WO2019195955A1 - 包衣锅的监控系统及监控方法 - Google Patents

包衣锅的监控系统及监控方法 Download PDF

Info

Publication number
WO2019195955A1
WO2019195955A1 PCT/CN2018/082132 CN2018082132W WO2019195955A1 WO 2019195955 A1 WO2019195955 A1 WO 2019195955A1 CN 2018082132 W CN2018082132 W CN 2018082132W WO 2019195955 A1 WO2019195955 A1 WO 2019195955A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
coating
monitoring system
reflected light
interference
Prior art date
Application number
PCT/CN2018/082132
Other languages
English (en)
French (fr)
Inventor
李辰
杨旻蔚
彭世昌
孙竹
沈耀春
丁庆
Original Assignee
雄安华讯方舟科技有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雄安华讯方舟科技有限公司, 深圳市太赫兹科技创新研究院 filed Critical 雄安华讯方舟科技有限公司
Priority to PCT/CN2018/082132 priority Critical patent/WO2019195955A1/zh
Publication of WO2019195955A1 publication Critical patent/WO2019195955A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present application relates to the field of pharmaceutical technology, and in particular to a monitoring system and a monitoring method for a coating pan.
  • the solid coating preparation refers to the slow release of non-constant or constant speed in the prescribed release medium in the prescribed release medium, which can effectively reduce the frequency of administration, improve the therapeutic effect, reduce the fluctuation of blood concentration, and reduce the toxicity compared with the conventional preparation. side effect. According to different preparation processes, it can be divided into skeleton type and membrane-controlled coating preparations.
  • the preparations are generally tablets and pills, often by controlling the skeleton material, multilayer structure, coating thickness, pore size of micropores and curvature of micropores. Wait to achieve the purpose of controlling the release rate of the drug.
  • the detection method of solid coating preparation is mainly for a series of chemical analysis on the finished product, such as in vitro dissolution, blood concentration in vivo, and correlation analysis in vitro and in vivo.
  • pharmaceutical manufacturers only use the weight gain method and off-line sampling to analyze the coating preparations in the preparation process, and the sampling rate is extremely small, and the detection effect is not good.
  • a monitoring system and a monitoring method of a coating pan are provided.
  • a monitoring system for a coating pan comprising:
  • An optical branching device for dividing the initial light into reference light and sample light
  • a probe device that focuses the sample light onto a coating in the coating pan and detects the reflected light of the coating reflected by the coating; the reference light and the reflected light of the coating occur Interference, forming interference light;
  • a spectrometer that collects and analyzes the interference light to obtain an interference spectrum signal
  • a processor that processes the interference spectrum signal to obtain coating information data.
  • a method for monitoring a coating pan comprising:
  • interference light Interfering with the reference light and the coated reflected light to form interference light
  • the interference spectrum signal is processed to obtain coating information data.
  • FIG. 1 is a schematic view of a monitoring system of a coating pan according to an embodiment
  • FIG. 2 is a schematic diagram of a monitoring system of another embodiment
  • Figure 3 is a schematic view of a coating pan of an embodiment
  • Figure 4 is a schematic illustration of the probe device of the embodiment shown in Figure 2;
  • Figure 5 is a schematic view showing a cross-sectional view of a coating of an embodiment
  • Figure 6 is a schematic view showing the coating detection of an embodiment
  • Figure 7 is a schematic view showing the delay time of the reflected light of the coating of the embodiment shown in Figure 5;
  • FIG. 8 is a flow chart of a monitoring method of an embodiment
  • FIG. 9 is a flow chart of a monitoring method of another embodiment.
  • the monitoring system 100 can monitor the condition of the coating in real time, and can be applied in the production process of the coating preparation, and the design and development of the drug delivery system and the optimization of the drug preparation process have positive significance.
  • a monitoring system 100 for a coating pan 200 includes a monitoring device 110.
  • the monitoring device 110 is used to monitor the coating within the coating pan 200.
  • the monitoring device 110 includes a light source 111, an optical branching device, a sample arm 113, an interference device, a spectrometer 115, and a processor 116.
  • the light source 111 emits initial light.
  • the initial light may be any one of an infrared light wave, a terahertz wave, and an ultraviolet light wave.
  • the initial light may also be light waves of other wavelength bands as long as the function of the detecting device can be realized.
  • the optical branching device is used to split the initial light into reference light and sample light.
  • the light intensity of the reference light and the sample light are equal.
  • the sample arm 113 includes a probe device 114.
  • the sample light is incident on the probe device 114. That is, the probe device 114 receives the sample light.
  • the sample light is concentrated to the coating where the sample light transmitted by the probe device 114 is concentrated to the coating.
  • the coating reflects the sample light to form a coating reflected light. Specifically, at the interface between the coating and the outside of the coating, the sample light is reflected to form a coating reflected light. At the interface between the coating and the pill, the sample light is reflected to form a coating reflected light. In addition, if there is an interface inside the coating, at any of the interfaces, the sample light will be reflected to form a coating reflected light.
  • the starting position indicated by the optical path of the calculated light is the light source 111. Since the coated reflected light is the emitted light of the sample light after being coated, the coated reflected light is attenuated compared to the sample light.
  • the reference light and the coated reflected light interfere to form interference light.
  • the reference light and the coated reflected light are incident on the interference instrument 112B, and the reference light and the coated reflected light interfere in the interference instrument 112B.
  • the optical path of the reference light and the coated reflected light can interfere with the reference light and the coated reflected light as long as the interference condition is satisfied.
  • the reference light and the coated reflected light may be incident into an interference device in which interference occurs.
  • the reference light that interferes with the reflected light of the coating may be the reference light itself, or the reflected light of the reference light, or the like, as long as the parameters of the reference light are not changed.
  • the interference instrument 112B may also be absent. As long as the reference light and the coated reflected light can interfere, the spectrometer 115 can acquire the interference light.
  • Spectrometer 115 collects and analyzes the interference light to obtain an interference spectrum signal.
  • the processor 116 processes the interference spectrum signal to obtain coating information data.
  • the interference spectrum signal can reflect the difference between the reference light and the coated reflected light. Since the reference light and the sample light parameters are identical, the interference spectrum signal can reflect the difference between the coated reflected light and the sample light. That is, the interference spectrum signal can reflect the change of the sample light after the coating, so that the characteristics of the coating can be obtained by the interference spectrum signal.
  • the arrows in FIG. 1 do not represent the actual propagation direction of the light beam, but merely indicate the effect.
  • the light beam is transmitted from the light source 111 to the optical beam splitting device 112A, does not necessarily propagate along a straight line indicated by an arrow, and may be a curved optical path as long as the light beam can propagate from the light source 111 to the optical beam splitting device 112A.
  • the sample arm 113 is provided with a probe device 114.
  • the probe device 114 can converge the sample light into the coating within the coating pan 200 in real time.
  • the sample light is reflected on the surface of the coating or inside the coating to form a coating reflected light.
  • the coated reflected light interferes with the reference light.
  • the interference spectrum signal the difference between the coated reflected light and the reference light can be obtained, thereby obtaining the difference between the coated reflected light and the sample light.
