WO2019194468A1 - Microwave plasma generator for deposition process exhaust gas trap and deposition process exhaust gas trap comprsing same - Google Patents

Microwave plasma generator for deposition process exhaust gas trap and deposition process exhaust gas trap comprsing same Download PDF

Info

Publication number
WO2019194468A1
WO2019194468A1 PCT/KR2019/003616 KR2019003616W WO2019194468A1 WO 2019194468 A1 WO2019194468 A1 WO 2019194468A1 KR 2019003616 W KR2019003616 W KR 2019003616W WO 2019194468 A1 WO2019194468 A1 WO 2019194468A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer conductor
exhaust gas
plasma
deposition process
process exhaust
Prior art date
Application number
PCT/KR2019/003616
Other languages
French (fr)
Korean (ko)
Inventor
김대운
장현석
이성은
이봉주
Original Assignee
(주)그린사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)그린사이언스 filed Critical (주)그린사이언스
Publication of WO2019194468A1 publication Critical patent/WO2019194468A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Definitions

  • the present invention relates to a microwave plasma apparatus of a deposition process exhaust gas trap and a deposition process exhaust gas trap comprising the same, and more particularly, in the semiconductor and display deposition process exhaust gas line in the process of fluctuations in pressure and flow rate without a matching box
  • the present invention relates to a microwave plasma generating device of a deposition process exhaust gas trap and a deposition process exhaust gas trap including the same, which enables stable plasma trap operation, and enables a long time operation due to a reduced maintenance frequency.
  • Deposition processes are being performed on components in various fields such as semiconductors and display components.
  • the vapor deposition process is a process of attaching a metal or a polymer to vapor on various surfaces by attaching it to the surface of a deposit (target), and is widely applied to a process of forming an insulating layer, a conductive layer, a chemical protective layer, or the like.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • a CVD method is mainly performed, and in the case of ALD, a method of forming a thin film by supplying reaction materials in a separated state and depositing particles formed by chemical reaction between reaction gases on the surface of a deposit (target), Although the growth rate of the thin film is slow, the thin film coating property is better than the PVD or CVD deposition method, and thus the application of the thin film thickness is easily controlled.
  • unused excess gas and new molecules generated in the deposition process are exhausted from the process gases (process gas containing the deposition component and the components necessary for deposition) during deposition processes such as CVD and ALD processes.
  • the exhaust gas is discharged into a third phase at low temperature and low energy after the deposition process, and the third phase is in the form of a highly viscous organic substance having conductivity ( ⁇ several hundred u ⁇ ), such as a pump for exhaust.
  • Periodic maintenance is compulsory because there is a risk of mechanical failure or malfunction due to deposition of sticky state with various mechanical parts or accumulation of particles to reduce the driving force of mechanical parts and to block the inner wall of exhaust gas line.
  • hot and cold traps have been generally used to treat the exhaust gases generated in the deposition process, but they do not perform satisfactory trap functions and require frequent maintenance and replacement of hot and cold traps.
  • plasma is used to make microparticles by breaking intermolecular bonding (bonding), or to react with a separate gas to decompose or combine to form a viscous and very small powder particle and discharge it.
  • the trap has been studied.
  • Inductively coupled plasma traps (10), microwave plasma traps (70), and the like have been studied.
  • the reactor 10 for inductively coupled plasma traps requires a reactor made of a dielectric such as quartz 15, and a reactor in which an exhaust gas or a deposition material reacted in the exhaust gas is formed of a dielectric such as quartz. It can be deposited on (15) to inhibit the induction of the electric field to suppress plasma generation.
  • the conventional inductively coupled plasma trap reactor 10 may be composed of an RF coil 17 for generating an induction electric field, a reactor 15 formed of quartz, and the like.
  • the reactor 15 is surrounded by a coil generating an induction electric field, and the electric field is transmitted through a dielectric such as quartz to generate plasma therein.
  • the plasma for treating the exhaust gas is surrounded by a dielectric such as quartz, and has a structural limit in which a product such as powder formed by the reaction is deposited in the reactor 15.
  • the deposited film thus unbalances the electric field, and in particular, in the case of the exhaust gas containing the metal component, the deposited film may prevent the generation of the electric field into the reactor to suppress plasma generation.
  • the torch used in the microwave plasma trap may be provided with a waveguide 60, a reactor 75, and quartz 80 through which electromagnetic waves are transmitted.
  • the reactor 75 is provided to vertically penetrate the waveguide 60, and a space for generating plasma is formed therein.
  • the portion where the waveguide 60 and the reactor meet is opened, and quartz 80 is provided at the position.
  • the quartz 80 functions to block the inflow of gas while transmitting microwaves, and the quartz 80 separates the microwave delivery region and the plasma region.
  • Plasma gas and exhaust gas are introduced from the upper part of the reactor after the deposition process, and the treatment by plasma is performed in the reactor.
  • TiCl 4 when TiCl 4 is applied as a process gas of the deposition process, Ti 2 (NH 2 ), TiCl 4 4 (NH 3 ), Ti, TiN powder, etc. are generated by reacting with ammonia in the reactor.
  • the position where the plasma is generated is generated near the quartz 80, and the precipitated Ti 2 (NH 2 ), TiCl 4 4 (NH 3 ), or Ti, TiN adheres to the surface of the inner circumferential surface of the quartz 80 to form a metal component. This results in the formation of a film, which can cause arcing to damage quartz or prevent the transmission of microwaves from the waveguide, resulting in the loss of plasma.
  • the conventional plasma plasma equipment such as RF, MF, Microwave, etc. has a characteristic that plasma is generated only at a fixed pressure, but in actual equipment, an environment in which the pressure change in the equipment is severely generated is created, and thus, the conventional vacuum plasma equipment is used.
  • the use of matching boxes is absolutely necessary for this to work.
  • the present invention is to solve the above problems, the contamination of the dielectric, such as quartz is prevented or suppressed to increase the maintenance cycle increases the continuous operation time of the deposition equipment can be improved productivity and maintenance costs can be reduced, matching It is a problem to provide a microwave plasma generator for a deposition process exhaust gas trap and a deposition process exhaust gas trap including the same, which can be generated and maintained in a stable plasma without a box, so that it can be applied even in a process having a large variation in pressure and flow rate. to be.
  • the outer conductor is coupled to the waveguide through which the microwave flows, the plasma is formed therein, the outer conductor through which the plasma gas flows, and from the waveguide Quartz transmitting the microwaves flowing into the outer conductor, the outer conductor is disposed coaxially with the outer conductor, the inner conductor is disposed at the rear side of the deposition process and includes an inner conductor into which exhaust gas discharged after deposition is introduced.
  • a microwave plasma generator of a deposition process exhaust gas trap is provided.
  • the quartz may be provided between the two ends on the inner circumferential surface of the outer conductor, or may be provided inside the waveguide to prevent the process gas from flowing into the waveguide.
  • An end of the inner conductor may be formed at a position spaced apart from the quartz in the flow direction of the plasma gas.
  • An end of the inner conductor may be located inside the outer conductor.
  • Plasma gas flowing into the outer conductor may form swirl in the outer conductor.
  • a reaction gas for separating a metal element from the exhaust gas may be introduced into the outer conductor or the inner conductor.
  • the reaction gas may include hydrogen.
  • the quartz may be disposed at a portion where the outer conductor and the waveguide are coupled to each other.
  • the quartz may be disposed in the waveguide at a position spaced apart from the outer conductor.
  • the metal plate may further include a metal plate that seals between the outer conductor and the inner conductor at an upper side of the portion where the outer conductor communicates with the waveguide.
  • the metal plate may be provided to adjust its position in the longitudinal direction of the outer conductor.
  • the outer conductor may be provided at the outer conductor between the point where the outer conductor and the waveguide are coupled and the end of the outer conductor, and may further include an inlet for injecting the plasma gas or the reactive gas between the outer conductor and the inner conductor.
  • the deposition unit for depositing a thin film on the workpiece
  • the microwave plasma torch for the deposition process exhaust gas trap for converting at least a portion of the exhaust gas discharged from the deposition unit into fine powder
  • a deposition process exhaust gas trap provided with a microwave plasma torch including a pump for pumping exhaust gas discharged from the evaporation unit, and a powder collector for collecting particles in the exhaust gas via the microwave plasma torch of the deposition process exhaust gas trap.
  • the contamination of the quartz of the plasma torch is prevented to increase the continuous operation time, improve the productivity, maintenance cost This has the effect of being saved.
  • 1 and 2 are cross-sectional views showing a conventional plasma torch
  • FIG. 3 is a cross-sectional view showing a microwave plasma generator of the deposition process exhaust gas trap according to an embodiment of the present invention
  • FIG. 4 is a cross-sectional view illustrating a plasma reaction occurring in the plasma generator of FIG. 3;
  • FIG. 7 is a sectional view showing a plasma generating apparatus according to another embodiment of the present invention.
  • FIG. 8 is a sectional view showing a plasma generating apparatus according to another embodiment of the present invention.
  • FIG. 9 is a view illustrating a deposition process exhaust gas trap equipped with a microwave plasma generator of the present invention.
  • 10 to 12 are photographs of the plasma discharge when the plasma power of the plasma generating apparatus according to an embodiment of the present invention is 0.7kW, 1.2kW, 1.4kW;
  • FIG. 13 and 14 are photographs of the powder deposited when the plasma power of the plasma generating apparatus according to an embodiment of the present invention is 1.4kW;
  • 15 and 16 are drafts and tables showing the spectral and component weight ratios of the precipitated powders.
  • Microwave plasma generator 100 of the deposition process exhaust gas trap according to an embodiment of the deposition process exhaust gas trap comprising the same and the deposition process exhaust gas trap of the present invention (hereinafter, for convenience of description
  • the plasma generator may include an outer conductor 110, quartz 130, and an inner conductor 120, as shown in FIG. 3.
  • the outer conductor 110 may be coupled to the waveguide 60, may be grounded, a space may be formed therein, and plasma gas may be introduced into the inner space.
  • the waveguide 60 is provided with a magnetron for oscillating the microwave (M / W) and can transmit the microwave (M / W) to the inside of the outer conductor (110).
  • the microwave (M / W) does not penetrate the metal, etc. by the skin effect (skin effect)
  • the outer conductor 110 is generally made of a material such as a metal having excellent high temperature heat resistance, the outer conductor In order for the microwave (M / W) to flow into the inside of the 110, a portion where the outer conductor 110 and the waveguide 60 are coupled is opened.
  • the opened portion is closed by quartz 130 capable of transmitting microwave (M / W).
  • the point where the outer conductor 110 is coupled to the waveguide 60 and opened is between both ends of the outer conductor 110, and thus, the quartz 130 is also both ends of the outer conductor 110. It may be provided between.
  • the inner conductor 120 may be made of a material such as a metal through which the microwave (M / W) does not penetrate, and may be disposed coaxially with the outer conductor 110 in the outer conductor 110.
  • Plasma gas may flow into the outer conductor 110, and exhaust gas exhausted after the deposition process may flow into the inner conductor 120.
  • the plasma gas may be a gas for generating a plasma through the microwave or to stabilize the generated plasma.
  • Reaction gas may be introduced into the outer conductor 110 or the inner conductor 120.
  • the reaction gas may flow into the outer conductor 110 together with the plasma gas, or may flow into the inner conductor 120 together with the exhaust gas.
  • the plasma gas, the exhaust gas, and the reaction gas all have the same flow direction.
  • it will be described with an example having a flow direction flowing from the upper side and discharged downward based on the drawings.
  • the position of the end of the inner conductor 120 may be formed at a position spaced apart from the quartz 130 in the flow direction of the plasma gas in the outer conductor 110.
  • the end of the inner conductor 120 may be formed at the same position as the end of the outer conductor 110.
  • the plasma gas flowing into the outer conductor 110 may form a swirl in the outer conductor 110.
  • the plasma gas does not necessarily cause swirl, but the plasma gas may prevent the inner conductor 120 from being overheated from heat generated by the plasma.
  • a separate mechanism such as a guide (not shown), which is supplied in the direction of generating swirl when the plasma gas is supplied or may cause swirl on the inner circumferential surface of the outer conductor 110 or the outer circumferential surface of the inner conductor 120, is provided.
  • a guide not shown
  • the plasma gas may include an inert gas such as argon or nitrogen.
  • reaction gas may include hydrogen (H 2 ) or ammonia (NH 3 ).
  • the exhaust gas may be exhaust gas discharged after the deposition process.
  • An example is a process gas containing TiCl 4 discharged during the TiN deposition process using the ALD deposition method.
  • the process gas may include TiN 4 , TiN, HCl, N, NH 3 , TiH, and other components.
  • the present invention is not limited to the ALD deposition process, and may be applied to other deposition processes, and may be applied to exhaust gases of processes other than the deposition process.
  • the present invention is not necessarily limited to the treatment of TiCl 4 , and may be applied to the treatment of other components such as NiCl 2, LiCl, SiCl 4, and the like.
  • the microwaves (M / W) are introduced into the outer conductor 110 through the waveguide 60 and the quartz 130, and the outer conductor 110 may be introduced into the outer conductor 110.
  • Plasma gas and reaction gas are introduced through the upper side.
  • the plasma 210 may be formed by the microwave (M / W) introduced into the outer conductor 110 and the plasma gas and the reactive gas.
  • the plasma 210 formed at this time is referred to as a non-particle plasma 210 in which particles are not generated since the plasma is formed by gases.
  • the introduced microwave (M / W) does not penetrate the inner conductor 120, the plasma reaction does not occur inside the inner conductor 120, the non-particle plasma 210 is the outer conductor 110 ) And the inner conductor 120.
  • the length of the inner conductor 120 by appropriately adjusting the length of the inner conductor 120, the strength of the electric field generated from the microwave can be strongly and weakly formed in the end region of the inner conductor 120. Accordingly, the plasma 220 may be generated at the end region of the inner conductor 120. At this time, the length of the inner conductor 120 for generating a plasma in the end region of the inner conductor 120 may be derived by a person skilled in the art through repeated experiments.
  • the plasma is formed in the region 210 in which the quartz 130 is provided and the region 220 formed in the end of the inner conductor 120 is formed separately. As shown in FIG. 1, the plasma may be separated and formed, or may be formed without being separated and between the outer conductor 110 and the inner conductor 120 and the lower end region of the inner conductor 120 together.
  • the metal compound precursor does not flow into the gas plasma region 210 generated by the gas such as argon, nitrogen, or hydrogen, particles such as powder are not formed, so that powder or the like accumulates in the quartz 130. I never do that.
  • the exhaust gas introduced into the inner conductor 120 is not irradiated with microwaves (M / W) in the inner conductor 120, a plasma reaction does not occur, and is formed at the end of the inner conductor 120. Flows into the plasma region 220 and is processed by the plasma.
  • particle plasma 220 which is discharged from the end of the inner conductor 120 This is because the components contained in the exhaust gas are dissociated by the plasma 220 to generate particles such as metal powder.
  • TiCl 4 is included in the component contained in the exhaust gas.
  • TiCl 4 is reacted with the reaction gas, NH 3 shown in Figure 6, it is a Ti2NH 2HCl 2 and can be a Ti2NH 2 precipitated as powder 230 form.
  • the particle size of the powder (230) precipitated due to the high electron density and radical (radical) is nanoscale very dense particle size Can be represented.
  • the position where the powder 230 is deposited is the end of the inner conductor 120, which is spaced apart from the quartz 130, so that the phenomenon that the precipitated powder 230 accumulates in the quartz 130 Can be reduced.
  • the powder 230 deposited by the flow of the plasma gas may be prevented from scattering toward the quartz 130.
  • the plasma gas may also perform a cooling function of the quartz 130.
  • the precipitated powder 230 may be discharged to the outside of the outer conductor 110 and the inner conductor 120 by the flow of gas.
  • the shape and position of the quartz can be changed.
  • the quarts 130 are provided in a cylindrical shape at the portion where the waveguide 60 and the outer conductor 110 are coupled to each other, but according to the present embodiment, as shown in FIG. Quartz 132 may be provided in the waveguide 60. In this case, the quartz 132 may be formed at a position spaced apart from the opening where the waveguide 60 and the outer conductor 110 are coupled to the magnetron 20.
  • the quartz 132 may be further spaced apart from the formation position of the particle plasma 220, so that the pollution prevention effect may be further increased, and the quartz 132 may be formed in a flat plate shape rather than a cylindrical shape. Since the volume of the quartz is not only small but also the formation of the quartz can be easier, the manufacturing cost of the quartz can be reduced.
  • the upper side of the outer conductor 110 may be further provided with a metal plate 112 for shielding the microwave transfer to the upper side of the outer conductor (110).
  • the metal plate 112 and the outer conductor 110 and the waveguide to shield the microwaves transmitted to the inside of the outer conductor 110 through the waveguide 60 to the upper side of the outer conductor 110.
  • the upper side of the communicating portion of 60 it may be provided to seal between the outer conductor 110 and the inner conductor 120.
  • the microwaves transmitted to the inside of the outer conductor 110 through the waveguide 60 are prevented from being vertically dispersed inside the outer conductor 110, and are concentrated toward the end of the inner conductor 120 to be concentrated on the inner conductor.
  • An electric field may be more strongly formed at the end side of the 120.
  • the position where the non-particle plasma 210 and the particle plasma 220 are formed may be adjusted by adjusting the position of the metal plate 112 up and down.
  • the position where the non-particle plasma 210 and the particle plasma 220 are formed may be adjusted by providing the metal plate 112 to adjust the position in the longitudinal direction of the outer conductor 110.
  • an injection hole 114 for injecting the plasma gas or the reaction gas between the outer conductor 110 and the inner conductor 120 may be formed.
  • the inlet 114 may be formed on the outer circumferential surface of the outer conductor 110 between the point where the outer conductor 110 and the waveguide 60 are coupled and the end of the outer conductor 110, the inlet 114
  • the plasma gas and the reactant gas introduced through the gas discharge the plasma gas and the reaction gas toward the normal direction of the inner circumferential surface of the outer conductor 110 to cause a swirl between the outer conductor 110 and the inner conductor 120. Can be.
  • the plasma gas and the reaction gas flowing through the inlet 114 are introduced at the height between the height of the point connected to the waveguide 60 of the outer conductor 110 and the end of the inner conductor 120 and the outer
  • the powder 230 that is precipitated by flowing to the end side of the inner conductor 120 may be prevented from scattering toward the quartz 132 side.
  • the quartz 132 may be disposed in a cylindrical shape at the portion where the waveguide 60 and the outer conductor 110 are coupled to each other, or may be disposed in the form of a plate in the waveguide 60.
  • a deposition process exhaust gas trap equipped with the microwave plasma generator of the present invention will be described.
  • the deposition process exhaust gas trap provided with the microwave plasma generating apparatus may include a plasma generating apparatus 100, a pump 200, and a powder collector 300 as shown in FIG. 9. .
  • the plasma generating apparatus 100 may be applied to the plasma generating apparatus 100 of the above-described embodiments, and at least a part of the components included in the exhaust gas discharged from the deposition unit 50 for depositing a thin film on the workpiece may be fine. Can be converted to nano-sized powder.
  • the deposition unit 50 for depositing a thin film on the workpiece will be described as an example of the deposition unit for depositing TiN on the workpiece as an ALD deposition process.
  • TiCl 4 may be vaporized in an evaporator 10 to deposit TiN, and may be mixed with nitrogen (N 2) and supplied to the TiN deposition chamber 20.
  • N2 and NH3 may be supplied to the TiN deposition chamber 20.
  • the exhaust gas may contain a large amount of TiCl4.
  • Exhaust gas containing TiCl 4 to be discharged may be introduced into the inner conductor 120 of the plasma generator 100.
  • N 2 and NH 3 gases supplied to the TiN deposition process may be supplied to the outer conductor 110 of the plasma generator 100.
  • branch passages 32 and 42 branching from the supply passages 30 and 40 of the respective N2 and NH3 to the outer conductor 110 of the plasma generator 100 may be formed, and each branch passage 32 and 42 may be formed.
  • the plasma generating apparatus 100 may convert and discharge components such as TiCl 4 contained in the inflow exhaust gas into nano-scale powder having no viscosity.
  • the pump 200 may be provided at the rear end of the plasma generator 100.
  • the pump 200 is a component for pumping the exhaust gas discharged from the deposition unit 50.
  • the plasma generator 100 is provided at the front end of the pump 200 to convert the components contained in the exhaust gas flowing into the pump 200 into a powder of nano-scale without viscosity, the machine of the pump 200 It minimizes wear and prevents excessive deposition of components from sticking to the parts of the pump 200, thereby preventing damage to the pump 200, which can increase the service life of the pump 200, and also maintain a long maintenance cycle. Can be.
  • the powder collector 300 may be a component located at the rear end of the pump 200 to collect and remove the powder 230 contained in the exhaust gas discharged from the pump 200.
  • a scrubber 400 may be further provided on the rear side of the powder collector 300.
  • the scrubber 400 may be a component for removing various harmful substances (eg, HCl) included in the exhaust gas from which the powder 230 is removed.
  • a sampling port 500 may be provided between the powder collector 300 and the scrubber 400.
  • a sample of the exhaust gas before entering the scrubber 400 may be taken through the sampling port 500, and the analysis of the sample may detect whether the exhaust gas contains a toxic hydrogen or the like substance. Can be.
  • the sampling port 500 is provided with a sensor for detecting a toxic substance may measure the presence and concentration of the toxic substance in real time.
  • the microwave plasma generating apparatus is capable of stable plasma discharge for a long time even in a process in which pressure and flow rate change are severe.
  • the conventional plasma generators (ICP, CCP, ECR microwave plasma generator) is dependent on the matching box, it is not applicable in the process where the pressure / flow rate change faster than the communication speed with the matching box
  • the microwave flame generating apparatus according to the present invention is capable of discharging plasma without using a matching box.
  • plasma can be continuously generated in a gas flow state in a pressure range of about several mmTorr to several tens of Torr. This is because an electric field of more than a threshold voltage for plasma discharge is always formed between the outer conductor 110 and the inner conductor 120 at a pressure and a gas flow of several mmTorr to several tens of Torr.
  • the microwave plasma generating apparatus and the exhaust gas trap applying the same can be configured even in a process where the pressure fluctuation is severe.
  • the plasma power applied in this experiment is 0.7kW and 1.4kW.
  • the pressure in the chamber where the plasma generator is located before the process gas is inserted is 0.02 Torr and the process gas is injected.
  • the working pressur which is the pressure of the chamber where the plasma generator is located, is 28 Torr and the flow rates of nitrogen (N 2 ) and ammonia (NH 3 ) are 75lpm and 2lpm, respectively.
  • N 2 nitrogen
  • NH 3 ammonia
  • the deposition material TiCl 4 was tested at a pressure of 250mmHg heated to approximately 100 degrees Celsius.
  • the plasma discharge is shown in FIG. 10 when the plasma power is 0.7 kW, and the plasma is discharged at 1.2 kW in FIG.
  • the state of plasma discharge is shown in FIG. As shown in Figure 10 to 12, it can be seen that the plasma is generated stably even in a large pressure fluctuation environment.
  • Figure 13 is a photograph showing the precipitated powder generated when the plasma power (Plasma Power) is 1.4kW
  • Figure 14 is an enlarged photograph of the powder of FIG. The powder was taken from the rear of the pump of FIG. 9, and as can be seen from the photograph, it can be seen that there is no risk of generating a sufficiently fine powder and causing mechanical fixing to the pump.
  • Figures 14 and 15 are the results of analyzing the spectra and weight ratio of the components of the powder. As can be seen from Figure 14 and 15, the weight ratio of Ti of the precipitated powder reaches 61.37 Wt% it can be seen that there is no problem in commercialization.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

The present invention relates to a microwave plasma generator with improved productivity, which can be operated for a long time due to extended maintenance cycles, of a deposition process exhaust gas trap, and to a deposition process exhaust gas trap comprising same. The microwave plasma generator of a deposition process exhaust gas trap, according to an embodiment of the present invention, comprises: an outer conductor which is coupled to a waveguide into which microwaves are introduced, which has a space in which a plasma is formed, and into which a plasma gas is introduced; quartz for transmitting the microwaves introduced to the outer conductor from the waveguide; and an inner conductor which is disposed coaxially with the outer conductor inside the outer conductor, and is disposed at the rear side of the deposition process to introduce the exhaust gas after deposition.

Description

증착공정 배기가스 트랩용 마이크로 웨이브 플라즈마 발생 장치 및 이를 포함하는 증착공정 배기가스 트랩Microwave plasma generator for deposition process exhaust gas trap and deposition process exhaust gas trap comprising same
본 발명은 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 장치 및 이를 포함하는 증착공정 배기가스 트랩에 관한 것으로서, 보다 상세하게는 반도체 및 디스플레이 증착공정 배기가스 라인 중 압력 및 유량 변화가 심한 공정에서도 메칭박스 없이 안정적인 플라즈마 트랩의 운전이 가능하며, 유지보수횟수가 줄어들어 장시간 가동이 가능하여 생산성이 향상된 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생 장치 및 이를 포함하는 증착공정 배기가스 트랩에 관한 것이다.The present invention relates to a microwave plasma apparatus of a deposition process exhaust gas trap and a deposition process exhaust gas trap comprising the same, and more particularly, in the semiconductor and display deposition process exhaust gas line in the process of fluctuations in pressure and flow rate without a matching box The present invention relates to a microwave plasma generating device of a deposition process exhaust gas trap and a deposition process exhaust gas trap including the same, which enables stable plasma trap operation, and enables a long time operation due to a reduced maintenance frequency.
반도체나 디스플레이 부품 등 여러 분야의 부품에 증착공정이 수행되고 있다. Deposition processes are being performed on components in various fields such as semiconductors and display components.
이러한 증착공정은 금속이나 고분자 등을 여러가지 수단으로 증기로 만들어 피증착물(타겟)의 표면에 부착시키는 공정으로서, 절연층이나 통전층, 또는 화학적 방어층 등을 형성하는 과정에 많이 적용된다.The vapor deposition process is a process of attaching a metal or a polymer to vapor on various surfaces by attaching it to the surface of a deposit (target), and is widely applied to a process of forming an insulating layer, a conductive layer, a chemical protective layer, or the like.
이러한 증착공정은 CVD(Chemical Vapor Deposition) 및 ALD(Atomic Layer Deposition)등 여러가지 방법이 제안되고 있다.Various methods such as chemical vapor deposition (CVD) and atomic layer deposition (ALD) have been proposed for this deposition process.
일반적으로 CVD 방법이 주로 수행되고 있으며, ALD의 경우, 반응원료를 각각 분리한 상태로 공급하여 반응가스간 화학반응으로 형성된 입자를 피증착물(타겟)의 표면에 증착하여 박막을 형성하는 방법으로서, 박막성장속도가 느리나, PVD나 CVD 증착법보다 박막도포성이 좋고, 이를 통한 미세한 박막두께의 조절이 용이한 장점이 있어 적용이 확대되고 있다. In general, a CVD method is mainly performed, and in the case of ALD, a method of forming a thin film by supplying reaction materials in a separated state and depositing particles formed by chemical reaction between reaction gases on the surface of a deposit (target), Although the growth rate of the thin film is slow, the thin film coating property is better than the PVD or CVD deposition method, and thus the application of the thin film thickness is easily controlled.
한편, CVD 및 ALD 공정 등의 증착공정 시 투입된 공정가스(증착성분 및 증착에 필요한 성분이 함유된 공정가스)중 사용되지 않은 여분의 가스와 증착공정에서 생긴 새로운 분자 등은 외부로 배기되는데, 이렇게 배출되는 배기가스는 증착공정이후에 낮은 온도와 적은 에너지로 제3의 상으로 변화되며, 상기 제3의 상은 전도성(~수백 uΩ)을 갖고 점도성이 높은 유기물 형태로서, 배기를 위한 펌프 등의 각종 기계부품에 점성을 가진 끈적한 상태로 증착되거나 입자가 쌓여 기계부품의 구동력을 떨어뜨리고 배기가스 라인의 내벽을 막아 기계적인 고장이나 오작동이 발생시킬 우려가 있어 주기적인 유지보수가 강요된다.Meanwhile, unused excess gas and new molecules generated in the deposition process are exhausted from the process gases (process gas containing the deposition component and the components necessary for deposition) during deposition processes such as CVD and ALD processes. The exhaust gas is discharged into a third phase at low temperature and low energy after the deposition process, and the third phase is in the form of a highly viscous organic substance having conductivity (~ several hundred uΩ), such as a pump for exhaust. Periodic maintenance is compulsory because there is a risk of mechanical failure or malfunction due to deposition of sticky state with various mechanical parts or accumulation of particles to reduce the driving force of mechanical parts and to block the inner wall of exhaust gas line.
한편, 이러한 증착공정에서 발생하는 배출가스를 처리하기 위해 일반적으로 Hot and cold 트랩을 사용하여 왔으나, 만족할 만한 수준의 트랩기능을 수행하지 못하고 있으며, Hot and cold 트랩의 잦은 유지보수 및 교체가 필요하다. 또한, 트랩성능을 보완하기 위해 플라즈마를 사용하여 분자간 본딩(bonding)을 끊어 미세입자화 하거나, 이를 별도의 가스와 반응시켜 분해 또는 결합하여 점성이 없고 크기가 매우 작은 분말입자화 하여 배출하는 플라즈마 방식의 트랩이 연구되고 있다.플라즈마 방식의 트랩에는 유도결합 플라즈마 트랩(10), 마이크로웨이브 플라즈마 트랩(70) 등이 연구되고 있다. On the other hand, hot and cold traps have been generally used to treat the exhaust gases generated in the deposition process, but they do not perform satisfactory trap functions and require frequent maintenance and replacement of hot and cold traps. . In addition, in order to compensate for the trap performance, plasma is used to make microparticles by breaking intermolecular bonding (bonding), or to react with a separate gas to decompose or combine to form a viscous and very small powder particle and discharge it. The trap has been studied. Inductively coupled plasma traps (10), microwave plasma traps (70), and the like have been studied.
유도결합 플라즈마 트랩용 반응기(10)는 도 1에 도시된 바와 같이, 쿼츠(15)와 같은 유전체로 만들어진 반응기가 필요하며 배기가스 혹은 배기가스에서 반응한 증착물질이 이러한 쿼츠 등의 유전체로 형성된 반응기(15)에 증착되어 전기장의 유도를 방해하여 플라즈마 생성을 억제시킬 수 있다. As shown in FIG. 1, the reactor 10 for inductively coupled plasma traps requires a reactor made of a dielectric such as quartz 15, and a reactor in which an exhaust gas or a deposition material reacted in the exhaust gas is formed of a dielectric such as quartz. It can be deposited on (15) to inhibit the induction of the electric field to suppress plasma generation.
종래의 유도결합 플라즈마 트랩용 반응기(10)는 유도전기장을 발생시키는 RF코일(17) 및 쿼츠로 형성된 반응기(15) 등으로 구성될 수 있다.The conventional inductively coupled plasma trap reactor 10 may be composed of an RF coil 17 for generating an induction electric field, a reactor 15 formed of quartz, and the like.
즉, 상기 반응기(15)는 유도전기장을 발생시키는 코일로 감싸져 있으며 쿼츠 등의 유전체를 통해 전기장이 전달되어 내부에 플라즈마를 발생시킬 수 있다. That is, the reactor 15 is surrounded by a coil generating an induction electric field, and the electric field is transmitted through a dielectric such as quartz to generate plasma therein.
그런데, 배기가스를 처리하기 위한 플라즈마가 쿼츠 등의 유전체로 둘러싸여 있어, 반응에 의해 형성된 파우더와 같은 생성물이 반응기(15)에 증착되는 구조적 한계를 가지고 있다. 이렇게 증착된 막은 전기장을 불균형하게 하고 특히, 금속 성분을 포함하는 배기가스의 경우 증착된 막이 반응기 내부로 전기장의 유도를 막아 플라즈마 발생을 억제 시킬 수 있다. However, the plasma for treating the exhaust gas is surrounded by a dielectric such as quartz, and has a structural limit in which a product such as powder formed by the reaction is deposited in the reactor 15. The deposited film thus unbalances the electric field, and in particular, in the case of the exhaust gas containing the metal component, the deposited film may prevent the generation of the electric field into the reactor to suppress plasma generation.
도 3는 마이크로웨이브 플라즈마 트랩에 적용되는 플라즈마 토치를 도시한 도면이다. 도 3에 도시된 바와 같이 마이크로웨이브 플라즈마 트랩에 사용되는 토치는 전자파가 전달되는 도파관(60)과 반응기(75) 및 쿼츠(80)가 구비될 수 있다.3 shows a plasma torch applied to a microwave plasma trap. As shown in FIG. 3, the torch used in the microwave plasma trap may be provided with a waveguide 60, a reactor 75, and quartz 80 through which electromagnetic waves are transmitted.
즉, 상기 반응기(75)는 상기 도파관(60)을 수직으로 관통하는 형태로 구비되며, 내부에 플라즈마 생성을 위한 공간이 형성된다.That is, the reactor 75 is provided to vertically penetrate the waveguide 60, and a space for generating plasma is formed therein.
또한, 상기 도파관(60)의 마이크로웨이브가 상기 반응기(75) 내부로 유입되기 위하여, 상기 도파관(60)과 반응기가 만나는 부분은 개구되며, 그 위치에 쿼츠(80)가 구비된다.In addition, in order for the microwaves of the waveguide 60 to flow into the reactor 75, the portion where the waveguide 60 and the reactor meet is opened, and quartz 80 is provided at the position.
상기 쿼츠(80)는 마이크로웨이브는 투과시키면서 가스의 유입은 차단시키는 기능을 수행하며, 이 쿼츠(80)로 인해 마이크로웨이브 전달영역과 플라즈마 영역이 구분된다.The quartz 80 functions to block the inflow of gas while transmitting microwaves, and the quartz 80 separates the microwave delivery region and the plasma region.
상기 반응기의 상부로부터 플라즈마 가스와 증착공정 후 배기가스가 유입되어 상기 반응기 내부에서 플라즈마에 의한 처리가 이루어진다Plasma gas and exhaust gas are introduced from the upper part of the reactor after the deposition process, and the treatment by plasma is performed in the reactor.
예를 들어, 증착공정의 공정가스로서 TiCl4가 적용될 경우, 상기 반응기 내부에서 암모니아와 반응하여 Ti2(NH2), TiCl44(NH3) 또는 Ti, TiN분말 등이 발생하게 된다.For example, when TiCl 4 is applied as a process gas of the deposition process, Ti 2 (NH 2 ), TiCl 4 4 (NH 3 ), Ti, TiN powder, etc. are generated by reacting with ammonia in the reactor.
그런데, 플라즈마가 발생되는 위치가 쿼츠(80) 인근에서 발생되게 되어, 석출된 Ti2(NH2), TiCl44(NH3) 또는 Ti, TiN 들이 쿼츠(80)의 내주면 표면에 달라붙어 금속성분의 막을 형성하게 되며, 이로 인해 아크가 발생하여 쿼츠가 손상되거나 도파관으로부터 전달되는 마이크로웨이브가 투과되지 못하여 플라즈마가 소실될 수 있다.However, the position where the plasma is generated is generated near the quartz 80, and the precipitated Ti 2 (NH 2 ), TiCl 4 4 (NH 3 ), or Ti, TiN adheres to the surface of the inner circumferential surface of the quartz 80 to form a metal component. This results in the formation of a film, which can cause arcing to damage quartz or prevent the transmission of microwaves from the waveguide, resulting in the loss of plasma.
따라서, 종래의 플라즈마 트랩을 사용하더라도 이러한 금속성분의 막을 제거하는 유지보수가 필요하게 되며, 그때마다 증착장비의 운전이 중지되어 생산성이 떨어지는 한편, 유지보수비용도 증가되는 문제점이 있다. Therefore, even when using a conventional plasma trap, maintenance is required to remove such a metal film, there is a problem that the operation of the deposition equipment is stopped every time, productivity is lowered, while maintenance costs are also increased.
또한, 종래의 RF, MF, Microwave 등의 진공 플라즈마 장비들은 고정된 압력에서만 플라즈마가 발생되는 특성이 있으나, 실제 장비에서는 장비 내 압력의 변화가 심하게 발생되는 환경이 조성되어, 종래의 진공 플라즈마 장비를 적용하기 위해서 메칭박스 사용이 절대적으로 필요하다.In addition, the conventional plasma plasma equipment such as RF, MF, Microwave, etc. has a characteristic that plasma is generated only at a fixed pressure, but in actual equipment, an environment in which the pressure change in the equipment is severely generated is created, and thus, the conventional vacuum plasma equipment is used. The use of matching boxes is absolutely necessary for this to work.
그러나 압력 및 유량의 변화하는 속도가 메칭박스와 통신하는 시간보다 더 빠른 공정에서는 플라즈마 방전이 불가능하여, 플라즈마 트랩으로의 적용이 불가능한 문제점이 있다.However, there is a problem in that plasma discharge is impossible in a process in which the speed of change in pressure and flow rate is faster than the time for communicating with the matching box, and thus application to a plasma trap is impossible.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 쿼츠와 같은 유전체의 오염이 방지되거나 억제되어 유지보수주기가 늘어 증착장비의 연속운전시간이 늘어나 생산성이 향상되며 유지보수비용이 줄어들 수 있으며, 메칭박스가 없어도 안정적인 플라즈마의 생성 및 유지가 가능하여 압력 및 유량의 변동이 큰 공정에서도 적용할 수 있는 증착공정 배기가스 트랩용 마이크로 웨이브 플라즈마 발생장치 및 이를 포함하는 증착공정 배기가스 트랩을 제공하는 것이 과제이다.The present invention is to solve the above problems, the contamination of the dielectric, such as quartz is prevented or suppressed to increase the maintenance cycle increases the continuous operation time of the deposition equipment can be improved productivity and maintenance costs can be reduced, matching It is a problem to provide a microwave plasma generator for a deposition process exhaust gas trap and a deposition process exhaust gas trap including the same, which can be generated and maintained in a stable plasma without a box, so that it can be applied even in a process having a large variation in pressure and flow rate. to be.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않는 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
상기와 같은 과제를 해결하기 위하여, 본 발명의 일 형태에 따르면, 마이크로웨이브가 유입되는 도파관에 결합되며, 내부에 플라즈마가 형성되는 공간이 형성되고, 플라즈마 가스가 유입되는 아우터 컨덕터, 상기 도파관으로부터 상기 아우터 컨덕터로 유입되는 마이크로 웨이브를 투과시키는 쿼츠, 상기 아우터 컨덕터의 내부에 상기 아우터 컨덕터와 동축으로 배치되며, 내부에 증착공정의 후측에 배치되어 증착 후 배출되는 배기가스가 유입되는 인너 컨덕터를 포함하는 증착공정 배기가스 트랩의 마이크로웨이브 플라즈마 발생장치가 제공된다.In order to solve the above problems, according to one embodiment of the present invention, the outer conductor is coupled to the waveguide through which the microwave flows, the plasma is formed therein, the outer conductor through which the plasma gas flows, and from the waveguide Quartz transmitting the microwaves flowing into the outer conductor, the outer conductor is disposed coaxially with the outer conductor, the inner conductor is disposed at the rear side of the deposition process and includes an inner conductor into which exhaust gas discharged after deposition is introduced. A microwave plasma generator of a deposition process exhaust gas trap is provided.
상기 쿼츠는, 상기 아우터 컨덕터 내주면에, 양 단 사이에 구비될 수도 있고, 상기 도파관 내부에 구비되어 공정가스가 도파관 내부로 유입되는 것을 막을 수도 있다. 인너컨덕터의 끝단은 플라즈마 가스의 흐름방향으로 상기 쿼츠로부터 이격된 위치에 형성될 수 있다.The quartz may be provided between the two ends on the inner circumferential surface of the outer conductor, or may be provided inside the waveguide to prevent the process gas from flowing into the waveguide. An end of the inner conductor may be formed at a position spaced apart from the quartz in the flow direction of the plasma gas.
상기 인너 컨덕터의 끝단은, 상기 아우터 컨덕터의 내부에 위치될 수 있다.An end of the inner conductor may be located inside the outer conductor.
상기 아우터 컨덕터에 유입되는 플라즈마 가스는 상기 아우터 컨덕터 내에서 스월을 형성할 수 있다.Plasma gas flowing into the outer conductor may form swirl in the outer conductor.
상기 아우터 컨덕터 또는 인너 컨덕터에는 상기 배기가스로부터 금속원소를 분리해내기 위한 반응가스가 투입될 수 있다.A reaction gas for separating a metal element from the exhaust gas may be introduced into the outer conductor or the inner conductor.
상기 반응가스는 수소를 포함할 수 있다.The reaction gas may include hydrogen.
상기 쿼츠는, 상기 아우터 컨덕터와 상기 도파관이 결합되는 부분에 배치될 수 있다.The quartz may be disposed at a portion where the outer conductor and the waveguide are coupled to each other.
상기 쿼츠는, 상기 아우터 컨덕터와 이격된 위치의 상기 도파관 내에 배치될 수 있다.The quartz may be disposed in the waveguide at a position spaced apart from the outer conductor.
상기 아우터 컨덕터와 도파관의 연통된 부분의 상측에서, 상기 아우터 컨덕터와 인너 컨덕터 사이를 밀폐하는 금속판을 더 포함할 수 있다.The metal plate may further include a metal plate that seals between the outer conductor and the inner conductor at an upper side of the portion where the outer conductor communicates with the waveguide.
상기 금속판은 상기 아우터 컨덕터의 길이방향으로 그 위치가 조절 가능하게 구비될 수 있다.The metal plate may be provided to adjust its position in the longitudinal direction of the outer conductor.
상기 아우터 컨덕터와 도파관이 결합된 지점과 상기 아우터 컨덕터의 끝단 사이의 아우터 컨덕터에 구비되며, 상기 플라즈마 가스 또는 반응가스를 상기 아우터 컨덕터와 인너 컨덕터의 사이에 투입하기 위한 투입구를 더 포함할 수 있다.The outer conductor may be provided at the outer conductor between the point where the outer conductor and the waveguide are coupled and the end of the outer conductor, and may further include an inlet for injecting the plasma gas or the reactive gas between the outer conductor and the inner conductor.
한편, 본 발명의 다른 형태에 따르면, 피가공물에 박막을 증착하는 증착부, 상기 증착부로부터 배출되는 배기가스 중 적어도 일부를 미세 파우더로 변환하는 상기 증착공정 배기가스 트랩용 마이크로 웨이브 플라즈마 토치, 상기 증착부로부터 배출되는 배기가스를 펌핑하는 펌프, 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 토치를 경유한 배기가스 중 파티클을 포집하는 파우더 콜렉터를 포함하는 마이크로 웨이브 플라즈마 토치가 구비되는 증착공정 배기가스 트랩이 제공된다.On the other hand, according to another aspect of the present invention, the deposition unit for depositing a thin film on the workpiece, the microwave plasma torch for the deposition process exhaust gas trap for converting at least a portion of the exhaust gas discharged from the deposition unit into fine powder, A deposition process exhaust gas trap provided with a microwave plasma torch including a pump for pumping exhaust gas discharged from the evaporation unit, and a powder collector for collecting particles in the exhaust gas via the microwave plasma torch of the deposition process exhaust gas trap. Is provided.
본 발명의 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치 및 이를 포함하는 증착공정 배기가스 트랩에 따르면, 플라즈마 토치의 쿼츠의 오염이 방지되어 연속운전시간이 증대되며, 생산성이 향상되고, 유지보수비용이 절감되는 효과가 있다.According to the microwave plasma generator of the deposition process exhaust gas trap of the present invention and the deposition process exhaust gas trap including the same, the contamination of the quartz of the plasma torch is prevented to increase the continuous operation time, improve the productivity, maintenance cost This has the effect of being saved.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
아래에서 설명하는 본 출원의 바람직한 실시예의 상세한 설명뿐만 아니라 위에서 설명한 요약은 첨부된 도면과 관련해서 읽을 때에 더 잘 이해될 수 있을 것이다. 본 발명을 예시하기 위한 목적으로 도면에는 바람직한 실시예들이 도시되어 있다. 그러나, 본 출원은 도시된 정확한 배치와 수단에 한정되는 것이 아님을 이해해야 한다.The above summary as well as the detailed description of the preferred embodiments of the present application described below will be better understood when read in connection with the accompanying drawings. Preferred embodiments are shown in the drawings for the purpose of illustrating the invention. However, it should be understood that the present application is not limited to the precise arrangements and instrumentalities shown.
도 1 및 도 2는 종래의 플라즈마 토치를 도시한 단면도;1 and 2 are cross-sectional views showing a conventional plasma torch;
도 3은 본 발명의 일 실시예에 따른 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치를 도시한 단면도;3 is a cross-sectional view showing a microwave plasma generator of the deposition process exhaust gas trap according to an embodiment of the present invention;
도 4는 도 3의 플라즈마 발생장치에서 플라즈마 반응이 일어나는 모습을 도시한 단면도;4 is a cross-sectional view illustrating a plasma reaction occurring in the plasma generator of FIG. 3;
도 5 및 도 6은 플라즈마 발생장치에서 일어나는 화학 반응을 나타낸 도면;5 and 6 show chemical reactions occurring in the plasma generator;
도 7은 본 발명의 다른 실시예에 따른 플라즈마 발생장치를 도시한 단면도;7 is a sectional view showing a plasma generating apparatus according to another embodiment of the present invention;
도 8은 본 발명의 또다른 실시예에 따른 플라즈마 발생장치를 도시한 단면도;8 is a sectional view showing a plasma generating apparatus according to another embodiment of the present invention;
도 9는 본 발명의 마이크로 웨이브 플라즈마 발생장치가 구비되는 증착공정 배기가스 트랩을 도시한 도면이다.9 is a view illustrating a deposition process exhaust gas trap equipped with a microwave plasma generator of the present invention.
도 10 내지 도 12는 본 발명의 일 실시예에 따른 플라즈마 발생장치의 플라즈마 파워가 0.7kW, 1.2kW, 1.4kW일 때의 플라즈마 방전을 촬영한 사진;10 to 12 are photographs of the plasma discharge when the plasma power of the plasma generating apparatus according to an embodiment of the present invention is 0.7kW, 1.2kW, 1.4kW;
도 13 및 도 14는 본 발명의 일 실시예에 따른 플라즈마 발생장치의 플라즈마 파워가 1.4kW일 때 석출된 파우더를 촬영한 사진;13 and 14 are photographs of the powder deposited when the plasma power of the plasma generating apparatus according to an embodiment of the present invention is 1.4kW;
도 15 및 도 16은 석출된 파우더의 스팩트럼 및 성분 중량비를 나타낸 드래프 및 표 이다.15 and 16 are drafts and tables showing the spectral and component weight ratios of the precipitated powders.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of this embodiment, the same name and the same reference numerals are used for the same configuration and additional description thereof will be omitted.
본 발명의 증착공정 배기가스 트랩용 마이크로 웨이브 플라즈마 발생장치 및 이를 포함하는 증착공정 배기가스 트랩의 일 실시예에 따른 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치(100)(이하, 설명의 편의를 위하여 '플라즈마 발생장치'로 칭하기로 함)는 도 3에 도시된 바와 같이, 아우터 컨덕터(110), 쿼츠(130) 및 인너 컨덕터(120)를 포함할 수 있다. Microwave plasma generator 100 of the deposition process exhaust gas trap according to an embodiment of the deposition process exhaust gas trap comprising the same and the deposition process exhaust gas trap of the present invention (hereinafter, for convenience of description For the sake of convenience, the plasma generator may include an outer conductor 110, quartz 130, and an inner conductor 120, as shown in FIG. 3.
상기 아우터 컨덕터(110)는 도파관(60)에 결합되며, 접지가 이루어지며, 내부에 공간이 형성되며 상기 내부공간으로 플라즈마 가스가 유입될 수 있다.The outer conductor 110 may be coupled to the waveguide 60, may be grounded, a space may be formed therein, and plasma gas may be introduced into the inner space.
상기 도파관(60)에는 마이크로웨이브(M/W)를 발진하는 마그네트론 등이 구비되어 상기 아우터 컨덕터(110)의 내부로 마이크로웨이브(M/W)를 전달할 수 있다.The waveguide 60 is provided with a magnetron for oscillating the microwave (M / W) and can transmit the microwave (M / W) to the inside of the outer conductor (110).
한편, 상기 마이크로웨이브(M/W)는 표면효과(skin effect)에 의해 금속 등을 투과하지 못하며, 상기 아우터 컨덕터(110)는 일반적으로 고온 내열성이 뛰어난 금속 등의 재질로 제작되므로, 상기 아우터 컨덕터(110) 내부로 마이크로웨이브(M/W)가 유입되기 위하여, 상기 아우터 컨덕터(110)와 도파관(60)이 결합되는 부위가 개구된다.On the other hand, the microwave (M / W) does not penetrate the metal, etc. by the skin effect (skin effect), the outer conductor 110 is generally made of a material such as a metal having excellent high temperature heat resistance, the outer conductor In order for the microwave (M / W) to flow into the inside of the 110, a portion where the outer conductor 110 and the waveguide 60 are coupled is opened.
그리고, 상기 개구된 부분이 마이크로웨이브(M/W) 투과가 가능한 쿼츠(130)로 폐쇄된다. In addition, the opened portion is closed by quartz 130 capable of transmitting microwave (M / W).
이 때, 상기 아우터 컨덕터(110)가 도파관(60)과 결합되어 개구되는 지점은 상기 아우터 컨덕터(110)의 양 단 사이이며, 따라서, 상기 쿼츠(130)도 상기 아우터 컨덕터(110)의 양 단 사이에 구비될 수 있다.At this time, the point where the outer conductor 110 is coupled to the waveguide 60 and opened is between both ends of the outer conductor 110, and thus, the quartz 130 is also both ends of the outer conductor 110. It may be provided between.
상기 인너 컨덕터(120)는 마이크로웨이브(M/W)가 투과하지 못하는 금속 등의 재질로 이루어질 수 있으며, 상기 아우터 컨덕터(110)의 내부에 상기 아우터 컨덕터(110)와 동축으로 배치될 수 있다.The inner conductor 120 may be made of a material such as a metal through which the microwave (M / W) does not penetrate, and may be disposed coaxially with the outer conductor 110 in the outer conductor 110.
상기 아우터 컨덕터(110)에는 플라즈마 가스가 유입되며, 상기 인너 컨덕터(120)에는 증착공정 후 배기되는 배기가스가 유입될 수 있다. 이 때, 상기 플라즈마 가스는 마이크로웨이브를 통해 플라즈마를 생성하거나 또는 생성된 플라즈마를 안정화 시키는 가스일 수 있다.Plasma gas may flow into the outer conductor 110, and exhaust gas exhausted after the deposition process may flow into the inner conductor 120. At this time, the plasma gas may be a gas for generating a plasma through the microwave or to stabilize the generated plasma.
상기 아우터 컨덕터(110) 또는 인너 컨덕터(120)에는 반응가스가 유입될 수 있다. 상기 반응가스는 상기 플라즈마 가스와 함께 아우터 컨덕터(110)에 유입될 수도 있으며, 또는 배기가스와 함께 인너 컨덕터(120)에 유입될 수 있다.Reaction gas may be introduced into the outer conductor 110 or the inner conductor 120. The reaction gas may flow into the outer conductor 110 together with the plasma gas, or may flow into the inner conductor 120 together with the exhaust gas.
이 때, 플라즈마 가스 및 배기가스, 반응가스는 모두 같은 흐름 방향을 가진다. 본 실시예에서는, 도면을 기준으로 상측에서 유입되어 하측으로 배출되는 흐름 방향을 가지는 것을 예로 들어 설명하기로 한다.At this time, the plasma gas, the exhaust gas, and the reaction gas all have the same flow direction. In this embodiment, it will be described with an example having a flow direction flowing from the upper side and discharged downward based on the drawings.
한편, 상기 인너 컨덕터(120)의 끝단의 위치는 상기 아우터 컨덕터(110)의 내부에, 상기 플라즈마 가스의 흐름방향으로 상기 쿼츠(130)로부터 이격된 위치에 형성될 수 있다.The position of the end of the inner conductor 120 may be formed at a position spaced apart from the quartz 130 in the flow direction of the plasma gas in the outer conductor 110.
또는 상기 인너 컨덕터(120)의 끝단은 아우터 컨덕터(110)의 끝단과 같은 위치에 형성될 수도 있을 것이다.Alternatively, the end of the inner conductor 120 may be formed at the same position as the end of the outer conductor 110.
그리고, 상기 아우터 컨덕터(110)에 유입되는 플라즈마 가스는 상기 아우터 컨덕터(110) 내에서 스월을 형성할 수 있다. In addition, the plasma gas flowing into the outer conductor 110 may form a swirl in the outer conductor 110.
물론, 상기 플라즈마 가스는 반드시 스월을 일으킬 필요는 없는데, 이렇나 플라즈마 가스의 흐름에 의해 플라즈마에 의한 열로부터 인너 컨덕터(120)가 과열되는 것을 막을 수 있다.Of course, the plasma gas does not necessarily cause swirl, but the plasma gas may prevent the inner conductor 120 from being overheated from heat generated by the plasma.
이를 위하여, 상기 플라즈마 가스가 공급될 때 스월을 일으키는 방향으로 공급되거나 또는 아우터 컨덕터(110)의 내주면 또는 인너 컨덕터(120)의 외주면에 스월을 일으킬 수 있는 가이드(미도시)등의 별도 기구가 구비될 수 있다.To this end, a separate mechanism, such as a guide (not shown), which is supplied in the direction of generating swirl when the plasma gas is supplied or may cause swirl on the inner circumferential surface of the outer conductor 110 or the outer circumferential surface of the inner conductor 120, is provided. Can be.
이 때, 상기 플라즈마 가스는, 아르곤이나 질소 등의 불활성 가스를 포함할 수 있다.At this time, the plasma gas may include an inert gas such as argon or nitrogen.
또한, 반응가스는 수소(H2) 또는 암모니아(NH3)를 포함할 수 있다.In addition, the reaction gas may include hydrogen (H 2 ) or ammonia (NH 3 ).
상기 배기가스는, 증착공정 후 배출되는 배기가스일 수 있다. ALD증착법을 이용한 TiN증착공정시 배출되는 TiCl4를 포함하는 공정가스인 것을 예로 들기로 한다.The exhaust gas may be exhaust gas discharged after the deposition process. An example is a process gas containing TiCl 4 discharged during the TiN deposition process using the ALD deposition method.
물론, 상기 공정가스에는 TiCl4 외에도 TiN, HCl, N, NH3, TiH 등등 여타 다른 성분들이 포함될 수도 있다.Of course, the process gas may include TiN 4 , TiN, HCl, N, NH 3 , TiH, and other components.
또한, 본 발명은 ALD 증착공정에 국한되지 아니하며, 여타 다른 증착공정에 적용될 수도 있으며, 반드시 증착공정이 아닌 다른 공정의 배기가스에도 적용될 수 있을 것이다.In addition, the present invention is not limited to the ALD deposition process, and may be applied to other deposition processes, and may be applied to exhaust gases of processes other than the deposition process.
또한, 본 발명은 반드시 TiCl4의 처리에 국한될 필요는 없으며, 예를 들어 NiCl2, LiCl, SiCl4 등의 다른 성분의 처리에 응용될 수도 있을 것이다.In addition, the present invention is not necessarily limited to the treatment of TiCl 4 , and may be applied to the treatment of other components such as NiCl 2, LiCl, SiCl 4, and the like.
따라서, 도 3 및 도 4에 도시된 바와 같이, 상기 도파관(60)과 쿼츠(130)를 통해 마이크로웨이브(M/W)가 아우터 컨덕터(110) 내부로 유입되며, 상기 아우터 컨덕터(110)의 상측을 통해 플라즈마 가스 및 반응가스가 유입된다.Accordingly, as shown in FIGS. 3 and 4, the microwaves (M / W) are introduced into the outer conductor 110 through the waveguide 60 and the quartz 130, and the outer conductor 110 may be introduced into the outer conductor 110. Plasma gas and reaction gas are introduced through the upper side.
그리고, 아우터 컨덕터(110) 내부로 유입된 마이크로웨이브(M/W)와 플라즈마 가스 및 반응 가스로 인한 플라즈마(210)가 형성될 수 있다. 이 때 형성된 플라즈마(210)은 가스들에 의해서 형성된 플라즈마이므로 파티클이 생성되지 아니하는 논파티클 플라즈마(210)라고 칭하기로 한다.In addition, the plasma 210 may be formed by the microwave (M / W) introduced into the outer conductor 110 and the plasma gas and the reactive gas. The plasma 210 formed at this time is referred to as a non-particle plasma 210 in which particles are not generated since the plasma is formed by gases.
이 때, 유입된 마이크로웨이브(M/W)는 인너 컨덕터(120)를 투과하지 못하므로, 상기 인너 컨덕터(120) 내부에서는 플라즈마 반응이 일어나지 않으며, 상기 논파티클 플라즈마(210)는 아우터 컨덕터(110)와 인너 컨덕터(120)의 사이에서 발생할 수 있다.At this time, the introduced microwave (M / W) does not penetrate the inner conductor 120, the plasma reaction does not occur inside the inner conductor 120, the non-particle plasma 210 is the outer conductor 110 ) And the inner conductor 120.
또한, 인너 컨덕터(120)의 길이를 적당하게 조절함으로써, 마이크로웨이브로부터 발생되는 전기장의 세기를 인너 컨덕터(120)의 끝단 영역에서 전기장을 강하게 또한, 약하게 형성시킬 수 있다. 이에 따라 인너 컨덕터(120) 끝단 영역에서 플라즈마(220)가 발생할 수 있다. 이 때, 인너 컨덕터(120)의 끝단 영역에서 플라즈마를 발생시키기 위한 인너 컨덕터(120)의 길이는 통상의 당업자라면 반복적인 실험을 통해 도출할 수 있을 것이다.In addition, by appropriately adjusting the length of the inner conductor 120, the strength of the electric field generated from the microwave can be strongly and weakly formed in the end region of the inner conductor 120. Accordingly, the plasma 220 may be generated at the end region of the inner conductor 120. At this time, the length of the inner conductor 120 for generating a plasma in the end region of the inner conductor 120 may be derived by a person skilled in the art through repeated experiments.
설명을 위해 도 5에서 플라즈마가 쿼츠(130)이 구비되는 영역(210)에서 형성되는 것과 인너 컨덕터(120)의 끝단에서 형성되는 영역(220)이 분리되어 형성되는 것으로 설명하였지만, 실제로는 도 4에 도시한 바와 같이 플라즈마가 분리되어 형성될 수도 있으며, 또는 분리되지 않고 아우터 컨덕터(110)과 인너 컨덕터(120)의 사이 및 인너 컨덕터(120)의 하측 끝단 영역이 모두 함께 어우러져 형성될 수도 있다.In FIG. 5, the plasma is formed in the region 210 in which the quartz 130 is provided and the region 220 formed in the end of the inner conductor 120 is formed separately. As shown in FIG. 1, the plasma may be separated and formed, or may be formed without being separated and between the outer conductor 110 and the inner conductor 120 and the lower end region of the inner conductor 120 together.
또한, 상기 아르곤이나 질소 또는 수소 등의 가스에 의해 발생하는 가스 플라즈마 영역 (210)에는 금속화합물 전구체가 유입되지 않으므로 분말 등의 파티클이 형성되지 않아 상기 쿼츠(130)에 분말 등이 쌓이는 일이 발생하지 않는다.In addition, since the metal compound precursor does not flow into the gas plasma region 210 generated by the gas such as argon, nitrogen, or hydrogen, particles such as powder are not formed, so that powder or the like accumulates in the quartz 130. I never do that.
한편, 상기 인너 컨덕터(120) 내부로 유입된 배기가스는 인너 컨덕터(120) 내에서는 마이크로웨이브(M/W)를 조사받지 아니하므로 플라즈마 반응이 일어나지 아니하며, 인너 컨덕터(120)의 끝단에 형성되어 있는 플라즈마 영역(220)으로 유입되어 플라즈마에 의해 처리된다. Meanwhile, since the exhaust gas introduced into the inner conductor 120 is not irradiated with microwaves (M / W) in the inner conductor 120, a plasma reaction does not occur, and is formed at the end of the inner conductor 120. Flows into the plasma region 220 and is processed by the plasma.
이 때, 상기 인너 컨덕터(120)의 끝단에서 발생되는 플라즈마를 앞서 설명한 논파티클 플라즈마(210)과 구별하기 위하여, 파티클 플라즈마(220)라 칭하기로 하는데, 이는 인너 컨덕터(120)의 끝단에서 토출되는 배기가스에 포함된 성분이 플라즈마(220)에 의해 해리되어 금속 분말 등의 파티클이 발생하기 때문이다.In this case, in order to distinguish the plasma generated at the end of the inner conductor 120 from the non-particle plasma 210 described above, it will be referred to as particle plasma 220, which is discharged from the end of the inner conductor 120 This is because the components contained in the exhaust gas are dissociated by the plasma 220 to generate particles such as metal powder.
본 실시예에서는, 상기 배기가스에 포함된 성분에 TiCl4가 포함된 것을 예로 들기로 한다.In this embodiment, it is taken as an example that TiCl 4 is included in the component contained in the exhaust gas.
도 5에 도시된 바와 같이, TiCl4가 반응가스인 H2와 플라즈마 반응을 하게 되면, 수소(H2) 2개 분자가 4H가 되며 TiCl4도 해리되어 Ti와 4Cl로 되고, 각 H 들이 염소(Cl)과 반응하여 염화수소(4HCl)가 되며, Ti가 파우더(230) 형태로 석출될 수 있다.As shown in FIG. 5, when TiCl 4 undergoes a plasma reaction with H 2 , a reaction gas, two molecules of hydrogen (H 2) become 4H, and TiCl 4 is also dissociated into Ti and 4Cl, and each H is chlorine ( Reacts with Cl to form hydrogen chloride (4HCl), and Ti may be precipitated in the form of powder 230.
또는, 도 6에 도시된 바와 같이, TiCl4가 반응가스인 NH3와 반응하게 되면, Ti2NH2와 2HCl이 되어 Ti2NH2가 파우더(230) 형태로 석출될 수 있다.Or, when such, TiCl 4 is reacted with the reaction gas, NH 3 shown in Figure 6, it is a Ti2NH 2HCl 2 and can be a Ti2NH 2 precipitated as powder 230 form.
또한, 발생되는 플라즈마가 마이크로웨이브(MicroWave)를 사용하는 HDP(High Density Plasma)이면 높은 전자밀도와 라디칼(Radical)로 인해 석출되는 파우더(230)입자의 크기가 나노스케일로 매우 조밀한 입자의 크기를 나타낼 수 있다.In addition, if the generated plasma is a HDW (High Density Plasma) using a microwave (MicroWave), the particle size of the powder (230) precipitated due to the high electron density and radical (radical) is nanoscale very dense particle size Can be represented.
이 때, 상기 파우더(230)가 석출되는 위치가 상기 인너 컨덕터(120)의 끝단이며, 이는 상기 쿼츠(130)와는 이격된 위치이므로, 석출된 파우더(230)가 쿼츠(130)에 쌓이는 현상이 줄어들 수 있다. At this time, the position where the powder 230 is deposited is the end of the inner conductor 120, which is spaced apart from the quartz 130, so that the phenomenon that the precipitated powder 230 accumulates in the quartz 130 Can be reduced.
뿐만 아니라, 상기 플라즈마 가스의 흐름에 의해 석출된 파우더(230)가 쿼츠(130)를 향해 비산되는 것이 방지될 수 있다.In addition, the powder 230 deposited by the flow of the plasma gas may be prevented from scattering toward the quartz 130.
또한, 상기 플라즈마 가스는 쿼츠(130)의 냉각기능도 수행할 수 있다.In addition, the plasma gas may also perform a cooling function of the quartz 130.
따라서, 석출된 파우더(230)는 가스의 흐름에 의해 아우터 컨덕터(110) 및 인너 컨덕터(120)의 외측으로 배출될 수 있다.Therefore, the precipitated powder 230 may be discharged to the outside of the outer conductor 110 and the inner conductor 120 by the flow of gas.
한편, 본 발명의 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치의 다른 실시예에 따르면, 전술한 실시예와 비교하여, 쿼츠의 형태 및 위치가 변화될 수 있다. On the other hand, according to another embodiment of the microwave plasma generator of the deposition process exhaust gas trap of the present invention, compared with the above-described embodiment, the shape and position of the quartz can be changed.
즉, 전술한 실시예에서는 상기 퀴츠(130)가 도파관(60)과 아우터 컨덕터(110)이 결합되어 개구된 부분에 원통형으로 구비되나, 본 실시예에 따르면, 도 7에 도시된 바와 같이, 상기 쿼츠(132)가 상기 도파관(60) 내에 구비될 수 있다. 이 때, 상기 쿼츠(132)는 상기 도파관(60)과 아우터 컨덕터(110)가 결합되어 개구된 부분으로부터 마그네트론(20) 측으로 이격된 위치에 형성될 수 있다. That is, in the above-described embodiment, the quarts 130 are provided in a cylindrical shape at the portion where the waveguide 60 and the outer conductor 110 are coupled to each other, but according to the present embodiment, as shown in FIG. Quartz 132 may be provided in the waveguide 60. In this case, the quartz 132 may be formed at a position spaced apart from the opening where the waveguide 60 and the outer conductor 110 are coupled to the magnetron 20.
따라서, 상기 쿼츠(132)가 파티클 플라즈마(220)의 형성위치로부터 더욱 이격될 수 있어 오염의 방지효과가 더욱 커질 수 있으며, 상기 쿼츠(132)가 원통의 형태가 아닌 평판 플레이트형태로 형성될 수 있어 쿼츠의 부피가 작아질 뿐만 아니라 쿼츠의 형성이 보다 용이할 수 있어 쿼츠의 제작비용이 절감될 수 있다.Therefore, the quartz 132 may be further spaced apart from the formation position of the particle plasma 220, so that the pollution prevention effect may be further increased, and the quartz 132 may be formed in a flat plate shape rather than a cylindrical shape. Since the volume of the quartz is not only small but also the formation of the quartz can be easier, the manufacturing cost of the quartz can be reduced.
또 한편, 도 8에 도시된 바와 같이, 상기 아우터 컨덕터(110)의 상측에 마이크로웨이브가 아우터 컨덕터(110)의 상측으로 전달되는 것을 차폐하는 금속판(112)이 더 구비될 수 있다.On the other hand, as shown in Figure 8, the upper side of the outer conductor 110 may be further provided with a metal plate 112 for shielding the microwave transfer to the upper side of the outer conductor (110).
즉, 상기 도파관(60)을 통해 아우터 컨덕터(110)의 내부로 전달되는 마이크로 웨이브가 상기 아우터 컨덕터(110)의 상측으로 진행되는 것을 차폐하도록 상기 금속판(112)이 상기 아우터 컨덕터(110)와 도파관(60)의 연통된 부분의 상측에서, 상기 아우터 컨덕터(110)와 인너 컨덕터(120) 사이를 밀폐하도록 구비될 수 있다.That is, the metal plate 112 and the outer conductor 110 and the waveguide to shield the microwaves transmitted to the inside of the outer conductor 110 through the waveguide 60 to the upper side of the outer conductor 110. On the upper side of the communicating portion of 60, it may be provided to seal between the outer conductor 110 and the inner conductor 120.
따라서, 상기 도파관(60)을 통해 아우터 컨덕터(110) 내부로 전달되는 마이크로 웨이브가 상기 아우터 컨덕터(110) 내부에서 상하로 분산되는 것이 방지되고 상기 인너 컨덕터(120)의 끝단 측으로 집중되어 상기 인너 컨덕터(120)의 끝단 측에 전기장이 보다 강하게 형성되도록 할 수 있다.Therefore, the microwaves transmitted to the inside of the outer conductor 110 through the waveguide 60 are prevented from being vertically dispersed inside the outer conductor 110, and are concentrated toward the end of the inner conductor 120 to be concentrated on the inner conductor. An electric field may be more strongly formed at the end side of the 120.
또한, 상기 금속판(112)의 위치를 상하로 조절함으로써 논파티클 플라즈마(210) 및 파티클 플라즈마(220)가 형성되는 위치를 조절할 수 있다.In addition, the position where the non-particle plasma 210 and the particle plasma 220 are formed may be adjusted by adjusting the position of the metal plate 112 up and down.
따라서, 상기 금속판(112)을 상기 아우터 컨덕터(110)의 길이방향으로 위치가 조절되도록 구비함으로써 상기 논파티클 플라즈마(210) 및 파티클 플라즈마(220)가 형성되는 위치를 조절할 수 있다.Therefore, the position where the non-particle plasma 210 and the particle plasma 220 are formed may be adjusted by providing the metal plate 112 to adjust the position in the longitudinal direction of the outer conductor 110.
이 때, 상기 플라즈마 가스 또는 반응가스를 상기 아우터 컨덕터(110)와 인너 컨덕터(120)의 사이에 투입하기 위한 투입구(114)가 형성될 수 있다. In this case, an injection hole 114 for injecting the plasma gas or the reaction gas between the outer conductor 110 and the inner conductor 120 may be formed.
상기 투입구(114)는 상기 아우터 컨덕터(110)와 도파관(60)이 결합된 지점과 상기 아우터 컨덕터(110)의 끝단 사이의 아우터 컨덕터(110)의 외주면에 형성될 수 있으며, 상기 투입구(114)를 통해 유입되는 플라즈마 가스 및 반응가스가 상기 아우터 컨덕터(110)와 인너 컨덕터(120)사이에서 스월을 일으키도록 상기 아우터 컨덕터(110)의 내주면의 법선방향을 향하여 플라즈마 가스 및 반응가스를 토출하도록 형성될 수 있다.The inlet 114 may be formed on the outer circumferential surface of the outer conductor 110 between the point where the outer conductor 110 and the waveguide 60 are coupled and the end of the outer conductor 110, the inlet 114 The plasma gas and the reactant gas introduced through the gas discharge the plasma gas and the reaction gas toward the normal direction of the inner circumferential surface of the outer conductor 110 to cause a swirl between the outer conductor 110 and the inner conductor 120. Can be.
따라서, 상기 투입구(114)를 통해 유입되는 플라즈마 가스 및 반응가스는 상기 아우터 컨덕터(110)의 도파관(60)과 연결된 지점의 높이와 상기 인너 컨덕터(120)의 끝단 사이의 높이에서 유입되어 상기 아우터 컨덕터(110)와 인너 컨덕터(120)의 사이에서 스월을 형성하면서 상기 인너 컨덕터(120)의 끝단측으로 유동함으로써 석출되는 파우더(230)가 상기 쿼츠(132) 측으로 비산되는 것을 차단할 수 있다.Therefore, the plasma gas and the reaction gas flowing through the inlet 114 are introduced at the height between the height of the point connected to the waveguide 60 of the outer conductor 110 and the end of the inner conductor 120 and the outer By forming a swirl between the conductor 110 and the inner conductor 120, the powder 230 that is precipitated by flowing to the end side of the inner conductor 120 may be prevented from scattering toward the quartz 132 side.
물론, 이 때, 상기 쿼츠(132)는 상기 도파관(60)과 아우터 컨덕터(110)가 결합되어 개구된 부분에 원통형으로 배치될 수 있거나 또는 상기 도파관(60)내에 플레이트 형태로 배치될 수 도 있다.이하, 본 발명의 마이크로 웨이브 플라즈마 발생장치가 구비되는 증착공정 배기가스 트랩의 일 실시예에 대해서 설명하기로 한다.Of course, in this case, the quartz 132 may be disposed in a cylindrical shape at the portion where the waveguide 60 and the outer conductor 110 are coupled to each other, or may be disposed in the form of a plate in the waveguide 60. Hereinafter, an embodiment of a deposition process exhaust gas trap equipped with the microwave plasma generator of the present invention will be described.
본 실시예에 따른 마이크로 웨이브 플라즈마 발생장치가 구비되는 증착공정 배기가스 트랩은 도 9에 도시된 바와 같이, 플라즈마 발생장치(100), 펌프(200), 및 파우더 콜렉터(300)를 포함할 수 있다.The deposition process exhaust gas trap provided with the microwave plasma generating apparatus according to the present embodiment may include a plasma generating apparatus 100, a pump 200, and a powder collector 300 as shown in FIG. 9. .
상기 플라즈마 발생장치(100)는 전술한 실시예들의 플라즈마 발생장치(100)가 적용될 수 있으며, 피가공물에 박막을 증착하는 증착부(50)로부터 배출되는 배기가스에 포함된 성분 중 적어도 일부를 미세한 나노크기의 파우더로 변환할 수 있다.The plasma generating apparatus 100 may be applied to the plasma generating apparatus 100 of the above-described embodiments, and at least a part of the components included in the exhaust gas discharged from the deposition unit 50 for depositing a thin film on the workpiece may be fine. Can be converted to nano-sized powder.
*여기서, 상기 피가공물에 박막을 증착하는 증착부(50)는 피가공물에 TiN을 ALD 증착공정으로서 증착하는 증착부인 것을 예로 들어 설명하기로 한다.Here, the deposition unit 50 for depositing a thin film on the workpiece will be described as an example of the deposition unit for depositing TiN on the workpiece as an ALD deposition process.
상기 증착부(50)에서는 TiN을 증착하기 위해 증발기(10: Vaporizer)에서 TiCl4를 기화시키며, 이를 질소(N2)와 혼합하여 TiN 증착 챔버(20)로 공급할 수 있다. 그리고, 상기 TiN 증착챔버(20)에는 N2와 NH3가 공급될 수도 있다.In the deposition unit 50, TiCl 4 may be vaporized in an evaporator 10 to deposit TiN, and may be mixed with nitrogen (N 2) and supplied to the TiN deposition chamber 20. In addition, N2 and NH3 may be supplied to the TiN deposition chamber 20.
한편, TiN 증착이 완료된 후, 사용된 가스가 배출되는데, 배출되는 배기가스에는 TiCl4가 다량 함유될 수 있다.On the other hand, after the TiN deposition is completed, the used gas is discharged, the exhaust gas may contain a large amount of TiCl4.
배출되는 TiCl4를 함유한 배기가스는 상기 플라즈마 발생장치(100)의 인너 컨덕터(120)으로 유입될 수 있다.Exhaust gas containing TiCl 4 to be discharged may be introduced into the inner conductor 120 of the plasma generator 100.
또한, TiN 증착공정에 공급되는 N2, NH3 가스 중 일부가 플라즈마 발생장치(100)의 아우터 컨덕터(110)으로 공급될 수 있다.In addition, some of the N 2 and NH 3 gases supplied to the TiN deposition process may be supplied to the outer conductor 110 of the plasma generator 100.
이를 위하여 각 N2, NH3의 공급유로(30, 40)로부터 플라즈마 발생장치(100)의 아우터 컨덕터(110)까지 분기되는 분기유로(32, 42)가 형성될 수 있으며, 각 분기유로(32, 42)에는 이를 개폐하는 밸브(34, 44)가 구비될 수 있다.To this end, branch passages 32 and 42 branching from the supply passages 30 and 40 of the respective N2 and NH3 to the outer conductor 110 of the plasma generator 100 may be formed, and each branch passage 32 and 42 may be formed. ) May be provided with a valve (34, 44) for opening and closing it.
전술한 바와 같이 상기 플라즈마 발생장치(100)는 유입되는 배기가스에 포함된 TiCl4 등의 성분을 점성이 없는 나노 스케일의 파우더로 변환하여 배출 할 수 있다.As described above, the plasma generating apparatus 100 may convert and discharge components such as TiCl 4 contained in the inflow exhaust gas into nano-scale powder having no viscosity.
상기 플라즈마 발생장치(100)의 후단에는 펌프(200)가 구비될 수 있다. 상기 펌프(200)는 증착부(50)로부터 배출되는 배기가스를 펌핑하는 구성요소이다.The pump 200 may be provided at the rear end of the plasma generator 100. The pump 200 is a component for pumping the exhaust gas discharged from the deposition unit 50.
이 때, 상기 플라즈마 발생장치(100)가 펌프(200)의 전단에 구비되어 펌프(200)로 유입되는 배기가스에 포함된 성분을 점성이 없는 나노 스케일의 파우더로 변환시키므로 펌프(200)의 기계적인 마모를 최소화 하며, 잉여의 증착성분이 펌프(200)의 부품에 들러붙는 현상을 방지함으로써 펌프(200) 손상을 방지하여, 펌프(200)의 수명을 증대시킬 수 있으며, 유지보수주기도 길게 가져갈 수 있다.At this time, the plasma generator 100 is provided at the front end of the pump 200 to convert the components contained in the exhaust gas flowing into the pump 200 into a powder of nano-scale without viscosity, the machine of the pump 200 It minimizes wear and prevents excessive deposition of components from sticking to the parts of the pump 200, thereby preventing damage to the pump 200, which can increase the service life of the pump 200, and also maintain a long maintenance cycle. Can be.
한편, 상기 파우더 콜렉터(300)는 상기 펌프(200)의 후단에 위치되어 상기 펌프(200)로부터 토출되는 배기가스에 포함된 파우더(230)를 집진하여 제거하는 구성요소일 수 있다.On the other hand, the powder collector 300 may be a component located at the rear end of the pump 200 to collect and remove the powder 230 contained in the exhaust gas discharged from the pump 200.
또한, 상기 파우더 콜렉터(300)의 후측에 스크러버(400)가 더 구비될 수 있다. 상기 스크러버(400)는 파우더(230)가 제거된 배기가스에 포함된 여러가지 유해물질(예를 들어 HCl)을 제거하는 구성요소일 수 있다.In addition, a scrubber 400 may be further provided on the rear side of the powder collector 300. The scrubber 400 may be a component for removing various harmful substances (eg, HCl) included in the exhaust gas from which the powder 230 is removed.
또한, 상기 파우더 콜렉터(300)와 스크러버(400)의 사이에는 샘플링 포트(500)가 구비될 수 있다. 상기 샘플링 포트(500)를 통해 상기 스크러버(400)에 유입되기 전의 배기가스의 샘플을 채취할 수 있으며, 이 샘플의 분석을 통해 배기가스 중에 유독한 하이드로젠 등의 물질이 포함되어 있는지를 검출할 수 있다. In addition, a sampling port 500 may be provided between the powder collector 300 and the scrubber 400. A sample of the exhaust gas before entering the scrubber 400 may be taken through the sampling port 500, and the analysis of the sample may detect whether the exhaust gas contains a toxic hydrogen or the like substance. Can be.
물론, 상기 샘플링 포트(500)에 유독물질을 감지하는 센서가 구비되어 실시간으로 유독물질 포함여부 및 농도를 계측할 수도 있을 것이다.Of course, the sampling port 500 is provided with a sensor for detecting a toxic substance may measure the presence and concentration of the toxic substance in real time.
또한, 본 발명에 따른 마이크로 웨이브 플라즈마 발생장치는 압력 및 유량 변화가 심한 공정에서도 장시간 안정적인 플라즈마의 방전이 가능하다.In addition, the microwave plasma generating apparatus according to the present invention is capable of stable plasma discharge for a long time even in a process in which pressure and flow rate change are severe.
즉, 배경기술에 기술한 바와 같이, 종래의 플라즈마 발생장치(ICP, CCP, ECR Microwave 플라즈마 발생장치)는 매칭박스에 의존하여, 매칭박스와 통신하는 속도보다 압력/유량변화가 빠른 공정에서는 적용이 불가능 하였으나, 본 발명에 따른 마이크로 웨이브 플라즘 발생장치는 매칭박스를 사용하지 않고도 플라즈마의 방전이 가능하기 때문이다.That is, as described in the background art, the conventional plasma generators (ICP, CCP, ECR microwave plasma generator) is dependent on the matching box, it is not applicable in the process where the pressure / flow rate change faster than the communication speed with the matching box Although not possible, the microwave flame generating apparatus according to the present invention is capable of discharging plasma without using a matching box.
본 발명에 따르면, 약 수 mmTorr ~ 수십 Torr의 압력 범위의 가스 유동 상태에서 플라즈마를 연속발생시킬 수 있다. 이는, 상기 아우터 컨덕터(110)와 인너 컨덕터(120)의 사이에 수 mmTorr ~ 수십 Torr의 압력 및 가스 흐름에서 플라즈마 방전을 위한 문턱 전압 이상의 전기장이 항상 형성되기 때문이다.According to the present invention, plasma can be continuously generated in a gas flow state in a pressure range of about several mmTorr to several tens of Torr. This is because an electric field of more than a threshold voltage for plasma discharge is always formed between the outer conductor 110 and the inner conductor 120 at a pressure and a gas flow of several mmTorr to several tens of Torr.
따라서, 압력 변화에 대응하기 위한 별도의 메칭박스가 필요하지 않다. 이는 도파관 내부에 Microwave에 의해 형성된 전기장 인너 컨덕터(120)의 끝단 부위까지 전달되며, 접지된 아우터 컨턱터(110)와 인너 컨덕터(120)의 사이의 간격을 적절하게 조절하면, 원하는 압력범위에서 메칭박스 없이 플라즈마 방전을 위한 문턱전압 이상의 전기장 에너지가 형성될 수 있다.Therefore, there is no need for a separate matching box to cope with the pressure change. This is transmitted to the end of the electric field inner conductor 120 formed by the microwave inside the waveguide, and if appropriately adjusted the gap between the grounded outer conductor 110 and the inner conductor 120, matching in the desired pressure range An electric field energy above a threshold voltage for plasma discharge may be formed without a box.
따라서, 압력변동이 심한 공정에서도 마이크로 웨이브 플라즈마 발생장치 및 이를 적용한 배기가스 트랩을 구성할 수 있다.Therefore, the microwave plasma generating apparatus and the exhaust gas trap applying the same can be configured even in a process where the pressure fluctuation is severe.
이하에서는, 본 출원인이 실시한 실험을 통해 본 발명의 플라즈마 발생장치가 메칭박스 없이도 안정적인 플라즈마의 발생이 가능함을 실험한 결과를 설명하기로 한다.Hereinafter, the results of experiments that the plasma generating apparatus of the present invention can generate a stable plasma without a matching box through the experiment conducted by the applicant.
먼저 본 실험에서 적용된 플라즈마 파워(Plasma Power)는 0.7kW 와 1.4kW이며, 이 때 공정가스를 넣기 전의 플라즈마 발생장치가 위치된 챔버내의 압력인 베이스 프레셔(Base Pressur)는 0.02Torr, 공정가스가 투입되어 플라즈마 발생장치에서 플라즈마가 발생되었을 때의 플라즈마 발생장치가 위치된 챔버의 압력인 워킹 프레셔(Working Pressur)는 28Torr, 질소(N2)와 암모지아(NH3)의 유량은 각각 75lpm, 2lpm(Liter Per minute)이고, 증착물질인 TiCl4는 대략 섭씨 100도로 가열되어 250mmHg의 압력일 때 실험하였다.First, the plasma power applied in this experiment is 0.7kW and 1.4kW. At this time, the pressure in the chamber where the plasma generator is located before the process gas is inserted is 0.02 Torr and the process gas is injected. The working pressur, which is the pressure of the chamber where the plasma generator is located, is 28 Torr and the flow rates of nitrogen (N 2 ) and ammonia (NH 3 ) are 75lpm and 2lpm, respectively. Liter Per minute), the deposition material TiCl 4 was tested at a pressure of 250mmHg heated to approximately 100 degrees Celsius.
또한, 본 실험은 상기와 같은 조건에서, 질소(N2)가스를 0.1초 주입, TiCl4를 0.2초 주입, 암모니아(NH3)가스를 0.25초 주입, N2가스를 0.3초 주입하였다. 즉, 압력변동이 심한 환경임을 알 수 있다.In this experiment, under the above conditions, nitrogen (N 2) gas was injected for 0.1 second, TiCl 4 was injected for 0.2 seconds, ammonia (NH 3) was injected for 0.25 seconds, and N 2 gas was injected for 0.3 seconds. That is, it can be seen that the pressure fluctuation is a severe environment.
이러한 환경에서 운전한 결과, 플라즈마 파워(Plasma Power)가 0.7kW일 때 플라즈마가 방전되는 모습을 도 10에 표현하였고, 1.2kW일 때 플라즈마가 방전되는 모습을 도 11에 표현하였고, 1.4kW일 때 플라즈마 방전되는 모습을 도 12에 표현하였다. 도 10 내지 도 12에 도시된 바와 같이, 압력변동이 큰 환경에서도 플라즈마가 안정적으로 발생함을 알 수 있다.As a result of operating in such an environment, the plasma discharge is shown in FIG. 10 when the plasma power is 0.7 kW, and the plasma is discharged at 1.2 kW in FIG. The state of plasma discharge is shown in FIG. As shown in Figure 10 to 12, it can be seen that the plasma is generated stably even in a large pressure fluctuation environment.
한편, 도 13은 플라즈마 파워(Plasma Power)가 1.4kW일 때 생성된 석출된 파우더를 나타낸 사진이며, 도 14는 도 13의 파우더를 확대한 사진이다. 상기 파우더는 도 9의 펌프 후단에서 채취하였으며, 사진에서 볼 수 있는 바와 같이 충분히 미세화된 파우더가 생성되어 펌프 등에 기계적인 고정을 야기할 위험이 없음을 알 수 있다.On the other hand, Figure 13 is a photograph showing the precipitated powder generated when the plasma power (Plasma Power) is 1.4kW, Figure 14 is an enlarged photograph of the powder of FIG. The powder was taken from the rear of the pump of FIG. 9, and as can be seen from the photograph, it can be seen that there is no risk of generating a sufficiently fine powder and causing mechanical fixing to the pump.
한편, 도 14 및 도 15는 상기 파우더의 성분의 스펙터럼 및 중량비를 분석한 결과이다. 도 14 및 도 15을 통해 알 수 있는 바와 같이, 석출된 파우더의 Ti의 중량비가 61.37 Wt%에 달해 상용화에 문제가 없는 수준임을 알 수 있다.On the other hand, Figures 14 and 15 are the results of analyzing the spectra and weight ratio of the components of the powder. As can be seen from Figure 14 and 15, the weight ratio of Ti of the precipitated powder reaches 61.37 Wt% it can be seen that there is no problem in commercialization.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화 될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, the preferred embodiments of the present invention have been described, and the fact that the present invention can be embodied in other specific forms in addition to the above-described embodiments without departing from the spirit or scope thereof has ordinary skill in the art. It is obvious to them. Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive, and thus, the present invention is not limited to the above description and may be modified within the scope of the appended claims and their equivalents.

Claims (12)

  1. 마이크로웨이브가 유입되는 도파관에 결합되며, 내부에 플라즈마가 형성되는 공간이 형성되고, 플라즈마 가스가 유입되는 아우터 컨덕터;An outer conductor coupled to the waveguide through which microwaves are introduced, a space in which a plasma is formed, and an outer conductor into which plasma gas is introduced;
    상기 도파관으로부터 상기 아우터 컨덕터로 유입되는 마이크로 웨이브를 투과시키는 쿼츠;Quartz for transmitting microwaves from the waveguide to the outer conductor;
    상기 아우터 컨덕터의 내부에 상기 아우터 컨덕터와 동축으로 배치되며, 내부에 증착공정의 후측에 배치되어 증착 후 배출되는 배기가스가 유입되는 인너 컨덕터를 포함하는 증착공정 배기가스 트랩의 마이크로웨이브 플라즈마 발생장치.And an inner conductor disposed coaxially with the outer conductor in the outer conductor and disposed at a rear side of the deposition process, and having an inner conductor into which exhaust gas discharged after deposition is introduced.
  2. 제1항에 있어서,The method of claim 1,
    상기 쿼츠는, The quartz is,
    상기 아우터 컨덕터 내주면에, 양 단 사이에 구비되며, 상기 인너컨덕터의 끝단은 플라즈마 가스의 흐름방향으로 상기 쿼츠로부터 이격된 위치에 형성되는 증착공정 배기가스 트랩의 마이크로웨이브 플라즈마 발생장치.On the inner peripheral surface of the outer conductor, provided between the both ends, the end of the inner conductor is a plasma plasma generating device of the deposition process exhaust gas trap formed in a position spaced apart from the quartz in the flow direction of the plasma gas.
  3. 제2항에 있어서,The method of claim 2,
    상기 인너 컨덕터의 끝단은,The end of the inner conductor,
    상기 아우터 컨덕터의 내부에 위치되는 증착공정 배기가스 트랩의 마이크로웨이브 플라즈마 발생장치.Microwave plasma generator of the deposition process exhaust gas trap is located inside the outer conductor.
  4. 제1항에 있어서,The method of claim 1,
    상기 아우터 컨덕터에 유입되는 플라즈마 가스는 상기 아우터 컨덕터 내에서 스월을 형성하는 증착공정 배기가스 트랩의 마이크로웨이브 플라즈마 발생장치.And a plasma gas flowing into the outer conductor forms a swirl in the outer conductor.
  5. 제1항에 있어서,The method of claim 1,
    상기 아우터 컨덕터 또는 인너 컨덕터에는 상기 배기가스로부터 금속원소를 분리해내기 위한 반응가스가 투입되는 증착공정 배기가스 트랩의 마이크로웨이브 플라즈마 발생장치.The microwave plasma generator of the deposition process exhaust gas trap is injected into the outer conductor or the inner conductor reaction gas for separating the metal element from the exhaust gas.
  6. 제5항에 있어서,The method of claim 5,
    상기 반응가스는 수소를 포함하는 증착공정 배기가스 트랩의 마이크로웨이브 플라즈마 발생장치.The reaction gas is a microwave plasma generating device of the deposition process exhaust gas trap containing hydrogen.
  7. 제1항에 있어서,The method of claim 1,
    상기 쿼츠는, 상기 아우터 컨덕터와 상기 도파관이 결합되는 부분에 배치되는 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치.The quartz is a microwave plasma generator of the deposition process exhaust gas trap is disposed in the portion where the outer conductor and the waveguide are coupled.
  8. 제1항에 있어서,The method of claim 1,
    상기 쿼츠는, 상기 아우터 컨덕터와 이격된 위치의 상기 도파관 내에 배치되는 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치.And the quartz is disposed in the waveguide at a position spaced apart from the outer conductor.
  9. 제1항에 있어서,The method of claim 1,
    상기 아우터 컨덕터와 도파관의 연통된 부분의 상측에서, 상기 아우터 컨덕터와 인너 컨덕터 사이를 밀폐하는 금속판을 더 포함하는 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치.And a metal plate sealing the gap between the outer conductor and the inner conductor on the upper portion of the outer conductor and the waveguide.
  10. 제9항에 있어서,The method of claim 9,
    상기 금속판은 상기 아우터 컨덕터의 길이방향으로 그 위치가 조절 가능하게 구비되는 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치.The metal plate is a plasma plasma generator of the deposition process exhaust gas trap is provided that the position is adjustable in the longitudinal direction of the outer conductor.
  11. 제5항에 있어서,The method of claim 5,
    상기 아우터 컨덕터에 유입되는 플라즈마 가스를 상기 아우터 컨덕터와 도파관이 결합된 지점과 상기 아우터 컨덕터의 끝단 사이의 아우터 컨덕터에 구비되며, 상기 플라즈마 가스 또는 반응가스를 상기 아우터 컨덕터와 인너 컨덕터의 사이에 투입하기 위한 투입구를 포함하는 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치. Plasma gas flowing into the outer conductor is provided at the outer conductor between the point where the outer conductor and the waveguide are coupled and the end of the outer conductor, and injecting the plasma gas or the reactive gas between the outer conductor and the inner conductor. Microwave plasma generator of the deposition process exhaust gas trap comprising an inlet for.
  12. 피가공물에 박막을 증착하는 증착부;A deposition unit for depositing a thin film on the workpiece;
    상기 증착부로부터 배출되는 배기가스에 포함된 성분 중 적어도 일부를 미세 파우더로 변환하는 1항 내지 11항 중 어느 한 항의 증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치;A microwave plasma generator of the deposition process exhaust gas trap according to any one of claims 1 to 11 for converting at least some of the components contained in the exhaust gas discharged from the deposition unit into fine powder;
    상기 증착부로부터 배출되는 배기가스를 펌핑하는 펌프;A pump for pumping exhaust gas discharged from the deposition unit;
    증착공정 배기가스 트랩의 마이크로 웨이브 플라즈마 발생장치를 경유한 배기가스 중 파티클을 포집하는 파우더 콜렉터;A powder collector for collecting particles in the exhaust gas via the microwave plasma generator of the deposition process exhaust gas trap;
    를 포함하는 마이크로 웨이브 플라즈마 발생장치가 구비되는 증착공정 배기가스 트랩.Deposition process exhaust gas trap provided with a microwave plasma generating device comprising a.
PCT/KR2019/003616 2018-04-05 2019-03-28 Microwave plasma generator for deposition process exhaust gas trap and deposition process exhaust gas trap comprsing same WO2019194468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0039449 2018-04-05
KR1020180039449A KR102085726B1 (en) 2018-04-05 2018-04-05 Microwave Plasma Device for Exhaust Gas Trap of Deposition Process And Exhaust Gas Trap of Deposition Process Having the Same

Publications (1)

Publication Number Publication Date
WO2019194468A1 true WO2019194468A1 (en) 2019-10-10

Family

ID=68100849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003616 WO2019194468A1 (en) 2018-04-05 2019-03-28 Microwave plasma generator for deposition process exhaust gas trap and deposition process exhaust gas trap comprsing same

Country Status (2)

Country Link
KR (1) KR102085726B1 (en)
WO (1) WO2019194468A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102546997B1 (en) 2022-12-02 2023-06-23 이상주 Treatment device for waste gas from semiconductor manufacturing process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120049968A (en) * 2010-11-10 2012-05-18 (주)트리플코어스코리아 Atmospheric pressure plasma gas scrubbing equipment
KR20120139951A (en) * 2011-06-20 2012-12-28 (주)트리플코어스코리아 Apparatus for eliminating waste gases by plasmas
KR101557880B1 (en) * 2014-07-07 2015-10-13 (주)클린팩터스 Low pressure plasma reactor for exhaust gas treatment
KR20150139665A (en) * 2014-06-03 2015-12-14 박영배 Gas scrubber for semiconductor process
KR101579139B1 (en) * 2014-12-11 2015-12-21 (주)그린사이언스 Plasma Torch Having WaveGuide Having Providing Part of Swirl Current Removal Gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120049968A (en) * 2010-11-10 2012-05-18 (주)트리플코어스코리아 Atmospheric pressure plasma gas scrubbing equipment
KR20120139951A (en) * 2011-06-20 2012-12-28 (주)트리플코어스코리아 Apparatus for eliminating waste gases by plasmas
KR20150139665A (en) * 2014-06-03 2015-12-14 박영배 Gas scrubber for semiconductor process
KR101557880B1 (en) * 2014-07-07 2015-10-13 (주)클린팩터스 Low pressure plasma reactor for exhaust gas treatment
KR101579139B1 (en) * 2014-12-11 2015-12-21 (주)그린사이언스 Plasma Torch Having WaveGuide Having Providing Part of Swirl Current Removal Gas

Also Published As

Publication number Publication date
KR20190116613A (en) 2019-10-15
KR102085726B1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP2553947B2 (en) Plasma reactor device and material treatment method
US6274496B1 (en) Method for single chamber processing of PECVD-Ti and CVD-TiN films for integrated contact/barrier applications in IC manufacturing
US7446335B2 (en) Process and apparatus for forming nanoparticles using radiofrequency plasmas
US5807615A (en) Method and device for forming an excited gaseous treatment atmosphere lacking electrically charged species used for treating metallic substrates
WO2019194468A1 (en) Microwave plasma generator for deposition process exhaust gas trap and deposition process exhaust gas trap comprsing same
US5079031A (en) Apparatus and method for forming thin films
Rao et al. Nanostructured materials production by hypersonic plasma particle deposition
JPH07109576A (en) Formation of film by plasma cvd
WO1998023788A1 (en) Chemical vapor deposition apparatus
JP2009544854A (en) Plasma surface treatment using dielectric barrier discharge
WO2009104918A2 (en) Apparatus and method for processing substrate
WO2019194467A1 (en) Microwave plasma torch for manufacturing metal powder or metal alloy, and method for treating metal compound or metal compound-containing material and metal powder by using same
JP2006274322A (en) Method for water-repellency treatment
WO2009104919A2 (en) Apparatus and method for processing substrate
WO2020235873A1 (en) Apparatus for preventing powder deposition in exhaust pipe for semiconductor manufacturing facility, exhaust equipment comprising same, and method for preventing powder deposition in exhaust pipe by using same
JPH0246723A (en) Device for thin film formation
Shibata et al. A boundary layer model for the MOCVD process in a vertical cylinder reactor
WO2011136570A2 (en) Apparatus and method for manufacturing silicon nanopowder
Chang et al. Enhancement of titanium nitride barrier metal properties by nitrogen radical assisted metalorganic chemical vapor deposition
KR100698504B1 (en) Chemical vapor deposition equipment
US5700517A (en) Process for the densification of a porous structure by boron nitride
WO2017200253A1 (en) Molten material supply unit and dry coating device comprising same
KR20010032481A (en) Method for forming plasma films
WO2021141438A1 (en) Chamber cleaning method
US3832222A (en) Chemical vapor deposition of uranium and plutonium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781644

Country of ref document: EP

Kind code of ref document: A1