WO2019194688A1 - Procédés de préparation de matériaux nanocomposites biopolymère-silice modifiés pour élimination d'arsenic provenant d'eau contaminée et compositions à base de ceux-ci - Google Patents
Procédés de préparation de matériaux nanocomposites biopolymère-silice modifiés pour élimination d'arsenic provenant d'eau contaminée et compositions à base de ceux-ci Download PDFInfo
- Publication number
- WO2019194688A1 WO2019194688A1 PCT/PH2019/000004 PH2019000004W WO2019194688A1 WO 2019194688 A1 WO2019194688 A1 WO 2019194688A1 PH 2019000004 W PH2019000004 W PH 2019000004W WO 2019194688 A1 WO2019194688 A1 WO 2019194688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanosilica
- iron
- beads
- mixture
- residue
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Definitions
- This invention relates to the use of nanomaterials from agricultural byproducts, particularly modified nanosilica, for arsenic remediation and removal from groundwater, and specifically to the methods of production of these materials.
- Arsenic can be found in soil, water and air (Hughes et al, 2011). The occurrence of arsenic in air can be attributed to some anthropogenic activities such as mining and smelting. Such activities may be also considered as the major cause of arsenic contamination in water. Mining activities produce tailings that may contain heavy metals like lead, cadmium and arsenic. Exposure to this toxic metal may also come from food and medicines. Human exposure may be through inhalation, ingestion and dermal contact (Singh et al., 2007).
- Nanotechnology which acts by adsorption and chemical precipitation .processes have the potential to address environmental concerns such as arsenic removal and are now being explored due to its high efficiency and low cost (Ahmed, 2011).
- the nanoscale versions are expected to be more sensitive and efficient as a consequence of their small sizes and greater surface areas. Reducing the amount of arsenic in a given water system down to the maximum contamination limit ⁇ 10 ppb) requires an adsorbent that has strong affinity for both As3+ and As5+ .
- the adsorbent should also have high surface area and accessible pores in order to facilitate effective arsenic adsorption (Sun et al., 2012).
- Rice hull ash has been utilized in the synthesis of zeolites due to the increasing popularity of indigenous materials as a green raw materials for zeolite synthesis as the material is known to have high silica content (Sari et al., 2009; Chiarakom et a/., 2006).
- the exterior of rice husk is mostly made up of silica.
- the composition of rice husk is 40-500;6 cellulose, 25- 30% lignin, 15-20% ash and 8-15% moisture.
- the range of its uses can be extended by incorporating various metal cations such as titanium, zinc or iron, varying the nature of the structure directing agents or varying the ratios of the precursor materials as well as the conditions for their preparation. Because of the presence of well-defined pores and channels, these materials are excellent host for gases, ions and organic molecules and can be used for environmental decontamination (Davis, 1992; Baelocher and Meier, 2001). Studies have shown that the addition of aluminum does not significantly increase the affinity of rice hull ash nanosilica for arsenic, on the other hand, addition of iron significantly improved the ability of the nanosilica to remove arsenic from contaminated water.
- Hydrogels may also be used for encapsulating and removing environmental pollutants. Hydrogels are superabsorbent, non-water-soluble polymers that are quite responsive to environmental stimuli such as pH, temperature, ionic strength, magnetic field or specific chemicals. Although current applications are largely in the area of drug delivery because of the ability to encapsulate large molecules, emerging applications include biosensors and materials for environmental cleanup. Technologies such as US201714491 1 (‘911) and CN106111071 (‘071) have made use of silica materials and modified silica derivatives to purify waters contaminated with heavy metals. ‘911 , in particular, has produced a sulfydryl modified magnetic mesoporous Si02 to reduce cadmium in waste water.
- CN 105540726 (726) on the other hand discloses a method for removing pentavalent arsenic from wastewater by adopting a magnetic chitosan/biochar composite material. These technologies however failed to disclose how to convert agricultural by-products such as rice hull ash to nanomaterials that will be utilized for the purification of water contaminated with heavy metals.
- the present invention describes a process of producing iron-modified nanosilica powder and iron-modified nanosilica aerogel beads to be used for removing arsenic from water. It makes use of rice hull as its source of nanosilica. The isolated silica was then modified to increase its affinity for arsenic. DETAILED DESCRIPTION OF THE INVENTION
- the process for producing the iron-modified nanosilica powder or beads is divided into two major stages - the preparation and purification of nanosilica from rice hull, and the preparation of iron-modified nanosilica powder or beads.
