WO2019194139A1 - Temperature adjusting device for stone surface plate, and inspection device provided with same - Google Patents
Temperature adjusting device for stone surface plate, and inspection device provided with same Download PDFInfo
- Publication number
- WO2019194139A1 WO2019194139A1 PCT/JP2019/014502 JP2019014502W WO2019194139A1 WO 2019194139 A1 WO2019194139 A1 WO 2019194139A1 JP 2019014502 W JP2019014502 W JP 2019014502W WO 2019194139 A1 WO2019194139 A1 WO 2019194139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- panel
- surface plate
- stone
- temperature control
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
Definitions
- the present invention relates to a temperature control device for a stone surface plate and an inspection device provided with the same.
- FPD Flat Panel Display
- LCD liquid crystal display
- organic EL panels organic EL panels
- the size of the glass substrate has been increasing.
- a photomask that performs the same magnification exposure on the glass substrate is used. Therefore, the blanks, which are the original plate for forming the electronic circuit on the photomask and the photomask, are remarkably increased with the increase in size of the LCD panel and the mother glass.
- an inspection apparatus as disclosed in Patent Document 1 is used.
- This inspection apparatus includes a stone surface plate as a stage serving as a base of the apparatus.
- a mask support portion capable of reciprocating in the stroke direction is provided on the stone surface plate.
- the photomask moves along the stroke direction supported by the mask support.
- the photomask is supported by the mask support portion in an upright state so that the mask surface is parallel to the stroke direction and the vertical direction. That is, the photomask is placed on the stone surface plate in a so-called vertical position.
- the temperature environment for polishing to obtain the flat surface accuracy of the stone surface plate does not necessarily match the temperature environment in which the inspection device is used.
- the environmental temperature of the inspection apparatus differs for each user environment.
- a stone surface plate with a thickness of 400 mm and a length of 4.5 m is made of granite (granite)
- the temperature difference between the top and bottom surfaces of the stone surface plate is 0.1 ° C.
- a pitching error close to 0.2 sec (1 sec: 1/3600 degrees) occurs.
- a stone surface plate polished in winter is easy to produce in an environment where the lower surface is cold, and the plane accuracy cannot be reproduced unless the operating environment is kept at a low temperature.
- the upper surface side of the stone surface plate is exposed to the inside of the thermal chamber, so the temperature is often adjusted, but the lower surface side of the stone surface plate is often not fully adjusted.
- the lower surface of the stone surface plate is greatly affected by the temperature of the installation floor surface facing each other. If the installation floor is cooler than the bottom surface of the stone surface plate, the infrared rays emitted from the bottom surface of the stone surface plate are absorbed by the installation floor surface, and the same amount of infrared light as that emitted from the bottom surface of the stone surface plate returns. It will get cold because there isn't.
- the present invention has been made in view of the above-described problems, and includes a stone surface plate temperature adjustment device that can easily maintain the planar accuracy of the stone surface plate regardless of the installation location, and a device to be inspected.
- An object of the present invention is to provide an inspection apparatus capable of improving the inspection accuracy of a panel.
- an aspect of the present invention is a temperature control device for a stone surface plate disposed with a gap between the floor surface and an installation floor surface.
- a lower surface temperature control panel disposed on the installation floor so as to face the lower surface; and a temperature control unit that controls a temperature of the lower surface temperature adjustment panel, wherein the lower surface temperature adjustment panel includes the installation floor surface
- the said lower surface temperature control panel arrange
- a panel side temperature sensor is provided on the bottom surface temperature control panel, and an upper surface side temperature sensor that is paired with the panel side temperature sensor is provided on the upper surface of the stone surface plate corresponding to the panel side temperature sensor.
- the temperature control unit adjusts the temperature of each of the lower surface temperature control panels based on the temperature detection values of the panel side temperature sensor and the upper surface side temperature sensor that form a pair in the vertical direction. It is preferable to control the temperature of the part.
- the periphery of the gap sandwiched between the lower surface temperature control panel and the lower surface of the stone surface plate is surrounded by a partition wall.
- the heat insulating panel is formed of a resin sheet having an independent foam structure.
- the thermal radiation panel is made of a metal plate.
- the temperature adjusting unit is a tube for circulating a refrigerant.
- the tube has a pair of refrigerant flow paths parallel to each other, and the refrigerant is set to flow in opposite directions in each of the pair of refrigerant flow paths.
- a heat exchanger that cools the refrigerant with cooling water having a temperature lower than the reference temperature is cooled to the reference temperature, and the refrigerant cooled by the heat exchanger is supplied to the tank.
- a stone surface plate on which a panel to be inspected is placed, an inspection camera for imaging the state of the panel surface of the panel to be inspected, and the stone.
- a temperature control device for a surface plate, and a bottom surface temperature control panel disposed on the installation floor so that the temperature control device faces a bottom surface of the stone surface plate, and a bottom surface temperature control panel
- a temperature control unit that controls the temperature, and the lower surface temperature control panel is disposed on the heat insulation panel and the heat insulation panel, the temperature adjustment unit is embedded, and the temperature is adjusted.
- a heat radiating panel that supplies and absorbs heat by the adjusting unit, and the temperature control unit is configured such that a temperature difference between the upper surface of the stone surface plate and the surface of the heat radiating panel becomes a set value.
- the temperature of the thermal radiation panel is controlled.
- the present invention it is possible to suppress the deformation of the stone surface plate regardless of the installation location, and in particular, the temperature adjusting device for the stone surface plate that can easily maintain the plane accuracy, and the inspection accuracy of the panel to be inspected are provided. It is possible to realize an inspection apparatus that can improve the above.
- FIG. 1 is a sectional view schematically showing an inspection apparatus according to the first embodiment of the present invention.
- FIG. 2 is an exploded perspective view of an essential part of the inspection apparatus according to the first embodiment of the present invention.
- FIG. 3 is an explanatory plan view showing a state in which the stone surface plate of the inspection apparatus according to the first embodiment of the present invention is removed.
- FIG. 4 is a schematic configuration diagram of the inspection apparatus and the temperature adjustment apparatus according to the first embodiment of the present invention.
- FIG. 5 is a cross-sectional view of the first bottom surface temperature adjustment panel used in the temperature adjustment device according to the first embodiment of the present invention.
- FIG. 6A is an explanatory diagram schematically illustrating a state in which the stone surface plate is deformed due to the temperature distribution in the inspection apparatus according to the first embodiment of the present invention.
- FIG. 6B is an explanatory diagram illustrating a state of the stone surface plate when the temperature control is performed by the temperature adjusting device in the inspection device according to the first embodiment of the present invention.
- FIG. 7 is an explanatory diagram showing a state of the photomask in a state where the temperature control of the stone surface plate is performed by the inspection apparatus according to the first embodiment of the present invention.
- FIG. 8A is an explanatory diagram schematically illustrating a state in which the stone surface plate is deformed due to the temperature distribution in the inspection apparatus according to the second embodiment of the present invention.
- FIG. 8-2 is an explanatory diagram showing a state of the stone surface plate when the temperature control is performed by the temperature adjusting device in the inspection device according to the second embodiment of the present invention.
- FIG. 9A is an explanatory diagram schematically illustrating a state in which the stone surface plate is deformed due to the temperature distribution in the inspection apparatus according to the third embodiment of the present invention.
- FIG. 9-2 is an explanatory diagram illustrating a state of the stone surface plate when the temperature control is performed by the temperature adjustment device in the inspection device according to the third embodiment of the present invention.
- FIG. 10 is a cross-sectional view of a first bottom surface temperature control panel used in an inspection apparatus and a temperature adjustment apparatus according to the fourth embodiment of the present invention.
- FIG. 11 is an explanatory plan view of a lower surface temperature control panel used in an inspection apparatus and a temperature adjustment apparatus according to the fifth embodiment of the present invention.
- 12 is a cross-sectional view taken along the line XII-XII in FIG.
- FIG. 13 is a schematic block diagram of the temperature control apparatus which concerns on the 6th Embodiment of this invention.
- FIG. 14 is an explanatory diagram showing a state in which the pattern of the photomask is deformed due to the occurrence of pitching that turns around the horizontal axis that intersects perpendicularly to the stroke direction on the stone surface plate.
- FIG. 1 shows an inspection apparatus 1 including a stone surface plate temperature control apparatus according to a first embodiment of the present invention.
- the inspection apparatus 1 according to the present embodiment is used for inspection of the pattern arrangement of the photomask M that is the panel to be inspected shown in FIG.
- the inspection apparatus 1 can detect the position data of the mask pattern formed on the mask surface of the photomask M, and by comparing the position data with the design data, detection of a defect in the mask pattern of the photomask M and the mask. The pattern can be corrected.
- the inspection apparatus 1 of the present embodiment is disposed on an installation floor surface F.
- the inspection apparatus 1 includes a stone surface plate 2 as a stage serving as the basis of the apparatus, a mask support portion 3 as a panel support portion, and a plurality of (6 in the present embodiment as shown in FIG. 3 in the present embodiment). ) Vibration isolation tables 4, 5, 6, 7, 8, 9; an imaging unit 10;
- the stone surface plate 2 is made of granite (granite), for example. As shown in FIGS. 1 and 2, the stone surface plate 2 has a substantially rectangular parallelepiped shape, and has an upper surface 21, a lower surface 22, side surfaces 23 and 24 on both sides, and side surfaces 25 and 26 on both ends in the longitudinal direction.
- the size of the stone surface plate 2 is, for example, a substantially rectangular parallelepiped shape having a width of about 1,200 mm, a length of about 4,500 mm, and a thickness of about 400 mm.
- size of the stone surface plate 2 is changed suitably according to the magnitude
- a guide groove 2 ⁇ / b> A extending along the longitudinal direction is formed on the upper surface 21 of the stone surface plate 2 at the center in the width direction W of the upper surface 21.
- Recesses 2B are formed at the four corners of the lower surface 22 of the stone surface plate 2, respectively.
- concave portions 2C are formed on both sides of the width direction W at the center in the longitudinal direction of the lower surface of the stone surface plate 2, respectively.
- the above-described six vibration isolation tables 4, 5, 6, 7, 8, and 9 are installed on the installation floor F so as to correspond to the recesses 2B and 2C of the stone surface plate 2 to be arranged.
- the bottom surfaces of the recesses 2B and 2C are the upper surfaces 4A, 5A, 6A, and 7A of the corresponding vibration isolation tables 4, 5, 6, 7, 8, and 9 respectively. , 8A, 9A.
- FIG. 1 in a state where the stone surface plate 2 is supported by the vibration isolation tables 4, 5, 6, 7, 8, 9, between the lower surface 22 of the stone surface plate 2 and the installation floor surface F, A gap C having a predetermined height is formed.
- a mask support portion 3 is provided in the guide groove 2 ⁇ / b> A of the stone surface plate 2 so as to be movable in the stroke direction S of the stone surface plate 2 (longitudinal direction of the stone surface plate 2).
- the mask support unit 3 includes a support frame 3A that supports the edge of the photomask M.
- the vibration isolation tables 4, 6, 7, 9 corresponding to the recess 2 ⁇ / b> B of the stone surface plate 2 are active vibration isolation tables, and the vibration isolation tables 5, corresponding to the recess 2 ⁇ / b> C of the stone surface plate 2.
- 8 is a passive vibration isolation table.
- the configuration of the vibration isolation table is not limited to this.
- the imaging unit 10 includes an upper and lower guide column 10A and an inspection camera 10B.
- the inspection camera 10B is provided so as to be movable in the vertical direction along the vertical guide column 10A.
- the upper and lower guide columns are provided on the upper surface 21 of the stone surface plate 2.
- the inspection camera 10B is set to move up and down by a control device and a drive device (not shown).
- the temperature adjustment device 11 includes a first upper surface temperature sensor 31, a second upper surface temperature sensor 32, a third upper surface temperature sensor 33, a fourth upper surface temperature sensor 34, and a first lower surface temperature. Tone panel 12, second bottom surface temperature control panel 13, third bottom surface temperature control panel 14, fourth bottom surface temperature control panel 15, first panel side temperature sensor 41, second panel side temperature sensor 42, and third panel side temperature. A sensor 43, a fourth panel side temperature sensor 44, water temperature adjusting heaters 17, 18, 19, 20, a temperature adjusting tube 37 as a temperature adjusting unit, and a temperature control unit 16 for controlling the temperature of the lower surface temperature adjusting panel, And a curtain 50 (see FIG. 2) as a partition wall.
- the first upper surface side temperature sensor 31, the first upper surface side temperature sensor 31, A second upper surface side temperature sensor 32, a third upper surface side temperature sensor 33, and a fourth upper surface side temperature sensor 34 are provided.
- the first upper surface side temperature sensor 31, the second upper surface side temperature sensor 32, the third upper surface side temperature sensor 33, and the fourth upper surface side temperature sensor 34 are connected to the temperature controller 16, and each region A1, A2, A3, The temperature detection value at A4 is output to the temperature control unit 16.
- the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15 are sequentially arranged in four regions A1, A2, A3, A4 of the stone surface plate 2. It arrange
- the first lower surface temperature control panel 12 is configured by laminating a heat insulating panel 35 and a heat radiation panel 36.
- FIG. 5 shows only the first bottom surface temperature control panel 12, but the second bottom surface temperature control panel 13, the third bottom surface temperature control panel 14, and the fourth bottom surface temperature control panel 15 have the same configuration, and a heat insulating panel. 35 and a heat radiation panel 36.
- the heat insulation panel 35 is made of a resin sheet material having an independent foam structure with high heat insulation. This heat insulation panel 35 is arrange
- the heat insulating panel 35 has an independent foam structure, it has a higher heat shielding effect than a heat insulating material having a continuous foam structure.
- the thermal radiation panel 36 is made of a metal plate having high thermal conductivity.
- the heat radiation panel 36 is made of an aluminum plate. As shown in FIG. 5, the heat radiation panel 36 is laminated on the heat insulation panel 35.
- a temperature adjustment tube 37 that is a tube as a temperature adjustment unit is embedded in the surface of the thermal radiation panel 36. For this reason, the heat radiation panel 36 is supplied with heat or absorbed by the temperature adjusting tube 37 and is controlled in temperature, and performs heat radiation at the controlled temperature on the lower surface 22 of the stone surface plate 2.
- the temperature adjustment tube 37 is integrally formed so that a pair of refrigerant flow paths 37 ⁇ / b> A and 37 ⁇ / b> B are parallel to each other.
- water of the same temperature is set to flow in the opposite directions in the refrigerant flow paths 37A and 37B.
- the temperature adjustment tube 37 is made of, for example, a fluororesin.
- the pressure resistance can be enhanced, and the effect of preventing water leakage can be enhanced.
- the temperature adjustment tube 37 includes the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15.
- the heat radiation panel 36 is laid out and embedded so as to meander.
- the arrangement density of the temperature adjustment tubes 37 with respect to the heat radiation panel 36 is preferably uniform, taking into account the heat distribution due to heat transfer depending on the arrangement state of the vibration isolation tables 4, 5, 6, 7, 8, and 9. The arrangement density may be determined.
- the temperature adjustment tubes 37 provided on the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15, respectively,
- the water temperature adjusted water is supplied from the water temperature adjusting heaters 17, 18, 19, 20.
- one temperature adjustment tube 37 since one temperature adjustment tube 37 has the refrigerant flow paths 37A and 37B, the water temperature adjustment is performed from each of the water temperature adjustment heaters 17, 18, 19, and 20 to the two refrigerant flow paths 37A and 37B. Is set to supply the water.
- the first panel side temperature sensor 41, the second A panel side temperature sensor 42, a third panel side temperature sensor 43, and a fourth panel side temperature sensor 44 are arranged on the upper surfaces of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15, the first panel side temperature sensor 41, the second A panel side temperature sensor 42, a third panel side temperature sensor 43, and a fourth panel side temperature sensor 44 are arranged.
- the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 are sequentially converted from the first upper surface side temperature on the stone surface plate 2.
- the sensor 31, the second upper surface side temperature sensor 32, the third upper surface side temperature sensor 33, and the fourth upper surface side temperature sensor 34 are arranged at positions corresponding to the vertical direction.
