WO2019196002A1 - 用于积层制造的激光装置及其操作方法 - Google Patents
用于积层制造的激光装置及其操作方法 Download PDFInfo
- Publication number
- WO2019196002A1 WO2019196002A1 PCT/CN2018/082445 CN2018082445W WO2019196002A1 WO 2019196002 A1 WO2019196002 A1 WO 2019196002A1 CN 2018082445 W CN2018082445 W CN 2018082445W WO 2019196002 A1 WO2019196002 A1 WO 2019196002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- unit
- beams
- light
- mirror group
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000003475 lamination Methods 0.000 title abstract 3
- 230000003287 optical effect Effects 0.000 claims description 19
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013386 optimize process Methods 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a laser device and a method of operating the same, and more particularly to a laser device for laminated manufacturing and a method of operating the same.
- Multilayer manufacturing technology is also known as 3D printing or rapid prototyping. It is a technique based on digital module data, using a bondable material such as powdered metal or plastic or a fuse to build an object by layer-by-layer stacking.
- the commonly used laminated manufacturing methods include laser powder bed melting, electron beam powder bed melting, laser coaxial powder feeding and arc fuse forming.
- the laser powder bed melt forming technology does not require traditional molds, tools, fixtures and multiple processing steps, and can quickly and accurately manufacture parts of any complex shape on one piece of equipment. This enables free manufacturing, solves many complex structural parts that were difficult to manufacture in the past, and greatly reduces the number of processing steps and shortens the processing cycle, and the more complex structural products, the more prominent the advantages.
- the current process for melting the laser powder bed requires a long process time, and the surface of the surface formed by the laser powder bed is relatively rough (wavy), and the formed components are easily thermally deformed by thermal stress.
- the thickness of the process surface and the shortening of the process time can be reduced.
- the present invention provides a laser device for laminated manufacturing, comprising a laser emitting unit, a beam splitting unit, a control unit and a mirror unit; the laser emitting unit is configured to emit a laser
- the light splitting unit is configured to receive the laser light and split the laser light into multiple light beams;
- the control unit is electrically connected to the light splitting unit;
- the mirror unit is configured to receive the multiple light beams And reflecting the plurality of beams toward a working platform.
- the beam splitting unit has a spot modulating mirror set disposed on a downstream side of the laser emitting unit, configured to receive the laser, and adjust The size of a spot of the laser.
- the beam splitting unit further has a laser beam splitter disposed on a downstream side of the spot mirror group, configured to receive the mirror from the spot mirror The group of lasers emitted and splits the laser into the plurality of beams.
- the light splitting unit further has a rotating unit, the laser beam splitter is disposed in the rotating unit, and the rotating unit is configured to cause the laser beam splitter to follow the The optical axis of the laser beam emitted from the speckle mirror group is displaced or rotated in an optical axis direction.
- the beam splitting unit further has a pitch regulating mirror group disposed on a downstream side of the laser beam splitter, configured to receive the laser beam splitter The plurality of beams and adjusting a degree of divergence of the plurality of beams.
- the mirror unit has a scanning galvanometer group, and the scanning galvanometer group is disposed on a downstream side of the pitch regulating mirror group, and is configured to receive from the spacing mirror The plurality of beams emitted by the group cause the plurality of beams to be reflected and then directed to the working platform in one direction.
- the mirror unit further has a focusing mirror group disposed on a light emitting side of the scanning galvanometer group, and configured to focus the plurality of light beams to same plane.
- the laser device is disposed in an optical path system of a powder bed melt forming apparatus.
- the present invention provides a method for operating a laser device for laminated manufacturing, comprising: a preparation step, a light splitting step, and a reflecting step, wherein in the preparing step, a laser emitting unit is utilized Generating a laser light; in the splitting step, splitting the laser light into a plurality of light beams by using a light splitting unit; and in the reflecting step, reflecting the multiple light beams by a mirror unit to a working platform.
- a laser beam splitter that drives the beam splitting unit in the splitting step, is displaced or rotated along an optical axis direction of the laser.
- the laser device for laminated manufacturing of the present invention utilizes the design of the beam splitting unit and the mirror unit to split a single beam of laser light into two or more beams, and then focus and illuminate the working platform.
