WO2019194114A1 - 処理装置、cadモデルの特徴部分検出方法及びプログラム - Google Patents

処理装置、cadモデルの特徴部分検出方法及びプログラム Download PDF

Info

Publication number
WO2019194114A1
WO2019194114A1 PCT/JP2019/014428 JP2019014428W WO2019194114A1 WO 2019194114 A1 WO2019194114 A1 WO 2019194114A1 JP 2019014428 W JP2019014428 W JP 2019014428W WO 2019194114 A1 WO2019194114 A1 WO 2019194114A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
object shape
cad
expansion
contraction
Prior art date
Application number
PCT/JP2019/014428
Other languages
English (en)
French (fr)
Inventor
金森 正史
崇 石田
橋本 敦
剛史 青山
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to US17/043,402 priority Critical patent/US20210141983A1/en
Publication of WO2019194114A1 publication Critical patent/WO2019194114A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/25Design optimisation, verification or simulation using particle-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/56Particle system, point based geometry or rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2016Rotation, translation, scaling

Definitions

  • the present invention relates to, for example, a processing apparatus for obtaining a calculation grid necessary for numerical analysis of an aircraft body, a CAD model feature portion detection method, and a program.
  • calculation grid generation In the field of computational mechanics, the task of dividing the calculation area into finite discrete points, so-called calculation grid generation, is an important task. If the discrete points are not arranged at appropriate positions, non-physical errors may occur in the calculation results.
  • the calculation grid is a mesh stretched all around the object, and it is necessary to cover the shape of the object cleanly. If it cannot be covered cleanly, an unnatural “burr” will appear and the calculation accuracy will be extremely high. Getting worse.
  • a numerical calculation that represents the feature of the shape cannot be performed unless discrete points are arranged in the feature part. .
  • the CAD model reproduces the shape of an object by arranging an infinite number of small triangles, quadrilaterals, etc., and calculates the angle and curvature between adjacent surfaces. It is a method of detecting as a part.
  • the angle between adjacent triangles is calculated from the unit normal vector of each triangle. That means When ⁇ is larger than a certain threshold ⁇ _thresh, it is determined as a characteristic part (see Non-Patent Document 1).
  • an object of the present invention is to provide a processing apparatus, a CAD model feature part detection method, and a program capable of appropriately revealing a feature part of an object shape.
  • a processing apparatus discretizes a surface of a CAD model into a lattice network and arranges surfaces surrounded by discrete points from data representing the object shape of the CAD model.
  • an object model expansion model or contraction model of the CAD model is generated, and a uniform charge is charged on the surface of the expansion model or contraction model.
  • the surface potential distribution of the expansion model or contraction model is obtained by solving the Laplace equation for the electrostatic field on the surface by the boundary element method, and the feature portion of the object shape is detected based on the obtained potential distribution.
  • the characteristic part detection part which comprises.
  • each surface surrounded by discrete points is moved in the normal direction of each surface to generate an expansion model or a contraction model, and by solving it with a Laplace equation, the feature part of the object shape is emphasized. Therefore, the characteristic part can be appropriately revealed.
  • the data representing the object shape of the CAD model by discretizing the surface of the CAD model into a lattice network and arranging the faces surrounded by the discrete points is STL (Standard Triangulated Language / Standard Tessellation Language) data. There may be.
  • the surface of the CAD model is discretized into a lattice network, and the object shape of the CAD model is reproduced by arranging the surfaces surrounded by the discrete points.
  • an expansion model or a contraction model of the object shape of the CAD model is generated, and it is assumed that a uniform charge is charged on the surface of the expansion model or the contraction model.
  • the potential distribution of the surface of the expansion model or the contraction model is obtained, and the characteristic portion of the object shape is detected based on the obtained potential distribution.
  • the program according to an aspect of the present invention discretizes the surface of the CAD model into a lattice network and arranges the surfaces surrounded by the discrete points to represent each surface from the data representing the object shape of the CAD model.
  • the characteristic part of the object shape can be appropriately revealed. This automates the handling of features that had to be performed manually, and as a result, a grid network can be generated just by preparing a CAD model and automatically performed until numerical analysis is performed. Can proceed. As a result, turnaround for the entire numerical analysis is reduced, and the time-consuming work such as optimization can be greatly reduced.
  • FIG. 5 is a diagram showing a state in which one of the triangles shown in FIGS. 2 to 4 is focused and moved in the normal vector direction.
  • FIG. 5 is a diagram showing a state in which one of the triangles shown in FIG. 2 to FIG. 4 is focused and the triangle is moved in the normal vector direction so as to be contracted.
  • FIG. 1 is a diagram showing a processing apparatus according to an embodiment of the present invention.
  • the processing device 10 includes a data conversion unit 11, a feature portion detection unit 12, and a numerical analysis unit 13.
  • the processing apparatus 10 is typically configured by installing a program constituting each unit in a computer system.
  • the data converter 11 converts CAD data into STL data.
  • STL Standard Triangulated Language / Standard Tessellation Language
  • the STL data according to the present embodiment is data that represents the object shape of the CAD model by discretizing the surface of the CAD model into a lattice network and arranging triangles surrounded by the discrete points.