- the iron source (ferric sulfate or ferric chloride) was first dissolved in 2.5 N NaOH. The excess iron was then filtered out using a Buchner funnel with a Whatman#4 filter paper. The purified nanosilica sample was then added to the alkaline solution of the iron salt and the resulting sol was stirred for 10 hours. It was then titrated with 5N H2SO4 to reduce the pH to 7.5 - 8.5. The resulting mixture was then filtered through a Buchner funnel using a Whatman#4 filter paper. The residue was then washed with deionized water. It was air dried, then oven dried at 120 °C for 12 hours.
- Fe-Si Iron-Modified Silica
- Nanosilica beads are placed in cartridges then installed/attached to a water source
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Sorption (AREA)
Abstract
La présente invention concerne des procédés de préparation de poudre de nanosilice modifiée par du fer et de billes à partir d'écorce de riz. La composition résultante est utilisée en tant qu'adsorbants de métaux lourds dans l'élimination de l'arsenic de l'eau contaminée. Ces matériaux permettent la réhabilitation d'eaux souterraines contaminées par l'arsenic à l'aide de nanomatériaux accessibles localement et durables.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PH12018050163 | 2018-04-06 | ||
PH12018050163 | 2018-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019194688A1 true WO2019194688A1 (fr) | 2019-10-10 |
Family
ID=66669000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/PH2019/000004 WO2019194688A1 (fr) | 2018-04-06 | 2019-04-03 | Procédés de préparation de matériaux nanocomposites biopolymère-silice modifiés pour élimination d'arsenic provenant d'eau contaminée et compositions à base de ceux-ci |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019194688A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111330555A (zh) * | 2020-03-13 | 2020-06-26 | 天津迪沃特生物电子科技有限公司 | 一种具有磁性的核壳式介孔硅胶材料及其制备方法和应用 |
WO2021101394A3 (fr) * | 2019-11-20 | 2021-07-01 | University Of The Philippines Los Baños | Matériaux de silice nanostructurés modifiés pour élimination de métaux lourds d'eau contaminée et leurs procédés de production |
CN117427481A (zh) * | 2023-08-24 | 2024-01-23 | 葫芦岛康达环保工贸有限公司 | 一种基于纳米二氧化硅改性的除臭剂及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10013276A1 (de) * | 1999-06-18 | 2000-12-21 | Agency Ind Science Techn | Poröse Siliziumdioxidkugeln und Verfahren zu deren Herstellung |
CN105540726A (zh) | 2016-03-08 | 2016-05-04 | 湖南大学 | 一种磁性壳聚糖/生物炭复合材料去除废水中五价砷的方法 |
CN104475011B (zh) * | 2014-12-15 | 2016-08-17 | 江南大学 | 一种脱除食用油中黄曲霉毒素的磁性介孔二氧化硅吸附剂的制备方法 |
CN106111071A (zh) | 2016-08-04 | 2016-11-16 | 江南大学 | 一种消减废水中重金属镉的巯基改性磁性介孔SiO2的制备方法 |
US20170144911A1 (en) | 2015-10-30 | 2017-05-25 | Process Research Management Inc. | Removal of arsenic from contaminated aqueous solutions |
US20170304807A1 (en) * | 2014-11-26 | 2017-10-26 | IFP Energies Nouvelles | Method for preparation of a fischer-tropsch catalyst with vapor treatment |
-
2019
- 2019-04-03 WO PCT/PH2019/000004 patent/WO2019194688A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10013276A1 (de) * | 1999-06-18 | 2000-12-21 | Agency Ind Science Techn | Poröse Siliziumdioxidkugeln und Verfahren zu deren Herstellung |
US20170304807A1 (en) * | 2014-11-26 | 2017-10-26 | IFP Energies Nouvelles | Method for preparation of a fischer-tropsch catalyst with vapor treatment |
CN104475011B (zh) * | 2014-12-15 | 2016-08-17 | 江南大学 | 一种脱除食用油中黄曲霉毒素的磁性介孔二氧化硅吸附剂的制备方法 |
US20170144911A1 (en) | 2015-10-30 | 2017-05-25 | Process Research Management Inc. | Removal of arsenic from contaminated aqueous solutions |
CN105540726A (zh) | 2016-03-08 | 2016-05-04 | 湖南大学 | 一种磁性壳聚糖/生物炭复合材料去除废水中五价砷的方法 |
CN106111071A (zh) | 2016-08-04 | 2016-11-16 | 江南大学 | 一种消减废水中重金属镉的巯基改性磁性介孔SiO2的制备方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021101394A3 (fr) * | 2019-11-20 | 2021-07-01 | University Of The Philippines Los Baños | Matériaux de silice nanostructurés modifiés pour élimination de métaux lourds d'eau contaminée et leurs procédés de production |
CN111330555A (zh) * | 2020-03-13 | 2020-06-26 | 天津迪沃特生物电子科技有限公司 | 一种具有磁性的核壳式介孔硅胶材料及其制备方法和应用 |
CN117427481A (zh) * | 2023-08-24 | 2024-01-23 | 葫芦岛康达环保工贸有限公司 | 一种基于纳米二氧化硅改性的除臭剂及其制备方法 |
CN117427481B (zh) * | 2023-08-24 | 2024-04-09 | 葫芦岛康达环保工贸有限公司 | 一种基于纳米二氧化硅改性的除臭剂及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sankaran et al. | Feasibility assessment of removal of heavy metals and soluble microbial products from aqueous solutions using eggshell wastes | |
El Bouraie et al. | Adsorption of phosphate ions from aqueous solution by modified bentonite with magnesium hydroxide Mg (OH) 2 | |
Gang et al. | As (III) removal using an iron-impregnated chitosan sorbent | |
EP1974806B1 (fr) | Procédé de purification d'eau | |
WO2019194688A1 (fr) | Procédés de préparation de matériaux nanocomposites biopolymère-silice modifiés pour élimination d'arsenic provenant d'eau contaminée et compositions à base de ceux-ci | |
Unuabonah et al. | Disinfection of water with new chitosan-modified hybrid clay composite adsorbent | |
Mahmoud et al. | Enhanced biosorptive removal of cadmium from aqueous solutions by silicon dioxide nano-powder, heat inactivated and immobilized Aspergillus ustus | |
CN106007006B (zh) | 一种用于重金属有机废水的微生物水处理剂 | |
Suteu et al. | The seashell wastes as biosorbent for reactive dye removal from textile effluents | |
WO2014070959A1 (fr) | Composition d'adsorbant comprenant un support revêtu avec des nanoparticules à valence zéro, procédé de fabrication de celle-ci et procédé pour l'élimination d'ions métalliques toxiques | |
AU2011254638B2 (en) | Adsorbing agent containing titanium and iron compounds | |
CN110090615B (zh) | 一种高价态金属铁氧体吸附剂的制备方法与应用 | |
Guerrero et al. | Effect of biocomposite production factors on the development of an eco-friendly chitosan/alginate-based adsorbent with enhanced copper removal efficiency | |
AL-Darwish et al. | Kinetics of fluoride adsorption onto native and Mg (OH) 2-amended limestone | |
CN111250065A (zh) | 一种edta修饰贻贝壳粉的制备方法及其应用 | |
AU755730B2 (en) | A novel agropolymer used for purification of polluted water or contaminated water containing metal or ions and a method of producing the agropolymer | |
Miljkovic et al. | Remediation of arsenic contaminated water by a novel carboxymethyl cellulose bentonite adsorbent. | |
WO2013032419A2 (fr) | Procédés pour le traitement d'eaux résiduaires utilisant des sorbants boues rouges sulfurées | |
Heydari et al. | Adsorption of malachite green from aqueous solution by nanozeolite clinoptilolite: Equilibrium, kinetic and thermodynamic studies | |
Thacker et al. | Biopolymer-based fly ash-activated zeolite for the removal of chromium from acid mine drainage | |
JP6076264B2 (ja) | リン酸セルロース粉末生成物およびその製造方法、ならびに汚染物質を水溶液から除去する用途 | |
WO2021101394A2 (fr) | Matériaux de silice nanostructurés modifiés pour élimination de métaux lourds d'eau contaminée et leurs procédés de production | |
CN117486333B (zh) | 一种聚氯化铝复合水处理剂及其制备方法和应用 | |
Chikhi et al. | A novelhybrid bio-system for wastewater treatment using Algerian agricultural wastes | |
Sinad et al. | Immobilization of Phycocyanin in a Rice Hull Nanosilica/Calcium-Alginate Bead System for Cadmium Ion Remediation. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19727114 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19727114 Country of ref document: EP Kind code of ref document: A1 |