WO2019196154A1 - 海底底质反射率测量装置及测量方法 - Google Patents

海底底质反射率测量装置及测量方法 Download PDF

Info

Publication number
WO2019196154A1
WO2019196154A1 PCT/CN2018/085818 CN2018085818W WO2019196154A1 WO 2019196154 A1 WO2019196154 A1 WO 2019196154A1 CN 2018085818 W CN2018085818 W CN 2018085818W WO 2019196154 A1 WO2019196154 A1 WO 2019196154A1
Authority
WO
WIPO (PCT)
Prior art keywords
whiteboard
rotating shaft
spectral
probe
substrate
Prior art date
Application number
PCT/CN2018/085818
Other languages
English (en)
French (fr)
Inventor
许占堂
赵俊
杨跃忠
李彩
周雯
曾凯
曹文熙
Original Assignee
中国科学院南海海洋研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院南海海洋研究所 filed Critical 中国科学院南海海洋研究所
Priority to US17/046,808 priority Critical patent/US11162891B2/en
Publication of WO2019196154A1 publication Critical patent/WO2019196154A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/276Calibration, base line adjustment, drift correction with alternation of sample and standard in optical path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/152Scraping; Brushing; Moving band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0218Submersible, submarine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/0616Ambient light is used

Definitions

  • the present invention relates to the field of spectrometry, and in particular to a submarine substrate reflectivity measuring device and a measuring method.
  • seawater When sunlight enters the seawater interface, part of the sunlight is directly reflected by the sea surface into the air, and another part of the sunlight enters the seawater. Since seawater is generally composed of pure seawater, phytoplankton, suspended sediment and colored dissolved organic matter, sunlight entering the seawater is absorbed and scattered by seawater, and some scattered light penetrates the sea-air interface and carries seawater components. The information is received by the relevant satellites through the atmosphere. Therefore, studying the optical signals of satellites can reverse the information of seawater components and obtain information about the ocean.
  • FIG. 3 shows an underwater spectrometer including a whiteboard 200, a first spectral probe 110, and a second spectral probe 210.
  • the reflectivity of the whiteboard 200 is known
  • the first spectral probe 110 is used to collect spectral data of the substance to be tested 100
  • the second spectral probe 210 is used to collect spectral data of the whiteboard 200, the substance to be tested 100 and the first spectrum.
  • the distance of the probe 110 is equal to the distance between the whiteboard 200 and the second spectral probe 210.
  • the process of calculating the reflectance of the substance to be tested 100 is:
  • DN1 represents the spectral data to be measured corresponding to the reflected light of the substance to be tested 100 collected by the first spectral probe 110
  • DN2 represents the standard spectral data corresponding to the reflected light of the whiteboard 200 collected by the second spectral probe 210, usually, the wavelength
  • the range is from 400 to 700 nm and can be expressed as formula (A):
  • F is the incident light intensity of the sun. Since the depth, angle, and environment of the white matter 200 and the substance to be tested 100 are the same, the incident light intensity corresponding to the substance to be tested 100 and the whiteboard 200 is the same, and both are F; No test substance is measured reflectivity 100, it is unknown; R 200 has the reflectance of white, are known; by the formula (a) may not obtain R and R have the relationship, represented by the formula ( B):
  • the underwater spectrum measuring instrument can measure the reflectivity of the seabed substrate, since it uses two spectral probes, on the one hand, the price of the spectral probe is high, which leads to high cost of the whole device, and the probability of failure also increases exponentially. On the other hand, the spectral data collected by the two spectral probes will be different, even if it can be corrected by calibration. However, in the long-term field work, the attenuation of the optical device and the temperature influence are different in the individual constitution, resulting in the respective DN1 and DN2. drift measuring accuracy, leading to non-R calculation errors affecting the accuracy of the measurement of reflectance.
  • the optical probe of the underwater spectrometer and the whiteboard as a reference may need to be immersed in seawater for a few days or even a year for long-term series measurement, while long-term immersion in seawater is susceptible to biological and organic matter in the water (such as oil).
  • the pollution of the class of materials and inorganic substances (such as sediment), and the measurement of optical radiation is very sensitive to such pollution, and the measurement errors of each window after contamination are also different.
  • the measurement of the dual probe still has its own limitations in terms of equipment cost and accuracy.
  • the object of the present invention is to make up for the deficiencies of the prior art, and to provide a seafloor substrate reflectance measuring device and a measuring method, which can measure the reflectivity of the seafloor substrate by only one spectral probe.
  • a submarine substrate reflectivity measuring device comprising a spectrum probe, a first whiteboard, a second whiteboard, a range finder and a rotating shaft;
  • the reflectivity of the first whiteboard and the second whiteboard is known, and the first whiteboard and the second whiteboard are connected to the rotating shaft in a manner of having a pitch along the axial direction of the rotating shaft and being radially displaced from each other along the rotating shaft;
  • the spectral probe is used to acquire spectral data of the first whiteboard, the second whiteboard, and the seafloor substrate;