  • FIG. 2 shows the shape of an aircraft body as a CAD model expressed by STL data
  • FIGS. 3 and 4 show partially enlarged portions (A and B in FIG. 2). As shown in FIG. 5, these data are data describing the unit normal vector of the triangle and the coordinates of the three vertices of the triangle for each triangle.
  • An example of the data format is shown in FIG.
  • the feature portion detection unit 12 generates an expansion model or contraction model of the object shape of the CAD model by moving each triangle in the normal direction of each triangle, and uniform charges are generated on the surface of the expansion model or contraction model.
  • the surface potential distribution of the expansion model or contraction model is obtained by solving the Laplace equation for the electrostatic field on the surface by the boundary element method, assuming that it is charged, and the object shape features are determined based on the obtained potential distribution. To detect.
  • the numerical analysis unit 13 calculates, for example, the resistance of the body surface. More specifically, using the feature portion detected by the feature portion detection unit 12, a calculation grid is generated while maintaining the feature of the object, and the computational fluid dynamics analysis is performed using the calculation grid. Thus, the pressure distribution on the airframe surface is obtained, and the resistance is calculated by integrating it over the entire airframe surface.
  • the data converter 11 converts CAD data into STL data, and prepares STL data (step 71).
  • the data conversion unit 11 is not necessary when STL data is prepared in advance.
  • the feature portion detection unit 12 creates an expansion model obtained by enlarging the CAD model (step 72). Specifically, the position of a new vertex is assumed to be x (vector) i + sn (vector) with respect to the vertex x (vector) i of each triangle constituting the object surface.
  • n (vector) is a normal vector of a triangle corresponding to the vertex
  • s represents an expansion amount.
  • the expansion amount needs to be switched depending on each CAD model, but is preferably about 5 times the minimum value of the length of all triangle sides. Note that the reduction amount described later is considered to be similar to this.
  • FIG. 8 is a diagram showing a state in which one of the triangles shown in FIGS. 2 to 4 is focused and the triangle is moved in the normal vector direction.
  • s> 0 and n (vector) is going outward from the surface of the aircraft
  • the triangle moves outward from the surface of the aircraft by x (vector) i + sn (vector).
  • FIG. 9 shows an expansion model focusing on the convex portions of the airframe
  • FIG. 10 shows an expansion model focusing on the concave portions of the airframe.
  • the convex part of the airframe is, for example, the end of the wing shown in FIG. 3, and the concave part of the airframe is, for example, the boundary between the fuselage and the wing shown in FIG.
  • the triangle moves outward from the surface of the aircraft (in the direction of the arrow in the figure)
  • the triangle T arranged without gaps on the surface of the aircraft A is moved to the triangle T by the movement. Since they are separated from each other, an expansion model E having a gap G is obtained.
  • the triangles T arranged without gaps on the surface of the airframe A become an expansion model E having an intersection I because the triangles T approach each other by this movement.
  • Electrostatic field x vector pointing to the surface
  • n normal direction of the surface
  • D analysis region
  • r distance between points i and j on the surface
  • equation (1) can be transformed as follows using the Green function of the Laplace equation.
  • Equation (3) is a basic equation of the boundary element method, which is discretized using the surface triangle as an element to obtain q.
  • equation (4) is transformed as follows: it can.
  • Equation (6) is a simultaneous linear equation related to the unknown vector q, and by solving this, q on each triangle can be obtained.
  • boundary element method described above, and the present invention is not limited to this. Of course, other boundary element methods may be used.
  • step 74 a portion having a large absolute value
  • FIG. 11 is a perspective view showing the appearance of a CAD model in which a characteristic part is detected.
  • FIG. 12 shows the result of obtaining the potential without expansion
  • FIG. 13 shows the result of obtaining the potential by inflating. . Comparing the result of FIG. 12 with the result of FIG. 13, the result of obtaining the potential without inflating the characteristic portion is hardly revealed (FIG. 12), whereas the result of obtaining the potential by inflating is as follows. It can be seen that the concavo-convex part is manifested (FIG. 13).
  • an expansion model obtained by enlarging the CAD model is created.
  • a contraction model obtained by reducing the CAD model is created, and it is assumed that a uniform charge is charged on the surface of the contraction model.
  • the potential distribution on the surface of the contraction model may be obtained by solving the Laplace equation for the electrostatic field on the surface by the boundary element method, and the feature portion may be detected.
  • FIG. 14 shows a state in which one of the triangles shown in FIGS. 2 to 4 is focused and the triangle is moved in the normal vector direction toward the contraction. For example, if s ⁇ 0 and n (vector) is going outward from the surface of the aircraft, the triangle moves inward from the surface of the aircraft by x (vector) i + sn (vector). . And the characteristic part which is an uneven
  • the triangle unit normal vector and the coordinate information of the three vertices of the triangle all use STL data as they are.
  • the triangle unit normal vector for example, the following procedure is used. It is also possible to calculate with
  • STL data representing the object shape of the CAD model is arranged by arranging triangles.
  • the present invention is based on the CAD model by arranging quadrangular or more polygons. Even data representing an object shape can be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Architecture (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Processing Or Creating Images (AREA)