  • the coating information data carried in the interference spectrum signal can be obtained. Therefore, the above method and system can monitor the condition of the coating in real time, and can be applied in the production process of the coating preparation, and the design and development of the drug delivery system and the optimization of the preparation process of the drug release have positive significance.
  • FIG. 2 is a schematic diagram of a monitoring system 100 of another embodiment.
  • the monitoring system 100 further includes a control device 120.
  • Control device 120 is coupled to monitoring device 110.
  • the control device 120 receives the coating information data of the monitoring device 110.
  • the control device 120 controls the operation of the monitoring device 110 based on the coating information data of the monitoring device 110.
  • the control device 120 is also used to control the operation of the coating pan 200.
  • the optical branching device is a fiber coupler 117.
  • the fiber coupler 117 divides the initial light into reference light and sample light.
  • the fiber coupler 117 also functions as an interference instrument 112B.
  • the monitoring device also includes a transmission fiber 119.
  • the light beam is propagated through the transmission fiber 119 to ensure that the attenuation of the light is small.
  • sample light propagates through the transmission fiber 119 to the sample arm 113.
  • the sample light is transmitted to the probe device 114 through the transmission fiber 119.
  • the coating pan 200 includes a transparent window 220 and a pot wall 210, and the transparent window 220 is disposed on the pot wall 210.
  • the material of the transparent window 220 is a glass flake or a transparent film.
  • the probe device 114 can be disposed outside of the coating pan 200, and the probe device 114 concentrates the sample light through the transparent window 220 onto the coating within the coating pan 200.
  • the probe device 114 includes a mount 114A and a probe 114B.
  • the position of the mount 114A is one in which the mount 114A is embedded in the coating pan 200 and the mount 114A is disposed outside the coating pan 200.
  • the mounting seat 114A is disposed outside the coating pan 200.
  • the mount 114A is adjacent to the transparent window 220.
  • the mount 114A is disposed on the transparent window 220.
  • the probe 114B is disposed on the mount 114A, and the sample light is concentrated by the probe 114B onto the coating.
  • the sample light emitted by the probe 114B is concentrated through the transparent window 220 onto the coating. In this way, the probe 114B can monitor the condition of the coating without extending into the coating pan 200.
  • the structure of the monitoring device 110 is relatively simple, and the space inside the coating pan 200 is relatively abundant.
  • the focal length of the probe 114B to the coating can be adjusted.
  • the mount 114A includes a support portion 114Aa and an adjustment portion 114Ab.
  • the support portion 114Aa is for supporting the probe 114B.
  • the support portion 114Aa supports the probe 114B at a suitable position of the transparent window 220.
  • the adjustment portion 114Ab is connected to the support portion 114Aa.
  • the adjustment portion 114Ab is used to adjust the focus position of the probe 114B on the coating by adjusting the position of the support portion 114Aa to ensure that the sample light is focused on the coating.
  • the probe device 114 further includes a dustproof film 114C that is disposed on a side of the probe 114B that faces the coating. Since the coating pan 200 can splash material dust during the working process, the dustproof film 114C is used to prevent the probe 114B from being contaminated by dust.
  • the dustproof film 114C is, for example, a food film.
  • the probe device 114 also includes a fiber optic connection 114D.
  • the fiber connection portion 114D is for connecting the transmission optical fiber 119 for sample light transmission, and causes the sample light to be incident on the probe 114B, which is also used to couple the coated reflected light transmitted by the probe 114B to the transmission fiber 119. That is, the coated reflected light is transmitted back to the fiber coupler 117.
  • the fiber connection portion 114D can connect the transmission fiber 119 on the one hand and the transmission fiber 119 on the other hand, so that the transmission fiber 119 is not easily broken or damaged.
  • the pot wall 210 of the coating pan 200 is of a mesh structure.
  • the mount 114A is fixed to the outside of the pot wall 210 of the coating pan 200 such that the probe 114B is positioned close to the coating pan 200 and does not interfere with the rolling motion of the coating pan 200.
  • the beam of light emitted by the probe 114B is directed through the mesh of the wall 210 to the coating within the wall 210. In this way, the purpose of the probe 114B to monitor the coating outside the coating pan 200 can also be achieved.
  • an exhaust pipe is disposed within the coating pan 200.
  • the mount 114A is embedded in the coating pan 200.
  • the mount 114A is disposed in the exhaust pipe within the coating pan 200.
  • the probe 114B is placed on the mounting seat. In this way, the light beam emitted from the probe 114B is directly focused on the coating surface without passing through other media, without attenuation, and the signal intensity is large, which helps to improve the imaging effect.
  • the mounting seat 114A may be disposed at the position of the temperature sensor in the coating pan 200, or may be disposed at the position of the humidity sensor in the coating pan 200, or may be disposed at the position of the pressure sensor as long as it can be disposed in the coating.
  • the pot 200 can be used.
  • the monitoring system 100 further includes a reference arm 118.
  • the reference arm 118 includes a collimating lens 118A, a compensation sheet 118B, and a mirror 118C.
  • the reference light propagates through the transmission fiber 119 to the reference arm 118. Specifically, the reference light propagates through the transmission fiber 119 to the collimating lens 118A.
  • the collimating lens 118A converts the reference light into parallel light.
  • the collimating lens 118A may be a convex lens.
  • the compensation sheet 118B is disposed between the collimating lens 118A and the mirror 118C.
  • the compensation sheet 118B can transmit light.
  • the parallel light passes through the compensation sheet 118B.
  • the material of the compensation sheet 118B is the same as that of the transparent window 220 of the coating pan 200.
  • the thickness of the compensation sheet 118B is equal to the transparent window 220 of the coating pan 200.
  • the compensation sheet 118B is for adjusting the intensity and phase of the reference reflected light.
  • the compensation sheet 118B can ensure interference between the reference reflected light and the coated reflected light.
  • the mirror 118C is a plane mirror 118C.
  • the optical axis of the mirror 118C and the collimating lens 118A are perpendicular.
  • the mirror 118C reflects the parallel light transmitted through the compensation sheet 118B to obtain reference reflected light.
  • the incident direction of the parallel light is parallel to the normal of the mirror. That is, the incident angle of the parallel light is 0°, so the reflection angle of the reference reflected light is also 0°. That is, the reference reflected light returns along the optical path of the reference light.
  • the reference reflected light is transmitted back to the fiber coupler 117;
  • the reference reflected light and the coated reflected light interfere to form interference light. Specifically, the reference reflected light and the coated reflected light interfere in the fiber coupler 117.
  • the reference light is converted into reference reflected light by the collimator lens 118A and the mirror 118C, and the reference light path direction is changed. In this way, the space of the monitoring device 110 can be saved, so that the monitoring device 110 is relatively compact and easy to miniaturize.
  • the distance from the mirror 118C to the collimating lens 118A can be adjusted.
  • mirror 118C is coupled to processor 116, and the position of mirror 118C relative to collimating lens 118A can be controlled by processor 116. In this way, the adjustment of the optical path of the reference reflected light can be achieved to ensure that the reference reflected light and the coated reflected light can interfere.
  • the fiber coupler 117 transmits the interference light to the spectrometer 115.
  • the spectral signal of the interference light is collected and analyzed by the spectrometer 115 to obtain an interference spectrum signal.
  • Processor 116 is coupled to spectrometer 115.
  • the processor 116 analyzes the interference spectrum signal to obtain coating information data.
  • the processor 116 is also used to control the operating parameters of the spectrometer 115.