- the spacing and arrangement direction of the spots (focus points) of the multiple beams are controlled to achieve a single-lens mirror-controllable multi-beam laser process, which can reduce the process surface roughness and shorten the process time. , can achieve the purpose of optimizing process speed and accuracy.
- Figure 1 is a schematic illustration of a preferred embodiment of a laser apparatus for laminate manufacturing in accordance with the present invention.
- FIG. 2 is a schematic view of a rotary unit of a preferred embodiment of a laser apparatus for laminated manufacturing in accordance with the present invention.
- 3a and 3b are schematic views of a multi-beam emission to a work platform in accordance with a preferred embodiment of a laser apparatus for laminated manufacturing in accordance with the present invention.
- FIGS. 4a and 4b are schematic views of an embodiment of a preferred embodiment of a laser apparatus for laminated manufacturing in accordance with the present invention in which multiple beams are emitted to a work platform.
- Figure 5 is a schematic illustration of an aspect actually presented by a single laser scanning trajectory in accordance with a preferred embodiment of a laser apparatus for laminated manufacturing in accordance with the present invention.
- Figure 6 is a schematic illustration of an aspect actually embodied by a two-zone laser scanning trajectory in accordance with a preferred embodiment of a laser apparatus for laminated manufacturing in accordance with the present invention.
- Figure 7 is a flow chart showing a preferred embodiment of a method of operating a laser device for laminated manufacturing in accordance with the present invention.
- a preferred embodiment of a laser device for laminated manufacturing of the present invention is shown.
- the laser device is disposed in an optical path system (not shown) of a powder bed melt forming device, and the laser device comprises a laser emitting unit 2, a beam splitting unit 3, a control unit 4 and a mirror group. Unit 5.
- the laser device comprises a laser emitting unit 2, a beam splitting unit 3, a control unit 4 and a mirror group. Unit 5.
- the laser emitting unit 2 is configured to emit a laser 101, wherein the laser emitting unit 2 has a laser generator 21 and a collimator 22, wherein the laser generates
- the device 21 is configured to generate the laser light 101 to be emitted to the light collimator 22, and the light collimator 22 is configured to assist the light of the laser 101 to reach a nearly parallel straight process (also known as Straight or parallel light).
- the beam splitting unit 3 is configured to receive the laser light 101 and split the laser light 101 into a plurality of light beams 102; the light splitting unit 3 has a light spotting mirror group 31, A laser beam splitter 32, a rotating unit 33 and a pitch regulating mirror group 34 are provided.
- the spot modulating mirror group 31 is disposed on a downstream side of the laser emitting unit 2, configured to receive the laser 101, and adjust a size of a spot of the laser 101;
- the laser beam splitting The mirror 32 is disposed on a downstream side of the spot modulating mirror group 31, and is configured to receive the laser light 101 emitted from the spot modulating mirror group 31, and split the laser light 101 into the plurality of light beams 102.
- the laser beam splitter 32 can be a multi-beam Diffraction Optical Element (DOE), and the number of the laser beams 101 split into multiple beams 102 is three, but can also be The number of the plurality of light beams 102 is adjusted, for example, the number of the plurality of light beams 102 is the number of odd tracks of 3, 5, 7, and 9.
- DOE Diffraction Optical Element
- the laser beam splitter 32 is disposed in the rotating unit 33, and the rotating unit 33 is configured to rotate the laser beam splitter 32 along the mirror group 31 from the spot.
- the direction of the optical axis of the emitted laser light 101 is displaced or rotated.
- the rotating unit 33 may be a rotary hollow motor or an air floating/magnetic floating bearing, wherein the rotating unit 33 shown in FIG. 2 is an air floating bearing, specifically, the The rotating unit 33 has a casing 331, a stator 332, and a plurality of air inlets 333.
- the stator 332 is disposed in the casing 331, the air inlet 333 is formed on the casing 331, and the laser beam splitter 32 is located.
- the rotating unit 33 is also a rotor.
- the rotation unit 33 drives the positioning control of the rotation speed and the linear position of the rotation unit 33 by a rotary drive and a linear drive motor (not shown) and a controller linked to the control unit 4 (for example, a computer).
- the laser beam splitter 32 (shown in FIG. 2) can be mounted inside the rotating unit 33 to form a rotating mechanism designed to rotate the shaft center, so that the laser beam splitter 32 can be performed on the rotating unit 33. The rotation of the beam.