Abstract

【課題】物体形状の特徴部分を適切に顕在化すること。 【解決手段】この技術は、CADモデルの表面を格子網に離散化し、離散点によって囲まれる面を並べることでCADモデルの物体形状を再現し、各面を各面の法線方向に移動させることで、CADモデルの物体形状の膨張モデル又は収縮モデルを生成し、膨張モデル又は収縮モデルの表面に一様な電荷が帯電しているものとみなし、境界要素法による表面上の静電場に対するラプラス方程式を解くことで膨張モデル又は収縮モデルの表面の電位分布を求め、求められた電位分布に基づき物体形状の特徴部分を検出する。

Description

処理装置、CADモデルの特徴部分検出方法及びプログラム
 本発明は、例えば航空機の機体の数値解析に必要な計算格子を得るための処理装置、CADモデルの特徴部分検出方法及びプログラムに関する。
 計算力学分野においては、計算領域を有限の離散点に分割する作業、いわゆる計算格子生成が重要な作業である。離散点が適切な位置に配置されていない場合、計算結果に非物理的な誤差が生じることがある。計算格子とは、すなわち物体周りにくまなく張り巡らされた網目であり、物体の形をきれいに覆う必要があり、きれいに覆うことができないと、不自然な「バリ」が出て計算精度が極端に悪化する。
 特に、物体形状の稜線や物体同士の交差部のような部分(これを「特徴部分」と呼ぶ)では、その特徴部分に離散点を配置しないと、形状の特徴を表した数値計算は実施できない。
 従来、特徴部分は人間の目により発見し、その部分を正確に再現できるように格子網を生成する作業が行われてきた。しかし、モデルが複雑になるにつれて人間の作業には時間的な限界を生じ、特徴部分の自動検出が望まれてきた。
 従来技術として、モデル表面の角度や曲率を図る手法がある。CADモデルは小さな三角形や四角形などの面を無数に並べることで物体の形状を再現しており、隣り合う面同士の角度や曲率を計算し、それらがある閾値よりも大きい場合、その部分を特徴部分として検出する方法である。
 より具体的には、例えば隣り合う三角形のなす角を、各三角形の単位法線ベクトルから計算する。つまり、
Figure JPOXMLDOC01-appb-I000001
として、θがある閾値θ_threshよりも大きい場合、特徴部分と判断する(非特許文献1参照)。
'Hexahedra Grid Generation Method for Flow Computation' a Paulus R. Lahur of Japan Aerospace Exploration Agency, 22nd Applied Aerodynamics Conference and Exhibit, 16-19 August 2004, Providence, Rhode Island
 上記の手法は簡便だが、単純な例でも検出されないようなパターンが存在する。例えば、θ_thresh=60degと設定したときに、2平面が30deg程度と緩やかに交差するような特徴部分を検出することはできない。つまり、隣り合った三角形の関係だけでは、特徴部分を適切に検出することはできない。
 以上のような事情に鑑み、本発明の目的は、物体形状の特徴部分を適切に顕在化することができる処理装置、CADモデルの特徴部分検出方法及びプログラムを提供することにある。
 上記目的を達成するため、本発明の一形態に係る処理装置は、CADモデルの表面を格子網に離散化し、離散点によって囲まれる面を並べることで前記CADモデルの物体形状を表現したデータから、各面を各面の法線方向に移動させることで、前記CADモデルの物体形状の膨張モデル又は収縮モデルを生成し、前記膨張モデル又は収縮モデルの表面に一様な電荷が帯電しているものとみなし、境界要素法による表面上の静電場に対するラプラス方程式を解くことで前記膨張モデル又は収縮モデルの表面の電位分布を求め、前記求められた電位分布に基づき前記物体形状の特徴部分を検出する特徴部分検出部を具備する。
