WO2019193760A1 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
WO2019193760A1
WO2019193760A1 PCT/JP2018/014791 JP2018014791W WO2019193760A1 WO 2019193760 A1 WO2019193760 A1 WO 2019193760A1 JP 2018014791 W JP2018014791 W JP 2018014791W WO 2019193760 A1 WO2019193760 A1 WO 2019193760A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
excitation
light source
source device
phosphor
Prior art date
Application number
PCT/JP2018/014791
Other languages
French (fr)
Japanese (ja)
Inventor
カール ピーター ウェルナ
高橋 幸司
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/014791 priority Critical patent/WO2019193760A1/en
Publication of WO2019193760A1 publication Critical patent/WO2019193760A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source

Definitions

  • the present invention relates to a light source device including a light source that emits excitation light and a phosphor light-emitting unit that is excited by excitation light emitted from the light source and emits light having a color different from that of the excitation light.
  • a light source device that emits light of a color different from the excitation light (for example, white) by exciting the phosphor light emitting portion with the excitation light emitted from the excitation light source
  • the excitation light is excited at the periphery of the excitation region where the phosphor light emitting portion is excited by the excitation light.
  • a configuration is known in which a member that does not contain a phosphor (for example, a “mask” that covers the periphery of the phosphor light-emitting portion) is formed along the periphery of the excitation region so as to obtain a clear contrast (patent) References 1-3).
  • the member that does not include the phosphor formed along the periphery of the excitation region does not necessarily need to be a mask that covers the periphery of the phosphor light emitting portion, and some member that does not include the phosphor is provided on the outermost surface.
  • members that do not include a phosphor formed along the periphery of the excitation region are collectively referred to as a “mask”. Therefore, in the present specification, the “mask” includes both a member that covers (masks) the phosphor light-emitting portion and a member that is installed beside the phosphor light-emitting portion.
  • Patent Documents 1 and 2 absorb excitation light emitted from an excitation light source.
  • the mask described in Patent Document 3 diffusely reflects the excitation light emitted from the excitation light source.
  • An object of the present invention is to provide a light source device in which stray light caused by diffusion of excitation light is suppressed while obtaining a light source (for example, a white light source) having a clear contrast at the outer edge.
  • a light source for example, a white light source
  • a light source device includes a light source that emits excitation light and excitation that emits light of a color (for example, white) that is excited by the excitation light emitted from the light source and is different from the excitation light.
  • a phosphor light-emitting unit having a region formed thereon and a mask formed along the periphery of the excitation region to regularly reflect the excitation light.
  • a light source device in which stray light due to diffusion of excitation light is suppressed while obtaining a light source (for example, a white light source) having a clear contrast at the outer edge.
  • a light source for example, a white light source
  • FIG. 1 is a schematic perspective view of a light source device according to Embodiment 1.
  • FIG. It is a schematic diagram of the said light source device.
  • 6 is a schematic diagram of a light source device according to Embodiment 2.
  • FIG. It is the figure which looked at the said light source device from the direction of arrow A shown by FIG. It is sectional drawing of the light source device which concerns on Embodiment 3.
  • FIG. 10 is sectional drawing of the light source device which concerns on Embodiment 4.
  • FIG. 10 is a schematic diagram of a light source device according to Embodiment 5.
  • FIG. 10 is a schematic diagram of another light source device according to Embodiment 5.
  • FIG. 10 is a schematic diagram of a light source device according to Embodiment 6.
  • FIG. 10 is a schematic diagram of a light source device according to Embodiment 6.
  • FIG. 1 is a schematic perspective view of a light source device 2 according to the first embodiment.
  • FIG. 2 is a schematic diagram of the light source device 2.
  • the light source device 2 includes an excitation light source 1 (light source) and a wavelength conversion element 5.
  • the excitation light source 1 emits excitation light 8 toward the wavelength conversion element 5.
  • the wavelength conversion element 5 includes a phosphor light emitting unit 3 and a mask 4 (regular reflection member).
  • the phosphor light emitting section 3 is composed of a phosphor that is a substance that emits fluorescence, and is formed by thinning the phosphor.
  • the fluorescent substance light emission part 3 is a member containing a fluorescent substance, and may be a member obtained by processing it into plate shape.
  • the phosphor light emitting unit 3 is excited by the excitation light emitted from the excitation light source 1, and light (fluorescence) having a color different from that of the excitation light is emitted from the phosphor light emitting unit 3.
  • the light (fluorescence) emitted from the phosphor light emitting unit 3 and the excitation light emitted from the excitation light source 1 can be mixed to obtain, for example, white.
  • the mask 4 is formed on the phosphor light emitting unit 3 and has an opening 16 exposing the surface of the phosphor light emitting unit 3.
  • the surface of the phosphor light emitting portion 3 exposed through the opening 16 corresponds to the excitation region 9.
  • the phosphor is excited by the excitation light 8 emitted from the excitation light source 1 and white light 10 is emitted.
  • the mask 4 is formed along the periphery of the excitation region 9 and regularly reflects the excitation light 8.
  • the mask 4 regularly reflects 90% or more of the components of the excitation light 8 irradiated to the mask 4.
  • the excitation region 9 excites the phosphor light emitting unit 3 with the excitation light 8 emitted from the excitation light source 1 and emits white light 10 from the excitation region 9 of the opening 16 bordered by the mask 4 of the phosphor light emitting unit 3. discharge.
  • the phosphor light emitting unit 3 is arranged such that the surface normal of the phosphor light emitting unit 3 is inclined by the incident angle ⁇ 1 with respect to the optical axis of the excitation light 8 emitted from the excitation light source 1.
  • the dimension of the opening 16 formed in the mask 4 is set to a desired white light source dimension (excitation region 9).
  • the excitation light 8 emitted from the excitation light source 1 is incident on the excitation light incident area 13 including the excitation area 9 obliquely at an incident angle ⁇ 1 (> 0).
  • the excitation light 8 incident on the excitation region 9 excites the phosphor light emitting unit 3, thereby emitting white light 10.
  • the excitation light 8 incident on the mask 4 disposed in the excitation light incident area 13 outside the excitation area 9 is specularly reflected by the mask 4 in a controlled manner.
  • the excitation light 8 incident on the mask 4 is reflected according to the law of regular reflection in which the incident angle and the reflection angle are equal.
  • “regular reflection” means reflection with the same incident angle and reflection angle.
  • the shape of the opening 16 formed in the mask 4 may be circular, square, rectangular, or any other shape.
  • the dimension of the opening 16 is preferably smaller than 1 mm.
  • the cross-sectional shape of the excitation light 8 can be circular, square, rectangular, or any other shape.
  • the shape of the opening 16 of the mask 4 and the cross-sectional shape of the excitation light 8 may be different.
  • the intensity distribution of the excitation light 8 may or may not be uniform in its cross section.
  • FIG. 3 is a schematic diagram of a light source device 2A according to the second embodiment.
  • FIG. 4 is a view of the light source device 2A viewed from the direction of the arrow A shown in FIG.
  • the same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
  • the light source device 2 described in the first embodiment is a reflective light source device, but the light source device 2A according to the second embodiment is a transmissive light source device.
  • the reflection-type light source device is a light source device in which the incident surface of the excitation light 8 and the main emission surface of the fluorescence (white light 10) are the same with respect to the phosphor light emitting unit 3.
  • the transmissive light source device means a light source device in which the incident surface of the excitation light 8 with respect to the phosphor light emitting unit 3 and the main emission surface of the fluorescence (white light 10) face each other.
  • a mask 4 is provided on the phosphor light emitting unit 3.
  • An opening 16 that exposes the excitation region 9 of the phosphor light emitting unit 3 is formed in the mask 4.
  • the excitation light 8 enters the phosphor light emitting unit 3 perpendicularly from the mask 4 side.
  • the excitation light 8 that has entered the opening 16 that exposes the excitation region 9 excites the phosphor light emitting unit 3, and the white light 10 is emitted from the phosphor light emitting unit 3 toward the side opposite to the mask 4.
  • the excitation light 8 incident on the mask 4 in the excitation light incident area 13 outside the excitation area 9 is regularly reflected by the mask 4 and returns in a direction opposite to the incident direction.
  • the incident angle ⁇ 1 of the excitation light 8 to the phosphor light emitting unit 3 can be any angle between 0 ° and 90 °.
  • the surface characteristics of the mask 4 are reflective, and most of the power of the excitation light 8 incident on the mask 4 is regularly reflected.
  • surface reflection characteristics exist from perfect mirror-type specular reflection to complete diffuse reflection. That is, specular reflection and diffuse reflection can occur simultaneously on the surface.
  • the phosphor light emitting unit 3 When the excitation light 8 enters the excitation region 9, the phosphor light emitting unit 3 is excited and white light 10 is emitted from the excitation region 9.
  • the white light 10 is a mixture of the light from which the excitation light 8 is scattered in the excitation region 9 and the fluorescence emitted from the phosphor light emitting unit 3.
  • the excitation light 8 is blue light having a wavelength of 450 nm and the phosphor light emitting unit 3 is Ce: YAG (Yttrium Aluminum Garnet) emitted in a yellow region.
  • the correlated color temperature (CCT) changes according to the ratio between the excitation light 8 having a wavelength of 450 nm and the emission of yellow Ce: YAG.
  • the mixing ratio of the excitation light 8 and fluorescence becomes a problem when the excitation light 8 is scattered on the mask 4. That is, when the excitation light 8 scattered on the mask 4 is present, the scattered excess excitation light 8 is superimposed on the white light 10 having a desired correlated color temperature emitted from the excitation region 9. The color temperature changes, making control difficult.
  • the reflective mask 4 according to the present embodiment having specular reflectivity solves the problem that the color temperature changes.
  • the conditions necessary for regular reflection of the excitation light 8 on the surface of the mask 4 are quantified as follows. This quantification can be performed from the viewpoint of reducing the variation in the color coordinates of the emission color.
  • the range of color change that cannot be distinguished by human eyes is expressed by MacAdam ellipses.
  • the color change in the range of 1 STEP in the McAdam ellipse cannot be identified by the human eye.
  • the color variation is often managed so as to fall within the range of 3 STEP.
  • the overlapping region is a region on the reflection surface of the mask 4 on which the excitation light 8 is incident.
  • the excitation region 9 having a square shape and the excitation light 8 having a square cross section are used, when the dimension of the excitation region 9 is 500 ⁇ m ⁇ 500 ⁇ m, the sectional size of the excitation light 8 is It is calculated by the dimension of 9 and the dimension which adds the protrusion value from the excitation area 9. This protrusion value is shown below together with an overlap value which is a ratio of the protrusion value in the size of the excitation light 8.