- the pitch control lens group 34 is disposed on a downstream side of the laser beam splitter 32, and is configured to receive the plurality of light beams 102 emitted from the laser beam splitter 32, and A degree of divergence of the plurality of beams 102 is adjusted.
- the control unit 4 is electrically connected to the spot modulating mirror group 31, the rotating unit 33 and the pitch regulating mirror group 34 of the beam splitting unit 3, wherein the control unit 4
- the spot modulating mirror group 31 can be controlled to adjust the size of the spot of the laser beam 101.
- the spot modulating mirror group 31 changes the focus position of the spot according to the length of the optical path, according to the light.
- the size of the spot is adjusted in the axial direction.
- the control unit 4 can also control the rotation unit 33 to be displaced along the optical axis direction of the laser 101 or to rotate on the optical axis, for example, by driving the rotary drive and the linear drive motor and the controller.
- control unit 4 may also control the pitch regulating mirror group 34 to adjust the The degree of divergence of the multi-beams 102.
- the mirror unit 5 is configured to receive the plurality of light beams 102 and reflect the multiple light beams 102 toward a working platform 103.
- the mirror unit 5 has a scanning vibration. a mirror group 51 and a focusing mirror group 52.
- the scanning galvanometer group 51 is disposed on a downstream side of the pitch regulating mirror group 34, and is configured to receive the plurality of light beams emitted from the pitch regulating mirror group 34.
- the multi-beam 102 is reflected and then directed to the working platform 103 in one direction;
- the focusing lens group 52 is disposed on a light-emitting side of the scanning galvanometer group 51, and is configured to be used for the multi-channel
- the beams 102 are focused to the same plane.
- the plurality of light beams 102 emitted by the laser beam splitter 32 pass through the pitch control mirror group 34, the scanning galvanometer group 51, and the focusing mirror group 52. And transmitted to the working platform 103, wherein the axis of the spot of the second light beam 102 is a rotation axis X, and by driving the rotating unit 33, the spot of the first light beam 102 and the third light beam The spot of 102 can be rotated and the positional control of the linear position according to the rotation axis X as an axis, thereby adjusting the distance and arrangement direction of the multiple beams 102, for example, the wider spacing shown in FIG.
- the first track The distance between the second beam 102 and the distance between the second and third beams 102 is W2, and the actual projection is as shown in Fig. 4a; and the narrow spacing shown in Fig. 3b, the first and second paths.
- the distance between the beams 102 is D1
- the distance between the second and third beams 102 is D2, which is actually projected as shown in Fig. 4b.
- a single laser scanning trajectory (shown as a solid line) can simultaneously scan three beams, saving about 83% of the laser scanning time compared to a single beam.
- the 2-Zone laser scanning trajectory (as indicated by the solid line and the broken line) can save about 66% of the laser scanning time and obtain a flat laser trajectory compared with a single beam.
- the size of the spot of the laser light 101 is adjusted by the spot modulation mirror group 31, and then passed through the laser beam splitter 32.
- the laser 101 is divided into the plurality of light beams, and the degree of divergence between the multiple beams caused by the splitting is adjusted by the pitch regulating mirror group 34; then, the rotating unit 33 is controlled by the control unit 4 Disposing the laser beam splitter 32 along the optical axis direction, and rotating the optical axis as an axis, thereby adjusting the distance and arrangement direction of the multiple beams 102; and finally passing the scanning vibration
- the mirror group 51 reflects the plurality of light beams to the work platform 103, and at the same time, the focusing mirror group 52 assists in focusing the plurality of light beams to the same plane for laser processing operations.
- the laser device for laminated manufacturing of the present invention utilizes the design of the spectroscopic unit 3 and the mirror unit 5 to divide a single beam of laser light into two or more beams, and then focus the illumination on the work.
- the distance between the spots (focus points) of the multiple beams is controlled according to the requirements of the process and the scanning strategy, so as to achieve a laser process in which the single-lens mirror can control multiple beams, which can reduce the surface roughness of the process and Shorten the process time and achieve the goal of optimizing process speed and accuracy.
- a preferred embodiment of the method for operating a laser device for laminated manufacturing according to the present invention is operated by using the above-described laser device for laminated manufacturing, the operation method comprising A preparation step S201, a light splitting step S202, and a reflection step S203 are provided. The operation of each step will be described in detail below.
