WO2019196501A1 - 永磁同步无齿轮曳引机 - Google Patents

永磁同步无齿轮曳引机 Download PDF

Info

Publication number
WO2019196501A1
WO2019196501A1 PCT/CN2018/123162 CN2018123162W WO2019196501A1 WO 2019196501 A1 WO2019196501 A1 WO 2019196501A1 CN 2018123162 W CN2018123162 W CN 2018123162W WO 2019196501 A1 WO2019196501 A1 WO 2019196501A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
base
permanent magnet
magnet synchronous
Prior art date
Application number
PCT/CN2018/123162
Other languages
English (en)
French (fr)
Inventor
韦勤军
Original Assignee
佛山市顺德区金泰德胜电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区金泰德胜电机有限公司 filed Critical 佛山市顺德区金泰德胜电机有限公司
Publication of WO2019196501A1 publication Critical patent/WO2019196501A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings

Definitions

  • the utility model relates to the technical field of elevators, in particular to a thin permanent magnet synchronous gearless traction machine.
  • the permanent magnet synchronous gearless traction machine is generally composed of a permanent magnet synchronous motor, plus traction sheaves, brakes and other components.
  • the coils need to be placed in one slot of the stator core of the motor, so that the coils are discontinuously distributed in the circumferential direction of the stator core.
  • This discontinuous distribution causes the magnetic field generated by the stator coil to be non-sinusoidal. In other words, its magnetic field must have harmonics. These harmonics can adversely affect the operation of the motor, such as noise, vibration, temperature rise, and low efficiency.
  • the conventional permanent magnet synchronous gearless traction motor uses distributed windings. Distributed windings can better attenuate these harmonics compared to concentrated windings.
  • the distributed winding performance is excellent, it is also disadvantageous.
  • the ends of the distributed windings are relatively long, and the resulting problem is that the axial length of the main shaft of the distributed winding motor is relatively long; moreover, the ends of the coils are not capable of producing a useful output, and the current generated in the current is only heat loss. .
  • the relatively long axial dimension of the motor is also disadvantageous for elevator applications where space is limited.
  • the flat type concentrated winding permanent magnet synchronous gearless traction machine generally adopts an outer rotor structure, that is, the rotor permanent magnet is radially outward and the stator is radially inner.
  • the amount of such structural materials is relatively small, relatively economical, and mature.
  • the permanent magnet synchronous gearless traction machine of this structure has a short coil end and a small axial dimension. Therefore, in recent years, it has been widely used in general elevator use.
  • the main magnetic path of the motor of the axial magnetic field structure is along the axis of the motor main shaft, and the stator and rotor permanent magnets are arranged in the axial direction.
  • an electric motor having such a structure can be made flatter, thereby compressing its axial size, making it more comfortable when used in an elevator shaft having a small axial space.
  • the traction machine of this structure also has disadvantages that cannot be ignored. Since the main magnetic circuit is axial, there is a unidirectional magnetic pulling force along the axis of the main shaft between the stator and the rotor. One-way magnetic pull forces the traction machine bearings to withstand an additional axial force. If the axial displacement of the traction sheave rotor under the axial magnetic pulling force is to be limited, it is necessary to use a bearing having a relatively small axial clearance, for example, a deep groove ball bearing.
  • the traction wheel when the traction machine is in use, the traction wheel needs to be loaded with many qualities such as car, counterweight and load, which makes the bearing need to bear a large radial load. Under normal circumstances, deep groove ball bearings can not withstand too much radial load, otherwise their service life will be greatly shortened. If you want to ensure the bearing life, you must use a bearing with a relatively large bearing capacity, such as spherical roller bearings. However, the axial clearance of such a bearing is relatively large, for example, the axial clearance will reach 0.3-0.6 mm, which will make the traction machine easy to axially move during operation, and even lead to the traction machine. The rotor is rubbed and damaged.
  • the object of the invention is achieved in this way.
  • a permanent magnet synchronous gearless traction machine comprises a base, a stator, a rotor and a base.
  • the front of the base protrudes from the cantilever main shaft, the main axis extends in the back direction of the base, the rotor is mounted on the main shaft, and the stator is a concentrated winding.
