一参数信息和监测报文的本地上下文对第一业务的业务质量进行监测。
监测报文的本地上下文中还可以包括第一业务的业务质量决策阈值,第一业务的业务质量决策阈值为对第一业务进行业务质量决策的基准。示例性的,业务质量决策阈值可以包括时延阈值,抖动阈值,丢包率阈值等。其中,时延阈值用于判断第一业务的时延是否满足要求,抖动阈值用于判断第一业务的抖动是否满足要求,丢包率阈值用于判断第一业务的丢包率是否满足要求。其中,时延阈值和报文接收周期可以为同一个值,也可以为不同的值。当时延阈值和报文接收周期为同一个值时,时延阈值也可以不单独设置,而通过报文接收周期表征。
比如,在时延阈值通过报文接收周期表征的情况下,第二节点可以根据第一参数信息中的时间戳和监测报文的实际接收时间确定监测报文的时延,根据该时延与监测报文的本地上下文中的报文接收周期进行比对确定第一业务的时延是否满足要求。比如,若第二节点根据第一参数信息中的时间戳和监测报文的实际接收时间确定监测报文的时延2ms。若监测报文的本地上下文中的报文接收周期为1ms,则第一业务的时延不满足要求,若监测报文的本地上下文中的报文接收周期为3ms,则第一业务的时延满足要求。需要说明的是,在实际实现时,第二节点可能根据多个监测报文的时延确定第一业务的平均时延,再与本地上下文中的报文接收周期进行比对,或者采用其他方法确定第一业务的时延是否满足要求。
在第二节点连续获取到多个监测报文的时延的情况下,第二节点可以根据多个监测报文的时延确定第一业务的抖动,根据该抖动与监测报文的本地上下文中的抖动阈值确定第一业务的抖动是否满足要求。比如,若第二节点连续获取到的5个监测报文的时延分别为3ms、4ms、5ms、3ms、5ms,则第一业务的抖动为5ms-3ms=2ms。此时,若监测报文的本地上下文中的抖动阈值为3ms,则第一业务的抖动满足要求,若监测报文的本地上下文中的抖动阈值为1ms,则第一业务的抖动不满足要求。
再比如,第二节点可以根据第一参数信息中的第一节点接收到的第一业务的业务报文的个数和第二节点发送的第一业务的业务报文的个数确定第一业务的丢包率,根据该丢包率和监测报文的本地上下文中的丢包率阈值进行比对确定第一业务的丢包率是否满足要求。比如,若第二节点根据第一参数信息中的第一节点接收到的第一业务的业务报文的个数和第二节点发送的第一业务的业务报文的个数确定第一业务的丢包率为1%。此时,若监测报文的本地上下文中的丢包率阈值为0.9%,则第一业务的丢包率不满足要求,若监测报文的本地上下文中的丢包率阈值为1.1%,则第一业务的丢包率满足要求。
步骤905在执行之前,第二节点可以获取监测报文的本地上下文。可选的,监测报文中包括第一标识,第一标识与监测报文的本地上下文存在对应关系,上述方法还可以包括:第二节点根据监测报文中包括的第一标识和对应关系确定监测报文的本地上下文。
其中,监测报文的本地上下文可以在第二节点中存储,第一标识即上文中提到的上下文标识。示例性的,第二节点可以从控制面设备接收第一标识与监测报文的本地上下文的对应关系,具体可参见图8中的相关描述。
以下以监测报文为LQAP报文为例,对第一指示信息和第一参数信息在第一监测报文中的位置以及第二指示信息和第一参数信息在第二监测报文中的位置作示例性说明。示例性的,监测报文的报文格式可以参见图10或图11,图10和图11中所示的指示信息根据上述实施例提供的不同的情况可以为第一指示信息或第二指示信息。
其中,参见图10,若监测报文由业务报文封装得到,LQAP头(Header)中包括第一指示信息;或者,若监测报文由第一节点生成,LQAP Header中包括第二指示信息。当LQAP Header中包括第一指示信息时,第一指示信息还表明了该监测报文中包括业务报文。因此,第一指示信息也可以描述为:用于指示监测报文中存在业务报文的指示信息。第二指示信息也可以描述为:用于指示监测报文中不存在业务报文的指示信息。其中,3GPP网络头中的PT(payload type,负载类型)=LQAP表明该报文为一个LQAP报文,监测报文中还可以包括LQAP参数(包括第一参数信息),负载(payload,也可以称为净荷)(即业务报文)。
参见图11,监测报文的3GPP网络头中除了PT=LQAP指示该报文是LQAP报文之外,若监测报文由业务报文封装得到,3GPP网络头中还包括第一指示信息;或者,若监测报文由第一节点生成,3GPP网络头中还包括第二指示信息。或者,也可以定义新的PT用于指示监测报文由业务报文封装得到,还是由第一节点生成。
图10和图11所示的两种监测报文,第二节点可以在LQAP Header或3GPP网络头中获取到第一指示信息或第二指示信息。
具体的,参见图12,当第一节点为终端时,终端可以将指示信息(第一指示信息或第二指示信息)和第一参数信息封装在监测报文的负载和SDAP层(或PDCP层)之间。示例性的,指示信息可以包含在LQAP Header中,还可以包含在SDAP层(或PDCP层)中,还可以通过包含在3GPP网络头中的新的PT指示。
可选的,LQAP Header中还可以包含上下文标识,用于第二节点确定监测报文的本地上下文。可选的,LQAP Header中还可以包含LQAP长度(用于描述LQAP参数和/或LQAP Header的长度)等信息,以便第二节点将监测报文中的LQAP参数和/或LQAP Header剥离,获取监测报文中的业务报文。