  • the range finder is used to obtain the distance data between the spectral probe and the seafloor substrate;
  • the rotating shaft is configured to drive the first whiteboard and the second whiteboard to rotate, so that the first whiteboard and the second whiteboard are sequentially in front of the spectral probe.
  • the movable brush is connected to the rotating shaft.
  • the movable brush, the first whiteboard and the second whiteboard are radially displaced from each other along the rotating shaft, and the movable brush repeatedly wipes the spectral probe under the driving of the rotating shaft.
  • the first fixed brush and the second fixed brush disposed on the side of the rotating shaft the first white plate is driven by the rotating shaft, so that the reflecting surface thereof is repeatedly wiped by the first fixed brush, and the second The whiteboard is driven by the rotating shaft so that its reflecting surface is repeatedly wiped by the second fixed brush.
  • the first whiteboard and the second whiteboard are each rotatably coupled to the rotating shaft by a joint bearing.
  • the angles of the first whiteboard and the second whiteboard can be universally adjusted, so that the incident angles of sunlight of the first whiteboard, the second whiteboard, and the seafloor are uniform.
  • a base, an L-shaped bracket and a driving motor are mounted, the spectrum probe and the range finder are mounted on the upper surface of the base, the driving motor is mounted on the lower surface of the base, and the upper end of the L-shaped bracket and the top end of the rotating shaft The lower end is fixed on the base, and the bottom end of the rotating shaft is connected to the output shaft of the driving motor through the base, and the first fixed brush and the second fixed brush are fixed on the L-shaped bracket at intervals.
  • a method for measuring a submarine substrate reflectance measuring device comprising the steps of:
  • Step 1 rotating the rotating shaft so that the first whiteboard faces the spectral probe, and acquires the spectral data N 1 of the first whiteboard through the spectral probe;
  • Step 2 rotating the rotating shaft so that the second whiteboard faces the spectral probe, and acquires the spectral data N 2 of the second whiteboard through the spectral probe;
  • Step 3 Rotating the rotating shaft to make the first whiteboard and the second whiteboard deviate from the spectral probe, obtain the spectral data N 3 of the seafloor substrate through the spectral probe, and obtain the distance data between the spectral probe and the seabed substrate through the range finder;
  • Step 4 Calculate the reflectivity R 3 of the sea floor by the following equations:
  • R 1 is the reflectivity of the first whiteboard
  • R 2 is the reflectivity of the second whiteboard
  • L 2 is the spacing between the first whiteboard and the second whiteboard
  • L 3 is the spacing between the second whiteboard and the seafloor substrate
  • k is The coefficient of light attenuation of seawater.
  • the submarine substrate reflectance measuring device of the present invention estimates the light attenuation coefficient of seawater by the first whiteboard and the second whiteboard whose reflectance is known and different from the distance of the spectral probe, and combines the distance of the seafloor substrate to invert the seabed geology. Reflectivity, the entire device uses only one spectral probe to measure the seafloor geological reflectivity, manufacturing and operating costs are low.
  • Figure 1 is a front elevational view of the measuring device of the present invention
  • Figure 2 is a plan view of the measuring device of the present invention.
  • FIG. 3 is a schematic view of a conventional underwater spectrum measuring instrument
  • a submarine substrate reflectance measuring device includes a spectral probe 1, a first whiteboard 2, a second whiteboard 3, a range finder 4, a rotating shaft 5, a movable brush 6, and a first fixed brush 7.
  • the second fixed brush 8 the base 9, the L-shaped bracket 10, and the drive motor 11.
  • other components of the device such as a spectrum analyzer, a processor, a display, a power supply, a sealing component, a depth probe, and a camera, they can be arranged according to actual needs, which are conventional technologies, and are not described herein again.
  • the base 9 serves as a carrying platform of the measuring device, the spectral probe 1 and the range finder 4 are mounted on the upper surface of the base 9, and the range finder 4 is fixed on the spectral probe 1 or the base 9, and the driving motor 11 is mounted on the base 9.
  • the lower surface, the upper end of the L-shaped bracket 10 and the top end of the rotating shaft 5 are rotatably connected by a bearing, the lower end is fixed to the upper surface of the base 9, and the bottom end of the rotating shaft 5 is connected to the output shaft of the driving motor 11 through the middle portion of the base 9 with the rotating shaft 5 and Bearings are also provided between the bases 9.
  • the plane formed by the L-shaped bracket 10 and the rotating shaft 5 may be between 90° and 180° from the plane formed by the spectral probe 1 and the rotating shaft 5.
  • the first fixed brush 7 and the second fixed brush 8 are fixed on the L-shaped bracket 10 at intervals, and the brush surface of the first fixed brush 7 faces upward to match the height of the reflecting surface of the first whiteboard 2, and the second fixed brush 8 The brush surface is also facing upwards, matching the height of the reflecting surface of the second whiteboard 3.
  • the reflectivity of the first whiteboard 2 and the second whiteboard 3 is known.
  • the first whiteboard 2, the second whiteboard 3, and the movable brush 6 are all fixed on the rotating shaft 5 through a connecting rod.
