WO2019196045A1 - 一种降低燃烧产生的烟气中污染物浓度的方法和系统 - Google Patents

一种降低燃烧产生的烟气中污染物浓度的方法和系统 Download PDF

Info

Publication number
WO2019196045A1
WO2019196045A1 PCT/CN2018/082748 CN2018082748W WO2019196045A1 WO 2019196045 A1 WO2019196045 A1 WO 2019196045A1 CN 2018082748 W CN2018082748 W CN 2018082748W WO 2019196045 A1 WO2019196045 A1 WO 2019196045A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
concentration
flue gas
reducing
contaminants
Prior art date
Application number
PCT/CN2018/082748
Other languages
English (en)
French (fr)
Inventor
陈德珍
洪鎏
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Priority to EP18914063.5A priority Critical patent/EP3779169A4/en
Priority to PCT/CN2018/082748 priority patent/WO2019196045A1/zh
Publication of WO2019196045A1 publication Critical patent/WO2019196045A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • F02M27/042Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism by plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/001Applying electric means or magnetism to combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • F02M2023/008Apparatus for adding secondary air to fuel-air mixture by injecting compressed air directly into the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • F02M2027/047Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism with a pulsating magnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99005Combustion techniques using plasma gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/201Plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/203Microwave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention belongs to the field of energy saving and emission reduction, and particularly relates to a method and system for reducing the concentration of pollutants in the flue gas generated by combustion.
  • low temperature plasma In the prior art, low temperature plasma (NTP) technology has been used to purify exhaust gas after combustion.
  • the low temperature plasma is the fourth state of the substance after the solid state, the liquid state, and the gaseous state.
  • the applied voltage reaches the discharge voltage of the gas, the gas is broken down to produce a mixture including electrons, various ions, atoms, and radicals.
  • the electron temperature is very high during the discharge process, the temperature of the heavy particles is very low, and the whole system exhibits a low temperature state, so it is called a low temperature plasma, also called a non-equilibrium plasma.
  • the deacidification and denitration principle of the existing NTP technology is to generate high-energy electrons in the plasma discharge region, and generate active radicals such as O, OH, HO 2 and O 3 , and the active element will SO in the flue gas. 2 , NOx oxidation is high, and finally converted to acid salts and nitrates under the action of NH 3 injection to achieve removal.
  • the main features of the existing NTP denitration technology are: 1) the treatment of NOx present in the flue gas cannot be prevented; 2) the existing NTP technology relies on the active radicals directly reacting with the SO 2 and NOx molecules in the flue gas. To achieve the process of denitrification, it is necessary to increase the energy density of the discharge region to increase the radical density of the reaction zone to improve the removal efficiency of SO 2 and NOx. When the energy density is constant, the NOx and SO 2 removal efficiency varies with their initial concentration. The increase and decrease of the existing NTP technology cannot be used in high-temperature flue gas due to the reactor itself, and the high temperature can not be used to increase the radical density in the reaction area.
  • Chinese invention patent application (CN201710269315.X) uses a low-temperature plasma synergistic catalyst to oxidize various pollutants in flue gas to achieve combined oxidation of SO 2 , NOx and Hg 0 pollutants in flue gas, but requires the use of solid catalysts, which is costly There is also the problem of using post-catalyst reprocessing.
  • those skilled in the art are directed to developing a method and system that can effectively reduce the concentration of contaminants in the flue gas produced by combustion.
  • the technical problem to be solved by the present invention is to provide a method and system capable of effectively reducing the concentration of pollutants in the flue gas generated by combustion.
  • the characteristics of low temperature plasma have been noted, which is used for the purification of contaminants generated in the exhaust gas after combustion, and is a remedial treatment.
  • it is used to activate the combustion-supporting gas participating in the combustion reaction before combustion or combustion, thereby suppressing the generation of pollutants in the combustion reaction, and is a preventive type of smoke pollution control technology.
  • the high-energy electrons e generated by the discharge of the plasma reactor collide with gas molecules in the flue gas to generate free radicals:
  • Free radicals will contact NO and SO 2 in the flue gas to oxidize it:
  • the resulting product is a high valence nitrogen and acid oxide, it must be neutralized using a chemical, typically ammonia, to produce ammonium nitrate and ammonium acidate.
  • a chemical typically ammonia
  • N 2 H 4 has been used to produce a reducing H and a reduction of NO to N 2 .
  • high valence nitrogen and acid oxides are avoided, the cost of the drug is also paid.
  • the reaction (1) to (8) when the combustion gas is activated before the combustion reaction is carried out using NTP or microwave, although the reactions (1) to (8) may occur, the reactions (9) to (10) do not occur.
  • the chemically active particles formed by (1)-(8) can further undergo the following reactions under high temperature conditions of combustion, accelerate the thermochemical conversion, and promote complete combustion of the fuel:
  • N 2 may be oxidized when activated, a large number of reducing molecules such as H 2 are also activated during combustion:
  • the activated H radical has a very high reduction performance and quickly reduces the intermediate product of N.