- the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 are connected to the temperature control unit 16.
- the water temperature adjusting heaters 17, 18, 19, and 20 supply water supplied at a reference temperature (T) based on a control signal from the temperature control unit 16 to a predetermined control temperature (T + A). , (T + B), (T + C), (T + D).
- T reference temperature
- the reference temperature (T) is set to a constant temperature that is always lower than the temperature of the upper surface 21 of the stone surface plate 2 in the environment where the inspection apparatus 1 is operated.
- the temperature control unit 16 includes a first upper surface side temperature sensor 31, a second upper surface side temperature sensor 32, a third upper surface side temperature sensor 33, and a fourth upper surface on the upper surface 21 side of the stone surface plate 2.
- the side temperature sensor 34 is connected to the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 on the lower surface temperature control panel side. Yes.
- the temperature control unit 16 is connected to the water temperature adjusting heaters 17, 18, 19, and 20.
- the temperature control unit 16 includes, for example, a computing device such as a personal computer and a device having a storage unit.
- the reference temperature (T) in the water temperature adjusting heaters 17, 18, 19, and 20 is set so that the difference between the upper surface side temperature and the lower surface side temperature of the stone surface plate 2 becomes a preset temperature.
- the water temperature adjusting heaters 17, 18, 19, and 20 are controlled by determining the degree of heating applied to the water temperature.
- the difference between the upper surface temperature and the lower surface temperature (upper surface temperature ⁇ lower surface temperature) can be set to about 0.2 ° C., for example.
- what is necessary is just to determine the difference of upper surface side temperature and lower surface side temperature according to the characteristic of each stone surface plate 2.
- a curtain 50 as a partition wall is provided around each of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, and the third lower surface temperature adjustment panel 14. Place.
- an antistatic vinyl chloride sheet is used as the curtain 50.
- the curtain 50 is used for the purpose of closing the gap between the stone surface plate 2 and the installation floor surface F.
- the curtain 50 defines a space (gap C) above each of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, and the third lower surface temperature adjustment panel 14. Therefore, the curtain 50 can prevent air convection between the lower surface temperature control panels. For this reason, the curtain 50 fulfill
- the temperature control unit 16 performs temperature control with the water temperature adjusting heaters 17, 18, 19, and 20.
- FIG. 6A schematically shows a state in which the temperature difference in the vertical direction of the stone surface plate 2 changes depending on the installation environment, and pitching occurs at a plurality of locations.
- the deformation of the stone surface plate 2 can be suppressed as shown in FIG. Therefore, as shown in FIG. 7, the deformation of the photomask M placed on the stone surface plate 2 can be prevented, and an inspection error due to the deformation of the mask pattern Mp of the photomask M can be prevented.
- the temperature adjusting device 11 Since the temperature adjusting device 11 according to the present embodiment performs the above-described operation and operation, it is possible to suppress the deformation of the stone surface plate 2 regardless of the installation location, and in particular, the planar accuracy of the upper surface 21 can be easily maintained. . Therefore, in the inspection apparatus 1 including the temperature adjusting device 11, the inspection accuracy of the photomask M can be improved.
- the installation environment of the inspection apparatus 1 includes a temperature-controlled thermal chamber and a clean room where the temperature control of the upper surface 21 of the stone surface plate 2 is not performed only by downflowing clean air.
- the influence of the temperature from the installation floor surface F side can be suppressed in any of the installation environments described above.
- transformation of the stone surface plate 2 can be suppressed even in the summer when the temperature is high or in the winter when the temperature is low.
- the first lower surface temperature adjustment panel 12 and the second temperature control panel 12 corresponding to each of the regions A1, A2, A3, and A4 obtained by dividing the stone surface plate 2 into four.
- the temperature of the lower surface temperature control panel 13, the third lower surface temperature control panel 14, and the fourth lower surface temperature control panel 15 it is possible to correct the complicated bending of the stone surface plate 2.
- the heat radiation of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15 is achieved. Since the temperature of the lower surface 22 of the stone surface plate 2 is controlled by heat radiation from the panel 36, the stone surface plate 2 is not subjected to stress that is caused by direct heating.
- FIGS. 8A and 8B schematically show the stone surface plate 2 and the bottom surface temperature control panel used in the inspection apparatus 1 and the temperature adjustment apparatus 11 according to the second embodiment of the present invention.
- a first upper surface side temperature sensor 31, a second upper surface side temperature sensor 32, and a third upper surface side temperature sensor 33 are provided in regions A 1, A 2 and A 3 obtained by dividing the stone surface plate 2 into three in the longitudinal direction. Is provided.
- a first lower surface temperature adjustment panel 12, a second lower surface temperature adjustment panel 13, and a third lower surface temperature adjustment panel 14 are provided as the lower surface temperature adjustment panels.
- Other configurations in the present embodiment are substantially the same as the configuration contents of the first embodiment described above.
- a plurality of deformations of the stone surface plate 2 as shown in FIG. 8A can be suppressed, and the flat shape of the upper surface can be maintained as shown in FIG. 8B.
- FIGS. 9-1 and 9-2 schematically show the stone surface plate 2 and the bottom surface temperature control panel used in the inspection apparatus 1 and the temperature adjustment apparatus 11 according to the third embodiment of the present invention.
- the first upper surface side temperature sensor 31 and the second upper surface side temperature sensor 32 are provided in the regions A1 and A2 obtained by dividing the stone surface plate 2 into two in the longitudinal direction.
- the lower surface temperature adjustment panel is provided with a first lower surface temperature adjustment panel 12 and a second lower surface temperature adjustment panel 13.
- Other configurations in the present embodiment are substantially the same as the configuration contents of the first embodiment described above.
- the deformation of the stone surface plate 2 as shown in FIG. 9-1 can be suppressed, and the flat top surface can be maintained as shown in FIG. 9-2.
- FIG. 10 shows a first bottom surface temperature adjustment panel 12A used in the inspection apparatus 1 and the temperature adjustment apparatus 11 according to the fourth embodiment of the present invention.
- the heat radiation panel 36 in the first bottom surface temperature control panel 12 of the first embodiment is reversed and laminated on the heat insulation panel 35. Therefore, the temperature adjustment tube 37 is located in the vicinity of the interface between the heat insulating panel 35 and the heat radiation panel 36.
- Other configurations of the present embodiment are the same as those of the first embodiment described above.
- the temperature adjustment tube 37 is disposed below the heat radiation panel 36, so that when the heat transmitted from the temperature adjustment tube 37 is transmitted to the upper surface of the heat radiation panel 36, the upper surface.
- the temperature uniformity can be further improved.
- “Fifth Embodiment” 11 and 12 show a bottom temperature control panel 60 according to a fifth embodiment of the present invention.
- the lower surface temperature adjustment panel 60 has a configuration in which a heat insulating panel 35 and a heat radiation panel 36 are stacked in the same manner as in the first embodiment.
- the temperature adjustment tube 38 as a temperature adjustment unit embedded in the surface of the thermal radiation panel 36 is a tube having one flow path.
- Other configurations of the present embodiment are the same as those of the first embodiment described above.
- FIG. 13 shows a schematic configuration of a temperature adjustment device 11A according to the sixth embodiment of the present invention.
- the water supplied to the water temperature adjusting heaters 17, 18, 19, 20 is used by reducing and returning the water returning from the respective temperature adjusting tubes 37 to an appropriate temperature in the tank 71.
- the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 are arranged on the lower surface of the stone surface plate 2. Yes.
- the other configuration of the present embodiment is substantially the same as the configuration of the first embodiment described above, and therefore will be described with reference to the drawings corresponding to the first embodiment as appropriate.
- the temperature adjustment device 11A includes a first upper surface temperature sensor 31, a second upper surface temperature sensor 32, a third upper surface temperature sensor 33, a fourth upper surface temperature sensor 34, a first panel temperature sensor 41, and a second panel. Side temperature sensor 42, third panel side temperature sensor 43, fourth panel side temperature sensor 44, water temperature adjustment heaters 17, 18, 19, 20, temperature adjustment tube 37 as a temperature adjustment unit, and temperature adjustment tube 37.
- the temperature adjustment tube 37 is integrally formed so that the pair of refrigerant channels 37A and 37B are parallel to each other (see FIGS. 2 and 3).
- the temperature adjustment tube 37 is set so that water of the same temperature flows in the refrigerant flow paths 37A and 37B in opposite directions.
- each temperature adjustment tube 37 is supplied with water whose water temperature has been adjusted by the water temperature adjustment heaters 17, 18, 19, and 20.
- the water temperature adjustment heaters 17, 18, 19, and 20 are supplied to the two refrigerant flow paths 37A and 37B, respectively. It is set to supply water whose temperature is adjusted.
- a pipe 81 is connected to the downstream side of the water temperature adjusting heater 17.
- the downstream end of the pipe 81 is branched into two pipes 81A and 81B.
- the pipe 81A is connected to a refrigerant flow path 37A (see FIGS. 2 and 3) provided in the corresponding first lower surface temperature control panel 12.
- the pipe 81B is connected to the refrigerant flow path 37B so that the water flow in the flow path is in the opposite direction to the water flow in the refrigerant flow path 37A.
- a pipe 82 is connected to the downstream side of the water temperature adjusting heater 18.
- the downstream end of the pipe 82 is branched into two pipes 82A and 82B.
- the pipe 82A is connected to a refrigerant flow path 37A (see FIGS. 2 and 3) provided in the corresponding second lower surface temperature control panel 13.
- the pipe 82B is connected to the refrigerant flow path 37B so that the water flow in the flow path is opposite to the water flow in the refrigerant flow path 37A.
- a pipe 83 is connected to the downstream side of the water temperature adjusting heater 19.
- the downstream end of the pipe 83 is branched into two pipes 83A and 83B.
- the pipe 83A is connected to a refrigerant flow path 37A (see FIGS. 2 and 3) provided in the corresponding third lower surface temperature control panel 14.
- the pipe 83B is connected to the refrigerant flow path 37B so that the water flow in the flow path is in the opposite direction to the water flow in the refrigerant flow path 37A.
- a pipe 84 is connected to the downstream side of the water temperature adjusting heater 20.
- the downstream end of the pipe 84 is branched into two pipes 84A and 84B.
- the pipe 84A is connected to a refrigerant flow path 37A (see FIGS. 2 and 3) provided in the corresponding fourth lower surface temperature control panel 15.
- the pipe 84B is connected to the refrigerant flow path 37B so that the water flow in the flow path is opposite to the water flow in the refrigerant flow path 37A.
- the downstream ends of the pair of refrigerant flow paths 37A and 37B in the temperature adjustment tube 37 provided on the first lower surface temperature control panel 12 shown in FIG. 3 are sequentially connected to the pipes 85A and 85B. ing. The downstream ends of these pipes 85A and 85B are connected to the pipe 85 and merge.
- the downstream ends of the pair of refrigerant flow paths 37A and 37B in the temperature adjustment tube 37 provided on the second lower surface temperature control panel 13 are sequentially connected to the pipes 86A and 86B as shown in FIG.
- the downstream ends of these pipes 86A and 86B are connected to the pipe 86 and merge.
- the downstream ends of the pair of refrigerant flow paths 37A and 37B in the temperature adjustment tube 37 provided on the third lower surface temperature control panel 14 are sequentially connected to the pipes 87A and 87B as shown in FIG.
- the downstream ends of these pipes 87A and 87B are connected to the pipe 87 and merge.
- the downstream ends of the pair of refrigerant flow paths 37A and 37B in the temperature adjustment tube 37 provided on the fourth lower surface temperature control panel 15 are sequentially connected to the pipes 88A and 88B as shown in FIG.
- the downstream ends of these pipes 88 ⁇ / b> A and 88 ⁇ / b> B are connected to and merged with the upstream end of the pipe 89.
- the downstream end of the pipe 89 is connected to the heat exchanger 72.
- the pipes 85, 86, 87, and 88 are connected to the pipe 89 and merge.
- the pipe 89 is connected to the heat exchanger 72.
- the water supplied from the pipe 89 and heat-exchanged through the heat exchanger 72 is supplied to the tank 71 through the pipe 89A.
- a temperature sensor 92 is provided in the pipe 89A.
- a circulating water supply pipe 93 is connected to the tank 71.
- a circulating pump 94 and a pressure gauge 96 are provided in the circulating water supply pipe 93.
- the tank 71 is provided with a tank level meter 95.
- a pipe 90 for supplying cooling water is connected to the heat exchanger 72.
- the water supplied from the pipe 90 and heat-exchanged through the heat exchanger 72 is guided to the cooling water outlet through the pipe 90A.
- a three-way valve 73 is interposed in the pipe 90.
- a bypass pipe 91 connected to the pipe 90A is connected to the three-way valve 73.
- cooling water such as tap water having a low temperature (for example, a temperature around 10 ° C.) is supplied from the pipe 90, and the circulating water supplied from the pipe 89 is used as a reference in the heat exchanger 72. Control to lower the temperature (T).
- the temperature control unit 16 includes a first upper surface side temperature sensor 31, a second upper surface side temperature sensor 32, a third upper surface side temperature sensor 33, and a fourth upper surface on the upper surface 21 side of the stone surface plate 2.
- the side temperature sensor 34 is connected to the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 on the lower surface 22 side.
- the temperature control unit 16 is connected to the water temperature adjusting heaters 17, 18, 19, 20, the three-way valve 73, and the temperature sensor 92.
- the reference temperature (T) in the water temperature adjusting heaters 17, 18, 19, and 20 is set so that the difference between the upper surface side temperature and the lower surface side temperature of the stone surface plate 2 becomes a preset temperature.
- the water temperature adjusting heaters 17, 18, 19, and 20 are controlled by determining the degree of heating applied to the water temperature.
- the difference between the upper surface temperature and the lower surface temperature can be set to about 0.2 ° C., for example.
- what is necessary is just to determine the difference of upper surface side temperature and lower surface side temperature according to the characteristic of each stone surface plate 2.
- the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 are arranged on the lower surface 22 of the stone surface plate 2.
- it is arranged on the surface of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15. May be. In short, it is only necessary to set the temperature difference between the upper surface 21 side and the lower surface 22 side in each region of the stone surface plate 2.
- the water temperature adjusting heaters 17, 18, 19, and 20 are configured to supply water supplied at a reference temperature (T) to a predetermined control temperature (T + A) based on a control signal from the temperature control unit 16. , (T + B), (T + C), (T + D).
- the reference temperature (T) is set to a constant temperature that is always lower than the temperature of the upper surface 21 of the stone surface plate 2 in the environment where the apparatus is operated.
- the reference temperature (T) is set to 20 ° C., for example. That is, in the present embodiment, the reference temperature (T) of water stored in the tank 71 is set to 20 ° C.
- cooling water is supplied to the pipe 90.
- Water heated to a temperature (T + A), (T + B), (T + C), (T + D), etc. higher than 20 ° C. is supplied to the heat exchanger 72 via a pipe 89.
- the temperature of water supplied to the heat exchanger 72 via the pipe 89 is, for example, about 23 ° C.
- the temperature control unit 16 controls the three-way valve 73 based on the temperature detection value of the temperature sensor 92 to flow cooling water to the bypass pipe 91, flow cooling water to the heat exchanger 72, and flow rate of cooling water. To control. Thereby, in the heat exchanger 72, the water supplied from the pipe 89 can be lowered from 23 ° C. to 20 ° C. by the cooling water having a water temperature of 11 ° C., and the temperature of the water stored in the tank 71 is set to 20 ° C. be able to. Thus, in this Embodiment, since it is not necessary to heat a cooling water with a low water temperature (11 degreeC) to 20 degreeC, a big electric power is not consumed.
- the temperature difference from the reference temperature (T) to the control temperatures (T + A), (T + B), (T + C), and (T + D) can be reduced, so that the power consumption can be greatly suppressed.
- the reference temperature (T) is determined from the minimum control temperature of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15.
- water is used as the coolant to be circulated in the water temperature adjusting heaters 17, 18, 19, 20, the temperature adjusting tube 37, the heat exchanger 72, and the tank 71, but is not limited thereto.