  • the protrusion value is a small number compared to the dimension of the excitation region 9 of 500 ⁇ m ⁇ 500 ⁇ m. However, as the overlap value increases, the amount of emitted fluorescence decreases proportionally. When the overlap value is 10%, only 90% of the excitation light 8 is used, and 10% means that it does not contribute to wavelength conversion in the phosphor light emitting unit 3. For this reason, it is necessary to consider the manufacturing tolerance for the protrusion value while minimizing the overlap value. The maximum overlap value is realistically 10%.
  • the excitation light 8 does not scatter at all in the emission direction of the fluorescence from the phosphor light emitting unit 3. If the regular reflectance decreases, the amount of scattering of the excitation light 8 at the mask 4 increases in inverse proportion. At 90% regular reflectance, 10% is scattered. For this reason, the ratio of the excitation light 8 scattered by the mask 4 to the white light 10 obtained by adding the excitation light 8 to the fluorescence from the phosphor light emitting unit 3 is increased, and the excitation light 8 having a wavelength of 450 nm on the chromaticity diagram. Is added, and the light emitted from the phosphor light-emitting unit 3 appears more blueish white.
  • the larger the overlap value the stronger the color temperature shift caused by the superimposition of the blue excitation light 8 on the color coordinate. For this reason, it is important that the regular reflectance of the mask 4 is higher as the overlap value is larger. If a maximum overlap value of 10% is allowed within 3 STEP of the MacAdam ellipse, the specular reflectance must be 90% or higher.
  • FIG. 5 is a cross-sectional view of the light source device 2B according to the third embodiment.
  • the same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
  • the mask 4 may be disposed on the phosphor light emitting unit 3.
  • the phosphor light emitting unit 3 is disposed on the substrate 18.
  • the mask 4 is disposed on the phosphor light emitting unit 3, and an opening 16 that exposes the excitation region 9 of the phosphor light emitting unit 3 is formed in the mask 4.
  • the substrate 18 is made of a material having thermal conductivity (for example, aluminum) and has a reflective surface facing the phosphor light emitting unit 3.
  • the phosphor light emitting unit 3 can be made of Ce: YAG.
  • the mask 4 can be made of a metal or an inorganic material. It is very important that the surface of the mask 4 has a high regular reflectance.
  • the mask 4 shown in FIG. 5 is a member that covers or surrounds the surface of the phosphor light emitting unit 3 by being attached to or adhered to the phosphor light emitting unit 3. It is preferable that the manufacturing process of the phosphor light emitting unit 3 includes a polishing process for flattening the surface, or some flattening process.
  • the excitation light 8 can be incident on the polished phosphor light emitting section 3 at a Brewster angle to improve the incident efficiency.
  • the light source device 2B shown in FIG. 5 is used as a reflective light source device in which the excitation light 8 enters the excitation region 9 of the phosphor light emitting unit 3 from the mask 4 side.
  • FIG. 6 is a cross-sectional view of the light source device 2C according to the fourth embodiment.
  • the same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
  • the mask 4 is disposed on the substrate 18 so as to surround the phosphor light emitting unit 3 on the substrate 18, and has an opening 19 in which the phosphor light emitting unit 3 is buried. Note that the mask 4 in FIG. 6 does not cover the surface of the phosphor light-emitting unit 3 but is a member placed beside the phosphor light-emitting unit 3. Express.
  • the mask 4 shown in FIG. 6 is attached on, placed on, or adhered to the substrate 18. Thereafter, the phosphor light emitting section 3 is buried in the opening 19 of the mask 4.
  • the light source device 2C shown in FIG. 6 can be used as a reflective light source device in which the excitation light 8 enters the excitation region 9 of the phosphor light emitting unit 3 from the mask 4 side if the substrate 18 is opaque.
  • the substrate 18 is transparent, in addition to being used as a reflective light source device, it can also be used as a transmissive light source device in which excitation light 8 enters the excitation region 9 of the phosphor light emitting unit 3 from the substrate 18 side. .
  • FIG. 7 is a schematic diagram of a light source device 2D according to the fifth embodiment.
  • the same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
  • the light source device 2D further includes an absorbing member 17 that absorbs the excitation light 8 regularly reflected by the mask 4.
  • an absorbing member 17 that absorbs the excitation light 8 regularly reflected by the mask 4.
  • the excitation light 8 leaves the phosphor light emitting unit 3 in a controlled manner.
  • the reflected excitation light 8 is absorbed by the absorbing member 17 disposed at a position away from the phosphor light emitting unit 3.
  • This absorption can be done in two ways. First, there is a method of absorbing the excitation light 8 only for the purpose of terminating the excitation light 8, and a method of absorbing with a photodetector for the purpose of monitoring the behavior of the excitation light 8.
  • the termination method / utilization method of the excitation light 8 specularly reflected by the mask 4 may be selected depending on the application in which it is mounted.
  • a mirror may be disposed in front of the absorbing member 17 to change the traveling direction of the excitation light 8 regularly reflected by the mask 4.
  • FIG. 8 is a schematic diagram of another light source device 2E according to the fifth embodiment.
  • the same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
  • the light source device 2E further includes a reflecting member 11 that reflects the excitation light 8 specularly reflected by the mask 4 toward the excitation region 9 of the phosphor light emitting unit 3.
  • a reflecting member 11 that reflects the excitation light 8 specularly reflected by the mask 4 toward the excitation region 9 of the phosphor light emitting unit 3.
  • the reflection surface of the reflection member 11 may be a flat surface, a curved surface, or a special shape.
  • the reflection member 11 is disposed at a position where the excitation light 8 is reflected on the excitation region 9 of the phosphor light emitting unit 3 and not on the reflection surface of the mask 4.
  • a mirror may be disposed in front of the reflecting member 11 to change the traveling direction of the reflected excitation light 8.
  • FIG. 9 is a schematic diagram of a light source device 2F according to the sixth embodiment.
  • the same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
  • the light source device 2F further includes a parabolic member 12 that reflects the white light 10 emitted from the phosphor light emitting unit 3.
  • the light source device 2F can be used for a headlight of an automobile using the excitation light 8 and the phosphor light emitting unit 3.
  • the semiconductor laser diode emits excitation light 8 having a wavelength of about 450 nm, and the excitation light 8 is collected via the focus lens 15 on the excitation region 9 of the phosphor light emitting unit 3 on which the mask 4 is formed.
  • White light 10 emitted from the excitation region 9 is projected far away by a reflective parabolic member 12.
  • the excitation light 8 is regularly reflected toward the absorbing member 17 outside the opening 16 of the mask 4.
  • the opening 16 is a 0.5 mm ⁇ 0.5 mm square.
  • the reflective mask 4 is a 1 mm ⁇ 1 mm square.
  • the effect of using the reflective mask 4 is that the excitation light 8 that diffuses and becomes stray light without contributing as the white light 10 is reliably driven out of the parabolic member 12 and safely terminated.
  • the parabolic member 12 picks up and projects the scattered excitation light 8. As a result, a non-uniform color distribution occurs in the projection pattern.
  • the light source device (2, 2A to 2F) includes a light source (excitation light source 1) that emits excitation light (8) and excitation light (8) emitted from the light source (excitation light source 1).
  • the phosphor light emitting part (3) in which an excitation region (9) from which white light (10) is emitted by being excited by is formed, and the excitation light (8) formed along the periphery of the excitation region (9) And a regular reflection member (mask (4)) having a regular reflection surface.
  • the excitation light incident on the regular reflection member formed along the periphery of the excitation region is regularly reflected by the regular reflection member.
  • the problem that the excitation light is mixed with white light and becomes stray light is reduced.
  • the regular reflection member (mask (4)) is 90% of the components of the excitation light (8) reflected. % Or more is preferably specularly reflected.
  • the diffusion component of the reflected excitation light component is reduced as compared with the prior art. For this reason, the stray light based on the diffusion component of excitation light is reduced.
  • the excitation region (9) emits the excitation light (8) mainly from an incident surface of the excitation light. It is preferable to diffusely reflect.
  • white light including a component obtained by diffusing and reflecting excitation light can be obtained.
  • the excitation region (9) transmits a part of the excitation light (8).
  • the light source device (2, 2A, 2B, 2D to 2F) according to aspect 5 of the present invention is the above-described aspect 1, wherein the regular reflection member (mask (4)) is disposed on the phosphor light emitting unit (3). Preferably, it has an opening (16) that is disposed and exposes the excitation region (9).
  • the excitation region can be formed with a simple configuration.
  • the regular reflection member (mask (4)) is disposed so as to surround the phosphor light emitting part (3), and the phosphor light emission It is preferable to have an opening (19) in which the part (9) is filled.
  • the phosphor light emitting section (3) is perpendicular to the optical axis with respect to the optical axis of the excitation light (8). It is preferable to be disposed around an inclination axis.
  • the incident direction of the excitation light can be made different from the emission direction of the excitation light regularly reflected by the regular reflection member, so that processing at the reflection destination of the excitation light regularly reflected by the regular reflection member can be performed. It becomes easy.
  • the light source device (2D) according to aspect 8 of the present invention further includes an absorption member (17) that absorbs the excitation light (8) specularly reflected by the regular reflection member (mask (4)) in the above aspect 1. It is preferable.
  • the excitation light regularly reflected by the regular reflection member can be processed so as not to be mixed with white light.
  • the light source device (2E) reflects the excitation light (8) specularly reflected by the regular reflection member (mask (4)) toward the excitation region (9) in the first aspect. It is preferable to further include a reflecting member (11).
  • the excitation light regularly reflected by the regular reflection member can be reflected toward the excitation region and reused as white light.
  • the light source device (2F) according to aspect 10 of the present invention preferably further includes a parabolic member (12) that reflects the white light (10) emitted from the phosphor light emitting unit (3) in the aspect 1. .
  • the emission color of the phosphor light emitting portion and the color of the laser light (wavelength) ) Is not limited to those illustrated.
  • a phosphor light emitting section that emits light of any single color such as red, blue, or green
  • a laser that emits ultraviolet light a light source that emits light of a single color can be obtained.
  • the configuration of the present application can be applied to such a configuration in which the phosphor light emitting section emits light in a single color.
  • the present invention can also be applied to the case where a phosphor light emitting portion that emits white light is excited by a laser that emits ultraviolet light.
  • Excitation light source (light source) 2
  • Light source device 3
  • Phosphor light emitting part 4
  • Mask (regular reflection member) DESCRIPTION OF SYMBOLS 5
  • Wavelength conversion element 8
  • Excitation light 9
  • White light 11
  • Excitation light incident area 15
  • Focus lens 16 19
  • Aperture 17
  • Absorption member 18 Substrate ⁇ 1 Incident angle

