WO2019196093A1 - 基于云台的imu校准方法、装置及存储介质 - Google Patents

基于云台的imu校准方法、装置及存储介质 Download PDF

Info

Publication number
WO2019196093A1
WO2019196093A1 PCT/CN2018/082962 CN2018082962W WO2019196093A1 WO 2019196093 A1 WO2019196093 A1 WO 2019196093A1 CN 2018082962 W CN2018082962 W CN 2018082962W WO 2019196093 A1 WO2019196093 A1 WO 2019196093A1
Authority
WO
WIPO (PCT)
Prior art keywords
pan
tilt
imu
imu module
module
Prior art date
Application number
PCT/CN2018/082962
Other languages
English (en)
French (fr)
Inventor
徐亚飞
石熙恒
Original Assignee
深圳市固胜智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市固胜智能科技有限公司 filed Critical 深圳市固胜智能科技有限公司
Priority to PCT/CN2018/082962 priority Critical patent/WO2019196093A1/zh
Publication of WO2019196093A1 publication Critical patent/WO2019196093A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories

Definitions

  • the present application relates to the technical field of keeping the load posture of the carrier stationary during exercise, and in particular relates to a pan-tilt-based IMU calibration method.
  • the camera lens During the shooting process, if the camera is in motion, the camera lens will be shaken and the captured image will be unclear. Therefore, a technique is needed to offset the bump of the lens and keep the camera lens still. If it is detected that the camera is tilted up by an angle, the camera is pulled down by a corresponding angle by the motor to ensure that the camera lens is stationary relative to the ground.
  • the three-axis electronic stabilization pan/tilt gradually replaces the traditional Steadicam mechanical stabilization gimbal, and achieves high-precision attitude control by means of an inertial measurement unit (IMU) and a high-response brushless DC motor, thereby offsetting the camera shooting process. Most of the interference greatly enhances the stability of the camera.
  • IMU inertial measurement unit
  • a high-response brushless DC motor thereby offsetting the camera shooting process.
  • Most of the interference greatly enhances the stability of the camera.
  • IMU Inertial Measurement Unit
  • the measurement accuracy of the IMU directly affects the performance of the electronic head.
  • the IMU will be affected by environmental factors during the use process, resulting in measurement errors. For example, the wear and tear caused by the PTZ will cause measurement deviation in the IMU.
  • the IMU In order to make the measurement accurate, the IMU must be calibrated to obtain the deviation parameters to correct the IMU measurement results.
  • the present application provides a pan/tilt-based IMU calibration method to obtain a modified deviation parameter that can be used for IMU measurement results.
  • an embodiment of the present invention provides a pan/tilt-based IMU calibration method, including the following steps: S1, fixing an IMU module on a cloud platform, making the cloud platform perpendicular to a horizontal plane and stably setting up; S2, controlling the cloud The table rotates a setting surface of the IMU module to each surface to be tested, and records the angular velocity and acceleration measured by the IMU module when the IMU module rotates to each surface to be tested; S3, fitting the measured angular velocity and acceleration , calculate the deviation parameter.
  • the pan/tilt head is a three-axis gimbal
  • the IMU module comprises a three-axis gyroscope and a three-axis accelerometer.
  • the three initial mechanical angles are [0, 0, 0]; the face to be tested is six faces, and when the set face of the IMU module is rotated to six faces to be tested, the pan/tilt
  • the mechanical angles are [0, 0, 0], [90, 0, 0], [180, 0, 0], [-90, 0, 0], [0, 90, 0], [0, -90 , 0] or [0, 0, 0], [90, 0, 0], [180, 0, 0], [-90, 0, 0], [0, 0, 90], [0, 0 , -90] or [0, 0, 0], [0,90, 0], [0,180, 0], [0,-90, 0], [90,0, 0], [-90,0 , 0] or [0, 0, 0], [0,90, 0], [0,180, 0], [0,-90, 0], [90,0, 0], [-90,0 , 0] or [
  • step S1 the method further comprises fixing the load on the pan/tilt.
  • the fitting operation is a fitting operation that performs an operation using a least squares algorithm.
  • the deviation parameter includes an axis coefficient, an inter-axis coefficient, and a zero offset.