 本発明では、離散点によって囲まれる各面を各面の法線方向に移動させることで、膨張モデル又は収縮モデルを生成し、それをラプラス方程式で解くことで、物体形状の特徴部分を強調することが可能となるので、特徴部分を適切に顕在化することができる。
 ここで、前記CADモデルの表面を格子網に離散化し、離散点によって囲まれる面を並べることで前記CADモデルの物体形状を表現したデータは、STL(Standard Triangulated Language/Standard Tessellation Language)のデータであってもよい。
 本発明の一形態に係るCADモデルの特徴部分検出方法は、CADモデルの表面を格子網に離散化し、離散点によって囲まれる面を並べることで前記CADモデルの物体形状を再現し、各面を各面の法線方向に移動させることで、前記CADモデルの物体形状の膨張モデル又は収縮モデルを生成し、前記膨張モデル又は収縮モデルの表面に一様な電荷が帯電しているものとみなし、境界要素法による表面上の静電場に対するラプラス方程式を解くことで前記膨張モデル又は収縮モデルの表面の電位分布を求め、前記求められた電位分布に基づき前記物体形状の特徴部分を検出する。
 本発明の一形態に係るプログラムは、CADモデルの表面を格子網に離散化し、離散点によって囲まれる面を並べることで前記CADモデルの物体形状を表現したデータから、各面を各面の法線方向に移動させることで、前記CADモデルの物体形状の膨張モデル又は収縮モデルを生成するステップと、前記膨張モデル又は収縮モデルの表面に一様な電荷が帯電しているものとみなし、境界要素法による表面上の静電場に対するラプラス方程式を解くことで前記膨張モデル又は収縮モデルの表面の電位分布を求めるステップと、前記求められた電位分布に基づき前記物体形状の特徴部分を検出するステップをコンピュータに実行させる。
 本発明により、物体形状の特徴部分を適切に顕在化することができる。これにより、従来手作業で実施することが必要であった特徴部分の取り扱いが自動化され、その結果、CADモデルを用意するだけで格子網を生成し、数値解析を実施するところまでを自動的に進めることできる。このことで、数値解析全体にかかるターンアラウンドは減少し、最適化等の手間のかかる作業を大幅に削減することが可能になる。
本発明の一実施形態に係る処理装置の構成を示すブロック図である。 STLのデータによって表現されたCADモデルとしての航空機の機体を示す斜視図である。 図2の符号Aの部分の拡大図である。 図2の符号Bの部分の拡大図である。 STLのデータによって表現される三角形を示す図である。 STLのデータの一例を示す図である。 図1に示した処理装置における処理の流れを示すフローチャートである。 図2~図4に示した三角形のうち一つの三角形に着目し、その三角形を法線ベクトル方向に移動する状態を示す図である。 機体の凸部に着目した膨張モデルを示す図である。 機体の凹部に着目した膨張モデルを示す図である。 特徴部分を検出したCADモデルの外観を示す斜視図である。 膨張させずに電位を求めた結果を示す図である。 膨張させて電位を求めた結果を示す図である。 図2~図4に示した三角形のうち一つの三角形に着目し、収縮に向かうようにその三角形を法線ベクトル方向に移動する状態を示す図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図1は、本発明の一実施形態に係る処理装置を示す図である。
 図1に示すように、処理装置10は、データ変換部11と、特徴部分検出部12と、数値解析部13とを有する。この処理装置10は、典型的には、コンピュータシステムに各部を構成するプログラムをインストールすることによって構成される。
 データ変換部11は、CADデータからSTLのデータに変換する。
 ここで、STL(Standard Triangulated Language/Standard Tessellation Language)とは、3次元の任意の表面形状を、無数の三角形で表現するCADデータの形式の一つである。本実施形態に係るSTLのデータは、CADモデルの表面を格子網に離散化し、離散点によって囲まれる三角形を並べることでCADモデルの物体形状を表現したデータである。図2に、STLのデータによって表現されたCADモデルとしての航空機の機体の形状を示し、図3及び図4にその一部拡大部分(図2のAとB)を示す。
 これらのデータは、図5に示すように、三角形ごとに、その三角形の単位法線ベクトル及びその三角形の3頂点の座標を記載したデータとなる。データフォーマットの一例を図6に示す。
 特徴部分検出部12は、各三角形を各三角形の法線方向に移動させることで、CADモデルの物体形状の膨張モデル又は収縮モデルを生成し、膨張モデル又は収縮モデルの表面に一様な電荷が帯電しているものとみなし、境界要素法による表面上の静電場に対するラプラス方程式を解くことで膨張モデル又は収縮モデルの表面の電位分布を求め、求められた電位分布に基づき物体形状の特徴部分を検出する。
 数値解析部13は、例えば機体表面の抵抗を算出する。より具体的には、上記の特徴部分検出部12により検出された特徴部分を使って、物体の特徴を保ったまま計算格子を生成し、その計算格子を用いて数値流体力学解析を実施することで、機体表面の圧力分布が得られ、それを機体表面全体で積分することで抵抗を算出する。
 次に、処理装置10における処理の具体例を図7に示すフローチャートに沿って説明する。
 データ変換部11において、CADデータからSTLのデータに変換し、STLのデータを用意する(ステップ71)。なお、本発明に係る処理装置では、STLのデータが予め用意される場合には、データ変換部11は不要である。
 次に、特徴部分検出部12において、CADモデルを拡大した膨張モデルを作成する(ステップ72)。
 具体的には、物体表面を構成する各三角形の頂点x(ベクトル)に対して、新しい頂点の位置をx(ベクトル)+sn(ベクトル)とする。
 ここで、n(ベクトル)は頂点に対応する三角形の法線ベクトルであり、sは膨張量を表す。膨張量は、各CADモデルによって切り替える必要があるが、概ね全三角形の辺の長さの最小値に対して5倍程度が望ましい。なお、後述の縮小量もこれと同程度と考えられる。
 図8は図2~図4に示した三角形のうち一つの三角形に着目し、その三角形を法線ベクトル方向に移動する状態を示す図である。
 ここでは、s>0で、n(ベクトル)が機体の表面から外方向に向かっているとすると、x(ベクトル)+sn(ベクトル)によって、三角形は機体の表面から外方向に移動することになる。
 ここで、図9に機体の凸部に着目した膨張モデルを示し、図10に機体の凹部に着目した膨張モデルを示す。機体の凸部とは例えば図3に示した翼の端部などであり、機体の凹部とは例えば図4に示した機体の胴体と翼の境目などである。
 三角形が機体の表面から外方向に移動すると(図中矢印の方向)、機体の凸部においては、図9に示すように、機体A表面で隙間なく並んでいた三角形Tはこの移動によって三角形T同士が離れるため隙間Gをもった膨張モデルEとなる。機体の凹部においては、図10に示すように、機体A表面で隙間なく並んでいた三角形Tはこの移動によって三角形T同士が近づきあうため交差Iをもった膨張モデルEとなる。
 以上の膨張モデルEを細かく見ると、凹凸が大きいほど交差I及び隙間Gが大きくなることがわかる。
 次に、膨張モデルEの表面に一様な電荷が帯電しているものとみなし、境界要素法による表面上の静電場に対するラプラス方程式を解くことで膨張モデルEの表面の電位分布を求める(ステップ73)。
 ここで、以下の説明において、記号は以下の意味である。
 φ:静電場
Figure JPOXMLDOC01-appb-I000002
 x(ベクトル):表面を指す位置ベクトル
 n:表面の法線方向
 D:解析領域
 ∂D:解析領域境界(CADモデル表面)
 r:表面上の点iとjの距離
 静電場と電位の関係は、ラプラス方程式によって支配されることが知られている。
Figure JPOXMLDOC01-appb-I000003