  • the specific fixing manner may be a sleeve and a screw.
  • Other existing methods can also be employed as long as they can be adjusted up and down along the rotating shaft 5 and can be adjusted in the circumferential direction of the rotating shaft 5.
  • the first whiteboard 2 and the second whiteboard 3 are rotatably connected to the connecting rod through the joint bearing, and of course, the existing automatic can also be used.
  • the control device automatically adjusts the deflection angles of the first whiteboard 2 and the second whiteboard 3 according to the slope of the subsea substrate 12.
  • the movable brush 6, the first whiteboard 2 and the second whiteboard 3 are arranged from top to bottom, the brush surface of the movable brush 6 faces downward, and the height is matched with the spectral probe 1, and the spacing between the first whiteboard 2 and the second whiteboard 3 can be Design requirements are adjusted.
  • the first whiteboard 2, the second whiteboard 3 and the movable brush 6 are offset from each other.
  • the first whiteboard 2 and the second whiteboard 3 and the movable brush 6 are both 90°, of course
  • a white board 2, a second white board 3, and a movable brush 6 may also be 120 degrees from each other.
  • the fixing members of the first whiteboard 2, the second whiteboard 3, the movable brush 6, the first fixed brush 7, and the second fixed brush 8 are all made of a copper metal member. Since the copper ions are toxic, the living organisms are not easily attached and grown.
  • the spectral probe 1 is used to acquire spectral data of the first whiteboard 2, the second whiteboard 3, and the seafloor substrate 12.
  • the range finder 4 is used to obtain the distance data between the spectral probe 1 and the subsea substrate 12.
  • the emitter of the range finder 4 is aligned with the spectral probe 1, and the spectral probe 1 and the submarine substrate 12 can be measured.
  • the distance between the first whiteboard 2, the second whiteboard 3 and the spectral probe 1 is known, and the distance between the known second whiteboard 3 and the spectral probe 1 is subtracted, that is, the second whiteboard 3 and the seabed
  • the spacing between the substrates 12 is used to acquire spectral data of the first whiteboard 2, the second whiteboard 3, and the seafloor substrate 12.
  • the rotating shaft 5 is rotated by the driving motor 11, so that the first whiteboard 2 and the second whiteboard 3 are rotated, so that the first whiteboard 2 and the second whiteboard 3 are sequentially in front of the spectral probe 1, and at the same time, the movable brush can be driven.
  • the spectral probe 1 is repeatedly wiped, and the reflecting surface of the first white plate 2 can be repeatedly wiped by the first fixed brush 7, and the reflecting surface of the second white plate 3 is repeatedly wiped by the second fixed brush.
  • the incident angle and the irradiation intensity of the sun remain unchanged throughout the measurement process, and therefore, the first whiteboard 2 and the second whiteboard are incident. 3 and the incident irradiance of the submarine sediment 12 is only related to the light attenuation coefficient of seawater.
  • the specific measurement method is as follows:
  • Step 1 rotating the rotating shaft 5 such that the first whiteboard 2 faces the spectral probe 1 and acquires the spectral data N 1 of the first whiteboard 2 through the spectral probe 1 ;
  • Step 2 Rotating the rotating shaft 5 so that the second whiteboard 3 faces the spectral probe 1 and acquires the spectral data N 2 of the second whiteboard 3 through the spectral probe 1;
  • Step 3 Rotating the rotating shaft 5 so that the first whiteboard 2 and the second whiteboard 3 are deviated from the spectral probe 1, the spectral data N 3 of the seafloor substrate 12 is acquired by the spectral probe 1, and the spectral probe 1 and the submarine substrate 12 are obtained by the range finder 4. Spacing data;
  • Step 4 Calculate the reflectivity R 3 of the seafloor substrate 12 by the following equations:
  • R 1 is the reflectivity of the first whiteboard 2
  • R 2 is the reflectivity of the second whiteboard 3
  • L 2 is the spacing between the first whiteboard 2 and the second whiteboard 3
  • L 3 is the second whiteboard 3 and the bottom substrate.
  • k is the light attenuation coefficient of seawater.
  • the solar incident irradiance at the optical probe of the spectral probe 1 is defined as E.
  • E The distance between the optical probe and the first whiteboard 2 is L 1 , then the solar incident irradiance E1 of the first whiteboard 2, the solar incident irradiance E2 of the second whiteboard 3, and the solar incident irradiance of the submarine substrate 12 E3 can be expressed as follows:
  • the solar incident irradiance E is attenuated by the L 1 path and becomes E 1 , and then the attenuation of the L 1 path becomes E 1 'accepted by the optical probe of the spectral probe 1 , and the radiant energy is
  • the equation (4) is calculated, and after E and L 1 are eliminated, a calculation formula for calculating the reflectance R 3 of the seafloor substrate 12 is obtained.
  • the submarine substrate reflectance measuring device of the invention can measure the geological reflectivity of the seabed by using only one spectral probe, the manufacturing cost is low, the probability of failure of the device is reduced, the running cost is low, and the spectrum of the spectrum is well solved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种海底底质(12)反射率测量装置及测量方法,包括光谱探头(1)、第一白板(2)、第二白板(3)、测距仪(4)和转轴(5);第一白板(2)和第二白板(3)的反射率已知,第一白板(2)和第二白板(3)以沿转轴(5)轴向具有间距、且沿转轴(5)径向相互错开的方式连接在转轴(5)上;光谱探头(1)用于获取第一白板(2)、第二白板(3)和海底底质(12)的光谱数据;测距仪(4)用于获取第一白板(2)与海底底质(12)之间的间距数据;转轴(5)用于带动第一白板(2)和第二白板(3)转动,使得第一白板(2)、第二白板(3)依次处于光谱探头(1)的正前方。只采用一个光谱探头(1)就可实现对海底地质(12)反射率的测量,进而可实现海草和珊瑚健康状况的监测,其制作和运行成本低,并在一定程度上解决了因光谱探头(1)差异性导致测量偏差的问题。