  • the most effective active element is O, the active O atom, followed by other neutral atoms and active elements. Compared to oxidized N 2 , it is easier to oxidize fuel molecules with active O atoms. This is a well-established principle in the art. Active O atoms not only promote ignition but also help to eliminate the intermediate products that can produce dioxins --- Carbon-based materials, so dioxin loses the synthetic carrier and precursor.
  • the air may be humidified before the NTP reactor and the microwave pretreatment, or water vapor discharged as the exhaust gas may be introduced.
  • the present invention first provides a method for reducing the concentration of pollutants in a flue gas generated by combustion, characterized in that the combustion gas is first subjected to low temperature plasma or microwave activation treatment, and then as a primary air and/or secondary
  • the wind supply completes the combustion of the combustibles, and the secondary air is preferentially activated and supplied to the center and tail of the flame.
  • the pollutant is NOx and/or dioxins and/or CO.
  • the combustible material is one or more of garbage, coal, biomass, oil, volatile matter and combustible gas.
  • the combustion-supporting gas is air, an oxygen-containing gas or oxygen.
  • the temperature of the combustion-supporting gas is between room temperature and 250 °C.
  • the combustion-supporting gas may also be a humidified gas.
  • the activation treatment is a process of passing the combustion-supporting gas into a low-temperature plasma reactor or a microwave reactor to produce chemically active particles.
  • the chemically active particles are free radicals such as active O atoms, H atoms, O 3 or OH, and HO 2 .
  • the low temperature plasma reactor and/or microwave reactor is divided into one or two sections.
  • the method also includes the step of further purifying the flue gas produced by the combustion.
  • the step of further purification is a deacidification and/or dedusting step.
  • the invention also provides a system for reducing the concentration of pollutants in the flue gas generated by combustion, characterized in that it comprises a combustion-assisting gas pre-processor, a combustion furnace, and the combustion-gas pretreatment device through the air supply duct and the combustion furnace Connected, wherein the combustion-supporting gas pretreatment device is a low-temperature plasma reactor and a microwave reactor, and is disposed upstream of the combustion furnace; the combustion furnace is an incinerator, a boiler, a sintering furnace, a gasification furnace Or a pyrolysis furnace in which fuel such as coal, biomass, garbage, oil, combustible gas, volatile matter, etc. are burned.
  • the system may also include a deacidification and/or dedusting device located downstream of the furnace and connected to the furnace via a supply duct.
  • the generator mode of the low temperature plasma reactor is corona discharge, pulse arc discharge, glow discharge or dielectric barrier discharge.
  • the method and system provided by the invention have the beneficial effects of 1) suppressing the formation of NOx and dioxins in the combustion process, effectively reducing the concentration of pollutants in the flue gas generated by combustion, wherein the generation of NOx is inhibited by more than 40%; The production of dioxin is inhibited by more than 50%. 2)
  • the low temperature plasma reactor and/or microwave reactor are not exposed to corrosive components in the flue gas, dust free contamination and product buildup. Very easy to maintain and long life.
  • Figure 1 is a schematic illustration of one embodiment in accordance with the present invention.
  • FIG. 2 is a schematic view of another embodiment in accordance with the present invention.
  • the concentration of acid gas is up to standard after purification by the existing wet purification system, but the concentration of NOx is 278 mg/m 3 , and the concentration of dioxin is 0.15 ng-TEQ/Nm 3 , which is not up to standard.
  • all of the secondary air is treated by a high-pressure direct current pulse type low-temperature plasma reactor and then sent to a secondary air nozzle, and the pulse discharge power is 4 J/pulse.
  • the NOx concentration was found to be 167 mg/m 3 without changing any other settings of the system, and the dioxin emission concentration was 0.07 ng-TEQ/Nm 3 to meet the new emission standards.
  • the purification efficiency reached 40% and 53% respectively.
  • the sintering furnace flue gas of a steel plant has a NOx concentration of 320 mg/m 3 , which cannot meet the new emission standards.
  • the emission concentration of dioxins is 0.21 ng-TEQ/Nm 3 and the temperature is low (170-400 ° C).
  • the flow rate is large, and it is impossible to perform SNCR denitration.
  • the desulfurization with SCR is costly.
  • the combustion-supporting combustion air is pretreated by a two-stage high-pressure DC pulse type low-temperature plasma reactor, and then sent to the sintering furnace, and the two-stage pulse discharge power is 4 J/pulse.
  • the existing flue gas deacidification and dedusting system is retained, and the final NOx concentration is 190 mg/m 3 and the dioxin concentration is 0.10 ng-TEQ/Nm 3 ; the new emission standard is met.
  • the purification efficiency is 40% and 50% respectively.
  • An industrial boiler burning heavy oil is steam atomized and only has a deacidification tower.
  • the concentration of SO 2 is up to standard, but the concentration of NOx is 223 mg/m 3 , which cannot meet the local pollutant emission standards of boilers (GB-13271-2014).
  • the requirement (NOx limit is 200 mg/m 3 ).
  • the high-voltage DC pulse type low-temperature plasma reactor is installed in front of the heavy oil burner, and the combustion air is pretreated, and then sent to the boiler, and the pulse discharge power is 6 J/pulse.
  • the final NOx emission concentration is 130 mg/m 3 , which meets the emission requirements.
  • a biomass pellet boiler is equipped with a water film dedusting tower.
  • the acid gas and dust are all up to standard, but the NOx emission is close to 400mg/m 3 , which does not meet the standard and does not reflect the advantages of the biomass boiler.