- a laser 101 is generated by a laser emitting unit 2, and in the embodiment, the laser 101 is generated by a laser generator 21.
- a light collimator 22 is emitted, and the light collimator 22 is used to assist in the direction of advancement of the laser light 101 to near-parallel straightness.
- the laser beam 101 is split into a plurality of light beams 102 by a beam splitting unit 3, and then a laser beam splitter 32 of the beam splitting unit 3 is driven.
- the optical axis of the laser 101 is displaced in an optical axis direction and rotated about the optical axis to adjust the distance and arrangement direction of the plurality of light beams 102.
- the plurality of light beams are reflected by a mirror unit 5 to a working platform 103.
- a scanning galvanometer group is utilized.
- the plurality of beams are reflected to the work platform 103, and at the same time, a focusing group 52 is used to assist in focusing the plurality of beams onto the same plane for laser processing operations.
- the method for operating a laser device for laminated manufacturing of the present invention divides a single beam of laser light into two or more beams and then focuses the illumination on the working platform 103, wherein the processing strategy and the scanning strategy are required. Controlling the distance between the spots (focus points) of the multiple beams and the arrangement direction to achieve a laser process in which a single oscilloscope can control multiple beams, which can reduce the surface roughness of the process and shorten the process time, thereby achieving optimized process speed and accuracy. the goal of.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
本发明公开一种用于积层制造的激光装置及其操作方法,其中所述用于积层制造的激光装置包含一激光射出单元、一分光单元、一控制单元及一镜组单元,利用所述分光单元及所述镜组单元的设计,将单一束激光分成两道或以上的光束,可减少制程表面的粗度以及缩短制程时间。
Description
本发明是有关于一种激光装置及其操作方法,特别是关于一种用于积层制造的激光装置及其操作方法。
积层制造技术又称3D打印或快速成型。它是一种以数字模块数据为基础,运用粉末状金属或塑料等可粘合材料或者熔丝,通过逐层堆叠累积的方式来构造物体的技术。目前常用的积层制造方法包含激光粉床熔融、电子束粉床熔融、激光同轴送粉及电弧熔丝成型。
其中的激光粉床熔融成形技术作为一种新型积层制造技术,不需要传统的模具、刀具、夹具及多道加工工序,在一台设备上可快速而精密地制造出任意复杂形状的零件,从而实现自由制造,解决许多过去难以制造的复杂结构零件,并大幅减少了加工工序,缩短了加工周期,而且愈是复杂结构产品,其优势愈为凸显。
然而,当前激光粉床熔融的制程所需的制程时间长,利用激光粉床熔融成型的平面表面较为粗糙(波浪状),而且所形成的组件容易因热应力而产生热变形。