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

A light source device (2) comprises: an excitation light source (11) that emits excitation light (8); a phosphor (3) that has formed therein an excitation region (9) where the phosphor (3) is excited by the excitation light (8) emitted from the excitation light source (11) and white light (10) is diffused therefrom; and a specular reflection member (4) that is formed along the peripheral edge of the excitation region (9) and that reflects the excitation light (8) in a specular manner.

Description

光源装置Light source device
 本発明は、励起光を出射する光源と、光源から出射された励起光により励起されて励起光と異なる色の光を放出する蛍光体発光部とを備えた光源装置に関する。 The present invention relates to a light source device including a light source that emits excitation light and a phosphor light-emitting unit that is excited by excitation light emitted from the light source and emits light having a color different from that of the excitation light.
 励起光源から出射した励起光により蛍光体発光部を励起して励起光と異なる色(例えば白色)の光を出射する光源装置において、励起光により蛍光体発光部が励起される励起領域の周縁に明確な明暗コントラストが得られるように、励起領域の周縁に沿って蛍光体を含まない部材(例えば蛍光体発光部の周辺を覆い隠す「マスク」など)を形成する構成が知られている(特許文献1~3)。この、励起領域の周縁に沿って形成される蛍光体を含まない部材は、必ずしも蛍光体発光部の周辺を覆い隠すマスクである必要は無く、最表面に蛍光体を含まない何らかの部材が設けられていればマスクと同様の機能を発揮するが、以下、本願明細書では、励起領域の周縁に沿って形成される蛍光体を含まない部材を総称して「マスク」と表現するものとする。従って、本願明細書において「マスク」とは、蛍光体発光部の上に被せる(マスクする)部材と、蛍光体発光部の横に設置された部材との双方を包含する。 In a light source device that emits light of a color different from the excitation light (for example, white) by exciting the phosphor light emitting portion with the excitation light emitted from the excitation light source, the excitation light is excited at the periphery of the excitation region where the phosphor light emitting portion is excited by the excitation light. A configuration is known in which a member that does not contain a phosphor (for example, a “mask” that covers the periphery of the phosphor light-emitting portion) is formed along the periphery of the excitation region so as to obtain a clear contrast (patent) References 1-3). The member that does not include the phosphor formed along the periphery of the excitation region does not necessarily need to be a mask that covers the periphery of the phosphor light emitting portion, and some member that does not include the phosphor is provided on the outermost surface. However, in the present specification, members that do not include a phosphor formed along the periphery of the excitation region are collectively referred to as a “mask”. Therefore, in the present specification, the “mask” includes both a member that covers (masks) the phosphor light-emitting portion and a member that is installed beside the phosphor light-emitting portion.
 特許文献1及び2に記載のマスクは、励起光源から出射された励起光を吸収する。特許文献3に記載のマスクは、励起光源から出射された励起光を拡散反射する。 The masks described in Patent Documents 1 and 2 absorb excitation light emitted from an excitation light source. The mask described in Patent Document 3 diffusely reflects the excitation light emitted from the excitation light source.
 なお、本願明細書中で「色」と表現されている部分は、「波長」と読み替えることが出来るものとする。 It should be noted that the portion expressed as “color” in this specification can be read as “wavelength”.
国際公開特許公報「2017/154807号(2017年09月14日公開)」International Patent Publication “2017/154807 (published September 14, 2017)” 日本国公開特許公報「特開2011-181381号(2011年09月15日公開)」Japanese Patent Publication “JP 2011-181381 (released on September 15, 2011)” 国際公開特許公報「2017/068765号(2017年04月27日公開)」International Patent Publication “2017/068765 (April 27, 2017)”
 しかしながら、特許文献1及び2に記載の励起光を吸収するマスクも、励起光を100%吸収することはできない。従って、このマスクによって散乱される励起光が発生する。このため、このマスクによって散乱される励起光が、蛍光体発光部から放出される白色光に重畳されるか、あるいは、迷光になるという問題がある。 However, the masks that absorb the excitation light described in Patent Documents 1 and 2 cannot absorb 100% of the excitation light. Therefore, excitation light scattered by the mask is generated. For this reason, there is a problem that the excitation light scattered by the mask is superimposed on white light emitted from the phosphor light emitting section or becomes stray light.
 特許文献3に記載のマスクは、励起光を拡散反射するので、特許文献1及び2に記載のマスクと同様に、拡散する励起光が、蛍光体発光部からの発光に重畳されるか、あるいは、迷光になるという問題がある。 Since the mask described in Patent Document 3 diffuses and reflects the excitation light, the diffused excitation light is superimposed on the light emitted from the phosphor light emitting unit, as in the masks described in Patent Documents 1 and 2. There is a problem of becoming stray light.
 本発明は、外縁に明確なコントラストを有する光源(例えば白色光源)を得つつ、励起光の拡散に起因する迷光が抑制された光源装置を提供することを目的とする。 An object of the present invention is to provide a light source device in which stray light caused by diffusion of excitation light is suppressed while obtaining a light source (for example, a white light source) having a clear contrast at the outer edge.
 上記目的を達成するために本発明に係る光源装置は、励起光を出射する光源と、前記光源から出射された励起光により励起されて励起光と異なる色(例えば白色)の光を放出する励起領域が形成された蛍光体発光部と、前記励起領域の周縁に沿って形成されて前記励起光を正反射するマスクとを備えることを特徴とする。 In order to achieve the above object, a light source device according to the present invention includes a light source that emits excitation light and excitation that emits light of a color (for example, white) that is excited by the excitation light emitted from the light source and is different from the excitation light. A phosphor light-emitting unit having a region formed thereon and a mask formed along the periphery of the excitation region to regularly reflect the excitation light.
 本発明の一態様によれば、外縁に明確なコントラストを有する光源(例えば白色光源)を得つつ、励起光の拡散に起因する迷光が抑制された光源装置を提供することができる。 According to one embodiment of the present invention, it is possible to provide a light source device in which stray light due to diffusion of excitation light is suppressed while obtaining a light source (for example, a white light source) having a clear contrast at the outer edge.
実施形態1に係る光源装置の模式的斜視図である。1 is a schematic perspective view of a light source device according to Embodiment 1. FIG. 上記光源装置の模式図である。It is a schematic diagram of the said light source device. 実施形態2に係る光源装置の模式図である。6 is a schematic diagram of a light source device according to Embodiment 2. FIG. 上記光源装置を図3に示される矢印Aの方向から見た図である。It is the figure which looked at the said light source device from the direction of arrow A shown by FIG. 実施形態3に係る光源装置の断面図である。It is sectional drawing of the light source device which concerns on Embodiment 3. FIG. 実施形態4に係る光源装置の断面図である。It is sectional drawing of the light source device which concerns on Embodiment 4. FIG. 実施形態5に係る光源装置の模式図である。10 is a schematic diagram of a light source device according to Embodiment 5. FIG. 実施形態5に係る他の光源装置の模式図である。10 is a schematic diagram of another light source device according to Embodiment 5. FIG. 実施形態6に係る光源装置の模式図である。10 is a schematic diagram of a light source device according to Embodiment 6. FIG.
 (実施形態1)
 図1は実施形態1に係る光源装置2の模式的斜視図である。図2は光源装置2の模式図である。光源装置2は、励起光源1(光源)と波長変換素子5とを備える。励起光源1は、波長変換素子5に向かって励起光8を出射する。波長変換素子5は、蛍光体発光部3とマスク4(正反射部材)とを有する。蛍光体発光部3は、蛍光を発する物質である蛍光体により構成され、この蛍光体を薄膜化して形成される。また、蛍光体発光部3は、蛍光体を含む部材であって板状に加工して得られる部材であってもよい。
(Embodiment 1)
FIG. 1 is a schematic perspective view of a light source device 2 according to the first embodiment. FIG. 2 is a schematic diagram of the light source device 2. The light source device 2 includes an excitation light source 1 (light source) and a wavelength conversion element 5. The excitation light source 1 emits excitation light 8 toward the wavelength conversion element 5. The wavelength conversion element 5 includes a phosphor light emitting unit 3 and a mask 4 (regular reflection member). The phosphor light emitting section 3 is composed of a phosphor that is a substance that emits fluorescence, and is formed by thinning the phosphor. Moreover, the fluorescent substance light emission part 3 is a member containing a fluorescent substance, and may be a member obtained by processing it into plate shape.
 励起光源1から出射された励起光により蛍光体発光部3が励起されて、蛍光体発光部3からは励起光と異なる色の光(蛍光)が放出される。蛍光体発光部3から放出される光(蛍光)と励起光源1から出射された励起光とが混合され、例えば白色が得られるように構成することが出来る。 The phosphor light emitting unit 3 is excited by the excitation light emitted from the excitation light source 1, and light (fluorescence) having a color different from that of the excitation light is emitted from the phosphor light emitting unit 3. The light (fluorescence) emitted from the phosphor light emitting unit 3 and the excitation light emitted from the excitation light source 1 can be mixed to obtain, for example, white.
 マスク4は、蛍光体発光部3の上に形成され、蛍光体発光部3の表面を露出する開口16を有する。この開口16により露出した蛍光体発光部3の表面が励起領域9に相当する。 The mask 4 is formed on the phosphor light emitting unit 3 and has an opening 16 exposing the surface of the phosphor light emitting unit 3. The surface of the phosphor light emitting portion 3 exposed through the opening 16 corresponds to the excitation region 9.
 この励起領域9では、励起光源1から出射された励起光8により蛍光体が励起されて白色光10が放出される。マスク4は、この励起領域9の周縁に沿って形成されて励起光8を正反射する。 In the excitation region 9, the phosphor is excited by the excitation light 8 emitted from the excitation light source 1 and white light 10 is emitted. The mask 4 is formed along the periphery of the excitation region 9 and regularly reflects the excitation light 8.
 マスク4は、マスク4に照射される励起光8の成分のうちの90%以上を正反射する。励起領域9は、励起光源1から出射された励起光8により蛍光体発光部3を励起して蛍光体発光部3のうちのマスク4で縁取りされた開口16の励起領域9から白色光10を放出する。蛍光体発光部3は、励起光源1から出射された励起光8の光軸に対して蛍光体発光部3の表面法線が入射角度θ1だけ傾いて配置される。 The mask 4 regularly reflects 90% or more of the components of the excitation light 8 irradiated to the mask 4. The excitation region 9 excites the phosphor light emitting unit 3 with the excitation light 8 emitted from the excitation light source 1 and emits white light 10 from the excitation region 9 of the opening 16 bordered by the mask 4 of the phosphor light emitting unit 3. discharge. The phosphor light emitting unit 3 is arranged such that the surface normal of the phosphor light emitting unit 3 is inclined by the incident angle θ1 with respect to the optical axis of the excitation light 8 emitted from the excitation light source 1.
 マスク4に形成される開口16の寸法は、所望の白色光源の寸法(励起領域9)に設定される。励起光源1から出射された励起光8は、励起領域9を包含する励起光入射領域13に入射角度θ1(>0)で斜めに入射する。励起領域9に入射した励起光8は蛍光体発光部3を励起し、これにより白色光10が放出される。一方、励起領域9の外側の励起光入射領域13に配置されたマスク4に入射した励起光8は、制御された態様でマスク4により正反射される。マスク4に入射した励起光8は、入射角度と反射角度とが等しい正反射の法則に従って反射される。 The dimension of the opening 16 formed in the mask 4 is set to a desired white light source dimension (excitation region 9). The excitation light 8 emitted from the excitation light source 1 is incident on the excitation light incident area 13 including the excitation area 9 obliquely at an incident angle θ1 (> 0). The excitation light 8 incident on the excitation region 9 excites the phosphor light emitting unit 3, thereby emitting white light 10. On the other hand, the excitation light 8 incident on the mask 4 disposed in the excitation light incident area 13 outside the excitation area 9 is specularly reflected by the mask 4 in a controlled manner. The excitation light 8 incident on the mask 4 is reflected according to the law of regular reflection in which the incident angle and the reflection angle are equal.