具体的,参见图13,当第一节点为UPF设备时,UPF设备可以将指示信息(第一指示信息或第二指示信息)和第一参数信息封装在监测报文的负载和GTP层之间。指示信息可以包含在LQAP Header中,还可以包含在GTP层中,还可以通过包含在3GPP网络头中的新的PT指示。
可选的,LQAP Header中还可以包含LQAP长度(用于描述LQAP参数和/或LQAP Header的长度)等信息,以便第二节点将监测报文中的LQAP参数和/或LQAP Header剥离,获取监测报文中的业务报文。
可选的,第一节点发送监测报文的周期为T。其中,第一节点可以周期性的对第一业务的业务报文进行采样,若在采样点采样到第一业务的业务报文,则向第二节点发送第一监测报文,否则,向第二节点发送第二监测报文。该情况下,上述预设时间可以为多个采样点中的一个采样点。此处的T即上文中提到的第一节点的报文发送周期。第一节点在采样点未获取到第一业务的业务报文的情况下,第一节点可以生成监测报文,实现对第一业务的业务质量的监测,从而保证第一业务的业务质量监测的连续性。
可选的,第一节点可以从控制面设备获知T。示例性的,控制面设备可以为SMF或AMF,其中,AMF可以通过SMF向第一节点发送T。
可选的,上述方法还包括:第一节点从控制面设备获知监测报文的生成方式,生成方式为采用业务报文生成监测报文。该情况下,第一节点一旦在采样点采样到第一业务的业务报文,则通过对业务报文进行封装得到监测报文,否则,第一节点自己生成监测报文。
另外,图8所示的方法通过控制面使得第一节点和第二节点获取监测报文的本地上下文,与图8所示的方法不同,本申请实施例中还可以通过用户面使得终端确定监测报文的本地上下文,该种方式可以应用在映射的QoS机制(reflective QoS attribute,简称RQA)场景中。
当第一节点为终端,第二节点为UPF设备,监测报文为上行监测报文,第一节点还可以通过以下过程11)-13)获取T:
11)第二节点向第一节点发送第一周期信息,第一周期信息用于指示第二节点发送下行监测报文的周期。
12)第一节点从第二节点接收第一周期信息。
13)第一节点根据第一周期信息确定T。
步骤13)在具体实现时,第一节点可以将第一周期信息确定为T。
第一节点在发送监测报文之前,还可以获取第一参数信息,以便在监测报文中携带第一参数信息。具体的,第一节点为终端,第二节点为UPF设备,第一参数信息为上行监测报文中携带的参数信息,第一节点还可以通过以下过程21)-23)获取第一参数信息:
21)第二节点向第一节点发送第二参数信息,第二参数信息为第二节点发送的下行监测报文中携带的参数信息;第一参数信息和第二参数信息均用于第一业务的业务质量的监测。
22)第一节点从第二节点接收第二参数信息。
23)第一节点根据第二参数信息确定第一参数信息。
步骤23)在具体实现时,第一节点可以将第二参数信息确定为第一参数信息。
其中,第一周期信息和第二参数信息中的至少一个可以包含在下行的LQAP报文中,示例性的,该下行的LQAP报文可以参见图14,其中,映射的QoS指示(reflective QoS indication, 简称RQI)表示该LQAP报文为RQA场景下的报文,QFI表示当前监测的为一个QoS流。终端收到第一周期信息和第二参数信息中的至少一个后参考接收到的信息确定终端的监测报文的本地上下文。
另外,终端收到第一周期信息后还可以根据第一周期信息确定接收下行监测报文的周期。
可选的,UPF设备还可以将上下文标识包含在LQAP Header中向终端发送,终端可以建立上下文标识和监测报文的本地上下文的对应关系。在下行的LQAP报文中不包括上下文标识的情况下,上下文标识可以为业务流标识。
终端在创建好监测报文的本地上下文后,根据监测报文的本地上下文中的报文接收周期接收报文,根据监测报文的本地上下文中的报文发送周期发送报文。
上述方法中,当终端根据UPF设备发送的第一周期信息和第二参数信息确定终端的监测报文的本地上下文时,本申请实施例提供的方法可以通过用户面报文在终端上创建监测报文的本地上下文,避免通过控制面信令在终端上创建监测报文的本地上下文,从而可以减少信令数目。
上述主要从方法角度对本申请实施例提供的方案进行了介绍。可以理解的是,业务质量监测装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对业务质量监测装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,在采用集成的功能模块的情况下,图15示出了上述实施例中所涉及的业务质量监测装置150的一种可能的结构示意图,该业务质量监测装置150可以为上述第一节点或第二节点,参见图15,图15可以包括:处理单元1501和通信单元1502,还可以包括存储单元1503。
当通信装置为第一节点时,处理单元1501用于对第一节点的动作进行控制管理,例如,处理单元1501用于支持第一节点执行图8中的步骤803和804,图9中的步骤901-903,和/或本申请实施例中所描述的其他过程中的第一节点执行的动作。通信单元1502用于支持第一节点与其他网络设备通信,例如,与图9中的第二节点进行通信。存储单元1503用于存储第一节点的程序代码和数据。
当通信装置为第二节点时,处理单元1501用于对第二节点的动作进行控制管理,例如,处理单元1501用于支持第二节点执行图8中的步骤805和806,图9中的步骤904-906,和/或本申请实施例中所描述的其他过程中的第二节点执行的动作。通信单元 1502用于支持第二节点与其他网络设备通信,例如,与图9中的第一节点进行通信。存储单元1503用于存储第二节点的程序代码和数据。