因此,有必要提供一种改良的用于积层制造的激光装置及其操作方法,以解决现有技术所存在的问题。
发明内容
有鉴于此,本发明的主要目的在于提供一种用于积层制造的激光装置及其操作方法,利用分光单元及镜组单元的设计,将单一束激光分成两道或以上的光束,可减少制程表面的粗度及缩短制程时间。
为达上述的目的,本发明提供一种用于积层制造的激光装置,包含一激 光射出单元、一分光单元、一控制单元及一镜组单元;所述激光射出单元配置用以发射一激光;所述分光单元配置用以接收所述激光,并将所述激光分光成多道光束;所述控制单元电性连接所述分光单元;所述镜组单元配置用以接收所述多道光束,并将所述多道光束朝一工作平台反射。
在本发明的一实施例中,所述分光单元具有一光斑调变镜组,所述光斑调变镜组设置在所述激光射出单元的一下游侧,配置用以接收所述激光,并调整所述激光的一光斑的尺寸。
在本发明的一实施例中,所述分光单元还具有一激光分光镜,所述激光分光镜设置在所述光斑调变镜组的一下游侧,配置用以接收从所述光斑调变镜组射出的激光,并将所述激光分光成所述多道光束。
在本发明的一实施例中,所述分光单元还具有一旋转单元,所述激光分光镜设置在所述旋转单元中,所述旋转单元配置用以使所述激光分光镜沿着从所述光斑调变镜组射出的激光的一光轴方向位移或旋转。
在本发明的一实施例中,所述分光单元还具有一间距调控镜组,所述间距调控镜组设置在所述激光分光镜的一下游侧,配置用以接收从所述激光分光镜射出的所述多道光束,并调整所述多道光束的一发散程度。
在本发明的一实施例中,所述镜组单元具有一扫描振镜组,所述扫描振镜组设置在所述间距调控镜组的一下游侧,配置用以接收从所述间距调控镜组射出的所述多道光束,使所述多道光束反射后沿一方向射往所述工作平台。
在本发明的一实施例中,所述镜组单元还具有一聚焦镜组,所述聚焦镜组设置在所述扫描振镜组的一出光侧,配置用以将所述多道光束聚焦至同一平面。
在本发明的一实施例中,所述激光装置是设置在一粉床熔融成型装置的一光路系统中。
为达上述的目的,本发明提供一种用于积层制造的激光装置的操作方法, 包含一备置步骤、一分光步骤及一反射步骤,在所述备置步骤中,利用一激光射出单元产生一激光;在所述分光步骤中,利用一分光单元将所述激光分光成多道光束;在所述反射步骤中,利用一镜组单元将所述多道光束反射一工作平台。
在本发明的一实施例中,在所述分光步骤中,驱动所述分光单元的一激光分光镜沿着所述激光的一光轴方向位移或旋转。
如上所述,本发明用于积层制造的激光装置利用所述分光单元及所述镜组单元的设计,将单一束激光分成两道或以上的光束后,再聚焦照射在所述工作平台上,其中依据制程、扫描策略的需求控制所述多道光束的光斑(聚焦点)的间距与排列方向,以达成单振镜可调控多光束的激光制程,可减少制程表面粗度及缩短制程时间,而能够达到优化制程速度与精度的目的。
图1是根据本发明用于积层制造的激光装置的一较佳实施例的一示意图。
图2是根据本发明用于积层制造的激光装置的一较佳实施例的旋转单元的一示意图。
图3a及3b是根据本发明用于积层制造的激光装置的一较佳实施例的多道光束发射至工作平台的一示意图。
图4a及4b是根据本发明用于积层制造的激光装置的一较佳实施例的多道光束发射至工作平台所实际呈现的态样的一示意图。
图5是根据本发明用于积层制造的激光装置的一较佳实施例的以单次激光扫描轨迹所实际呈现的态样的一示意图。
图6是根据本发明用于积层制造的激光装置的一较佳实施例的以二区激光扫描轨迹所实际呈现的态样的一示意图。
图7是根据本发明用于积层制造的激光装置的操作方法的一较佳实施例 的一流程图。
实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。再者,本发明所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧面、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参照图1所示,为本发明用于积层制造的激光装置的一较佳实施例。其中所述激光装置是设置在一粉床熔融成型装置的一光路系统中(未绘示),而且所述激光装置包含一激光射出单元2、一分光单元3、一控制单元4及一镜组单元5。本发明将于下文详细说明各组件的细部构造、组装关系及其运作原理。
续参照图1所示,所述激光射出单元2配置用以发射一激光101,其中所述激光射出单元2具有一激光产生器21及一光准直器22(collimator),其中所述激光产生器21用以产生所述激光101往所述光准直器22射出,所述光准直器22配置用以协助将所述激光101的前进方向达到近乎平行直进程度的光(又称准直光或平行光)。
请参照图1及2所示,所述分光单元3配置用以接收所述激光101,并将所述激光101分光成多道光束102;所述分光单元3具有一光斑调变镜组31、一激光分光镜32、一旋转单元33及一间距调控镜组34。
进一步来说,所述光斑调变镜组31设置在所述激光射出单元2的一下游侧,配置用以接收所述激光101,并调整所述激光101的一光斑的尺寸;所述激光分光镜32设置在所述光斑调变镜组31的一下游侧,配置用以接收从所述光斑调变镜组31射出的激光101,并将所述激光101分光成所述多道光束102。在本实施例中,所述激光分光镜32可为一个多光束分光绕射光学组 件(Diffraction Optical Element,DOE),所述激光101分光成多道光束102的数量为3道,但也可以依需求调整所述多道光束102的数量,例如:所述多道光束102的数量为3,5,7,9等奇数道的数量。