  • the stator is disposed on and fixed to the base, and the stator is simultaneously located on the outer circumferential side of the rotor to form a radial magnetic field.
  • the traction sheave on the rotor is disposed on the front side of the base, and the outer surface of the rotor adjacent to the stator is mounted with a permanent magnet. .
  • the concentrated winding is a fractional-slot winding having a range of 0.2-0.9 slots per phase per pole.
  • the front of the base has protruding ribs for connecting the base and the base.
  • the spindle is integral with the housing or is separate.
  • the stator includes a stator core seat, and the stator core seat is integral or separated from the base.
  • the axial dimension of the utility model is small, and the magnetic pulling force of the radial magnetic field motor is circumferentially symmetrical.
  • the magnetic pulling forces can be offset each other, and the bearing capacity is strong, the operation is reliable, the efficiency is high, and the noise is low.
  • Figure 1 is a schematic cross-sectional view of the present embodiment.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1 for illustrating the main magnetic circuit path.
  • Figure 3 is a schematic view of an embodiment of the base.
  • Figure 4 is a first implementation of a concentrated winding stator.
  • Figure 5 is a second implementation of a concentrated winding stator.
  • Figure 6 is a schematic view of the concentrated winding of Figure 5.
  • Figure 7 is a third implementation of a concentrated winding stator.
  • Figure 8 is a schematic view of the stator stack of Figure 7.
  • a thin permanent magnet synchronous gearless traction machine includes a base 1, a stator core holder 2, a stator 3, and a rotor 7.
  • the base 1 has a spindle 11 on which the rotor 7 is mounted.
  • a permanent magnet 6 is provided on the rotor 7.
  • the base 1 and the main shaft 11 are integrally formed.
  • the main shaft 11 extends from the front of the base 1 and extends rearward.
  • the front side of the base is connected to the base 14 by the ribs 13, thereby transmitting the force on the main shaft 11 to the base 14.
  • the front bearing 10 and the rear bearing 8 are mounted on the main shaft 11.
  • the front bearing is a spherical roller bearing and the rear bearing is a deep groove ball bearing.
  • the front and rear bearing inner rings are respectively engaged with the main shaft 11, the outer ring of the front bearing 10 is engaged with the rotor 7, and the outer ring of the rear bearing 8 is engaged with the rear bearing cover 9.
  • the rear bearing cap 9 and the rotor 7 are connected by bolts.
  • the rear bearing cap 9 has an extended small shaft on which the rotating spindle of the encoder 12 is mounted.
  • a traction sheave 5 is provided on the rotor 7 near the front side of the base 1.
  • the traction sheave 5 and the rotor 7 are of a unitary structure.
  • a permanent magnet 6 is mounted on the other side of the rotor.
  • the path of the magnetic field lines generated by the permanent magnets 6 is closed along a radial plane perpendicular to the axis of the main shaft 11 of the hoisting machine.
  • stator core holder 2 is mounted on the base 1.
  • the stator core holder 2 and the base are connected by fasteners such as bolts.
  • a stator cover 4 is attached to the outside of the stator core holder 2.
  • the stator 3 is a concentrated winding structure as shown in Figs. 4, 5 and 6.
  • Figures 4, 5 and 6 show several implementations of concentrated winding stators.
  • Fig. 4 shows that the coil winding 3b is wound directly on the core teeth of the stator core 3a. 5 and 6, the coil winding 3b is first wound by itself, and then wound onto the teeth of the stator core 3a, and then the stator wedge 3c is inserted at the notch of the stator core 3a to prevent the coil from loosening. 7 and 8, the stator core 3a is first punched into a stator tooth stack, the coil winding 3b is wound around the stator tooth stack, and then a plurality of wound stator tooth stacks are spliced into a complete stator.
  • the magnetic line of the main magnetic circuit starts from the permanent magnet 6 and passes through the air gap 50 between the stator 3 and the rotor 7 in the radial direction, enters the teeth of the stator core 3a, passes through the yoke of the stator core 3a, and then passes through another tooth. After passing through the air gap 50, it enters the rotor 7, and finally returns to the permanent magnet to form a closed magnetic circuit (see the arrow portion of Fig. 2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种薄形的永磁同步无齿轮曳引机,包括机座(1)、定子(3)、转子(7)、底座(14),机座(1)正面伸出悬臂主轴(11),主轴(11)向着机座(1)背面方向延伸,转子(7)安装在主轴(11)上,所述定子(3)为集中绕组,定子(3)设在机座(1)上并与之固定,定子(3)又同时位于转子(7)外圆周侧形成径向磁场,转子(7)上的曳引轮(5)设置在机座(1)正面一侧,与定子(3)相邻的转子(7)外表面安装有永磁体(6)。轴向尺寸小,径向磁场电动机的磁拉力是圆周对称的,这些磁拉力相互之间可以被抵消,且承载能力强,运行可靠,效率高,噪声低。