其中,处理单元1501可以是处理器或控制器,通信单元1502可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元1503可以是存储器。当处理单元1501为处理器,通信单元1502为通信接口,存储单元1503为存储器时,本申请实施例所涉及的通信装置可以为图2所示的通信装置。
当图2所示的通信装置为第一节点时,处理器201用于对第一节点的动作进行控制管理,例如,处理器201用于支持第一节点执行图8中的步骤803和804,图9中的步骤901-903,和/或本申请实施例中所描述的其他过程中的第一节点执行的动作。通信接口204用于支持第一节点与其他网络设备通信,例如,与图9中的第二节点进行通信。存储器203用于存储第一节点的程序代码和数据。
当图2所示的通信装置为第二节点时,处理器201用于对第二节点的动作进行控制管理,例如,处理器201用于支持第二节点执行图8中的步骤805和806,图9中的步骤904-906,和/或本申请实施例中所描述的其他过程中的第二节点执行的动作。通信接口204用于支持第二节点与其他网络设备通信,例如,与图9中的第一节点进行通信。存储器203用于存储第二节点的程序代码和数据。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产 生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种监测业务质量的方法,其特征在于,包括:
    第一节点获取第一业务的业务报文;
    所述第一节点对所述业务报文进行封装,得到监测报文,所述监测报文用于所述第一业务的业务质量的监测;
    所述第一节点向第二节点发送所述监测报文。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一节点确定在预设时间获取到了所述第一业务的业务报文。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一节点对所述业务报文进行封装,包括:
    所述第一节点在所述业务报文中添加以下信息中的至少一种:第一指示信息和第一参数信息,所述第一指示信息用于指示所述监测报文由所述业务报文封装得到,所述第一参数信息用于所述第一业务的业务质量的监测。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述监测报文包括以下信息中的至少一项:与所述业务报文具有相同格式的协议头和包括第一指示信息的第一字段,所述第一指示信息用于指示所述监测报文由所述业务报文封装得到。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述监测报文包括与所述业务报文具有相同格式的协议头,所述协议头包括第一指示信息,所述第一指示信息用于指示所述监测报文由所述业务报文封装得到。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述监测报文包括第一参数信息,所述第一参数信息用于所述第一业务的业务质量的监测。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点从控制面设备获知所述监测报文的生成方式,所述生成方式为采用所述业务报文生成所述监测报文。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一节点发送所述监测报文的周期为T。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一节点从控制面设备获知所述T。
  10. 根据权利要求8所述的方法,其特征在于,所述第一节点为终端,所述第二节点为用户面功能UPF设备,所述监测报文为上行监测报文,所述方法还包括:
    所述第一节点从所述第二节点接收第一周期信息,所述第一周期信息用于指示所述第二节点发送下行监测报文的周期;
    所述第一节点根据所述第一周期信息确定所述T。
  11. 根据权利要求3或6所述的方法,其特征在于,所述第一节点为终端,所述第二节点为UPF设备,所述第一参数信息为上行监测报文中携带的参数信息,所述方法还包括:
    所述第一节点从所述第二节点接收第二参数信息,所述第二参数信息为所述第二节点发送的下行监测报文中携带的参数信息;
    所述第一节点根据所述第二参数信息确定所述第一参数信息。
  12. 根据权利要求3-5任一项所述的方法,其特征在于,所述第一节点为UPF设备,所述第一指示信息包含于所述监测报文的通用分组无线服务隧道协议GTP层的协议头中;所述第一节点为终端,所述第一指示信息包含于所述监测报文的业务数据适配协议SDAP层或分组数据汇聚协议PDCP层的协议头中;所述第一节点为基站,所述第二节点为终端,所述第一指示信息包含于所述监测报文的SDAP层或PDCP层的协议头中;所述第一节点为基站,所述第二节点为UPF设备,所述第一指示信息包含于所述监测报文的GTP层的协议头中。
  13. 一种监测业务质量的方法,其特征在于,包括:
    第二节点从第一节点接收监测报文,所述监测报文包括第一业务的业务报文;