- water is circulated through the tank 71, even if a water leak occurs, a water leak exceeding the capacity of the tank 71 does not occur.
- this Embodiment there exists an advantage that a water leak is detectable from the water quantity fall in a tank.
- the photomask M is applied as the panel to be inspected, but blanks serving as a photomask original plate on which an electronic circuit is formed may be applied.
- the heat insulation panel 35 and the heat radiation panel 36 are laminated and integrated, but the heat radiation panel 36 may be stacked on the heat insulation panel 35.
- the heat insulation panel 35 uses the thing of the magnitude
- the photomask M is moved in the stroke direction S on the stone surface plate 2, but the photomask M is fixed on the stone surface plate 2 and the imaging unit 10 side is moved in the stroke direction S.
- the photomask M is inspected in a vertically placed state, but a panel to be inspected such as the photomask M may be inspected horizontally, that is, in a horizontally placed state. Good.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
The present invention comprises: a lower-surface temperature adjustment panel which is disposed on an installation floor surface; and a temperature control which controls the temperature of the lower-surface temperature adjustment panel. The temperature control unit controls the temperature of the lower-surface temperature adjustment panel such that the temperature difference between the upper surface of a stone surface plate and the surface of the lower-surface temperature adjustment panel reaches a set value.
Description
本発明は、石定盤の温度調整装置およびそれを備えた検査装置に関する。
The present invention relates to a temperature control device for a stone surface plate and an inspection device provided with the same.
近年、液晶ディスプレイ(Liquid Crystal Display:LCD)パネル、有機ELパネルなどのフラットパネルディスプレイ(Flat Panel Display:FPD)では、ディスプレイの大画面化に伴いガラス基板の大型化が進んでいる。大型のFPDの製造においては、このガラス基板に対して等倍露光を行うフォトマスクが用いられている。したがって、フォトマスクおよびフォトマスクに電子回路を形成する原版となるブランクスは、LCDパネルやマザーガラスの大型化に伴って著しく大型化している。
In recent years, in flat panel displays (Flat Panel Display: FPD) such as liquid crystal display (LCD) panels and organic EL panels, the size of the glass substrate has been increasing. In the manufacture of a large FPD, a photomask that performs the same magnification exposure on the glass substrate is used. Therefore, the blanks, which are the original plate for forming the electronic circuit on the photomask and the photomask, are remarkably increased with the increase in size of the LCD panel and the mother glass.
大型のフォトマスクにおけるパターン配置などの検査を行うには、例えば、特許文献1に開示されるような検査装置を用いる。この検査装置は、装置の基礎となるステージとしての石定盤を備えている。石定盤の上には、ストローク方向に対して往復移動が可能なマスク支持部が設けられている。フォトマスクは、このマスク支持部に支持されてストローク方向に沿って移動する。このとき、フォトマスクは、マスク面がストローク方向と上下方向とに平行をなすように、起立した状態でマスク支持部に支持される。すなわち、フォトマスクは、所謂縦置きした状態で石定盤上に載せられる。
In order to inspect a pattern arrangement or the like in a large photomask, for example, an inspection apparatus as disclosed in Patent Document 1 is used. This inspection apparatus includes a stone surface plate as a stage serving as a base of the apparatus. On the stone surface plate, a mask support portion capable of reciprocating in the stroke direction is provided. The photomask moves along the stroke direction supported by the mask support. At this time, the photomask is supported by the mask support portion in an upright state so that the mask surface is parallel to the stroke direction and the vertical direction. That is, the photomask is placed on the stone surface plate in a so-called vertical position.
このような検査装置において、石定盤の平面精度を保つことは、非常に重要である。図14に示すように、石定盤200において、ストローク方向Sに対して垂直に交わる図示しない水平軸の軸回りに曲がるピッチングが生じると、それに伴って、フォトマスク201にマスク面上での曲がりが発生する。フォトマスク201がマスク面上で曲がることにより、パネル面上のパターン202も位置ずれを起こしてしまう。したがって、石定盤200にピッチングが生じると、正確な検査が行えないという問題がある。
In such an inspection apparatus, it is very important to keep the surface accuracy of the stone surface plate. As shown in FIG. 14, in the stone surface plate 200, when pitching occurs around a horizontal axis (not shown) that intersects perpendicularly to the stroke direction S, the photomask 201 bends on the mask surface accordingly. Will occur. When the photomask 201 is bent on the mask surface, the pattern 202 on the panel surface is also displaced. Therefore, when pitching occurs in the stone surface plate 200, there is a problem that accurate inspection cannot be performed.
石定盤の製造において、石定盤の平面精度を出すための研磨を行う温度環境は、必ずしも検査装置を使用する温度環境と一致しない。すなわち、検査装置の環境温度は、ユーザ環境毎に異なる。例えば、花崗岩(グラナイト)で厚みが400mm、長さが4.5mの石定盤を作製し、石定盤の上下面の温度差(上面の温度>下面の温度)が0.1℃ある場合、0.2秒角(1秒角:1/3600度)近いピッチング誤差が発生する。冬期に研磨した石定盤は、下面が冷えた環境で作製され易く、使用環境も下面を低温に保たないと平面精度の再現ができない。
In the production of a stone surface plate, the temperature environment for polishing to obtain the flat surface accuracy of the stone surface plate does not necessarily match the temperature environment in which the inspection device is used. In other words, the environmental temperature of the inspection apparatus differs for each user environment. For example, when a stone surface plate with a thickness of 400 mm and a length of 4.5 m is made of granite (granite), and the temperature difference between the top and bottom surfaces of the stone surface plate (top surface temperature> bottom surface temperature) is 0.1 ° C. , A pitching error close to 0.2 sec (1 sec: 1/3600 degrees) occurs. A stone surface plate polished in winter is easy to produce in an environment where the lower surface is cold, and the plane accuracy cannot be reproduced unless the operating environment is kept at a low temperature.
一般的に、検査装置において、石定盤の上面側はサーマルチャンバ内に晒されているため温度調整されることが多いが、石定盤の下面側は温度調整が行き届かない場合が多い。石定盤の下面は、向き合う設置床面の温度の影響を大きく受ける。設置床面が石定盤の下面より温度が低い場合、石定盤の下面から出た赤外線が設置床面で吸収され、石定盤の下面から出た赤外線量と同じだけの赤外線量が戻らないため冷えることになる。逆に、設置床面が石定盤の下面より温度が高い場合、石定盤の下面から出た赤外線量以上に赤外線が石定盤の下面に戻るため、石定盤の下面の温度は上昇傾向となる。
Generally, in an inspection device, the upper surface side of the stone surface plate is exposed to the inside of the thermal chamber, so the temperature is often adjusted, but the lower surface side of the stone surface plate is often not fully adjusted. The lower surface of the stone surface plate is greatly affected by the temperature of the installation floor surface facing each other. If the installation floor is cooler than the bottom surface of the stone surface plate, the infrared rays emitted from the bottom surface of the stone surface plate are absorbed by the installation floor surface, and the same amount of infrared light as that emitted from the bottom surface of the stone surface plate returns. It will get cold because there isn't. Conversely, if the installation floor surface is hotter than the bottom surface of the stone surface plate, the temperature of the bottom surface of the stone surface plate rises because infrared rays return to the bottom surface of the stone surface plate more than the amount of infrared light emitted from the bottom surface of the stone surface plate It becomes a trend.
ここで、石定盤の下面を直接的に加熱または冷却して温度調節を行うことが考えられる。この場合、直接的な温度調節により、石定盤側での早急な応答が要求されるため、石定盤の形状安定化が困難となると考えられる。また、石定盤の下面を直接的に加熱または冷却しても、設置床面からの熱的影響を排除できないため、石定盤の形状を正確に制御することは困難となると考えられる。
Here, it is conceivable to adjust the temperature by directly heating or cooling the lower surface of the stone surface plate. In this case, since immediate response on the stone surface plate side is required by direct temperature control, it is considered that it is difficult to stabilize the shape of the stone surface plate. In addition, even if the lower surface of the stone surface plate is directly heated or cooled, it is considered that it is difficult to accurately control the shape of the stone surface plate because the thermal influence from the installation floor surface cannot be excluded.
したがって、石定盤を備える検査装置では、設置床面の温度環境に起因する石定盤の変形により、フォトマスクのパターン検査に誤差が発生することを抑制することが求められる。
Therefore, in an inspection apparatus equipped with a stone surface plate, it is required to suppress the occurrence of an error in the pattern inspection of the photomask due to the deformation of the stone surface plate due to the temperature environment of the installation floor surface.
本発明は、上記の課題に鑑みてなされたものであって、設置場所に拘わらずに、石定盤の平面精度を容易に維持できる石定盤の温度調整装置、およびそれを備え、被検査パネルの検査精度を向上させることができる検査装置を提供することを目的とする。
The present invention has been made in view of the above-described problems, and includes a stone surface plate temperature adjustment device that can easily maintain the planar accuracy of the stone surface plate regardless of the installation location, and a device to be inspected. An object of the present invention is to provide an inspection apparatus capable of improving the inspection accuracy of a panel.
上述した課題を解決し、目的を達成するために、本発明の態様は、設置床面との間に間隙を隔てて配置される石定盤の温度調整装置であって、前記石定盤の下面に対向するように前記設置床面上に配置される下面温調パネルと、前記下面温調パネルの温度を制御する温度制御部と、を備え、前記下面温調パネルは、前記設置床面上に配置される断熱パネルと、前記断熱パネルの上に配置され、温度調整部が設けられ当該温度調整部により熱供給または熱吸収される熱輻射パネルと、を備え、前記温度制御部は、前記石定盤の上面と、前記熱輻射パネルの表面と、の温度差が設定値となるように前記熱輻射パネルの温度を制御することを特徴とする。
In order to solve the above-described problems and achieve the object, an aspect of the present invention is a temperature control device for a stone surface plate disposed with a gap between the floor surface and an installation floor surface. A lower surface temperature control panel disposed on the installation floor so as to face the lower surface; and a temperature control unit that controls a temperature of the lower surface temperature adjustment panel, wherein the lower surface temperature adjustment panel includes the installation floor surface A heat radiation panel disposed on the heat insulation panel, and a heat radiation panel disposed on the heat insulation panel, provided with a temperature adjustment unit and supplied with heat or absorbed by the temperature adjustment unit, and the temperature control unit includes: The temperature of the thermal radiation panel is controlled so that the temperature difference between the upper surface of the stone surface plate and the surface of the thermal radiation panel becomes a set value.
上記態様としては、前記下面温調パネルが、前記設置床面の前記石定盤を設置する占有領域を、前記石定盤の長手方向に沿って複数に分割したそれぞれの分割領域毎に、配置されることが好ましい。
As said aspect, the said lower surface temperature control panel arrange | positions for every division area which divided | segmented the occupied area which installs the said stone surface plate of the said installation floor surface into plurality along the longitudinal direction of the said stone surface plate. It is preferred that
上記態様としては、前記下面温調パネルにパネル側温度センサが設けられ、前記パネル側温度センサに対応する石定盤の上面に、該パネル側温度センサと対をなす上面側温度センサが設けられ、前記温度制御部は、上下方向で対応して対をなす、前記パネル側温度センサと、前記上面側温度センサと、の温度検出値に基づいて、それぞれの前記下面温調パネルの前記温度調整部の温度を制御することが好ましい。
As the above aspect, a panel side temperature sensor is provided on the bottom surface temperature control panel, and an upper surface side temperature sensor that is paired with the panel side temperature sensor is provided on the upper surface of the stone surface plate corresponding to the panel side temperature sensor. The temperature control unit adjusts the temperature of each of the lower surface temperature control panels based on the temperature detection values of the panel side temperature sensor and the upper surface side temperature sensor that form a pair in the vertical direction. It is preferable to control the temperature of the part.
上記態様としては、前記下面温調パネルと前記石定盤の下面とで挟まれた間隙の周囲は、区画壁で囲まれることが好ましい。
As the above aspect, it is preferable that the periphery of the gap sandwiched between the lower surface temperature control panel and the lower surface of the stone surface plate is surrounded by a partition wall.
上記態様としては、前記断熱パネルが、独立発泡構造の樹脂シートで構成されることが好ましい。
As the above aspect, it is preferable that the heat insulating panel is formed of a resin sheet having an independent foam structure.
上記態様としては、前記熱輻射パネルが、金属板で構成されることが好ましい。
As the above aspect, it is preferable that the thermal radiation panel is made of a metal plate.
上記態様としては、前記温度調整部が、冷媒を流通させるチューブであることが好ましい。
As the above aspect, it is preferable that the temperature adjusting unit is a tube for circulating a refrigerant.
上記態様としては、前記チューブは、互いに並行する一対の冷媒流路を有し、前記一対の冷媒流路のそれぞれに、冷媒が互いに逆方向に流れるように設定されていることが好ましい。
As the above aspect, it is preferable that the tube has a pair of refrigerant flow paths parallel to each other, and the refrigerant is set to flow in opposite directions in each of the pair of refrigerant flow paths.
上記態様としては、前記温度調整チューブに、前記下面温調パネルで温められる前記石定盤の温度よりも低い基準温度に調整された冷媒を供給するタンクと、前記温度調整チューブを通過した戻りの冷媒を、前記基準温度よりも低い温度の冷却水で当該基準温度まで下がるように冷却する熱交換器と、を備え、前記熱交換器で冷却した冷媒を前記タンクに供給することが好ましい。
As said aspect, the tank which supplies the refrigerant | coolant adjusted to the reference temperature lower than the temperature of the said stone surface plate heated by the said lower surface temperature control panel to the said temperature adjustment tube, and the return of having passed through the said temperature adjustment tube It is preferable that a heat exchanger that cools the refrigerant with cooling water having a temperature lower than the reference temperature is cooled to the reference temperature, and the refrigerant cooled by the heat exchanger is supplied to the tank.
本発明の他の態様は、設置床面との間に間隙を隔てて配置され、被検査パネルを載せる石定盤と、前記被検査パネルのパネル面の状態を撮像する検査カメラと、前記石定盤の温度調整装置と、を備え、前記温度調整装置が、前記石定盤の下面に対向するように、前記設置床面上に配置される下面温調パネルと、前記下面温調パネルの温度を制御する温度制御部と、を備え、前記下面温調パネルは、前記設置床面上に配置される断熱パネルと、前記断熱パネルの上に配置され、温度調整部が埋設され、当該温度調整部により熱供給および熱吸収される熱輻射パネルと、を備え、前記温度制御部は、前記石定盤の上面と、前記熱輻射パネルの表面と、の温度差が設定値となるように前記熱輻射パネルの温度を制御することを特徴とする。
According to another aspect of the present invention, there is provided a stone surface plate on which a panel to be inspected is placed, an inspection camera for imaging the state of the panel surface of the panel to be inspected, and the stone. A temperature control device for a surface plate, and a bottom surface temperature control panel disposed on the installation floor so that the temperature control device faces a bottom surface of the stone surface plate, and a bottom surface temperature control panel A temperature control unit that controls the temperature, and the lower surface temperature control panel is disposed on the heat insulation panel and the heat insulation panel, the temperature adjustment unit is embedded, and the temperature is adjusted. A heat radiating panel that supplies and absorbs heat by the adjusting unit, and the temperature control unit is configured such that a temperature difference between the upper surface of the stone surface plate and the surface of the heat radiating panel becomes a set value. The temperature of the thermal radiation panel is controlled.
本発明によれば、設置場所に拘わらずに、石定盤の変形を抑制でき、特に、平面精度を容易に維持できる石定盤の温度調整装置、およびそれを備え、被検査パネルの検査精度を向上させることができる検査装置を実現できる。
According to the present invention, it is possible to suppress the deformation of the stone surface plate regardless of the installation location, and in particular, the temperature adjusting device for the stone surface plate that can easily maintain the plane accuracy, and the inspection accuracy of the panel to be inspected are provided. It is possible to realize an inspection apparatus that can improve the above.