  • the coating information data includes at least one of coating cross-section data and real-time coating thickness data.
  • the coating information data includes coating cross-section data and real-time coating thickness data.
  • the processor 116 performs image processing based on the coating information data to obtain at least one of a coating cross-sectional view, a coating thickness change trend graph, and a coating average thickness value.
  • Figure 5 is a schematic illustration of a cross-sectional view of a coating of an embodiment.
  • the processor 116 analyzes the interference spectrum signal and combines each of the 1000 spectra into a two-dimensional spectrum.
  • the processor 116 performs interpolation on the two-dimensional spectrum as a data packet, and performs preprocessing on the frequency domain time domain conversion, and then forms a coating sectional view after image noise reduction, enhancement, and screening.
  • a section of the coating at a certain point is shown in Figure 5.
  • the two arcs in Figure 5 represent the outer and inner surfaces of the coating, respectively.
  • Figure 6 is a schematic diagram of the coating detection of an embodiment.
  • Fig. 7 is a schematic view showing the delay time of the reflected light of the coating of the embodiment shown in Fig. 5.
  • the sample light transmitted by the probe 114B is incident through the transparent window 220 to the coating 320.
  • the sample light is reflected at the pre-coating surface 310 and the post-coating surface 320.
  • there is a time delay between the reflected signal on the surface of the coating and the reflected signal on the surface of the coating forming a pre-coating surface peak 710 (corresponding to the air and coating interface) and coating in the signal.
  • the back surface peak 720 (corresponding to the interface of the coating and the core), the delay distance difference ⁇ s in air is equal to the product of the reflected signal delay time difference and the speed of light. Due to the reflection, the beam actually travels back and forth once in the coating, and ⁇ s is also equal to twice the product of the actual thickness of the coating and the refractive index of the coating material. Therefore, the real-time coating thickness can be calculated using the time delay between the peaks of the front and rear surface signals.
  • the processor 116 may obtain a real-time coating thickness after radial measurement of the coating thickness on the coating cross-section. Then, the processor 116 draws a trend graph of the coating thickness according to the real-time coating thickness, and obtains a coating average thickness value.
  • the quality of the coating preparation and the level of the process can be obtained according to the trend graph of the thickness of the coating and the average thickness of the coating.
  • the worker can operate the control device 120 according to the process standard and according to the trend of the thickness curve.
  • the control device 120 sends an instruction to the coating pan 200 to perform process control on conditions such as the rotation speed of the coating pan 200 in the coating preparation, the coating material spraying rate, the exhaust air velocity, the temperature, the humidity, and the pressure.
  • the processor 116 performs data processing, the noise reduction and signal enhancement methods should be appropriately used to extract the back surface signal. peak.
  • the measured cross-section data of the coating should be subjected to certain screening, and then the thickness is quantified and counted.
  • FIG. 8 is a flow chart of a monitoring method of an embodiment.
  • the monitoring method can be applied to the above monitoring device.
  • the monitoring method includes:
  • step S110 initial light is emitted.
  • the initial light may be any one of an infrared light wave, a terahertz wave, and an ultraviolet light wave.
  • the initial light may also be light waves of other wavelength bands as long as the function of the detecting device can be realized.
  • step S120 the initial light is divided into reference light and sample light.
  • the light intensity of the reference light and the sample light are equal.
  • step S130 the sample light is concentrated to a coating portion in the coating pan, and the coating reflects the sample light to form a coating reflected light.
  • the sample light is reflected to form a coating reflected light.
  • the sample light is reflected to form a coating reflected light.
  • the sample light will be reflected to form a coating reflected light. Since the optical path of the sample light incident to different interface of the coating is different, the time of the reflected light reflected by the coating at different interfaces reaching the same position will be different.
  • the starting position indicated by the optical path of the calculated light is the light source. Since the coated reflected light is the emitted light of the sample light after being coated, the coated reflected light is attenuated compared to the sample light.
  • step S140 the reference light and the coated reflected light are interfered to form interference light.
  • the optical path of the reference light and the coated reflected light can interfere with the reference light and the coated reflected light as long as the interference condition is satisfied.
  • the reference light and the coated reflected light can be incident into an optical device where interference occurs.
  • the reference light that interferes with the reflected light of the coating may be the reference light itself, or the reflected light of the reference light, or the like, as long as the parameters of the reference light are not changed.
  • step S150 the interference light is collected and analyzed to obtain an interference spectrum signal.
  • the spectrometer collects and analyzes the interference light to obtain an interference spectrum signal.
  • step S160 the interference spectrum signal is processed to obtain coating information data.
  • the interference spectrum signal can reflect the difference between the reference light and the coated reflected light. Since the reference light and the sample light parameters are identical, the interference spectrum signal can reflect the difference between the coated reflected light and the sample light. That is, the interference spectrum signal can reflect the change of the sample light after the coating, so that the characteristics of the coating can be obtained by the interference spectrum signal.
  • the probe device can converge the sample light in real time to the coating inside the coating pan.
  • the sample light is reflected on the surface of the coating or inside the coating to form a coating reflected light.
  • the coated reflected light interferes with the reference light.
  • the interference spectrum signal the difference between the coated reflected light and the reference light can be obtained, thereby obtaining the difference between the coated reflected light and the sample light.
  • the coating information data carried in the interference spectrum signal can be obtained. Therefore, the above method and system can monitor the condition of the coating in real time, and can be applied in the production process of the coating preparation, and the design and development of the drug delivery system and the optimization of the preparation process of the drug release have positive significance.
  • the coating information data includes at least one of coating cross-section data and real-time coating thickness data.
  • the coating information data includes coating cross-section data and real-time coating thickness data.
  • the processor performs image processing according to the coating information data, and obtains at least one of a coating cross-sectional view, a coating thickness change trend graph, and a coating average thickness value.
  • step S120 includes:
  • step S121 the reference light is reflected by the mirror of the plane to form reference reflected light.
  • step S140 The step of interfering with the reference light and the reflected light of the coating to form the interference light, that is, step S140 is:
  • step S141 the reference reflected light and the coated reflected light are interfered to form interference light.
  • the reference light is converted into reference reflected light by the mirror, and the direction of the reference light path is changed. In this way, the space of the monitoring device can be saved, making the monitoring device compact and easy to miniaturize.
  • the optical path of the reference reflected light can be adjusted. In this way, the adjustment of the optical path of the reference reflected light can be achieved to ensure that the reference reflected light and the coated reflected light can interfere.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种包衣锅的监控系统及监控方法。监控系统包括光源、光分路设备、探头设备、光谱仪及处理器。光源发射初始光;光分路设备用于将初始光分为参考光和样品光;探头设备将样品光聚焦至包衣锅内的包衣上,并探测包衣反射的包衣反射光;参考光和包衣反射光发生干涉,形成干涉光;光谱仪采集并分析干涉光,得到干涉光谱信号;处理器处理干涉光谱信号,得到包衣信息数据。