    所述第二节点根据所述监测报文对所述第一业务的业务质量进行监测;
    所述第二节点获取所述监测报文中的所述业务报文。
  14. 根据权利要求13所述的方法,其特征在于,所述监测报文包括第一指示信息,所述第一指示信息用于指示所述监测报文由所述业务报文封装得到,所述方法还包括:
    所述第二节点根据所述第一指示信息确定所述监测报文由所述业务报文封装得到。
  15. 根据权利要求13或14所述的方法,其特征在于,所述监测报文包括以下信息中的至少一项:与所述业务报文具有相同格式的协议头和包括第一指示信息的第一字段,所述第一指示信息用于指示所述监测报文由所述业务报文封装得到。
  16. 根据权利要求13或14所述的方法,其特征在于,所述监测报文包括与所述业务报文具有相同格式的协议头,所述协议头包括第一指示信息,所述第一指示信息用于指示所述监测报文由所述业务报文封装得到。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述监测报文包括第一参数信息,所述第一参数信息用于所述第一业务的业务质量的监测,所述第二节点根据所述监测报文对所述第一业务的业务质量进行监测,包括:
    所述第二节点根据所述监测报文包括的第一参数信息和所述监测报文的本地上下文对所述第一业务的业务质量进行监测。
  18. 根据权利要求17所述的方法,其特征在于,所述监测报文中包括第一标识,所述第一标识与所述监测报文的本地上下文存在对应关系,所述方法还包括:
    所述第二节点根据所述监测报文中包括的所述第一标识和所述对应关系确定所述监测报文的本地上下文。
  19. 根据权利要求13-18任一项所述的方法,其特征在于,所述第二节点为用户面功能UPF设备,所述第一节点为终端,所述方法还包括:
    所述第二节点向所述第一节点发送第一周期信息,所述第一周期信息用于指示所述第二节点发送下行监测报文的周期,所述第一周期信息用于所述第一节点发送上行监测报文的周期的确定。
  20. 根据权利要求13-19任一项所述的方法,其特征在于,所述第二节点为UPF设备,所述第一节点为终端,所述方法还包括:
    所述第二节点向所述第一节点发送第二参数信息,所述第二参数信息为所述第二节点 发送的下行监测报文中携带的参数信息,所述第二参数信息用于所述第一节点发送的上行监测报文中携带的第一参数信息的确定;所述第一参数信息和所述第二参数信息均用于所述第一业务的业务质量的监测。
  21. 根据权利要求14-16任一项所述的方法,其特征在于,所述第二节点为UPF设备,所述第一指示信息包含于所述监测报文的通用分组无线服务隧道协议GTP层的协议头中;所述第二节点为终端,所述第一指示信息包含于所述监测报文的业务数据适配协议SDAP层或分组数据汇聚协议PDCP层的协议头中;所述第二节点为基站,所述第一节点为终端,所述第一指示信息包含于所述监测报文的SDAP层或PDCP层的协议头中;所述第二节点为基站,所述第一节点为UPF设备,所述第一指示信息包含于所述监测报文的GTP层的协议头中。
  22. 一种监测业务质量的装置,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于获取第一业务的业务报文;
    所述处理单元,还用于对所述业务报文进行封装,得到监测报文,所述监测报文用于所述第一业务的业务质量的监测;
    所述通信单元,用于向第二节点发送所述监测报文。
  23. 根据权利要求22所述的装置,其特征在于,所述处理单元,具体用于:
    在所述业务报文中添加以下信息中的至少一种:第一指示信息和第一参数信息,所述第一指示信息用于指示所述监测报文由所述业务报文封装得到,所述第一参数信息用于所述第一业务的业务质量的监测。
  24. 根据权利要求22或23所述的装置,其特征在于,所述监测报文包括以下信息中的至少一项:与所述业务报文具有相同格式的协议头和包括第一指示信息的第一字段,所述第一指示信息用于指示所述监测报文由所述业务报文封装得到。
  25. 根据权利要求22-24任一项所述的装置,其特征在于,所述装置发送所述监测报文的周期为T。
  26. 一种监测业务质量的装置,其特征在于,包括:通信单元和处理单元;
    所述通信单元,用于从第一节点接收监测报文,所述监测报文包括第一业务的业务报文;
    所述处理单元,用于根据所述监测报文对所述第一业务的业务质量进行监测;
    所述处理单元,还用于获取所述监测报文中的所述业务报文。
  27. 根据权利要求26所述的装置,其特征在于,所述监测报文包括第一指示信息,所述第一指示信息用于指示所述监测报文由所述业务报文封装得到;
    所述处理单元,还用于根据所述第一指示信息确定所述监测报文由所述业务报文封装得到。
  28. 根据权利要求26或27所述的装置,其特征在于,所述监测报文包括以下信息中的至少一项:与所述业务报文具有相同格式的协议头和包括第一指示信息的第一字段,所述第一指示信息用于指示所述监测报文由所述业务报文封装得到。
  29. 一种监测业务质量的装置,其特征在于,所述装置包括:存储器和处理器;
    所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机 执行指令,以使所述装置实现如权利要求1-12中的任一项所述的方法。