 本明細書において「正反射」とは、入射角度と反射角度とが等しい反射を意味するものとする。 In this specification, “regular reflection” means reflection with the same incident angle and reflection angle.
 マスク4に形成される開口16の形状は、円形でもよいし、正方形でもよいし、長方形でもよいし、他の任意の形状でもよい。開口16の寸法は、好ましくは1mmよりも小さい。 The shape of the opening 16 formed in the mask 4 may be circular, square, rectangular, or any other shape. The dimension of the opening 16 is preferably smaller than 1 mm.
 励起光8の断面形状は、円形、正方形、長方形、又は他の任意の形状であり得る。マスク4の開口16の形状と励起光8の断面形状とは異なり得る。励起光8の強度分布は、その断面で一様であっても良いし、一様でなくてもよい。 The cross-sectional shape of the excitation light 8 can be circular, square, rectangular, or any other shape. The shape of the opening 16 of the mask 4 and the cross-sectional shape of the excitation light 8 may be different. The intensity distribution of the excitation light 8 may or may not be uniform in its cross section.
 (実施形態2)
 図3は実施形態2に係る光源装置2Aの模式図である。図4は光源装置2Aを図3に示される矢印Aの方向から見た図である。前述した実施形態で説明した構成要素には同様の参照符号を付し、その詳細な説明は繰り返さない。
(Embodiment 2)
FIG. 3 is a schematic diagram of a light source device 2A according to the second embodiment. FIG. 4 is a view of the light source device 2A viewed from the direction of the arrow A shown in FIG. The same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
 実施形態1で前述した光源装置2は反射型の光源装置であるが、実施形態2に係る光源装置2Aは透過型の光源装置である。本明細書において、反射型の光源装置とは、図2に示すように、蛍光体発光部3に対する励起光8の入射面と蛍光(白色光10)の主たる出射面とが同一である光源装置を意味するものとする。そして、透過型の光源装置とは、図3に示すように、蛍光体発光部3に対する励起光8の入射面と蛍光(白色光10)の主たる出射面とが対向する光源装置を意味するものとする。 The light source device 2 described in the first embodiment is a reflective light source device, but the light source device 2A according to the second embodiment is a transmissive light source device. In this specification, as shown in FIG. 2, the reflection-type light source device is a light source device in which the incident surface of the excitation light 8 and the main emission surface of the fluorescence (white light 10) are the same with respect to the phosphor light emitting unit 3. Means. As shown in FIG. 3, the transmissive light source device means a light source device in which the incident surface of the excitation light 8 with respect to the phosphor light emitting unit 3 and the main emission surface of the fluorescence (white light 10) face each other. And
 蛍光体発光部3の上にマスク4が設けられる。蛍光体発光部3の励起領域9を露出させる開口16がマスク4に形成される。励起光8は、図3に示すように、マスク4側から蛍光体発光部3に垂直に入射する。励起領域9を露出させる開口16に入射した励起光8は蛍光体発光部3を励起し、白色光10がマスク4と反対側に向かって蛍光体発光部3から放出される。一方、励起領域9の外側の励起光入射領域13内のマスク4に入射した励起光8は、マスク4により正反射され、入射方向と正反対の方向に向かって戻る。 A mask 4 is provided on the phosphor light emitting unit 3. An opening 16 that exposes the excitation region 9 of the phosphor light emitting unit 3 is formed in the mask 4. As shown in FIG. 3, the excitation light 8 enters the phosphor light emitting unit 3 perpendicularly from the mask 4 side. The excitation light 8 that has entered the opening 16 that exposes the excitation region 9 excites the phosphor light emitting unit 3, and the white light 10 is emitted from the phosphor light emitting unit 3 toward the side opposite to the mask 4. On the other hand, the excitation light 8 incident on the mask 4 in the excitation light incident area 13 outside the excitation area 9 is regularly reflected by the mask 4 and returns in a direction opposite to the incident direction.
 反射型の光源装置も透過型の光源装置も、励起光8の蛍光体発光部3への入射角度θ1は、0°と90°との間で任意の角度を取り得る。 In both the reflection type light source device and the transmission type light source device, the incident angle θ1 of the excitation light 8 to the phosphor light emitting unit 3 can be any angle between 0 ° and 90 °.
 マスク4の表面特性は反射的であり、マスク4に入射する励起光8のパワーのほとんどは正反射される。一般に、表面反射の特性は、完全なミラータイプの正反射から完全な拡散反射まで存在する。即ち、表面は正反射と拡散反射とが同時に起こり得る。 The surface characteristics of the mask 4 are reflective, and most of the power of the excitation light 8 incident on the mask 4 is regularly reflected. In general, surface reflection characteristics exist from perfect mirror-type specular reflection to complete diffuse reflection. That is, specular reflection and diffuse reflection can occur simultaneously on the surface.
 ここで、励起領域9の外側のマスク4での拡散反射が生じた場合に、その励起光8の拡散反射光が蛍光体発光部3から放出される白色光にどの程度の色変化を与えるのかを評価することによって、マスク4での拡散反射をどの程度抑える必要があるのかを考察することが出来る。つまり、マスク4での励起光8の正反射成分として必要な割合を導くことが出来る。 Here, when diffuse reflection on the mask 4 outside the excitation region 9 occurs, how much color change the diffuse reflection light of the excitation light 8 gives to the white light emitted from the phosphor light emitting unit 3. It is possible to consider how much diffuse reflection on the mask 4 needs to be suppressed. That is, a necessary ratio can be derived as a regular reflection component of the excitation light 8 at the mask 4.
 励起光8が励起領域9に入射すると、蛍光体発光部3が励起されて白色光10が励起領域9から放出される。ここで、上記の白色光10は、励起領域9内で励起光8が散乱された光と、蛍光体発光部3から放出された蛍光とが混合されたものである。励起光8の波長が波長450nmの青色光であり、蛍光体発光部3が黄色領域で出射するCe:YAG(Yttrium Aluminum Garnet)であるとする。波長が450nmの励起光8と黄色のCe:YAGの出射との間の比率に応じて、相関色温度(CCT)が変化する。 When the excitation light 8 enters the excitation region 9, the phosphor light emitting unit 3 is excited and white light 10 is emitted from the excitation region 9. Here, the white light 10 is a mixture of the light from which the excitation light 8 is scattered in the excitation region 9 and the fluorescence emitted from the phosphor light emitting unit 3. It is assumed that the excitation light 8 is blue light having a wavelength of 450 nm and the phosphor light emitting unit 3 is Ce: YAG (Yttrium Aluminum Garnet) emitted in a yellow region. The correlated color temperature (CCT) changes according to the ratio between the excitation light 8 having a wavelength of 450 nm and the emission of yellow Ce: YAG.
 この相関色温度を、意図した値に調整したい場合に、励起光8と蛍光との混合比率は、マスク4において励起光8が散乱された場合に問題となる。つまり、マスク4上で散乱される励起光8が存在する場合には、励起領域9から出射される所望の相関色温度を有する白色光10に、散乱された過剰な励起光8が重畳されて色温度が変化してしまい、制御が困難となる。本願では、正反射性を有する本実施形態に係る反射性のマスク4は、この色温度が変化する問題を解決するものである。 When it is desired to adjust the correlated color temperature to an intended value, the mixing ratio of the excitation light 8 and fluorescence becomes a problem when the excitation light 8 is scattered on the mask 4. That is, when the excitation light 8 scattered on the mask 4 is present, the scattered excess excitation light 8 is superimposed on the white light 10 having a desired correlated color temperature emitted from the excitation region 9. The color temperature changes, making control difficult. In the present application, the reflective mask 4 according to the present embodiment having specular reflectivity solves the problem that the color temperature changes.
 マスク4の表面での励起光8の正反射に必要な条件を以下に定量化する。発光色の色座標のばらつきを小さくする観点からこの定量化を行うことが出来る。 The conditions necessary for regular reflection of the excitation light 8 on the surface of the mask 4 are quantified as follows. This quantification can be performed from the viewpoint of reducing the variation in the color coordinates of the emission color.
 蛍光体発光部3等の発光素子の色度の管理において、人間の眼によって区別することが出来ない色の変化の範囲は、マクアダムの楕円(MacAdam ellipses)により表現される。色度図上におけるマクアダムの楕円の大きさを示す単位に「STEP」と呼ばれる指標があり、「STEP」の数値が小さいほど色のばらつきがより小さいということが出来る。マクアダムの楕円における1STEPの範囲での色変化は、人間の眼で識別できない。発光素子の製造上は、3STEPの範囲に色のばらつきが収まるように管理されることが多い。 In the chromaticity management of light emitting elements such as the phosphor light emitting section 3, the range of color change that cannot be distinguished by human eyes is expressed by MacAdam ellipses. There is an index called “STEP” in the unit indicating the size of the MacAdam ellipse on the chromaticity diagram, and it can be said that the smaller the “STEP” value, the smaller the color variation. The color change in the range of 1 STEP in the McAdam ellipse cannot be identified by the human eye. In manufacturing a light emitting element, the color variation is often managed so as to fall within the range of 3 STEP.
 励起光8のマスク4での正反射の影響を評価する為に、まず、励起光8とマスク4との重なり領域の影響について考慮する必要がある。重なり領域は、励起光8が入射するマスク4の反射面の上の領域である。正方形の励起領域9と、光線の断面が正方形の励起光8とを使用する場合を例示すると、励起領域9の寸法が500μm×500μmであるとした時、励起光8の断面寸法は、励起領域9の寸法と励起領域9からはみ出し値を加えた寸法により計算される。このはみ出し値を、励起光8のサイズのうちのはみ出し値の割合である重なり値とともに下記に示す。 In order to evaluate the influence of regular reflection of the excitation light 8 on the mask 4, it is first necessary to consider the influence of the overlapping region between the excitation light 8 and the mask 4. The overlapping region is a region on the reflection surface of the mask 4 on which the excitation light 8 is incident. For example, when the excitation region 9 having a square shape and the excitation light 8 having a square cross section are used, when the dimension of the excitation region 9 is 500 μm × 500 μm, the sectional size of the excitation light 8 is It is calculated by the dimension of 9 and the dimension which adds the protrusion value from the excitation area 9. This protrusion value is shown below together with an overlap value which is a ratio of the protrusion value in the size of the excitation light 8.
Figure JPOXMLDOC01-appb-T000001
 はみ出し値は、500μm×500μmの励起領域9の寸法と比較して小さい数字である。しかし、重なり値が大きくなるとそれに比例して蛍光の出射量が低下する。重なり値が10%の場合は、励起光8が90%しか利用されず、10%は蛍光体発光部3での波長変換に寄与しないことを意味する。このため、重なり値は可能な限り小さくしつつ、はみ出し値については製造公差を考慮しておくことが必要となる。最大重なり値としては10%とするのが現実的である。
Figure JPOXMLDOC01-appb-T000001
The protrusion value is a small number compared to the dimension of the excitation region 9 of 500 μm × 500 μm. However, as the overlap value increases, the amount of emitted fluorescence decreases proportionally. When the overlap value is 10%, only 90% of the excitation light 8 is used, and 10% means that it does not contribute to wavelength conversion in the phosphor light emitting unit 3. For this reason, it is necessary to consider the manufacturing tolerance for the protrusion value while minimizing the overlap value. The maximum overlap value is realistically 10%.
 上記の重なり値及びマスク4の反射面の正反射率と、マスク4での拡散反射が蛍光体発光部3から放出される白色光10の色度に与える色温度のズレの程度とを、マクアダムのSTEP数により表現することが出来る。 The above-mentioned overlap value and regular reflectance of the reflecting surface of the mask 4 and the degree of color temperature deviation that diffuse reflection on the mask 4 gives to the chromaticity of the white light 10 emitted from the phosphor light-emitting unit 3 It can be expressed by the number of STEPs.
 ここで、励起光8のパワーは5W、光学発光効率250lm/Wを仮定する。なお、表2における正反射率%とは、励起光8がマスク4において反射する際の正反射成分の割合を示す。 Here, it is assumed that the power of the excitation light 8 is 5 W and the optical emission efficiency is 250 lm / W. In Table 2, “regular reflectance%” indicates the proportion of the regular reflection component when the excitation light 8 is reflected by the mask 4.
Figure JPOXMLDOC01-appb-T000002