Description

包衣锅的监控系统及监控方法 技术领域
本申请涉及制药技术领域,特别是涉及一种包衣锅的监控系统及监控方法。
背景技术
固体包衣制剂是指口服药物在规定释放介质中,按要求缓慢的非恒速或恒速释放,与普通制剂相比,能有效降低给药频率、提高疗效、减少血药浓度波动、减少毒副作用。按照制备工艺不同,可分为骨架型、膜控型包衣制剂,制剂一般为片剂和丸剂,常通过控制骨架材料、多层结构、包衣厚度、微孔的孔径及微孔的弯曲度等来达到控制药物释放速度的目的。
目前固体包衣制剂的检测方法主要是针对制剂成品进行的一系列化学分析,如体外溶出度、体内血药浓度、体内外相关性的分析。目前的制药厂家仅采用增重法及离线抽检对制备过程中的包衣制剂进行分析,采样率极少,检测效果不好。
发明内容
根据本申请的各种实施例,提供一种包衣锅的监控系统及监控方法。
一种包衣锅的监控系统,包括:
光源,所述光源发射初始光;
光分路设备,所述光分路设备用于将所述初始光分为参考光和样品光;
探头设备,所述探头设备将所述样品光聚焦至所述包衣锅内的包衣上,并探测所述包衣反射的包衣反射光;所述参考光和所述包衣反射光发生干涉,形成干涉光;
光谱仪,所述光谱仪采集并分析所述干涉光,得到干涉光谱信号;及
处理器,所述处理器处理所述干涉光谱信号,得到包衣信息数据。
一种包衣锅的监控方法,包括:
发射初始光;
将所述初始光分为参考光和样品光;
使所述样品光会聚至所述包衣锅内的包衣处,所述包衣反射所述样品光形成包衣反射光;
使所述参考光和所述包衣反射光发生干涉,形成干涉光;
采集并分析所述干涉光,得到干涉光谱信号;
处理所述干涉光谱信号,得到包衣信息数据。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例的包衣锅的监控系统的示意图;
图2为另一实施例的监控系统的示意图;
图3为一实施例的包衣锅的示意图
图4为图2所示的实施例中的探头设备的示意图;
图5为一实施例的包衣截面图的示意图;
图6为一实施例的包衣检测原理图;
图7为图5所示的实施例的包衣反射光的延迟时间示意图;
图8为一实施例的监控方法的流程图;
图9为另一实施例的监控方法的流程图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
图1为一实施例的包衣锅的监控系统的示意图。该监控系统100可以实时监测包衣的情况,可以应用在包衣制剂生产过程中,给药系统的设计研发、释药制备工艺的优化等方面有着积极的意义。
一种包衣锅200的监控系统100,包括监测装置110。
监测装置110用于监测包衣锅200内的包衣。监测装置110包括光源111、光分路设备、样品臂113、干涉器件、光谱仪115和处理器116。
光源111发射初始光。初始光可以是红外光波、太赫兹波、紫外光波中的任何一种。当然,初始光还可以是其它波段的光波,只要能实现检测装置的功能即可。
光分路设备用于将初始光分为参考光和样品光。本实施例中,参考光和 样品光的光强相等。
样品臂113包括探头设备114。样品光入射至探头设备114。即探头设备114接收样品光。将样品光会聚至包衣处,即探头设备114透射的样品光会聚至包衣处。包衣反射样品光,形成包衣反射光。具体地,包衣与包衣外侧的分界面处,样品光会反射,形成包衣反射光。包衣与药丸的分界面处,样品光会反射,形成包衣反射光。另外,如果包衣内部存在分界面的话,在任一分界面处,样品光都会反射,形成包衣反射光。由于样品光入射至包衣不同分界面处的光程不同,不同分界面处反射的包衣反射光到达同一位置的时间会不同。此处,计算光的光程所指的起始位置是光源111。由于包衣反射光是样品光经过包衣之后的发射光,所以,包衣反射光相较于样品光而言会衰减。
参考光和包衣反射光发生干涉,形成干涉光。参考光和包衣反射光入射至干涉仪器112B,参考光和包衣反射光在干涉仪器112B内发生干涉。参考光和包衣反射光的光程只要满足干涉条件,参考光和包衣反射光即可发生干涉。此处,参考光和包衣反射光可以入射至一干涉器件中,在干涉器件中发生干涉。另外,与包衣反射光发生干涉的参考光,可以是参考光本身,也可以是参考光的反射光等,只要参考光的参数未改变即可。
需要说明的是,在其它实施例中,也可以没有干涉仪器112B。只要参考光和包衣反射光能够发生干涉,光谱仪115能够采集到干涉光即可。
光谱仪115采集并分析干涉光,得到干涉光谱信号。
处理器116处理干涉光谱信号,得到包衣信息数据。干涉光谱信号可以反映出参考光和包衣反射光的差异。由于参考光和样品光参数一致,因此,干涉光谱信号可以反映出包衣反射光和样品光的差异。即干涉光谱信号可以反映出样品光经过包衣之后的变化,从而通过干涉光谱信号可以得到包衣的 特征。
需要说明的是,图1中的箭头并不代表光束的实际传播方向,只是示意作用。比如,光束由光源111传播至光分束设备112A,不一定沿箭头所示的直线传播,也可以是弯曲的光路,只要光束能从光源111传播至光分束设备112A即可。
上述包衣锅200的监控系统100,样品臂113设置了探头设备114。探头设备114可以实时将样品光会聚至包衣锅200内的包衣处。样品光在包衣表面或包衣内部会发生反射,形成包衣反射光。包衣反射光与参考光发生干涉。根据干涉光谱信号,便可得出包衣反射光与参考光的区别,从而得出包衣反射光与样品光的区别。即可得出干涉光谱信号中承载的包衣信息数据。因此,上述方法及系统可以实时监测包衣的情况,可以应用在包衣制剂生产过程中,给药系统的设计研发、释药制备工艺的优化等方面有着积极的意义。