Description

永磁同步无齿轮曳引机 技术领域
本实用新型涉及电梯技术领域,具体涉及一种薄形的永磁同步无齿轮曳引机。
背景技术
永磁同步无齿轮曳引机一般由永磁同步电动机,外加曳引轮、制动器等零部件组成。在电机产品制作中,线圈需要放置在电动机定子铁芯的一个个槽中,因此,线圈在定子铁芯圆周方向上是非连续分布的。这种非连续分布,以及定子铁芯上开槽的影响,会使得定子线圈产生的磁场是非正弦的。也就是说,它的磁场必然会有谐波存在。这些谐波会对电机的运行产生不利的影响,比如,噪声、振动大、温升高、效率低等。而传统的永磁同步无齿轮曳引机电动机,采用的是分布绕组。相比集中绕组,分布绕组可以更好的削弱这些谐波。
虽然分布绕组性能上比较出色,但它也是有缺点的。例如,分布绕组的端部比较长,由此产生的问题是:分布绕组电动机的主轴轴向尺寸比较长;而且,线圈的端部是不能产生有用的输出的,电流在其中产生的只是热损耗。这会导致电动机损耗增加,温升升高和效率下降。同时,电动机轴向尺寸比较长对于空间有限的电梯使用场合也是不利的。
因此,近年来,各方面对于集中绕组电动机的本身以及其控制系统的进行了大量的研究,并取得了很大进展。这使得集中绕组永磁同步无齿轮曳引机得到越来越广泛的应用。
这种扁平型集中绕组永磁同步无齿轮曳引机一般采用的是外转子结构,即转子永磁体在径向外侧,而定子在径向内侧。这种结构材料的使用量比较少,相对来讲也比较经济,且技术成熟。而且,相对于传统的分布绕组永磁同步无齿轮曳引机,这种结构的永磁同步无齿轮曳引机线圈端部短,轴向尺寸也小。所以,近年来,其在一般的电梯使用场合中得到了广泛的应用。
但是,对于空间尺寸更小的场合,例如,需要将曳引机安装电梯井道中的导轨上时,其轴向长度依然太长。
由此,在这些使用场合中,有些机构提出了轴向磁场的方案。例如,CN 101569078B和CN206375542 U,以及CN105270969 A专利中,采用的就是轴向磁场结构。
轴向磁场结构的电动机主磁路路径是沿着电动机主轴轴线方向的,定子及转子永磁体沿轴向布置。由此,采用这种结构的电动机可以做得更加扁平,从而压缩了其轴向尺寸,使得其在轴向空间狭小的电梯井道中使用时更加从容。
但是,这种结构的曳引机也存在着不容忽视的缺点。由于其主磁路是轴向的,因此, 其定子、转子之间会存在一个沿着主轴轴线方向的单向磁拉力。单向磁拉力会让曳引机轴承承受一个额外的轴向力。如果要限制曳引轮转子在该轴向磁拉力作用下的轴向位移,必须采用轴向游隙比较小的轴承,例如,采用深沟球轴承。
而另一方面,曳引机在使用时,其曳引轮上需要挂载轿厢、对重及载重等诸多质量,这使得其轴承需要承受的径向载荷很大。一般情况下深沟球轴承并不能承受太大的径向载荷,否则其使用寿命会大大缩短。如果要确保轴承寿命,就必须使用承载能力比较大轴承,例如调心滚子轴承。但是,这种轴承的轴向游隙比较大,例如,其轴向游隙会达到0.3-0.6mm,这会使得曳引机在运行中容易发生轴向窜动,甚至会导致曳引机定、转子相擦而损坏。
发明内容
因此,本实用新型目的在于提供了一种外转子的径向磁场集中绕组的永磁同步无齿轮曳引机。
本实用新型的目的是这样实现的。
一种永磁同步无齿轮曳引机,包括机座、定子、转子、底座,机座正面伸出悬臂主轴,主轴向着机座背面方向延伸,转子安装在主轴上,所述定子为集中绕组,定子设在机座上并与之固定,定子又同时位于转子外圆周侧形成径向磁场,转子上的曳引轮设置在机座正面一侧,与定子相邻的转子外表面安装有永磁体。
上述技术方案还可作下述进一步完善。
所述集中绕组为分数槽绕组,其每极每相槽数范围0.2-0.9槽。
机座正面有突出的筋用以连接机座与底座。
所述主轴与机座是一体的或者是分体的。
所述定子包括定子铁芯座,定子铁芯座与机座一体或分体。
本实用新型轴向尺寸小,径向磁场电动机的磁拉力是圆周对称的,这些磁拉力相互之间可以被抵消,且承载能力强,运行可靠,效率高,噪声低。
附图说明
图1为本实施例剖面示意图。
图2为图1中A-A剖视图,用以说明主磁路路径。
图3为机座的实施例示意图。
图4为集中绕组定子第一实现方式。
图5为集中绕组定子第二实现方式。
图6为图5中集中绕组示意图。
图7为集中绕组定子第三实现方式。
图8为图7中的定子叠齿示意图。
具体实施方式
下面结合附图,对本实用新型作进一步详细说明。
如附图1所示为一种薄形永磁同步无齿轮曳引机,包括机座1,定子铁芯座2,定子3,转子7。机座1上有主轴11,转子7安装在主轴11上。转子7上设有永磁体6。如图1及图3所示,机座1与主轴11为一体结构。主轴11从机座1正面伸出往后面延伸。机座正面通过筋13把机座1与底座14相连,从而将主轴上11的受力传递到底座14上。
如图1所示,主轴11上安装有前轴承10和后轴承8。在本实施示例中,前轴承为调心滚子轴承,后轴承为深沟球轴承。前后轴承内圈分别与主轴11配合,前轴承10外圈与转子7配合,后轴承8外圈与后轴承盖9配合。后轴承盖9与转子7之间通过螺栓连接。后轴承盖9上有一伸出的小轴,编码器12的旋转主轴安装在该伸出的小轴上。
曳引机运行时,主轴11以及与其配合的前轴承10、后轴承8的内圈均不转动。转子以及与其配合的前轴承10、后轴承8的外圈绕着主轴11旋转。
如图1所示,转子7上靠近机座1正面一侧设有曳引轮5。在该实施示例中,曳引轮5与转子7为一体结构。在转子的另一侧,安装有永磁体6。
如图2所示,永磁体6产生的磁力线路径沿与曳引机主轴11轴线垂直的径向平面闭合。
如图1所示,定子铁芯座2安装在机座1上。定子铁芯座2与机座之间用螺栓等紧固件进行连接。定子铁芯座2外侧安装有定子保护罩4。
定子3为集中绕组结构,如图4、图5和图6所示。图4、5、6为集中绕组定子的几种实现方式。图4所示为线圈绕组3b直接在定子铁芯3a的铁芯齿上绕好。图5、6所示为,线圈绕组3b先独自绕制成型,然后套到定子铁芯3a的齿上,之后在定子铁芯3a的槽口处插入定子槽楔3c,防止线圈松动。图7、8所示为,定子铁芯3a先冲制成为一个个定子齿叠,线圈绕组3b绕在定子齿叠上,然后将若干个绕好线的定子齿叠拼接成为一个完整的定子。
主磁路磁力线从永磁体6出发,沿径向经过定子3和转子7之间的气隙50,进入定子铁芯3a的齿,然后经过定子铁芯3a的轭部,然后经过另外一个齿,再经过气隙50,再进入转子7,最后回到永磁体而形成闭合的磁路(见图2的箭头部分)。

Claims (5)

  1. 一种永磁同步无齿轮曳引机,包括机座、定子、转子、底座,机座正面伸出悬臂主轴,主轴向着机座背面方向延伸,转子安装在主轴上,其特征在于:所述定子为集中绕组,定子设在机座上并与之固定,定子又同时位于转子外圆周侧形成径向磁场,转子上的曳引轮设置在机座正面一侧,与定子相邻的转子外表面安装有永磁体。
  2. 根据权利要求1所述永磁同步无齿轮曳引机,其特征在于:所述集中绕组为分数槽绕组,其每极每相槽数范围0.2-0.9槽。
  3. 根据权利要求1所述永磁同步无齿轮曳引机,其特征在于:机座正面有突出的筋用以连接机座与底座。
  4. 根据权利要求1所述永磁同步无齿轮曳引机,其特征在于:所述主轴与机座是一体的或者是分体的。
  5. 根据权利要求1所述永磁同步无齿轮曳引机,其特征在于:所述定子包括定子铁芯座,定子铁芯座与机座一体或分体。
PCT/CN2018/123162 2018-04-11 2018-12-24 永磁同步无齿轮曳引机 WO2019196501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820507906.6U CN207947660U (zh) 2018-04-11 2018-04-11 永磁同步无齿轮曳引机
CN201820507906.6 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019196501A1 true WO2019196501A1 (zh) 2019-10-17

Family

ID=63697525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123162 WO2019196501A1 (zh) 2018-04-11 2018-12-24 永磁同步无齿轮曳引机

Country Status (2)

Country Link
CN (1) CN207947660U (zh)
WO (1) WO2019196501A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207947660U (zh) * 2018-04-11 2018-10-09 佛山市顺德区金泰德胜电机有限公司 永磁同步无齿轮曳引机
CN110615337A (zh) * 2019-10-24 2019-12-27 苏州润吉驱动技术有限公司 一种电梯用超薄蝶式曳引机
CN114751285A (zh) * 2022-05-20 2022-07-15 上海三菱电梯有限公司 双电机驱动装置牵引的电梯

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205038A (zh) * 2007-05-11 2008-06-25 天津大学 永磁无刷直流电机无齿轮电梯曳引装置
CN101259933A (zh) * 2008-04-11 2008-09-10 佛山市顺德区金泰德胜电机有限公司 一种永磁同步无齿轮曳引机
CN201286055Y (zh) * 2008-10-20 2009-08-05 李树国 凸极永磁同步电机
JP6101716B2 (ja) * 2013-01-31 2017-03-22 株式会社日立製作所 永久磁石式同期モータ
CN206908457U (zh) * 2017-04-18 2018-01-19 快意电梯股份有限公司 内转子永磁同步曳引机
CN207947660U (zh) * 2018-04-11 2018-10-09 佛山市顺德区金泰德胜电机有限公司 永磁同步无齿轮曳引机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205038A (zh) * 2007-05-11 2008-06-25 天津大学 永磁无刷直流电机无齿轮电梯曳引装置
CN101259933A (zh) * 2008-04-11 2008-09-10 佛山市顺德区金泰德胜电机有限公司 一种永磁同步无齿轮曳引机
CN201286055Y (zh) * 2008-10-20 2009-08-05 李树国 凸极永磁同步电机
JP6101716B2 (ja) * 2013-01-31 2017-03-22 株式会社日立製作所 永久磁石式同期モータ
CN206908457U (zh) * 2017-04-18 2018-01-19 快意电梯股份有限公司 内转子永磁同步曳引机
CN207947660U (zh) * 2018-04-11 2018-10-09 佛山市顺德区金泰德胜电机有限公司 永磁同步无齿轮曳引机

Also Published As

Publication number Publication date
CN207947660U (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2019196501A1 (zh) 永磁同步无齿轮曳引机
CN212627619U (zh) 一种单元模块组合式定子轴向磁场有齿轮毂电机
CN100454729C (zh) 两向混合励磁无刷电机
WO2008059852A1 (fr) Structure de refroidissement de rotor et procédure de fabrication de rotor
US20080012448A1 (en) Brushless alternator for vehicles
CN105680587B (zh) 无刷吸尘器电机降噪装置
WO2017177740A1 (zh) 一种永磁电动机
JP3724416B2 (ja) 軸方向分割混成磁極型ブラシレス回転電機
JP2008067493A (ja) 電動機、及びエレベータの巻上機
CN110011478B (zh) 一种扁平曳引电机
CN200997540Y (zh) 一种多极稀土永磁同步电动机转子结构
JP2006027803A (ja) エレベータ用巻上機
CN109286255A (zh) 一种基于t型永磁体的交替极永磁游标电机
CN108683314A (zh) 双定子大载重永磁同步曳引机
CN111162629B (zh) 一种用于磁悬浮电机定转子布置的方法
CN210724516U (zh) 一种双定子单转子盘式永磁电动机
JP2014050274A (ja) 表面磁石貼付型回転電機の回転子
JP2006280022A (ja) 永久磁石同期モータを用いた電動送風機
WO2019202790A1 (ja) 回転電機、および、エレベーター巻上げシステム
CN208272816U (zh) 盘式双支撑双定子永磁同步曳引机
CN110912297A (zh) 电机和压缩机
CN101986534B (zh) 盘式步进电机
KR101338119B1 (ko) 다극 바이패스 디스크 모터.
CN220628980U (zh) 一种永磁体正弦化分段的高性能高速表贴式永磁同步电机
CN111102292A (zh) 磁悬浮轴承组件、外转子电机组件以及电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914868

Country of ref document: EP

Kind code of ref document: A1