  • an embodiment of the present invention provides a pan/tilt-based IMU calibration apparatus, including: a pan/tilt head and an IMU module; the pan/tilt head is stably erected and perpendicular to a horizontal plane for driving the IMU module to rotate, and the IMU module is rotated. To each surface to be tested; the IMU module is fixed on the pan/tilt to measure the angular velocity and acceleration of the IMU module when it is rotated to each surface to be tested.
  • a load is further included, and the load is fixed on the pan/tilt.
  • the three initial mechanical angles of the gimbal are [0, 0, 0]; the surface to be tested is six faces, and when the setting surface of the IMU module is rotated to six faces to be tested, the cloud
  • the mechanical angles of the table are [0, 0, 0], [90, 0, 0], [180, 0, 0], [-90, 0, 0], [0, 90, 0], [0, -90, 0] or [0, 0, 0], [90, 0, 0], [180, 0, 0], [-90, 0, 0], [0, 0, 90], [0 , 0, -90] or [0, 0, 0], [0, 90, 0], [0, 180, 0], [0, -90, 0], [90, 0, 0], [-90 , 0, 0] or [0, 0, 0], [0,90, 0], [0,180, 0], [0,-90, 0], [0,0, 90], [0,0 -90] or [0,
  • an embodiment provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement the steps of any one of claims 1 to 6. S2 and step S3.
  • the measured angular velocity and acceleration are performed by rotating the IMU module to each surface to be measured to measure the angular velocity and acceleration measured by the IMU module when each surface to be measured is measured.
  • the deviation parameter can be calculated, and the deviation parameter can be used to overcome the measurement error caused by the environmental factors in the actual use of the IMU, and the IMU measurement result is corrected in the actual use, so that the load on the gimbal is in motion. Maintain higher precision attitude control during the process.
  • the load is fixed on the pan/tilt and then calibrated to avoid the mechanical stress generated by the load from deviating from the measurement result, further improving the measurement accuracy of the IMU module.
  • FIG. 2 is a schematic structural view of a calibration device of the present application.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the pan/tilt-based IMU calibration method includes the following steps:
  • the motor controlling the pan/tilt rotates a set surface of the IMU module to six faces to be tested, and the three mechanical angles corresponding to the six faces to be tested are [0, 0, 0], [90, 0, 0 ], [180, 0, 0], [-90, 0, 0], [0, 90, 0], [0, -90, 0].
  • [0, 0, 0] is the first surface to be tested when the IMU module is fixed on the pan/tilt, [90, 0, 0] is rotated 90 degrees for the first mechanical angle, and the other two mechanical angles Do not move, get the second surface to be tested, [180,0, 0] is based on [90,0, 0], the first mechanical angle is rotated 90 degrees, the other two mechanical angles are not moving, get The third surface to be tested, [-90,0, 0] is the reverse rotation of the first mechanical angle by 90 degrees, and the other two mechanical angles are not moved to obtain the fourth surface to be tested, [0,90, 0] For the first and third mechanical angles unchanged, the second mechanical angle is rotated by 90 degrees to obtain the fifth surface to be tested, [0, -90, 0] is the first and third mechanical angles unchanged, the second The mechanical angle is reversed by 90 degrees to obtain the sixth surface to be tested; the angular velocity and acceleration measured by the IMU module when the IMU module is rotated to each surface to be tested
  • the motor makes the IMU module perform different flips, such as [0, 0, 0], [90, 0, 0], [180, 0, 0], [-90, 0, 0], [0, 0, 90 ], [0,0,-90] or [0, 0, 0], [0,90, 0], [0,180, 0], [0,-90, 0], [90,0, 0], [-90,0, 0] or [0, 0, 0], [0, 9 0, 0], [0,180, 0], [0,-90, 0], [0,0, 90], [0,0, -90] or [0, 0, 0], [0,0, 90], [0,0, 180], [0,0, -90], [90,0, 0], [-90,0, 0] or [0, 0, 0], [0,0, 90], [0, 0, 180], [0,0, -90], [90,0, 0], [-90,0, 0] or [
  • 103 Perform the fitting operation on the measured angular velocity and acceleration by using a least squares algorithm, and calculate an axis coefficient, an inter-axis coefficient, and a zero offset.