图2为另一实施例的监控系统100的示意图。本实施例中,监控系统100还包括控制装置120。控制装置120与监测装置110连接。控制装置120接收监测装置110的包衣信息数据。控制装置120根据监测装置110的包衣信息数据控制监测装置110的工作。控制装置120还用于控制包衣锅200的工作。
本实施例中,光分路设备是光纤耦合器117。光纤耦合器117将初始光分为参考光和样品光。光纤耦合器117还作为干涉仪器112B。
监控装置还包括传输光纤119。本实施例中,光束是通过传输光纤119传播的,保证光的衰减较小。例如,样品光通过传输光纤119传播至样品臂113。具体地,样品光通过传输光纤119传输至探头设备114。
图3为一实施例的包衣锅200的示意图。本实施例中,包衣锅200包括 透明窗口220和锅壁210,透明窗口220设置在锅壁210上。透明窗口220的材质为玻璃薄片或透明薄膜。这样,探头设备114可以设置在包衣锅200外部,探头设备114将样品光通过透明窗口220会聚在包衣锅200内的包衣上。
图4为图2所示的实施例中的探头设备114的分解示意图。探头设备114包括安装座114A和探头114B。
安装座114A的位置为安装座114A嵌入包衣锅200内、安装座114A设置在包衣锅200外中的一种。本实施例中,安装座114A设置在包衣锅200外。安装座114A靠近透明窗口220。安装座114A设置在透明窗口220上。
探头114B设置在安装座114A上,样品光由探头114B会聚至包衣上。由探头114B出射的样品光经过透明窗口220会聚至包衣上。这样,探头114B不需要经过伸入包衣锅200内便可以监测包衣的情况,监测装置110的结构比较简单,包衣锅200内的空间较为充裕。
本实施例中,探头114B至包衣的焦距可调节。如图4所示,安装座114A包括支撑部114Aa和调节部114Ab。支撑部114Aa用于支撑探头114B。支撑部114Aa将探头114B支撑在透明窗口220的合适位置处。调节部114Ab与支撑部114Aa连接。调节部114Ab用于通过调节支撑部114Aa的位置调节探头114B在包衣上的聚焦位置,以保证样品光聚焦于包衣上。
探头设备114还包括防尘膜114C,防尘膜114C设置在探头114B朝向包衣的一侧。由于包衣锅200在工作的过程中可以溅出材料粉尘,防尘膜114C用于防止探头114B被粉尘污染。本实施例中,防尘膜114C例如食品薄膜。
探头设备114还包括光纤连接部114D。光纤连接部114D用于连接样品光传输的传输光纤119,并使得样品光入射至探头114B,光纤连接部114D 还用于使得探头114B透射的包衣反射光耦合至传输光纤119。即包衣反射光传输回光纤耦合器117。光纤连接部114D一方面可以使得传输光纤119连接,一方面还可以保护传输光纤119,使得传输光纤119不易折断或损坏。
一实施例中,包衣锅200的锅壁210是网孔式的结构。安装座114A固定于包衣锅200的锅壁210外部,这样,探头114B位置接近包衣锅200且不妨碍包衣锅200滚转运动。探头114B出射的光束穿过锅壁210的网孔聚焦于锅壁210内的包衣上。这样,也可以实现探头114B在包衣锅200外即可监测包衣的目的。
一实施例中,包衣锅200内设置有排气管。安装座114A嵌入包衣锅200内。安装座114A设置在包衣锅200内的排气管内。探头114B设置在安装坐上。这样,探头114B出射的光束不经过其它介质直接聚焦于包衣表面,没有衰减,信号强度较大,有助于提高成像效果。此外,安装座114A还可以设置于包衣锅200内的温度传感器的位置,也可以设置于包衣锅200内的湿度传感器的位置,还可以设置于压强传感器的位置,只要能够设置于包衣锅200内即可。
如图2所示,本实施例中,监控系统100还包括参考臂118。参考臂118包括准直透镜118A、补偿片118B和反射镜118C。参考光通过传输光纤119传播至参考臂118。具体地,参考光通过传输光纤119传播至准直透镜118A。
准直透镜118A将参考光转变为平行光。准直透镜118A可以是凸透镜。
由于包衣锅200上的透明窗口220改变了包衣反射光的光程,所以将补偿片118B设置于准直透镜118A与反射镜118C之间。补偿片118B可透光。平行光透过补偿片118B。补偿片118B的材质与包衣锅200的透明窗口220一样。补偿片118B厚度与包衣锅200的透明窗口220相等。补偿片118B用 于调节参考反射光的强度和相位。补偿片118B可以确保参考反射光和包衣反射光发生干涉。
反射镜118C是平面反射镜118C。反射镜118C和准直透镜118A的光轴垂直。反射镜118C将透过补偿片118B的平行光反射,得到参考反射光。平行光的入射方向与反射镜的法线平行。即平行光的入射角为0°,所以参考反射光的反射角也为0°。即参考反射光沿参考光的光路返回。本实施例中,参考反射光传输回光纤耦合器117;
参考反射光和包衣反射光发生干涉,形成干涉光。具体地,参考反射光和包衣反射光在光纤耦合器117中发生干涉。通过准直透镜118A和反射镜118C,将参考光转变为参考反射光,改变参考光光路方向。这样,可以节省监测装置110的空间,使得监测装置110比较紧凑,容易做到小型化。
本实施例中,反射镜118C至准直透镜118A的距离可调节。进一步地,反射镜118C与处理器116连接,反射镜118C相对于准直透镜118A的位置可以由处理器116控制。这样,可以实现参考反射光的光程的调节,以确保参考反射光和包衣反射光能够发生干涉。
如图2所示,光纤耦合器117将干涉光传输至光谱仪115。由光谱仪115采集并分析干涉光的光谱信号,得到干涉光谱信号。