  30. 一种监测业务质量的装置,其特征在于,所述装置包括:存储器和处理器;
    所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置实现如权利要求13-21中的任一项所述的方法。
PCT/CN2019/077772 2018-04-08 2019-03-12 监测业务质量的方法和装置 WO2019196585A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19784998.7A EP3767890B1 (en) 2018-04-08 2019-03-12 Method and apparatus for monitoring service quality
US17/037,098 US20210014157A1 (en) 2018-04-08 2020-09-29 Quality-of-Service Monitoring Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810308311.2 2018-04-08
CN201810308311.2A CN110351160B (zh) 2018-04-08 2018-04-08 监测业务质量的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/037,098 Continuation US20210014157A1 (en) 2018-04-08 2020-09-29 Quality-of-Service Monitoring Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2019196585A1 true WO2019196585A1 (zh) 2019-10-17

Family

ID=68163057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077772 WO2019196585A1 (zh) 2018-04-08 2019-03-12 监测业务质量的方法和装置

Country Status (4)

Country Link
US (1) US20210014157A1 (zh)
EP (1) EP3767890B1 (zh)
CN (2) CN114363116A (zh)
WO (1) WO2019196585A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284461B2 (en) * 2019-05-17 2022-03-22 Samsung Electronics Co., Ltd. Method and apparatus for controlling packet transmission for reducing latency in wireless communication system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190313311A1 (en) 2018-04-09 2019-10-10 Mediatek Inc. Apparatuses, service networks, and methods for handling plmn-specific parameters for an inter-plmn handover
US11388096B2 (en) * 2018-05-04 2022-07-12 T-Mobile Usa, Inc. Performance driven software defined networking
US11026124B2 (en) 2018-07-02 2021-06-01 Mediatek Inc. Enhanced handling on 5G QoS operations
US11039369B2 (en) * 2018-08-10 2021-06-15 Mediatek Inc. Handling 5G QoS rules on QoS operation errors
CN112866042B (zh) * 2019-11-12 2023-07-18 中兴通讯股份有限公司 网络质量检测方法、装置、计算机设备和计算机可读介质
CN112994961B (zh) * 2019-12-02 2023-02-07 华为技术有限公司 传输质量检测方法及装置、系统、存储介质
CN111193641B (zh) * 2019-12-27 2021-11-23 京信网络系统股份有限公司 终端网络测试方法、装置、基站设备和存储介质
US11283699B2 (en) 2020-01-17 2022-03-22 Vmware, Inc. Practical overlay network latency measurement in datacenter
US11438273B2 (en) * 2020-07-20 2022-09-06 Altiostar Networks, Inc. Real-time processing in wireless communications systems