  • the obtained axis coefficient, inter-axis coefficient, and zero offset can correct the camera's jitter and overcome the measurement error caused by environmental factors (such as mechanical wear and temperature), so that the camera lens maintains a high-precision attitude and is still.
  • the steps of steps 101, 102, and 103 are performed to avoid the influence of mechanical stress on the IMU module, and the IMU is improved.
  • the accuracy of the measurement is such that the camera gets a higher precision attitude still.
  • the load described above may be a shooting unit such as a camera or a video camera. Therefore, calibration should be performed for different loads before loading different loads for shooting.
  • the IMU module includes a three-axis gyroscope and a three-axis accelerometer.
  • the three-axis gyroscope can use a MEMS three-axis gyroscope
  • the three-axis accelerometer can use a MEMS three-axis accelerometer, wherein the MEMS is a micro-electromechanical system.
  • the IMU module may be further converted to obtain more to-be-measured surfaces of the IMU module, and three mutually perpendicular test surfaces of the IMU module may be obtained, and each of the to-be-measured surfaces is measured. Then the operation is fitted to obtain the corresponding deviation parameters.
  • a pan/tilt-based IMU calibration device including: three-axis pan/tilt 1, load 2, IMU module; three-axis pan/tilt 1 is stably erected and perpendicular to the horizontal plane, and the three-axis pan/tilt 1 is built in first
  • the rotating shaft 11, the second rotating shaft 12, and the third rotating shaft 13, the motor drives the IMU module to rotate, and the IMU module is rotated to each surface to be tested; the IMU module is fixed on the pan/tilt, and is used for measuring the rotation of the IMU module to each surface to be tested.
  • the angular velocity and acceleration of the IMU module; the load 2 is fixed to the jig 14 of the pan/tilt.
  • the load can be a shooting unit such as a camera or a video camera.
  • the IMU module includes a three-axis gyroscope and a three-axis accelerometer.
  • the IMU module can be fixed in the second rotating shaft 12, or can be fixed in the third rotating shaft 13, and can be fixed on the clamp 14, so that the IMU module can be flipped to each surface to be tested.
  • the measured angular velocity and acceleration are fitted to calculate the deviation parameter, which can be used to correct the IMU measurement result in actual use.
  • the three initial mechanical angles of the gimbal be [0, 0, 0]; the surface to be tested is six faces, and when the setting surface of the IMU module is rotated to six faces to be tested, the mechanism of the gimbal
  • the angles are [0, 0, 0], [90, 0, 0], [180, 0, 0], [-90, 0, 0], [0, 90, 0], [0, -90, 0] or [0, 0, 0], [90, 0, 0], [180, 0, 0], [-90, 0, 0], [0, 0, 90], [0, 0, -90] or [0, 0, 0], [0,90, 0], [0,180, 0], [0,-90, 0], [90,0, 0], [-90,0, 0] or [0, 0, 0], [0,90, 0], [0,180, 0], [0,-90, 0], [90,0, 0], [-90,0, 0] or
  • the present invention also provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement steps S2 and S3 as claimed in any one of claims 1 to 6.
  • step 102 and step 103 in the first embodiment are implemented.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: a read only memory, a random access memory, a magnetic disk, an optical disk, a hard disk, etc.
  • the computer executes the program to implement the above functions.
  • the program is stored in the memory of the device, and when the program in the memory is executed by the processor, all or part of the above functions can be realized.
  • the program may also be stored in a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk or a mobile hard disk, and may be saved by downloading or copying.
  • the system is updated in the memory of the local device, or the system of the local device is updated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种基于云台的IMU校准方法,包括以下步骤:S1、将IMU模块固定在云台上,使云台垂直于水平面并稳固架设(101);S2、控制云台的电机使IMU模块的一设定面旋转到各个待测面,记录IMU模块旋转到每个待测面时IMU模块测得的角速度和加速度(102);S3、将所测得的角速度和加速度进行拟合运算,计算出偏差参数(103)。该方法可以克服IMU在使用过程中会受环境因素的影响而导致的测量偏差。

Description

基于云台的IMU校准方法、装置及存储介质 技术领域
本申请涉及在运动中使负载保持载体姿态静止的技术领域,具体涉及一种基于云台的IMU校准方法。
背景技术
在拍摄过程中,如果相机处于运动状态会使相机镜头抖动,拍摄出的画面抖动不清,因此需要一种技术来抵消镜头的颠簸,使相机的镜头保持姿态静止。如在检测到相机向上翘起一个角度时,通过电机将相机向下拉沉一个相应的角度,使相机镜头相对于地面保证静止。
目前,三轴电子增稳云台逐步取代了传统的斯坦尼康机械增稳云台,借助惯性测量单元(IMU)和高响应无刷直流电机实现高精度的姿态控制,从而抵消相机拍摄过程中的大部分干扰,极大增强相机的稳定程度。
惯性测量单元(IMU),用于检测物体三轴角速度和加速度的装置,IMU的测量准确度直接影响了电子云台的性能。IMU在使用过程中会受到环境因素的影响导致测量误差的出现,如云台在使用过程中产生的磨损会使IMU出现测量偏差。为使测量准确,必须对IMU进行校准获得偏差参数,从而对IMU测量结果进行修正。
技术问题
本申请提供一种基于云台的IMU校准方法,以获得可对IMU测量结果进行修正偏差参数。
技术解决方案
根据第一方面,一种实施例中提供一种基于云台的IMU校准方法,包括以下步骤:S1、将IMU模块固定在云台上,使云台垂直于水平面并稳固架设;S2、控制云台使IMU模块的一设定面旋转到各个待测面,记录IMU模块旋转到每个待测面时IMU模块测得的角速度和加速度;S3、将所测得的角速度和加速度进行拟合运算,计算出偏差参数。
优选地,所述云台为三轴云台,所述的IMU模块包括三轴陀螺仪和三轴加速度计。
优选地,令三个初始机械角为[0, 0, 0];所述的待测面为六个面,当IMU模块的设定面旋转到六个待测面时,所述云台的机械角分别为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,90, 0]、[0,-90, 0]或为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,0,90]、[0,0,-90] 或为[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[90,0, 0]、[-90,0, 0] 或为[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[0,0, 90]、[0,0, -90]或为[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[90,0, 0]、[-90,0, 0] 或为[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[0,90, 0]、[0,-90, 0]。
优选地,在步骤S1中,还包括将负载固定在云台上。
优选地,所述拟合运算为采用最小二乘算法进行运算的拟合运算。
优选地,所述偏差参数包括轴系数、轴间系数、零点偏移。
根据第二方面,一种实施例中提供一种基于云台的IMU校准装置,包括:云台、IMU模块;云台稳固架设并垂直于水平面上,用于带动IMU模块旋转,使IMU模块旋转到各个待测面上;IMU模块固定于云台上,用于测量IMU模块旋转到各个待测面上时的角速度和加速度。
优选地,还包括负载,所述负载固定在云台上。
优选地,令云台三个初始机械角为[0, 0, 0];所述的待测面为六个面,当IMU模块的设定面旋转到六个待测面时,所述云台的机械角分别为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,90, 0]、[0,-90, 0]或为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,0,90]、[0,0,-90] 或为[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[90,0, 0]、[-90,0, 0] 或为[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[0,0, 90]、[0,0, -90]或为[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[90,0, 0]、[-90,0, 0] 或为[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[0,90, 0]、[0,-90, 0]。
根据第三方面,一种实施例中提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述的步骤S2和步骤S3。
有益效果
依据上述实施例的基于云台的IMU校准方法,由于将IMU模块旋转到各个待测面从而测得各个待测面时的IMU模块测得的角速度和加速度,对所测得的角速度和加速度进行拟合运算,即可计算出偏差参数,利用偏差参数克服IMU在实际使用过程中会受到环境因素的影响而导致测量误差,对实际使用中IMU测量结果进行修正,使得云台上的负载在运动过程中保持更高精度的姿态控制。将负载固定在云台上再进行校准,避免负载产生的机械应力对测量结果引起偏差,进一步提高IMU模块的测量精度。
附图说明
图1为本申请一实施例流程图;
图2为本申请校准装置结构示意图。
本发明的实施方式
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
实施例一:
请参考图1,基于云台的IMU校准方法包括以下步骤:
101、将IMU模块固定在三轴云台上,使三轴云台垂直于水平面并稳固架设;三轴云台垂直于水平面获得三轴云台的三个初始机械角,令三个初始机械角为[0, 0, 0];
102、控制云台的电机使IMU模块的一设定面旋转到六个待测面,六个待测面对应的三个机械角为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,90, 0]、[0,-90, 0]。[0, 0, 0]即为将IMU模块固定云台上不动时为第一个待测面,[90,0, 0]为第一个机械角进行90度旋转,另两个机械角不动,得到第二个待测面,[180,0, 0]为在[90,0, 0]的基础上,第一个机械角进行90度旋转,另两个机械角不动,得到第三个待测面,[-90,0, 0]为第一个机械角进行逆向90度旋转,另两个机械角不动,得到第四个待测面、[0,90, 0]为第一和第三机械角不变,第二个机械角进行90度旋转得到第五个待测面,[0,-90, 0] 为第一和第三机械角不变,第二个机械角进行逆向90度旋转得到第六个待测面;分别记录IMU模块旋转到每个待测面时IMU模块测得的角速度和加速度;为获得待测的六个面,也可以控制云台的电机使IMU模块进行不同的翻转,如 [0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,0,90]、[0,0,-90] 或[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[90,0, 0]、[-90,0, 0] 或[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[0,0, 90]、[0,0, -90]或[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[90,0, 0]、[-90,0, 0] 或[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[0,90, 0]、[0,-90, 0]。
103、将所测得的角速度和加速度采用最小二乘算法进行拟合运算,计算得到轴系数、轴间系数、零点偏移。得到的轴系数、轴间系数、零点偏移可以对相机的抖动进行修正,并克服环境因素(如机械磨损、温度)造成的测量误差,使相机的镜头保持高精度的姿态静止。
作为优选,负载固定在云台上后,必然会产生机械应力, 将负载固定在云台上后,再进行上述101、102、103步骤的校准,可以避免机械应力对IMU模块产生影响,提高IMU测量精度,从而使相机得到更高精度的姿态静止。上述所述的负载可为相机或摄像机等拍摄单元。因此,在装载不同的负载进行拍摄前,应针对不同的负载进行校准。
IMU模块包括三轴陀螺仪和三轴加速度计。三轴陀螺仪可以采用MEMS三轴陀螺仪,三轴加速度计可以采用MEMS三轴加速度计,其中,MEMS为微电子机械系统。
作为优选,在本申请的其它实施例中,还可以变换IMU模块获得IMU模块的更多个待测面,也可以获得IMU模块三个相互垂直的待测面,对各个待测面进行测量,然后拟合运算,获得相应的偏差参数。
请参考图2,一种基于云台的IMU校准装置,包括:三轴云台1、负载2、IMU模块;三轴云台1稳固架设并垂直于水平面上,三轴云台1内置第一转轴11、第二转轴12、第三转轴13,电机带动IMU模块旋转,使IMU模块旋转到各个待测面上;IMU模块固定于云台上,用于测量IMU模块旋转到每个待测面时IMU模块的角速度和加速度;负载2固定在云台的夹具14上。负载可为相机或摄像机等拍摄单元。所述的IMU模块包括三轴陀螺仪和三轴加速度计。IMU模块可以固定于第二转轴12内,也可以固定于第三转轴13内,还可以固定在夹具14上,能够使得IMU模块翻转到各个待测面上即可。将所测得的角速度和加速度进行拟合运算,计算出偏差参数,从而可用于对实际使用中IMU测量结果进行修正。
令云台三个初始机械角为[0, 0, 0];所述的待测面为六个面,当IMU模块的设定面旋转到六个待测面时,所述云台的机械角分别为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,90, 0]、[0,-90, 0]或为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,0,90]、[0,0,-90] 或为[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[90,0, 0]、[-90,0, 0] 或为[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[0,0, 90]、[0,0, -90]或为[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[90,0, 0]、[-90,0, 0] 或为[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[0,90, 0]、[0,-90, 0]。
本发明还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述的步骤S2和步骤S3。作为优选,所述计算机程序被处理器执行时实现如实施例一中的步骤102和步骤103。当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘、光盘、硬盘等,通过计算机执行该程序以实现上述功能。例如,将程序存储在设备的存储器中,当通过处理器执行存储器中程序,即可实现上述全部或部分功能。另外,当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序也可以存储在服务器、另一计算机、磁盘、光盘、闪存盘或移动硬盘等存储介质中,通过下载或复制保存到本地设备的存储器中,或对本地设备的系统进行版本更新,当通过处理器执行存储器中的程序时,即可实现上述实施方式中全部或部分功能。
 
 
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (10)

  1. 一种基于云台的IMU校准方法,其特征在于包括以下步骤:
    S1、将IMU模块固定在云台上,使云台垂直于水平面并稳固架设;
    S2、控制云台使IMU模块的一设定面旋转到各个待测面,记录IMU模块旋转到每个待测面时IMU模块测得的角速度和加速度;
    S3、将所测得的角速度和加速度进行拟合运算,计算出偏差参数。
  2. 如权利要求1所述的基于云台的IMU校准方法,其特征在于,所述云台为三轴云台,所述的IMU模块包括三轴陀螺仪和三轴加速度计。
  3. 如权利要求2所述的基于云台的IMU校准方法,其特征在于,令云台三个初始机械角为[0, 0, 0];所述的待测面为六个面,当IMU模块的设定面旋转到六个待测面时,所述云台的机械角分别为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,90, 0]、[0,-90, 0]或为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,0,90]、[0,0,-90] 或为[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[90,0, 0]、[-90,0, 0] 或为[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[0,0, 90]、[0,0, -90]或为[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[90,0, 0]、[-90,0, 0] 或为[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[0,90, 0]、[0,-90, 0]。
  4. 如权利要求1所述的基于云台的IMU校准方法,其特征在于,在步骤S1中,还包括将负载固定在云台上。
  5. 如权利要求1所述的基于云台的IMU校准方法,其特征在于,所述拟合运算为采用最小二乘算法进行运算的拟合运算。
  6. 如权利要求1所述的基于云台的IMU校准方法,其特征在于,所述偏差参数包括轴系数、轴间系数、零点偏移。
  7. 一种基于云台的IMU校准装置,其特征在于,包括:云台、IMU模块;
    云台稳固架设并垂直于水平面上,用于带动IMU模块旋转,使IMU模块旋转到各个待测面上;
    IMU模块固定于云台上,用于测量IMU模块旋转到各个待测面上时的角速度和加速度。
  8. 如权利要求7所述的基于云台的IMU校准装置,其特征在于,还包括负载,所述负载固定在云台上。
  9. 如权利要求7所述的基于云台的IMU校准装置,其特征在于,令云台三个初始机械角为[0, 0, 0];所述的待测面为六个面,当IMU模块的设定面旋转到六个待测面时,所述云台的机械角分别为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,90, 0]、[0,-90, 0]或为[0, 0, 0]、[90,0, 0]、[180,0, 0]、[-90,0, 0]、[0,0,90]、[0,0,-90] 或为[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[90,0, 0]、[-90,0, 0] 或为[0, 0, 0]、[0,90, 0]、[0,180, 0]、[0,-90, 0]、[0,0, 90]、[0,0, -90]或为[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[90,0, 0]、[-90,0, 0] 或为[0, 0, 0]、[0,0, 90]、[0,0, 180]、[0,0, -90]、[0,90, 0]、[0,-90, 0]。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述的步骤S2和步骤S3。
PCT/CN2018/082962 2018-04-13 2018-04-13 基于云台的imu校准方法、装置及存储介质 WO2019196093A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082962 WO2019196093A1 (zh) 2018-04-13 2018-04-13 基于云台的imu校准方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082962 WO2019196093A1 (zh) 2018-04-13 2018-04-13 基于云台的imu校准方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2019196093A1 true WO2019196093A1 (zh) 2019-10-17

Family

ID=68163813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082962 WO2019196093A1 (zh) 2018-04-13 2018-04-13 基于云台的imu校准方法、装置及存储介质

Country Status (1)

Country Link
WO (1) WO2019196093A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748423A (zh) * 2020-12-28 2021-05-04 广电计量检测(重庆)有限公司 视觉导航设备校准方法、装置、计算机设备和存储介质
CN113984090A (zh) * 2021-10-25 2022-01-28 北京科技大学 一种轮式机器人imu误差在线标定与补偿方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140179372A1 (en) * 2012-12-21 2014-06-26 Robert Benedict Zajeski Powered Portable Handle Remote for Smartphone
CN105090695A (zh) * 2015-09-29 2015-11-25 深圳市大疆创新科技有限公司 手柄云台及其控制方法
CN105676880A (zh) * 2016-01-13 2016-06-15 零度智控(北京)智能科技有限公司 一种云台摄像装置的控制方法及系统
CN107817821A (zh) * 2017-10-27 2018-03-20 成都鼎信精控科技有限公司 一种基于mems陀螺仪组合的稳定云台及控制方法
CN107872180A (zh) * 2017-12-22 2018-04-03 深圳市道通智能航空技术有限公司 一种检测电机转子位置的方法、装置、电子设备及无人飞行器
CN208043087U (zh) * 2018-04-13 2018-11-02 深圳市固胜智能科技有限公司 基于云台的imu校准装置
CN108759861A (zh) * 2018-04-13 2018-11-06 深圳市固胜智能科技有限公司 基于云台的imu校准方法、装置及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140179372A1 (en) * 2012-12-21 2014-06-26 Robert Benedict Zajeski Powered Portable Handle Remote for Smartphone
CN105090695A (zh) * 2015-09-29 2015-11-25 深圳市大疆创新科技有限公司 手柄云台及其控制方法
CN105676880A (zh) * 2016-01-13 2016-06-15 零度智控(北京)智能科技有限公司 一种云台摄像装置的控制方法及系统
CN107817821A (zh) * 2017-10-27 2018-03-20 成都鼎信精控科技有限公司 一种基于mems陀螺仪组合的稳定云台及控制方法
CN107872180A (zh) * 2017-12-22 2018-04-03 深圳市道通智能航空技术有限公司 一种检测电机转子位置的方法、装置、电子设备及无人飞行器
CN208043087U (zh) * 2018-04-13 2018-11-02 深圳市固胜智能科技有限公司 基于云台的imu校准装置
CN108759861A (zh) * 2018-04-13 2018-11-06 深圳市固胜智能科技有限公司 基于云台的imu校准方法、装置及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748423A (zh) * 2020-12-28 2021-05-04 广电计量检测(重庆)有限公司 视觉导航设备校准方法、装置、计算机设备和存储介质
CN113984090A (zh) * 2021-10-25 2022-01-28 北京科技大学 一种轮式机器人imu误差在线标定与补偿方法及装置
CN113984090B (zh) * 2021-10-25 2023-07-04 北京科技大学 一种轮式机器人imu误差在线标定与补偿方法及装置

Similar Documents

Publication Publication Date Title
CN109696183B (zh) 惯性测量单元的标定方法及装置
CN107077146B (zh) 用于云台的控制方法、控制系统、云台和无人飞行器
CN109000612B (zh) 设备的角度估算方法、装置、摄像组件及飞行器
JP6058152B2 (ja) モバイルデバイス表面をセンサの座標系と整合させるための方法
WO2019119896A1 (zh) 一种检测电机转子位置的方法、装置、电子设备及无人飞行器
CN208043087U (zh) 基于云台的imu校准装置
WO2018191964A1 (zh) 云台的控制方法以及云台
CN107121151B (zh) 一种面向实验教学的稳定平台测试装置及测试方法
JP4381731B2 (ja) 角度誤差規定方法及び該方法に用いる装置
CN107402022B (zh) 一种稳定云台的加速度计校准方法及装置
WO2019084709A1 (zh) 控制云台的方法、云台、控制系统和可移动设备
WO2019227347A1 (zh) 云台的控制方法、云台、拍摄设备及可读存储介质
WO2019196093A1 (zh) 基于云台的imu校准方法、装置及存储介质
CN112135124A (zh) 云台位置校准检测方法、装置以及系统
CN106855419B (zh) 基于加速度计坐标系的直角棱镜标定测试方法
CN109631952B (zh) 航天器用光学陀螺组件姿态基准镜安装误差标定方法
CN114842090A (zh) 基于精密角度基准的视觉惯性标定系统及其标定方法
CN108759861A (zh) 基于云台的imu校准方法、装置及存储介质
CN112762964B (zh) 自动驾驶车辆的惯性测量单元的标定方法及装置、系统
JP5697149B2 (ja) 加速度センサ特性評価方法及びプログラム
WO2022061915A1 (zh) 电机及其控制方法、计算机可读存储介质以及机械装置
KR20060030188A (ko) 동적 장치 제어 방법 및 그 장치
KR102143462B1 (ko) Ahrs 센서, 그 바이어스 및 스케일 오차 보정 장치 및 방법
WO2019148431A1 (zh) 多关节机构标定的方法、装置和计算机系统
CN113899324A (zh) 基于单轴激光陀螺测角仪的多轴转台垂直度误差检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914737

Country of ref document: EP

Kind code of ref document: A1