  • an AC high-voltage dielectric barrier discharge low-temperature plasma reactor is installed in front of the boiler, and the combustion air is pretreated, and then sent to the boiler, and the air supply amount of the boiler is 3000 m 3 /h.
  • the AC high-voltage dielectric barrier discharge low-temperature plasma reactor has a power of 6 KW.
  • the final NOx emission concentration is 230 mg/m 3 , which meets emission requirements.
  • the 3000 m 3 /h air required for combustion is divided into two into the combustion furnace, and 2100 m 3 /h of air is sent as a primary air from below the grate;
  • the air of 900m 3 /h is first sent to the 5KW microwave reactor for activation, and then sent to the flame.
  • the NOx emission concentration is 199mg/m 3 , which meets the emission requirements.
  • a waste pyrolysis gasifier is burned with combustible gas produced by gasification, equipped with an acid gas purification and dedusting system, and HCl, SO 2 and dust emissions are up to standard.
  • NO x concentration is 301mg / m 3
  • the discharge of dioxin concentration 0.14ng-TEQ / Nm 3.
  • the combustion air is pretreated with a high-voltage DC narrow-pulse type low-temperature plasma reactor, and then sent to a combustion furnace, and the pulse discharge power is 2 J/pulse.
  • the pulse discharge power is 2 J/pulse.
  • the NOx concentration was 179 mg/m 3 and the dioxin emission concentration was 0.07 ng-TEQ/Nm 3 .
  • An industrial sludge pyrolysis furnace is burned by the volatile matter generated by sludge pyrolysis.
  • the high-temperature flue gas generated by the combustion is heated to the pyrolysis furnace, and finally the flue gas is cooled and discharged.
  • the flue gas is provided with an acid removal and dust removal system, but there is no NOx control steps and dioxin control measures. Exhaust gas concentration of NO x 311mg / m 3, and the discharge of dioxin concentration 0.32ng-TEQ / Nm 3.
  • the method of the present invention When the method of the present invention is used to purify flue gas, 15% of the combustion air is pretreated with a high pressure DC narrow pulse type low temperature plasma reactor, and then sent to the flame center of the combustion furnace, and the pulse discharge power is 4 J/pulse. With the existing flue gas purification system retained, the final HCl, SO 2 and dust emissions are still up to standard.
  • the NOx concentration was 181 mg/m 3 and the dioxin emission concentration was 0.105 ng-TEQ/Nm 3 . Since the concentration of dioxin for the industrial sludge pyrolysis furnace is 0.3 ng-TEQ/Nm 3 , the emission is achieved.
  • Embodiment 9 when the method of the present invention is used to purify the flue gas, all the combustion air is carried and the residual odor after the steam drying process in the sludge drying process of the system is carried out, and the microwave reaction with a power of 10 KW is used. The unit is pretreated and then sent to the furnace. With the existing flue gas purification system retained, the final HCl, SO 2 and dust emissions are still up to standard.
  • the NOx concentration was 171 mg/m 3 and the dioxin emission concentration was 0.10 ng-TEQ/Nm 3 . Since the concentration of dioxin for the industrial sludge pyrolysis furnace is 0.3 ng-TEQ/Nm 3 , the emission is achieved.
  • the combustion air 1 enters the low temperature plasma reactor 2 via a supply duct to form an activated combustion air. 3 then enters the combustion furnace 4, which is an incinerator, a boiler, a sintering furnace, a gasification furnace or a pyrolysis furnace, where fuels such as coal, biomass, garbage, oil, combustible gas, volatile matter, etc. are burned, It then enters the deacidification and/or dedusting equipment 5 for purification, and finally forms exhaust gas that meets emission standards into the atmosphere.
  • the combustion furnace 4 is an incinerator, a boiler, a sintering furnace, a gasification furnace or a pyrolysis furnace, where fuels such as coal, biomass, garbage, oil, combustible gas, volatile matter, etc. are burned.
  • the combustion air 1 first enters the low temperature plasma reaction via the secondary air duct
  • the activated combustion air 3 is formed and then enters the flame center or/and the upper portion of the combustion furnace 4, which is an incinerator, a boiler, a sintering furnace, a gasification furnace or a pyrolysis furnace.
  • Fuels such as coal, biomass, garbage, oil, combustibles, volatiles, etc. are burned there, and then purified by deacidification and/or dedusting equipment 5, and finally exhaust gas that meets emission standards is introduced into the atmosphere.
  • low temperature plasma refers to treating a gas of normal pressure or negative pressure by corona discharge, pulse arc discharge, glow discharge or dielectric barrier discharge to partially ionize and form equal amounts of positive ions and negative ions.
  • An activation mode coexisting in a gas; a microwave reactor refers to a reactor composed of a power source (generally capable of providing a high voltage of 4000 volts or more), a magnetron, a control circuit, and a processing chamber, and the magnetron is at a power source. Under excitation, the microwave is continuously generated, and then passed through the waveguide system to be coupled into the processing chamber, and the atmospheric or negative pressure gas flows through the processing chamber to form an active gas.
  • the primary air refers to the first time that the combustion gas is distributed to the air, oxygen or oxygen-containing gas that is in contact with the combustible material and burns the combustible material, and generally accounts for 70% or more of the total amount of the combustion gas;
  • the secondary air is Refers to the air, oxygen, oxygen-containing gas, or just water vapor that is distributed in the combustion gas body that is distributed to the center of the flame or above the flame to burn off the combustibles in the flame, generally accounting for 15-30% of the gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明提供了一种降低燃烧产生的烟气中污染物浓度的方法和系统,在与可燃物进行燃烧之前,先对助燃气体进行低温等离子体和/或微波活化处理,可有效抑制燃烧中污染物的生成。