 結論を以下に説明する。重なり値0%の場合はマスク4での拡散反射は生じないので蛍光体発光部3からの白色光10の色温度は変化しない。このため、重なり値0%においてはマスク4の正反射率に寄らず、マスク4での拡散反射光の影響は無いので、蛍光体発光部3からの白色光10の色温度の変化はマクアダムの1STEP内に収まる。重なり値が2%の場合、正反射100%においては蛍光体発光部3からの白色光10の発光に色温度の変化を与えない。なぜならば、蛍光体発光部3からの蛍光の出射方向に励起光8が全く散乱しないからである。もし正反射率が減少すると、励起光8のマスク4での散乱量が逆比例して増大する。90%の正反射率では、10%が散乱する。このため、蛍光体発光部3からの蛍光に励起光8を加えた白色光10に対する、マスク4で散乱された励起光8の割合が増大し、色度図上にて波長450nmの励起光8に向かう色座標を加え、蛍光体発光部3から出射される光がより青色っぽい白色に見える。重なり値が大きい程、色座標に青色の励起光8の重畳に伴う色温度のシフトが強く生じるようになる。このため、重なり値が大きい場合ほど、マスク4の正反射率が高いことが重要となる。マクアダムの楕円の3STEP内で最大10%の重なり値を許容したければ、正反射率が90%以上でなければならない。
Figure JPOXMLDOC01-appb-T000002
The conclusion will be explained below. When the overlap value is 0%, diffuse reflection at the mask 4 does not occur, so the color temperature of the white light 10 from the phosphor light emitting unit 3 does not change. For this reason, when the overlap value is 0%, the specular reflectance of the mask 4 is not affected and there is no influence of the diffusely reflected light on the mask 4, so the change in the color temperature of the white light 10 from the phosphor light emitting unit 3 is Macadam's. Fits within 1 STEP. When the overlap value is 2%, no change in color temperature is given to the light emission of the white light 10 from the phosphor light emitting unit 3 when the regular reflection is 100%. This is because the excitation light 8 does not scatter at all in the emission direction of the fluorescence from the phosphor light emitting unit 3. If the regular reflectance decreases, the amount of scattering of the excitation light 8 at the mask 4 increases in inverse proportion. At 90% regular reflectance, 10% is scattered. For this reason, the ratio of the excitation light 8 scattered by the mask 4 to the white light 10 obtained by adding the excitation light 8 to the fluorescence from the phosphor light emitting unit 3 is increased, and the excitation light 8 having a wavelength of 450 nm on the chromaticity diagram. Is added, and the light emitted from the phosphor light-emitting unit 3 appears more blueish white. The larger the overlap value, the stronger the color temperature shift caused by the superimposition of the blue excitation light 8 on the color coordinate. For this reason, it is important that the regular reflectance of the mask 4 is higher as the overlap value is larger. If a maximum overlap value of 10% is allowed within 3 STEP of the MacAdam ellipse, the specular reflectance must be 90% or higher.
 厳密には、マスク4に入射された励起光8の一部はマスク4に吸収され、励起光8の残りがマスク4により反射(正反射または拡散反射)される。前述の(表2)においては、マスク4による励起光8の吸収については考慮していない。即ち、正反射率が90%以上とは、吸収を除いて、反射される励起光8の残りのうちの90%以上がマスク4により正反射されるという意味である。 Strictly speaking, a part of the excitation light 8 incident on the mask 4 is absorbed by the mask 4, and the remainder of the excitation light 8 is reflected (regular reflection or diffuse reflection) by the mask 4. In the above (Table 2), the absorption of the excitation light 8 by the mask 4 is not considered. That is, the regular reflectance of 90% or more means that 90% or more of the remaining excitation light 8 to be reflected is regularly reflected by the mask 4 except for absorption.
 (実施形態3)
 図5は実施形態3に係る光源装置2Bの断面図である。前述した実施形態で説明した構成要素には同様の参照符号を付し、その詳細な説明は繰り返さない。
(Embodiment 3)
FIG. 5 is a cross-sectional view of the light source device 2B according to the third embodiment. The same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
 マスク4は、蛍光体発光部3の上に配置されてもよい。蛍光体発光部3が基板18の上に配置される。マスク4は蛍光体発光部3の上に配置され、蛍光体発光部3の励起領域9を露出させる開口16がマスク4に形成される。 The mask 4 may be disposed on the phosphor light emitting unit 3. The phosphor light emitting unit 3 is disposed on the substrate 18. The mask 4 is disposed on the phosphor light emitting unit 3, and an opening 16 that exposes the excitation region 9 of the phosphor light emitting unit 3 is formed in the mask 4.
 基板18は、熱伝導性を有する材料(例えばアルミニウム)により構成され、蛍光体発光部3に対向する反射面を有する。 The substrate 18 is made of a material having thermal conductivity (for example, aluminum) and has a reflective surface facing the phosphor light emitting unit 3.
 蛍光体発光部3は、Ce:YAGから成り得る。マスク4は、金属、無機材料から成り得る。マスク4の表面が高い正反射率を有することが極めて重要である。 The phosphor light emitting unit 3 can be made of Ce: YAG. The mask 4 can be made of a metal or an inorganic material. It is very important that the surface of the mask 4 has a high regular reflectance.
 図5に示されるマスク4は、蛍光体発光部3に付着あるいは接着されて蛍光体発光部3の表面の周辺部を覆う部材である。蛍光体発光部3の製造工程においては、その表面を平坦化する為の研磨工程、あるいは何らかの平坦化プロセスを含むことが好ましい。研磨された蛍光体発光部3に対しては、ブリュースター角で励起光8を入射させて入射効率を向上させることが出来る。 The mask 4 shown in FIG. 5 is a member that covers or surrounds the surface of the phosphor light emitting unit 3 by being attached to or adhered to the phosphor light emitting unit 3. It is preferable that the manufacturing process of the phosphor light emitting unit 3 includes a polishing process for flattening the surface, or some flattening process. The excitation light 8 can be incident on the polished phosphor light emitting section 3 at a Brewster angle to improve the incident efficiency.
 図5に示される光源装置2Bは、励起光8がマスク4側から蛍光体発光部3の励起領域9に入射する反射型光源装置として使用される。 The light source device 2B shown in FIG. 5 is used as a reflective light source device in which the excitation light 8 enters the excitation region 9 of the phosphor light emitting unit 3 from the mask 4 side.
 (実施形態4)
 図6は実施形態4に係る光源装置2Cの断面図である。前述した実施形態で説明した構成要素には同様の参照符号を付し、その詳細な説明は繰り返さない。
(Embodiment 4)
FIG. 6 is a cross-sectional view of the light source device 2C according to the fourth embodiment. The same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
 マスク4は、図6に示すように、基板18の上の蛍光体発光部3を囲むように基板18の上に配置され、蛍光体発光部3が埋められる開口19を有している。なお、図6のマスク4は、蛍光体発光部3の表面を覆うものではなく、蛍光体発光部3の横に設置された部材であるが、本願明細書ではこの構成も含めてマスク4と表現する。 As shown in FIG. 6, the mask 4 is disposed on the substrate 18 so as to surround the phosphor light emitting unit 3 on the substrate 18, and has an opening 19 in which the phosphor light emitting unit 3 is buried. Note that the mask 4 in FIG. 6 does not cover the surface of the phosphor light-emitting unit 3 but is a member placed beside the phosphor light-emitting unit 3. Express.
 まず、図6に示されるマスク4が基板18の上に付着されるか、載置されるか、接着される。その後、マスク4の開口19に蛍光体発光部3が埋められる。 First, the mask 4 shown in FIG. 6 is attached on, placed on, or adhered to the substrate 18. Thereafter, the phosphor light emitting section 3 is buried in the opening 19 of the mask 4.
 図6に示される光源装置2Cは、基板18が不透明であれば、励起光8がマスク4側から蛍光体発光部3の励起領域9に入射する反射型光源装置として使用することができる。一方、基板18が透明であれば、反射型光源装置として使用する他に、励起光8が基板18側から蛍光体発光部3の励起領域9に入射する透過型光源装置として使用することもできる。 The light source device 2C shown in FIG. 6 can be used as a reflective light source device in which the excitation light 8 enters the excitation region 9 of the phosphor light emitting unit 3 from the mask 4 side if the substrate 18 is opaque. On the other hand, if the substrate 18 is transparent, in addition to being used as a reflective light source device, it can also be used as a transmissive light source device in which excitation light 8 enters the excitation region 9 of the phosphor light emitting unit 3 from the substrate 18 side. .
 (実施形態5)
 図7は実施形態5に係る光源装置2Dの模式図である。前述した実施形態で説明した構成要素には同様の参照符号を付し、その詳細な説明は繰り返さない。
(Embodiment 5)
FIG. 7 is a schematic diagram of a light source device 2D according to the fifth embodiment. The same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
 光源装置2Dは、マスク4により正反射された励起光8を吸収する吸収部材17をさらに備える。励起光8がマスク4により正反射されると、励起光8は制御された態様で蛍光体発光部3から離れる。そして、反射された励起光8は、蛍光体発光部3から離れた位置に配置された吸収部材17によって吸収される。 The light source device 2D further includes an absorbing member 17 that absorbs the excitation light 8 regularly reflected by the mask 4. When the excitation light 8 is regularly reflected by the mask 4, the excitation light 8 leaves the phosphor light emitting unit 3 in a controlled manner. Then, the reflected excitation light 8 is absorbed by the absorbing member 17 disposed at a position away from the phosphor light emitting unit 3.
 この吸収は二通りの方法で行うことができる。まず、励起光8を終端させることのみを目的として励起光8を吸収する方法がある、そして、励起光8の挙動を監視することを目的として光検出器で吸収する方法がある。マスク4で正反射された励起光8の終端方法・活用方法は、それが搭載されたアプリケーションによって選択すれば良い。 This absorption can be done in two ways. First, there is a method of absorbing the excitation light 8 only for the purpose of terminating the excitation light 8, and a method of absorbing with a photodetector for the purpose of monitoring the behavior of the excitation light 8. The termination method / utilization method of the excitation light 8 specularly reflected by the mask 4 may be selected depending on the application in which it is mounted.
 吸収部材17の前にミラーを配置して、マスク4で正反射された励起光8の進行方向を変更してもよい。 A mirror may be disposed in front of the absorbing member 17 to change the traveling direction of the excitation light 8 regularly reflected by the mask 4.
 図8は実施形態5に係る他の光源装置2Eの模式図である。前述した実施形態で説明した構成要素には同様の参照符号を付し、その詳細な説明は繰り返さない。 FIG. 8 is a schematic diagram of another light source device 2E according to the fifth embodiment. The same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
 光源装置2Eは、マスク4により正反射された励起光8を蛍光体発光部3の励起領域9に向けて反射する反射部材11をさらに備える。励起光8がマスク4により正反射されると、励起光8は制御された態様で蛍光体発光部3から離れる。そして、反射された励起光8は、図8に示すように、反射部材11によって反射されて蛍光体発光部3の励起領域9の上に戻される。蛍光体発光部3における発光効率を向上させるために、マスク4により正反射された励起光8は、蛍光体発光部3の励起領域9の上に反射部材11により戻されてリサイクルされる。 The light source device 2E further includes a reflecting member 11 that reflects the excitation light 8 specularly reflected by the mask 4 toward the excitation region 9 of the phosphor light emitting unit 3. When the excitation light 8 is regularly reflected by the mask 4, the excitation light 8 leaves the phosphor light emitting unit 3 in a controlled manner. Then, the reflected excitation light 8 is reflected by the reflecting member 11 and returned onto the excitation region 9 of the phosphor light emitting unit 3 as shown in FIG. In order to improve the light emission efficiency in the phosphor light emitting unit 3, the excitation light 8 specularly reflected by the mask 4 is returned by the reflecting member 11 onto the excitation region 9 of the phosphor light emitting unit 3 and recycled.
 反射部材11の反射面は、平面でもよいし、曲面でもよいし、特殊な形状でもよい。反射部材11は、励起光8をマスク4の反射面の上ではなく、蛍光体発光部3の励起領域9の上に反射して戻す位置に配置される。 The reflection surface of the reflection member 11 may be a flat surface, a curved surface, or a special shape. The reflection member 11 is disposed at a position where the excitation light 8 is reflected on the excitation region 9 of the phosphor light emitting unit 3 and not on the reflection surface of the mask 4.
 反射部材11の前にミラーを配置して、反射された励起光8の進行方向を変更してもよい。 A mirror may be disposed in front of the reflecting member 11 to change the traveling direction of the reflected excitation light 8.
 (実施形態6)
 図9は実施形態6に係る光源装置2Fの模式図である。前述した実施形態で説明した構成要素には同様の参照符号を付し、その詳細な説明は繰り返さない。
(Embodiment 6)