Description

海底底质反射率测量装置及测量方法 技术领域
本发明涉及光谱测量技术领域,具体涉及一种海底底质反射率测量装置及测量方法。
背景技术
太阳光入射到海水界面时,其中一部分太阳光直接被海水表面反射到空气中,另外一部分太阳光进入到海水中。由于海水一般由纯海水、浮游植物、悬浮泥沙以及有色溶解有机物等组分组成,进入到海水中的太阳光经过海水的吸收和散射,一部分散射光穿透海气界面,携带着海水组分的信息穿过大气被相关卫星所接收。因此,研究卫星的光学信号,可以反演出海水组分的信息,获得海洋的相关信息。
然而,对于近岸水体,由于海水较浅,太阳光穿透海水到达海水底层,被海水底层的泥沙、海草和珊瑚等反射进入到海水中,这部分的光信息夹杂于海水的光信号中,被卫星所接收,从而影响到海水组分的反演,因此,需要先测量出海底底质的反射率,再剔除海底底质反射率从而获得海水中的杂质信号。同时,在研究海洋生物时,例如海底的海草、珊瑚等,在其生长过程中,具有特殊的光谱特性,通过研究海底物质光谱特性,有助于帮助人类对底质物质的识别、海草和珊瑚生长周期的判断以及健康状况的诊断等。
目前,普遍采用水下光谱测量仪来测量海底底质的反射率,图3示出了一种水下光谱测量仪,包括白板200、第一光谱探头110和第二光谱探头210。其中,白板200的反射率为已知的,第一光谱探头110用于采集待测物质100的光谱数据,第二光谱探头210用于采集白板200的光谱数据,待测物质100与第一光谱探头110的距离等于白板200与第二光谱探头210的距离。根据第一光谱探头110和第二光谱探头210的光谱数据,计算出待测物质100反射率的过程是:
DN1表示第一光谱探头110采集到的待测物质100的反射光线所对应的待测光谱数据,DN2表示第二光谱探头210采集到的白板200的反射光线所对应的标准光谱数据,通常,波长范围为400~700nm,可以表示为式(A):
Figure PCTCN2018085818-appb-000001
其中,F为太阳的入射光强度,由于白板200与待测物质100的深度、角度和所处环境均相同,所以对应于待测物质100和白板200的入射光强度相同,均为F;R 为待测物质100的待测反射率,是未知的;R 为白板200的反射率,是已知的;由式(A)可以得出R 和R 的关系,表示为式(B):
Figure PCTCN2018085818-appb-000002
由式(B)可以求得待测反射率R =(DN1×R )/DN2,获知该反射率可以进行后续的水体分析。
上述水下光谱测量仪虽然可以测量海底底质的反射率,但是由于其采用2个光谱探头,一方面,光谱探头价格高,导致整套装置的成本高,同时发生故障的几率也会成倍增加;另一方面,2个光谱探头采集的光谱数据会存在差异,即使是通过标定可以修正,但是在长期野外工作过程中,光学设备的衰减以及温度影响存在个体体质的差异,导致DN1和DN2各自测量精度的漂移,进而导致R 的计算产生误差,影响到反射率的测量精度。
另外,水下光谱测量仪的光学探头及作为参照的白板可能需浸泡在海水中几天甚至一年来进行长时间系列的测量,而长时间浸泡在海水中容易受到水中的生物、有机物(如油类)和无机物(如泥沙)的污染,而光辐射测量对这种污染十分敏感,各个窗口受污染后的测量误差也不尽相同。综上所述,双探头的测量在设备费用上和精度上还是具有其自身的局限性。
发明内容
本发明的目的在于弥补现有技术的不足,提供一种海底底质反射率测量装置及测量方法,只通过一个光谱探头就可实现对海底底质反射率的测量。
为实现上述目的,本发明所采用的技术方案是:
一种海底底质反射率测量装置,包括光谱探头、第一白板、第二白板、测距仪和转轴;
第一白板和第二白板的反射率已知,第一白板和第二白板以沿转轴轴向具有 间距、且沿转轴径向相互错开的方式连接在转轴上;
光谱探头用于获取第一白板、第二白板和海底底质的光谱数据;
测距仪用于获取光谱探头与海底底质之间的间距数据;
转轴用于带动第一白板和第二白板转动,使得第一白板、第二白板依次处于光谱探头的正前方。