 表面上に一様に静電場φ(ベクトル)が分布しているものとする。
Figure JPOXMLDOC01-appb-I000004

 (2)式を境界条件として用い、(1)式はラプラス方程式のグリーン関数を用いて次のように変形できる。
Figure JPOXMLDOC01-appb-I000005

 (3)式は境界要素法の基本式であり、これを表面三角形を要素として離散化し、qを求める。
Figure JPOXMLDOC01-appb-I000006

 全ての三角形においてφは一定値であり、また各三角形においてqが一定値をとると仮定すると(これは境界要素を1次要素とすることに相当)、(4)式は次のように変形できる。
Figure JPOXMLDOC01-appb-I000007

 (5)式を行列形式に置き換えると次式が得られる。
Figure JPOXMLDOC01-appb-I000008


 ここで、
Figure JPOXMLDOC01-appb-I000009

 (6)式は未知数ベクトルqに関する連立1次方程式であり、これを解けば各三角形上のqが得られる。
 なお、以上に示した境界要素法の一例にすぎず、本発明はこれに限定されず、これ以外の境界要素法を用いても勿論かまわない。
 次に、境界要素法により求めた表面電位q(電位分布)に対して、その絶対値|q|が大きい部分を抽出する(ステップ74)。つまり、これにより電位分布に基づき物体形状の特徴部分を検出する。
 絶対値|q|を考えるのは、特徴部分が凹の部分で絶対値の大きな負の値を、凸の部分で絶対値の大きな正の値をとるためであり、凹凸の両者を同時に顕在化したいため、q単体ではなく|q|を用いる。
 ここで、図11は特徴部分を検出したCADモデルの外観を示す斜視図であり、図12に膨張させずに電位を求めた結果を示し、図13に膨張させて電位を求めた結果を示す。
 図12の結果と図13の結果を比較すると、膨張させずに電位を求めた結果は特徴部分が殆ど顕在化されていない(図12)のに対して、膨張させて電位を求めた結果は凹凸部を顕在化できている(図13)ことがわかる。
 本発明は上記の実施形態に限定されず、その発明の技術的思想の範囲内で様々な変形や応用が可能である。その変形や応用による実施も本発明の技術的範囲に属する。
 例えば、上記の実施形態では、CADモデルを拡大した膨張モデルを作成していたが、CADモデルを縮小した収縮モデルを作成し、収縮モデルの表面に一様な電荷が帯電しているものとみなし、境界要素法による表面上の静電場に対するラプラス方程式を解くことで収縮モデルの表面の電位分布を求め、特徴部分の検出を行ってもよい。
 図14に図2~図4に示した三角形のうち一つの三角形に着目し、収縮に向かうようにその三角形を法線ベクトル方向に移動する状態を示す。例えば、s<0で、n(ベクトル)が機体の表面から外方向に向かっているとすると、x(ベクトル)+sn(ベクトル)によって、三角形は機体の表面から内方向に移動することになる。
 そして、収縮させて電位を求めることで、膨張の場合と同様に、凹凸部である特徴部分を顕在化できる。
 さらに、上記の実施形態では、三角形の単位法線ベクトル及びその三角形の3頂点の座標の情報は、すべてSTLのデータをそのまま利用していたが、三角形の単位法線ベクトルについては例えば次の手順で計算することも可能である。
Figure JPOXMLDOC01-appb-I000010

 ここでは「×」ベクトル同士の外積を表し、r(ベクトル)とs(ベクトル)の外積がr(ベクトル)とs(ベクトル)の両方に垂直な方向になることを利用した計算法である。
 従って、本発明は、STLのデータに三角形の単位法線ベクトルが含まれていない場合であっても実施が可能である。
 さらにまた、上記の本実施形態では、三角形を並べることでCADモデルの物体形状を表現したSTLのデータを用いていたが、本発明は、四角形やそれ以上の多角形を並べることでCADモデルの物体形状を表現したデータであっても実施可能である。
10 処理装置
11 データ変換部
12 特徴部分検出部
13 数値解析部

Claims (4)

  1.  CADモデルの表面を格子網に離散化し、離散点によって囲まれる面を並べることで前記CADモデルの物体形状を表現したデータから、各面を各面の法線方向に移動させることで、前記CADモデルの物体形状の膨張モデル又は収縮モデルを生成し、
     前記膨張モデル又は収縮モデルの表面に一様な電荷が帯電しているものとみなし、境界要素法による表面上の静電場に対するラプラス方程式を解くことで前記膨張モデル又は収縮モデルの表面の電位分布を求め、
     前記求められた電位分布に基づき前記物体形状の特徴部分を検出する
     特徴部分検出部
     を具備する処理装置。
  2.  請求項1に記載の処理装置であって、
     前記CADモデルの表面を格子網に離散化し、離散点によって囲まれる面を並べることで前記CADモデルの物体形状を表現したデータは、STL(Standard Triangulated Language/Standard Tessellation Language)のデータである
     処理装置。
  3.  CADモデルの表面を格子網に離散化し、離散点によって囲まれる面を並べることで前記CADモデルの物体形状を再現し、
     各面を各面の法線方向に移動させることで、前記CADモデルの物体形状の膨張モデル又は収縮モデルを生成し、
     前記膨張モデル又は収縮モデルの表面に一様な電荷が帯電しているものとみなし、境界要素法による表面上の静電場に対するラプラス方程式を解くことで前記膨張モデル又は収縮モデルの表面の電位分布を求め、
     前記求められた電位分布に基づき前記物体形状の特徴部分を検出する
     CADモデルの特徴部分検出方法。
  4.  CADモデルの表面を格子網に離散化し、離散点によって囲まれる面を並べることで前記CADモデルの物体形状を表現したデータから、各面を各面の法線方向に移動させることで、前記CADモデルの物体形状の膨張モデル又は収縮モデルを生成するステップと、
     前記膨張モデル又は収縮モデルの表面に一様な電荷が帯電しているものとみなし、境界要素法による表面上の静電場に対するラプラス方程式を解くことで前記膨張モデル又は収縮モデルの表面の電位分布を求めるステップと、
     前記求められた電位分布に基づき前記物体形状の特徴部分を検出するステップと
     をコンピュータに実行させるプログラム。
PCT/JP2019/014428 2018-04-03 2019-04-01 処理装置、cadモデルの特徴部分検出方法及びプログラム WO2019194114A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,402 US20210141983A1 (en) 2018-04-03 2019-04-01 Processing apparatus, method of detecting a feature part of a cad model, and non-transitory computer readable medium storing a program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-071823 2018-04-03
JP2018071823A JP7085748B2 (ja) 2018-04-03 2018-04-03 処理装置、cadモデルの特徴部分検出方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2019194114A1 true WO2019194114A1 (ja) 2019-10-10

Family

ID=68100448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014428 WO2019194114A1 (ja) 2018-04-03 2019-04-01 処理装置、cadモデルの特徴部分検出方法及びプログラム

Country Status (3)

Country Link
US (1) US20210141983A1 (ja)
JP (1) JP7085748B2 (ja)
WO (1) WO2019194114A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111959722B (zh) 2020-08-21 2022-05-17 广东海洋大学 一种基于船舶stl三维模型的rov船底自主巡检方法
US12079929B2 (en) 2021-09-12 2024-09-03 NexTech AR Solutions Inc. Three-dimensional (3D) model generation from two-dimensional (2D) images
CN114741750A (zh) * 2022-03-21 2022-07-12 清华大学 模型简化方法、装置、电子设备及存储设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011612A (ja) * 1996-06-25 1998-01-16 Hitachi Ltd ズーミング解析装置
JPH113439A (ja) * 1997-06-12 1999-01-06 Nissan Motor Co Ltd プレス成形解析用モデル作成方法
JP2004265050A (ja) * 2003-02-28 2004-09-24 Calsonic Kansei Corp 部品モデル間の隙間計測方法及び隙間解析モデル作成方法
JP2008107960A (ja) * 2006-10-24 2008-05-08 Hitachi Ltd 解析用メッシュ生成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492374B2 (en) * 2004-06-30 2009-02-17 Iowa State University Research Foundation, Inc. Computer aided design file processing
US20090187388A1 (en) * 2006-02-28 2009-07-23 National Research Council Of Canada Method and system for locating landmarks on 3d models
CN104067308B (zh) * 2012-01-25 2018-07-27 英特尔公司 图像中的对象选择
CN104376135A (zh) * 2013-08-14 2015-02-25 复旦大学 一种结合边界积分方程方法和随机法的平面边界面电荷密度提取方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011612A (ja) * 1996-06-25 1998-01-16 Hitachi Ltd ズーミング解析装置
JPH113439A (ja) * 1997-06-12 1999-01-06 Nissan Motor Co Ltd プレス成形解析用モデル作成方法
JP2004265050A (ja) * 2003-02-28 2004-09-24 Calsonic Kansei Corp 部品モデル間の隙間計測方法及び隙間解析モデル作成方法
JP2008107960A (ja) * 2006-10-24 2008-05-08 Hitachi Ltd 解析用メッシュ生成装置

Also Published As

Publication number Publication date
JP2019185186A (ja) 2019-10-24
JP7085748B2 (ja) 2022-06-17
US20210141983A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
Zhang et al. CAD-based design and pre-processing tools for additive manufacturing
Suzuki et al. Subdivision surface fitting to a range of points
WO2019194114A1 (ja) 処理装置、cadモデルの特徴部分検出方法及びプログラム
Gargallo‐Peiró et al. Optimization of a regularized distortion measure to generate curved high‐order unstructured tetrahedral meshes
Ito et al. Surface triangulation for polygonal models based on CAD data
JP5436416B2 (ja) 近似処理方法、および近似処理装置
Borrmann et al. Principles of geometric modeling
US20150127301A1 (en) Updating A CAD Model To Reflect Global Or Local Shape Changes
CN110689620A (zh) 一种多层次优化的网格曲面离散样条曲线设计方法
CN116432329A (zh) 利于制造和结构性能的具有特征厚度控制的计算机辅助生成设计
Patrikalakis et al. Localization of rational B-spline surfaces
Wang et al. Feature-based solid model reconstruction
CN106649992B (zh) 舰船与尾迹的网格模型的融合与优化方法
Onishi et al. Use of the immersed boundary method within the building cube method and its application to real vehicle cad data
JPH07254075A (ja) 3次元的な物体の変形方法及びモデリングシステム
US20200065428A1 (en) System and method for analyzing and testing multi-degree of freedom objects
JP4487923B2 (ja) 設計データ生成装置及び設計データ生成プログラム
Song et al. Fitting and manipulating freeform shapes using templates
Schmitt et al. On curvature approximation in 2D and 3D parameter–free shape optimization
Péron et al. A mixed overset grid/immersed boundary approach for CFD simulations of complex geometries
Rom et al. Volume mesh generation for numerical flow simulations using Catmull-Clark and surface approximation methods
KR101739224B1 (ko) 비정렬 격자계로 채워진 공간 내의 임의의 한 점에서 특정하게 정의된 면까지의 최단 거리 계산 방법
US7890304B2 (en) Method and system for designing smooth surfaces for vehicle parts
Smith et al. Automatic grid generation and flow solution for complex geometries
US20240126933A1 (en) Computer aided shape synthesis with connectivity filtering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781379

Country of ref document: EP

Kind code of ref document: A1