US11570090B2 (en) 2020-07-29 2023-01-31 Vmware, Inc. Flow tracing operation in container cluster
CN114071487A (zh) * 2020-08-03 2022-02-18 中国移动通信有限公司研究院 一种接口时延测量方法、相关网络设备和存储介质
CN112702759B (zh) * 2020-12-09 2023-03-14 深圳市日海飞信信息系统技术有限公司 面向垂直行业的数据链路性能测试方法及系统
US11736436B2 (en) 2020-12-31 2023-08-22 Vmware, Inc. Identifying routes with indirect addressing in a datacenter
US11336533B1 (en) 2021-01-08 2022-05-17 Vmware, Inc. Network visualization of correlations between logical elements and associated physical elements
CN115529255A (zh) * 2021-06-25 2022-12-27 华为技术有限公司 一种连接探测方法、客户端与服务器
US11687210B2 (en) 2021-07-05 2023-06-27 Vmware, Inc. Criteria-based expansion of group nodes in a network topology visualization
US11711278B2 (en) 2021-07-24 2023-07-25 Vmware, Inc. Visualization of flow trace operation across multiple sites
US11677645B2 (en) * 2021-09-17 2023-06-13 Vmware, Inc. Traffic monitoring
CN115801544B (zh) * 2023-01-29 2023-05-23 北京智芯微电子科技有限公司 网络监测方法、设备、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070097936A1 (en) * 2005-11-02 2007-05-03 Jae-Kil Lee Apparatus and method for managing bandwidth in broadband wireless access system
CN102916883A (zh) * 2012-10-11 2013-02-06 杭州华三通信技术有限公司 Link检测方法和路由转发设备
WO2015184740A1 (zh) * 2014-10-20 2015-12-10 中兴通讯股份有限公司 检测层次信息的处理方法及装置
CN107872356A (zh) * 2016-09-26 2018-04-03 中兴通讯股份有限公司 业务功能链检测路径的方法和装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649266B2 (en) * 2009-07-27 2014-02-11 Lester F. Ludwig Flow state aware management of QoS with a distributed classifier
CN102217405B (zh) * 2011-06-30 2013-08-28 华为技术有限公司 一种数据交互方法、设备和系统
US8902754B2 (en) * 2012-04-17 2014-12-02 Tektronix, Inc. Session-aware GTPv2 load balancing
US20140058789A1 (en) * 2012-08-24 2014-02-27 Markus Doehring Process model generation and weak-spot analysis from plain event logs
US9602383B2 (en) * 2012-10-11 2017-03-21 Telefonaktiebolaget Lm Ericsson (Publ) General packet radio service tunnel performance monitoring
US10148459B2 (en) * 2014-04-29 2018-12-04 Hewlett Packard Enterprise Development Lp Network service insertion
CN104469822A (zh) * 2014-11-26 2015-03-25 大唐移动通信设备有限公司 一种测试方法、基站及系统
CN105703967B (zh) * 2014-11-27 2020-02-14 中兴通讯股份有限公司 一种检测标签交换路径连通性的方法及装置
CN105591962B (zh) * 2015-08-03 2019-09-17 新华三技术有限公司 一种链路负载均衡的探测方法和装置