处理器116与光谱仪115连接。处理器116分析干涉光谱信号,得到包衣信息数据。处理器116还用于控制光谱仪115的工作参数。包衣信息数据包括包衣截面数据、实时包衣厚度数据中的至少一种。本实施例中,包衣信息数据包括包衣截面数据和实时包衣厚度数据。处理器116根据包衣信息数据进行图像处理,得出包衣截面图、包衣厚度变化趋势图、包衣平均厚度值中的至少一种。
图5为一实施例的包衣截面图的示意图。本实施例中,处理器116分析干涉光谱信号,每1000个光谱拼成二维光谱图。处理器116将二维光谱图作为数据包进行插值、频域时域转换的预处理,再经过图像降噪、增强、筛选之后形成包衣截面图。某一时刻的包衣截面图如图5所示。图5中的两条弧线分别代表包衣的外表面和内表面。
图6为一实施例的包衣检测原理图。图7为图5所示的实施例的包衣反射光的延迟时间示意图。如图6所示,由探头114B透射的样品光经过透明窗口220入射至包衣320处。样品光在包衣前表面310和包衣后表面320发生反射。如图7所示,如前述,包衣前表面的反射信号和包衣后表面的反射信号存在时间延迟,形成信号中的包衣前表面峰710(对应空气和包衣的界面)和包衣后表面峰720(对应包衣和片芯的界面),在空气中的延迟距离差Δs等于反射信号延迟时间差和光速的乘积。由于反射,光束实际在包衣内来回各走了一次,Δs也等于两倍的包衣实际厚度和包衣材料折射率的乘积。因此,实时包衣厚度可利用前后表面信号峰之间的时间延迟进行计算。另外,处理器116还可以在包衣截面图上进行包衣厚度径向测量之后,得到实时包衣厚度。然后,处理器116根据实时包衣厚度绘制包衣厚度变化趋势图,并得到包衣平均厚度值。这样,根据包衣厚度变化趋势图和包衣平均厚度值,便可以得到包衣制备质量和工艺水平。工作人员可根据工艺标准,按照厚度曲线的变化趋势,操作控制装置120。由控制装置120向包衣锅200发送指令,对包衣制备中包衣锅200转动速度、包衣材料喷洒速率、排风速率、温度、湿度、压强等条件进行过程控制。
需要说明的是,由于包衣内的光强衰减,包衣后表面的反射信号强度较前表面弱很多,因此在处理器116进行数据处理时应适当使用降噪和信号增强方法提取后表面信号峰。考虑实际测量中形成包衣的固体制剂在包衣锅200 内的复杂高速运动,还应对所测包衣截面数据进行一定筛选,再进行厚度的定量和统计。
本申请还提供一种包衣锅的监控方法。图8为一实施例的监控方法的流程图。该监控方法可以应用于上述监控装置。该监控方法包括:
步骤S110,发射初始光。
具体地,初始光可以是红外光波、太赫兹波、紫外光波中的任何一种。当然,初始光还可以是其它波段的光波,只要能实现检测装置的功能即可。
步骤S120,将初始光分为参考光和样品光。
本实施例中,参考光和样品光的光强相等。
步骤S130,使样品光会聚至包衣锅内的包衣处,包衣反射样品光形成包衣反射光。
包衣与包衣外侧的分界面处,样品光会反射,形成包衣反射光。包衣与药丸的分界面处,样品光会反射,形成包衣反射光。另外,如果包衣内部存在分界面的话,在任一分界面处,样品光都会反射,形成包衣反射光。由于样品光入射至包衣不同分界面处的光程不同,不同分界面处反射的包衣反射光到达同一位置的时间会不同。此处,计算光的光程所指的起始位置是光源。由于包衣反射光是样品光经过包衣之后的发射光,所以,包衣反射光相较于样品光而言会衰减。
步骤S140,使参考光和包衣反射光发生干涉,形成干涉光。
参考光和包衣反射光的光程只要满足干涉条件,参考光和包衣反射光即可发生干涉。参考光和包衣反射光可以入射至一光学器件中,在光学器件中发生干涉。另外,与包衣反射光发生干涉的参考光,可以是参考光本身,也可以是参考光的反射光等,只要参考光的参数未改变即可。
步骤S150,采集并分析干涉光,得到干涉光谱信号。
光谱仪采集并分析干涉光,得到干涉光谱信号
步骤S160,处理干涉光谱信号,得到包衣信息数据。
干涉光谱信号可以反映出参考光和包衣反射光的差异。由于参考光和样品光参数一致,因此,干涉光谱信号可以反映出包衣反射光和样品光的差异。即干涉光谱信号可以反映出样品光经过包衣之后的变化,从而通过干涉光谱信号可以得到包衣的特征。
上述包衣锅的监控方法,探头设备可以实时将样品光会聚至包衣锅内的包衣处。样品光在包衣表面或包衣内部会发生反射,形成包衣反射光。包衣反射光与参考光发生干涉。根据干涉光谱信号,便可得出包衣反射光与参考光的区别,从而得出包衣反射光与样品光的区别。即可得出干涉光谱信号中承载的包衣信息数据。因此,上述方法及系统可以实时监测包衣的情况,可以应用在包衣制剂生产过程中,给药系统的设计研发、释药制备工艺的优化等方面有着积极的意义。
一实施例中,包衣信息数据包括包衣截面数据、实时包衣厚度数据中的至少一种。本实施例中,包衣信息数据包括包衣截面数据和实时包衣厚度数据。处理器根据包衣信息数据进行图像处理,得出包衣截面图、包衣厚度变化趋势图、包衣平均厚度值中的至少一种。
图9为另一实施例的监控方法的流程图。本实施例中,将初始光分为参考光和样品光的步骤,即步骤S120之后包括:
步骤S121,使参考光经由平面的反射镜反射,形成参考反射光。
使参考光和包衣反射光发生干涉,形成干涉光的步骤,即步骤S140为:
步骤S141,使参考反射光和包衣反射光发生干涉,形成干涉光。
通过反射镜,将参考光转变为参考反射光,改变参考光光路方向。这样,可以节省监测装置的空间,使得监测装置比较紧凑,容易做到小型化。本实施例中,参考反射光的光程可调节。这样,可以实现参考反射光的光程的调节,以确保参考反射光和包衣反射光能够发生干涉。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (22)

  1. 一种包衣锅的监控系统,包括:
    光源,所述光源发射初始光;
    光分路设备,所述光分路设备用于将所述初始光分为参考光和样品光;
    探头设备,所述探头设备将所述样品光聚焦至所述包衣锅内的包衣上,并探测所述包衣反射的包衣反射光;所述参考光和所述包衣反射光发生干涉,形成干涉光;
    光谱仪,所述光谱仪采集并分析所述干涉光,得到干涉光谱信号;及
    处理器,所述处理器处理所述干涉光谱信号,得到包衣信息数据。
  2. 根据权利要求1所述的监控系统,其特征在于,还包括:
    准直透镜,所述准直透镜将所述参考光转变为平行光;及
    平面的反射镜;所述反射镜和所述准直透镜的光轴垂直;所述反射镜将所述平行光反射,得到所述参考反射光;所述参考反射光和所述包衣反射光发生干涉,形成所述干涉光。
  3. 根据权利要求2所述的监控系统,其特征在于,所述反射镜至所述准直透镜的距离可调节。
  4. 根据权利要求2所述的监控系统,其特征在于,所述处理器与所述反射镜连接;所述处理器还用于控制所述反射镜相对于所述准直透镜的位置。
  5. 根据权利要求2所述的监控系统,其特征在于,所述处理器与所述光谱仪连接;所述处理器用于控制所述光谱仪的工作参数。
  6. 根据权利要求2所述的监控系统,其特征在于,所述探头设备包括:
    安装座,所述安装座的位置为所述安装座嵌入所述包衣锅内、所述安装座设置在所述包衣锅外中的一种;及
    探头,所述探头设置在所述安装座上,所述样品光由所述探头会聚至所述包衣上。
  7. 根据权利要求6所述的监控系统,其特征在于,所述探头至所述包衣的焦距可调节。
  8. 根据权利要求6所述的监控系统,其特征在于,所述安装座设置在所述包衣锅外,所述安装座包括:
    支撑部,所述支撑部用于支撑所述探头;及
    调节部,所述调节部用于调节所述探头在所述包衣上的聚焦位置。
  9. 根据权利要求6所述的监控系统,其特征在于,所述探头设备还包括防尘膜,所述防尘膜设置在所述探头朝向所述包衣的一侧,所述防尘膜用于防止所述探头被粉尘污染。
  10. 根据权利要求2所述的监控系统,其特征在于,还包括传输光纤,所述参考光通过传输光纤传播至所述准直透镜;所述样品光通过所述传输光纤传播至所述探头设备。
  11. 根据权利要求10所述的监控系统,其特征在于,所述光分路设备是光纤耦合器。
  12. 根据权利要求11所述的监控系统,其特征在于,所述参考反射光传输回所述光纤耦合器;所述包衣反射光传输回所述光纤耦合器;所述参考反射光和所述包衣反射光在所述光纤耦合器中发生干涉。
  13. 根据权利要求2所述的监控系统,其特征在于,所述包衣锅包括透明窗口和锅壁,所述透明窗口设置在所述锅壁上;
    所述探头设备设置在所述锅壁外,由所述探头设备透射的所述样品光通过所述透明窗口聚焦至所述包衣上。
  14. 根据权利要求13所述的监控系统,其特征在于,所述平行光的入射方向与所述反射镜的法线平行;
    所述参考臂还包括补偿片,所述补偿片设置于所述准直透镜与所述反射镜之间,所述补偿片用于调节所述参考反射光的强度和相位。
  15. 根据权利要求1所述的监控系统,其特征在于,所述包衣信息数据包括包衣截面数据、实时包衣厚度数据中的至少一种。
  16. 根据权利要求15所述的监控系统,其特征在于,所述处理器根据所述包衣信息数据进行图像处理,得出包衣截面图、包衣厚度变化趋势图、包衣平均厚度值中的至少一种。
  17. 根据权利要求1所述的监控系统,其特征在于,还包括控制装置,所述控制装置根据所述包衣信息数据控制所述处理器的工作;所述控制装置还用于根据所述包衣信息数据控制所述包衣锅的工作。
  18. 一种包衣锅的监控方法,包括:
    发射初始光;
    将所述初始光分为参考光和样品光;
    使所述样品光会聚至所述包衣锅内的包衣处,所述包衣反射所述样品光形成包衣反射光;
    使所述参考光和所述包衣反射光发生干涉,形成干涉光;
    采集并分析所述干涉光,得到干涉光谱信号;
    处理所述干涉光谱信号,得到包衣信息数据。
  19. 根据权利要求18所述的监控方法,其特征在于,所述将所述初始光分为参考光和样品光的步骤之后包括:
    使所述参考光经由平面的反射镜反射,形成参考反射光;
    所述使所述参考光和所述包衣反射光发生干涉,形成干涉光的步骤为:
    使所述参考反射光和所述包衣反射光发生干涉,形成干涉光。
  20. 根据权利要求19所述的监控方法,其特征在于,所述参考反射光的光程可调节。
  21. 根据权利要求18所述的监控方法,其特征在于,所述包衣信息数据包括实时包衣截面数据、实时包衣厚度数据中的至少一种。
  22. 根据权利要求21所述的监控方法,其特征在于,所述处理所述干涉光谱信号,得到包衣信息数据的步骤包括:
    所述处理器根据所述包衣信息数据进行图像处理,得出包衣截面图、包衣厚度变化趋势图中、包衣平均厚度值的至少一种。
PCT/CN2018/082132 2018-04-08 2018-04-08 包衣锅的监控系统及监控方法 WO2019195955A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082132 WO2019195955A1 (zh) 2018-04-08 2018-04-08 包衣锅的监控系统及监控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082132 WO2019195955A1 (zh) 2018-04-08 2018-04-08 包衣锅的监控系统及监控方法