请参照图1及2所示,所述激光分光镜32设置在所述旋转单元33中,所述旋转单元33配置用以使所述激光分光镜32沿着从所述光斑调变镜组31射出的激光101的一光轴方向位移或旋转。在本实施例中,所述旋转单元33可为一回转式中空马达、或气浮/磁浮式轴承,其中图2所示的所述旋转单元33为气浮式轴承,具体来说,所述旋转单元33具有一外壳331、一定子332、多个空气入口333,所述定子332设置在所述外壳331中,所述空气入口333形成在所述外壳331上,所述激光分光镜32位于所述旋转单元33中而且为一转子。所述旋转单元33通过回转驱动与线性驱动马达(未绘示)以及链接至所述控制单元4(例如:计算机)的控制器进行驱动所述旋转单元33的回转转速及线性位置的定位控制,其中所述旋转单元33内部可安装所述激光分光镜32(如图2所示),而形成一可回转轴心设计的旋转机构,从而让所述激光分光镜32对于所述旋转单元33进行光束的回转。
续参照图1及2所示,所述间距调控镜组34设置在所述激光分光镜32的一下游侧,配置用以接收从所述激光分光镜32射出的所述多道光束102,并调整所述多道光束102的一发散程度。
续参照图1及2所示,所述控制单元4电性连接所述分光单元3的光斑调变镜组31、所述旋转单元33及所述间距调控镜组34,其中所述控制单元4可控制所述光斑调变镜组31来调整所述激光101的光斑的尺寸,在本实施例中,所述光斑调变镜组31是依光程的长短来改变光斑的聚焦位置,依据光轴方向进行光斑的大小调整。另外,所述控制单元4也可控制所述旋转单元33沿着所述激光101的光轴方向位移或以光轴为轴心进行旋转,例如:通过回转驱动及线性驱动马达及控制器进行驱动所述旋转单元33的回转转速及 线性位置的定位控制,或者以所述光轴为轴心进行正转或反转,所述控制单元4还可控制所述间距调控镜组34来调整所述多道光束102的发散程度。
续参照图1及2所示,所述镜组单元5配置用以接收所述多道光束102,并将所述多道光束102朝一工作平台103反射,所述镜组单元5具有一扫描振镜组51及一聚焦镜组52,所述扫描振镜组51设置在所述间距调控镜组34的一下游侧,配置用以接收从所述间距调控镜组34射出的所述多道光束102,使所述多道光束102反射后沿一方向射往所述工作平台103;所述聚焦镜组52设置在所述扫描振镜组51的一出光侧,配置用以将所述多道光束102聚焦至同一平面。
参照图1并配合图3a及3b所示,所述激光分光镜32射出的所述多道光束102,经过所述间距调控镜组34、所述扫描振镜组51及所述聚焦镜组52而透射至所述工作平台103上,其中依第2道光束102的光斑的轴心为一回转轴X,通过驱动所述旋转单元33,所述第1道光束102的光斑及第3道光束102的光斑可依所述回转轴X为轴心进行回转及线性位置的定位控制,从而调控所述多道光束102之间距与排列方向,例如:图3a所示的较宽间距,第1道及第2道光束102之间距W1,及第2道及第3道光束102之间距W2,实际投射如图4a的态样;及图3b所示的较窄间距,第1道及第2道光束102之间距D1,及第2道及第3道光束102之间距D2,实际投射如图4b的态样。另外,如图5所示,为单次激光扫描轨迹(如实线所示)可同时扫描三条光束,与单一光束相比可节省约83%的激光扫描时间。又如图6所示,为二区(2-Zone)激光扫描轨迹(如实线及虚线所示),与单一光束相比可节省约66%的激光扫描时间,并获得较平坦的激光轨迹。
依据上述的结构,当所述激光101从所述光准直器22射出之后,即通过所述光斑调变镜组31调整所述激光101的光斑的尺寸,而后通过所述激光分光镜32将所述激光101分成所述多道光束,再通过所述间距调控镜组34调 整因分光造成的所述多道光束间的发散程度;接着,通过所述控制单元4控制所述旋转单元33动作,使所述激光分光镜32沿着所述光轴方向进行位移,及以所述光轴为轴心进行旋转,从而调控所述多道光束102之间距与排列方向;最后通过所述扫描振镜组51将所述多道光束反射至所述工作平台103,同时,利用所述聚焦镜组52辅助将所述多道光束聚焦至同一平面来进行激光加工作业。
如上所述,本发明用于积层制造的激光装置利用所述分光单元3及所述镜组单元5的设计,将单一束激光分成两道或以上的光束后,再聚焦照射在所述工作平台103上,其中依据制程、扫描策略的需求控制所述多道光束的光斑(聚焦点)之间距与排列方向,以达成单振镜可调控多光束的激光制程,可减少制程表面粗度及缩短制程时间,而能够达到优化制程速度与精度的目的。
请参照图7并配合图1所示,本发明用于积层制造的激光装置的操作方法的一较佳实施例,是利用上述用于积层制造的激光装置进行操作,所述操作方法包含一备置步骤S201、一分光步骤S202及一反射步骤S203。本发明将于下文详细说明各步骤的运作流程。
续参照图7并配合图1所示,在所述备置步骤S201中,利用一激光射出单元2产生一激光101,在本实施例中,是利用一激光产生器21产生所述激光101往一光准直器22射出,再利用所述光准直器22协助将所述激光101的前进方向达到近乎平行直进程度的光。