FIG. 9 is a schematic diagram of a light source device 2F according to the sixth embodiment. The same reference numerals are assigned to the components described in the above-described embodiments, and detailed description thereof will not be repeated.
 光源装置2Fは、蛍光体発光部3により出射した白色光10を反射するパラボラ部材12をさらに備える。光源装置2Fは、励起光8と蛍光体発光部3とを使用する自動車のヘッドライトに使用することができる。半導体レーザーダイオードが波長約450nmの励起光8を出射し、マスク4が形成された蛍光体発光部3の励起領域9の上に焦点レンズ15を介して励起光8が集光される。励起領域9で放出された白色光10は、反射性のパラボラ部材12により遠方に投光される。マスク4の開口16の外側で励起光8は吸収部材17に向けて正反射される。開口16は0.5mm×0.5mmの正方形である。反射性のマスク4は1mm×1mmの正方形である。 The light source device 2F further includes a parabolic member 12 that reflects the white light 10 emitted from the phosphor light emitting unit 3. The light source device 2F can be used for a headlight of an automobile using the excitation light 8 and the phosphor light emitting unit 3. The semiconductor laser diode emits excitation light 8 having a wavelength of about 450 nm, and the excitation light 8 is collected via the focus lens 15 on the excitation region 9 of the phosphor light emitting unit 3 on which the mask 4 is formed. White light 10 emitted from the excitation region 9 is projected far away by a reflective parabolic member 12. The excitation light 8 is regularly reflected toward the absorbing member 17 outside the opening 16 of the mask 4. The opening 16 is a 0.5 mm × 0.5 mm square. The reflective mask 4 is a 1 mm × 1 mm square.
 反射性のマスク4を使用する効果は、白色光10として寄与せずに拡散して迷光となる励起光8を、パラボラ部材12から確実に追い出し、安全に終端させることにある。例えば、散乱反射が生じるマスク4を使用すると、パラボラ部材12は、散乱された励起光8を拾って投光する。その結果、投光パターンに非一様な色分布が生じる。 The effect of using the reflective mask 4 is that the excitation light 8 that diffuses and becomes stray light without contributing as the white light 10 is reliably driven out of the parabolic member 12 and safely terminated. For example, when the mask 4 causing scattering reflection is used, the parabolic member 12 picks up and projects the scattered excitation light 8. As a result, a non-uniform color distribution occurs in the projection pattern.
 (まとめ)
 本発明の態様1に係る光源装置(2、2A~2F)は、励起光(8)を出射する光源(励起光源1)と、前記光源(励起光源1)から出射された励起光(8)により励起されて白色光(10)が出射する励起領域(9)が形成された蛍光体発光部(3)と、前記励起領域(9)の周縁に沿って形成されて前記励起光(8)を正反射する表面を有する正反射部材(マスク(4))とを備える。
(Summary)
The light source device (2, 2A to 2F) according to the first aspect of the present invention includes a light source (excitation light source 1) that emits excitation light (8) and excitation light (8) emitted from the light source (excitation light source 1). The phosphor light emitting part (3) in which an excitation region (9) from which white light (10) is emitted by being excited by is formed, and the excitation light (8) formed along the periphery of the excitation region (9) And a regular reflection member (mask (4)) having a regular reflection surface.
 上記の構成によれば、励起領域の周縁に沿って形成された正反射部材に入射した励起光が正反射部材により正反射される。このため、正反射部材に入射した励起光が正反射部材により散乱、拡散される従来技術と異なり、励起光が白色光に混じって迷光になるという問題が低減される。この結果、外縁が明確な白色光を得つつ、迷光の無い、色の均一性・制御性に優れる光源装置を提供することができる。 According to the above configuration, the excitation light incident on the regular reflection member formed along the periphery of the excitation region is regularly reflected by the regular reflection member. For this reason, unlike the prior art in which the excitation light incident on the regular reflection member is scattered and diffused by the regular reflection member, the problem that the excitation light is mixed with white light and becomes stray light is reduced. As a result, it is possible to provide a light source device that obtains white light with a clear outer edge, has no stray light, and is excellent in color uniformity and controllability.
 本発明の態様2に係る光源装置(2、2A~2F)は、上記態様1において、前記正反射部材(マスク(4))は、反射される前記励起光(8)の成分のうちの90%以上を正反射することが好ましい。 In the light source device (2, 2A to 2F) according to aspect 2 of the present invention, in the aspect 1, the regular reflection member (mask (4)) is 90% of the components of the excitation light (8) reflected. % Or more is preferably specularly reflected.
 上記の構成によれば、反射される前記励起光の成分のうちの拡散成分が従来技術よりも減少する。このため、励起光の拡散成分に基づく迷光が低減される。 According to the above configuration, the diffusion component of the reflected excitation light component is reduced as compared with the prior art. For this reason, the stray light based on the diffusion component of excitation light is reduced.
 本発明の態様3に係る光源装置(2、2B~2F)は、上記態様1において、前記励起領域(9)は前記励起光(8)を前記励起光の入射面から主に出射されるように拡散反射することが好ましい。 In the light source device (2, 2B to 2F) according to aspect 3 of the present invention, in the aspect 1, the excitation region (9) emits the excitation light (8) mainly from an incident surface of the excitation light. It is preferable to diffusely reflect.
 上記の構成によれば、励起光を拡散反射した成分を含む白色光を得ることができる。 According to the above configuration, white light including a component obtained by diffusing and reflecting excitation light can be obtained.
 本発明の態様4に係る光源装置(2A)は、上記態様1において、前記励起領域(9)は前記励起光(8)の一部を透過することが好ましい。 In the light source device (2A) according to aspect 4 of the present invention, in the aspect 1, it is preferable that the excitation region (9) transmits a part of the excitation light (8).
 上記の構成によれば、励起光の内の一部を透過した白色光を得ることができる。 According to the above configuration, white light that transmits a part of the excitation light can be obtained.
 本発明の態様5に係る光源装置(2、2A、2B、2D~2F)は、上記態様1において、前記正反射部材(マスク(4))は、前記蛍光体発光部(3)の上に配置され、前記励起領域(9)を露出させる開口(16)を有することが好ましい。 The light source device (2, 2A, 2B, 2D to 2F) according to aspect 5 of the present invention is the above-described aspect 1, wherein the regular reflection member (mask (4)) is disposed on the phosphor light emitting unit (3). Preferably, it has an opening (16) that is disposed and exposes the excitation region (9).
 上記の構成によれば、簡単な構成により励起領域を形成することができる。 According to the above configuration, the excitation region can be formed with a simple configuration.
 本発明の態様6に係る光源装置(2C)は、上記態様1において、前記正反射部材(マスク(4))は、前記蛍光体発光部(3)を囲むように配置され、前記蛍光体発光部(9)が埋められる開口(19)を有することが好ましい。 In the light source device (2C) according to aspect 6 of the present invention, in the above aspect 1, the regular reflection member (mask (4)) is disposed so as to surround the phosphor light emitting part (3), and the phosphor light emission It is preferable to have an opening (19) in which the part (9) is filled.
 上記の構成によれば、反射型光源装置としても透過型光源装置としても使用することができる。 According to the above configuration, it can be used as a reflective light source device or a transmissive light source device.
 本発明の態様7に係る光源装置(2、2D~2F)は、上記態様1において、前記蛍光体発光部(3)が、前記励起光(8)の光軸に対して前記光軸に垂直な傾き軸の周りに傾けて配置されることが好ましい。 In the light source device (2, 2D to 2F) according to aspect 7 of the present invention, in the above aspect 1, the phosphor light emitting section (3) is perpendicular to the optical axis with respect to the optical axis of the excitation light (8). It is preferable to be disposed around an inclination axis.
 上記の構成によれば、励起光の入射方向と正反射部材で正反射した励起光の出射方向とを異ならせることができるので、正反射部材で正反射した励起光の反射先での処理が容易になる。 According to the above configuration, the incident direction of the excitation light can be made different from the emission direction of the excitation light regularly reflected by the regular reflection member, so that processing at the reflection destination of the excitation light regularly reflected by the regular reflection member can be performed. It becomes easy.
 本発明の態様8に係る光源装置(2D)は、上記態様1において、前記正反射部材(マスク(4))により正反射された励起光(8)を吸収する吸収部材(17)をさらに備えることが好ましい。 The light source device (2D) according to aspect 8 of the present invention further includes an absorption member (17) that absorbs the excitation light (8) specularly reflected by the regular reflection member (mask (4)) in the above aspect 1. It is preferable.
 上記の構成によれば、正反射部材により正反射された励起光を白色光に混ざらないように処理することができる。 According to the above configuration, the excitation light regularly reflected by the regular reflection member can be processed so as not to be mixed with white light.
 本発明の態様9に係る光源装置(2E)は、上記態様1において、前記正反射部材(マスク(4))により正反射された励起光(8)を前記励起領域(9)に向けて反射する反射部材(11)をさらに備えることが好ましい。 The light source device (2E) according to the ninth aspect of the present invention reflects the excitation light (8) specularly reflected by the regular reflection member (mask (4)) toward the excitation region (9) in the first aspect. It is preferable to further include a reflecting member (11).
 上記の構成によれば、正反射部材により正反射された励起光を、励起領域に向けて反射して白色光に再利用することができる。 According to the above configuration, the excitation light regularly reflected by the regular reflection member can be reflected toward the excitation region and reused as white light.
 本発明の態様10に係る光源装置(2F)は、上記態様1において、前記蛍光体発光部(3)から放出された白色光(10)を反射するパラボラ部材(12)をさらに備えることが好ましい。 The light source device (2F) according to aspect 10 of the present invention preferably further includes a parabolic member (12) that reflects the white light (10) emitted from the phosphor light emitting unit (3) in the aspect 1. .
 上記の構成によれば、蛍光体発光部から放出された白色光を遠方に投光することができる。 According to the above configuration, it is possible to project the white light emitted from the phosphor light emitting portion in the distance.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本願明細書においては、黄色の蛍光を発する蛍光体発光部を青色のレーザ光により励起することによって白色の光源を得る例を示したが、蛍光体発光部の発光色およびレーザ光の色(波長)は例示されたものに限定されるものではない。例えば、赤色あるいは青色あるいは緑色などの任意の単色で発光する蛍光体発光部を、例えば紫外光で発光するレーザにより励起する場合においては単色で発光する光源を得ることが出来る。このような単色で蛍光体発光部が発光するような構成においても本願の構成が適用可能であることは言うまでもない。また紫外光で発光するレーザにより白色で発光する蛍光体発光部を励起する場合にも適用可能である。 In the specification of the present application, an example of obtaining a white light source by exciting a phosphor light emitting portion emitting yellow fluorescence with blue laser light has been shown. However, the emission color of the phosphor light emitting portion and the color of the laser light (wavelength) ) Is not limited to those illustrated. For example, when a phosphor light emitting section that emits light of any single color such as red, blue, or green is excited by, for example, a laser that emits ultraviolet light, a light source that emits light of a single color can be obtained. It goes without saying that the configuration of the present application can be applied to such a configuration in which the phosphor light emitting section emits light in a single color. The present invention can also be applied to the case where a phosphor light emitting portion that emits white light is excited by a laser that emits ultraviolet light.
 1 励起光源(光源)
 2 光源装置
 3 蛍光体発光部
 4 マスク(正反射部材)
 5 波長変換素子
 8 励起光
 9 励起領域
10 白色光
11 反射部材
12 パラボラ部材
13 励起光入射領域
15 焦点レンズ
16、19 開口
17 吸収部材
18 基板
θ1 入射角度
1 Excitation light source (light source)
2 Light source device 3 Phosphor light emitting part 4 Mask (regular reflection member)
DESCRIPTION OF SYMBOLS 5 Wavelength conversion element 8 Excitation light 9 Excitation area 10 White light 11 Reflective member 12 Parabolic member 13 Excitation light incident area 15 Focus lens 16, 19 Aperture 17 Absorption member 18 Substrate θ1 Incident angle