以下に、本発明の実施の形態に係る石定盤の温度調整装置および検査装置の詳細を図面に基づいて説明する。但し、図面は模式的なものであり、各部材の寸法、寸法の比率、形状、変形の度合いなどは現実のものと異なることに留意すべきである。また、図面相互間においても互いの各部材の数、寸法の関係や比率や形状が異なる部分が含まれている。
Hereinafter, the details of the temperature control device and the inspection device for the stone surface plate according to the embodiment of the present invention will be described with reference to the drawings. However, the drawings are schematic, and it should be noted that the dimensions, ratios of dimensions, shapes, degrees of deformation, and the like of each member are different from actual ones. Also, the drawings include portions having different numbers, dimensional relationships, ratios, and shapes of the members.
「第1の実施の形態」
図1は、本発明の第1の実施の形態に係る石定盤の温度調整装置を備えた検査装置1を示す。本実施の形態に係る検査装置1は、図1に示す被検査パネルであるフォトマスクMのパターン配置の検査に用いられる。この検査装置1により、フォトマスクMのマスク面に形成されたマスクパターンの位置データを検出でき、この位置データと設計データとを比較することにより、フォトマスクMのマスクパターンの欠陥の検出やマスクパターンの修正などが可能となる。 “First Embodiment”
FIG. 1 shows aninspection apparatus 1 including a stone surface plate temperature control apparatus according to a first embodiment of the present invention. The inspection apparatus 1 according to the present embodiment is used for inspection of the pattern arrangement of the photomask M that is the panel to be inspected shown in FIG. The inspection apparatus 1 can detect the position data of the mask pattern formed on the mask surface of the photomask M, and by comparing the position data with the design data, detection of a defect in the mask pattern of the photomask M and the mask. The pattern can be corrected.
図1は、本発明の第1の実施の形態に係る石定盤の温度調整装置を備えた検査装置1を示す。本実施の形態に係る検査装置1は、図1に示す被検査パネルであるフォトマスクMのパターン配置の検査に用いられる。この検査装置1により、フォトマスクMのマスク面に形成されたマスクパターンの位置データを検出でき、この位置データと設計データとを比較することにより、フォトマスクMのマスクパターンの欠陥の検出やマスクパターンの修正などが可能となる。 “First Embodiment”
FIG. 1 shows an
[検査装置の概略構成]
図1に示すように、本実施の形態の検査装置1は、設置床面Fの上に配置される。検査装置1は、装置の基礎となるステージとしての石定盤2と、パネル支持部としてのマスク支持部3と、石定盤2を支える複数(図3に示すように本実施の形態では6つ)の除振台4,5,6,7,8,9と、撮像部10と、温度調整装置11を備える。 [Schematic configuration of inspection equipment]
As shown in FIG. 1, theinspection apparatus 1 of the present embodiment is disposed on an installation floor surface F. The inspection apparatus 1 includes a stone surface plate 2 as a stage serving as the basis of the apparatus, a mask support portion 3 as a panel support portion, and a plurality of (6 in the present embodiment as shown in FIG. 3 in the present embodiment). ) Vibration isolation tables 4, 5, 6, 7, 8, 9; an imaging unit 10;
図1に示すように、本実施の形態の検査装置1は、設置床面Fの上に配置される。検査装置1は、装置の基礎となるステージとしての石定盤2と、パネル支持部としてのマスク支持部3と、石定盤2を支える複数(図3に示すように本実施の形態では6つ)の除振台4,5,6,7,8,9と、撮像部10と、温度調整装置11を備える。 [Schematic configuration of inspection equipment]
As shown in FIG. 1, the
(石定盤)
石定盤2は、例えば、花崗岩(グラナイト)で構成される。図1および図2に示すように、石定盤2は略直方体形状であり、上面21と、下面22と、両側の側面23,24と、長手方向両端の側面25,26と、を有する。石定盤2の大きさは、例えば、幅が1,200mm程度、長さが4,500mm程度、厚みが400mm程度の略直方体形状である。なお、石定盤2の大きさは、扱うフォトマスクMの大きさにより、適宜変更する。 (Stone plate)
Thestone surface plate 2 is made of granite (granite), for example. As shown in FIGS. 1 and 2, the stone surface plate 2 has a substantially rectangular parallelepiped shape, and has an upper surface 21, a lower surface 22, side surfaces 23 and 24 on both sides, and side surfaces 25 and 26 on both ends in the longitudinal direction. The size of the stone surface plate 2 is, for example, a substantially rectangular parallelepiped shape having a width of about 1,200 mm, a length of about 4,500 mm, and a thickness of about 400 mm. In addition, the magnitude | size of the stone surface plate 2 is changed suitably according to the magnitude | size of the photomask M to handle.
石定盤2は、例えば、花崗岩(グラナイト)で構成される。図1および図2に示すように、石定盤2は略直方体形状であり、上面21と、下面22と、両側の側面23,24と、長手方向両端の側面25,26と、を有する。石定盤2の大きさは、例えば、幅が1,200mm程度、長さが4,500mm程度、厚みが400mm程度の略直方体形状である。なお、石定盤2の大きさは、扱うフォトマスクMの大きさにより、適宜変更する。 (Stone plate)
The
図2に示すように、石定盤2の上面21には、上面21の幅方向Wの中央に、長手方向に沿って延びるガイド溝2Aが形成されている。石定盤2の下面22の四隅には、それぞれ凹部2Bが形成されている。また、石定盤2の下面の長手方向中央の幅方向Wの両側には、それぞれ凹部2Cが形成されている。
As shown in FIG. 2, a guide groove 2 </ b> A extending along the longitudinal direction is formed on the upper surface 21 of the stone surface plate 2 at the center in the width direction W of the upper surface 21. Recesses 2B are formed at the four corners of the lower surface 22 of the stone surface plate 2, respectively. In addition, concave portions 2C are formed on both sides of the width direction W at the center in the longitudinal direction of the lower surface of the stone surface plate 2, respectively.
上記した6つ除振台4,5,6,7,8,9は、配置される石定盤2の凹部2B,2Cに対応するように設置床面F上に設置される。石定盤2は、凹部2B,2Cの底面(凹部内の空間の天井面)が、対応する除振台4,5,6,7,8,9のそれぞれの上面4A,5A,6A,7A,8A,9Aの上に当接するように配置される。図1に示すように、除振台4,5,6,7,8,9で石定盤2を支えた状態において、石定盤2の下面22と設置床面Fとの間には、所定の高さ寸法を有する間隙Cが形成される。
The above-described six vibration isolation tables 4, 5, 6, 7, 8, and 9 are installed on the installation floor F so as to correspond to the recesses 2B and 2C of the stone surface plate 2 to be arranged. In the stone surface plate 2, the bottom surfaces of the recesses 2B and 2C (the ceiling surfaces of the spaces in the recesses) are the upper surfaces 4A, 5A, 6A, and 7A of the corresponding vibration isolation tables 4, 5, 6, 7, 8, and 9 respectively. , 8A, 9A. As shown in FIG. 1, in a state where the stone surface plate 2 is supported by the vibration isolation tables 4, 5, 6, 7, 8, 9, between the lower surface 22 of the stone surface plate 2 and the installation floor surface F, A gap C having a predetermined height is formed.
(マスク支持部)
図1に示すように、石定盤2のガイド溝2Aには、マスク支持部3が石定盤2のストローク方向S(石定盤2の長手方向)に移動自在に設けられている。マスク支持部3は、フォトマスクMの縁部を支持する支持枠3Aを備える。 (Mask support part)
As shown in FIG. 1, amask support portion 3 is provided in the guide groove 2 </ b> A of the stone surface plate 2 so as to be movable in the stroke direction S of the stone surface plate 2 (longitudinal direction of the stone surface plate 2). The mask support unit 3 includes a support frame 3A that supports the edge of the photomask M.
図1に示すように、石定盤2のガイド溝2Aには、マスク支持部3が石定盤2のストローク方向S(石定盤2の長手方向)に移動自在に設けられている。マスク支持部3は、フォトマスクMの縁部を支持する支持枠3Aを備える。 (Mask support part)
As shown in FIG. 1, a
(除振台)
本実施の形態では、石定盤2の凹部2Bに対応する除振台4,6,7,9は、アクティブ除振台であり、石定盤2の凹部2Cに対応する除振台5,8は、パッシブ除振台である。なお、本発明では、除振台の構成は、これに限定されるものではない。 (Vibration isolation table)
In the present embodiment, the vibration isolation tables 4, 6, 7, 9 corresponding to therecess 2 </ b> B of the stone surface plate 2 are active vibration isolation tables, and the vibration isolation tables 5, corresponding to the recess 2 </ b> C of the stone surface plate 2. 8 is a passive vibration isolation table. In the present invention, the configuration of the vibration isolation table is not limited to this.
本実施の形態では、石定盤2の凹部2Bに対応する除振台4,6,7,9は、アクティブ除振台であり、石定盤2の凹部2Cに対応する除振台5,8は、パッシブ除振台である。なお、本発明では、除振台の構成は、これに限定されるものではない。 (Vibration isolation table)
In the present embodiment, the vibration isolation tables 4, 6, 7, 9 corresponding to the
(撮像部)
図1に示すように、撮像部10は、上下ガイド支柱10Aと、検査カメラ10Bと、を備える。検査カメラ10Bは、上下ガイド支柱10Aに沿って上下方向に移動可能に設けられている。上下ガイド支柱は、石定盤2の上面21に設けられている。検査カメラ10Bは、図示しない制御装置および駆動装置により、上下移動するように設定されている。 (Imaging part)
As shown in FIG. 1, theimaging unit 10 includes an upper and lower guide column 10A and an inspection camera 10B. The inspection camera 10B is provided so as to be movable in the vertical direction along the vertical guide column 10A. The upper and lower guide columns are provided on the upper surface 21 of the stone surface plate 2. The inspection camera 10B is set to move up and down by a control device and a drive device (not shown).
図1に示すように、撮像部10は、上下ガイド支柱10Aと、検査カメラ10Bと、を備える。検査カメラ10Bは、上下ガイド支柱10Aに沿って上下方向に移動可能に設けられている。上下ガイド支柱は、石定盤2の上面21に設けられている。検査カメラ10Bは、図示しない制御装置および駆動装置により、上下移動するように設定されている。 (Imaging part)
As shown in FIG. 1, the
[温度調整装置の構成]
図4に示すように、温度調整装置11は、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34と、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15と、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44と、水温調整ヒータ17,18,19,20と、温度調整部としての温度調整チューブ37と、下面温調パネルの温度を制御する温度制御部16と、区画壁としてのカーテン50(図2参照)と、を備える。 [Configuration of temperature control device]
As shown in FIG. 4, thetemperature adjustment device 11 includes a first upper surface temperature sensor 31, a second upper surface temperature sensor 32, a third upper surface temperature sensor 33, a fourth upper surface temperature sensor 34, and a first lower surface temperature. Tone panel 12, second bottom surface temperature control panel 13, third bottom surface temperature control panel 14, fourth bottom surface temperature control panel 15, first panel side temperature sensor 41, second panel side temperature sensor 42, and third panel side temperature. A sensor 43, a fourth panel side temperature sensor 44, water temperature adjusting heaters 17, 18, 19, 20, a temperature adjusting tube 37 as a temperature adjusting unit, and a temperature control unit 16 for controlling the temperature of the lower surface temperature adjusting panel, And a curtain 50 (see FIG. 2) as a partition wall.
図4に示すように、温度調整装置11は、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34と、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15と、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44と、水温調整ヒータ17,18,19,20と、温度調整部としての温度調整チューブ37と、下面温調パネルの温度を制御する温度制御部16と、区画壁としてのカーテン50(図2参照)と、を備える。 [Configuration of temperature control device]
As shown in FIG. 4, the
(上面側温度センサ)
本実施の形態では、図4に示すように、石定盤2の上面21を長手方向に4分割した領域A1,A2,A3,A4に対して、順次、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34が、設けられている。これら第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34は、温度制御部16に接続され、各領域A1,A2,A3,A4での温度検出値を温度制御部16に出力する。 (Top surface temperature sensor)
In the present embodiment, as shown in FIG. 4, the first upper surfaceside temperature sensor 31, the first upper surface side temperature sensor 31, A second upper surface side temperature sensor 32, a third upper surface side temperature sensor 33, and a fourth upper surface side temperature sensor 34 are provided. The first upper surface side temperature sensor 31, the second upper surface side temperature sensor 32, the third upper surface side temperature sensor 33, and the fourth upper surface side temperature sensor 34 are connected to the temperature controller 16, and each region A1, A2, A3, The temperature detection value at A4 is output to the temperature control unit 16.
本実施の形態では、図4に示すように、石定盤2の上面21を長手方向に4分割した領域A1,A2,A3,A4に対して、順次、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34が、設けられている。これら第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34は、温度制御部16に接続され、各領域A1,A2,A3,A4での温度検出値を温度制御部16に出力する。 (Top surface temperature sensor)
In the present embodiment, as shown in FIG. 4, the first upper surface
(下面温調パネル)
第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15は、順次、石定盤2の4つの領域A1,A2,A3,A4(図4参照)に上下方向に対応するように、石定盤2の下方の設置床面F上に配置されている。 (Bottom temperature control panel)
The first lower surfacetemperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15 are sequentially arranged in four regions A1, A2, A3, A4 of the stone surface plate 2. It arrange | positions on the installation floor F below the stone surface plate 2 so that it may respond | correspond to an up-down direction (refer FIG. 4).
第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15は、順次、石定盤2の4つの領域A1,A2,A3,A4(図4参照)に上下方向に対応するように、石定盤2の下方の設置床面F上に配置されている。 (Bottom temperature control panel)
The first lower surface
図5に示すように、第1下面温調パネル12は、断熱パネル35と、熱輻射パネル36と、が積層されて構成されている。なお、図5は、第1下面温調パネル12のみを示すが、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15も同様の構成であり、断熱パネル35と熱輻射パネル36とでなる。
As shown in FIG. 5, the first lower surface temperature control panel 12 is configured by laminating a heat insulating panel 35 and a heat radiation panel 36. FIG. 5 shows only the first bottom surface temperature control panel 12, but the second bottom surface temperature control panel 13, the third bottom surface temperature control panel 14, and the fourth bottom surface temperature control panel 15 have the same configuration, and a heat insulating panel. 35 and a heat radiation panel 36.
断熱パネル35は、断熱性の高い独立発泡構造の樹脂シート材で構成されている。この断熱パネル35が、図1に示すように設置床面Fに接触するように配置される。特に、断熱パネル35は、独立発泡構造であるため、連続発泡構造の断熱材に比較して熱遮断効果が高い。ただし、本発明では、設置床面F側からの熱の伝導を抑制できる他の断熱部材を適用してもよい。
The heat insulation panel 35 is made of a resin sheet material having an independent foam structure with high heat insulation. This heat insulation panel 35 is arrange | positioned so that the installation floor surface F may be contacted, as shown in FIG. In particular, since the heat insulating panel 35 has an independent foam structure, it has a higher heat shielding effect than a heat insulating material having a continuous foam structure. However, in this invention, you may apply the other heat insulation member which can suppress conduction of the heat from the installation floor F side.
熱輻射パネル36は、熱伝導性の高い金属板で構成されている。本実施の形態では、熱輻射パネル36をアルミニウム板で構成している。図5に示すように、熱輻射パネル36は、断熱パネル35の上に積層されている。熱輻射パネル36の表面には、温度調整部としてのチューブである温度調整チューブ37が埋設されている。このため、熱輻射パネル36は、温度調整チューブ37により熱供給または熱吸収されて温度制御され、制御された温度の熱輻射を石定盤2の下面22に行う。
The thermal radiation panel 36 is made of a metal plate having high thermal conductivity. In the present embodiment, the heat radiation panel 36 is made of an aluminum plate. As shown in FIG. 5, the heat radiation panel 36 is laminated on the heat insulation panel 35. A temperature adjustment tube 37 that is a tube as a temperature adjustment unit is embedded in the surface of the thermal radiation panel 36. For this reason, the heat radiation panel 36 is supplied with heat or absorbed by the temperature adjusting tube 37 and is controlled in temperature, and performs heat radiation at the controlled temperature on the lower surface 22 of the stone surface plate 2.
(温度調整部)
図2、図3および図5に示すように、温度調整チューブ37は、一対の冷媒流路37A,37Bが互いに平行をなすように一体的に形成されている。なお、本実施の形態では、温度調整チューブ37における温度均一性を高めるため、冷媒流路37A,37B内に同じ温度の水を互いに逆方向に流通させるように設定されている。 (Temperature adjuster)
As shown in FIGS. 2, 3, and 5, thetemperature adjustment tube 37 is integrally formed so that a pair of refrigerant flow paths 37 </ b> A and 37 </ b> B are parallel to each other. In the present embodiment, in order to improve the temperature uniformity in the temperature adjustment tube 37, water of the same temperature is set to flow in the opposite directions in the refrigerant flow paths 37A and 37B.
図2、図3および図5に示すように、温度調整チューブ37は、一対の冷媒流路37A,37Bが互いに平行をなすように一体的に形成されている。なお、本実施の形態では、温度調整チューブ37における温度均一性を高めるため、冷媒流路37A,37B内に同じ温度の水を互いに逆方向に流通させるように設定されている。 (Temperature adjuster)
As shown in FIGS. 2, 3, and 5, the
本実施の形態では、温度調整チューブ37を例えばフッ素樹脂で構成している。温度調整チューブ23をフッ素樹脂で構成することにより、耐圧力性を高めることができ、水漏れを防ぐ効果を高めることができる。図2および図3に示すように、温度調整チューブ37は、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15のそれぞれの熱輻射パネル36に対して、蛇行するようにレイアウトされて埋設されている。なお、熱輻射パネル36に対する温度調整チューブ37の配置密度は、均等になることが好ましく、除振台4,5,6,7,8,9の配置状態による熱伝達などによる熱分布を加味して配置密度を決定してもよい。
In this embodiment, the temperature adjustment tube 37 is made of, for example, a fluororesin. By constructing the temperature adjustment tube 23 with a fluororesin, the pressure resistance can be enhanced, and the effect of preventing water leakage can be enhanced. As shown in FIGS. 2 and 3, the temperature adjustment tube 37 includes the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15. The heat radiation panel 36 is laid out and embedded so as to meander. The arrangement density of the temperature adjustment tubes 37 with respect to the heat radiation panel 36 is preferably uniform, taking into account the heat distribution due to heat transfer depending on the arrangement state of the vibration isolation tables 4, 5, 6, 7, 8, and 9. The arrangement density may be determined.
図4に示すように、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15にそれぞれ設けられた温度調整チューブ37は、順次、水温調整ヒータ17,18,19,20から水温調整された水が供給される。なお、本実施の形態では、1つの温度調整チューブ37は、冷媒流路37A,37Bを有するため、水温調整ヒータ17,18,19,20のそれぞれから2つの冷媒流路37A,37Bへ水温調整された水を供給するように設定されている。
As shown in FIG. 4, the temperature adjustment tubes 37 provided on the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15, respectively, The water temperature adjusted water is supplied from the water temperature adjusting heaters 17, 18, 19, 20. In this embodiment, since one temperature adjustment tube 37 has the refrigerant flow paths 37A and 37B, the water temperature adjustment is performed from each of the water temperature adjustment heaters 17, 18, 19, and 20 to the two refrigerant flow paths 37A and 37B. Is set to supply the water.
(パネル側温度センサ)
第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15のそれぞれの上面には、順次、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44が配置されている。なお、これら第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44は、順次、石定盤2上の、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34に対して上下方向に対応する位置に配置されることが好ましい。 (Panel side temperature sensor)
On the upper surfaces of the first lower surfacetemperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15, the first panel side temperature sensor 41, the second A panel side temperature sensor 42, a third panel side temperature sensor 43, and a fourth panel side temperature sensor 44 are arranged. The first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 are sequentially converted from the first upper surface side temperature on the stone surface plate 2. It is preferable that the sensor 31, the second upper surface side temperature sensor 32, the third upper surface side temperature sensor 33, and the fourth upper surface side temperature sensor 34 are arranged at positions corresponding to the vertical direction.
第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15のそれぞれの上面には、順次、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44が配置されている。なお、これら第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44は、順次、石定盤2上の、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34に対して上下方向に対応する位置に配置されることが好ましい。 (Panel side temperature sensor)
On the upper surfaces of the first lower surface
これら第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44は、温度制御部16に接続されている。第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44で検出された、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15の上面の温度検出値は、温度制御部16に出力される。
The first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 are connected to the temperature control unit 16. The first bottom surface temperature control panel 12, the second bottom surface temperature control panel detected by the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44. 13, the detected temperature values of the upper surfaces of the third lower surface temperature control panel 14 and the fourth lower surface temperature control panel 15 are output to the temperature control unit 16.
(水温調整ヒータ)
図4に示すように、水温調整ヒータ17,18,19,20は、基準温度(T)で供給される水を、温度制御部16からの制御信号に基づいて、所定の制御温度(T+A),(T+B),(T+C),(T+D)に昇温させる作用・動作を行う。なお、ここで、基準温度(T)は、検査装置1を稼働させる環境において、石定盤2の上面21の温度よりも常に低い一定の温度が設定されている。 (Water temperature adjustment heater)
As shown in FIG. 4, the water temperature adjusting heaters 17, 18, 19, and 20 supply water supplied at a reference temperature (T) based on a control signal from the temperature control unit 16 to a predetermined control temperature (T + A). , (T + B), (T + C), (T + D). Here, the reference temperature (T) is set to a constant temperature that is always lower than the temperature of the upper surface 21 of the stone surface plate 2 in the environment where the inspection apparatus 1 is operated.
図4に示すように、水温調整ヒータ17,18,19,20は、基準温度(T)で供給される水を、温度制御部16からの制御信号に基づいて、所定の制御温度(T+A),(T+B),(T+C),(T+D)に昇温させる作用・動作を行う。なお、ここで、基準温度(T)は、検査装置1を稼働させる環境において、石定盤2の上面21の温度よりも常に低い一定の温度が設定されている。 (Water temperature adjustment heater)
As shown in FIG. 4, the water
(温度制御部)
図4に示すように、温度制御部16は、石定盤2の上面21側の、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34と、下面温調パネル側の、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44と、に接続されている。温度制御部16は、水温調整ヒータ17,18,19,20に接続されている。 (Temperature controller)
As shown in FIG. 4, thetemperature control unit 16 includes a first upper surface side temperature sensor 31, a second upper surface side temperature sensor 32, a third upper surface side temperature sensor 33, and a fourth upper surface on the upper surface 21 side of the stone surface plate 2. The side temperature sensor 34 is connected to the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 on the lower surface temperature control panel side. Yes. The temperature control unit 16 is connected to the water temperature adjusting heaters 17, 18, 19, and 20.
図4に示すように、温度制御部16は、石定盤2の上面21側の、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34と、下面温調パネル側の、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44と、に接続されている。温度制御部16は、水温調整ヒータ17,18,19,20に接続されている。 (Temperature controller)
As shown in FIG. 4, the
温度制御部16は、例えば、パーソナルコンピュータのような演算装置や記憶部を有するデバイスを備えて構成される。温度制御部16では、石定盤2の上面側温度と下面側温度との差が、予め設定された温度となるように、水温調整ヒータ17,18,19,20での基準温度(T)に加える加熱度合を決定して水温調整ヒータ17,18,19,20を制御する。なお、上記の上面側温度と下面側温度との差(上面側温度-下面側温度)は、例えば、0.2℃程度に設定することができる。なお、上面側温度と下面側温度との差は、個々の石定盤2の特性に応じて決定すればよい。
The temperature control unit 16 includes, for example, a computing device such as a personal computer and a device having a storage unit. In the temperature control unit 16, the reference temperature (T) in the water temperature adjusting heaters 17, 18, 19, and 20 is set so that the difference between the upper surface side temperature and the lower surface side temperature of the stone surface plate 2 becomes a preset temperature. The water temperature adjusting heaters 17, 18, 19, and 20 are controlled by determining the degree of heating applied to the water temperature. The difference between the upper surface temperature and the lower surface temperature (upper surface temperature−lower surface temperature) can be set to about 0.2 ° C., for example. In addition, what is necessary is just to determine the difference of upper surface side temperature and lower surface side temperature according to the characteristic of each stone surface plate 2. FIG.
このように水温調整ヒータ17,18,19,20を制御することにより、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15にそれぞれ設けられた温度調整チューブ37内を流通する水の温度を変化させることができる。このため、各下面温調パネルの熱輻射パネル36は、個々に温度制御される。
Thus, by controlling the water temperature adjusting heaters 17, 18, 19, 20, the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15. It is possible to change the temperature of the water flowing through the temperature adjusting tube 37 provided in each of the two. For this reason, the temperature of the heat radiation panel 36 of each bottom surface temperature control panel is individually controlled.
(区画壁)
図2に示すように、本実施の形態では、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14のそれぞれの周囲に沿って、区画壁としてのカーテン50を配置する。本実施の形態では、カーテン50として、例えば、静電防止塩化ビニルシートなどを用いる。なお、カーテン50は、石定盤2と設置床面Fとの間の隙間を塞ぐ目的で用いる。また、カーテン50は、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14のそれぞれの上方の空間(間隙C)を区画している。したがって、カーテン50により、下面温調パネル相互間での空気の対流を防止できる。このため、カーテン50は、各下面温調パネルにおける隣接パネルから温度の影響を防止する機能を果たす。 (Partition wall)
As shown in FIG. 2, in the present embodiment, acurtain 50 as a partition wall is provided around each of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, and the third lower surface temperature adjustment panel 14. Place. In the present embodiment, for example, an antistatic vinyl chloride sheet is used as the curtain 50. The curtain 50 is used for the purpose of closing the gap between the stone surface plate 2 and the installation floor surface F. The curtain 50 defines a space (gap C) above each of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, and the third lower surface temperature adjustment panel 14. Therefore, the curtain 50 can prevent air convection between the lower surface temperature control panels. For this reason, the curtain 50 fulfill | performs the function which prevents the influence of temperature from the adjacent panel in each lower surface temperature control panel.
図2に示すように、本実施の形態では、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14のそれぞれの周囲に沿って、区画壁としてのカーテン50を配置する。本実施の形態では、カーテン50として、例えば、静電防止塩化ビニルシートなどを用いる。なお、カーテン50は、石定盤2と設置床面Fとの間の隙間を塞ぐ目的で用いる。また、カーテン50は、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14のそれぞれの上方の空間(間隙C)を区画している。したがって、カーテン50により、下面温調パネル相互間での空気の対流を防止できる。このため、カーテン50は、各下面温調パネルにおける隣接パネルから温度の影響を防止する機能を果たす。 (Partition wall)
As shown in FIG. 2, in the present embodiment, a
(作用および動作)
本実施の形態に係る検査装置1および温度調整装置11では、石定盤2の上面21の各領域A1,A2,A3,A4の温度と、これら領域A1,A2,A3,A4に対応する石定盤2の下方の各下面温調パネルの温度と、を検出することにより、温度制御部16が水温調整ヒータ17,18,19,20での温度制御を行う。 (Action and operation)
In theinspection apparatus 1 and the temperature adjustment apparatus 11 according to the present embodiment, the temperatures of the areas A1, A2, A3, A4 on the upper surface 21 of the stone surface plate 2 and the stones corresponding to these areas A1, A2, A3, A4. By detecting the temperature of each lower surface temperature control panel below the surface plate 2, the temperature control unit 16 performs temperature control with the water temperature adjusting heaters 17, 18, 19, and 20.
本実施の形態に係る検査装置1および温度調整装置11では、石定盤2の上面21の各領域A1,A2,A3,A4の温度と、これら領域A1,A2,A3,A4に対応する石定盤2の下方の各下面温調パネルの温度と、を検出することにより、温度制御部16が水温調整ヒータ17,18,19,20での温度制御を行う。 (Action and operation)
In the
したがって、本実施の形態では、石定盤2の各領域A1,A2,A3,A4における上面21側の温度と、下方側の温度と、の温度差を設定した温度差に維持することができるため、石定盤2の変形を抑制できる。図6-1は、石定盤2に上下方向の温度差が設置環境により変化して、複数の箇所でピッチングが発生した状態を模式的に示している。本実施の形態では、上記の温度制御を行うことで、図6-2に示すように、石定盤2の変形を抑制することができる。したがって、図7に示すように、石定盤2に載せられたフォトマスクMの変形も防止でき、フォトマスクMのマスクパターンMpに変形が発生することによる検査ミスを未然に防止できる。
Therefore, in this embodiment, the temperature difference between the temperature on the upper surface 21 side and the temperature on the lower side in each region A1, A2, A3, A4 of the stone surface plate 2 can be maintained at a set temperature difference. Therefore, deformation of the stone surface plate 2 can be suppressed. FIG. 6A schematically shows a state in which the temperature difference in the vertical direction of the stone surface plate 2 changes depending on the installation environment, and pitching occurs at a plurality of locations. In the present embodiment, by performing the above temperature control, the deformation of the stone surface plate 2 can be suppressed as shown in FIG. Therefore, as shown in FIG. 7, the deformation of the photomask M placed on the stone surface plate 2 can be prevented, and an inspection error due to the deformation of the mask pattern Mp of the photomask M can be prevented.
本実施の形態に係る温度調整装置11は、上述の作用および動作を行うため、設置場所に拘わらずに、石定盤2の変形を抑制でき、特に、上面21の平面精度を容易に維持できる。したがって、この温度調整装置11を備える検査装置1では、フォトマスクMの検査精度を向上させることができる。
Since the temperature adjusting device 11 according to the present embodiment performs the above-described operation and operation, it is possible to suppress the deformation of the stone surface plate 2 regardless of the installation location, and in particular, the planar accuracy of the upper surface 21 can be easily maintained. . Therefore, in the inspection apparatus 1 including the temperature adjusting device 11, the inspection accuracy of the photomask M can be improved.
検査装置1の設置環境としては、温度制御されたサーマルチャンバ内や、クリーンエアをダウンフローさせだけで、石定盤2の上面21の温度管理がされていないクリーンルーム内などがある。本実施の形態の検査装置1および温度調整装置11によれば、上記のいずれの設置環境においても、設置床面F側からの温度の影響を抑制できる。また、本実施の形態では、気温の高い夏期や気温の低い冬期であっても、石定盤2の変形を抑制できる。
The installation environment of the inspection apparatus 1 includes a temperature-controlled thermal chamber and a clean room where the temperature control of the upper surface 21 of the stone surface plate 2 is not performed only by downflowing clean air. According to the inspection apparatus 1 and the temperature adjustment apparatus 11 of the present embodiment, the influence of the temperature from the installation floor surface F side can be suppressed in any of the installation environments described above. Moreover, in this Embodiment, deformation | transformation of the stone surface plate 2 can be suppressed even in the summer when the temperature is high or in the winter when the temperature is low.
本実施の形態に係る検査装置1および温度調整装置11では、石定盤2の上面の温度から一定差の温度を目的値となるように、石定盤2の下面22側の温度制御するだけであるため、全体的な制御の流れとしてはオープンループの制御となり、制御系の安定性を簡単に確保できる。
In the inspection apparatus 1 and the temperature adjustment apparatus 11 according to the present embodiment, only the temperature control on the lower surface 22 side of the stone surface plate 2 is performed so that the temperature of a certain difference from the temperature of the upper surface of the stone surface plate 2 becomes a target value. Therefore, the overall control flow is open loop control, and the stability of the control system can be easily ensured.
本実施の形態に係る検査装置1および温度調整装置11では、石定盤2を4つに分割した領域A1,A2,A3,A4のそれぞれに対応する、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15の温度調節を行うことで、石定盤2の複雑な曲がりに対する補正が可能となる。
In the inspection device 1 and the temperature adjustment device 11 according to the present embodiment, the first lower surface temperature adjustment panel 12 and the second temperature control panel 12 corresponding to each of the regions A1, A2, A3, and A4 obtained by dividing the stone surface plate 2 into four. By adjusting the temperature of the lower surface temperature control panel 13, the third lower surface temperature control panel 14, and the fourth lower surface temperature control panel 15, it is possible to correct the complicated bending of the stone surface plate 2.
本実施の形態に係る検査装置1および温度調整装置11では、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15の熱輻射パネル36からの熱輻射により石定盤2の下面22の温度制御を行うため、石定盤2に対して、直接的な加熱に伴うようなストレスを与えることがない。
In the inspection apparatus 1 and the temperature adjustment apparatus 11 according to the present embodiment, the heat radiation of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15 is achieved. Since the temperature of the lower surface 22 of the stone surface plate 2 is controlled by heat radiation from the panel 36, the stone surface plate 2 is not subjected to stress that is caused by direct heating.
「第2の実施の形態」
図8-1および図8-2は、本発明の第2の実施の形態に係る検査装置1および温度調整装置11に用いられる石定盤2および下面温調パネルを模式的に示す。本実施の形態では、石定盤2を長手方向に3つに分割した領域A1,A2,A3に、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33を設けている。これに対応して、下面温調パネルとして、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14が設けられている。本実施の形態における他の構成は、上記した第1の実施の形態の構成内容と略同様である。 “Second Embodiment”
FIGS. 8A and 8B schematically show thestone surface plate 2 and the bottom surface temperature control panel used in the inspection apparatus 1 and the temperature adjustment apparatus 11 according to the second embodiment of the present invention. In the present embodiment, a first upper surface side temperature sensor 31, a second upper surface side temperature sensor 32, and a third upper surface side temperature sensor 33 are provided in regions A 1, A 2 and A 3 obtained by dividing the stone surface plate 2 into three in the longitudinal direction. Is provided. Correspondingly, a first lower surface temperature adjustment panel 12, a second lower surface temperature adjustment panel 13, and a third lower surface temperature adjustment panel 14 are provided as the lower surface temperature adjustment panels. Other configurations in the present embodiment are substantially the same as the configuration contents of the first embodiment described above.
図8-1および図8-2は、本発明の第2の実施の形態に係る検査装置1および温度調整装置11に用いられる石定盤2および下面温調パネルを模式的に示す。本実施の形態では、石定盤2を長手方向に3つに分割した領域A1,A2,A3に、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33を設けている。これに対応して、下面温調パネルとして、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14が設けられている。本実施の形態における他の構成は、上記した第1の実施の形態の構成内容と略同様である。 “Second Embodiment”
FIGS. 8A and 8B schematically show the
本実施の形態においても、図8-1に示すような石定盤2の複数の変形を抑制して、図8-2に示すように上面が平坦な形状を保つことができる。
Also in the present embodiment, a plurality of deformations of the stone surface plate 2 as shown in FIG. 8A can be suppressed, and the flat shape of the upper surface can be maintained as shown in FIG. 8B.
「第3の実施の形態」
図9-1および図9-2は、本発明の第3の実施の形態に係る検査装置1および温度調整装置11に用いられる石定盤2および下面温調パネルを模式的に示す。本実施の形態では、石定盤2を長手方向に2つに分割した領域A1,A2に、第1上面側温度センサ31と第2上面側温度センサ32とを設けている。これに対応して、下面温調パネルは、第1下面温調パネル12と、第2下面温調パネル13と、が設けられている。本実施の形態における他の構成は、上記した第1の実施の形態の構成内容と略同様である。 “Third Embodiment”
FIGS. 9-1 and 9-2 schematically show thestone surface plate 2 and the bottom surface temperature control panel used in the inspection apparatus 1 and the temperature adjustment apparatus 11 according to the third embodiment of the present invention. In the present embodiment, the first upper surface side temperature sensor 31 and the second upper surface side temperature sensor 32 are provided in the regions A1 and A2 obtained by dividing the stone surface plate 2 into two in the longitudinal direction. Correspondingly, the lower surface temperature adjustment panel is provided with a first lower surface temperature adjustment panel 12 and a second lower surface temperature adjustment panel 13. Other configurations in the present embodiment are substantially the same as the configuration contents of the first embodiment described above.
図9-1および図9-2は、本発明の第3の実施の形態に係る検査装置1および温度調整装置11に用いられる石定盤2および下面温調パネルを模式的に示す。本実施の形態では、石定盤2を長手方向に2つに分割した領域A1,A2に、第1上面側温度センサ31と第2上面側温度センサ32とを設けている。これに対応して、下面温調パネルは、第1下面温調パネル12と、第2下面温調パネル13と、が設けられている。本実施の形態における他の構成は、上記した第1の実施の形態の構成内容と略同様である。 “Third Embodiment”
FIGS. 9-1 and 9-2 schematically show the
本実施の形態においても、図9-1に示すような石定盤2の変形を抑制して、図9-2に示すように上面が平坦な形状を保つことができる。
Also in the present embodiment, the deformation of the stone surface plate 2 as shown in FIG. 9-1 can be suppressed, and the flat top surface can be maintained as shown in FIG. 9-2.
「第4の実施の形態」
図10は、本発明の第4の実施の形態に係る検査装置1および温度調整装置11に用いる第1下面温調パネル12Aを示す。この実施の形態では、上記第1の実施の形態の第1下面温調パネル12における熱輻射パネル36を表裏反転させて断熱パネル35に積層した構成である。したがって、温度調整チューブ37は、断熱パネル35と熱輻射パネル36との界面近傍に位置する。本実施の形態の他の構成は、上記した第1の実施の形態と同様である。 “Fourth Embodiment”
FIG. 10 shows a first bottom surfacetemperature adjustment panel 12A used in the inspection apparatus 1 and the temperature adjustment apparatus 11 according to the fourth embodiment of the present invention. In this embodiment, the heat radiation panel 36 in the first bottom surface temperature control panel 12 of the first embodiment is reversed and laminated on the heat insulation panel 35. Therefore, the temperature adjustment tube 37 is located in the vicinity of the interface between the heat insulating panel 35 and the heat radiation panel 36. Other configurations of the present embodiment are the same as those of the first embodiment described above.
図10は、本発明の第4の実施の形態に係る検査装置1および温度調整装置11に用いる第1下面温調パネル12Aを示す。この実施の形態では、上記第1の実施の形態の第1下面温調パネル12における熱輻射パネル36を表裏反転させて断熱パネル35に積層した構成である。したがって、温度調整チューブ37は、断熱パネル35と熱輻射パネル36との界面近傍に位置する。本実施の形態の他の構成は、上記した第1の実施の形態と同様である。 “Fourth Embodiment”
FIG. 10 shows a first bottom surface
本実施の形態では、熱輻射パネル36の下側に温度調整チューブ37を配置したことにより、温度調整チューブ37から伝達される熱が、熱輻射パネル36の上面に伝達されたときに、この上面において温度の均一性をより高めることができる。
In the present embodiment, the temperature adjustment tube 37 is disposed below the heat radiation panel 36, so that when the heat transmitted from the temperature adjustment tube 37 is transmitted to the upper surface of the heat radiation panel 36, the upper surface. The temperature uniformity can be further improved.
「第5の実施の形態」
図11および図12は、本発明の第5の実施の形態に係る下面温調パネル60を示す。図12に示すように、下面温調パネル60は、断熱パネル35と熱輻射パネル36とを積層してなる構成は、上記第1の実施の形態と同様である。本実施の形態では、熱輻射パネル36の表面に埋設する温度調整部としての温度調整チューブ38が1つの流路を持つチューブである。本実施の形態の他の構成は、上記した第1の実施の形態と同様である。 “Fifth Embodiment”
11 and 12 show a bottomtemperature control panel 60 according to a fifth embodiment of the present invention. As shown in FIG. 12, the lower surface temperature adjustment panel 60 has a configuration in which a heat insulating panel 35 and a heat radiation panel 36 are stacked in the same manner as in the first embodiment. In the present embodiment, the temperature adjustment tube 38 as a temperature adjustment unit embedded in the surface of the thermal radiation panel 36 is a tube having one flow path. Other configurations of the present embodiment are the same as those of the first embodiment described above.
図11および図12は、本発明の第5の実施の形態に係る下面温調パネル60を示す。図12に示すように、下面温調パネル60は、断熱パネル35と熱輻射パネル36とを積層してなる構成は、上記第1の実施の形態と同様である。本実施の形態では、熱輻射パネル36の表面に埋設する温度調整部としての温度調整チューブ38が1つの流路を持つチューブである。本実施の形態の他の構成は、上記した第1の実施の形態と同様である。 “Fifth Embodiment”
11 and 12 show a bottom
「第6の実施の形態」
図13は、本発明の第6の実施の形態に係る温度調整装置11Aの概略構成を示す。なお、本実施の形態では、水温調整ヒータ17,18,19,20に供給する水をそれぞれの温度調整チューブ37から戻る水を適当な温度に下げてタンク71に貯留、循環させて用いる。また、本実施の形態では、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44を石定盤2の下面に配置している。本実施の形態の他の構成は、上述の第1の実施の形態の構成と略同様であるため、第1の実施の形態に対応する図面を適宜用いて説明する。 “Sixth Embodiment”
FIG. 13 shows a schematic configuration of atemperature adjustment device 11A according to the sixth embodiment of the present invention. In the present embodiment, the water supplied to the water temperature adjusting heaters 17, 18, 19, 20 is used by reducing and returning the water returning from the respective temperature adjusting tubes 37 to an appropriate temperature in the tank 71. In the present embodiment, the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 are arranged on the lower surface of the stone surface plate 2. Yes. The other configuration of the present embodiment is substantially the same as the configuration of the first embodiment described above, and therefore will be described with reference to the drawings corresponding to the first embodiment as appropriate.
図13は、本発明の第6の実施の形態に係る温度調整装置11Aの概略構成を示す。なお、本実施の形態では、水温調整ヒータ17,18,19,20に供給する水をそれぞれの温度調整チューブ37から戻る水を適当な温度に下げてタンク71に貯留、循環させて用いる。また、本実施の形態では、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44を石定盤2の下面に配置している。本実施の形態の他の構成は、上述の第1の実施の形態の構成と略同様であるため、第1の実施の形態に対応する図面を適宜用いて説明する。 “Sixth Embodiment”
FIG. 13 shows a schematic configuration of a
以下、図1から図4、および図13を用いて本実施の形態に係る温度調整装置11Aについて説明する。温度調整装置11Aは、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34と、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44と、水温調整ヒータ17,18,19,20と、温度調整部としての温度調整チューブ37と、温度調整チューブ37をそれぞれ備える第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15と、それぞれの温度調整チューブ37の温度を制御する温度制御部16と、タンク71と、熱交換器72と、三方弁73と、を備える。
Hereinafter, the temperature adjustment device 11A according to the present embodiment will be described with reference to FIGS. 1 to 4 and FIG. The temperature adjustment device 11A includes a first upper surface temperature sensor 31, a second upper surface temperature sensor 32, a third upper surface temperature sensor 33, a fourth upper surface temperature sensor 34, a first panel temperature sensor 41, and a second panel. Side temperature sensor 42, third panel side temperature sensor 43, fourth panel side temperature sensor 44, water temperature adjustment heaters 17, 18, 19, 20, temperature adjustment tube 37 as a temperature adjustment unit, and temperature adjustment tube 37. The first lower surface temperature control panel 12, the second lower surface temperature control panel 13, the third lower surface temperature control panel 14, the fourth lower surface temperature control panel 15, and the temperature control unit 16 that controls the temperature of each temperature adjustment tube 37. A tank 71, a heat exchanger 72, and a three-way valve 73.
温度調整チューブ37は、一対の冷媒流路37A,37Bが互いに平行をなすように一体的に形成されている(図2および図3参照)。温度調整チューブ37では、冷媒流路37A,37B内に同じ温度の水を互いに逆方向に流通させるように設定されている。
The temperature adjustment tube 37 is integrally formed so that the pair of refrigerant channels 37A and 37B are parallel to each other (see FIGS. 2 and 3). The temperature adjustment tube 37 is set so that water of the same temperature flows in the refrigerant flow paths 37A and 37B in opposite directions.
図13に示すように、それぞれの温度調整チューブ37には、水温調整ヒータ17,18,19,20でそれぞれ水温調整された水が供給される。なお、本実施の形態では、1つの温度調整チューブ37が、一対の冷媒流路37A,37Bを有するため、水温調整ヒータ17,18,19,20のそれぞれから2つの冷媒流路37A,37Bへ水温調整された水を供給するように設定されている。
As shown in FIG. 13, each temperature adjustment tube 37 is supplied with water whose water temperature has been adjusted by the water temperature adjustment heaters 17, 18, 19, and 20. In the present embodiment, since one temperature adjustment tube 37 has a pair of refrigerant flow paths 37A and 37B, the water temperature adjustment heaters 17, 18, 19, and 20 are supplied to the two refrigerant flow paths 37A and 37B, respectively. It is set to supply water whose temperature is adjusted.
具体的には、水温調整ヒータ17の下流側には、配管81が接続されている。この配管81の下流端は、2つの配管81A,81Bに分岐されている。配管81Aは、対応する第1下面温調パネル12に設けられた冷媒流路37A(図2および図3参照)に接続されている。配管81Bは、冷媒流路37Bに対して、流路内の水の流れが冷媒流路37A内の水の流れと逆方向になるように接続されている。
Specifically, a pipe 81 is connected to the downstream side of the water temperature adjusting heater 17. The downstream end of the pipe 81 is branched into two pipes 81A and 81B. The pipe 81A is connected to a refrigerant flow path 37A (see FIGS. 2 and 3) provided in the corresponding first lower surface temperature control panel 12. The pipe 81B is connected to the refrigerant flow path 37B so that the water flow in the flow path is in the opposite direction to the water flow in the refrigerant flow path 37A.
水温調整ヒータ18の下流側には、配管82が接続されている。この配管82の下流端は、2つの配管82A,82Bに分岐されている。配管82Aは、対応する第2下面温調パネル13に設けられた冷媒流路37A(図2および図3参照)に接続されている。配管82Bは、冷媒流路37Bに対して、流路内の水の流れが冷媒流路37A内の水の流れと逆方向になるように接続されている。
A pipe 82 is connected to the downstream side of the water temperature adjusting heater 18. The downstream end of the pipe 82 is branched into two pipes 82A and 82B. The pipe 82A is connected to a refrigerant flow path 37A (see FIGS. 2 and 3) provided in the corresponding second lower surface temperature control panel 13. The pipe 82B is connected to the refrigerant flow path 37B so that the water flow in the flow path is opposite to the water flow in the refrigerant flow path 37A.
水温調整ヒータ19の下流側には、配管83が接続されている。この配管83の下流端は、2つの配管83A,83Bに分岐されている。配管83Aは、対応する第3下面温調パネル14に設けられた冷媒流路37A(図2および図3参照)に接続されている。配管83Bは、冷媒流路37Bに対して、流路内の水の流れが冷媒流路37A内の水の流れと逆方向になるように接続されている。
A pipe 83 is connected to the downstream side of the water temperature adjusting heater 19. The downstream end of the pipe 83 is branched into two pipes 83A and 83B. The pipe 83A is connected to a refrigerant flow path 37A (see FIGS. 2 and 3) provided in the corresponding third lower surface temperature control panel 14. The pipe 83B is connected to the refrigerant flow path 37B so that the water flow in the flow path is in the opposite direction to the water flow in the refrigerant flow path 37A.
水温調整ヒータ20の下流側には、配管84が接続されている。この配管84の下流端は、2つの配管84A,84Bに分岐されている。配管84Aは、対応する第4下面温調パネル15に設けられた冷媒流路37A(図2および図3参照)に接続されている。配管84Bは、冷媒流路37Bに対して、流路内の水の流れが冷媒流路37A内の水の流れと逆方向になるように接続されている。
A pipe 84 is connected to the downstream side of the water temperature adjusting heater 20. The downstream end of the pipe 84 is branched into two pipes 84A and 84B. The pipe 84A is connected to a refrigerant flow path 37A (see FIGS. 2 and 3) provided in the corresponding fourth lower surface temperature control panel 15. The pipe 84B is connected to the refrigerant flow path 37B so that the water flow in the flow path is opposite to the water flow in the refrigerant flow path 37A.
図3に示す第1下面温調パネル12に設けられた温度調整チューブ37における、一対の冷媒流路37A,37Bの下流端は、図13に示すように、順次、配管85A,85Bに接続されている。これら配管85A,85Bの下流端は、配管85に接続されて合流している。
As shown in FIG. 13, the downstream ends of the pair of refrigerant flow paths 37A and 37B in the temperature adjustment tube 37 provided on the first lower surface temperature control panel 12 shown in FIG. 3 are sequentially connected to the pipes 85A and 85B. ing. The downstream ends of these pipes 85A and 85B are connected to the pipe 85 and merge.
第2下面温調パネル13に設けられた温度調整チューブ37における、一対の冷媒流路37A,37Bの下流端は、図13に示すように、順次、配管86A,86Bに接続されている。これら配管86A,86Bの下流端は、配管86に接続されて合流している。
The downstream ends of the pair of refrigerant flow paths 37A and 37B in the temperature adjustment tube 37 provided on the second lower surface temperature control panel 13 are sequentially connected to the pipes 86A and 86B as shown in FIG. The downstream ends of these pipes 86A and 86B are connected to the pipe 86 and merge.
第3下面温調パネル14に設けられた温度調整チューブ37における、一対の冷媒流路37A,37Bの下流端は、図13に示すように、順次、配管87A,87Bに接続されている。これら配管87A,87Bの下流端は、配管87に接続されて合流している。
The downstream ends of the pair of refrigerant flow paths 37A and 37B in the temperature adjustment tube 37 provided on the third lower surface temperature control panel 14 are sequentially connected to the pipes 87A and 87B as shown in FIG. The downstream ends of these pipes 87A and 87B are connected to the pipe 87 and merge.
第4下面温調パネル15に設けられた温度調整チューブ37における、一対の冷媒流路37A,37Bの下流端は、図13に示すように、順次、配管88A,88Bに接続されている。これら配管88A,88Bの下流端は、配管89の上流端に接続されて合流している。配管89の下流端は、熱交換器72に接続されている。
The downstream ends of the pair of refrigerant flow paths 37A and 37B in the temperature adjustment tube 37 provided on the fourth lower surface temperature control panel 15 are sequentially connected to the pipes 88A and 88B as shown in FIG. The downstream ends of these pipes 88 </ b> A and 88 </ b> B are connected to and merged with the upstream end of the pipe 89. The downstream end of the pipe 89 is connected to the heat exchanger 72.
配管85,86,87,88は、配管89に接続されて合流している。配管89は、熱交換器72に接続されている。配管89から供給されて熱交換器72を通って熱交換された水は、配管89Aを介してタンク71に供給されるようになっている。配管89Aには、温度センサ92が設けられている。
The pipes 85, 86, 87, and 88 are connected to the pipe 89 and merge. The pipe 89 is connected to the heat exchanger 72. The water supplied from the pipe 89 and heat-exchanged through the heat exchanger 72 is supplied to the tank 71 through the pipe 89A. A temperature sensor 92 is provided in the pipe 89A.
タンク71には、循環水供給配管93が接続されている。循環水供給配管93には、循環ポンプ94および圧力計96が設けられている。タンク71には、タンクレベル計95が設けられている。循環水供給配管93の下流端には、水温調整ヒータ17に接続される配管97と、水温調整ヒータ18に接続される配管98と、水温調整ヒータ19に接続される配管99と、水温調整ヒータ20に接続される配管100と、が接続されている。
A circulating water supply pipe 93 is connected to the tank 71. A circulating pump 94 and a pressure gauge 96 are provided in the circulating water supply pipe 93. The tank 71 is provided with a tank level meter 95. At the downstream end of the circulating water supply pipe 93, a pipe 97 connected to the water temperature adjusting heater 17, a pipe 98 connected to the water temperature adjusting heater 18, a pipe 99 connected to the water temperature adjusting heater 19, and a water temperature adjusting heater. And a pipe 100 connected to 20.
図13に示すように、熱交換器72には、冷却水を供給する配管90が接続されている。配管90から供給されて熱交換器72を通って熱交換された水は、配管90Aを介して冷却水出口へ導かれる。配管90には、三方弁73が介在されている。三方弁73には、配管90Aに接続するバイパス配管91が接続されている。
As shown in FIG. 13, a pipe 90 for supplying cooling water is connected to the heat exchanger 72. The water supplied from the pipe 90 and heat-exchanged through the heat exchanger 72 is guided to the cooling water outlet through the pipe 90A. A three-way valve 73 is interposed in the pipe 90. A bypass pipe 91 connected to the pipe 90A is connected to the three-way valve 73.
本実施の形態では、温度の低い(例えば、10℃前後の温度の)水道水などの冷却水を配管90から供給して、熱交換器72内で、配管89から供給された循環水を基準温度(T)まで下げる制御を行う。
In the present embodiment, cooling water such as tap water having a low temperature (for example, a temperature around 10 ° C.) is supplied from the pipe 90, and the circulating water supplied from the pipe 89 is used as a reference in the heat exchanger 72. Control to lower the temperature (T).
図13に示すように、温度制御部16は、石定盤2の上面21側の、第1上面側温度センサ31、第2上面側温度センサ32、第3上面側温度センサ33、第4上面側温度センサ34と、下面22側の、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44と、に接続されている。さらに、温度制御部16は、水温調整ヒータ17,18,19,20、三方弁73、温度センサ92に接続されている。
As shown in FIG. 13, the temperature control unit 16 includes a first upper surface side temperature sensor 31, a second upper surface side temperature sensor 32, a third upper surface side temperature sensor 33, and a fourth upper surface on the upper surface 21 side of the stone surface plate 2. The side temperature sensor 34 is connected to the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 on the lower surface 22 side. Further, the temperature control unit 16 is connected to the water temperature adjusting heaters 17, 18, 19, 20, the three-way valve 73, and the temperature sensor 92.
温度制御部16では、石定盤2の上面側温度と下面側温度との差が、予め設定された温度となるように、水温調整ヒータ17,18,19,20での基準温度(T)に加える加熱度合を決定して水温調整ヒータ17,18,19,20を制御する。なお、上記の上面側温度と下面側温度との差(上面側温度-下面側温度)は、例えば、0.2℃程度に設定することができる。なお、上面側温度と下面側温度との差は、個々の石定盤2の特性に応じて決定すればよい。また、本実施の形態では、第1パネル側温度センサ41、第2パネル側温度センサ42、第3パネル側温度センサ43、第4パネル側温度センサ44を石定盤2の下面22に配置しているが、上記第1の実施の形態のように、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15の表面に配置してもよい。要するに、石定盤2の各領域において、上面21側と下面22側との温度差を設定できればよい。」
In the temperature control unit 16, the reference temperature (T) in the water temperature adjusting heaters 17, 18, 19, and 20 is set so that the difference between the upper surface side temperature and the lower surface side temperature of the stone surface plate 2 becomes a preset temperature. The water temperature adjusting heaters 17, 18, 19, and 20 are controlled by determining the degree of heating applied to the water temperature. The difference between the upper surface temperature and the lower surface temperature (upper surface temperature−lower surface temperature) can be set to about 0.2 ° C., for example. In addition, what is necessary is just to determine the difference of upper surface side temperature and lower surface side temperature according to the characteristic of each stone surface plate 2. FIG. In the present embodiment, the first panel side temperature sensor 41, the second panel side temperature sensor 42, the third panel side temperature sensor 43, and the fourth panel side temperature sensor 44 are arranged on the lower surface 22 of the stone surface plate 2. However, as in the first embodiment, it is arranged on the surface of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15. May be. In short, it is only necessary to set the temperature difference between the upper surface 21 side and the lower surface 22 side in each region of the stone surface plate 2. "
このように水温調整ヒータ17,18,19,20を制御することにより、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14、第4下面温調パネル15にそれぞれ設けられた温度調整チューブ37内を流通する水の温度を変化させることができる。このため、各下面温調パネルの熱輻射パネル36は、個々に温度制御される。
Thus, by controlling the water temperature adjusting heaters 17, 18, 19, 20, the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15. It is possible to change the temperature of the water flowing through the temperature adjusting tube 37 provided in each of the two. For this reason, the temperature of the heat radiation panel 36 of each bottom surface temperature control panel is individually controlled.
図13に示すように、水温調整ヒータ17,18,19,20は、基準温度(T)で供給される水を、温度制御部16からの制御信号に基づいて、所定の制御温度(T+A),(T+B),(T+C),(T+D)に昇温させる作用・動作を行う。なお、ここで、基準温度(T)は、装置を稼働させる環境において、石定盤2の上面21の温度よりも常に低い一定の温度が設定されている。本実施の形態では、基準温度(T)を例えば、20℃に設定している。すなわち、本実施の形態では、タンク71に貯留する水の基準温度(T)が20℃に設定されている。
As shown in FIG. 13, the water temperature adjusting heaters 17, 18, 19, and 20 are configured to supply water supplied at a reference temperature (T) to a predetermined control temperature (T + A) based on a control signal from the temperature control unit 16. , (T + B), (T + C), (T + D). Here, the reference temperature (T) is set to a constant temperature that is always lower than the temperature of the upper surface 21 of the stone surface plate 2 in the environment where the apparatus is operated. In the present embodiment, the reference temperature (T) is set to 20 ° C., for example. That is, in the present embodiment, the reference temperature (T) of water stored in the tank 71 is set to 20 ° C.
本実施の形態では、配管90には、例えば、11℃の冷却水が供給される。熱交換器72には、20℃よりも高い温度(T+A)、(T+B)、(T+C)、(T+D)などに加熱された水が配管89を介して供給される。なお、具体的には、配管89を介して熱交換器72へ供給される水の温度は、例えば、23℃程度である。
In the present embodiment, for example, 11 ° C. cooling water is supplied to the pipe 90. Water heated to a temperature (T + A), (T + B), (T + C), (T + D), etc. higher than 20 ° C. is supplied to the heat exchanger 72 via a pipe 89. Specifically, the temperature of water supplied to the heat exchanger 72 via the pipe 89 is, for example, about 23 ° C.
温度制御部16は、温度センサ92の温度検出値に基づいて、三方弁73を制御して、バイパス配管91に冷却水を流したり、熱交換器72へ冷却水を流したり、冷却水の流量を制御する。これにより、熱交換器72内では、水温11℃の冷却水により、配管89から供給された水を23℃から20℃まで下げることができ、タンク71へ貯留する水の温度を20℃にすることができる。このように、本実施の形態では、水温の低い(11℃)冷却水を20℃まで温める必要がないため、大きな電力を消費することがない。
The temperature control unit 16 controls the three-way valve 73 based on the temperature detection value of the temperature sensor 92 to flow cooling water to the bypass pipe 91, flow cooling water to the heat exchanger 72, and flow rate of cooling water. To control. Thereby, in the heat exchanger 72, the water supplied from the pipe 89 can be lowered from 23 ° C. to 20 ° C. by the cooling water having a water temperature of 11 ° C., and the temperature of the water stored in the tank 71 is set to 20 ° C. be able to. Thus, in this Embodiment, since it is not necessary to heat a cooling water with a low water temperature (11 degreeC) to 20 degreeC, a big electric power is not consumed.
なお、第1上面温度側センサ31および第1パネル側温度センサ41、第2上面側温度センサ32および第2パネル側温度センサ42、第3上面側温度センサ33および第3パネル側温度センサ43、第4上面側温度センサ34および第4パネル側温度センサ44は、それぞれ熱電対をなすように構成しても勿論よい。
The first upper surface temperature sensor 31 and the first panel temperature sensor 41, the second upper surface temperature sensor 32 and the second panel temperature sensor 42, the third upper surface temperature sensor 33 and the third panel temperature sensor 43, Of course, the fourth upper surface side temperature sensor 34 and the fourth panel side temperature sensor 44 may each be configured to form a thermocouple.
本実施の形態においては、例えば、11℃程度の水道水などの冷媒を20℃以上の温度まで昇温させる必要がなく、消費電力を大幅に抑えることができる。すなわち、本実施の形態では、基準温度(T)から制御温度(T+A),(T+B),(T+C),(T+D)までの温度差を小さくできるため、消費電力を大幅に抑えることができる。また、本実施の形態では、基準温度(T)を第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14および第4下面温調パネル15の最低制御温度よりやや低めに設定することにより、冷却水の使用量も大幅に抑制できる。
In this embodiment, for example, it is not necessary to raise the temperature of a coolant such as tap water of about 11 ° C. to a temperature of 20 ° C. or higher, and power consumption can be significantly reduced. That is, in this embodiment, the temperature difference from the reference temperature (T) to the control temperatures (T + A), (T + B), (T + C), and (T + D) can be reduced, so that the power consumption can be greatly suppressed. In the present embodiment, the reference temperature (T) is determined from the minimum control temperature of the first lower surface temperature adjustment panel 12, the second lower surface temperature adjustment panel 13, the third lower surface temperature adjustment panel 14, and the fourth lower surface temperature adjustment panel 15. By using a slightly lower setting, the amount of cooling water used can be significantly reduced.
本実施の形態では、水温調整ヒータ17,18,19,20、温度調整チューブ37、熱交換器72、およびタンク71に循環させる冷媒として水を用いたが、これに限定されない。本実施の形態では、タンク71に水を循環させる構成であるため、仮に水漏れが発生した場合でも、タンク71の容量分以上の水漏れは発生しない。また、本実施の形態では、タンク内の水量低下から水漏れを検出できるという利点がある。これに対して、タンクに水を循環させずに、水道水などの冷却水(一次冷却水)を水温調整ヒータ17,18,19,20で直接加熱させる構成(比較例)とした場合、第1下面温調パネル12、第2下面温調パネル13、第3下面温調パネル14および第4下面温調パネル15などに水漏れセンサ配置することが難しい。このため、この比較例では、水漏れが発生した場合、水漏れ量が大量となる虞がある。したがって、本実施の形態のようにタンク71に循環させる構成とすることにより、水漏れの発生を大幅に抑制できる。
In this embodiment, water is used as the coolant to be circulated in the water temperature adjusting heaters 17, 18, 19, 20, the temperature adjusting tube 37, the heat exchanger 72, and the tank 71, but is not limited thereto. In the present embodiment, since water is circulated through the tank 71, even if a water leak occurs, a water leak exceeding the capacity of the tank 71 does not occur. Moreover, in this Embodiment, there exists an advantage that a water leak is detectable from the water quantity fall in a tank. On the other hand, when a configuration (comparative example) in which cooling water (primary cooling water) such as tap water is directly heated by the water temperature adjusting heaters 17, 18, 19, 20 without circulating water in the tank, It is difficult to dispose a water leak sensor on the first bottom surface temperature control panel 12, the second bottom surface temperature control panel 13, the third bottom surface temperature control panel 14, the fourth bottom surface temperature control panel 15, and the like. For this reason, in this comparative example, when a water leak occurs, there is a possibility that the amount of water leak becomes large. Therefore, the occurrence of water leakage can be significantly suppressed by adopting a configuration that circulates in the tank 71 as in the present embodiment.
「その他の実施の形態」
以上、第1~第6の実施の形態について説明したが、これら実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。 "Other embodiments"
Although the first to sixth embodiments have been described above, it should not be understood that the description and the drawings, which form part of the disclosure of these embodiments, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
以上、第1~第6の実施の形態について説明したが、これら実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。 "Other embodiments"
Although the first to sixth embodiments have been described above, it should not be understood that the description and the drawings, which form part of the disclosure of these embodiments, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
例えば、上記実施の形態では、被検査パネルとしてフォトマスクMを適用したが、電子回路を形成したフォトマスクの原版となるブランクスを適用してもよい。
For example, in the above embodiment, the photomask M is applied as the panel to be inspected, but blanks serving as a photomask original plate on which an electronic circuit is formed may be applied.
上記実施の形態では、断熱パネル35と熱輻射パネル36とを積層して一体化した構成であるが、断熱パネル35の上に熱輻射パネル36を積み重ねる構成としてもよい。また、断熱パネル35は、石定盤2を配置する占有領域全体に亘る大きさおよび形状のものを用い、その上に、複数の熱輻射パネル36を長手方向に沿って連続して配置する構成としても勿論よい。
In the above embodiment, the heat insulation panel 35 and the heat radiation panel 36 are laminated and integrated, but the heat radiation panel 36 may be stacked on the heat insulation panel 35. Moreover, the heat insulation panel 35 uses the thing of the magnitude | size and shape over the whole occupied area | region which arrange | positions the stone surface plate 2, and the structure which arrange | positions the several thermal radiation panel 36 continuously along a longitudinal direction on it Of course.
上記実施の形態では、石定盤2上でフォトマスクMをストローク方向Sに移動させる構成としたが、石定盤2上にフォトマスクMを固定し、撮像部10側をストローク方向Sに移動させる構成としても勿論よい。
In the above embodiment, the photomask M is moved in the stroke direction S on the stone surface plate 2, but the photomask M is fixed on the stone surface plate 2 and the imaging unit 10 side is moved in the stroke direction S. Of course, it is also possible to adopt a configuration that allows them to be used.
上記実施の形態に係る検査装置1では、フォトマスクMを縦置き状態で検査を行う構成であるが、フォトマスクMなどの被検査パネルを水平に、すなわち横置き状態で検査を行う構成としてもよい。
In the inspection apparatus 1 according to the above-described embodiment, the photomask M is inspected in a vertically placed state, but a panel to be inspected such as the photomask M may be inspected horizontally, that is, in a horizontally placed state. Good.
A1,A2,A3,A4 領域
C 間隙
F 設置床面
M フォトマスク(被検査パネル)
S ストローク方向
1 検査装置
2 石定盤
2A ガイド溝
2B 凹部(アクティブ除振台用)
2C 凹部(パッシブ除振台用)
4、5,6,7,8,9 除振台
10B 検査カメラ
11,11A 温度調整装置
12,12A 第1下面温調パネル
13 第2下面温調パネル
14 第3下面温調パネル
15 第4下面温調パネル
16 温度制御部
17,18,19,20 水温調整ヒータ
21 上面
22 下面
23 側面(石定盤の幅方向Wの一端側の側面)
24 側面(石定盤の幅方向Wの他端側の側面)
25 側面(石定盤のストローク方向Sの一端側の側面)
26 側面(石定盤のストローク方向Sの他端側の側面)
31 第1上面側温度センサ
32 第2上面側温度センサ
33 第3上面側温度センサ
34 第4上面側温度センサ
35 断熱パネル
36 熱輻射パネル
37,38 温度調整チューブ(温度調整部)
37A,37B 冷媒流路
41 第1パネル側温度センサ
42 第2パネル側温度センサ
43 第3パネル側温度センサ
44 第4パネル側温度センサ
50 カーテン(区画壁)
60 下面温調パネル
71 タンク 72 熱交換器
73 三方弁
A1, A2, A3, A4 Area C Gap F Installation floor M Photomask (inspected panel)
S Stroke direction 1 Inspection device 2 Stone surface plate 2A Guide groove 2B Concavity (for active vibration isolation table)
2C recess (for passive vibration isolation table)
4, 5, 6, 7, 8, 9 Anti-vibration table 10B Inspection camera 11, 11A Temperature adjustment device 12, 12A First bottom surface temperature control panel 13 Second bottom surface temperature control panel 14 Third bottom surface temperature control panel 15 Fourth bottom surface Temperature control panel 16 Temperature control unit 17, 18, 19, 20 Water temperature adjustment heater 21 Upper surface 22 Lower surface 23 Side surface (side surface on one end side in width direction W of stone surface plate)
24 side surface (side surface on the other end side in the width direction W of the stone surface plate)
25 Side (Side side of one side in the stroke direction S of the stone surface plate)
26 side surface (side surface on the other end side in the stroke direction S of the stone surface plate)
31 1st upper surfaceside temperature sensor 32 2nd upper surface side temperature sensor 33 3rd upper surface side temperature sensor 34 4th upper surface side temperature sensor 35 Thermal insulation panel 36 Thermal radiation panel 37,38 Temperature adjustment tube (temperature adjustment part)
37A, 37BRefrigerant flow path 41 First panel side temperature sensor 42 Second panel side temperature sensor 43 Third panel side temperature sensor 44 Fourth panel side temperature sensor 50 Curtain (partition wall)
60 Bottomtemperature control panel 71 Tank 72 Heat exchanger 73 Three-way valve
C 間隙
F 設置床面
M フォトマスク(被検査パネル)
S ストローク方向
1 検査装置
2 石定盤
2A ガイド溝
2B 凹部(アクティブ除振台用)
2C 凹部(パッシブ除振台用)
4、5,6,7,8,9 除振台
10B 検査カメラ
11,11A 温度調整装置
12,12A 第1下面温調パネル
13 第2下面温調パネル
14 第3下面温調パネル
15 第4下面温調パネル
16 温度制御部
17,18,19,20 水温調整ヒータ
21 上面
22 下面
23 側面(石定盤の幅方向Wの一端側の側面)
24 側面(石定盤の幅方向Wの他端側の側面)
25 側面(石定盤のストローク方向Sの一端側の側面)
26 側面(石定盤のストローク方向Sの他端側の側面)
31 第1上面側温度センサ
32 第2上面側温度センサ
33 第3上面側温度センサ
34 第4上面側温度センサ
35 断熱パネル
36 熱輻射パネル
37,38 温度調整チューブ(温度調整部)
37A,37B 冷媒流路
41 第1パネル側温度センサ
42 第2パネル側温度センサ
43 第3パネル側温度センサ
44 第4パネル側温度センサ
50 カーテン(区画壁)
60 下面温調パネル
71 タンク 72 熱交換器
73 三方弁
A1, A2, A3, A4 Area C Gap F Installation floor M Photomask (inspected panel)
2C recess (for passive vibration isolation table)
4, 5, 6, 7, 8, 9 Anti-vibration table
24 side surface (side surface on the other end side in the width direction W of the stone surface plate)
25 Side (Side side of one side in the stroke direction S of the stone surface plate)
26 side surface (side surface on the other end side in the stroke direction S of the stone surface plate)
31 1st upper surface
37A, 37B
60 Bottom
Claims (10)
- 設置床面との間に間隙を隔てて配置される石定盤の温度調整装置であって、
前記石定盤の下面に対向するように、前記設置床面上に配置される下面温調パネルと、
前記下面温調パネルの温度を制御する温度制御部と、を備え、
前記下面温調パネルは、
前記設置床面上に配置される断熱パネルと、
前記断熱パネルの上に配置され、温度調整部が設けられ当該温度調整部により熱供給または熱吸収される熱輻射パネルと、を備え、
前記温度制御部は、前記石定盤の上面と、前記熱輻射パネルの表面と、の温度差が設定値となるように前記熱輻射パネルの温度を制御する、石定盤の温度調整装置。 A temperature control device for a stone surface plate arranged with a gap between it and the installation floor surface,
A lower surface temperature control panel arranged on the installation floor so as to face the lower surface of the stone surface plate,
A temperature control unit for controlling the temperature of the lower surface temperature control panel,
The lower surface temperature control panel is:
A heat insulating panel disposed on the installation floor;
A heat radiating panel disposed on the heat insulating panel, provided with a temperature adjusting unit, and supplied with heat or absorbed by the temperature adjusting unit;
The temperature control unit is a temperature adjusting device for a stone surface plate that controls the temperature of the heat radiation panel so that a temperature difference between the upper surface of the stone surface plate and the surface of the heat radiation panel becomes a set value. - 前記下面温調パネルは、前記設置床面の前記石定盤を設置する占有領域を、前記石定盤の長手方向に沿って複数に分割したそれぞれの分割領域毎に、配置される、請求項1に記載の石定盤の温度調整装置。 The lower surface temperature control panel is arranged for each divided area obtained by dividing an occupied area where the stone surface plate of the installation floor surface is installed into a plurality along the longitudinal direction of the stone surface plate. The temperature control apparatus of the stone surface plate of 1.
- 前記下面温調パネルにパネル側温度センサが設けられ、
前記パネル側温度センサに対応する石定盤の上面に、該パネル側温度センサと対をなす上面側温度センサが設けられ、
前記温度制御部は、対をなす、前記パネル側温度センサと、上下方向で対応する前記上面側温度センサと、の温度検出値に基づいて、それぞれの前記下面温調パネルの前記温度調整部の温度を制御する、
請求項1または請求項2に記載の石定盤の温度調整装置。 A panel-side temperature sensor is provided on the lower surface temperature control panel,
On the upper surface of the stone surface plate corresponding to the panel side temperature sensor, an upper surface side temperature sensor that is paired with the panel side temperature sensor is provided,
The temperature control unit is configured to detect the temperature adjustment unit of each of the lower surface temperature control panels based on the temperature detection values of the paired panel side temperature sensor and the upper surface side temperature sensor corresponding in the vertical direction. Control the temperature,
The temperature control apparatus of the stone surface plate of Claim 1 or Claim 2. - 前記下面温調パネルと前記石定盤の下面とで挟まれた間隙の周囲は、区画壁で囲まれる、請求項1から請求項3のいずれか一項に記載の石定盤の温度調整装置。 The temperature adjusting device for a stone surface plate according to any one of claims 1 to 3, wherein a space between the bottom surface temperature control panel and a bottom surface of the stone surface plate is surrounded by a partition wall. .
- 前記断熱パネルは、独立発泡構造の樹脂シートで構成される、請求項1から請求項4のいずれか一項に記載の石定盤の温度調整装置。 The said heat insulation panel is a temperature control apparatus of the stone surface plate as described in any one of Claims 1-4 comprised with the resin sheet of an independent foam structure.
- 前記熱輻射パネルは、金属板で構成される、請求項1から請求項5のいずれか一項に記載の石定盤の温度調整装置。 The temperature adjusting device for a stone surface plate according to any one of claims 1 to 5, wherein the thermal radiation panel is made of a metal plate.
- 前記温度調整部は、冷媒を流通させる温度調整チューブである、請求項1から請求項6のいずれか一項に記載の石定盤の温度調整装置。 The temperature adjusting device for a stone surface plate according to any one of claims 1 to 6, wherein the temperature adjusting unit is a temperature adjusting tube for circulating a refrigerant.
- 前記温度調整チューブは、互いに並行する一対の冷媒流路を有し、
前記一対の冷媒流路のそれぞれに、冷媒が互いに逆方向に流れるように設定されている、請求項7に記載の石定盤の温度調整装置。 The temperature adjustment tube has a pair of refrigerant flow paths parallel to each other,
The temperature control device for a stone surface plate according to claim 7, wherein each of the pair of refrigerant flow paths is set so that the refrigerant flows in directions opposite to each other. - 前記温度調整チューブに、前記下面温調パネルで温められる前記石定盤の温度よりも低い基準温度に調整された冷媒を供給するタンクと、
前記温度調整チューブを通過した戻りの冷媒を、前記基準温度よりも低い温度の冷却水で当該基準温度まで下がるように冷却する熱交換器と、を備え、
前記熱交換器で冷却した冷媒を前記タンクに供給する請求項7または請求項8に記載の石定盤の温度調整装置。 A tank for supplying the temperature adjustment tube with a refrigerant adjusted to a reference temperature lower than the temperature of the stone surface plate heated by the lower surface temperature control panel;
A heat exchanger that cools the returned refrigerant that has passed through the temperature adjustment tube so as to be lowered to the reference temperature with cooling water having a temperature lower than the reference temperature, and
The temperature adjusting device for a stone surface plate according to claim 7 or 8, wherein the refrigerant cooled by the heat exchanger is supplied to the tank. - 前記設置床面との間に間隙を隔てて配置され、被検査パネルを載せる前記石定盤と、
前記被検査パネルに対して相対的に移動して、前記被検査パネルのパネル面の状態を撮像する検査カメラと、
請求項1から請求項9のいずれか一項に記載の前記石定盤の温度調整装置と、を備えた検査装置。
The stone surface plate on which the panel to be inspected is placed, with a gap between the floor and the installation floor;
An inspection camera that moves relative to the panel to be inspected and images the state of the panel surface of the panel to be inspected;
The inspection apparatus provided with the temperature adjusting device of the said stone surface plate as described in any one of Claims 1-9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980016331.5A CN111868510B (en) | 2018-04-03 | 2019-04-01 | Temperature adjustment device for stone platform and inspection device provided with same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018071843 | 2018-04-03 | ||
JP2018-071843 | 2018-04-03 | ||
JP2018-178799 | 2018-09-25 | ||
JP2018178799A JP7105482B2 (en) | 2018-04-03 | 2018-09-25 | Stone surface plate temperature adjustment device and inspection device equipped with the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019194139A1 true WO2019194139A1 (en) | 2019-10-10 |
Family
ID=68100490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/014502 WO2019194139A1 (en) | 2018-04-03 | 2019-04-01 | Temperature adjusting device for stone surface plate, and inspection device provided with same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019194139A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62218837A (en) * | 1986-03-20 | 1987-09-26 | Fujitsu Ltd | Precision optical measuring surface plate |
JPH09126703A (en) * | 1995-10-31 | 1997-05-16 | Naruko Denki Seisakusho:Kk | Precise constant temperature surface plate |
JP2008010633A (en) * | 2006-06-29 | 2008-01-17 | Tokyo Seimitsu Co Ltd | Prober |
DE102010056039A1 (en) * | 2010-12-16 | 2012-06-21 | Carl Zeiss Industrielle Messtechnik Gmbh | Apparatus for determining spatial coordinates of measurement point at measurement object, detects rotational error of frame device along X-axis direction based on distances between reference surfaces along Y and Z axes directions |
-
2019
- 2019-04-01 WO PCT/JP2019/014502 patent/WO2019194139A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62218837A (en) * | 1986-03-20 | 1987-09-26 | Fujitsu Ltd | Precision optical measuring surface plate |
JPH09126703A (en) * | 1995-10-31 | 1997-05-16 | Naruko Denki Seisakusho:Kk | Precise constant temperature surface plate |
JP2008010633A (en) * | 2006-06-29 | 2008-01-17 | Tokyo Seimitsu Co Ltd | Prober |
DE102010056039A1 (en) * | 2010-12-16 | 2012-06-21 | Carl Zeiss Industrielle Messtechnik Gmbh | Apparatus for determining spatial coordinates of measurement point at measurement object, detects rotational error of frame device along X-axis direction based on distances between reference surfaces along Y and Z axes directions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7455783B2 (en) | Lithographic apparatus and device manufacturing method | |
US6583638B2 (en) | Temperature-controlled semiconductor wafer chuck system | |
JP2016523791A (en) | Apparatus and method for temperature profile control of isopipe | |
CN100570488C (en) | Cooler of static chuck of extreme ultraviolet photolithographic mask platform | |
JP5535872B2 (en) | Data center or computer system | |
US6347535B2 (en) | Heating apparatus and method | |
WO2019194139A1 (en) | Temperature adjusting device for stone surface plate, and inspection device provided with same | |
JP2016082013A (en) | Cooling apparatus and electronic apparatus | |
JP7105482B2 (en) | Stone surface plate temperature adjustment device and inspection device equipped with the same | |
JP2016053863A (en) | Temperature regulator | |
JP5135911B2 (en) | Temperature test booth and environment generation method in the temperature test booth | |
US20100186942A1 (en) | Reticle error reduction by cooling | |
Yuan et al. | Simplified correlations for heat transfer coefficient and heat flux density of radiant ceiling panels | |
KR101182877B1 (en) | Apparatus for controlling temperature of canister | |
JP2008010259A (en) | Apparatus using electron beam | |
JP2020051080A (en) | Support member set and heating/cooling system | |
JP6860089B2 (en) | Sample temperature controller | |
KR20150071844A (en) | Water-cooled type cooling apparatus for computers | |
JP4393332B2 (en) | Heat treatment equipment | |
JP2007085712A (en) | Air conditioner | |
CN110554572A (en) | Suction cup | |
JP2008249571A (en) | Inspection device and method | |
CN107272233A (en) | Alignment device | |
CN219776898U (en) | Optical machine system control device for high-precision spectrometer | |
JP2023161965A (en) | Heat transmission coefficient measurement apparatus and heat transmission coefficient measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19781977 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19781977 Country of ref document: EP Kind code of ref document: A1 |