续参照图7并配合图1所示,在所述分光步骤S202中,利用一分光单元3将所述激光101分光成多道光束102,接着驱动所述分光单元3的一激光分光镜32沿着所述激光101的一光轴方向进行位移,及以所述光轴为轴心进行旋转,从而调控所述多道光束102之间距与排列方向。
续参照图7并配合图1所示,在所述反射步骤S203中,利用一镜组单元 5将所述多道光束反射一工作平台103,在本实施例中,是利用一扫描振镜组51将所述多道光束反射至所述工作平台103,同时,利用一聚焦镜组52辅助将所述多道光束聚焦至同一平面来进行激光加工作业。
如上所述,本发明用于积层制造的激光装置的操作方法,将单一束激光分成两道或以上的光束后,再聚焦照射在所述工作平台103上,其中依据制程、扫描策略的需求控制所述多道光束的光斑(聚焦点)之间距与排列方向,以达成单振镜可调控多光束的激光制程,可减少制程表面粗度及缩短制程时间,而能够达到优化制程速度与精度的目的。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反的,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。
Claims (10)
- 一种用于积层制造的激光装置,其特征在于:所述激光装置包含:一激光射出单元,配置用以发射一激光;一分光单元,配置用以接收所述激光,并将所述激光分光成多道光束;一控制单元,电性连接所述分光单元;及一镜组单元,配置用以接收所述多道光束,并将所述多道光束朝一工作平台反射。
- 如权利要求1所述的用于积层制造的激光装置,其特征在于:所述分光单元具有一光斑调变镜组,所述光斑调变镜组设置在所述激光射出单元的一下游侧,配置用以接收所述激光,并调整所述激光的一光斑的尺寸。
- 如权利要求2所述的用于积层制造的激光装置,其特征在于:所述分光单元还具有一激光分光镜,所述激光分光镜设置在所述光斑调变镜组的一下游侧,配置用以接收从所述光斑调变镜组射出的激光,并将所述激光分光成所述多道光束。
- 如权利要求3所述的用于积层制造的激光装置,其特征在于:所述分光单元还具有一旋转单元,所述激光分光镜设置在所述旋转单元中,所述旋转单元配置用以使所述激光分光镜沿着从所述光斑调变镜组射出的激光的一光轴方向位移或旋转。
- 如权利要求3所述的用于积层制造的激光装置,其特征在于:所述分光单元还具有一间距调控镜组,所述间距调控镜组设置在所述激光分光镜的一下游侧,配置用以接收从所述激光分光镜射出的所述多道光束,并调整所述多道光束的一发散程度。
- 如权利要求5所述的用于积层制造的激光装置,其特征在于:所述镜组单元具有一扫描振镜组,所述扫描振镜组设置在所述间距调控镜组的一下游侧,配置用以接收从所述间距调控镜组射出的所述多道光束,使所述多道 光束反射后沿一方向射往所述工作平台。
- 如权利要求6所述的用于积层制造的激光装置,其特征在于:所述镜组单元还具有一聚焦镜组,所述聚焦镜组设置在所述扫描振镜组的一出光侧,配置用以将所述多道光束聚焦至同一平面。
- 如权利要求1所述的用于积层制造的激光装置,其特征在于:所述激光装置是设置在一粉床熔融成型装置的一光路系统中。
- 一种用于积层制造的激光装置的操作方法,其特征在于:所述操作方法包含步骤:一备置步骤,利用一激光射出单元产生一激光;一分光步骤,利用一分光单元将所述激光分光成多道光束;及一反射步骤,利用一镜组单元将所述多道光束反射一工作平台。
- 如权利要求9所述的用于积层制造的激光装置的操作方法,其特征在于:在所述分光步骤中,驱动所述分光单元的一激光分光镜沿着所述激光的一光轴方向位移或旋转。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/082445 WO2019196002A1 (zh) | 2018-04-10 | 2018-04-10 | 用于积层制造的激光装置及其操作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/082445 WO2019196002A1 (zh) | 2018-04-10 | 2018-04-10 | 用于积层制造的激光装置及其操作方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019196002A1 true WO2019196002A1 (zh) | 2019-10-17 |
Family
ID=68163390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/082445 WO2019196002A1 (zh) | 2018-04-10 | 2018-04-10 | 用于积层制造的激光装置及其操作方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019196002A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105188994A (zh) * | 2013-03-21 | 2015-12-23 | 西门子公司 | 具有最少一个工作激光射线的激光熔融的方法 |
