WO2019193776A1 - Apparatus for producing hydrogen water - Google Patents

Apparatus for producing hydrogen water Download PDF

Info

Publication number
WO2019193776A1
WO2019193776A1 PCT/JP2018/033649 JP2018033649W WO2019193776A1 WO 2019193776 A1 WO2019193776 A1 WO 2019193776A1 JP 2018033649 W JP2018033649 W JP 2018033649W WO 2019193776 A1 WO2019193776 A1 WO 2019193776A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pressure
cathode
chamber
electrolysis
Prior art date
Application number
PCT/JP2018/033649
Other languages
French (fr)
Japanese (ja)
Inventor
総 橋本
西 善一
Original Assignee
株式会社ドクターズ・マン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ドクターズ・マン filed Critical 株式会社ドクターズ・マン
Publication of WO2019193776A1 publication Critical patent/WO2019193776A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/14Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an apparatus for producing hydrogen water that generates hydrogen water for beverages.
  • a method for producing hydrogen water using hydrogen gas generated by electrolysis of water a method in which hydrogen gas generated by electrolysis in advance is dissolved in water under pressure, or hydrogen gas generated by electrolysis in an electrolysis apparatus is used. There are methods for directly dissolving in water. In the former method in which hydrogen gas generated by electrolysis in advance is dissolved in water under pressure, hydrogen gas is produced by utilizing the reaction in solid polymer electrolysis shown in FIG. In this method, hydrogen gas generated by electrolyzing RO water or pure water in a solid polymer electrolytic cell is dissolved in water outside the electrolyzer.
  • the electrolyte membrane is sandwiched between two electrode layers having an electrocatalyst such as platinum, and water is pressurized and adhered, and the anode side is filled with RO water or pure water to generate hydrogen gas from the cathode side.
  • the conductivity of the water to be treated is desirably 10 mS / m (100 ⁇ S / cm) or less in the structure of the electrolytic cell as shown in FIG.
  • the raw water is desalted with an ion exchange resin or a reverse osmosis membrane, and the water to be treated of about 1 mS / m or less is supplied to the cathode chamber.
  • general tap water has a conductivity of about 15 mS / m, pretreatment is necessary.
  • the present invention solves such problems of the prior art, and the purpose of the present invention is to reduce the amount of general Japanese tap water directly to the cathode chamber as treated water as it is.
  • An object of the present invention is to provide an apparatus for producing hydrogen water that can generate hydrogen water in a time and can prevent a phenomenon in which calcium scale and magnesium scale are generated and adhered between the gaps between the solid polymer membrane and the cathode catalyst.
  • Another object of the present invention is that the production cost is low, the hydrogen gas generation amount does not decrease even when used for a long time, stable hydrogen water is obtained, and an efficient hydrogen gas generation function is maintained for a long time.
  • An object of the present invention is to provide an apparatus for producing hydrogen water that can be used.
  • an apparatus for producing hydrogen water includes an anode layer having a catalyst necessary for electrolysis and capable of passing water and gas, and a cathode having a catalyst necessary for electrolysis and capable of passing water and gas.
  • electrolysis is performed by controlling the water or gas single pressure in the anode chamber or the mixed pressure of water and gas below the pressure in the cathode chamber.
  • the hydrogen gas generated in the cathode layer is dissolved in the drinking water to generate hydrogen water.
  • the water and gas in the cathode chamber are The mixing pressure is controlled to be less than the water or gas single pressure of the anode chamber or the water and gas mixing pressure.
  • the present invention in the first state (during water intake, during electrolysis) in which drinking water of a predetermined pressure or higher is supplied to the cathode chamber where the solid polymer membrane that is the diaphragm contacts via the cathode layer, Water is supplied into the solid polymer membrane and the gap between the solid polymer membrane and the cathode layer by drinking water (pressurized water) having a higher pressure than the anode chamber, and this water is electrolyzed to cause the surface of the cathode layer to be electrolyzed. The generated hydrogen gas is dissolved in the drinking water to generate hydrogen water.
  • the dissolved solid matter such as calcium and magnesium accumulated in the gap between the solid polymer film and the cathode layer is concentrated, but the drinking water is not supplied to the cathode layer side.
  • the solid polymer film is pressed against the cathode layer by making the pressure in the anode chamber higher than the pressure in the cathode chamber (when water intake is stopped and electrolysis is stopped), and the solid polymer film accumulates in the gap between the solid polymer film and the cathode layer.
  • water in which dissolved solids such as calcium and magnesium are concentrated results in being pushed out to the cathode chamber.
  • the present invention utilizes solid polymer electrolysis, pressurizes and supplies drinking water having conductivity due to inorganic substance dissolution to the cathode chamber, and dissolves hydrogen gas generated on the cathode surface in the drinking water. Is generated.
  • the reaction of H 2 O ⁇ 1 / 2O 2 ⁇ + 2H + + 2e ⁇ occurs on the anode side, and the reaction of 2H + + 2e ⁇ ⁇ H 2 ⁇ occurs on the cathode side. Since such solid polymer electrolysis is used, it does not become alkaline with a pH of 9 or more unlike alkaline water electrolysis while directly electrolyzing drinking water, and mixing of hypochlorite ions is limited.
  • Hydrogen water can be produced. Furthermore, since drinking water is used, there is no need for a device to make RO water or pure water from raw water. In addition, this drinking water contains inorganic solids and has electrical conductivity. Since there is little heat generation at the time of decomposition and drinking water is supplied from the outside, a cooling device for the electrolytic cell becomes unnecessary, and the manufacturing cost of the device can be reduced.
  • the single pressure of water or gas in the anode chamber or the mixed pressure of water and gas is a pressure in the range of 0.03 MPa to 0.1 MPa.
  • the pressure is expressed on the basis of atmospheric pressure (gauge pressure) where the atmospheric pressure is 0 MPa.
  • the pressure of the drinking water supplied to the cathode chamber is a pressure in the range of 0.1 MPa to 0.3 MPa.
  • the pressure in the cathode chamber is atmospheric pressure.
  • a relief valve is connected between the anode chamber and the atmosphere.
  • a pressure gauge is connected to the anode chamber and a solenoid valve is connected between the anode chamber and the atmosphere so that the solenoid valve is controlled based on the measured value of the pressure gauge.
  • the water content of the solid polymer membrane is a cation exchange membrane having a water content of 27.6% or more (38.2% or more with respect to the dry solid polymer film) as a water content with respect to the saturated water film. If the water content of the solid polymer membrane is within this range, the solid matter remaining in the solid polymer membrane is inhibited to some extent from dilution with water. In other words, the solid concentration in the solid polymer membrane is maintained at the same level as the solid concentration of the drinking water in the cathode chamber, so the oxidation reaction / reduction reaction of the solid matter in the solid polymer membrane performed in the solid polymer membrane.
  • the catalyst for the anode layer and the cathode layer is also preferably a platinum catalyst.
  • electrolysis is promoted and the generation of hydrogen gas is made more efficient.
  • reaction of NaClO + 2H + + 2e ⁇ ⁇ NaCl + H 2 O occurs in the cathode layer, Chlorate ions can be neutralized.
  • the anode layer and / or the cathode layer is preferably a titanium platinum electrode formed of a lath net of titanium or punch metal.
  • the solid polymer film is moved in a piston motion between the cathode layer and the anode layer. Since the scales such as calcium and magnesium are removed by replacing the water present in the gap between them, the amount of solids remaining in the solid polymer membrane does not increase, and the solids concentration is the drinking water in the cathode chamber It is maintained at the same level as the solid concentration. As a result, the oxidation reaction / reduction reaction of the solid matter in the solid polymer film in the solid polymer film does not react drastically in the high concentration state, and the redox electron cancellation due to the 2e - ion component does not increase.
  • FIG. 3A is a plan view schematically showing a configuration of an anode side casing of an electrolytic cell in the hydrogen water production apparatus of FIG. 2, and FIG. FIG.
  • FIG. 3A is a plan view schematically showing a configuration of a cathode side casing of an electrolytic cell in the hydrogen water production apparatus of FIG. 2, and FIG. FIG. 3 is a block diagram schematically showing an electrical configuration of the hydrogen water production apparatus of FIG. 2.
  • flowchart shows roughly the flow of control of the control apparatus in the manufacturing apparatus of the hydrogenous water of FIG.
  • FIG. 1 It is a flowchart which shows roughly the flow of control of the control apparatus in the manufacturing apparatus of the hydrogenous water of FIG. It is a block diagram which shows roughly the system configuration
  • FIG. It is a characteristic view of the electrolysis current value and the electrolysis voltage value with respect to the water intake amount in Comparative Example 1. It is a figure which shows the result of having observed the scale adhering to the surface by the side of the diaphragm of a cathode layer in the comparative examples 1 and 2 and Examples 1 and 2.
  • FIG. 2 and 3 schematically show the overall configuration of the electrolytic cell in the hydrogen water production apparatus as one embodiment of the present invention
  • FIG. 4 shows the electrolytic cell anode in the hydrogen water production apparatus of the present embodiment
  • the structure of the side housing is schematically shown in plan and cross section
  • FIG. 5 schematically shows the structure of the cathode side housing of the electrolytic cell in the hydrogen water production apparatus of this embodiment in plan and cross section. .
  • the difference in configuration between the anode-side casing in FIG. 4 and the cathode-side casing in FIG. 5 in this embodiment is the difference in the presence or absence of the O-ring groove
  • FIG. 4 shows the configuration of the cathode-side casing
  • the anode side housing may be configured.
  • the configuration of the cathode side casing and the configuration of the anode side casing are not limited by the presence or absence of the O-ring groove.
  • reference numeral 10 denotes a solid polymer electrolytic cell.
  • the electrolytic cell 10 is in a state in which the contact surfaces of the anode-side casing 11 and the cathode-side casing 12 are in contact with each other.
  • an integrated housing is formed inside the casing.
  • an anode layer 13 Inside the casing are an anode layer 13, a cathode layer 14, a diaphragm 15 which is a solid polymer film sandwiched between the anode layer 13 and the cathode layer 14 in pressure contact with each other, and a packing for sealing the casing 16 is housed.
  • a lead wire connection terminal 17 is connected to the anode layer 13 and is electrically connected to the anode of the power supply device via a lead wire (not shown), and a lead wire connection terminal 18 is connected to the cathode layer 14. It is electrically connected to the cathode of the power supply device via a lead wire (not shown).
  • the outer dimension of the casing of the electrolytic cell 10 is merely an example, but is about 146 mm (vertical) ⁇ about 96 mm (horizontal) ⁇ about 60 mm (height).
  • a transparent acrylic resin is molded.
  • the casing may be manufactured using opaque resin of various colors, or may be manufactured using other types of resins or other materials.
  • the anode-side casing 11 has two gas (gas) outlets 11b penetrating through the casing 11, and two gas outlets 11b are connected to the inside of the casing.
  • a gas passage (anode chamber) 11c is formed.
  • the gas passage (anode chamber) 11c is configured to meander by ribs 11d formed in a comb shape so as to alternately mesh with each other.
  • a circumferential groove 11e that accommodates the packing 16 is further provided inside the housing.
  • the cathode-side casing 12 has a water inlet 12a and a water outlet 12b penetrating the casing 12, and the water inlet 12a and the water outlet 12b are connected to the inside of the casing.
  • a water channel (cathode chamber) 12c is formed.
  • the water channel (cathode chamber) 12c is configured to meander by ribs 12d formed in a comb shape so as to alternately mesh with each other. As a result, the hydrogen gas is quickly and efficiently dissolved in the pressurized water flowing meandering.
  • the anode layer 13 is composed of a titanium platinum electrode formed of a titanium lath net or punch metal, or a catalyst-carrying carbon electrode layer in which platinum-based nanoparticles are supported on conductive carbon so that gas can pass through. Yes.
  • the anode layer 13 needs to be provided with a large number of through holes for opening the gas to the anode chamber 11 c and further to the atmosphere, and one surface needs to be in contact with the diaphragm 15. Therefore, carbon materials such as carbon cloth, carbon non-woven fabric, or carbon porous film, or a lath net or punching metal of titanium is used as the electrode material. Platinum or iridium can be used as the catalyst, but platinum is used in this embodiment. By using a platinum catalyst for the anode layer 13, a reaction of NaCl + H 2 O ⁇ NaClO + 2H + + 2e ⁇ also occurs. There are methods such as coating, sintering, or plating for bonding the catalyst and the electrode material, and any method may be adopted.
  • the dimension of the anode layer 13 is merely an example, but is about 100 mm (vertical) ⁇ about 50 mm (horizontal).
  • the cathode layer 14 is composed of a titanium platinum electrode formed of a lath net of titanium or punch metal so that gas and water can pass, or a catalyst-supported carbon electrode layer in which platinum-based nanoparticles are supported on conductive carbon. Has been.
  • the cathode layer 14 needs to be provided with a large number of through holes for opening gas and water to the cathode chamber 12 c, and one surface needs to be in contact with the diaphragm 15. Therefore, carbon materials such as carbon cloth, carbon non-woven fabric, and carbon porous film, titanium lath net, and punching metal are used as electrode materials. Platinum or iridium can be used as the catalyst, but platinum is used in this embodiment.
  • a platinum catalyst for the cathode layer 14 a reaction of NaClO + 2H + + + 2e ⁇ ⁇ NaCl + H 2 O can be caused to neutralize hypochlorite ions.
  • the dimensions of the cathode layer 14 are merely an example, but are about 100 mm (vertical) ⁇ about 50 mm (horizontal).
  • a styrene polymerization type cation exchange membrane is used.
  • This cation exchange membrane contains 40 to 60 wt% of sulfonic acid sodium salt of a styrene / divinylbenzene polymer as a resin material having an exchange function, and 40 to 60 wt% of a polyolefin mixture as a reinforcing material.
  • the dimension of the diaphragm 15 is only an example, but is about 119 mm (length) ⁇ about 69 mm (width).
  • the diaphragm 15 has a water content capable of diluting water-soluble solids in the film by pressurized water in contact with the cathode surface on the cathode layer side.
  • the moisture content of the diaphragm 15 is 27.6% or more (38.2% or more with respect to the dry diaphragm) in terms of the moisture content with respect to the saturated water-containing diaphragm, as will be described in Examples described later.
  • the solid matter remaining in the diaphragm 15 is diluted with water, so that an increase in the amount is suppressed to some extent, and the solids concentration in water contained in the diaphragm 15 is equal to the solids concentration of drinking water in the cathode chamber 12c.
  • the oxidation / reduction reaction of the solid matter in the diaphragm performed in the diaphragm 15 does not react drastically in a high concentration state, and the redox electron cancellation due to 2e ⁇ ions does not increase, and the amount of hydrogen gas generated The decline is suppressed.
  • substances in the diaphragm 15 such as chloride ions that undergo oxidation / reduction are oxidized by the anode layer 13 and are reduced by the cathode layer 14 and released to the cathode chamber 12c when they flow out of the diaphragm 15 into the cathode chamber 12c. As a result, there is almost no contamination of drinking water with oxides.
  • the diaphragm 15 further has water permeability so that pressurized water does not flow out into the anode chamber 11c on the anode layer side. Specifically, when the pressure of pressurized water passed through the cathode chamber 12c is in the range of 0.1 to 0.3 MPa, the diaphragm 15 enters the diaphragm 15 in a state where water does not leak into the anode chamber 11c. It has water permeability to retain water. Thereby, even if pressurized drinking water is supplied to the cathode chamber 12c, the drinking water does not leak into the anode chamber 11c, and an efficient hydrogen gas generation function can be maintained for a long time.
  • the diaphragm 15 naturally has pressure resistance performance against pressures up to 0.3 MPa.
  • the pressure is expressed not based on the absolute pressure but based on the atmospheric pressure (gauge pressure) where the atmospheric pressure is 0 MPa.
  • anode layer 13 and the cathode layer 14 In order to pressure-bond the anode layer 13, the diaphragm 15, and the cathode layer 14, it is most preferable to use the anode layer 13 and the cathode layer 14 in which platinum is supported on a titanium steel plate.
  • the diaphragm 15 When the anode side casing 11 and the cathode side casing 12 are bolted, the diaphragm 15 is pressed and adhered to the anode layer 13 and the cathode layer 14 by pressing the anode layer 13 and the cathode layer 14. It will be.
  • an electrode pressing plate such as a lath net of titanium or a punching metal.
  • the diaphragm 15 of the electrolytic cell 10 can be damaged by installing a water level indicator that allows visual confirmation that water is not discharged from the anode chamber 11c in communication with the anode chamber 11c. This can be confirmed, and this is also a guideline for replacing the electrolytic cell 10.
  • the water level display unit may display the water level with a transparent cylindrical tube or a bar display with LEDs using an electric water level meter as long as the user can easily confirm water leakage.
  • FIG. 6 schematically shows the electrical configuration of the hydrogen water production apparatus of this embodiment.
  • the anode layer 13 of the electrolytic cell 10 is electrically connected to the positive output terminal of the constant current power supply 61 via the ammeter 60, and the cathode layer 14 is negatively connected to the negative electrode of the power supply 61. Is electrically connected to the output terminal.
  • electrolysis is performed in the electrolytic cell 10
  • hydrogen is generated in the cathode chamber 12c, dissolved in drinking water, and hydrogen water is obtained.
  • oxygen is vaporized in the anode chamber 11c and diffused into the atmosphere.
  • the current flowing from the power supply device 61 to the electrolytic cell 10 is measured by the ammeter 60, only the electrolytic current value used for hydrogen gas generation can be measured, and the amount of hydrogen gas generated can be grasped.
  • the hydrogen gas concentration can be easily known from the hydrogen gas generation amount and the flow rate of drinking water (a constant value can be set as a constant).
  • the reason why the amount of hydrogen gas generated can be grasped from the measured electrolysis current value is that, even if hydrogen generation of 4H + + 4e ⁇ ⁇ 2H 2 ⁇ is initially performed by charging, H 2 O ⁇ 1 / 2O 2 in the anode layer 13.
  • the display of the hydrogen gas concentration may be an analog display such as an analog ammeter, a digital numerical display, or a bar display with LEDs as long as the user can easily understand the concentration. There may be. If the user can easily recognize the hydrogen gas concentration, the user can search for drinking source water with a higher hydrogen gas concentration, select low salt and low solids water, and use safer drinking water It can be performed. Moreover, in order to further ensure the safety as drinking water, by limiting the electrolysis current value and the electrolysis voltage value in the power supply device 61, it becomes possible to electrolyze only water suitable for drinking. The numerical value to be limited varies depending on the specifications of the electrolytic cell 10.
  • FIG. 7 schematically shows the configuration of the electrolytic cell 10 in the hydrogen water production apparatus of the present embodiment.
  • the hydrogen water generating operation in the electrolytic cell 10 will be described in detail.
  • Pressurized drinking water is supplied into the cathode chamber 12c through the water inlet 12a.
  • the water pressure is set in a range of 0.1 to 0.3 MPa suitable for dissolving hydrogen gas generated by electrolysis.
  • the partial pressure ratio of oxygen is 10%, the partial pressure ratio of nitrogen is 40%, and a partial pressure frame is formed in which hydrogen dissolves, and a maximum of 50% can be dissolved. It becomes.
  • the diaphragm 15 has a pressure resistance that does not break even when subjected to the cell permeation water pressure by the pressurized drinking water as described above. Moreover, the diaphragm 15 has water permeability that prevents pressurized water from flowing out into the anode chamber on the anode layer 13 side. For this reason, even if pressurized drinking water is supplied to the cathode chamber 12c, the drinking water does not leak into the anode chamber 11c, water treatment on the anode chamber 11c side is unnecessary, and efficient hydrogen gas. The generating function can be maintained for a long time.
  • the diaphragm 15 is a thin film in which the salt content does not accumulate in the film as much as possible. That is, the diaphragm 15 has a water content that can dilute the water-soluble solid matter in the film by pressurized water that is in contact with the cathode surface on the cathode layer 14 side.
  • the oxidation / reduction reaction of the solid matter in the diaphragm performed in the diaphragm 15 does not react drastically in a high concentration state, and the redox electron cancellation due to 2e ⁇ ions does not increase, and the amount of hydrogen gas generated The decline is suppressed.
  • the drinking water supplied to the cathode chamber 12c is typically tap water, which contains metal ions such as calcium ions and magnesium ions. If tap water is decomposed into hydrogen gas or oxygen gas by electrolysis, the concentration of dissolved metal ions such as calcium ions and magnesium ions is concentrated and increased. Thus, between the diaphragm 15 and the cathode layer 14 and the vicinity thereof becomes alkaline, and when the dissolved concentration of calcium ions and magnesium ions is increased, calcium scale and magnesium scale are generated between the diaphragm 15 and the cathode layer 14 and in the vicinity thereof.
  • the diaphragm 15 is constantly pressed against the anode layer 13 and the diaphragm 15 is pressed into the depression of the electrode plate, the diaphragm 15 is cracked at the corners of the electrode plate, or the stress of the diaphragm 15 is increased. Deterioration will occur. As a result, water leakage into the anode chamber 11c increases, and there is a risk that impurities in the water leakage will be mixed due to oxidation into drinking water, so this water leakage cannot be taken.
  • the pressure in the anode chamber 11c (single pressure of water or gas in the anode chamber 11c or water and gas in the anode chamber 11c)
  • the pressure of the pressure is higher than a predetermined pressure (for example, 0.1 to 0.3 MPa) higher than the mixing pressure (for example, 0.03 to 0.1 MPa). Is weakened to prevent the diaphragm 15 from cracking at the corners of the electrode plate and the stress deterioration of the diaphragm 15 from occurring. Further, new pressurized water is supplied into the diaphragm 15 and the gap between the diaphragm 15 and the cathode layer 14.
  • the pressure in the anode chamber 11c (single pressure of water or gas in the anode chamber 11c or water and water)
  • the gas mixture pressure is higher than the pressure in the cathode chamber 12c (water and gas mixture pressure in the cathode chamber 12c)
  • the diaphragm 15 is pressed against the cathode layer 12c, and the diaphragm 15 and the cathode layer The concentrated water accumulated in the gap between 12c is pushed back into the cathode chamber 12c.
  • the water pressure of the drinking water supplied under pressure to the cathode chamber 12c is 0.2 to 0 suitable for dissolving the hydrogen gas generated by electrolysis.
  • the reason for setting in the range of 3 MPa is as described above.
  • the pressure in the anode chamber 11c is desirably in the range of 0.03 to 0.1 MPa. It is good to set by pressure.
  • the lower limit pressure of 0.03 MPa is such that when the pressurized water supplied to the cathode chamber 12c in the second state is stopped and the cathode chamber 12c is opened to the atmosphere, the pressure in the cathode chamber 12c becomes 0 MPa. It is desirable that the pressure in the chamber 11c be higher than that, that is, 0.01 MPa, and further, a pressure decrease due to the movement of the piston of the diaphragm 15 is expected to be 0.02 MPa.
  • the upper limit pressure of 0.1 MPa is adjusted by adjusting the gap between the cathode layer 14 and the anode layer 13 to a thickness of 93.7% of the thickness of the diaphragm 15, and applying 0.2 MPa of pressurized water to the cathode chamber 12c for electrolysis.
  • the pressure in the anode chamber 11c is greater than 0.1 MPa, the diaphragm 15 is pressed and thinned at a pressure of 0.3 MPa, the contact with the electrode layer is weakened, and a voltage (( In order to suppress unnecessary power consumption, 0.1 MPa or less is desirable.
  • FIG. 8 schematically shows the system configuration of the hydrogen water production apparatus of this embodiment.
  • 10 is the above-described electrolytic cell
  • 80 is a tank storing drinking water
  • 81 is a pump connected to the tank 80
  • 82 is connected to the pump 81 and the cathode chamber 12c of the electrolytic cell 10.
  • the pressure reducing valve 83 is a relief valve connected to the outlet of the anode chamber 11 c of the electrolytic cell
  • 84 is a flow rate adjusting valve connected to the cathode chamber 12 c of the electrolytic cell 10
  • 85 is connected to the flow rate adjusting valve 84.
  • the electromagnetic valve 86 is a control device for controlling the electrolysis of the electrolytic cell 10 and controlling the operation of the pump 81 and the electromagnetic valve 85, respectively.
  • Drinking water is stored in the tank 80, and pumped from the tank 80 and sent from the pressure reducing valve 82 to the cathode chamber 12c of the electrolytic cell 10 to generate hydrogen water.
  • the generated hydrogen water is the cathode chamber 12c of the electrolytic cell 10.
  • the flow rate adjusting valve 84 and the electromagnetic valve 85 are fed in this order to take out hydrogen water (withdrawal).
  • the control device 86 has a computer that can be programmed, and the operation of the pump 81, the electrolysis of the electrolytic cell 10, and the operation of the electromagnetic valve 85 are controlled by the computer so that hydrogen water is generated. It is configured.
  • the pressure reducing valve 82 is configured to adjust the pressure of drinking water pressurized by the pump 81 in the range of 0.2 to 0.3 MPa.
  • the relief valve 83 is configured such that the discharge pressure is in the range of 0.03 to 0.1 MPa. Thereby, the pressure in the anode chamber 11 c of the electrolytic cell 10 is maintained below the pressure adjusted by the relief valve 83.
  • the water intake speed is adjusted by the flow rate adjusting valve 84.
  • FIG. 9 schematically shows a control flow of the control device 86 in the hydrogen water production apparatus of the present embodiment.
  • step S1 when water is taken in, first, the solenoid valve 85 is opened (step S1). Next, the operation of the pump 81 is started, and power is supplied to the electrolytic cell 10 to start electrolysis (step S2). Note that electrolysis may be started by supplying power to the electrolytic cell 10 simultaneously with the start of operation of the pump 81 (step S2).
  • the pressure of drinking water during this electrolysis in other words, the pressure of drinking water in the cathode chamber 12c of the electrolytic cell 10 is adjusted to a pressure in the range of 0.2 to 0.3 MPa by the pressure reducing valve 82.
  • the pressure in the anode chamber 11 c of the electrolytic cell 10 is increased by storing oxygen gas generated by electrolysis, and adjusted to a pressure of 0.03 to 0.1 MPa by the relief valve 83.
  • the pressure in the anode chamber 11c of the electrolytic cell 10 is controlled to be less than the pressure in the cathode chamber 12c of the electrolytic cell 10.
  • step S3 it is continuously determined whether or not the intake of hydrogen water has been completed. If the intake of hydrogen water has been completed, the operation of the pump 81 is stopped (step S4). Next, the electrolysis of the electrolytic cell 10 is finished (step S5). Thereafter, the electromagnetic valve 85 is closed (step S6). The operation of the pump 81 is stopped first because the solenoid valve 85 needs to be closed after the pressure in the cathode chamber 12c of the electrolytic cell 10 is made equal to the atmospheric pressure (0 MPa).
  • the pressure in the cathode chamber 12c of the electrolytic cell 10 is controlled to atmospheric pressure (0 MPa), while the pressure in the anode chamber 11c of the electrolytic cell 10 is adjusted to a pressure of 0.03 to 0.1 MPa by the relief valve 83. Adjusted.
  • the pressure in the cathode chamber 12c of the electrolytic cell 10 is controlled to be lower than the pressure in the anode chamber 11c of the electrolytic cell 10 when the water intake is stopped (in the second state).
  • the high-pressure gas in the anode chamber 11c does not escape through the diaphragm 15 and into the cathode chamber 12c. This is because a water film is stretched between the diaphragm 15 and the anode layer 14 and this water film effectively prevents gas permeation.
  • FIG. 10 schematically shows a system configuration of an apparatus for producing hydrogen water as another embodiment of the present invention.
  • 10 is the above-described electrolytic cell
  • 80 is a tank storing drinking water
  • 81 is a pump connected to the tank 80
  • 82 is connected to the pump 81 and the cathode chamber 12c of the electrolytic cell 10.
  • the pressure reducing valve 84 is a flow rate adjusting valve connected to the cathode chamber 12c of the electrolytic cell 10
  • 85 is an electromagnetic valve connected to the flow rate adjusting valve 84
  • 87 is connected to the outlet of the anode chamber 11c of the electrolytic cell 10.
  • 88 is a flow rate adjusting valve connected to the electromagnetic valve 87
  • 89 is a pressure gauge connected to the outlet of the anode chamber 11c of the electrolytic cell 10
  • 90 is electrolysis of the electrolytic cell 10
  • a control device for controlling the operation of the electromagnetic valve 85, receiving the detection value of the pressure gauge 89, and controlling the operation of the electromagnetic valve 87.
  • Drinking water is stored in the tank 80, and pumped from the tank 80 and sent from the pressure reducing valve 82 to the cathode chamber 12c of the electrolytic cell 10 to generate hydrogen water.
  • the generated hydrogen water is the cathode chamber 12c of the electrolytic cell 10.
  • the flow rate adjusting valve 84 and the electromagnetic valve 85 are fed in this order to take out hydrogen water (withdrawal).
  • the control device 90 has a computer that can be controlled by a program.
  • the operation of the pump 81, the electrolysis of the electrolytic cell 10, the detected value of the pressure gauge 89, and the operation of the solenoid valves 85 and 87 are controlled by the computer.
  • the pressure reducing valve 82 is configured to adjust the pressure of drinking water pressurized by the pump 81 in the range of 0.2 to 0.3 MPa.
  • the electromagnetic valve 87 is controlled in accordance with the detection value of the pressure gauge 89, so that the pressure of the generated oxygen gas in the anode chamber 11c of the electrolytic cell 10 is in the range of 0.03 to 0.1 MPa. ing.
  • the water intake speed is adjusted by the flow rate adjusting valve 84.
  • FIG. 11 schematically shows a control flow of the control device 90 in the hydrogen water production apparatus of the present embodiment.
  • step S11 when water is taken in, first, the solenoid valve 85 is opened (step S11). Next, the operation of the pump 81 is started, and power is supplied to the electrolytic cell 10 to start electrolysis (step S12).
  • the electrolysis may be started by supplying power to the electrolytic cell 10 simultaneously with the start of operation of the pump 81 (step S12).
  • the pressure of drinking water during this electrolysis in other words, the pressure of drinking water in the cathode chamber 12c of the electrolytic cell 10 is adjusted to a pressure in the range of 0.2 to 0.3 MPa by the pressure reducing valve 82.
  • the pressure of the generated oxygen gas in the anode chamber 11 c of the electrolytic cell 10 is adjusted to a pressure of 0.03 to 0.1 MPa by the operation of the pressure gauge 89 and the electromagnetic valve and the control of the control device 90.
  • the pressure adjustment in the cathode chamber 12c receives the detection value of the pressure gauge 89 (step S13), and the received detection value, that is, the pressure value measured in the anode chamber 11c of the electrolytic cell 10 is a predetermined pressure (0.03 to 0.03). It is determined whether or not the pressure range is within 0.1 MPa (including the boundary) (step S14), and it is determined that the measured pressure value is within a predetermined pressure (pressure range of 0.03 to 0.1 MPa).
  • the electromagnetic valve 87 is closed or kept closed (step S16).
  • the electromagnetic valve 87 is opened (step S15), and step S13 is performed.
  • the detection value of the pressure gauge 89 is received, and the determination in step S14 is performed again.
  • the electromagnetic valve 87 is opened and closed, the pressure is reduced by opening and closing the valve so that the pressure is reduced by the action of the flow rate adjusting valve 88, and the pressure value of the anode chamber 11c is adjusted within a desired range.
  • the pressure in the anode chamber 11c of the electrolytic cell 10 is controlled to a pressure of 0.03 to 0.1 MPa.
  • the pressure in the anode chamber 11c of the electrolytic cell 10 is controlled to be less than the pressure in the cathode chamber 12c of the electrolytic cell 10 during electrolysis (in the first state).
  • step S17 it is continuously determined whether or not the intake of hydrogen water has ended. If the intake of hydrogen water has ended, the operation of the pump 81 is stopped (step S18). Next, the electrolysis of the electrolytic cell 10 is finished (step S19). Thereafter, the electromagnetic valve 85 is closed (step S20). The operation of the pump 81 is stopped first because the solenoid valve 85 needs to be closed after the pressure in the cathode chamber 12c of the electrolytic cell 10 is made equal to the atmospheric pressure (about 0.1 MPa). Thus, the pressure in the cathode chamber 12c of the electrolytic cell 10 is controlled to atmospheric pressure (0 MPa) by opening to the atmosphere.
  • the pressure in the cathode chamber 12c of the electrolytic cell 10 is controlled to be lower than the pressure in the anode chamber 11c of the electrolytic cell 10 when the water intake is stopped (in the second state).
  • a fixed flow rate orifice may be used.
  • the high-pressure gas in the anode chamber 11c does not escape through the diaphragm 15 and into the cathode chamber 12c. This is because a water film is stretched between the diaphragm 15 and the anode layer 14 and this water film effectively prevents gas permeation.
  • the cathode chamber 12c with which the diaphragm 15 contacts via the cathode layer 14, it is higher than the anode chamber 11c.
  • Water is supplied to the inside of the diaphragm 15 and the gap between the diaphragm 15 and the cathode layer 14 by drinking water (pressurized water) having pressure, and the hydrogen gas generated on the surface of the cathode layer 14 is electrolyzed. Hydrogen water is generated by dissolving in drinking water.
  • the diaphragm 15 is pressed against the cathode layer 14 by making the pressure in the anode chamber 11c higher than the pressure in the cathode chamber 12c, and dissolution of calcium, magnesium, etc.
  • the diaphragm 15 is moved between the cathode layer 14 and the anode layer 13 by piston movement, so that the gap between the cathode layer 14 and the diaphragm 15 is obtained.
  • the existing water is replaced to remove scales such as calcium and magnesium.
  • solid polymer electrolysis is utilized, and drinking water having conductivity due to inorganic dissolution is supplied to the cathode chamber 12c under pressure, and hydrogen gas generated on the cathode surface is supplied to the drinking water.
  • hydrogen water To produce hydrogen water.
  • solid polymer electrolysis the reaction of H 2 O ⁇ 1 / 2O 2 ⁇ + 2H + + 2e ⁇ occurs on the anode side, and the reaction of 2H + + 2e ⁇ ⁇ H 2 ⁇ occurs on the cathode side.
  • it is electrolysis, it does not become alkalinity of pH 9 or more unlike alkaline water electrolysis, and it is possible to produce hydrogen water in which mixing of hypochlorite ions is restricted.
  • Comparative Examples 1 and 2 were performed with a hydrogen water production apparatus having the system configuration shown in FIG.
  • the electrolytic cell 10, the tank 80 ', the pump 81, the pressure reducing valve 82, the relief valve 83, the flow rate adjusting valve 84, the electromagnetic valve 85, and the control device 86 are substantially the same as the elements in the embodiment shown in FIG. It has the same configuration.
  • the test water is stored in the tank 80 ′, no relief valve is connected to the anode chamber 11 c of the electrolytic cell 10, and the anode chamber 11 c is open to the atmosphere.
  • 91 is a power supply device for electrolysis
  • 92 is an electrolysis current selector switch from the power supply device 91
  • 93 is an ammeter that measures the electrolysis current
  • 94 is a flow rate counter that measures the test water flow rate. Each is shown. The electrolytic voltage was measured with a voltmeter attached to the power supply device 91.
  • test water is stored in the tank 80 ', and is sent from the tank 80' by the pump 81 through the pressure reducing valve 82 and the flow rate counter 94 to the cathode chamber 12c of the electrolytic cell 10 in this order to generate hydrogen water.
  • Water was fed from the cathode chamber 12c of the electrolytic cell 10 through the flow rate adjustment valve 84 and the electromagnetic valve 85, and hydrogen water was taken.
  • the control device 86 has a computer that can be programmed, and the operation of the pump 81, the electrolysis of the electrolytic cell 10, and the operation of the electromagnetic valve 85 are controlled by the computer so that hydrogen water is generated. Configured. The measured value of the flow rate counter 94 was taken into the control device. The pressure reducing valve 82 was configured to adjust the pressure of drinking water pressurized by the pump 81 in the range of 0.2 to 0.3 MPa. The pressure in the anode chamber 11c of the electrolytic cell 10 was maintained at atmospheric pressure.
  • Examples 1 and 2 were performed with a hydrogen water production apparatus having the system configuration shown in FIG.
  • the electrolytic cell 10, the tank 80 ', the pump 81, the pressure reducing valve 82, the flow rate adjusting valve 84, the electromagnetic valve 85, and the control device 86 have substantially the same configuration as each element in the embodiment shown in FIG. is doing.
  • test water is stored in the tank 80 '.
  • 91 is a power supply device for electrolysis
  • 92 is an electrolysis current selector switch from the power supply device 91
  • 93 is an ammeter that measures the electrolysis current
  • 94 is a flow rate counter that measures the test water flow rate.
  • test water is stored in the tank 80 ', and is sent from the tank 80' by the pump 81 through the pressure reducing valve 82 and the flow rate counter 94 to the cathode chamber 12c of the electrolytic cell 10 in this order to generate hydrogen water.
  • Water was fed from the cathode chamber 12c of the electrolytic cell 10 through the flow rate adjustment valve 84 and the electromagnetic valve 85, and hydrogen water was taken.
  • the control device 86 has a computer that can be programmed, and the operation of the pump 81, the electrolysis of the electrolytic cell 10, and the operation of the electromagnetic valve 85 are controlled by the computer so that hydrogen water is generated. Configured.
  • the measured value of the flow rate counter 94 was taken into the control device.
  • the pressure reducing valve 82 was configured to adjust the pressure of drinking water pressurized by the pump 81 in the range of 0.2 to 0.3 MPa.
  • the relief valve 83 was configured such that the discharge pressure was in the range of 0.03 to 0.1 MPa.
  • the anode chamber 11c of the electrolytic cell 10 is maintained at atmospheric pressure (0 MPa).
  • the anode chamber 11c of the electrolytic cell 10 is provided with a relief valve 83. The pressure was maintained in the range of 0.03 to 0.1 MPa.
  • Example 1 Similar to the case of Comparative Example 2, the electromagnetic valve 85 is closed after the pump 81 is stopped.
  • the system configuration is as shown in FIG. 13, and the control flow is the same as that shown in FIG.
  • the film thickness of the diaphragm 15 was 0.16 mm, and the gap between the cathode layer 14 and the anode layer 13 was set to 0.15 mm. Therefore, the diaphragm 15 is pressed by the cathode layer 14 and the anode layer 13 until the film thickness becomes 0.15 mm.
  • Table 4 shows the pressures in the cathode chamber 12c and the anode chamber 11c at the time of water intake and when the water intake was stopped.
  • Example 1 since the relief valve 83 is connected to the anode chamber 11c, the pressure of the relief valve 83 is low during water intake (electrolysis) and when water intake is stopped (electrolysis stop). It is maintained below a predetermined pressure to be set (in this case, 0.04 MPa).
  • the cathode chamber 12c is maintained at a pressure of pressurized water (in this case, 0.2 MPa) during water intake (electrolysis). Therefore, at the time of water intake, the pressure in the anode chamber 11c is maintained below the pressure in the cathode chamber 12c.
  • the solenoid valve 85 is closed behind the stop of the pump 81 (after one second), so the cathode chamber 12c is opened during that time, so that when the water intake is stopped (electrolysis stop) Maintained at atmospheric pressure (0 MPa). Accordingly, when the water intake is stopped (electrolysis is stopped), the pressure in the anode chamber 11c is higher than the pressure in the cathode chamber 12c. Therefore, when the diaphragm 15 is pressed against the cathode layer 14 and moved, a pressure decrease of 0.02 MPa occurs. As a result, as shown in Table 4, the pressure in the anode chamber 11c when the water intake is stopped is 0.02 MPa.
  • the diaphragm 15 Since the diaphragm 15 is pressed against the cathode layer 14 when the water intake is stopped (electrolytic stop), the moisture in the diaphragm 15 and the cathode layer 14 is pushed out into the cathode chamber 12c.
  • the relationship between the pressure in the anode chamber 11c, the electrolysis current value, and the electrolysis voltage value during water intake (electrolysis) was examined. That is, as described above, the thickness of the diaphragm 15 is set to 0.16 mm, the gap between the cathode layer 14 and the anode layer 13 is set to 0.15 mm, the pressure in the cathode chamber 12c is set to a constant pressure of 0.2 MPa, and the anode chamber 11c. The electrolysis current value and electrolysis voltage value when the pressure was changed were examined. The results are shown in Table 5.
  • the diaphragm 15 is pressed from both sides of the cathode chamber 12c and the anode chamber 11c, and the film thickness becomes 0.14 mm or less.
  • the pressure in the cathode chamber 12c is higher than the pressure in the anode chamber 12c, the diaphragm 15 and the cathode layer 14 are not in close contact with each other and are slightly separated from each other. For this reason, the electrolytic voltage value for maintaining the H + ion movement and obtaining the same electrolytic current value becomes high. From Table 5, when the pressure of the anode chamber 11c was 0.10 MPa, the electrolytic current value was the same, but the electrolytic voltage value was high. Moreover, when the pressure of the anode chamber 11c became larger than 0.10 MPa, the electrolysis current value decreased. Accordingly, the pressure in the anode chamber 11c is desirably 0.10 MPa or less.
  • Example 1 the electrolysis current value (A) and the electrolysis voltage value (V) with respect to the water intake amount (L) were measured.
  • the result is shown in FIG.
  • the horizontal axis represents the amount of hydrogen water taken in by the flow rate counter 94 (L)
  • the vertical axis represents the electrolysis current value (A) and the electrolysis voltage value (V).
  • Example 2 Similar to the first embodiment, the electromagnetic valve 85 is closed after the pump 81 is stopped.
  • the system configuration is as shown in FIG. 13, and the control flow is the same as that shown in FIG.
  • the film thickness of the diaphragm 15 was 0.16 mm, and the gap between the cathode layer 14 and the anode layer 13 was set to 0.10 mm. Therefore, the diaphragm 15 is considerably pressed by the cathode layer 14 and the anode layer 13 until the film thickness becomes 0.10 mm.
  • the gap between the cathode layer 14 and the anode layer 13 was set to be considerably narrower than that in Example 1.
  • Table 6 shows the pressures in the cathode chamber 12c and the anode chamber 11c at the time of water intake and when the water intake was stopped.
  • Example 1 since the relief valve 83 is connected to the anode chamber 11c, the pressure of the relief valve 83 is low during water intake (electrolysis) and when water intake is stopped (electrolysis stop). It is maintained below a predetermined pressure to be set (in this case, 0.05 MPa).
  • the cathode chamber 12c is maintained at a pressure of pressurized water (in this case, 0.2 MPa) during water intake (electrolysis). Therefore, at the time of water intake, the pressure in the anode chamber 11c is maintained below the pressure in the cathode chamber 12c.
  • the solenoid valve 85 is closed after a stop of the pump 81 (after one second), so the cathode chamber 12c is opened during that time, so that when the water intake is stopped (electrolysis stop) Maintained at atmospheric pressure (0 MPa). Accordingly, when the water intake is stopped (electrolysis is stopped), the pressure in the anode chamber 11c is higher than the pressure in the cathode chamber 12c. Therefore, when the diaphragm 15 is pressed against the cathode layer 14 and moved, a pressure decrease of 0.02 MPa occurs. As a result, as shown in Table 6, the pressure in the anode chamber 11c when the water intake is stopped is 0.03 MPa.
  • the diaphragm 15 Since the diaphragm 15 is pressed against the cathode layer 14 when the water intake is stopped (electrolytic stop), the moisture in the diaphragm 15 and the cathode layer 14 is pushed into the cathode chamber 12c.
  • the relationship between the pressure in the anode chamber 11c, the electrolysis current value, and the electrolysis voltage value during water intake (electrolysis) was examined. That is, as described above, the thickness of the diaphragm 15 is set to 0.16 mm, the gap between the cathode layer 14 and the anode layer 13 is set to 0.10 mm, the pressure in the cathode chamber 12c is set to a constant pressure of 0.2 MPa, and the anode chamber 11c. The electrolysis current value and electrolysis voltage value when the pressure was changed were examined. The results are shown in Table 7.
  • the diaphragm 15 is considerably pressed from both sides of the cathode chamber 12c and the anode chamber 11c to increase the adhesion, and the film thickness becomes 0.10 mm or less.
  • the pressure in the cathode chamber 12c is higher than the pressure in the anode chamber 12c, but because the degree of adhesion is high, the diaphragm 15 and the cathode layer 14 are kept in close contact with each other. From Table 7, even when the pressure in the anode chamber 11c was 0.10 MPa or more, the electrolysis current value was maintained at the same value, and the electrolysis voltage value was also maintained at the same value.
  • Example 2 the electrolysis current value (A) and the electrolysis voltage value (V) with respect to the water intake amount (L) were measured.
  • the result is shown in FIG.
  • the horizontal axis represents the amount of hydrogen water taken in by the flow rate counter 94 (L)
  • the vertical axis represents the electrolysis current value (A) and the electrolysis voltage value (V).
  • the electrolysis current value could be maintained at a constant value of 3.5A. Further, even if the gap between the diaphragm 15 and the cathode layer 14 and the gap between the diaphragm 15 and the anode layer 13 are extremely narrow, in other words, even if the diaphragm 15 is pressed tightly with the cathode layer 14 and the anode layer 13. The electrolytic current value did not change. Conversely, the same electrolysis current value as in Example 1 could be obtained with a lower electrolysis voltage value.
  • the pressure in the anode chamber 11c is made larger than the pressure in the cathode chamber 12c, so that the scale failure can be achieved regardless of the gap amount between the diaphragm 15 and the cathode layer 14 and the gap amount between the diaphragm 15 and the anode layer 13. It was found that can be prevented.
  • FIG. 19 shows the electrolysis current value and electrolysis voltage value with respect to the amount of water taken in Comparative Examples 1 and 2 and Example 1 described above on the same diagram.
  • the film thickness of the diaphragm 15 is 0.16 mm, and the test data in which the gap between the cathode layer 14 and the anode layer 13 is set to 0.15 mm is compared.
  • a relief valve 83 is attached to the anode chamber 11c, and the compression state of the diaphragm 15 is moved like a piston by utilizing pressure fluctuations in the anode chamber 11c, so that the diaphragm 15 and the cathode can be moved. Water was able to be sucked and discharged between the layers 14, and in particular, scale adhesion to the cathode layer 14 could be prevented.
  • tap water In the field of producing hydrogen water for beverages or other purposes, tap water can be used and can be applied to a hydrogen water production apparatus that is used for a long time.
  • Electrolysis cell 11 Case on anode side 11b Gas outlet 11c Anode chamber 11d, 12d Rib 11e Circumferential groove 12 Case on cathode side 12a Water inlet 12b Water outlet 12c Cathode chamber 13 Anode layer 14 Cathode layer 15 Diaphragm 16 Packing 17, 18 Connection terminal for lead wire 60 Ammeter 61, 91 Power supply device 80, 80 ′ Tank 81 Pump 82 Pressure reducing valve 83 Relief valve 84, 88 Flow control valve 85, 87 Solenoid valve 86, 90 Control device 89 Pressure gauge 91 Power supply (voltage) (With meter) 92 selector switch 93 ammeter 94 flow counter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Provided is an apparatus for producing hydrogen water comprising an anode layer which has a catalyst necessary for electrolysis and through which water and gas can pass, a cathode layer which has a catalyst necessary for electrolysis and through which water and gas can pass, a solid polymer membrane sandwiched between the anode layer and the cathode layer while being in close contact therewith, an anode chamber in contact with the anode layer, and a cathode chamber in contact with the cathode layer. In the first state in which drinking water at a predetermined pressure or higher is supplied to the cathode chamber, electrolysis is performed by controlling the pressure of water or gas alone or the mixing pressure of water and gas below the pressure of the cathode chamber, thereby dissolving the hydrogen gas generated in the cathode layer in the drinking water to produce hydrogen water, and in the second state in which the drinking water is not supplied to the cathode chamber, the mixing pressure of water and gas in the cathode chamber is controlled to be less than the pressure of water or gas alone or the mixing pressure of water and gas in the anode chamber.