US10116528B2 (en) * 2015-10-02 2018-10-30 Keysight Technologies Singapore (Holdings) Ptd Ltd Direct network traffic monitoring within VM platforms in virtual processing environments
US10652112B2 (en) * 2015-10-02 2020-05-12 Keysight Technologies Singapore (Sales) Pte. Ltd. Network traffic pre-classification within VM platforms in virtual processing environments
CN105391592B (zh) * 2015-12-25 2018-11-09 瑞斯康达科技发展股份有限公司 一种分组传送网业务侦测与测量的方法、装置和系统
CN109560945B (zh) * 2017-09-25 2021-02-12 华为技术有限公司 业务服务质量的检测方法、设备及系统
CN110324162B (zh) * 2018-03-29 2021-10-15 华为技术有限公司 业务服务质量的检测方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070097936A1 (en) * 2005-11-02 2007-05-03 Jae-Kil Lee Apparatus and method for managing bandwidth in broadband wireless access system
CN102916883A (zh) * 2012-10-11 2013-02-06 杭州华三通信技术有限公司 Link检测方法和路由转发设备
WO2015184740A1 (zh) * 2014-10-20 2015-12-10 中兴通讯股份有限公司 检测层次信息的处理方法及装置
CN107872356A (zh) * 2016-09-26 2018-04-03 中兴通讯股份有限公司 业务功能链检测路径的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767890A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284461B2 (en) * 2019-05-17 2022-03-22 Samsung Electronics Co., Ltd. Method and apparatus for controlling packet transmission for reducing latency in wireless communication system

Also Published As

Publication number Publication date
CN110351160B (zh) 2021-12-14
CN110351160A (zh) 2019-10-18
CN114363116A (zh) 2022-04-15
US20210014157A1 (en) 2021-01-14
EP3767890A4 (en) 2021-05-12
EP3767890B1 (en) 2023-01-18
EP3767890A1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2019196585A1 (zh) 监测业务质量的方法和装置
US11606726B2 (en) Detecting quality of service (QoS) of a service
EP3806524B1 (en) Quality of service monitoring methods, devices, system and computer-readable storage medium
CN117545097A (zh) 跟踪QoS违规事件
US11824783B2 (en) Maximum data burst volume (MDBV) determining method, apparatus, and system
US20200404522A1 (en) Method and system for detecting quality of service of service, and device
WO2020169039A1 (zh) 一种策略管理的方法及装置
WO2022047803A1 (zh) 通信方法及装置
US20210360486A1 (en) Traffic Availability in a Cellular Communication Network
TWI821882B (zh) 丟包率的檢測方法、通信裝置及通信系統
WO2020034922A1 (zh) 服务质量监测方法、设备及系统
WO2023155475A1 (zh) 网络测量的方法和装置
TW202312761A (zh) 5g網路中之封包酬載資料之選擇性壓縮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019784998

Country of ref document: EP

Effective date: 20201015