Publications (1)

Publication Number Publication Date
WO2019195955A1 true WO2019195955A1 (zh) 2019-10-17

Family

ID=68163485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082132 WO2019195955A1 (zh) 2018-04-08 2018-04-08 包衣锅的监控系统及监控方法

Country Status (1)

Country Link
WO (1) WO2019195955A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090818A (zh) * 2013-01-18 2013-05-08 北京农业信息技术研究中心 包衣种子质量测定的方法、装置及系统
CN103175837A (zh) * 2011-12-20 2013-06-26 法国圣戈班玻璃公司 一种检测基质内缺陷的方法及装置
US20150138564A1 (en) * 2013-11-15 2015-05-21 Samsung Electronics Co., Ltd. Non-destructive inspection system for display panel and method, and non-destructive inspection apparatus thereof
CN104848928A (zh) * 2015-05-27 2015-08-19 深圳市生强科技有限公司 基于宽谱光源干涉原理的高速振动测量系统及方法
CN205719967U (zh) * 2016-06-02 2016-11-23 吉林大学 一种光纤干涉法测折射率的装置
JP6207333B2 (ja) * 2013-10-07 2017-10-04 関西ペイント株式会社 膜厚測定方法および膜厚測定装置
US20180024077A1 (en) * 2016-07-20 2018-01-25 Novartis Ag Method for inspecting an ophthalmic lens using optical coherence tomography

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175837A (zh) * 2011-12-20 2013-06-26 法国圣戈班玻璃公司 一种检测基质内缺陷的方法及装置
CN103090818A (zh) * 2013-01-18 2013-05-08 北京农业信息技术研究中心 包衣种子质量测定的方法、装置及系统
JP6207333B2 (ja) * 2013-10-07 2017-10-04 関西ペイント株式会社 膜厚測定方法および膜厚測定装置
US20150138564A1 (en) * 2013-11-15 2015-05-21 Samsung Electronics Co., Ltd. Non-destructive inspection system for display panel and method, and non-destructive inspection apparatus thereof
CN104848928A (zh) * 2015-05-27 2015-08-19 深圳市生强科技有限公司 基于宽谱光源干涉原理的高速振动测量系统及方法
CN205719967U (zh) * 2016-06-02 2016-11-23 吉林大学 一种光纤干涉法测折射率的装置
US20180024077A1 (en) * 2016-07-20 2018-01-25 Novartis Ag Method for inspecting an ophthalmic lens using optical coherence tomography

Similar Documents

Publication Publication Date Title
EP2042856B1 (en) Optical rotary adapter and optical tomographic imaging system using the same
US8397573B2 (en) Photoacoustic apparatus
JP5314015B2 (ja) 光学的特性センサー
CN104412080B (zh) 迅速地接收液体吸收频谱用的装置和方法
WO2013128922A1 (ja) 音響波検出用プローブおよび光音響計測装置
Pelivanov et al. NDT of fiber-reinforced composites with a new fiber-optic pump–probe laser-ultrasound system
CN108775870B (zh) 包衣锅的监控方法及系统
US20080228033A1 (en) Optical Coherence Tomography Probe Device
JPH08184581A (ja) レーザ及び超音波に基づく材料の分析システム及びその方法
JP6933735B2 (ja) 検査対象物を測定するためのテラヘルツ測定装置及びテラヘルツ測定法
JP2012161610A (ja) 周波数領域oct
US10162114B2 (en) Reflective optical coherence tomography probe
JP2011127950A (ja) 液体薄膜化装置
JP2004163438A (ja) 光学的に透明な対象物の光学的および物理的厚さを測定する方法と装置
JP2010511883A (ja) マルチビーム干渉計用のマルチビーム源及びマルチビーム干渉計
JPH1151619A (ja) 厚さ測定装置
WO2019195955A1 (zh) 包衣锅的监控系统及监控方法
WO2003062800A2 (en) Portable system and method for determining one or more reflectance properties of a surface
US20140125988A1 (en) Optical imaging apparatus, optical imaging method, apparatus for setting characteristics of a light source, and method for setting characteristics of a light source
US9835436B2 (en) Wavelength encoded multi-beam optical coherence tomography
JP6917663B2 (ja) 光コヒーレンストモグラフィ装置用の光干渉ユニット
CN112763190B (zh) 一种oct系统灵敏度测量方法以及测量装置
CN110290454B (zh) 基于光学法的传声器高温校准系统
KR101398295B1 (ko) 초음파 측정용 레이저-간섭계 효율 증대 장치 및 방법
JP2002044773A (ja) 音響レンズおよび超音波送波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914501

Country of ref document: EP

Kind code of ref document: A1