作为本发明的一种改进,还包括连接在转轴上的活动刷,活动刷、第一白板和第二白板沿转轴径向相互错开,活动刷在转轴的带动下反复揩拭光谱探头。通过活动刷揩拭光谱探头,可以防止因长时间浸泡在海水中受到水中的生物、有机物和无机物的污染。
作为本发明的一种改进,还包括设置在转轴旁侧的第一固定刷和第二固定刷,第一白板在在转轴的带动下,使得其反射面被第一固定刷反复揩拭,第二白板在在转轴的带动下,使得其反射面被第二固定刷反复揩拭。通过固定刷揩拭白板的反射面,可以防止因长时间浸泡在海水中受到水中的生物、有机物和无机物的污染。
作为本发明的一种改进,所述第一白板和第二白板均通过关节轴承与转轴转动连接。如此设计,第一白板和第二白板的角度可万向调节,使得第一白板、第二白板和海底底质的太阳光入射角一致。
作为本发明的一种改进,还包括底座、L型支架和驱动电机,所述光谱探头和测距仪安装在底座上表面,驱动电机安装在底座下表面,L型支架的上端与转轴的顶端转动连接,下端固定在底座上,转轴的底端穿过底座与驱动电机的输出轴连接,所述第一固定刷和第二固定刷间隔固定在L型支架上。
一种基于权利要求1所述的海底底质反射率测量装置的测量方法,包括以下步骤:
步骤1:转动转轴使得第一白板正对光谱探头,通过光谱探头获取第一白板的光谱数据N 1
步骤2:转动转轴使得第二白板正对光谱探头,通过光谱探头获取第二白板的光谱数据N 2
步骤3:转动转轴使得第一白板和第二白板偏离光谱探头,通过光谱探头获取海底底质的光谱数据N 3,通过测距仪获取光谱探头与海底底质的间距数据;
步骤4:通过如下方程组计算海底底质的反射率R 3
Figure PCTCN2018085818-appb-000003
其中,R 1为第一白板的反射率,R 2为第二白板的反射率,L 2为第一白板与第二白板的间距,L 3为第二白板与海底底质的间距,k为海水的光衰减系数。
与现有技术相比,本发明的有益效果在于:
本发明的海底底质反射率测量装置,通过反射率已知、且与光谱探头间距不同的第一白板和第二白板估算出海水的光衰减系数,结合海底底质的距离,反演出海底地质的反射率,整台装置只采用一个光谱探头就可实现对海底地质反射率的测量,制造和运行成本低。
附图说明
图1是本发明测量装置的正视图;
图2是本发明测量装置的俯视图;
图3是现有水下光谱测量仪的示意图;
附图标记说明:1-光谱探头;2-第一白板;3-第二白板;4-测距仪;5-转轴;6-活动刷;7-第一固定刷;8-第二固定刷;9-底座;10-支架;11-驱动电机;12-海底底质。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实例对本发明进一步详细说明。附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例:
如图1和2所示,一种海底底质反射率测量装置,包括光谱探头1、第一白 板2、第二白板3、测距仪4、转轴5、活动刷6、第一固定刷7、第二固定刷8、底座9、L型支架10和驱动电机11。至于装置的其他部件,如:光谱分析仪、处理器、显示器、电源、密封部件、深度探头及摄像头,均可以根据实际需要进行布置,其均为常规技术,在此不再赘述。
底座9作为本测量装置的承载平台,光谱探头1和测距仪4安装在底座9的上表面,测距仪4固定在光谱探头1或底座9上均可,驱动电机11安装在底座9的下表面,L型支架10的上端与转轴5的顶端通过轴承转动连接,下端固定在底座9的上表面,转轴5的底端穿过底座9中部与驱动电机11的输出轴连接,转轴5与底座9之间同样设置有轴承。L型支架10和转轴5构成的平面,与光谱探头1和转轴5构成的平面的夹角可为90°~180°。第一固定刷7和第二固定刷8上下间隔地固定在L型支架10上,第一固定刷7的刷面朝上,与第一白板2的反射面高度相匹配,第二固定刷8的刷面也朝上,与第二白板3的反射面高度相匹配。