Description

一种降低燃烧产生的烟气中污染物浓度的方法和系统 技术领域
本发明属于节能减排领域,具体涉及一种降低燃烧产生的烟气中污染物浓度的方法和系统。
背景技术
随着人们对环境保护的日益重视,国际国内对与燃烧有关的污染物的排放标准也日趋严格。一些传统的烟气净化方法已很难让烟气中的污染物浓度达到排放标准。另一方面,为满足更高的排放标准,现有的烟气净化方法和设备的生产、运营和维护的成本也大幅提高。
现有技术中,低温等离子体(Non-thermal Plasma,NTP)技术已被用于对燃烧后的尾气的净化。低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体,又称非平衡等离子体。现有的NTP技术的脱酸和脱硝原理是在等离子体放电区产生高能电子,引发自由基如O、OH、HO 2、O 3等活性基元的生成,活性基元将烟气中的SO 2、NOx氧化为高价,在喷入NH 3的作用下最终转化为酸酸盐和硝酸盐类达到脱除。
现有NTP脱硝技术的主要特点有:1)对存在于烟气中的NOx进行处理,不能预防;2)现有NTP技术是依靠活性自由基直接与烟气中SO 2、NOx分子的氧化反应实现脱硝的进程,因此需要增强放电区域能量密度以提高反应区域自由基密度来提高对SO 2和NOx的脱除效率,而当能量密度不变时,NOx和SO 2脱除效率随它们初始浓度的升高而降低;3)现有NTP技术因为反应器本身的原因不能用于高温烟气中、不能利用高温来增加反应区域自由基密度。因此现有NTP技术的不足是: 对污染物的脱除效率偏低,单独使用不能达标。如果实现更高的脱除效率尤其是多种污染物同时存在,就需要提高功率,而这显然提高了代价和对设备的要求。为了提高NTP技术对烟气中多污染物的脱除效率,中国发明专利申请(CN201611174271.4)采用将常规低温等离子体分成多段反应器的方式,并在不同的反应段分别加入增效剂和促进剂,但是多段反应器价格更贵、增效剂和促进剂成本也比较高。中国发明专利申请(CN201710269315.X)采用低温等离子体协同催化剂氧化烟气中多种污染物的方法,实现烟气SO 2,NOx和Hg 0多污染物联合氧化,但是需要使用固体催化剂,成本高,还有使用后催化剂再处理的问题。
因此,本领域的技术人员致力于开发一种能有效降低燃烧产生的烟气中污染物浓度的方法和系统。
发明内容
鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供能有效降低燃烧产生的烟气中污染物浓度的方法和系统。
在现有技术中,人们注意到了低温等离子体的特性,将之用于对燃烧后的尾气中已产生的污染物的净化,是一种补救式的处理。而在本发明中,则将其用于在燃烧发生前或者燃烧中活化参与燃烧反应的助燃气体,从而抑制了燃烧反应中污染物的生成,是一种预防式的烟气污染控制技术。
具体而言,现有技术中使用NTP技术处理燃烧后的尾气的过程和原理如下:
等离子体反应器放电产生的高能电子e与烟气中的气体分子撞击产生自由基:
e+O 2→O+O+e        (1)
e+O 2→O+O( 1D)+e     (2)
e+H 2O→OH+H+e      (3)
e+N 2→N+N+e        (4)
激活的氧原子再与烟气中的气体分子撞击产生自由基、同时自由基也消失:
O( 1D)+H 2O→OH+OH      (5)
O( 1D)+H 2O→O+H 2O        (6)
O( 1D)+O 2→O+O 2        (7)
O( 1D)+N 2→O+N 2        (8)
留下自由基会接触烟气中的NO和SO 2将其氧化:
NO+(O,OH,O 3)→NO 2,N 2O 5,...     (9)
SO 2+(O,OH,O 3)→SO 3,...        (10)
由于生成的产物是高价态的氮和酸氧化物,必须使用药剂来中和,通常是氨,生产硝酸铵和酸酸铵。最近有使用了比较贵的药剂N 2H 4,产生还原性的H而将NO还原成N 2。虽然避免了高价态的氮和酸氧化物,但是也付出了药剂代价。
而根据本发明,当使用NTP或者微波在燃烧反应发生前对助燃气体进行活化,虽然可能会发生反应(1)-(8),但是不会发生反应(9)-(10)。而且(1)-(8)形成的化学活性粒子可在燃烧的高温条件下进一步发生下述反应,加速热化学转换,促进燃料完全燃烧:
O 2+e→O 21Δ g)+e
O 21Δ g)+H→O( 3P)+OH
Figure PCTCN2018082748-appb-000001
虽然N 2被激活也可能被氧化,但是由于燃烧过程中大量的还原性分子例如H 2被产生也被激活:
Figure PCTCN2018082748-appb-000002
Figure PCTCN2018082748-appb-000003
被激活的H自由基有极高的还原性能很快将N的中间产物还原。