US20160144571A1 (en) * | 2013-07-10 | 2016-05-26 | Eos Gmbh Electro Optical Systems | Calibration Device and Calibration Method for an Apparatus for Producing an Object in Layers |
CN106475685A (zh) * | 2016-12-07 | 2017-03-08 | 常州英诺激光科技有限公司 | 一种提高材料激光标刻品质和效率的装置及标刻方法 |
-
2018
- 2018-04-10 WO PCT/CN2018/082445 patent/WO2019196002A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105188994A (zh) * | 2013-03-21 | 2015-12-23 | 西门子公司 | 具有最少一个工作激光射线的激光熔融的方法 |
US20160144571A1 (en) * | 2013-07-10 | 2016-05-26 | Eos Gmbh Electro Optical Systems | Calibration Device and Calibration Method for an Apparatus for Producing an Object in Layers |
CN106475685A (zh) * | 2016-12-07 | 2017-03-08 | 常州英诺激光科技有限公司 | 一种提高材料激光标刻品质和效率的装置及标刻方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6576593B1 (ja) | 積層造形装置 | |
US20170361405A1 (en) | Irradiation system for an additive manufacturing device | |
US11712765B2 (en) | Diode laser fiber array for contour of powder bed fabrication or repair | |
US20180141160A1 (en) | In-line laser scanner for controlled cooling rates of direct metal laser melting | |
CN110799290A (zh) | 包括使用反射元件将激光束引导至可移动扫描仪的龙门装置的增材制造设备 | |
TW201811480A (zh) | 將具有控制極度動態之雷射光束軸心沿既定加工路徑對金屬材料進行加工處理的方法以及用於實施該方法之機器及電腦程式 | |
WO2021024431A1 (ja) | 積層造形装置、積層造形方法、および積層造形プログラム | |
JP2009113294A (ja) | 光造形装置及び光造形方法 | |
WO2020036021A1 (ja) | レーザ加工機及びレーザ加工方法 | |
CN110355996B (zh) | 用于积层制造的激光装置及其操作方法 | |
JP7369915B2 (ja) | レーザ溶接装置及びそれを用いたレーザ溶接方法 | |
CN110696356A (zh) | 一种投影式3d打印机 | |
WO2019196002A1 (zh) | 用于积层制造的激光装置及其操作方法 | |
CN113199138A (zh) | 一种复合激光加工方法及复合激光加工装置 | |
TWI671965B (zh) | 用於積層製造的雷射裝置及其操作方法 | |
JP2008162189A (ja) | 光造形装置 | |
WO2018107395A1 (zh) | 复合加工的加工机及其激光分光装置 | |
JP7362306B2 (ja) | 三次元積層装置および方法 | |
KR20210147194A (ko) | 등가적층 체적높이 제어방법 | |
KR20180106654A (ko) | 다중 레이저의 중첩을 이용한 레이저 고출력 변환장치 | |
CN1062799C (zh) | 选择性激光烧结成型的方法及装置 | |
CN211074711U (zh) | 一种投影式3d打印机 | |
JP5931840B2 (ja) | レーザーマーキング装置 | |
WO2019218703A1 (zh) | 3d打印系统 | |
WO2023188082A1 (ja) | 加工装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18914279 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18914279 Country of ref document: EP Kind code of ref document: A1 |