Description

水素水の製造装置Hydrogen water production equipment
 本発明は、飲料用の水素水を生成する水素水の製造装置に関する。 The present invention relates to an apparatus for producing hydrogen water that generates hydrogen water for beverages.
 水の電気分解により発生する水素ガスを利用する水素水の製造方法として、あらかじめ電気分解で生成した水素ガスを加圧下で水に溶解する方法や、電解装置内において電気分解で生成した水素ガスを水中に直接溶解する方法等が存在する。前者のあらかじめ電気分解で生成した水素ガスを加圧下で水に溶解する方法では、図1(A)に示す固体高分子形電解における反応を利用して水素ガスが製造される。この方法は、RO水や純水を固体高分子形電解式電解槽で電気分解することにより生じた水素ガスを電解装置外で水に溶解するものである。この電気分解は、電解質膜を通水性のある白金等の電解触媒を有する2枚の電極層で挟んで加圧密着させ、陽極側にRO水や純水を満たして陰極側から水素ガスを発生させる。陽極側では、HO→1/2O↑+2H+2eの反応が起き、陰極側では、2H+2e→H↑の反応が起きる。 As a method for producing hydrogen water using hydrogen gas generated by electrolysis of water, a method in which hydrogen gas generated by electrolysis in advance is dissolved in water under pressure, or hydrogen gas generated by electrolysis in an electrolysis apparatus is used. There are methods for directly dissolving in water. In the former method in which hydrogen gas generated by electrolysis in advance is dissolved in water under pressure, hydrogen gas is produced by utilizing the reaction in solid polymer electrolysis shown in FIG. In this method, hydrogen gas generated by electrolyzing RO water or pure water in a solid polymer electrolytic cell is dissolved in water outside the electrolyzer. In this electrolysis, the electrolyte membrane is sandwiched between two electrode layers having an electrocatalyst such as platinum, and water is pressurized and adhered, and the anode side is filled with RO water or pure water to generate hydrogen gas from the cathode side. Let On the anode side, a reaction of H 2 O → 1 / 2O 2 ↑ + 2H + + 2e occurs, and on the cathode side, a reaction of 2H + + 2e → H 2 ↑ occurs.
 しかしながらこの方法によると、水素ガスを得るために純水装置等の設備が必要であり、純水は電導性が乏しいことから固体高分子膜を薄く効率良いものにするために高価となる欠点があった。また、純水の電導度が低いことから、加電により電解槽に熱が溜まるので、冷却方法の検討も必要であった。さらには、水素ガスを水に溶解するために電解装置とは別に溶解装置が必要であった。 However, according to this method, equipment such as a deionized water device is required to obtain hydrogen gas, and since deionized water has poor conductivity, there is a disadvantage that it is expensive to make the solid polymer membrane thin and efficient. there were. In addition, since the conductivity of pure water is low, heat builds up in the electrolytic cell due to charging, so it was also necessary to study a cooling method. Furthermore, in order to dissolve hydrogen gas in water, a dissolving device is required separately from the electrolytic device.
 後者の電解装置内において電気分解で生成した水素ガスを水中に直接溶解する方法として、図1(B)に示す、アルカリ水電解における反応を利用する方法がある。このアルカリ水電解においては、陽極側では、2OH→1/2O↑+HO+2eの反応が起き、陰極側では、2HO+2e→H↑+2OHの反応が起きる。即ち、この方法で得られた水素水は、陰極側(水素水側)にOHイオンが残るのでアルカリ性を示すこととなり、飲用基準のpH8.6以下とするためには水素濃度を低く抑えねばならなかった。 As a method for directly dissolving hydrogen gas generated by electrolysis in the latter electrolysis apparatus in water, there is a method utilizing a reaction in alkaline water electrolysis as shown in FIG. In this alkaline water electrolysis, a reaction of 2OH → 1 / 2O 2 ↑ + H 2 O + 2e occurs on the anode side, and a reaction of 2H 2 O + 2e → H 2 ↑ + 2OH occurs on the cathode side. That is, the hydrogen water obtained by this method shows alkalinity because OH ions remain on the cathode side (hydrogen water side), and the hydrogen concentration must be kept low in order to make the drinking standard pH 8.6 or lower. did not become.
 アルカリ水電解におけるアルカリ性を中和するために、陽極側を固体高分子形電解の場合と同じ構成とし、陰極側をアルカリ水電解の場合と同じ構成とした水素水製造装置が提案されている(特許文献1及び2)。この装置は、アルカリ性になった水素水を陽極で生じた酸性水で中和してpHを低下させようというものである。 In order to neutralize alkalinity in alkaline water electrolysis, a hydrogen water production apparatus has been proposed in which the anode side has the same configuration as in the case of solid polymer electrolysis and the cathode side has the same configuration as in alkaline water electrolysis ( Patent Documents 1 and 2). This apparatus is intended to lower the pH by neutralizing the hydrogen water that has become alkaline with the acidic water produced at the anode.
特許第3349710号公報Japanese Patent No. 3349710 特開2015-221397号公報Japanese Patent Laying-Open No. 2015-221397
 しかしながら、特許文献1に記載された水素水製造装置は、多量の飽和ガス下で水素イオンと水酸基イオンとを中和させるものであるため、pH中和に数分の時間を要するという欠点があり、固体高分子膜と陰極触媒間の隙間では水は多少アルカリ性になり、水中のカルシウムやマグネシウム等の溶解陽イオン物質は水が電気分解で減少するに従って濃縮し、若干のアルカリ性と溶解陽イオンの高濃度化によってカルシウムスケール(堆積物)やマグネシウムスケール(堆積物)が生成・付着する現象が生じていた。その結果、陰陽極間の通電障害が生じ、電流値が低下し、水素ガス発生量も低下することとなり所望の溶存水素水濃度が得られない問題が発生していた。 However, since the hydrogen water production apparatus described in Patent Document 1 neutralizes hydrogen ions and hydroxyl ions under a large amount of saturated gas, there is a disadvantage that it takes several minutes for pH neutralization. In the gap between the solid polymer membrane and the cathode catalyst, water becomes somewhat alkaline, and dissolved cationic substances such as calcium and magnesium in the water concentrate as the water decreases by electrolysis, and some alkaline and dissolved cations There was a phenomenon that calcium scale (sediment) and magnesium scale (sediment) were generated and adhered due to high concentration. As a result, an energization failure between the negative and positive electrodes occurs, the current value decreases, and the amount of hydrogen gas generated also decreases, causing a problem that a desired dissolved hydrogen water concentration cannot be obtained.
 特許文献2では、スケール防止対策として、同文献の図2に示すような電解槽の構造で被処理水の電導度が10mS/m(100μS/cm)以下であることが望ましいとされており、原水をイオン交換樹脂や逆浸透膜で脱塩処理した1mS/m以下程度の被処理水を陰極室に供給する構成とされている。しかしながら、一般的な水道水は、電導度が15mS/m程度であることから、前処理が必要であった。 In Patent Document 2, as an anti-scale measure, the conductivity of the water to be treated is desirably 10 mS / m (100 μS / cm) or less in the structure of the electrolytic cell as shown in FIG. The raw water is desalted with an ion exchange resin or a reverse osmosis membrane, and the water to be treated of about 1 mS / m or less is supplied to the cathode chamber. However, since general tap water has a conductivity of about 15 mS / m, pretreatment is necessary.
 本発明は、従来技術のこのような問題点を解消するものであり、その目的は、一般的な日本の水道水をそのまま被処理水として陰極室のみに供給しても、電解槽において直接短時間で水素水を生成でき、固体高分子膜と陰極触媒間の隙間間でカルシウムスケールやマグネシウムスケールが生成・付着する現象を防止できる水素水の製造装置を提供することにある。 The present invention solves such problems of the prior art, and the purpose of the present invention is to reduce the amount of general Japanese tap water directly to the cathode chamber as treated water as it is. An object of the present invention is to provide an apparatus for producing hydrogen water that can generate hydrogen water in a time and can prevent a phenomenon in which calcium scale and magnesium scale are generated and adhered between the gaps between the solid polymer membrane and the cathode catalyst.
 本発明の他の目的は、製造コストが安価で、長期間の使用にあっても水素ガス発生量の低下がなく安定した水素水が得られ、効率の良い水素ガス発生機能を長時間にわたって維持することができる水素水の製造装置を提供することにある。 Another object of the present invention is that the production cost is low, the hydrogen gas generation amount does not decrease even when used for a long time, stable hydrogen water is obtained, and an efficient hydrogen gas generation function is maintained for a long time. An object of the present invention is to provide an apparatus for producing hydrogen water that can be used.
 本発明によれば、水素水の製造装置は、電気分解に必要な触媒を有し水及び気体が通過可能な陽極層と、電気分解に必要な触媒を有し水及び気体が通過可能な陰極層と、陽極層及び陰極層間に互いに密着して挟設された固体高分子膜と、陽極層に接する陽極室と、陰極層に接する陰極室とを備えている。陰極室に所定圧力以上の飲料水が供給されている第1の状態において、陽極室の水若しくは気体の単独圧力又は水及び気体の混合圧力を陰極室の圧力未満に制御して電気分解することにより陰極層に発生した水素ガスを飲料水に溶解させて水素水を生成するように構成されており、陰極室に飲料水が供給されていない第2の状態において、陰極室の水及び気体の混合圧力が陽極室の水若しくは気体の単独圧力又は水及び気体の混合圧力未満に制御するように構成されている。 According to the present invention, an apparatus for producing hydrogen water includes an anode layer having a catalyst necessary for electrolysis and capable of passing water and gas, and a cathode having a catalyst necessary for electrolysis and capable of passing water and gas. A solid polymer film sandwiched between the anode layer and the cathode layer, an anode chamber in contact with the anode layer, and a cathode chamber in contact with the cathode layer. In the first state in which drinking water of a predetermined pressure or higher is supplied to the cathode chamber, electrolysis is performed by controlling the water or gas single pressure in the anode chamber or the mixed pressure of water and gas below the pressure in the cathode chamber. The hydrogen gas generated in the cathode layer is dissolved in the drinking water to generate hydrogen water. In the second state in which the drinking water is not supplied to the cathode chamber, the water and gas in the cathode chamber are The mixing pressure is controlled to be less than the water or gas single pressure of the anode chamber or the water and gas mixing pressure.
 このように、本発明では、隔膜である固体高分子膜が陰極層を介して接触する陰極室に所定圧力以上の飲料水が供給されている第1の状態(取水時、電解時)において、陽極室より高い圧力を持った飲料水(加圧水)によって固体高分子膜内及び固体高分子膜と陰極層との隙間に水が供給され、この水が電気分解されることによって陰極層の表面で発生した水素ガスが飲料水に溶解して水素水が生成される。その際に、固体高分子膜と陰極層との隙間に、溜まった水のカルシウムやマグネシウム等の溶解固形物が濃縮されることとなるが、陰極層側に飲料水が供給されない第2の状態(取水休止時、電解休止時)において、陽極室の圧力を陰極室の圧力より高くすることによって固体高分子膜が陰極層に押し付けられることとなり、固体高分子膜と陰極層との隙間に溜まった、カルシウムやマグネシウム等の溶解固形物が濃縮された水は陰極室に押し出される結果となり、次に陰極室に陽極室側より高い圧力を持った飲料水が供給されて電解するときには、固体高分子膜内及び固体高分子膜と陰極層との隙間に濃縮度が低減された水が供給されることとなる。即ち、陰極室の圧力と陽極室の圧力とを変化させることによって、陰極層と陽極層との間で固体高分子膜をピストン運動させることにより固体高分子膜と陰極層との隙間に存在する水を入れ替えてカルシウムやマグネシウム等のスケールを除去しているのである。 Thus, in the present invention, in the first state (during water intake, during electrolysis) in which drinking water of a predetermined pressure or higher is supplied to the cathode chamber where the solid polymer membrane that is the diaphragm contacts via the cathode layer, Water is supplied into the solid polymer membrane and the gap between the solid polymer membrane and the cathode layer by drinking water (pressurized water) having a higher pressure than the anode chamber, and this water is electrolyzed to cause the surface of the cathode layer to be electrolyzed. The generated hydrogen gas is dissolved in the drinking water to generate hydrogen water. At this time, the dissolved solid matter such as calcium and magnesium accumulated in the gap between the solid polymer film and the cathode layer is concentrated, but the drinking water is not supplied to the cathode layer side. The solid polymer film is pressed against the cathode layer by making the pressure in the anode chamber higher than the pressure in the cathode chamber (when water intake is stopped and electrolysis is stopped), and the solid polymer film accumulates in the gap between the solid polymer film and the cathode layer. In addition, water in which dissolved solids such as calcium and magnesium are concentrated results in being pushed out to the cathode chamber. Next, when drinking water having a higher pressure than the anode chamber is supplied to the cathode chamber and electrolyzed, Water with reduced concentration is supplied in the molecular film and in the gap between the solid polymer film and the cathode layer. That is, by changing the pressure in the cathode chamber and the pressure in the anode chamber, the solid polymer film is moved between the cathode layer and the anode layer by piston movement, so that the gap exists between the solid polymer film and the cathode layer. The water is replaced to remove scales such as calcium and magnesium.
 また、本発明は固体高分子形電解を利用しており、無機物溶解で電導性を有する飲料水を陰極室に加圧供給し、陰極表面上に発生する水素ガスを飲料水に溶解させ水素水を生成している。固体高分子形電解では、前述したように、陽極側では、HO→1/2O↑+2H+2eの反応が、陰極側では、2H+2e→H↑の反応が起きる。このような固体高分子形電解を利用しているため、直接飲料水の電解でありながらアルカリ水電解のようにpH9以上のアルカリ性とはならず、また、次亜塩素酸イオンの混入も制限された水素水の製造が可能となる。さらに、飲料水を使用しているため原水からRO水や純水を作る装置が不要であり、また、この飲料水が無機固形物を含有し電導性を有して電圧値が下がることで電気分解時の発熱が少なく、さらに飲料水が外部から供給されていることから、電解槽の冷却装置が不要となり、装置の製造コストを低減化することができる。 Further, the present invention utilizes solid polymer electrolysis, pressurizes and supplies drinking water having conductivity due to inorganic substance dissolution to the cathode chamber, and dissolves hydrogen gas generated on the cathode surface in the drinking water. Is generated. In the polymer electrolyte, as described above, the reaction of H 2 O → 1 / 2O 2 ↑ + 2H + + 2e occurs on the anode side, and the reaction of 2H + + 2e → H 2 ↑ occurs on the cathode side. Since such solid polymer electrolysis is used, it does not become alkaline with a pH of 9 or more unlike alkaline water electrolysis while directly electrolyzing drinking water, and mixing of hypochlorite ions is limited. Hydrogen water can be produced. Furthermore, since drinking water is used, there is no need for a device to make RO water or pure water from raw water. In addition, this drinking water contains inorganic solids and has electrical conductivity. Since there is little heat generation at the time of decomposition and drinking water is supplied from the outside, a cooling device for the electrolytic cell becomes unnecessary, and the manufacturing cost of the device can be reduced.
 第1の状態において、陽極室の水若しくは気体の単独圧力又は水及び気体の混合圧力が、0.03MPaから0.1MPaの範囲の圧力であることも好ましい。なお、本明細書において、圧力は、大気圧が0MPaである大気圧基準(ゲージ圧)で表わしている。 In the first state, it is also preferable that the single pressure of water or gas in the anode chamber or the mixed pressure of water and gas is a pressure in the range of 0.03 MPa to 0.1 MPa. In the present specification, the pressure is expressed on the basis of atmospheric pressure (gauge pressure) where the atmospheric pressure is 0 MPa.
 第1の状態において、陰極室に供給される飲料水の圧力が0.1MPaから0.3MPaの範囲の圧力であることも好ましい。 In the first state, it is also preferable that the pressure of the drinking water supplied to the cathode chamber is a pressure in the range of 0.1 MPa to 0.3 MPa.
 第2の状態において、陰極室の圧力が大気圧であることも好ましい。 In the second state, it is also preferable that the pressure in the cathode chamber is atmospheric pressure.
 陽極室と大気との間にリリーフ弁が接続されていることも好ましい。 It is also preferable that a relief valve is connected between the anode chamber and the atmosphere.
 陽極室に圧力計が接続されていると共に陽極室と大気との間に電磁弁が接続されており、圧力計の計測値に基づいて電磁弁が制御されるように構成されていることも好ましい。 It is also preferable that a pressure gauge is connected to the anode chamber and a solenoid valve is connected between the anode chamber and the atmosphere so that the solenoid valve is controlled based on the measured value of the pressure gauge. .
 固体高分子膜の含水率が、飽和含水膜に対する含水率で27.6%以上(乾燥固体高分子膜に対して38.2%以上)の陽イオン交換膜であることも好ましい。固体高分子膜の含水率がこの範囲であれば、固体高分子膜内に残留する固形物が水で希釈されて増量することはある程度抑止される。即ち、固体高分子膜内の固形物濃度が陰極室内の飲料水の固形物濃度と同程度に保持されるので固体高分子膜内においてなされる固体高分子膜内固形物の酸化反応・還元反応が高濃度状態で過激に反応することはなく、2eイオン分による酸化還元電子相殺も大きくならず、水素ガス発生量の低下が抑止される。さらに、酸化・還元を受ける塩化物イオン等の膜内物質が、陽極層で酸化され、膜内から陰極室に流出しようとするとき陰極層で還元されて陰極室に放出されることとなり、飲料水への酸化物の混入はほとんど無い。 It is also preferable that the water content of the solid polymer membrane is a cation exchange membrane having a water content of 27.6% or more (38.2% or more with respect to the dry solid polymer film) as a water content with respect to the saturated water film. If the water content of the solid polymer membrane is within this range, the solid matter remaining in the solid polymer membrane is inhibited to some extent from dilution with water. In other words, the solid concentration in the solid polymer membrane is maintained at the same level as the solid concentration of the drinking water in the cathode chamber, so the oxidation reaction / reduction reaction of the solid matter in the solid polymer membrane performed in the solid polymer membrane. Does not react drastically in a high concentration state, the redox electron offset due to the 2e - ion content does not increase, and a decrease in the amount of hydrogen gas generated is suppressed. Further, in-film substances such as chloride ions that undergo oxidation and reduction are oxidized in the anode layer, and when they are about to flow out of the film into the cathode chamber, they are reduced in the cathode layer and released into the cathode chamber. There is almost no mixing of oxides in water.
 陽極層及び陰極層の触媒が、白金触媒であることも好ましい。陽極層及び陰極層を白金触媒入りとすることにより、電気分解が促進され水素ガスの発生が効率化し、さらに、陰極層の部分で、NaClO+2H+2e→NaCl+HOの反応を起こし、次亜塩素酸イオンの中和を行うことができる。 The catalyst for the anode layer and the cathode layer is also preferably a platinum catalyst. By making the anode layer and the cathode layer contain a platinum catalyst, electrolysis is promoted and the generation of hydrogen gas is made more efficient. Further, the reaction of NaClO + 2H + + 2e → NaCl + H 2 O occurs in the cathode layer, Chlorate ions can be neutralized.
 陽極層及び/又は陰極層が、チタンのラス網又はパンチメタルで形成されたチタン製白金電極であることも好ましい。 The anode layer and / or the cathode layer is preferably a titanium platinum electrode formed of a lath net of titanium or punch metal.
 固体高分子形電解を利用しているため、直接飲料水の電解でありながらアルカリ水電解のように、pH9以上のアルカリ性とはならず、また、次亜塩素酸イオンの混入も制限された水素水の製造が可能となる。さらに、飲料水を用いているため原水からRO水や純水を作る装置が不要であり、この飲料水が無機固形物を含有し電気伝導性を有して電圧値が下がることで電気分解時の発熱が少なく、さらに飲料水が外部から供給されていることから、電解槽の冷却装置が不要となり、装置の製造コストを低減化することができる。 Because it uses solid polymer electrolysis, it does not become alkaline more than pH 9 as in alkaline water electrolysis, while it is direct electrolysis of drinking water, and the mixing of hypochlorite ions is limited. Water can be produced. Furthermore, since drinking water is used, there is no need for a device to make RO water or pure water from raw water. This drinking water contains inorganic solids and has electrical conductivity, and the voltage value decreases. Therefore, since the drinking water is supplied from the outside, a cooling device for the electrolytic cell becomes unnecessary, and the manufacturing cost of the device can be reduced.
 特に、本発明によれば、陰極室の圧力と陽極室の圧力とを変化させることによって、陰極層と陽極層との間で固体高分子膜をピストン運動させることにより陰極層と固体高分子膜との隙間に存在する水を入れ替えてカルシウムやマグネシウム等のスケールを除去しているので、固体高分子膜内に残留する固形物量が増量することはなく、固形物濃度は陰極室内の飲料水の固形物濃度と同程度に保持される。その結果、固体高分子膜内においてなされる固体高分子膜内固形物の酸化反応・還元反応が高濃度状態で過激に反応することはなく、2eイオン分による酸化還元電子相殺も大きくならず、水素ガス発生量の低下が抑止される。さらに、酸化・還元を受ける塩化物イオン等の膜内物質が、陽極層で酸化され、膜内から陰極室に流出しようとするとき陰極層で還元されて陰極室に放出されることとなり、飲料水への酸化物の混入が皆無に近くなる。さらに、加圧された飲料水を陰極室に供給してもその飲料水が陽極室に漏水することがなく、陽極室側での水処理が不要であり、効率の良い水素ガス発生機能を長時間にわたって維持することができる。 In particular, according to the present invention, by changing the pressure in the cathode chamber and the pressure in the anode chamber, the solid polymer film is moved in a piston motion between the cathode layer and the anode layer. Since the scales such as calcium and magnesium are removed by replacing the water present in the gap between them, the amount of solids remaining in the solid polymer membrane does not increase, and the solids concentration is the drinking water in the cathode chamber It is maintained at the same level as the solid concentration. As a result, the oxidation reaction / reduction reaction of the solid matter in the solid polymer film in the solid polymer film does not react drastically in the high concentration state, and the redox electron cancellation due to the 2e - ion component does not increase. In addition, a decrease in the amount of hydrogen gas generated is suppressed. Further, in-film substances such as chloride ions that undergo oxidation and reduction are oxidized in the anode layer, and when they are about to flow out of the film into the cathode chamber, they are reduced in the cathode layer and released into the cathode chamber. There is almost no oxide mixed into the water. In addition, even if pressurized drinking water is supplied to the cathode chamber, the drinking water does not leak into the anode chamber, eliminating the need for water treatment on the anode chamber side, and providing an efficient hydrogen gas generation function. Can be maintained over time.
電気分解により水素ガスを発生する方法における陽極側及び陰極側の反応を説明する図であり、(A)は固体高分子形電解の場合、(B)はアルカリ水電解の場合である。It is a figure explaining the reaction of the anode side and cathode side in the method of generating hydrogen gas by electrolysis, (A) is a case of solid polymer electrolysis, (B) is a case of alkaline water electrolysis. 本発明の一実施形態として、水素水の製造装置における電解槽の全体構成を概略的に示す分解斜視図である。It is a disassembled perspective view which shows roughly the whole structure of the electrolytic vessel in the manufacturing apparatus of hydrogen water as one Embodiment of this invention. 図2の水素水の製造装置における電解槽の全体構成を概略的に示す分解側面図である。It is a decomposition | disassembly side view which shows roughly the whole structure of the electrolytic vessel in the manufacturing apparatus of the hydrogenous water of FIG. 図2の水素水の製造装置における電解槽の陽極側筐体の構成を概略的に示す(A)平面図、(B)A-A線断面図である。FIG. 3A is a plan view schematically showing a configuration of an anode side casing of an electrolytic cell in the hydrogen water production apparatus of FIG. 2, and FIG. 図2の水素水の製造装置における電解槽の陰極側筐体の構成を概略的に示す(A)平面図、(B)A-A線断面図である。FIG. 3A is a plan view schematically showing a configuration of a cathode side casing of an electrolytic cell in the hydrogen water production apparatus of FIG. 2, and FIG. 図2の水素水の製造装置の電気的な構成を概略的に示すブロック図である。FIG. 3 is a block diagram schematically showing an electrical configuration of the hydrogen water production apparatus of FIG. 2. 図2の水素水の製造装置における電解槽の構成を示す模式図である。It is a schematic diagram which shows the structure of the electrolytic vessel in the manufacturing apparatus of the hydrogenous water of FIG. 図2の水素水の製造装置のシステム構成を概略的に示すブロック図である。It is a block diagram which shows roughly the system configuration | structure of the manufacturing apparatus of the hydrogenous water of FIG. 図2の水素水の製造装置における制御装置の制御の流れを概略的に示すフローチャートである。It is a flowchart which shows roughly the flow of control of the control apparatus in the manufacturing apparatus of the hydrogenous water of FIG. 本発明の他の実施形態として、水素水の製造装置のシステム構成を概略的に示すブロック図である。It is a block diagram which shows roughly the system configuration | structure of the manufacturing apparatus of hydrogenous water as other embodiment of this invention. 図10の水素水の製造装置における制御装置の制御の流れを概略的に示すフローチャートである。It is a flowchart which shows roughly the flow of control of the control apparatus in the manufacturing apparatus of the hydrogenous water of FIG. 比較例1及び2で用いた水素水の製造装置のシステム構成を概略的に示すブロック図である。It is a block diagram which shows roughly the system configuration | structure of the manufacturing apparatus of the hydrogenous water used in Comparative Examples 1 and 2. 実施例1及び2で用いた水素水の製造装置のシステム構成を概略的に示すブロック図である。It is a block diagram which shows roughly the system configuration | structure of the manufacturing apparatus of the hydrogenous water used in Example 1 and 2. FIG. 比較例1における取水水量に対する電解電流値及び電解電圧値の特性図である。It is a characteristic view of the electrolysis current value and the electrolysis voltage value with respect to the water intake amount in Comparative Example 1. 比較例1及び2並びに実施例1及び2において陰極層の隔膜側の面に付着したスケールを観察した結果を示す図である。It is a figure which shows the result of having observed the scale adhering to the surface by the side of the diaphragm of a cathode layer in the comparative examples 1 and 2 and Examples 1 and 2. FIG. 比較例2における取水水量に対する電解電流値及び電解電圧値の特性図である。It is a characteristic view of the electrolysis current value and the electrolysis voltage value with respect to the water intake amount in Comparative Example 2. 実施例1における取水水量に対する電解電流値及び電解電圧値の特性図である。It is a characteristic view of the electrolysis current value and the electrolysis voltage value with respect to the amount of water intake in Example 1. 実施例2における取水水量に対する電解電流値及び電解電圧値の特性図である。It is a characteristic view of the electrolysis current value and the electrolysis voltage value with respect to the amount of intake water in Example 2. 比較例1及び2並びに実施例1における取水水量に対する電解電流値及び電解電圧値を同一図上に示した特性図である。It is the characteristic view which showed the electrolysis current value and the electrolysis voltage value with respect to the amount of water intake in Comparative Examples 1 and 2 and Example 1 on the same figure.
 図2及び図3は本発明の一実施形態として、水素水の製造装置における電解槽の全体構成を概略的に示しており、図4は本実施形態の水素水の製造装置における電解槽の陽極側筐体の構成を平面及び断面で概略的に示しており、図5は本実施形態の水素水の製造装置における電解槽の陰極側筐体の構成を平面及び断面で概略的に示している。 2 and 3 schematically show the overall configuration of the electrolytic cell in the hydrogen water production apparatus as one embodiment of the present invention, and FIG. 4 shows the electrolytic cell anode in the hydrogen water production apparatus of the present embodiment. The structure of the side housing is schematically shown in plan and cross section, and FIG. 5 schematically shows the structure of the cathode side housing of the electrolytic cell in the hydrogen water production apparatus of this embodiment in plan and cross section. .
 本実施形態における図4の陽極側筐体と図5の陰極側筐体との構成上の差異はO-リング溝の有無の差であり、図4が陰極側筐体の構成となり、図5が陽極側筐体の構成となっても良い。陰極側筐体の構成及び陽極側筐体との構成がO-リング溝の有無によって限定されるものでは無い。 The difference in configuration between the anode-side casing in FIG. 4 and the cathode-side casing in FIG. 5 in this embodiment is the difference in the presence or absence of the O-ring groove, and FIG. 4 shows the configuration of the cathode-side casing. However, the anode side housing may be configured. The configuration of the cathode side casing and the configuration of the anode side casing are not limited by the presence or absence of the O-ring groove.
 図2及び図3において、10は固体高分子形の電解槽を示しており、この電解槽10は陽極側の筐体11及び陰極側の筐体12の当接面を互いに当接させた状態でボルト止めすることにより、一体化された筐体が形成される。筐体内には、陽極層13、陰極層14、陽極層13及び陰極層14間に互いに加圧密着して挟設された固体高分子膜である隔膜15、及び筐体を密封するためのパッキン16が収容されている。陽極層13にはリード線用接続端子17が接続されており、リード線(図示無し)を介し電源装置の陽極と電気的に接続され、陰極層14にはリード線用接続端子18が接続されており、リード線(図示無し)を介し電源装置の陰極と電気的に接続される。 2 and 3, reference numeral 10 denotes a solid polymer electrolytic cell. The electrolytic cell 10 is in a state in which the contact surfaces of the anode-side casing 11 and the cathode-side casing 12 are in contact with each other. By bolting with, an integrated housing is formed. Inside the casing are an anode layer 13, a cathode layer 14, a diaphragm 15 which is a solid polymer film sandwiched between the anode layer 13 and the cathode layer 14 in pressure contact with each other, and a packing for sealing the casing 16 is housed. A lead wire connection terminal 17 is connected to the anode layer 13 and is electrically connected to the anode of the power supply device via a lead wire (not shown), and a lead wire connection terminal 18 is connected to the cathode layer 14. It is electrically connected to the cathode of the power supply device via a lead wire (not shown).
 電解槽10の筐体の外形寸法は、単なる一例であるが、約146mm(縦)×約96mm(横)×約60mm(高さ)であり、本実施形態では透明のアクリル樹脂を成型して作製されている。もちろん、筐体を不透明の種々の色の樹脂を用いて作製しても良いし、他の種類の樹脂又は他の材料によって作製しても良い。 The outer dimension of the casing of the electrolytic cell 10 is merely an example, but is about 146 mm (vertical) × about 96 mm (horizontal) × about 60 mm (height). In this embodiment, a transparent acrylic resin is molded. Have been made. Needless to say, the casing may be manufactured using opaque resin of various colors, or may be manufactured using other types of resins or other materials.
 図4に示すように、陽極側の筐体11には、この筐体11を貫通する2つの気体(ガス)出口11bが形成されており、筐体内側には、2つのガス出口11bを結ぶガス路(陽極室)11cが形成されている。このガス路(陽極室)11cは交互に噛み合うように櫛歯状に形成されたリブ11dによって蛇行するように構成されている。筐体内側には、さらに、パッキン16を収容する周溝11eが設けられている。 As shown in FIG. 4, the anode-side casing 11 has two gas (gas) outlets 11b penetrating through the casing 11, and two gas outlets 11b are connected to the inside of the casing. A gas passage (anode chamber) 11c is formed. The gas passage (anode chamber) 11c is configured to meander by ribs 11d formed in a comb shape so as to alternately mesh with each other. A circumferential groove 11e that accommodates the packing 16 is further provided inside the housing.
 図5に示すように、陰極側の筐体12は、この筐体12を貫通する水入口12a及び水出口12bが形成されており、筐体内側には、水入口12a及び水出口12bを結ぶ水路(陰極室)12cが形成されている。この水路(陰極室)12cは交互に噛み合うように櫛歯状に形成されたリブ12dによって蛇行するように構成されている。これにより、蛇行して流れる加圧水内に水素ガスが素早くかつ効率良く溶解される。 As shown in FIG. 5, the cathode-side casing 12 has a water inlet 12a and a water outlet 12b penetrating the casing 12, and the water inlet 12a and the water outlet 12b are connected to the inside of the casing. A water channel (cathode chamber) 12c is formed. The water channel (cathode chamber) 12c is configured to meander by ribs 12d formed in a comb shape so as to alternately mesh with each other. As a result, the hydrogen gas is quickly and efficiently dissolved in the pressurized water flowing meandering.
 陽極層13は、ガスを通過可能に、チタンのラス網若しくはパンチメタルで形成されたチタン製白金電極、又は導電性カーボン上に白金系ナノ粒子を担持させた触媒担持カーボン電極層で構成されている。 The anode layer 13 is composed of a titanium platinum electrode formed of a titanium lath net or punch metal, or a catalyst-carrying carbon electrode layer in which platinum-based nanoparticles are supported on conductive carbon so that gas can pass through. Yes.
 この陽極層13は、ガスを陽極室11c、さらには大気に開放するための多数の貫通孔が設けられている必要があり、また、一方の面が隔膜15と接触している必要がある。そのため、電極素材としてはカーボン布、カーボン不織布、若しくはカーボン多孔質膜等のカーボン材、又はチタンのラス網若しくはパンチングメタルが用いられる。触媒としては、白金若しくはイリジウムを用いることができるが、本実施形態では白金を用いている。陽極層13に白金触媒を用いることにより、NaCl+HO→NaClO+2H+2eの反応も起こる。触媒と電極素材との結合には、コーティング、焼結、又はメッキ等の方法があり、いずれの方法を採用しても良い。陽極層13の寸法は、単なる一例であるが、約100mm(縦)×約50mm(横)である。 The anode layer 13 needs to be provided with a large number of through holes for opening the gas to the anode chamber 11 c and further to the atmosphere, and one surface needs to be in contact with the diaphragm 15. Therefore, carbon materials such as carbon cloth, carbon non-woven fabric, or carbon porous film, or a lath net or punching metal of titanium is used as the electrode material. Platinum or iridium can be used as the catalyst, but platinum is used in this embodiment. By using a platinum catalyst for the anode layer 13, a reaction of NaCl + H 2 O → NaClO + 2H + + 2e also occurs. There are methods such as coating, sintering, or plating for bonding the catalyst and the electrode material, and any method may be adopted. The dimension of the anode layer 13 is merely an example, but is about 100 mm (vertical) × about 50 mm (horizontal).
 陰極層14は、ガス及び水を通過可能に、チタンのラス網若しくはパンチメタルで形成されたチタン製白金電極、又は導電性カーボン上に白金系ナノ粒子を担持させた触媒担持カーボン電極層で構成されている。 The cathode layer 14 is composed of a titanium platinum electrode formed of a lath net of titanium or punch metal so that gas and water can pass, or a catalyst-supported carbon electrode layer in which platinum-based nanoparticles are supported on conductive carbon. Has been.
 この陰極層14は、ガス及び水を陰極室12cに開放するための多数の貫通孔が設けられている必要があり、また、一方の面が隔膜15と接触している必要がある。そのため、電極素材としてはカーボン布、カーボン不織布、カーボン多孔質膜、などのカーボン材や、チタンのラス網やパンチングメタルが用いられる。触媒としては、白金やイリジウムを用いることができるが、本実施形態では白金を用いている。陰極層14に白金触媒を用いることにより、NaClO+2H+2e→NaCl+HOの反応を起こし、次亜塩素酸イオンの中和を行うことができる。触媒と電極素材との結合には、コーティング、焼結、メッキ等の方法があり、いずれの方法を採用しても良い。陰極層14の寸法は、単なる一例であるが、約100mm(縦)×約50mm(横)である。 The cathode layer 14 needs to be provided with a large number of through holes for opening gas and water to the cathode chamber 12 c, and one surface needs to be in contact with the diaphragm 15. Therefore, carbon materials such as carbon cloth, carbon non-woven fabric, and carbon porous film, titanium lath net, and punching metal are used as electrode materials. Platinum or iridium can be used as the catalyst, but platinum is used in this embodiment. By using a platinum catalyst for the cathode layer 14, a reaction of NaClO + 2H + + 2e → NaCl + H 2 O can be caused to neutralize hypochlorite ions. There are methods such as coating, sintering, and plating for bonding the catalyst and the electrode material, and any method may be adopted. The dimensions of the cathode layer 14 are merely an example, but are about 100 mm (vertical) × about 50 mm (horizontal).
 固体高分子膜である隔膜15は、有機高分子多孔質体の陽イオン交換膜であり、本実施形態では、スチレン系重合型陽イオン交換膜を使用している。この陽イオン交換膜は、交換機能を有する樹脂材としてスチレン・ジビニルベンゼン系重合物のスルホン酸ナトリウム塩40~60wt%と、補強材としてポリオレフィン混合物40~60wt%とを含有している。隔膜15の寸法は、単なる一例であるが、約119mm(縦)×約69mm(横)である。 The diaphragm 15, which is a solid polymer membrane, is a cation exchange membrane made of an organic polymer porous material. In this embodiment, a styrene polymerization type cation exchange membrane is used. This cation exchange membrane contains 40 to 60 wt% of sulfonic acid sodium salt of a styrene / divinylbenzene polymer as a resin material having an exchange function, and 40 to 60 wt% of a polyolefin mixture as a reinforcing material. The dimension of the diaphragm 15 is only an example, but is about 119 mm (length) × about 69 mm (width).
 隔膜15は、特に、陰極層側の陰極面に接触した加圧水によって膜内の水溶性固形物を希釈可能である含水率を有している。この隔膜15の含水率は、後述する実施例で述べるように、飽和含水隔膜に対する含水率で27.6%以上(乾燥隔膜に対して38.2%以上)である。これにより、隔膜15内に残留する固形物が水で希釈されるので増量することはある程度抑止され、隔膜15内に含水した水中の固形物濃度は陰極室12c内の飲料水の固形物濃度と同程度に保持される。その結果、隔膜15内においてなされる隔膜内固形物の酸化反応・還元反応が高濃度状態で過激に反応することはなく、2eイオン分による酸化還元電子相殺が大きくならず、水素ガス発生量の低下が抑止される。また、酸化・還元を受ける塩化物イオン等の隔膜15内物質は、陽極層13で酸化され、隔膜15内から陰極室12cに流出しようとするとき陰極層14で還元されて陰極室12cに放出されることとなり、飲料水への酸化物の混入はほとんど無い。 In particular, the diaphragm 15 has a water content capable of diluting water-soluble solids in the film by pressurized water in contact with the cathode surface on the cathode layer side. The moisture content of the diaphragm 15 is 27.6% or more (38.2% or more with respect to the dry diaphragm) in terms of the moisture content with respect to the saturated water-containing diaphragm, as will be described in Examples described later. As a result, the solid matter remaining in the diaphragm 15 is diluted with water, so that an increase in the amount is suppressed to some extent, and the solids concentration in water contained in the diaphragm 15 is equal to the solids concentration of drinking water in the cathode chamber 12c. It is held at the same level. As a result, the oxidation / reduction reaction of the solid matter in the diaphragm performed in the diaphragm 15 does not react drastically in a high concentration state, and the redox electron cancellation due to 2e ions does not increase, and the amount of hydrogen gas generated The decline is suppressed. Further, substances in the diaphragm 15 such as chloride ions that undergo oxidation / reduction are oxidized by the anode layer 13 and are reduced by the cathode layer 14 and released to the cathode chamber 12c when they flow out of the diaphragm 15 into the cathode chamber 12c. As a result, there is almost no contamination of drinking water with oxides.
 隔膜15は、さらに、加圧水が陽極層側の陽極室11cに流出しない透水性を有している。具体的には、隔膜15は、陰極室12cに通水される加圧水の圧力が0.1~0.3MPaの範囲にある際に、陽極室11cに水が漏水しない状態で、隔膜15内に水が保水される透水性を有している。これにより、加圧された飲料水を陰極室12cに供給してもその飲料水が陽極室11cに漏水することがなく、効率の良い水素ガス発生機能を長時間にわたって維持することができる。また、隔膜15は、当然に、0.3MPaまでの圧力に対して耐圧性能を有している。前述したように、本明細書において、圧力は、絶対圧基準ではなく、大気圧が0MPaである大気圧基準(ゲージ圧)で表わしている。 The diaphragm 15 further has water permeability so that pressurized water does not flow out into the anode chamber 11c on the anode layer side. Specifically, when the pressure of pressurized water passed through the cathode chamber 12c is in the range of 0.1 to 0.3 MPa, the diaphragm 15 enters the diaphragm 15 in a state where water does not leak into the anode chamber 11c. It has water permeability to retain water. Thereby, even if pressurized drinking water is supplied to the cathode chamber 12c, the drinking water does not leak into the anode chamber 11c, and an efficient hydrogen gas generation function can be maintained for a long time. Moreover, the diaphragm 15 naturally has pressure resistance performance against pressures up to 0.3 MPa. As described above, in the present specification, the pressure is expressed not based on the absolute pressure but based on the atmospheric pressure (gauge pressure) where the atmospheric pressure is 0 MPa.
 陽極層13、隔膜15及び陰極層14を圧着させるためには、陽極層13及び陰極層14はチタン鋼板に白金を担持させたものを用いることが最も望ましい。陽極側の筐体11及び陰極側の筐体12をボルト止めする際に、これら陽極層13及び陰極層14を押さえ付けることにより、隔膜15は陽極層13及び陰極層14と加圧密着されることとなる。陽極層13及び陰極層14の素材としてカーボン材を選択した場合には、チタンのラス網やパンチングメタルなどの電極押さえ板を準備することが望ましい。 In order to pressure-bond the anode layer 13, the diaphragm 15, and the cathode layer 14, it is most preferable to use the anode layer 13 and the cathode layer 14 in which platinum is supported on a titanium steel plate. When the anode side casing 11 and the cathode side casing 12 are bolted, the diaphragm 15 is pressed and adhered to the anode layer 13 and the cathode layer 14 by pressing the anode layer 13 and the cathode layer 14. It will be. When a carbon material is selected as the material for the anode layer 13 and the cathode layer 14, it is desirable to prepare an electrode pressing plate such as a lath net of titanium or a punching metal.
 図には示されていないが、陽極室11cから水が出ていないことを目視で確認できる水量レベル表示部を陽極室11cに連通させて設置することにより、電解槽10の隔膜15の破損を確認することができ、これは電解槽10を交換する目安ともなる。水量レベル表示部は、水漏れを利用者に容易に確認できるものであれば、透明円柱管によって水位表示させても良いし、電気的水位計を用いてLEDによるバー表示させても良い。 Although not shown in the figure, the diaphragm 15 of the electrolytic cell 10 can be damaged by installing a water level indicator that allows visual confirmation that water is not discharged from the anode chamber 11c in communication with the anode chamber 11c. This can be confirmed, and this is also a guideline for replacing the electrolytic cell 10. The water level display unit may display the water level with a transparent cylindrical tube or a bar display with LEDs using an electric water level meter as long as the user can easily confirm water leakage.
 図6は本実施形態の水素水の製造装置の電気的な構成を概略的に示している。 FIG. 6 schematically shows the electrical configuration of the hydrogen water production apparatus of this embodiment.
 同図に示すように、電解槽10の陽極層13は電流計60を介して定電流の電源装置61の正の出力端子に電気的に接続されており、陰極層14は電源装置61の負の出力端子に電気的に接続されている。電源装置61から直流電流が供給されることにより、電解槽10内で電気分解が行われ、陰極室12c内に水素が生成されて飲料水内に溶解され、水素水が得られる。一方、陽極室11c内には酸素が気化されて、大気中に放散される。 As shown in the figure, the anode layer 13 of the electrolytic cell 10 is electrically connected to the positive output terminal of the constant current power supply 61 via the ammeter 60, and the cathode layer 14 is negatively connected to the negative electrode of the power supply 61. Is electrically connected to the output terminal. By supplying a direct current from the power supply device 61, electrolysis is performed in the electrolytic cell 10, hydrogen is generated in the cathode chamber 12c, dissolved in drinking water, and hydrogen water is obtained. On the other hand, oxygen is vaporized in the anode chamber 11c and diffused into the atmosphere.
 電源装置61から電解槽10に流れる電流を電流計60によって測定すれば、水素ガス発生に使用される電解電流値のみを計測することができ、発生する水素ガス量を把握することができる。この水素ガス発生量と飲料水の流量(一定値であれば定数とすることができる)とから水素ガス濃度を容易に知ることができる。計測した電解電流値から水素ガス発生量が把握できる理由は、加電により4H+4e→2H↑の水素発生が初期に行われても、陽極層13ではHO→1/2O↑+2H+2eの反応及びNaCl+HO→NaClO+2H+2eの反応が起こり、隔膜15内の陰極面側ではNaClO+2H+2e→NaCl+HOの反応が起これば、実際には、HO→1/2O↑+2H+2eの反応と2H+2e→H↑の反応しか起きていない結果となる。即ち、電流計60には、次亜塩素酸イオンによる2eの相殺された電解電流値は計測されないので、実際に水素発生にのみ利用された電解電流値を知ることができるのである。 If the current flowing from the power supply device 61 to the electrolytic cell 10 is measured by the ammeter 60, only the electrolytic current value used for hydrogen gas generation can be measured, and the amount of hydrogen gas generated can be grasped. The hydrogen gas concentration can be easily known from the hydrogen gas generation amount and the flow rate of drinking water (a constant value can be set as a constant). The reason why the amount of hydrogen gas generated can be grasped from the measured electrolysis current value is that, even if hydrogen generation of 4H + + 4e → 2H 2 ↑ is initially performed by charging, H 2 O → 1 / 2O 2 in the anode layer 13. If a reaction of ↑ + 2H + + 2e − and a reaction of NaCl + H 2 O → NaClO + 2H + + 2e occur, and if a reaction of NaClO + 2H + + 2e → NaCl + H 2 O occurs on the cathode side in the diaphragm 15, in fact, H 2 As a result, only the reaction of O → 1 / 2O 2 ↑ + 2H + + 2e − and the reaction of 2H + + 2e → H 2 ↑ occur. In other words, the ammeter 60 does not measure the 2e offset electrolysis current value due to hypochlorite ions, so that the electrolysis current value actually used only for hydrogen generation can be known.
 水素ガス濃度の表示は、利用者が濃度を容易に解るものであれば、アナログ電流計のようなアナログ表示であっても良いし、デジタル数値表示であっても良いし、LEDによるバー表示であっても良い。利用者が水素ガス濃度を容易に認知できれば、利用者は水素ガス濃度がより高く出る飲料元水を捜すことができ、低塩分かつ低固形分の水を選択し、より安全な飲料水の利用を行うことができる。また、飲料水としての安全性をさらに確保するため、電源装置61において、電解電流値や電解電圧値を制限することで、飲用に適した水にのみ電気分解をすることが可能となる。制限とする数値は、電解槽10の仕様によって異なる。 The display of the hydrogen gas concentration may be an analog display such as an analog ammeter, a digital numerical display, or a bar display with LEDs as long as the user can easily understand the concentration. There may be. If the user can easily recognize the hydrogen gas concentration, the user can search for drinking source water with a higher hydrogen gas concentration, select low salt and low solids water, and use safer drinking water It can be performed. Moreover, in order to further ensure the safety as drinking water, by limiting the electrolysis current value and the electrolysis voltage value in the power supply device 61, it becomes possible to electrolyze only water suitable for drinking. The numerical value to be limited varies depending on the specifications of the electrolytic cell 10.
 図7は本実施形態の水素水の製造装置における電解槽10の構成を模式的に示しており、以下、この電解槽10内における水素水の生成動作を詳細に説明する。 FIG. 7 schematically shows the configuration of the electrolytic cell 10 in the hydrogen water production apparatus of the present embodiment. Hereinafter, the hydrogen water generating operation in the electrolytic cell 10 will be described in detail.
 陰極室12c内には、加圧された飲料水が水入口12aを介して供給される。その場合の水圧は、電気分解によって生成された水素ガスが溶解するのに適した0.1~0.3MPaの範囲に設定されている。水素ガスの水中への溶解にあたっては、加圧下で行うのが良く、これはヘンリーの法則に従う。即ち、25℃大気開放時の水中の溶存酸素濃度は8.09mg/Lであり、溶存酸素の分圧比は8.09/40.44×100=20%となり、窒素が80%ということになる。この水が2気圧(0.1MPa)となったとき、酸素の分圧比は10%となり、窒素の分圧比は40%となり、水素の溶解する分圧枠が生じ、最大50%の溶解が可能となる。つまり、1.57mg/L×(1/2)×2気圧=1.57mg/Lが最大溶解度となり、大気圧においての最大溶解度1.6mg/Lに近似した溶解濃度となり、この理論最大濃度ではNaClO+2H+2e→NaCl+HOの反応消費分をカバーした上で大気圧時の飽和水素濃度1.6mg/Lを満足する溶解濃度には至らないことより、3気圧(0.2MPa)における1.57mg/L×(2/3)×3気圧=3.14mg/Lなる大気圧2倍量の最大溶解濃度となる溶解量を得ることが望ましく、加圧は0.1MPa以上で隔膜の耐圧強度(0.4MPa程度)を考慮すると、0.2MPa付近を中心に0.1~0.3MPaの範囲内で行われることが望ましく、特に0.2~0.3MPaの範囲内がさらに望ましいこととなる。 Pressurized drinking water is supplied into the cathode chamber 12c through the water inlet 12a. In this case, the water pressure is set in a range of 0.1 to 0.3 MPa suitable for dissolving hydrogen gas generated by electrolysis. Hydrogen gas should be dissolved in water under pressure, which follows Henry's law. That is, the dissolved oxygen concentration in water at 25 ° C. open to the atmosphere is 8.09 mg / L, the partial pressure ratio of dissolved oxygen is 8.09 / 40.44 × 100 = 20%, and nitrogen is 80%. . When this water becomes 2 atm (0.1 MPa), the partial pressure ratio of oxygen is 10%, the partial pressure ratio of nitrogen is 40%, and a partial pressure frame is formed in which hydrogen dissolves, and a maximum of 50% can be dissolved. It becomes. In other words, 1.57 mg / L × (1/2) × 2 atm = 1.57 mg / L is the maximum solubility, which is close to the maximum solubility of 1.6 mg / L at atmospheric pressure. Since the reaction consumption of NaClO + 2H + + 2e → NaCl + H 2 O is covered and the solution concentration does not reach a saturated hydrogen concentration of 1.6 mg / L at atmospheric pressure, 1 at 3 atm (0.2 MPa) It is desirable to obtain a dissolution amount that provides a maximum dissolution concentration of twice the atmospheric pressure of .57 mg / L × (2/3) × 3 atmospheric pressure = 3.14 mg / L, and the pressure is 0.1 MPa or more and the pressure resistance of the diaphragm Considering the strength (about 0.4 MPa), it is desirable to be performed within the range of 0.1 to 0.3 MPa centered around 0.2 MPa, and more preferably within the range of 0.2 to 0.3 MPa. To become.
 隔膜15は、前述の如く加圧された飲料水によるセル透過水圧を受けても破壊されない耐圧を有している。また、隔膜15は、加圧水が陽極層13側の陽極室に流出しない透水性を有している。このため、加圧された飲料水を陰極室12cに供給してもその飲料水が陽極室11cに漏水することがなく、陽極室11c側での水処理が不要であり、効率の良い水素ガス発生機能を長時間にわたって維持することができる。 The diaphragm 15 has a pressure resistance that does not break even when subjected to the cell permeation water pressure by the pressurized drinking water as described above. Moreover, the diaphragm 15 has water permeability that prevents pressurized water from flowing out into the anode chamber on the anode layer 13 side. For this reason, even if pressurized drinking water is supplied to the cathode chamber 12c, the drinking water does not leak into the anode chamber 11c, water treatment on the anode chamber 11c side is unnecessary, and efficient hydrogen gas. The generating function can be maintained for a long time.
 さらに、隔膜15は、膜内にできるだけ塩分の溜まらない薄膜である。即ち、隔膜15は、陰極層14側の陰極面に接触した加圧水によって膜内の水溶性固形物を希釈可能である含水率を有している。これにより、隔膜15内においてなされる隔膜内固形物の酸化反応・還元反応が高濃度状態で過激に反応することはなく、2eイオン分による酸化還元電子相殺が大きくならず、水素ガス発生量の低下が抑止される。 Furthermore, the diaphragm 15 is a thin film in which the salt content does not accumulate in the film as much as possible. That is, the diaphragm 15 has a water content that can dilute the water-soluble solid matter in the film by pressurized water that is in contact with the cathode surface on the cathode layer 14 side. As a result, the oxidation / reduction reaction of the solid matter in the diaphragm performed in the diaphragm 15 does not react drastically in a high concentration state, and the redox electron cancellation due to 2e ions does not increase, and the amount of hydrogen gas generated The decline is suppressed.
 固体高分子形電解では、陽極側に陰極室12cから固体高分子膜である隔膜15の含水を通して水が供給されると、図7のbの付近で、HO→1/2O↑+2H+2eの反応が起きてaの付近から酸素ガスが放出され、bの付近から隔膜15を通じて水素イオンが陰極側に引き寄せられ、cの付近で2H+2e→H↑の反応が起き、dの付近で水素ガスが陰極室12c内の水に溶解することで水素水の生成が行われる。 In solid polymer electrolysis, when water is supplied from the cathode chamber 12c to the anode side through the water content of the diaphragm 15 which is a solid polymer film, H 2 O → 1 / 2O 2 ↑ + 2H in the vicinity of b in FIG. A + + 2e reaction occurs, oxygen gas is released from the vicinity of a, hydrogen ions are attracted from the vicinity of b through the diaphragm 15 to the cathode side, and a reaction of 2H + + 2e → H 2 ↑ occurs near c. , D is dissolved in water in the cathode chamber 12c in the vicinity of d to generate hydrogen water.
 陰極室12cに供給される飲料水としては代表的には水道水があり、この水道水にはカルシウムイオンやマグネシウムイオン等の金属イオンが含まれている。水道水が電気分解によって水素ガスや酸素ガスに分解されればカルシウムイオンやマグネシウムイオン等の溶解金属イオンの濃度は濃縮されて高くなる。このように、隔膜15及び陰極層14間並びにその近傍がアルカリ性となり、カルシウムイオンやマグネシウムイオンの溶解濃度が高くなれば隔膜15及び陰極層14間並びにその近傍においてカルシウムスケールやマグネシウムスケールが生じるのは必然の現象であり、飲料水を流水することでこのようなスケール発生を防止しようとしても、陰極室12cが0.2MPa程度に常時加圧された加圧通水下では、隔膜15及び陰極層14間の隙間まではスケール発生を防止することが難しく、結局、長期使用においては陰極層14の表面にカルシウムスケールやマグネシウムスケールが早期に付着する結果となり、電気分解能力が大きく低下して水素水濃度が低下することとなる。 The drinking water supplied to the cathode chamber 12c is typically tap water, which contains metal ions such as calcium ions and magnesium ions. If tap water is decomposed into hydrogen gas or oxygen gas by electrolysis, the concentration of dissolved metal ions such as calcium ions and magnesium ions is concentrated and increased. Thus, between the diaphragm 15 and the cathode layer 14 and the vicinity thereof becomes alkaline, and when the dissolved concentration of calcium ions and magnesium ions is increased, calcium scale and magnesium scale are generated between the diaphragm 15 and the cathode layer 14 and in the vicinity thereof. Even if it is an inevitable phenomenon and it is going to prevent such scale generation | occurrence | production by flowing drinking water, the diaphragm 15 and the cathode layer are under the pressurized water flow in which the cathode chamber 12c was constantly pressurized to about 0.2 MPa. It is difficult to prevent the generation of scale up to the gap between 14, and as a result, in the long-term use, calcium scale and magnesium scale are attached to the surface of the cathode layer 14 at an early stage. The concentration will decrease.
 また、隔膜15が陽極層13に常時押し付けられ、電極板の窪みの中に隔膜15が押し付けられている状態であるため、電極板の角部で隔膜15に亀裂が生じたり、隔膜15の応力劣化が発生することとなる。その結果、陽極室11cへの漏水が多くなり、漏水中には飲料水への酸化による不純物質が混入される危険性が出てくることから、この漏水は飲用できないものとなる。 Further, since the diaphragm 15 is constantly pressed against the anode layer 13 and the diaphragm 15 is pressed into the depression of the electrode plate, the diaphragm 15 is cracked at the corners of the electrode plate, or the stress of the diaphragm 15 is increased. Deterioration will occur. As a result, water leakage into the anode chamber 11c increases, and there is a risk that impurities in the water leakage will be mixed due to oxidation into drinking water, so this water leakage cannot be taken.
 そこで本発明では、電気分解を行う第1の状態(水素水取水時、電解時)においては、陰極室12cに陽極室11c内の圧力(陽極室11cの水若しくは気体の単独圧力又は水及び気体の混合圧力、例えば0.03~0.1MPa)より高い所定圧力以上(例えば、0.1~0.3MPa)の加圧水を供給するように構成することにより、電極板の窪みの中に隔膜15が押しつけられるのを弱め、電極板の角部で隔膜15に亀裂が生じたり、隔膜15の応力劣化が生じることを防止している。さらに、新しい加圧水が隔膜15内と隔膜15及び陰極層14の隙間とに供給される。一方、陰極室12cに飲料水が供給されていない第2の状態(水素水取水休止時、電解休止時)においては、陽極室11cの圧力(陽極室11cの水若しくは気体の単独圧力又は水及び気体の混合圧力)が、陰極室12cの圧力(陰極室12cの水及び気体の混合圧力)より高くなるように構成することにより、隔膜15が陰極層12cに押し付けられて、隔膜15及び陰極層12c間の隙間に溜まった濃縮水は陰極室12c内に押し戻されることとなる。次いで、第1の状態において陰極室12cに陽極室11C内の圧力より高い圧力を持った加圧水が供給されたときに、隔膜15及び陰極層14の隙間に濃縮が希釈された新しい加圧水が供給される。この第1の状態と第2の状態とで、隔膜15はピストン運動、即ち微小な鼓動による水のポンプ現象を繰り返すこととなる。このように構成することにより、本発明によれば、水道水などの溶解固形分の多い水であっても事前に脱塩処理することが不要となり、電極層に多量のスケールが付着することがなく、長期に渡って使用することが可能となる。 Therefore, in the present invention, in the first state in which electrolysis is performed (during hydrogen water intake and electrolysis), the pressure in the anode chamber 11c (single pressure of water or gas in the anode chamber 11c or water and gas in the anode chamber 11c) The pressure of the pressure is higher than a predetermined pressure (for example, 0.1 to 0.3 MPa) higher than the mixing pressure (for example, 0.03 to 0.1 MPa). Is weakened to prevent the diaphragm 15 from cracking at the corners of the electrode plate and the stress deterioration of the diaphragm 15 from occurring. Further, new pressurized water is supplied into the diaphragm 15 and the gap between the diaphragm 15 and the cathode layer 14. On the other hand, in the second state in which no drinking water is supplied to the cathode chamber 12c (when hydrogen water intake is suspended, when electrolysis is suspended), the pressure in the anode chamber 11c (single pressure of water or gas in the anode chamber 11c or water and water) By configuring the gas mixture pressure to be higher than the pressure in the cathode chamber 12c (water and gas mixture pressure in the cathode chamber 12c), the diaphragm 15 is pressed against the cathode layer 12c, and the diaphragm 15 and the cathode layer The concentrated water accumulated in the gap between 12c is pushed back into the cathode chamber 12c. Next, when pressurized water having a pressure higher than the pressure in the anode chamber 11C is supplied to the cathode chamber 12c in the first state, new pressurized water whose concentration is diluted is supplied to the gap between the diaphragm 15 and the cathode layer 14. The In the first state and the second state, the diaphragm 15 repeats the piston movement, that is, the water pumping phenomenon due to minute pulsations. By configuring in this way, according to the present invention, it is not necessary to carry out a desalting treatment in advance even for water with a large amount of dissolved solids such as tap water, and a large amount of scale may adhere to the electrode layer. It can be used over a long period of time.
 第1の状態(水素水取水時、電解時)において、陰極室12cに加圧供給される飲料水の水圧は、電気分解によって生成された水素ガスが溶解するのに適した0.2~0.3MPaの範囲に設定する理由は前述した通りである。 In the first state (during hydrogen water intake and electrolysis), the water pressure of the drinking water supplied under pressure to the cathode chamber 12c is 0.2 to 0 suitable for dissolving the hydrogen gas generated by electrolysis. The reason for setting in the range of 3 MPa is as described above.
 第1の状態(水素水取水時、電解時)及び第2の状態(水素水取水休止時、電解休止時)において、陽極室11cの圧力は、望ましくは0.03~0.1MPaの範囲の圧力で設定するのが良い。この下限圧力の0.03MPaは、第2の状態時に陰極室12cに供給されていた加圧水を停止してこの陰極室12cが大気開放されると、陰極室12cの圧力は0MPaとなるので、陽極室11cの圧力はこれより高い圧力、即ち0.01MPaとすることが望まれ、さらに、隔膜15のピストン移動による圧力減少が0.02MPa見込まれるので、陽極室11cの圧力を、0.01MPa+0.02MPa=0.03MPa以上が望ましいとした。また、上限圧力0.1MPaは、陰極層14及び陽極層13の隙間を隔膜15の膜厚の93.7%の厚みに調整し、陰極室12cに0.2MPaの加圧水を印加して電気分解するとき、陽極室11cの圧力を0.1MPaより大きくすると、隔膜15が0.3MPaの圧力で押圧されて薄くなり、電極層との接触が弱くなって一定の電流を得るために電圧を(1V以上)上げる必要があることから、不要な電力消費を抑えるために、0.1MPa以下が望ましいとした。 In the first state (at the time of hydrogen water intake and electrolysis) and the second state (at the time of hydrogen water intake stop and electrolysis stop), the pressure in the anode chamber 11c is desirably in the range of 0.03 to 0.1 MPa. It is good to set by pressure. The lower limit pressure of 0.03 MPa is such that when the pressurized water supplied to the cathode chamber 12c in the second state is stopped and the cathode chamber 12c is opened to the atmosphere, the pressure in the cathode chamber 12c becomes 0 MPa. It is desirable that the pressure in the chamber 11c be higher than that, that is, 0.01 MPa, and further, a pressure decrease due to the movement of the piston of the diaphragm 15 is expected to be 0.02 MPa. Therefore, the pressure in the anode chamber 11c is set to 0.01 MPa + 0. 02 MPa = 0.03 MPa or more is desirable. The upper limit pressure of 0.1 MPa is adjusted by adjusting the gap between the cathode layer 14 and the anode layer 13 to a thickness of 93.7% of the thickness of the diaphragm 15, and applying 0.2 MPa of pressurized water to the cathode chamber 12c for electrolysis. When the pressure in the anode chamber 11c is greater than 0.1 MPa, the diaphragm 15 is pressed and thinned at a pressure of 0.3 MPa, the contact with the electrode layer is weakened, and a voltage (( In order to suppress unnecessary power consumption, 0.1 MPa or less is desirable.
 図8は本実施形態の水素水の製造装置のシステム構成を概略的に示している。 FIG. 8 schematically shows the system configuration of the hydrogen water production apparatus of this embodiment.
 同図において、10は前述した電解槽、80は飲料水を貯留しているタンク、81はタンク80に接続されているポンプ、82はポンプ81と電解槽10の陰極室12cとに接続されている減圧弁、83は電解槽10の陽極室11cの出口に接続されているリリーフ弁、84は電解槽10の陰極室12cに接続されている流量調整弁、85は流量調整弁84に接続されている電磁弁、86は電解槽10の電気分解を制御すると共にポンプ81及び電磁弁85の作動を制御する制御装置をそれぞれ示している。 In the figure, 10 is the above-described electrolytic cell, 80 is a tank storing drinking water, 81 is a pump connected to the tank 80, 82 is connected to the pump 81 and the cathode chamber 12c of the electrolytic cell 10. The pressure reducing valve 83 is a relief valve connected to the outlet of the anode chamber 11 c of the electrolytic cell 10, 84 is a flow rate adjusting valve connected to the cathode chamber 12 c of the electrolytic cell 10, and 85 is connected to the flow rate adjusting valve 84. The electromagnetic valve 86 is a control device for controlling the electrolysis of the electrolytic cell 10 and controlling the operation of the pump 81 and the electromagnetic valve 85, respectively.
 飲料水はタンク80に貯められ、タンク80からポンプ81により、減圧弁82から電解槽10の陰極室12cに送られて水素水が生成され、生成された水素水は電解槽10の陰極室12c、流量調整弁84、及び電磁弁85の順に送水されて水素水の取出し(取水)が行われる。 Drinking water is stored in the tank 80, and pumped from the tank 80 and sent from the pressure reducing valve 82 to the cathode chamber 12c of the electrolytic cell 10 to generate hydrogen water. The generated hydrogen water is the cathode chamber 12c of the electrolytic cell 10. Then, the flow rate adjusting valve 84 and the electromagnetic valve 85 are fed in this order to take out hydrogen water (withdrawal).
 制御装置86はプログラム制御可能なコンピュータを有しており、ポンプ81の作動、電解槽10の電気分解、及び電磁弁85の作動がコンピュータによって制御されることにより、水素水の生成が行われるように構成されている。減圧弁82は、ポンプ81によって加圧される飲料水の圧力を0.2~0.3MPaの範囲で調整するように構成されている。また、リリーフ弁83は、その放出圧が0.03~0.1MPaの範囲となるように構成されている。これにより、電解槽10の陽極室11c内の圧力はリリーフ弁83によって調整された圧力以下に維持される。取水速度は流量調整弁84によって調整される。 The control device 86 has a computer that can be programmed, and the operation of the pump 81, the electrolysis of the electrolytic cell 10, and the operation of the electromagnetic valve 85 are controlled by the computer so that hydrogen water is generated. It is configured. The pressure reducing valve 82 is configured to adjust the pressure of drinking water pressurized by the pump 81 in the range of 0.2 to 0.3 MPa. The relief valve 83 is configured such that the discharge pressure is in the range of 0.03 to 0.1 MPa. Thereby, the pressure in the anode chamber 11 c of the electrolytic cell 10 is maintained below the pressure adjusted by the relief valve 83. The water intake speed is adjusted by the flow rate adjusting valve 84.
 図9は本実施形態の水素水の製造装置における制御装置86の制御の流れを概略的に示している。 FIG. 9 schematically shows a control flow of the control device 86 in the hydrogen water production apparatus of the present embodiment.
 同図に示すように、水素水の取水を行う場合は、まず、電磁弁85の開成を行う(ステップS1)。次に、ポンプ81の運転開始を行い、電解槽10に電源供給を行って電気分解を開始させる(ステップS2)。なお、ポンプ81の運転開始と同時に電解槽10に電源供給を行って電気分解の開始を行っても良い(ステップS2)。この電気分解の際の飲料水の圧力、換言すれば、電解槽10の陰極室12cの飲料水の圧力は、減圧弁82によって0.2~0.3MPaの範囲の圧力に調整される。一方、電解槽10の陽極室11cの圧力は、電気分解により発生する酸素ガスを貯めることにより昇圧し、リリーフ弁83によって0.03~0.1MPaの圧力に調整される。このような構成により、ポンプ81の運転時(第1の状態時)には、電解槽10の陽極室11cの圧力は電解槽10の陰極室12cの圧力未満に制御される。 As shown in the figure, when water is taken in, first, the solenoid valve 85 is opened (step S1). Next, the operation of the pump 81 is started, and power is supplied to the electrolytic cell 10 to start electrolysis (step S2). Note that electrolysis may be started by supplying power to the electrolytic cell 10 simultaneously with the start of operation of the pump 81 (step S2). The pressure of drinking water during this electrolysis, in other words, the pressure of drinking water in the cathode chamber 12c of the electrolytic cell 10 is adjusted to a pressure in the range of 0.2 to 0.3 MPa by the pressure reducing valve 82. On the other hand, the pressure in the anode chamber 11 c of the electrolytic cell 10 is increased by storing oxygen gas generated by electrolysis, and adjusted to a pressure of 0.03 to 0.1 MPa by the relief valve 83. With such a configuration, when the pump 81 is in operation (in the first state), the pressure in the anode chamber 11c of the electrolytic cell 10 is controlled to be less than the pressure in the cathode chamber 12c of the electrolytic cell 10.
 その後、水素水の取水終了か否かを判別し続け(ステップS3)、水素水の取水終了の場合は、ポンプ81の運転を停止する(ステップS4)。次いで、電解槽10の電気分解を終了する(ステップS5)。その後、電磁弁85を閉成させる(ステップS6)。ポンプ81の運転停止を先に行うのは、電解槽10の陰極室12c内の圧力を大気圧(0MPa)と同等にしてから電磁弁85を閉成する必要があるためである。このように、電解槽10の陰極室12cの圧力は大気圧(0MPa)に制御され、一方、電解槽10の陽極室11cの圧力は、リリーフ弁83によって0.03~0.1MPaの圧力に調整される。このような構成により、取水休止時(第2の状態時)には、電解槽10の陰極室12cの圧力は電解槽10の陽極室11cの圧力未満に制御される。なお、この場合、陽極室11c内の高い圧力の気体が隔膜15を抜けて陰極室12c内へ抜けることはない。これは、隔膜15及び陽極層14の間には水膜が張られている状態でありこの水膜が気体の透過を効果的に防止するためである。 Thereafter, it is continuously determined whether or not the intake of hydrogen water has been completed (step S3). If the intake of hydrogen water has been completed, the operation of the pump 81 is stopped (step S4). Next, the electrolysis of the electrolytic cell 10 is finished (step S5). Thereafter, the electromagnetic valve 85 is closed (step S6). The operation of the pump 81 is stopped first because the solenoid valve 85 needs to be closed after the pressure in the cathode chamber 12c of the electrolytic cell 10 is made equal to the atmospheric pressure (0 MPa). Thus, the pressure in the cathode chamber 12c of the electrolytic cell 10 is controlled to atmospheric pressure (0 MPa), while the pressure in the anode chamber 11c of the electrolytic cell 10 is adjusted to a pressure of 0.03 to 0.1 MPa by the relief valve 83. Adjusted. With such a configuration, the pressure in the cathode chamber 12c of the electrolytic cell 10 is controlled to be lower than the pressure in the anode chamber 11c of the electrolytic cell 10 when the water intake is stopped (in the second state). In this case, the high-pressure gas in the anode chamber 11c does not escape through the diaphragm 15 and into the cathode chamber 12c. This is because a water film is stretched between the diaphragm 15 and the anode layer 14 and this water film effectively prevents gas permeation.
 図10は本発明の他の実施形態として、水素水の製造装置のシステム構成を概略的に示している。 FIG. 10 schematically shows a system configuration of an apparatus for producing hydrogen water as another embodiment of the present invention.
 同図において、10は前述した電解槽、80は飲料水を貯留しているタンク、81はタンク80に接続されているポンプ、82はポンプ81と電解槽10の陰極室12cとに接続されている減圧弁、84は電解槽10の陰極室12cに接続されている流量調整弁、85は流量調整弁84に接続されている電磁弁、87は電解槽10の陽極室11cの出口に接続されている電磁弁、88は電磁弁87に接続されている流量調整弁、89は電解槽10の陽極室11cの出口に接続されている圧力計、90は電解槽10の電気分解、並びにポンプ81及び電磁弁85の作動を制御すると共に、圧力計89の検出値を受け取り、電磁弁87の作動を制御する制御装置をそれぞれ示している。 In the figure, 10 is the above-described electrolytic cell, 80 is a tank storing drinking water, 81 is a pump connected to the tank 80, 82 is connected to the pump 81 and the cathode chamber 12c of the electrolytic cell 10. The pressure reducing valve 84 is a flow rate adjusting valve connected to the cathode chamber 12c of the electrolytic cell 10, 85 is an electromagnetic valve connected to the flow rate adjusting valve 84, and 87 is connected to the outlet of the anode chamber 11c of the electrolytic cell 10. 88 is a flow rate adjusting valve connected to the electromagnetic valve 87, 89 is a pressure gauge connected to the outlet of the anode chamber 11c of the electrolytic cell 10, 90 is electrolysis of the electrolytic cell 10, and a pump 81 And a control device for controlling the operation of the electromagnetic valve 85, receiving the detection value of the pressure gauge 89, and controlling the operation of the electromagnetic valve 87.
 飲料水はタンク80に貯められ、タンク80からポンプ81により、減圧弁82から電解槽10の陰極室12cに送られて水素水が生成され、生成された水素水は電解槽10の陰極室12c、流量調整弁84、及び電磁弁85の順に送水されて水素水の取出し(取水)が行われる。 Drinking water is stored in the tank 80, and pumped from the tank 80 and sent from the pressure reducing valve 82 to the cathode chamber 12c of the electrolytic cell 10 to generate hydrogen water. The generated hydrogen water is the cathode chamber 12c of the electrolytic cell 10. Then, the flow rate adjusting valve 84 and the electromagnetic valve 85 are fed in this order to take out hydrogen water (withdrawal).
 制御装置90はプログラム制御可能なコンピュータを有しており、ポンプ81の作動、電解槽10の電気分解、圧力計89の検出値を受け取り、並びに電磁弁85及び87の作動がコンピュータによって制御されることにより、水素水の生成が行われるように構成されている。減圧弁82は、ポンプ81によって加圧される飲料水の圧力を0.2~0.3MPaの範囲で調整するように構成されている。また、圧力計89の検出値に応じて電磁弁87が制御されることにより、電解槽10の陽極室11cの発生酸素ガスによる圧力が0.03~0.1MPaの範囲となるように構成されている。取水速度は流量調整弁84によって調整される。 The control device 90 has a computer that can be controlled by a program. The operation of the pump 81, the electrolysis of the electrolytic cell 10, the detected value of the pressure gauge 89, and the operation of the solenoid valves 85 and 87 are controlled by the computer. Thus, the hydrogen water is generated. The pressure reducing valve 82 is configured to adjust the pressure of drinking water pressurized by the pump 81 in the range of 0.2 to 0.3 MPa. Further, the electromagnetic valve 87 is controlled in accordance with the detection value of the pressure gauge 89, so that the pressure of the generated oxygen gas in the anode chamber 11c of the electrolytic cell 10 is in the range of 0.03 to 0.1 MPa. ing. The water intake speed is adjusted by the flow rate adjusting valve 84.
 図11は本実施形態の水素水の製造装置における制御装置90の制御の流れを概略的に示している。 FIG. 11 schematically shows a control flow of the control device 90 in the hydrogen water production apparatus of the present embodiment.
 同図に示すように、水素水の取水を行う場合は、まず、電磁弁85の開成を行う(ステップS11)。次に、ポンプ81の運転開始を行い、電解槽10に電源供給を行って電気分解を開始させる(ステップS12)。なお、ポンプ81の運転開始と同時に電解槽10に電源供給を行って電気分解を開始しても良い(ステップS12)。この電気分解の際の飲料水の圧力、換言すれば、電解槽10の陰極室12cの飲料水の圧力は、減圧弁82によって0.2~0.3MPaの範囲の圧力に調整される。一方、電解槽10の陽極室11cの発生酸素ガスによる圧力は、圧力計89及び電磁弁の作動、並びに制御装置90の制御によって0.03~0.1MPaの圧力に調整される。この陰極室12cの圧力調整は、圧力計89の検出値を受け取り(ステップS13)、その受け取った検出値、即ち、電解槽10の陽極室11cの測定した圧力値が所定圧力(0.03~0.1MPaの圧力範囲)以内(境界を含む)であるか否か判別し(ステップS14)、測定した圧力値が所定圧力(0.03~0.1MPaの圧力範囲)以内であると判別した場合(YESの場合)は、電磁弁87を閉成するか、閉を維持する(ステップS16)。ステップS14において、測定した圧力値が所定圧力(0.03~0.1MPaの圧力範囲)以内ではないと判別した場合(NOの場合)は、電磁弁87を開成させ(ステップS15)、ステップS13において圧力計89の検出値を受け取り、ステップS14の判別を再度行う。電磁弁87の開閉を行う場合、流量調整弁88の作用により一定減圧速度となるように開閉が行われて圧力が低下せしめられ、陽極室11cの圧力値が所望の範囲内に調整される。これにより、電解槽10の陽極室11cの圧力は0.03~0.1MPaの圧力に制御される。このような構成により、電気分解時(第1の状態時)には、電解槽10の陽極室11cの圧力は電解槽10の陰極室12cの圧力未満に制御される。 As shown in the figure, when water is taken in, first, the solenoid valve 85 is opened (step S11). Next, the operation of the pump 81 is started, and power is supplied to the electrolytic cell 10 to start electrolysis (step S12). The electrolysis may be started by supplying power to the electrolytic cell 10 simultaneously with the start of operation of the pump 81 (step S12). The pressure of drinking water during this electrolysis, in other words, the pressure of drinking water in the cathode chamber 12c of the electrolytic cell 10 is adjusted to a pressure in the range of 0.2 to 0.3 MPa by the pressure reducing valve 82. On the other hand, the pressure of the generated oxygen gas in the anode chamber 11 c of the electrolytic cell 10 is adjusted to a pressure of 0.03 to 0.1 MPa by the operation of the pressure gauge 89 and the electromagnetic valve and the control of the control device 90. The pressure adjustment in the cathode chamber 12c receives the detection value of the pressure gauge 89 (step S13), and the received detection value, that is, the pressure value measured in the anode chamber 11c of the electrolytic cell 10 is a predetermined pressure (0.03 to 0.03). It is determined whether or not the pressure range is within 0.1 MPa (including the boundary) (step S14), and it is determined that the measured pressure value is within a predetermined pressure (pressure range of 0.03 to 0.1 MPa). In the case (in the case of YES), the electromagnetic valve 87 is closed or kept closed (step S16). When it is determined in step S14 that the measured pressure value is not within the predetermined pressure (pressure range of 0.03 to 0.1 MPa) (in the case of NO), the electromagnetic valve 87 is opened (step S15), and step S13 is performed. In step S14, the detection value of the pressure gauge 89 is received, and the determination in step S14 is performed again. When the electromagnetic valve 87 is opened and closed, the pressure is reduced by opening and closing the valve so that the pressure is reduced by the action of the flow rate adjusting valve 88, and the pressure value of the anode chamber 11c is adjusted within a desired range. As a result, the pressure in the anode chamber 11c of the electrolytic cell 10 is controlled to a pressure of 0.03 to 0.1 MPa. With such a configuration, the pressure in the anode chamber 11c of the electrolytic cell 10 is controlled to be less than the pressure in the cathode chamber 12c of the electrolytic cell 10 during electrolysis (in the first state).
 その後、水素水の取水終了か否かを判別し続け(ステップS17)、水素水の取水終了の場合は、ポンプ81の運転を停止する(ステップS18)。次いで、電解槽10の電気分解を終了する(ステップS19)。その後、電磁弁85を閉成させる(ステップS20)。ポンプ81の運転停止を先に行うのは、電解槽10の陰極室12c内の圧力を大気圧(約0.1MPa)と同等にしてから電磁弁85を閉成する必要があるためである。そのようにして電解槽10の陰極室12cの圧力は大気開放によって大気圧(0MPa)に制御される。このような構成により、取水休止時(第2の状態時)には、電解槽10の陰極室12cの圧力は電解槽10の陽極室11cの圧力未満に制御される。流量調整弁88に代えて、固定流量のオリフィスを用いても良い。なお、この場合、陽極室11c内の高い圧力の気体が隔膜15を抜けて陰極室12c内へ抜けることはない。これは、隔膜15及び陽極層14の間には水膜が張られている状態でありこの水膜が気体の透過を効果的に防止するためである。 Thereafter, it is continuously determined whether or not the intake of hydrogen water has ended (step S17). If the intake of hydrogen water has ended, the operation of the pump 81 is stopped (step S18). Next, the electrolysis of the electrolytic cell 10 is finished (step S19). Thereafter, the electromagnetic valve 85 is closed (step S20). The operation of the pump 81 is stopped first because the solenoid valve 85 needs to be closed after the pressure in the cathode chamber 12c of the electrolytic cell 10 is made equal to the atmospheric pressure (about 0.1 MPa). Thus, the pressure in the cathode chamber 12c of the electrolytic cell 10 is controlled to atmospheric pressure (0 MPa) by opening to the atmosphere. With such a configuration, the pressure in the cathode chamber 12c of the electrolytic cell 10 is controlled to be lower than the pressure in the anode chamber 11c of the electrolytic cell 10 when the water intake is stopped (in the second state). Instead of the flow rate adjusting valve 88, a fixed flow rate orifice may be used. In this case, the high-pressure gas in the anode chamber 11c does not escape through the diaphragm 15 and into the cathode chamber 12c. This is because a water film is stretched between the diaphragm 15 and the anode layer 14 and this water film effectively prevents gas permeation.
 以上説明したように、本実施形態によれば、隔膜15が陰極層14を介して接触する陰極室12cに所定圧力以上の飲料水が供給されている取水(電解)時には、陽極室11cより高い圧力を持った飲料水(加圧水)によって隔膜15内と隔膜15及び陰極層14間の隙間とに水が供給され、この水が電気分解されることによって陰極層14の表面で発生した水素ガスが飲料水に溶解して水素水が生成される。その際に、隔膜15及び陰極層14間の隙間に、溜まった水のカルシウムやマグネシウム等の溶解固形物が濃縮されることとなるが、陰極室12cに飲料水が供給されない取水休止(電解休止)時には、陽極室11cの圧力を陰極室12cの圧力より高くすることによって隔膜15が陰極層14に押し付けられることとなり、隔膜15及び陰極層14間の隙間に溜まった、カルシウムやマグネシウム等の溶解固形物が濃縮された水は陰極室12c内に押し出される結果となり、次の取水(電解)時に、陰極室12cに陽極室11cより高い圧力を持った飲料水が供給されたときには、隔膜15内並びに隔膜15及び陰極層14間の隙間に濃縮度が低減された水が供給されて溶解固形物が押し出されることとなる。即ち、陰極室12cの圧力と陽極室11cの圧力と交互に変化させることによって、陰極層14と陽極層13との間で隔膜15をピストン運動させることにより陰極層14及び隔膜15間の隙間に存在する水を入れ替えてカルシウムやマグネシウム等のスケールを除去している。 As described above, according to the present embodiment, at the time of water intake (electrolysis) in which drinking water having a predetermined pressure or higher is supplied to the cathode chamber 12c with which the diaphragm 15 contacts via the cathode layer 14, it is higher than the anode chamber 11c. Water is supplied to the inside of the diaphragm 15 and the gap between the diaphragm 15 and the cathode layer 14 by drinking water (pressurized water) having pressure, and the hydrogen gas generated on the surface of the cathode layer 14 is electrolyzed. Hydrogen water is generated by dissolving in drinking water. At that time, dissolved solids such as calcium and magnesium accumulated in the gap between the diaphragm 15 and the cathode layer 14 are concentrated, but the water intake pause (electrolysis pause) in which drinking water is not supplied to the cathode chamber 12c. ) In some cases, the diaphragm 15 is pressed against the cathode layer 14 by making the pressure in the anode chamber 11c higher than the pressure in the cathode chamber 12c, and dissolution of calcium, magnesium, etc. accumulated in the gap between the diaphragm 15 and the cathode layer 14 The water in which the solid matter is concentrated is pushed into the cathode chamber 12c, and when drinking water having a higher pressure than the anode chamber 11c is supplied to the cathode chamber 12c at the next water intake (electrolysis), the inside of the diaphragm 15 In addition, water having a reduced concentration is supplied to the gap between the diaphragm 15 and the cathode layer 14, and the dissolved solid matter is pushed out. That is, by alternately changing the pressure in the cathode chamber 12c and the pressure in the anode chamber 11c, the diaphragm 15 is moved between the cathode layer 14 and the anode layer 13 by piston movement, so that the gap between the cathode layer 14 and the diaphragm 15 is obtained. The existing water is replaced to remove scales such as calcium and magnesium.
 また、本実施形態によれば、固体高分子形電解を利用しており、無機物溶解で電導性を有する飲料水を陰極室12cに加圧供給し、陰極表面上に発生する水素ガスを飲料水に溶解させ水素水を生成している。固体高分子形電解では、陽極側では、HO→1/2O↑+2H+2eの反応が、陰極側では、2H+2e→H↑の反応が起きるので、直接飲料水の電解でありながらアルカリ水電解のようにpH9以上のアルカリ性とはならず、また、次亜塩素酸イオンの混入も制限された水素水の製造が可能となる。さらに、飲料水を使用しているため原水からRO水や純水を作る装置が不要であり、また、この飲料水が無機固形物を含有し電導性を有して電解電圧値が下がることで電気分解時の発熱が少なく、さらに飲料水が外部から供給されていることから、電解槽の冷却装置が不要となり、装置の製造コストを低減化することができる。 In addition, according to the present embodiment, solid polymer electrolysis is utilized, and drinking water having conductivity due to inorganic dissolution is supplied to the cathode chamber 12c under pressure, and hydrogen gas generated on the cathode surface is supplied to the drinking water. To produce hydrogen water. In solid polymer electrolysis, the reaction of H 2 O → 1 / 2O 2 ↑ + 2H + + 2e occurs on the anode side, and the reaction of 2H + + 2e → H 2 ↑ occurs on the cathode side. Although it is electrolysis, it does not become alkalinity of pH 9 or more unlike alkaline water electrolysis, and it is possible to produce hydrogen water in which mixing of hypochlorite ions is restricted. Furthermore, since drinking water is used, a device for making RO water or pure water from raw water is unnecessary, and this drinking water contains inorganic solids and has conductivity, and the electrolysis voltage value is lowered. Since there is little heat generation at the time of electrolysis and drinking water is supplied from the outside, a cooling device for the electrolytic cell becomes unnecessary, and the manufacturing cost of the device can be reduced.
 以下、一定の試験水をそれぞれ用いた比較例1及び2並びに実施例1及び2について、試験結果を説明する。 Hereinafter, test results will be described for Comparative Examples 1 and 2 and Examples 1 and 2 using a certain amount of test water, respectively.
 比較例1及び2は図12に示すシステム構成を有する水素水の製造装置で行われた。同図における、電解槽10、タンク80′、ポンプ81、減圧弁82、リリーフ弁83、流量調整弁84、電磁弁85、及び制御装置86は、図8に示した実施形態における各要素とほぼ同じ構成を有している。ただし、タンク80′には試験水が貯留されており、電解槽10の陽極室11cにはリリーフ弁が接続されておらず、この陽極室11cは大気開放されている。また、図12において、91は電気分解のための電源装置、92は電源装置91からの電解電流の切換スイッチ、93は電解電流を計測する電流計、94は試験水流量を計測する流量カウンタをそれぞれ示している。なお、電源装置91に付属している電圧計によって電解電圧が計測された。 Comparative Examples 1 and 2 were performed with a hydrogen water production apparatus having the system configuration shown in FIG. In the figure, the electrolytic cell 10, the tank 80 ', the pump 81, the pressure reducing valve 82, the relief valve 83, the flow rate adjusting valve 84, the electromagnetic valve 85, and the control device 86 are substantially the same as the elements in the embodiment shown in FIG. It has the same configuration. However, the test water is stored in the tank 80 ′, no relief valve is connected to the anode chamber 11 c of the electrolytic cell 10, and the anode chamber 11 c is open to the atmosphere. In FIG. 12, 91 is a power supply device for electrolysis, 92 is an electrolysis current selector switch from the power supply device 91, 93 is an ammeter that measures the electrolysis current, and 94 is a flow rate counter that measures the test water flow rate. Each is shown. The electrolytic voltage was measured with a voltmeter attached to the power supply device 91.
 試験水はタンク80′に貯められ、タンク80′からポンプ81により、減圧弁82及び流量カウンタ94を介して電解槽10の陰極室12cの順に送られて水素水が生成され、生成された水素水は電解槽10の陰極室12cから流量調整弁84及び電磁弁85を介して送水されて水素水が取水された。 The test water is stored in the tank 80 ', and is sent from the tank 80' by the pump 81 through the pressure reducing valve 82 and the flow rate counter 94 to the cathode chamber 12c of the electrolytic cell 10 in this order to generate hydrogen water. Water was fed from the cathode chamber 12c of the electrolytic cell 10 through the flow rate adjustment valve 84 and the electromagnetic valve 85, and hydrogen water was taken.
 制御装置86はプログラム制御可能なコンピュータを有しており、ポンプ81の作動、電解槽10の電気分解、及び電磁弁85の作動がコンピュータによって制御されることにより、水素水の生成が行われるように構成された。流量カウンタ94の計測値は制御装置に取り込まれた。減圧弁82は、ポンプ81によって加圧される飲料水の圧力を0.2~0.3MPaの範囲で調整するように構成されていた。電解槽10の陽極室11c内の圧力は大気圧に維持された。 The control device 86 has a computer that can be programmed, and the operation of the pump 81, the electrolysis of the electrolytic cell 10, and the operation of the electromagnetic valve 85 are controlled by the computer so that hydrogen water is generated. Configured. The measured value of the flow rate counter 94 was taken into the control device. The pressure reducing valve 82 was configured to adjust the pressure of drinking water pressurized by the pump 81 in the range of 0.2 to 0.3 MPa. The pressure in the anode chamber 11c of the electrolytic cell 10 was maintained at atmospheric pressure.
 実施例1及び2は図13に示すシステム構成を有する水素水の製造装置で行われた。同図における、電解槽10、タンク80′、ポンプ81、減圧弁82、流量調整弁84、電磁弁85、及び制御装置86は、図8に示した実施形態における各要素とほぼ同じ構成を有している。ただし、タンク80′には試験水が貯留されている。また、図12において、91は電気分解のための電源装置、92は電源装置91からの電解電流の切換スイッチ、93は電解電流を計測する電流計、94は試験水流量を計測する流量カウンタをそれぞれ示している。 Examples 1 and 2 were performed with a hydrogen water production apparatus having the system configuration shown in FIG. In the drawing, the electrolytic cell 10, the tank 80 ', the pump 81, the pressure reducing valve 82, the flow rate adjusting valve 84, the electromagnetic valve 85, and the control device 86 have substantially the same configuration as each element in the embodiment shown in FIG. is doing. However, test water is stored in the tank 80 '. In FIG. 12, 91 is a power supply device for electrolysis, 92 is an electrolysis current selector switch from the power supply device 91, 93 is an ammeter that measures the electrolysis current, and 94 is a flow rate counter that measures the test water flow rate. Each is shown.
 試験水はタンク80′に貯められ、タンク80′からポンプ81により、減圧弁82及び流量カウンタ94を介して電解槽10の陰極室12cの順に送られて水素水が生成され、生成された水素水は電解槽10の陰極室12cから流量調整弁84及び電磁弁85を介して送水されて水素水が取水された。 The test water is stored in the tank 80 ', and is sent from the tank 80' by the pump 81 through the pressure reducing valve 82 and the flow rate counter 94 to the cathode chamber 12c of the electrolytic cell 10 in this order to generate hydrogen water. Water was fed from the cathode chamber 12c of the electrolytic cell 10 through the flow rate adjustment valve 84 and the electromagnetic valve 85, and hydrogen water was taken.
 制御装置86はプログラム制御可能なコンピュータを有しており、ポンプ81の作動、電解槽10の電気分解、及び電磁弁85の作動がコンピュータによって制御されることにより、水素水の生成が行われるように構成された。流量カウンタ94の計測値は制御装置に取り込まれた。減圧弁82は、ポンプ81によって加圧される飲料水の圧力を0.2~0.3MPaの範囲で調整するように構成された。また、リリーフ弁83は、その放出圧が0.03~0.1MPaの範囲となるように構成された。 The control device 86 has a computer that can be programmed, and the operation of the pump 81, the electrolysis of the electrolytic cell 10, and the operation of the electromagnetic valve 85 are controlled by the computer so that hydrogen water is generated. Configured. The measured value of the flow rate counter 94 was taken into the control device. The pressure reducing valve 82 was configured to adjust the pressure of drinking water pressurized by the pump 81 in the range of 0.2 to 0.3 MPa. The relief valve 83 was configured such that the discharge pressure was in the range of 0.03 to 0.1 MPa.
 即ち、比較例1及び2においては、電解槽10の陽極室11cは大気圧(0MPa)に維持され、実施例1及び2においては、電解槽10の陽極室11cにはリリーフ弁83が設けられて0.03~0.1MPaの範囲の加圧状態に維持された。 That is, in Comparative Examples 1 and 2, the anode chamber 11c of the electrolytic cell 10 is maintained at atmospheric pressure (0 MPa). In Examples 1 and 2, the anode chamber 11c of the electrolytic cell 10 is provided with a relief valve 83. The pressure was maintained in the range of 0.03 to 0.1 MPa.
 比較例1及び2並びに実施例1及び2共に試験水としては、竜王町上水道水を直接使用した(脱塩素処理は行わなかった)。また、水温を15℃に調整した。試験水質は、表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
                 
In both Comparative Examples 1 and 2 and Examples 1 and 2, Ryuo-cho tap water was directly used as test water (dechlorination treatment was not performed). The water temperature was adjusted to 15 ° C. The test water quality was as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 比較例1及び2並びに実施例1及び2共に運転条件は以下の通りであった。
  a)陰極室通水圧   :   0.2MPa
  b)取 水 量    :   1,200mL/min
  c)電 極 板    :   50×99×5tチタンラス板に白金コート(エキスパンド仕様:LW6 SW3 W1)
  d)隔膜(固体高分子膜):   78×113 陽イオン交換膜
            組成: スチレン系共重合物のスルフォン酸ナトリウム塩 ポリオレフィン混合物
            膜厚: 0.16mm
          破裂強度: 0.53MPa
  e)陰陽電極板間隙間  : 0.15mm (実施例2は除く)
  f)取水・洗浄サイクル :
   [取水サイクル]
    取水運転  :  30秒間  (600mL水素水取水)
    休止(静置)  :  30秒間
   [電荷逆転洗浄サイクル]
    サイクル  :  取水40回サイクル毎に一回
    洗浄運転  :  20秒間(400mL酸性水排水)
    休止(静置)  :  40秒間
  g)電解電源   :   定電流・定電圧装置使用。定電流3.5A優先で、電解電圧値が17.8V以下では3.5Aで通電し、電解電圧値が17.8Vになった時点から電解電流値を低下させて17.8Vを維持した。なお、3.5Aで通電した時の水素発生量は30NmL/分であり、15℃で得られた水素水の溶存水素濃度は1.1mg/Lであった。
  h)目標取水量  :   最終目標水素水取水量は12,000L(12トン)とした。その理由は「家庭で3L/日の取水をするとして、一年では1,095L、装置としては10年使用可能とし10,950Lであり、目標は12トンとしたものである。
The operating conditions for Comparative Examples 1 and 2 and Examples 1 and 2 were as follows.
a) Cathode chamber water pressure: 0.2 MPa
b) Water intake amount: 1,200 mL / min
c) Electrode plate: 50 × 99 × 5t titanium lath plate with platinum coating (expanded specification: LW6 SW3 W1)
d) Membrane (solid polymer membrane): 78 × 113 Cation exchange membrane Composition: Sulfonate sodium salt of styrene copolymer Polyolefin mixture Film thickness: 0.16 mm
Burst strength: 0.53 MPa
e) Gap between Yin and Yang electrode plates: 0.15 mm (excluding Example 2)
f) Water intake / cleaning cycle:
[Intake cycle]
Intake operation: 30 seconds (600 mL hydrogen water intake)
Rest (stationary): 30 seconds [Charge reverse cleaning cycle]
Cycle: Water intake 40 times Once every cycle Washing operation: 20 seconds (400 mL acidic water drainage)
Rest (stationary): 40 seconds g) Electrolytic power source: Use constant current / constant voltage device. When the electrolysis voltage value was 17.8V or less, the constant current was given priority at 3.5A, and the current was supplied at 3.5A. From the time when the electrolysis voltage value reached 17.8V, the electrolysis current value was decreased and maintained at 17.8V. The amount of hydrogen generated when energized at 3.5 A was 30 NmL / min, and the dissolved hydrogen concentration of hydrogen water obtained at 15 ° C. was 1.1 mg / L.
h) Target water intake: The final target hydrogen water intake was 12,000 L (12 tons). The reason is “Assuming water intake of 3L / day at home, it is 1,095L in one year, 10,950L can be used for 10 years as a device, and the target is 12 tons.
(比較例1)
 従来より一般的に行われている方法であり、ポンプ81の停止と同時に電磁弁85を閉める方法である。システム構成は図12に示した通りであり、制御フローは図9に示した流れにおいて、ステップS4~S6の処理を同時に行ったものである。取水時及び取水休止時の陰極室12c及び陽極室11cの圧力は表2に示すごとくであった。
Figure JPOXMLDOC01-appb-T000002
(Comparative Example 1)
This is a method that is generally performed from the past, and is a method of closing the solenoid valve 85 simultaneously with the stop of the pump 81. The system configuration is as shown in FIG. 12, and the control flow is the flow shown in FIG. 9 in which the processes of steps S4 to S6 are performed simultaneously. Table 2 shows the pressures in the cathode chamber 12c and the anode chamber 11c during water intake and when water intake was stopped.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、この比較例1では、陽極室11cは、大気開放されているため、取水時(電解時)も取水休止時(電解休止時)も圧力が大気圧に維持されており、従って、陽極室11cの圧力は、陰極室12cの圧力未満に維持されている。このような比較例1において、取水水量(L)に対する電解電流値(A)及び電解電圧値(V)を測定した。その結果が図14に示されている。同図において、横軸は流量カウンタ94によって計測した水素水の取水水量(L)、縦軸は電解電流値(A)及び電解電圧値(V)をそれぞれ示している。 As shown in Table 2, in Comparative Example 1, since the anode chamber 11c is open to the atmosphere, the pressure is maintained at the atmospheric pressure during both water intake (electrolysis) and water intake stop (electrolysis stop). Therefore, the pressure in the anode chamber 11c is maintained below the pressure in the cathode chamber 12c. In such Comparative Example 1, the electrolysis current value (A) and the electrolysis voltage value (V) with respect to the water intake amount (L) were measured. The result is shown in FIG. In the figure, the horizontal axis represents the amount of hydrogen water taken in by the flow rate counter 94 (L), and the vertical axis represents the electrolysis current value (A) and the electrolysis voltage value (V).
 同図から分かるように、この比較例1の試験では、電気分解開始から1トン(1000L)の水素水を取水した際に電流低下が始まった。電解電流値が3Aを切ったところから陰極層14に急激にスケール付着が進んだものと考える。 As can be seen from the figure, in the test of Comparative Example 1, a current decrease started when 1 ton (1000 L) of hydrogen water was taken from the start of electrolysis. It is considered that the scale adhesion suddenly progressed to the cathode layer 14 from the point where the electrolytic current value fell below 3A.
 実際、試験終了後の陰極層14の隔膜15側の面に付着したスケールを観察すると、図15(A)に示すように、多量のスケールが溜まっていた(同図の白い部分が溜まったスケールを示している)。なお、図示していないが、陰極層14の隔膜15とは反対側の面には、さほど多くのスケールは溜まっていなかった。 In fact, when the scale attached to the surface of the cathode layer 14 on the side of the diaphragm 15 after the test was observed, a large amount of scale was accumulated as shown in FIG. Is shown). Although not shown, not much scale was collected on the surface of the cathode layer 14 opposite to the diaphragm 15.
(比較例2)
 ポンプ81の停止の後に遅れて電磁弁85を閉める方法である。システム構成は図12に示した通りであり、制御フローは図9に示したものと同じである。取水時及び取水休止時の陰極室12c及び陽極室11cの圧力は表3に示すごとくであった。
Figure JPOXMLDOC01-appb-T000003
(Comparative Example 2)
In this method, the electromagnetic valve 85 is closed after the pump 81 is stopped. The system configuration is as shown in FIG. 12, and the control flow is the same as that shown in FIG. Table 3 shows the pressures in the cathode chamber 12c and the anode chamber 11c at the time of water intake and when water intake was stopped.
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、この比較例2では、陽極室11cは、大気開放されているため、取水時(電解時)も取水休止時(電解休止時)も圧力が大気圧に維持されている。一方、陰極室12cは、取水時(電解時)は加圧されているが、取水を停止する際にポンプ81の停止に遅れて(1秒後に)電磁弁85が閉成されるため、陰極室12cがその間に開放され、取水休止時(電解休止時)は大気圧に維持される。このような比較例2において、取水水量(L)に対する電解電流値(A)及び電解電圧値(V)を測定した。その結果が図16に示されている。同図において、横軸は流量カウンタ94によって計測した水素水の取水水量(L)、縦軸は電解電流値(A)及び電解電圧値(V)をそれぞれ示している。 As shown in Table 3, in this comparative example 2, since the anode chamber 11c is open to the atmosphere, the pressure is maintained at atmospheric pressure both during water intake (electrolysis) and during water intake stop (electrolysis stop). . On the other hand, the cathode chamber 12c is pressurized at the time of water intake (electrolysis), but the electromagnetic valve 85 is closed after the stop of the pump 81 (after 1 second) when the water intake is stopped. The chamber 12c is opened in the meantime, and is maintained at atmospheric pressure when the water intake is stopped (electrolytic stop). In such Comparative Example 2, the electrolysis current value (A) and the electrolysis voltage value (V) with respect to the water intake amount (L) were measured. The result is shown in FIG. In the figure, the horizontal axis represents the amount of hydrogen water taken in by the flow rate counter 94 (L), and the vertical axis represents the electrolysis current value (A) and the electrolysis voltage value (V).
 同図から分かるように、この比較例2の試験では、電気分解開始から8トン(8000L)の水素水を取水した際に電流低下が始まった。比較例1の試験に比して、陰極層14へのスケール付着は遅れて始まるが、やはり生じたものと考える。 As can be seen from the figure, in the test of Comparative Example 2, a current drop started when 8 tons (8000 L) of hydrogen water was taken from the start of electrolysis. Compared with the test of Comparative Example 1, the deposition of scale on the cathode layer 14 starts later, but it is considered that it also occurred.
 実際、試験終了後の陰極層14の隔膜15側の面に付着したスケールを観察すると、図15(B)に示すように、かなりの量のスケールが溜まっていた(同図の白い部分が溜まったスケールを示している)。なお、図示していないが、陰極層14の隔膜15とは反対側の面には、さほど多くのスケールは溜まっていなかった。 Actually, when the scale attached to the surface of the cathode layer 14 on the side of the diaphragm 15 after the test was observed, a considerable amount of scale was accumulated as shown in FIG. 15B (the white portion in the figure was accumulated). Shows the scale). Although not shown, not much scale was collected on the surface of the cathode layer 14 opposite to the diaphragm 15.
(実施例1)
 比較例2の場合と同様に、ポンプ81の停止の後に遅れて電磁弁85を閉める方法である。システム構成は図13に示した通りであり、制御フローは図9に示したものと同じである。隔膜15の膜厚は0.16mmであり、陰極層14及び陽極層13間の隙間は0.15mmに設定した。従って、隔膜15は、陰極層14及び陽極層13によって0.15mmの膜厚となるまで押圧されている。取水時及び取水休止時の陰極室12c及び陽極室11cの圧力は表4に示すごとくであった。
Figure JPOXMLDOC01-appb-T000004
Example 1
Similar to the case of Comparative Example 2, the electromagnetic valve 85 is closed after the pump 81 is stopped. The system configuration is as shown in FIG. 13, and the control flow is the same as that shown in FIG. The film thickness of the diaphragm 15 was 0.16 mm, and the gap between the cathode layer 14 and the anode layer 13 was set to 0.15 mm. Therefore, the diaphragm 15 is pressed by the cathode layer 14 and the anode layer 13 until the film thickness becomes 0.15 mm. Table 4 shows the pressures in the cathode chamber 12c and the anode chamber 11c at the time of water intake and when the water intake was stopped.
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、この実施例1では、陽極室11cは、リリーフ弁83が接続されているため、取水時(電解時)も取水休止時(電解休止時)も圧力がリリーフ弁83の設定する所定圧力(この場合、0.04MPa)以下に維持されている。陰極室12cは、取水時(電解時)は、加圧水の圧力(この場合、0.2MPa)に維持されている。従って、取水時においては、陽極室11cの圧力は、陰極室12cの圧力未満に維持されている。一方、取水を停止する際にポンプ81の停止に遅れて(1秒後に)電磁弁85が閉成されるため、陰極室12cは、その間に開放されるので取水休止時(電解休止時)は大気圧(0MPa)に維持される。従って、取水休止時(電解休止時)は、陽極室11cの圧力が陰極室12cの圧力より高くなるので、隔膜15が陰極層14に押し付けられて移動することにより、圧力減少が0.02MPa生じ、その結果、取水休止時の陽極室11cの圧力は表4に示すように0.02MPaとなる。この取水休止時(電解休止時)に隔膜15が陰極層14に押し付けられるので、隔膜15及び陰極層14の水分が陰極室12c内に押し出されるのである。 As shown in Table 4, in Example 1, since the relief valve 83 is connected to the anode chamber 11c, the pressure of the relief valve 83 is low during water intake (electrolysis) and when water intake is stopped (electrolysis stop). It is maintained below a predetermined pressure to be set (in this case, 0.04 MPa). The cathode chamber 12c is maintained at a pressure of pressurized water (in this case, 0.2 MPa) during water intake (electrolysis). Therefore, at the time of water intake, the pressure in the anode chamber 11c is maintained below the pressure in the cathode chamber 12c. On the other hand, when the water intake is stopped, the solenoid valve 85 is closed behind the stop of the pump 81 (after one second), so the cathode chamber 12c is opened during that time, so that when the water intake is stopped (electrolysis stop) Maintained at atmospheric pressure (0 MPa). Accordingly, when the water intake is stopped (electrolysis is stopped), the pressure in the anode chamber 11c is higher than the pressure in the cathode chamber 12c. Therefore, when the diaphragm 15 is pressed against the cathode layer 14 and moved, a pressure decrease of 0.02 MPa occurs. As a result, as shown in Table 4, the pressure in the anode chamber 11c when the water intake is stopped is 0.02 MPa. Since the diaphragm 15 is pressed against the cathode layer 14 when the water intake is stopped (electrolytic stop), the moisture in the diaphragm 15 and the cathode layer 14 is pushed out into the cathode chamber 12c.
 取水時(電解時)における陽極室11cの圧力と電解電流値及び電解電圧値との関係を調べた。即ち、前述したように隔膜15の膜厚を0.16mm、陰極層14及び陽極層13間の隙間を0.15mmに設定して陰極室12cの圧力を0.2MPaの一定圧、陽極室11cの圧力を変化させた場合の電解電流値及び電解電圧値を調べた。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
The relationship between the pressure in the anode chamber 11c, the electrolysis current value, and the electrolysis voltage value during water intake (electrolysis) was examined. That is, as described above, the thickness of the diaphragm 15 is set to 0.16 mm, the gap between the cathode layer 14 and the anode layer 13 is set to 0.15 mm, the pressure in the cathode chamber 12c is set to a constant pressure of 0.2 MPa, and the anode chamber 11c. The electrolysis current value and electrolysis voltage value when the pressure was changed were examined. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 この取水時においては、隔膜15は、陰極室12c及び陽極室11cの両面側から圧迫されることとなり、その膜厚は0.14mm以下となる。この場合、陰極室12cの圧力が陽極室12cの圧力より高いため、隔膜15と陰極層14とは密着せず、多少離れた状態となる。このため、Hイオン移動を維持し、同一の電解電流値を得るための電解電圧値が高くなる。表5より、陽極室11cの圧力が0.10MPaとなると、電解電流値は同じであるが電解電圧値が高くなった。また、陽極室11cの圧力が0.10MPaより大きくなると、電解電流値が低下した。従って、陽極室11cの圧力は0.10MPa以下であることが望ましい。 At the time of water intake, the diaphragm 15 is pressed from both sides of the cathode chamber 12c and the anode chamber 11c, and the film thickness becomes 0.14 mm or less. In this case, since the pressure in the cathode chamber 12c is higher than the pressure in the anode chamber 12c, the diaphragm 15 and the cathode layer 14 are not in close contact with each other and are slightly separated from each other. For this reason, the electrolytic voltage value for maintaining the H + ion movement and obtaining the same electrolytic current value becomes high. From Table 5, when the pressure of the anode chamber 11c was 0.10 MPa, the electrolytic current value was the same, but the electrolytic voltage value was high. Moreover, when the pressure of the anode chamber 11c became larger than 0.10 MPa, the electrolysis current value decreased. Accordingly, the pressure in the anode chamber 11c is desirably 0.10 MPa or less.
 このような実施例1において、取水水量(L)に対する電解電流値(A)及び電解電圧値(V)を測定した。その結果が図17に示されている。同図において、横軸は流量カウンタ94によって計測した水素水の取水水量(L)、縦軸は電解電流値(A)及び電解電圧値(V)をそれぞれ示している。 In such Example 1, the electrolysis current value (A) and the electrolysis voltage value (V) with respect to the water intake amount (L) were measured. The result is shown in FIG. In the figure, the horizontal axis represents the amount of hydrogen water taken in by the flow rate counter 94 (L), and the vertical axis represents the electrolysis current value (A) and the electrolysis voltage value (V).
 同図から分かるように、この実施例1の試験では、電気分解開始から12トン(12000L)の水素水を取水しても電解電流値は3.5Aの一定値に維持できた。即ち、取水休止時に、陽極室11cの圧力を陰極室12cの圧力より大きくすることで、スケール障害を防止できることが分かった。なお、同図においては、電解電圧値にバラツキが認められるが、このバラツキは脈動の強弱や洗浄効率の差によって生じたものと考察される。 As can be seen from the figure, in the test of Example 1, even when 12 tons (12000 L) of hydrogen water was taken from the start of electrolysis, the electrolysis current value could be maintained at a constant value of 3.5A. That is, it was found that the scale failure can be prevented by making the pressure in the anode chamber 11c larger than the pressure in the cathode chamber 12c when the water intake is stopped. In the figure, although there is a variation in the electrolytic voltage value, it is considered that this variation is caused by the intensity of pulsation and the difference in cleaning efficiency.
 実際、試験終了後の陰極層の隔膜側の面に付着したスケールを観察すると、図15(C)に示すように、わずかな量のスケールしか溜まっていなかった(同図の白い部分が溜まったスケールを示している)。なお、図示していないが、陰極層の隔膜とは反対側の面には、スケールがほとんど溜まっていなかった。 Actually, when the scale attached to the surface of the cathode layer on the diaphragm side after the test was observed, only a small amount of scale was accumulated as shown in FIG. 15C (the white portion in the figure was accumulated). Scale). Although not shown, almost no scale was collected on the surface of the cathode layer opposite to the diaphragm.
(実施例2)
 実施例1の場合と同様に、ポンプ81の停止の後に遅れて電磁弁85を閉める方法である。システム構成は図13に示した通りであり、制御フローは図9に示したものと同じである。隔膜15の膜厚は0.16mmであり、陰極層14及び陽極層13間の隙間は0.10mmに設定した。従って、隔膜15は、陰極層14及び陽極層13によって0.10mmの膜厚となるまでかなり押圧されている。この実施例2では、陰極層14及び陽極層13間の隙間を、実施例1の場合よりかなり狭く設定した。取水時及び取水休止時の陰極室12c及び陽極室11cの圧力は表6に示すごとくであった。
Figure JPOXMLDOC01-appb-T000006
(Example 2)
Similar to the first embodiment, the electromagnetic valve 85 is closed after the pump 81 is stopped. The system configuration is as shown in FIG. 13, and the control flow is the same as that shown in FIG. The film thickness of the diaphragm 15 was 0.16 mm, and the gap between the cathode layer 14 and the anode layer 13 was set to 0.10 mm. Therefore, the diaphragm 15 is considerably pressed by the cathode layer 14 and the anode layer 13 until the film thickness becomes 0.10 mm. In Example 2, the gap between the cathode layer 14 and the anode layer 13 was set to be considerably narrower than that in Example 1. Table 6 shows the pressures in the cathode chamber 12c and the anode chamber 11c at the time of water intake and when the water intake was stopped.
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、この実施例1では、陽極室11cは、リリーフ弁83が接続されているため、取水時(電解時)も取水休止時(電解休止時)も圧力がリリーフ弁83の設定する所定圧力(この場合、0.05MPa)以下に維持されている。陰極室12cは、取水時(電解時)は、加圧水の圧力(この場合、0.2MPa)に維持されている。従って、取水時においては、陽極室11cの圧力は、陰極室12cの圧力未満に維持されている。一方、取水を停止する際にポンプ81の停止に遅れて(1秒後に)電磁弁85が閉成されるため、陰極室12cは、その間に開放されるので取水休止時(電解休止時)は大気圧(0MPa)に維持される。従って、取水休止時(電解休止時)は、陽極室11cの圧力が陰極室12cの圧力より高くなるので、隔膜15が陰極層14に押し付けられて移動することにより、圧力減少が0.02MPa生じ、その結果、取水休止時の陽極室11cの圧力は表6に示すように0.03MPaとなる。この取水休止時(電解休止時)に隔膜15が陰極層14に押し付けられるので、隔膜15及び陰極層14の水分が陰極室12c内に押し出されるのである。 As shown in Table 6, in Example 1, since the relief valve 83 is connected to the anode chamber 11c, the pressure of the relief valve 83 is low during water intake (electrolysis) and when water intake is stopped (electrolysis stop). It is maintained below a predetermined pressure to be set (in this case, 0.05 MPa). The cathode chamber 12c is maintained at a pressure of pressurized water (in this case, 0.2 MPa) during water intake (electrolysis). Therefore, at the time of water intake, the pressure in the anode chamber 11c is maintained below the pressure in the cathode chamber 12c. On the other hand, when the water intake is stopped, the solenoid valve 85 is closed after a stop of the pump 81 (after one second), so the cathode chamber 12c is opened during that time, so that when the water intake is stopped (electrolysis stop) Maintained at atmospheric pressure (0 MPa). Accordingly, when the water intake is stopped (electrolysis is stopped), the pressure in the anode chamber 11c is higher than the pressure in the cathode chamber 12c. Therefore, when the diaphragm 15 is pressed against the cathode layer 14 and moved, a pressure decrease of 0.02 MPa occurs. As a result, as shown in Table 6, the pressure in the anode chamber 11c when the water intake is stopped is 0.03 MPa. Since the diaphragm 15 is pressed against the cathode layer 14 when the water intake is stopped (electrolytic stop), the moisture in the diaphragm 15 and the cathode layer 14 is pushed into the cathode chamber 12c.
 取水時(電解時)における陽極室11cの圧力と電解電流値及び電解電圧値との関係を調べた。即ち、前述したように隔膜15の膜厚を0.16mm、陰極層14及び陽極層13間の隙間を0.10mmに設定して陰極室12cの圧力を0.2MPaの一定圧、陽極室11cの圧力を変化させた場合の電解電流値及び電解電圧値を調べた。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
                 
The relationship between the pressure in the anode chamber 11c, the electrolysis current value, and the electrolysis voltage value during water intake (electrolysis) was examined. That is, as described above, the thickness of the diaphragm 15 is set to 0.16 mm, the gap between the cathode layer 14 and the anode layer 13 is set to 0.10 mm, the pressure in the cathode chamber 12c is set to a constant pressure of 0.2 MPa, and the anode chamber 11c. The electrolysis current value and electrolysis voltage value when the pressure was changed were examined. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
 この取水時においては、隔膜15は、陰極室12c及び陽極室11cの両面側からかなり圧迫されて密着度が高くなり、その膜厚は0.10mm以下となる。この場合、陰極室12cの圧力が陽極室12cの圧力より高くなるが、密着度が高いため隔膜15と陰極層14とは密着した状態を維持することとなった。表7より、陽極室11cの圧力が0.10MPa以上となっても、電解電流値は同じ値を維持し、また、電解電圧値も同じ値を維持する結果となった。 At the time of water intake, the diaphragm 15 is considerably pressed from both sides of the cathode chamber 12c and the anode chamber 11c to increase the adhesion, and the film thickness becomes 0.10 mm or less. In this case, the pressure in the cathode chamber 12c is higher than the pressure in the anode chamber 12c, but because the degree of adhesion is high, the diaphragm 15 and the cathode layer 14 are kept in close contact with each other. From Table 7, even when the pressure in the anode chamber 11c was 0.10 MPa or more, the electrolysis current value was maintained at the same value, and the electrolysis voltage value was also maintained at the same value.
 このような実施例2において、取水水量(L)に対する電解電流値(A)及び電解電圧値(V)を測定した。その結果が図18に示されている。同図において、横軸は流量カウンタ94によって計測した水素水の取水水量(L)、縦軸は電解電流値(A)及び電解電圧値(V)をそれぞれ示している。 In such Example 2, the electrolysis current value (A) and the electrolysis voltage value (V) with respect to the water intake amount (L) were measured. The result is shown in FIG. In the figure, the horizontal axis represents the amount of hydrogen water taken in by the flow rate counter 94 (L), and the vertical axis represents the electrolysis current value (A) and the electrolysis voltage value (V).
 同図から分かるように、この実施例2の試験では、電気分解開始から12トン(12000L)の水素水を取水しても電解電流値は3.5Aの一定値に維持できた。また、隔膜15及び陰極層14間の隙間と隔膜15及び陽極層13間の隙間とを極端に狭くしても、換言すれば、隔膜15を陰極層14及び陽極層13できつく圧迫しても電解電流値は変わらなかった。逆に、より低い電解電圧値で実施例1の場合と同様の電解電流値を得ることができた。即ち、取水休止時に、陽極室11cの圧力を陰極室12cの圧力より大きくすることで、隔膜15及び陰極層14間の隙間量並びに隔膜15及び陽極層13間の隙間量に関係なく、スケール障害を防止できることが分かった。 As can be seen from the figure, in the test of Example 2, even when 12 tons (12000 L) of hydrogen water was taken from the start of electrolysis, the electrolysis current value could be maintained at a constant value of 3.5A. Further, even if the gap between the diaphragm 15 and the cathode layer 14 and the gap between the diaphragm 15 and the anode layer 13 are extremely narrow, in other words, even if the diaphragm 15 is pressed tightly with the cathode layer 14 and the anode layer 13. The electrolytic current value did not change. Conversely, the same electrolysis current value as in Example 1 could be obtained with a lower electrolysis voltage value. That is, when the water intake is stopped, the pressure in the anode chamber 11c is made larger than the pressure in the cathode chamber 12c, so that the scale failure can be achieved regardless of the gap amount between the diaphragm 15 and the cathode layer 14 and the gap amount between the diaphragm 15 and the anode layer 13. It was found that can be prevented.
 実際、試験終了後の陰極層の隔膜側の面に付着したスケールを観察すると、図15(D)に示すように、わずかな量のスケールしか溜まっていなかった(同図の白い部分が溜まったスケールを示している)。なお、図示していないが、陰極層の隔膜とは反対側の面には、スケールがほとんど溜まっていなかった。 In fact, when the scale adhered to the surface of the cathode layer on the diaphragm side after the test was observed, only a small amount of scale was accumulated as shown in FIG. 15D (the white portion in the figure was accumulated). Scale). Although not shown, almost no scale was collected on the surface of the cathode layer opposite to the diaphragm.
 図19は以上説明した比較例1及び2並びに実施例1における取水水量に対する電解電流値及び電解電圧値を同一の図上に示したものである。ただし、隔膜15の膜厚は0.16mmであり、陰極層14及び陽極層13間の隙間は0.15mmに設定した試験データを比較したものである。 FIG. 19 shows the electrolysis current value and electrolysis voltage value with respect to the amount of water taken in Comparative Examples 1 and 2 and Example 1 described above on the same diagram. However, the film thickness of the diaphragm 15 is 0.16 mm, and the test data in which the gap between the cathode layer 14 and the anode layer 13 is set to 0.15 mm is compared.
 同図及び図15から分かるように、陽極室11cにリリーフ弁83を付け、陽極室11cの圧力変動を利用して隔膜15の圧縮状態をピストン的に移動させてやることで、隔膜15と陰極層14間に水の吸引及び排出を行わせることができ、これにより、特に、陰極層14へのスケール付着を防止することができた。 As can be seen from FIG. 15 and FIG. 15, a relief valve 83 is attached to the anode chamber 11c, and the compression state of the diaphragm 15 is moved like a piston by utilizing pressure fluctuations in the anode chamber 11c, so that the diaphragm 15 and the cathode can be moved. Water was able to be sucked and discharged between the layers 14, and in particular, scale adhesion to the cathode layer 14 could be prevented.
 以上述べた実施形態及び実施例は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。 The embodiments and examples described above are all illustrative and do not limit the present invention, and the present invention can be implemented in various other modifications and changes. Therefore, the scope of the present invention is defined only by the claims and their equivalents.
 飲料用の水素水又はその他の用途用の水素水を生成する分野において、水道水を使用でき、長期間使用する水素水製造装置に適用可能である。 In the field of producing hydrogen water for beverages or other purposes, tap water can be used and can be applied to a hydrogen water production apparatus that is used for a long time.
 10 電解槽
 11 陽極側の筐体
 11b ガス出口
 11c 陽極室
 11d、12d リブ
 11e 周溝
 12 陰極側の筐体
 12a 水入口
 12b 水出口
 12c 陰極室
 13 陽極層
 14 陰極層
 15 隔膜
 16 パッキン
 17、18 リード線用接続端子
 60 電流計
 61、91 電源装置
 80、80′ タンク
 81 ポンプ
 82 減圧弁
 83 リリーフ弁
 84、88 流量調整弁
 85、87 電磁弁
 86、90 制御装置
 89 圧力計
 91 電源装置(電圧計付)
 92 切換スイッチ
 93 電流計
 94 流量カウンタ
DESCRIPTION OF SYMBOLS 10 Electrolysis cell 11 Case on anode side 11b Gas outlet 11c Anode chamber 11d, 12d Rib 11e Circumferential groove 12 Case on cathode side 12a Water inlet 12b Water outlet 12c Cathode chamber 13 Anode layer 14 Cathode layer 15 Diaphragm 16 Packing 17, 18 Connection terminal for lead wire 60 Ammeter 61, 91 Power supply device 80, 80 ′ Tank 81 Pump 82 Pressure reducing valve 83 Relief valve 84, 88 Flow control valve 85, 87 Solenoid valve 86, 90 Control device 89 Pressure gauge 91 Power supply (voltage) (With meter)
92 selector switch 93 ammeter 94 flow counter

Claims (9)

  1.  電気分解に必要な触媒を有し水及び気体が通過可能な陽極層と、電気分解に必要な触媒を有し水及び気体が通過可能な陰極層と、前記陽極層及び前記陰極層間に互いに密着して挟設された固体高分子膜と、前記陽極層に接する陽極室と、前記陰極層に接する陰極室とを備えており、前記陰極室に所定圧力以上の飲料水が供給されている第1の状態において、前記陽極室の水若しくは気体の単独圧力又は水及び気体の混合圧力を前記陰極室の圧力未満に制御して電気分解することにより前記陰極層に発生した水素ガスを前記飲料水に溶解させて水素水を生成するように構成されており、前記陰極室に飲料水が供給されていない第2の状態において、前記陰極室の水及び気体の混合圧力が前記陽極室の水若しくは気体の単独圧力又は水及び気体の混合圧力未満に制御するように構成されていることを特徴とする水素水の製造装置。 An anode layer having a catalyst necessary for electrolysis and allowing water and gas to pass therethrough, a cathode layer having a catalyst necessary for electrolysis and allowing water and gas to pass therethrough, and the anode layer and the cathode layer being in close contact with each other And a cathode chamber in contact with the cathode layer, and drinking water having a predetermined pressure or higher is supplied to the cathode chamber. In the state 1, the hydrogen gas generated in the cathode layer is electrolyzed by controlling the water or gas single pressure of the anode chamber or the mixed pressure of water and gas to be less than the pressure of the cathode chamber, and the drinking water In the second state in which no drinking water is supplied to the cathode chamber, the mixing pressure of water in the cathode chamber and gas is the water in the anode chamber or Single pressure of gas or water and gas Apparatus for producing hydrogen water, characterized in that it is configured to control the under combined pressure.
  2.  前記第1の状態において、前記陽極室の水若しくは気体の単独圧力又は水及び気体の混合圧力が、0.03MPaから0.1MPaの範囲の圧力であることを特徴とする請求項1に記載の水素水の製造装置。 The water or gas single pressure or the water and gas mixing pressure in the anode chamber in the first state is a pressure in the range of 0.03 MPa to 0.1 MPa. Hydrogen water production equipment.
  3.  前記第1の状態において、前記陰極室に供給される飲料水の圧力が0.1MPaから0.3MPaの範囲の圧力であることを特徴とする請求項1に記載の水素水の製造装置。 2. The apparatus for producing hydrogen water according to claim 1, wherein in the first state, the pressure of drinking water supplied to the cathode chamber is a pressure in the range of 0.1 MPa to 0.3 MPa.
  4.  前記第2の状態において、前記陰極室の圧力が大気圧であることを特徴とする請求項1に記載の水素水の製造装置。 The apparatus for producing hydrogen water according to claim 1, wherein, in the second state, the pressure in the cathode chamber is atmospheric pressure.
  5.  前記陽極室と大気との間にリリーフ弁が接続されていることを特徴とする請求項1から4のいずれか1項に記載の水素水の製造装置。 5. A hydrogen water production apparatus according to claim 1, wherein a relief valve is connected between the anode chamber and the atmosphere.
  6.  前記陽極室に圧力計が接続されていると共に前記陽極室と大気との間に電磁弁が接続されており、前記圧力計の計測値に基づいて前記電磁弁が制御されるように構成されていることを特徴とする請求項1から4のいずれか1項に記載の水素水の製造装置。 A pressure gauge is connected to the anode chamber and a solenoid valve is connected between the anode chamber and the atmosphere, and the solenoid valve is controlled based on a measured value of the pressure gauge. The apparatus for producing hydrogen water according to any one of claims 1 to 4, wherein:
  7.  前記固体高分子膜の前記含水率が、飽和含水膜に対する含水率で27.6%以上の陽イオン交換膜であることを特徴とする請求項1に記載の水素水の製造装置。 The apparatus for producing hydrogen water according to claim 1, wherein the moisture content of the solid polymer membrane is a cation exchange membrane having a moisture content of 27.6% or more with respect to a saturated moisture-containing membrane.
  8.  前記陽極層及び前記陰極層の触媒が、白金触媒であることを特徴とする請求項1に記載の水素水の製造装置。 The apparatus for producing hydrogen water according to claim 1, wherein the catalyst of the anode layer and the cathode layer is a platinum catalyst.
  9.  前記陽極層及び/又は前記陰極層が、チタンのラス網又はパンチメタルで形成されたチタン製白金電極であることを特徴とする請求項1に記載の水素水の製造装置。 The apparatus for producing hydrogen water according to claim 1, wherein the anode layer and / or the cathode layer is a titanium platinum electrode formed of a lath net or punch metal of titanium.
PCT/JP2018/033649 2018-04-03 2018-09-11 Apparatus for producing hydrogen water WO2019193776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-071352 2018-04-03
JP2018071352A JP6371489B1 (en) 2018-04-03 2018-04-03 Hydrogen water production equipment

Publications (1)

Publication Number Publication Date
WO2019193776A1 true WO2019193776A1 (en) 2019-10-10

Family

ID=63104435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033649 WO2019193776A1 (en) 2018-04-03 2018-09-11 Apparatus for producing hydrogen water

Country Status (2)

Country Link
JP (1) JP6371489B1 (en)
WO (1) WO2019193776A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068589B (en) * 2018-10-22 2021-08-31 中国石油化工股份有限公司 Liquid-phase hydrogenation system and liquid-phase hydrogenation method
JP2021102804A (en) * 2019-12-25 2021-07-15 株式会社東芝 Electrolytic device, and electrolytic method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033766A (en) * 2001-07-26 2003-02-04 Toto Ltd Apparatus for generating electrolytic water
JP2003245669A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Electrolytic hydrogen dissolved water generator
WO2013183141A1 (en) * 2012-06-07 2013-12-12 株式会社日本トリム Electrolyzed water generator
JP2015221397A (en) * 2014-05-22 2015-12-10 株式会社 クリア Method and apparatus for production of electroreduction water containing hydrogen molecule
JP2016049517A (en) * 2014-09-02 2016-04-11 株式会社ドクターズ・マン Hydrogen water generator
WO2017158832A1 (en) * 2016-03-18 2017-09-21 株式会社 東芝 Electrolysis electrode, electrode unit, and electrolyte water generating device
JP2018020279A (en) * 2016-08-02 2018-02-08 MiZ株式会社 Hydrogen water generating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033766A (en) * 2001-07-26 2003-02-04 Toto Ltd Apparatus for generating electrolytic water
JP2003245669A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Electrolytic hydrogen dissolved water generator
WO2013183141A1 (en) * 2012-06-07 2013-12-12 株式会社日本トリム Electrolyzed water generator
JP2015221397A (en) * 2014-05-22 2015-12-10 株式会社 クリア Method and apparatus for production of electroreduction water containing hydrogen molecule
JP2016049517A (en) * 2014-09-02 2016-04-11 株式会社ドクターズ・マン Hydrogen water generator
WO2017158832A1 (en) * 2016-03-18 2017-09-21 株式会社 東芝 Electrolysis electrode, electrode unit, and electrolyte water generating device
JP2018020279A (en) * 2016-08-02 2018-02-08 MiZ株式会社 Hydrogen water generating method

Also Published As

Publication number Publication date
JP6371489B1 (en) 2018-08-08
JP2019181316A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
KR100797062B1 (en) Electrolytic cell and method for electrolysis
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
US5041196A (en) Electrochemical method for producing chlorine dioxide solutions
US20180334751A1 (en) Method for electrolyzing alkaline water
US20090266706A1 (en) High electric field electrolysis cell
KR20180015081A (en) Method for producing hydrogen water
US20170217799A1 (en) Electrolyzed water-manufacturing apparatus and electrolyzed water-manufacturing method using same
US5158658A (en) Electrochemical chlorine dioxide generator
WO2008061546A1 (en) Generator cell and electrochemical generator having the generator cell
JPH11104648A (en) Seawater electrolyzing apparatus
JP6371489B1 (en) Hydrogen water production equipment
JP2010029841A (en) Method for producing hydrogenated water
WO2018168876A1 (en) Organic substance generation system and method for producing organic substance
KR20130024109A (en) Electrolytically ionized water generator
JP2005144240A (en) Electrolytic cell and electrolytic water generator
KR101352887B1 (en) Electrolytically Ionized Water Generator
CN114990603B (en) Ion exchange membrane electrolyzer
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
JP2012091121A (en) Apparatus for producing electrolytic water
JP2015196873A (en) Apparatus and method for production of radical oxygen water
KR100625083B1 (en) An ion exchange membrane electrolyzer for the ph-control with only one discharge of ph-controlled electrolyte solution
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JP2016007603A (en) Generator of electrolytic water
US20240174533A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913523

Country of ref document: EP

Kind code of ref document: A1