Claims (10)

  1.  励起光を出射する光源と、
     前記光源から出射された励起光により励起されて前記励起光と異なる色の光が出射する励起領域が形成された蛍光体発光部と、
     前記励起領域の周縁に沿って形成されて前記励起光を正反射する表面を有する正反射部材とを備えることを特徴とする光源装置。
    A light source that emits excitation light;
    A phosphor light emitting part formed with an excitation region that is excited by excitation light emitted from the light source and emits light of a color different from the excitation light;
    A light source device comprising: a regular reflection member formed along a periphery of the excitation region and having a surface that regularly reflects the excitation light.
  2.  前記正反射部材は、反射される前記励起光の成分のうちの90%以上を正反射する請求項1に記載の光源装置。 The light source device according to claim 1, wherein the regular reflection member regularly reflects 90% or more of the components of the excitation light reflected.
  3.  前記励起領域は前記励起光を前記励起光の入射面から主に出射されるように拡散反射する請求項1に記載の光源装置。 The light source device according to claim 1, wherein the excitation region diffusely reflects the excitation light so as to be mainly emitted from an incident surface of the excitation light.
  4.  前記励起領域は前記励起光の一部を透過する請求項1に記載の光源装置。 The light source device according to claim 1, wherein the excitation region transmits a part of the excitation light.
  5.  前記正反射部材は、前記蛍光体発光部の上に配置され、前記励起領域を露出させる開口を有する請求項1に記載の光源装置。 The light source device according to claim 1, wherein the regular reflection member is disposed on the phosphor light emitting unit and has an opening exposing the excitation region.
  6.  前記正反射部材は、前記蛍光体発光部を囲むように配置され、前記蛍光体発光部が埋められる開口を有する請求項1に記載の光源装置。 The light source device according to claim 1, wherein the regular reflection member is disposed so as to surround the phosphor light emitting unit, and has an opening in which the phosphor light emitting unit is buried.
  7.  前記蛍光体発光部が、前記励起光の光軸に対して前記光軸に垂直な傾き軸の周りに傾けて配置される請求項1に記載の光源装置。 The light source device according to claim 1, wherein the phosphor light-emitting unit is arranged to be tilted around an inclination axis perpendicular to the optical axis with respect to an optical axis of the excitation light.
  8.  前記正反射部材により正反射された励起光を吸収する吸収部材をさらに備える請求項1に記載の光源装置。 The light source device according to claim 1, further comprising an absorbing member that absorbs excitation light specularly reflected by the specular reflection member.
  9.  前記正反射部材により正反射された励起光を前記励起領域に向けて反射する反射部材をさらに備える請求項1に記載の光源装置。 The light source device according to claim 1, further comprising a reflecting member that reflects the excitation light regularly reflected by the regular reflection member toward the excitation region.
  10.  前記蛍光体発光部から放出された白色光を反射するパラボラ部材をさらに備える請求項1に記載の光源装置。 The light source device according to claim 1, further comprising a parabolic member that reflects white light emitted from the phosphor light emitting unit.
PCT/JP2018/014791 2018-04-06 2018-04-06 Light source device WO2019193760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014791 WO2019193760A1 (en) 2018-04-06 2018-04-06 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014791 WO2019193760A1 (en) 2018-04-06 2018-04-06 Light source device