而且在燃烧过程中,最有效的活性基元是O,即活性O原子,其他中性原子和活性基元次之。与氧化N 2相比,活性O原子氧化燃料分子更容易,这是本领域被公认的原理,活性O原子不仅能促进着火,还能帮助氧化消除那些能生产二恶英的中间产物---炭基物质,因此二恶英失去了合成的载体和前驱物。
为了促进反应(3)和(5)的发生,在进行NTP反应器和微波预处理之前可以对空气进行增湿,或者引入作为废气排放的水蒸汽。
基于上述原理,本发明首先提供了一种降低燃烧产生的烟气中污染物浓度的方法,其特征在于,先对助燃气体进行低温等离子体或者微波活化处理,再作为一次风和/或二次风供应使可燃物完成燃烧,二次风优先活化处理并供入火焰的中心和尾部。其中,所述的污染物为NOx和/或二恶英和/或CO。所述的可燃物为垃圾、煤、生物质、油、挥发分和可燃气体中的一种或几种。所述助燃气体为空气、含氧气体或氧气。所述助燃气体的温度为常温到250℃之间。所述的助燃气体也可以是加湿后的气体。所述的活化处理是将所述助燃气体通入低温等离子反应器或者微波反应器,使之产生化学活性粒子的过程。所述的化学活性粒子为活性O原子、H原子、O 3或OH、HO 2等自由基。所述的低温等离子反应器和/或微波反应器分为一段或两段。该方法还包括将所述燃烧产生的烟气进行进一步净化的步骤。所述进一步净化的步骤为脱酸和/或除尘步骤。本发明还提供了一种降低燃烧产生的烟气中污染物浓度的系统,其特征在于,包括助燃气体预处理器,燃烧炉,所述助燃气体预处理器通过送风管道与所述燃烧炉相连,其中,所述助燃气体预处理器为低温等离子体反应器和微波反应器,且被设置在所述燃烧炉的上游处;所述燃烧炉为焚烧炉、锅炉、烧结炉、气化炉或热解炉,其中有诸如煤、生物质、垃圾、油、可燃气、挥发分等燃料燃烧。该系统还可以包括脱酸和/或除尘设备,所述脱酸和/或除尘设备位于所述燃烧炉的下游处,通过送风管道与所述燃烧炉相连。所述低温等离子体反应器的发生器方式为电晕放电、脉冲电弧放电、辉光放电或介质阻挡放电。
本发明提供的方法和系统,其有益效果有1)可抑制燃烧过程中NOx和二恶英的生成,有效降低燃烧产生的烟气中污染物浓度,其中NOx的生成被抑制40%以上;二恶英的生成被抑制50%以上。2)低温等离子体反应器和/或微波反应器不接触烟气中的腐蚀性成分、无灰尘沾污和产物堆积。非常易于维护,寿命大大延长。3)不需要在低温等离子体反应器和/或微波反应器中加入催化剂或者反应后喷氨;也不产生额外的二次污染。4)只需要在烟气冷却和净化系统中保留酸性气体和灰尘的净化设施,仅仅在送风处加设低温等离子体反应器和/或微波反应器,避免了对烟气余热回收工艺产生任何影响;因此对现有的装置来说简单易行。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明, 以充分地了解本发明的目的、特征和效果。
附图说明
图1为根据本发明的一种具体实施方式的示意图。
图2为根据本发明的另一种具体实施方式的示意图。
具体实施方式
以下结合附图和具体实施例进一步地说明本发明。
实施例1
某垃圾焚烧炉,现有湿法净化系统净化以后酸性气体的浓度达标、但是NOx的浓度为278mg/m 3,同时二恶英的排放浓度为0.15ng-TEQ/Nm 3,也不达标。
采用本发明的方法,将全部二次风通过高压直流脉冲型低温等离子体反应器处理、然后送入二次风的喷嘴,脉冲放电功率为4J/脉冲。不改变系统其它任何设置、发现NOx的浓度为167mg/m 3,二恶英的排放浓度为0.07ng-TEQ/Nm 3满足新的排放标准。净化效率分别达到40%和53%。
实施例2
某钢铁厂的烧结炉烟气,NOx的浓度为320mg/m 3,不能满足新的排放标准,同时二恶英的排放浓度为0.21ng-TEQ/Nm 3,温度低(170-400℃),流量大,无法进行SNCR脱硝,用SCR脱硝代价大。
采用本发明的方法,将烧结用助燃风用2段高压直流脉冲型低温等离子体反应器进行预处理后再送入烧结炉,2段脉冲放电功率均为4J/脉冲。保留现有的烟气脱酸和除尘系统,最后NOx的浓度为190mg/m 3,二恶英浓度为0.10ng-TEQ/Nm 3;满足新的排放标准。净化效率分别达到40%和50%以上。
实施例3
某燃烧重油的工业锅炉,用蒸汽雾化,只设有脱酸塔,SO 2的浓度达标、 但是NOx的浓度为223mg/m 3,不能满足当地锅炉大气污染物排放标准(GB-13271-2014)的要求(NOx的限值为200mg/m 3)。
利用本发明的方法来实现烟气净化时,将高压直流脉冲型低温等离子体反应器安装在重油燃烧器前、对助燃风进行预处理后在送入锅炉,脉冲放电功率为6J/脉冲。最后NOx的排放浓度为130mg/m 3,满足排放要求。
实施例4
上述实施例3,利用本发明的方法来实现烟气净化时,将燃烧所需的15-20%的空气送入5KW的微波反应器中激活,再送入火焰中心,最后NOx的排放浓度为131mg/m 3,满足排放要求。
实施例5
某生物质颗粒锅炉,设有水膜除尘塔,酸性气体和尘均达标,但是NOx的排放接近400mg/m 3,不达标,也没有体现生物质锅炉的优势。
利用本发明的方法来实现烟气净化时,将交流高压介质阻挡放电低温等离子体反应器安装在锅炉前、对助燃空气进行预处理后再送入锅炉,锅炉的送风量为3000m 3/h。交流高压介质阻挡放电低温等离子体反应器的功率为6KW.最后NOx的排放浓度为230mg/m 3,满足排放要求。
实施例6
上述实施例5,利用本发明的方法来实现烟气净化时,将燃烧所需的3000m 3/h空气分成两股送入燃烧炉,2100m 3/h空气作为一次风从炉排下方送入;900m 3/h的空气先送入5KW的微波反应器中激活,再送入火焰上方,最后NOx的排放浓度为199mg/m 3,满足排放要求。
实施例7
某垃圾热解气化炉,采用气化产生的可燃气进行燃烧,配有酸性气体净化和除尘系统,HCl,SO 2和尘的排放均达标。但是NO x的浓度为301mg/m 3,且二恶英的排放浓度为0.14ng-TEQ/Nm 3
利用本发明的方法来实现烟气净化时,将助燃空气用高压直流窄脉冲型 低温等离子体反应器进行预处理,然后送入燃烧炉,脉冲放电功率为2J/脉冲。在保留现有的烟气净化系统的前提下,最后HCl,SO 2和尘的排放仍达标。NOx的浓度为179mg/m 3,二恶英的排放浓度为0.07ng-TEQ/Nm 3
实施例8
上述实施例7,利用本发明的方法来实现烟气净化时,将助燃空气的20%用高压直流窄脉冲型低温等离子体反应器进行预处理,然后送入燃烧炉,脉冲放电功率为2J/脉冲。在保留现有的烟气净化系统的前提下,最后HCl,SO 2和尘的排放仍达标。NOx的浓度为181mg/m 3,二恶英的排放浓度为0.06ng-TEQ/Nm 3
实施例9
某工业污泥热解炉,采用污泥热解产生的挥发分进行燃烧,燃烧产生的高温烟气对热解炉加热,最后烟气冷却排放,烟气设有除酸和除尘系统,但是没有NOx的控制步骤和二恶英防治措施。尾气中NO x的浓度为311mg/m 3,且二噁英的排放浓度为0.32ng-TEQ/Nm 3
利用本发明的方法来实现烟气净化时,将15%的助燃空气用高压直流窄脉冲型低温等离子体反应器进行预处理,然后送入燃烧炉火焰中心,脉冲放电功率为4J/脉冲。在保留现有的烟气净化系统的前提下,最后HCl,SO 2和尘的排放仍达标。NOx的浓度为181mg/m 3,二噁英的排放浓度为0.105ng-TEQ/Nm 3。由于针对工业污泥热解炉的二噁英的排放浓度为0.3ng-TEQ/Nm 3,因此都实现了达标排放。
实施例10
上述实施例9,利用本发明的方法来实现烟气净化时,全部的助燃空气并携带本系统污泥干燥过程中产生的水蒸汽喷淋冷却后的全部残余臭气用功率为10KW的微波反应器进行预处理,然后送入燃烧炉。在保留现有的烟气净化系统的前提下,最后HCl,SO 2和尘的排放仍达标。NOx的浓度为171mg/m 3,二噁英的排放浓度为0.10ng-TEQ/Nm 3。由于针对工业污泥热解炉的 二噁英的排放浓度为0.3ng-TEQ/Nm 3,因此都实现了达标排放。
上述实施例9,利用本发明的方法来实现烟气净化时,将15%的助燃空气与15%的高温烟气混合,最终温度为250℃,送入脉冲放电功率为4J/脉冲的低温等离子体处理,然后送入燃烧炉。在保留现有的烟气净化系统的前提下,最后HCl,SO 2和尘的排放仍达标。NOx的浓度为164mg/m 3,二噁英的排放浓度为0.007ng-TEQ/Nm 3。因此都实现了达标排放。
图1示出了根据本发明的一种降低燃烧产生的烟气中污染物浓度的系统的具体实施方式,助燃空气1经由送风管道先进入低温等离子体反应器2后形成活化后的助燃空气3然后进入燃烧炉4,所述燃烧炉4为焚烧炉、锅炉、烧结炉、气化炉或热解炉,诸如煤、生物质、垃圾、油、可燃气、挥发分等燃料在此燃烧,然后再进入脱酸和/或除尘设备5净化,最后形成满足排放标准的废气进入大气。
图2示出了根据本发明的另一种降低燃烧产生的烟气中污染物浓度的系统的具体实施方式,助燃空气1的15%-30%经由送二次风管道先进入低温等离子体反应器和/或微波反应器2后形成活化后的助燃空气3然后进入燃烧炉4中火焰中心或/和上部,所述燃烧炉4为焚烧炉、锅炉、烧结炉、气化炉或热解炉,诸如煤、生物质、垃圾、油、可燃气、挥发分等燃料在此燃烧,然后再进入脱酸和/或除尘设备5净化,最后形成满足排放标准的废气进入大气。
本领域中,低温等离子体是指用电晕放电、脉冲电弧放电、辉光放电或介质阻挡放电等方式对常压或者负压的气体进行处理使之部分电离形成含有等量的正离子和负离子在气体中共存的一种活化形态;微波反应器是指由电源(一般能提供4000伏及以上的高压)、磁控管、控制电路和处理腔等部分组成的反应器,磁控管在电源激励下,连续产生微波,再经过波导系统,耦合到处理腔内,常压或者负压的气流从处理腔通过后形成活性气体。
本领域中,一次风是指助燃气体中第一次分配到与可燃物接触并令可燃物燃烧的空气、氧气或者含氧气体,一般占助燃气体总量的70%或以上;二次风是指助燃气体中被分配到火焰中心或者火焰上方、令火焰中残余的可燃物燃尽的空气、氧气、含氧气体或者仅仅是水蒸汽,一般占助燃气体的15-30%。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (16)

  1. 一种降低燃烧产生的烟气中污染物浓度的方法,其特征在于,先对助燃气体进行低温等离子体或者微波活化处理,再将经活化处理后的所述助燃气体作为一次风和/或二次风与可燃物混合完成燃烧。
  2. 如权利要求1所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中活化处理后的二次风被供入燃烧火焰的中心和/或尾部。
  3. 如权利要求1所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中,所述的污染物为NOx、二恶英和/或CO。
  4. 如权利要求1所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中,所述的可燃物为垃圾、煤、生物质、油、挥发分和可燃气体中的一种或几种。
  5. 如权利要求1所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中,所述助燃气体为空气、含氧气体或氧气。
  6. 如权利要求1所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中,所述助燃气体的温度为常温到250℃之间。
  7. 如权利要求1所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中,所述的助燃气体是加湿后的气体。
  8. 如权利要求1所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中,所述的低温等离子体活化处理是将所述助燃气体通入低温等离子反应器或者微波反应器,使之产生化学活性粒子的过程。
  9. 如权利要求8所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中,所述的化学活性粒子为活性O原子、H原子、O 3、OH和HO 2自由基中的一种或者几种。
  10. 如权利要求8所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中,所述的低温等离子反应器或者微波反应器分为一段或两段。
  11. 如权利要求1所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中,还包括将所述燃烧产生的烟气进行进一步净化的步骤。
  12. 如权利要求10所述的一种降低燃烧产生的烟气中污染物浓度的方法,其中,所述进一步净化的步骤为脱酸和/或除尘步骤。
  13. 一种降低燃烧产生的烟气中污染物浓度的系统,其特征在于,包括助燃气体预处理器,燃烧炉,所述助燃气体预处理器通过送风管道与所述燃烧炉相连,其中,所述助燃气体预处理器为低温等离子体反应器或者微波反应器,且被设置在所述燃烧炉的上游处;
    所述燃烧炉为焚烧炉、锅炉、烧结炉、气化炉或热解炉。
  14. 如权利要求13所述的一种降低燃烧产生的烟气中污染物浓度的系统,其中,所述送风管道为二次风管道,且所述二次风管道被设置为将所述助燃气体送入所述燃烧炉中的火焰中心和/或尾部。
  15. 如权利要求13所述的一种降低燃烧产生的烟气中污染物浓度的系统,其中,还包括脱酸和/或除尘设备,所述脱酸和/或除尘设备位于所述燃烧炉的下游处,通过烟道与所述燃烧炉相连。
  16. 如权利要求13所述的一种降低燃烧产生的烟气中污染物浓度的系统,其中, 所述低温等离子体反应器的发生器方式为电晕放电、脉冲电弧放电、辉光放电或介质阻挡放电。
PCT/CN2018/082748 2018-04-12 2018-04-12 一种降低燃烧产生的烟气中污染物浓度的方法和系统 WO2019196045A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18914063.5A EP3779169A4 (en) 2018-04-12 2018-04-12 METHOD AND SYSTEM FOR REDUCING THE CONCENTRATION OF POLLUTING SUBSTANCES IN SMOKE GENERATED BY COMBUSTION
PCT/CN2018/082748 WO2019196045A1 (zh) 2018-04-12 2018-04-12 一种降低燃烧产生的烟气中污染物浓度的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082748 WO2019196045A1 (zh) 2018-04-12 2018-04-12 一种降低燃烧产生的烟气中污染物浓度的方法和系统

Publications (1)

Publication Number Publication Date
WO2019196045A1 true WO2019196045A1 (zh) 2019-10-17

Family

ID=68163467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082748 WO2019196045A1 (zh) 2018-04-12 2018-04-12 一种降低燃烧产生的烟气中污染物浓度的方法和系统

Country Status (2)

Country Link
EP (1) EP3779169A4 (zh)
WO (1) WO2019196045A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063857A (ja) * 1998-08-12 2000-02-29 Zenshin Denryoku Engineering:Kk 水−化石燃料混合エマルジョンの高効率燃焼方法及び燃焼装置
US20030031610A1 (en) * 1999-12-15 2003-02-13 Plasmasol Corporation Electrode discharge, non-thermal plasma device (reactor) for the pre-treatment of combustion air
CN102695870A (zh) * 2009-12-17 2012-09-26 皮尔里索公司 用于处理燃烧过程中的燃烧气流的方法
US20130323655A1 (en) * 2012-05-31 2013-12-05 Clearsign Combustion Corporation Burner system with anti-flashback electrode
CN106196038A (zh) * 2016-08-05 2016-12-07 中国航天空气动力技术研究院 燃煤气化炉的助燃装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH590405A5 (en) * 1975-01-15 1977-08-15 Omnitec Sa Pollution reducing system for IC engine - with ozone generator in air intake filter to ensure complete combustion
US20040185396A1 (en) * 2003-03-21 2004-09-23 The Regents Of The University Of California Combustion enhancement with silent discharge plasma
DE102008034732B4 (de) * 2007-09-25 2016-10-06 Honda Motor Co., Ltd. Verbrennungskraftmaschine beinhaltend plasmagenerierende Vorrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063857A (ja) * 1998-08-12 2000-02-29 Zenshin Denryoku Engineering:Kk 水−化石燃料混合エマルジョンの高効率燃焼方法及び燃焼装置
US20030031610A1 (en) * 1999-12-15 2003-02-13 Plasmasol Corporation Electrode discharge, non-thermal plasma device (reactor) for the pre-treatment of combustion air
CN102695870A (zh) * 2009-12-17 2012-09-26 皮尔里索公司 用于处理燃烧过程中的燃烧气流的方法
US20130323655A1 (en) * 2012-05-31 2013-12-05 Clearsign Combustion Corporation Burner system with anti-flashback electrode
CN106196038A (zh) * 2016-08-05 2016-12-07 中国航天空气动力技术研究院 燃煤气化炉的助燃装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779169A4 *

Also Published As

Publication number Publication date
EP3779169A4 (en) 2021-11-10
EP3779169A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
US7498009B2 (en) Controlled spectrum ultraviolet radiation pollution control process
CN112460604A (zh) 危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法
CN107913590B (zh) 氯醇法环氧丙烷装置尾气处理装置
KR20030067241A (ko) 고온 플라즈마를 이용한 다이옥신 및 분진 제거방법 및 그장치
CN109351140B (zh) 一种热等离子体废气处理装置及应用
CN113058387A (zh) 一种降低火化机烟气中二噁英排放的处理工艺方法
JP3957737B1 (ja) Pcb等の難燃性高粘度廃棄物の燃焼システム
CN111550795A (zh) 欠氧气化等离子固废处理系统及方法
CN109647158B (zh) 一种循环流化床锅炉烟气脱硫脱硝系统及其处理方法
CN107899402B (zh) 氯醇法环氧丙烷装置尾气处理方法
WO2007061401A2 (en) Controlled spectrum ultraviolet radiation pollution control process
CN110068019B (zh) 催化燃烧VOCs的处理系统和处理方法
WO2019196045A1 (zh) 一种降低燃烧产生的烟气中污染物浓度的方法和系统
CN106979526B (zh) 一种VOCs催化自持燃烧的低温等离子体快速引燃方法
CN110732242B (zh) 一种废水与废气综合处理装置及方法
CN106369615B (zh) 一种有机废气的焚烧处理方法及装置
CN212091607U (zh) 一种用于处理有机废气的等离子火焰催化净化装置
CN113663490A (zh) 一种梯级脱除催化裂化再生烟气中硫氧化物的方法
CN215428151U (zh) 利用高压高频电源对有机废气处理的装置
KR100260743B1 (ko) 소각로 배기가스 정화장치
CN221570564U (zh) 一种新型火化机尾气干法处理装置
CN219663253U (zh) 氯乙酸-环氧氯丙烷生产线废气处理系统
CN216114089U (zh) 一种有机废气焚烧处理装置
KR102417963B1 (ko) 에멀젼을 이용한 에너지 생산 시스템 및 그 운용방법
Weng et al. Pilot Study on Deep Denitrification from Municipal Solid Waste Incineration Flue Gas by Narrow Pulse Discharge Reaction Coupling with Wet Adsorption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018914063

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018914063

Country of ref document: EP

Effective date: 20201112