第一白板2和第二白板3的反射率已知,第一白板2、第二白板3和活动刷6均通过连接杆固定在转轴5上,具体固定方式可采用套筒和螺钉的方式,也可采用其他的现有方式,只要能够沿转轴5上下可调,且沿转轴5周向转动可调即可。为了使第一白板2、第二白板3和海底底质12的太阳光入射角一致,第一白板2和第二白板3均通过关节轴承与连接杆转动连接,当然也可以采用现有的自动控制装置,根据海底底质12的斜度,自动调节第一白板2和第二白板3的偏转角度。活动刷6、第一白板2和第二白板3从上往下间隔布置,活动刷6的刷面朝下,高度与光谱探头1相匹配,第一白板2和第二白板3的间距可根据设计要求调节。在转轴5的径向平面上,第一白板2、第二白板3和活动刷6相互错开,本实施例中,第一白板2与第二白板3和活动刷6均为90°,当然第一白板2、第二白板3和活动刷6也可以相互成120°。
其中,第一白板2、第二白板3、活动刷6、第一固定刷7和第二固定刷8的固定部件均采用铜质的金属件,因为铜离子有毒,生物不容易附着和生长。
光谱探头1用于获取第一白板2、第二白板3和海底底质12的光谱数据。测距仪4用于获取光谱探头1与海底底质12之间的间距数据,本实施例中,测距仪4的发射头与光谱探头1对齐,可测出光谱探头1与海底底质12之间的距 离,而第一白板2、第二白板3与光谱探头1的间距是已知的,减去已知的第二白板3与光谱探头1的间距,即是第二白板3与海底底质12之间的间距。转轴5在驱动电机11的驱动下转动,从而带动第一白板2和第二白板3转动,使得第一白板2、第二白板3依次处于光谱探头1的正前方,同时,还可带动活动刷反复揩拭光谱探头1,还可使第一白板2的反射面被第一固定刷7反复揩拭,第二白板3的反射面被第二固定刷反复揩拭。通过活动刷和固定刷揩拭光谱探头1、第一白板2和第二白板3,可以防止其因长时间浸泡在海水中受到水中的生物、有机物和无机物的污染。
本发明的海底底质反射率测量装置,由于一次的测量时间较短,在整个测量过程中,太阳的入射角和辐照强度均保持不变,因此,入射到第一白板2、第二白板3和海底底质12的入射辐照度只与海水的光衰减系数相关,其具体的测量方法如下:
步骤1:转动转轴5使得第一白板2正对光谱探头1,通过光谱探头1获取第一白板2的光谱数据N 1
步骤2:转动转轴5使得第二白板3正对光谱探头1,通过光谱探头1获取第二白板3的光谱数据N 2
步骤3:转动转轴5使得第一白板2和第二白板3偏离光谱探头1,通过光谱探头1获取海底底质12的光谱数据N 3,通过测距仪4获取光谱探头1与海底底质12的间距数据;
步骤4:通过如下方程组计算海底底质12的反射率R 3
Figure PCTCN2018085818-appb-000004
其中,R 1为第一白板2的反射率,R 2为第二白板3的反射率,L 2为第一白板2与第二白板3的间距,L 3为第二白板3与海底底质12的间距,k为海水的光衰减系数。
具体地,上述公式的推导过程如下:
定义光谱探头1的光学探头处的太阳入射辐照度为E,光经过海水时,一部 分被吸收,另外一部分偏离原传播方向被散射,吸收和散射的共同作用造成了光的衰减,定义光谱探头1光学探头与第一白板2的间距为L 1,那么第一白板2的太阳入射辐照度E1、第二白板3的太阳入射辐照度E2、以及海底底质12的太阳入射辐照度E3可表示如下:
Figure PCTCN2018085818-appb-000005
以第一白板2为例,太阳入射辐照度E经过L 1路程的衰减变成E 1,然后又经过L 1路程的衰减变成E 1'被光谱探头1的光学探头接受,辐射能量在反射率为R的白板上反射后,在白板位置所对应的亮度为N 1',根据E 1'=N1'π/R,N 1'进过相同的路程L 1衰减后被光谱探头所接收得到N 1;因此,第一白板2的光谱数据N 1、第一白板2的光谱数据N 2、以及海底底质12的光谱数据N 3可表示如下:
Figure PCTCN2018085818-appb-000006
对方程组(4)进行计算,消除E和L 1后,得到用来计算海底底质12反射率R 3的计算公式。
本发明的海底底质反射率测量装置,只采用一个光谱探头就可实现对海底地质反射率的测量,制作成本低,降低了装置发生故障的几率,运行成本低,很好地解决了因光谱探头差异性导致的测量偏差的问题。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (6)

  1. 一种海底底质反射率测量装置,其特征在于:包括光谱探头(1)、第一白板(2)、第二白板(3)、测距仪(4)和转轴(5);
    第一白板(2)和第二白板(3)的反射率已知,第一白板(2)和第二白板(3)以沿转轴(5)轴向具有间距、且沿转轴(5)径向相互错开的方式连接在转轴(5)上;
    光谱探头(1)用于获取第一白板(2)、第二白板(3)和海底底质(12)的光谱数据;
    测距仪(4)用于获取光谱探头(1)与海底底质(12)之间的间距数据;
    转轴(5)用于带动第一白板(2)和第二白板(3)转动,使得第一白板(2)、第二白板(3)依次处于光谱探头(1)的正前方。
  2. 根据权利要求1所述的海底底质反射率测量装置,其特征在于,还包括连接在转轴(5)上的活动刷(6),活动刷(6)、第一白板(2)和第二白板(3)沿转轴(5)径向相互错开,活动刷(6)在转轴(5)的带动下反复揩拭光谱探头(1)。
  3. 根据权利要求2所述的海底底质反射率测量装置,其特征在于,还包括设置在转轴(5)旁侧的第一固定刷(7)和第二固定刷(8),第一白板(2)在在转轴(5)的带动下,使得其反射面被第一固定刷(7)反复揩拭,第二白板(3)在转轴(5)的带动下,使得其反射面被第二固定刷(8)反复揩拭。
  4. 根据权利要求1-3任一所述的海底底质反射率测量装置,其特征在于,所述第一白板(2)和第二白板(3)均通过关节轴承与转轴(5)转动连接。
  5. 根据权利要求3所述的海底底质反射率测量装置,其特征在于,还包括底座(9)、L型支架(10)和驱动电机(11),所述光谱探头(1)和测距仪(4)安装在底座(9)上表面,驱动电机(11)安装在底座(19)下表面,L型支架(10)的上端与转轴(5)的顶端转动连接,下端固定在底座(9)上,转轴(5)的底端穿过底座(9)与驱动电机(11)的输出轴连接,所述第一固定刷(7)和第二固定刷(8)间隔固定在L型支架(10)上。
  6. 一种基于权利要求1所述的海底底质反射率测量装置的测量方法,其特 征在于,包括以下步骤:
    步骤1:转动转轴(5)使得第一白板(2)正对光谱探头(1),通过光谱探头(1)获取第一白板(2)的光谱数据N 1
    步骤2:转动转轴(5)使得第二白板(3)正对光谱探头(1),通过光谱探头(1)获取第二白板(3)的光谱数据N 2
    步骤3:转动转轴(5)使得第一白板(2)和第二白板(3)偏离光谱探头(1),通过光谱探头(1)获取海底底质(12)的光谱数据N 3,通过测距仪(4)获取光谱探头(1)与海底底质(12)的间距数据;
    步骤4:通过如下方程组计算海底底质(12)的反射率R 3
    Figure PCTCN2018085818-appb-100001
    其中,R 1为第一白板(2)的反射率,R 2为第二白板(3)的反射率,L 2为第一白板(2)与第二白板(3)的间距,L 3为第二白板(3)与海底底质(12)的间距,k为海水的光衰减系数。
PCT/CN2018/085818 2018-04-12 2018-05-07 海底底质反射率测量装置及测量方法 WO2019196154A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/046,808 US11162891B2 (en) 2018-04-12 2018-05-07 Apparatus and method for measuring reflectivity of seabed sediments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810325604.1 2018-04-12
CN201810325604.1A CN108458993B (zh) 2018-04-12 2018-04-12 海底底质反射率测量装置及测量方法

Publications (1)

Publication Number Publication Date
WO2019196154A1 true WO2019196154A1 (zh) 2019-10-17

Family

ID=63234664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085818 WO2019196154A1 (zh) 2018-04-12 2018-05-07 海底底质反射率测量装置及测量方法

Country Status (3)

Country Link
US (1) US11162891B2 (zh)
CN (1) CN108458993B (zh)
WO (1) WO2019196154A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108458993B (zh) * 2018-04-12 2020-03-24 中国科学院南海海洋研究所 海底底质反射率测量装置及测量方法
CN116513372B (zh) * 2023-04-26 2023-09-22 青岛森科特智能仪器有限公司 一种海底沉降及倾斜原位监测网及其工作方法
CN117152636B (zh) * 2023-10-29 2024-03-15 自然资源部第二海洋研究所 一种基于双波段关系的浅海底质反射率遥感监测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110205536A1 (en) * 2008-05-21 2011-08-25 Ntnu Technoogy Transfer As Underwater hyperspectral imaging
CN103278861A (zh) * 2013-05-16 2013-09-04 浙江大学 水下高光谱成像系统
CN105891131A (zh) * 2016-04-05 2016-08-24 中国科学院南海海洋研究所 一种岸基造礁石珊瑚光谱测量方法
CN106770345A (zh) * 2016-11-29 2017-05-31 中国科学院合肥物质科学研究院 一种自动校正的近红外漫反射检测系统及检测方法
CN106990116A (zh) * 2017-05-11 2017-07-28 成都中信华瑞科技有限公司 一种水体遥感监测方法和装置
CN108458993A (zh) * 2018-04-12 2018-08-28 中国科学院南海海洋研究所 海底底质反射率测量装置及测量方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506616A (en) * 1992-10-07 1996-04-09 The United States Of America As Represented By The Secretary Of The Navy Differential imaging for sensitive pattern recognition
US5604582A (en) * 1994-05-12 1997-02-18 Science Application International Corporation Methods and apparatus for taking spectroscopic measurements of sediment layers beneath a body of water
US7204602B2 (en) * 2001-09-07 2007-04-17 Super Vision International, Inc. Light emitting diode pool assembly
JP2004361149A (ja) * 2003-06-02 2004-12-24 Tdk Corp 含水量測定装置
JP5137104B2 (ja) * 2007-03-22 2013-02-06 株式会社 ソキア・トプコン 光波距離計
CN102651050A (zh) * 2011-02-28 2012-08-29 中国科学院遥感应用研究所 利用海洋遥感数据进行霍乱预测的方法
US10955345B2 (en) * 2015-12-09 2021-03-23 Bae Systems Plc Relating to remote sensing
US10310133B2 (en) * 2016-10-04 2019-06-04 Fairfield Geotechnologies Calibration of geophone and hydrophone pairs
CN206517524U (zh) * 2017-01-22 2017-09-22 中国水产科学研究院东海水产研究所 一种水下鱼类活动视频影像获取装置
US10502829B2 (en) * 2017-07-10 2019-12-10 3D at Depth, Inc. Underwater optical metrology system
CN207894820U (zh) * 2018-02-07 2018-09-21 中国科学院南海海洋研究所 一种太阳能板供电长期连续海底底质水下光谱测量仪
US10718865B2 (en) * 2018-05-14 2020-07-21 Coda Octopus Group Method of compressing beamformed sonar data
US12019196B2 (en) * 2019-12-18 2024-06-25 Pgs Geophysical As Marine survey data acquisition at a tow line

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110205536A1 (en) * 2008-05-21 2011-08-25 Ntnu Technoogy Transfer As Underwater hyperspectral imaging
CN103278861A (zh) * 2013-05-16 2013-09-04 浙江大学 水下高光谱成像系统
CN105891131A (zh) * 2016-04-05 2016-08-24 中国科学院南海海洋研究所 一种岸基造礁石珊瑚光谱测量方法
CN106770345A (zh) * 2016-11-29 2017-05-31 中国科学院合肥物质科学研究院 一种自动校正的近红外漫反射检测系统及检测方法
CN106990116A (zh) * 2017-05-11 2017-07-28 成都中信华瑞科技有限公司 一种水体遥感监测方法和装置
CN108458993A (zh) * 2018-04-12 2018-08-28 中国科学院南海海洋研究所 海底底质反射率测量装置及测量方法

Also Published As

Publication number Publication date
CN108458993A (zh) 2018-08-28
US11162891B2 (en) 2021-11-02
US20210080383A1 (en) 2021-03-18
CN108458993B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2019196154A1 (zh) 海底底质反射率测量装置及测量方法
JP4933271B2 (ja) 複数の検体の化学分析用ディスポーザルエレメントを備えたハンドヘルド装置
Ruddick et al. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters
Röttgers et al. Measurements of optical absorption by chromophoric dissolved organic matter using a point‐source integrating‐cavity absorption meter
US20150129769A1 (en) Measurement Method for Object to be Measured
Fargion Ocean optics protocols for satellite ocean color sensor validation
Gilerson et al. Retrieval of chlorophyll fluorescence from reflectance spectra through polarization discrimination: modeling and experiments
US20120045855A1 (en) Position-sensitive metrology system
Kim et al. Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring
US5751424A (en) Scalable non-contact optical backscatter insertion probe
CN111239051B (zh) 一种自然水体海面偏振高光谱观测系统
US10731973B2 (en) Apparatus for automatically and quickly detecting two-dimensional morphology for wafer substrate in real time
Zibordi et al. Characterization of the immersion factor for a series of in-water optical radiometers
Pelevin et al. Measurements with high spatial resolution of chlorophyll-a, CDOM and total suspended matter in coastal zones and inland water bodies by the portable UFL lidar
Juhasz et al. Non‐collimated beam ellipsometry
CN201497701U (zh) 一种珠宝鉴定仪
Hooker et al. Advanced methods for characterizing the immersion factor of irradiance sensors
CN111257259A (zh) 水质检测方法及设备
Smith et al. Oceanographic bio-optical profiling system II
Hu Simple instrument for measurement of remote sensing reflectance in coastal environment
Kulchin et al. An immersible fiber-optic fluorometer
Li et al. Development of underwater fluorimeters for assessing biochemical constituents of coastal seawater
CN117330516A (zh) 一种反射率光谱检测设备
Dmitruk et al. Multilayer gratings: characterization and application
KR101170853B1 (ko) 화학적 또는 생물학적 물질의 분석 대상물 농도 측정시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914293

Country of ref document: EP

Kind code of ref document: A1