Publications (1)

Publication Number Publication Date
WO2019193760A1 true WO2019193760A1 (en) 2019-10-10

Family

ID=68100564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014791 WO2019193760A1 (en) 2018-04-06 2018-04-06 Light source device

Country Status (1)

Country Link
WO (1) WO2019193760A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181381A (en) * 2010-03-02 2011-09-15 Stanley Electric Co Ltd Vehicle light
JP2012089316A (en) * 2010-10-19 2012-05-10 Stanley Electric Co Ltd Light source device, and lighting system
JP2012119170A (en) * 2010-12-01 2012-06-21 Stanley Electric Co Ltd Vehicular lamp fitting
JP2014135159A (en) * 2013-01-09 2014-07-24 Hitachi Consumer Electronics Co Ltd Vehicle lighting appliance
WO2016142212A1 (en) * 2015-03-09 2016-09-15 Koninklijke Philips N.V. A color point variable light emitting apparatus
WO2016199243A1 (en) * 2015-06-10 2016-12-15 オリンパス株式会社 Lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181381A (en) * 2010-03-02 2011-09-15 Stanley Electric Co Ltd Vehicle light
JP2012089316A (en) * 2010-10-19 2012-05-10 Stanley Electric Co Ltd Light source device, and lighting system
JP2012119170A (en) * 2010-12-01 2012-06-21 Stanley Electric Co Ltd Vehicular lamp fitting
JP2014135159A (en) * 2013-01-09 2014-07-24 Hitachi Consumer Electronics Co Ltd Vehicle lighting appliance
WO2016142212A1 (en) * 2015-03-09 2016-09-15 Koninklijke Philips N.V. A color point variable light emitting apparatus
WO2016199243A1 (en) * 2015-06-10 2016-12-15 オリンパス株式会社 Lighting device

Similar Documents

Publication Publication Date Title
JP6246622B2 (en) Light source device and lighting device
JP5598974B2 (en) Lighting device
US9863595B2 (en) Light-emitting unit with optical plate reflecting excitation light and transmitting fluorescent light, and light-emitting device, illumination device, and vehicle headlight including the unit
JP5380498B2 (en) Light source device, lighting device, vehicle headlamp, and vehicle
JP6177596B2 (en) Light emitting device
JP6587148B2 (en) Fluorescent light source device
US10490706B2 (en) Lighting device
JP2012103615A (en) Illumination device and projector
JP6919434B2 (en) Wavelength converters, light source devices and projectors
JP6430048B1 (en) Diffusion plate and optical equipment
CN114675482A (en) Projection light source and projection apparatus
JP7109934B2 (en) Lighting device and vehicle lamp
CN107436529B (en) Light source device and projection display device
JP6394076B2 (en) Light source device and projector
JP4668131B2 (en) Light guide plate and lighting device
JP7484448B2 (en) Lighting equipment and projectors
CN111936786B (en) Lighting device
WO2019193760A1 (en) Light source device
CN214222794U (en) Light emitting device and lamp
JP6300080B2 (en) Light emitting device and vehicle lamp
JP7484130B2 (en) Wavelength conversion element, light source device and projector
US20190324357A1 (en) Projection apparatus and illumination system
WO2024034458A1 (en) Optical member and illumination device
JP7249550B2 (en) lighting equipment
CN215259326U (en) Lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP