WO2019192607A1 - 自接入回传链路的中继转发方法、信息获取方法、节点及存储介质 - Google Patents

自接入回传链路的中继转发方法、信息获取方法、节点及存储介质 Download PDF

Info

Publication number
WO2019192607A1
WO2019192607A1 PCT/CN2019/081545 CN2019081545W WO2019192607A1 WO 2019192607 A1 WO2019192607 A1 WO 2019192607A1 CN 2019081545 W CN2019081545 W CN 2019081545W WO 2019192607 A1 WO2019192607 A1 WO 2019192607A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab
data packet
information
node
identifier
Prior art date
Application number
PCT/CN2019/081545
Other languages
English (en)
French (fr)
Inventor
黄莹
陈琳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19780942.9A priority Critical patent/EP3780877A4/en
Priority to US17/044,017 priority patent/US11595875B2/en
Priority to EP22150967.2A priority patent/EP4017117A1/en
Priority to CA3109180A priority patent/CA3109180C/en
Publication of WO2019192607A1 publication Critical patent/WO2019192607A1/zh
Priority to US18/175,271 priority patent/US11924737B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to the field of communications, for example, to a relay forwarding method, an information acquisition method, a node, and a storage medium of a self-access back link.
  • 5th-Generation, 5G) New Radio (NR) and Long Term Evolution (LTE) have larger available bandwidth, massive multiple input and multiple output (Multiple- The use of Input Multiple-Output (MIMO) and multi-beam enables the research and application of integrated access and backhaul links (IAB).
  • IAB integrated access and backhaul links
  • nodes A, B, and C are access nodes, and user equipment can access access nodes A, B, and C through an access link, but only access.
  • the access node that supports the wireless access of the user equipment (User Equipment, UE) and wirelessly transmits the data is called an IAB node.
  • the access node that provides the wireless backhaul function for the IAB node to connect the UE to the core network is called an IAB donor.
  • the data of the UE can be transmitted between the access nodes through a wireless backhaul link.
  • the access node B may send the data received from the UE to the access node A through the wireless backhaul link, and then the access node A sends the UE data to the core network element.
  • the core network element may send the UE data packet to the access node A, and then the access node A sends the UE data to the access node B through the wireless backhaul link, and the access node B passes the access link.
  • (Access link) Sends UE data to the UE.
  • Access link and backhaul link can use the same or different carrier frequencies.
  • the embodiments of the present disclosure provide a relay forwarding method, an information acquiring method, a node, and a storage medium of a self-access back link, so as to at least how to perform relay forwarding in an IAB architecture, so that data of the UE can be correctly transmitted. And receiving questions.
  • the embodiment of the invention provides a relay forwarding method for the self-access backhaul link IAB, including:
  • the first IAB node receives the data packet
  • the first IAB node sends the data packet to an IAB host.
  • the embodiment of the invention further provides a relay forwarding method for the self-access backhaul link IAB, including:
  • the IAB Host Distribution Unit receives the data packet sent by the IAB node;
  • the first information is obtained by the IAB host DU, and the first information includes at least one of the following: a source node identifier, a target node identifier, a UE identifier to which the data packet belongs, a bearer identifier to which the data packet belongs, a channel identifier to which the data packet belongs, and a routing path information.
  • Quality of Service (QoS) related information QoS
  • GTP General Packet Radio Service Tunneling Protocol
  • the IAB host DU sends the data packet to an IAB Hosted Unit (CU) according to the first information;
  • the IAB host DU is an IAB node, or a DU node in an IAB host, or a DU node wiredly connected to a CU in an IAB host.
  • the embodiment of the invention further provides a relay forwarding method for the self-access backhaul link IAB, including:
  • the IAB host receives the data packet from the core network element or the application layer;
  • the IAB host sends the data packet to an IAB node to send the data packet directly or indirectly to the UE through the IAB node.
  • the embodiment of the invention further provides a relay forwarding method for the self-access backhaul link IAB, including:
  • the IAB node receives the data packet from the IAB host
  • the IAB node sends the data packet to the UE.
  • the embodiment of the invention further provides an information acquisition method, including:
  • the first mapping related information includes at least one of the following:
  • QCI QoS Class Identifier
  • DSCP Differentiated Services Code Point
  • the embodiment of the invention further provides an information acquisition method, including:
  • mapping related information is obtained from the access backhaul link IAB host distribution unit DU, and the mapping related information includes at least one of the following:
  • the UE bearer information includes: a UE identifier and/or a bearer identifier;
  • the F1 GTP tunnel information includes: an address and/or a Tunnel End Point Identifier (TEID) information.
  • TEID Tunnel End Point Identifier
  • the IAB host DU is one of the following: an IAB node, a DU node in an IAB host, and a DU node wiredly connected to a CU in an IAB host.
  • An embodiment of the present invention further provides an IAB node in a self-access backhaul link IAB, including a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing The computer program implements the method described above for any of the embodiments of the IAB node.
  • An embodiment of the present invention further provides an IAB host node in a self-access backhaul link IAB, including a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor.
  • IAB host node in a self-access backhaul link IAB, including a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor. The method described in any of the embodiments applied to the IAB host node is implemented when the computer program is executed.
  • An embodiment of the present invention further provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement the method described in any of the above embodiments.
  • the solution of the foregoing embodiment can be relayed in the IAB architecture, so that the data of the UE can be correctly transmitted and received.
  • FIG. 1A is a schematic diagram of an IAB deployment scenario in which CU/DU is not separated;
  • FIG. 1B is a schematic diagram of an IAB deployment scenario in which CU/DU is separated;
  • FIG. 2 is a schematic diagram of a protocol stack between a UE and an UPF according to Embodiment 1 of the present invention, where the CU does not set an adaptation layer;
  • FIG. 3 is a schematic diagram of another protocol stack between a UE and an UPF according to Embodiment 1 of the present invention, where the CU is provided with an adaptation layer;
  • FIG. 4A is a schematic diagram of a protocol stack between a UE and an UPF according to Embodiment 2 of the present invention, where a GTP-U protocol layer exists on the adaptation layer, and an adaptation layer is not provided by the CU;
  • 4b is a schematic diagram of another protocol stack between a UE and a UPF according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of another protocol stack between a UE and an UPF according to Embodiment 2 of the present invention, where a GTP-U protocol layer exists on the adaptation layer, and the CU is provided with an adaptation layer;
  • FIG. 6 is a schematic diagram of a protocol stack between a UE and an UPF according to Embodiment 3 of the present invention.
  • the data of the UE may need to be transmitted through a multi-hop relay backhaul link between the access node and the core network, as shown in FIG. 1A.
  • the uplink data packet of the UE can be sent to the IAB donor through the two IAB nodes, and then sent to the 5G core network (NGG).
  • the IAB node 1 directly connected to the UE is called the service IAB node.
  • the IAB node 2 can be called an intermediate IAB node (ie, an intermediate IAB node).
  • FIG. 1B the data of the UE needs to be sequentially transmitted to the core network through the IAB node 1, the IAB node 2, and the IAB donor.
  • the architecture of the IAB when the CU/DU is separated is shown in Figure 2.
  • the IAB node 1 has a distribution.
  • the IAB node 2 has a DU function
  • the IAB donor has a CU function.
  • the UE may be an NR UE or an LTE UE.
  • the UE can access through the SA (standalone) mode or the NSA (non-standalone) mode.
  • the UE can access through a dual connection or a single connection.
  • the IAB node can access the network through independent (SA, standalone) or non-standalone (NSA).
  • the IAB node can access the network through a dual connection or a single connection.
  • the adaptation layer may be located on the Radio Link Control (RLC) layer, or between the RLC layer and the Media Access Control (MAC) layer, or the adaptation layer function is located in the RLC. Or MAC layer.
  • RLC Radio Link Control
  • MAC Media Access Control
  • a relay forwarding method for the self-access backhaul link IAB is provided, which is applied to the uplink direction and the IAB node side.
  • the method includes:
  • Step 1 The first IAB node receives the data packet
  • Step 2 The first IAB node sends the data packet to an IAB host.
  • the first IAB node sends the data packet to the IAB host, including: the first IAB node obtains routing related information, and sends the data packet to the IAB host according to the routing related information.
  • the first IAB node receives the data packet, including:
  • the first IAB node receives a data packet from the UE.
  • the first IAB node receives a data packet from its own application layer
  • the first IAB node receives a data packet from another IAB node
  • the data packet is user plane data or control plane signaling.
  • the first IAB node sends the data packet to an IAB host, including:
  • the first IAB node forwards the data packet to another IAB node, and the other IAB node sends the data packet directly or indirectly to the IAB host.
  • the route related information includes at least one of the following:
  • Routing path information routed to the secondary or secondary base station
  • the UE identifier is one of the following: a 5G base station centralized unit user equipment F1 interface access point identifier (gNB-CU UE F1AP ID), a gNB-DU UE F1AP ID, and a cell radio network temporary identifier (Cell Radio Network Temporary Identifier, C) -RNTI), S1 interface access point identifier (S1 AP ID), X2 AP ID, NG AP ID, Xn AP ID.
  • gNB-CU UE F1AP ID 5G base station centralized unit user equipment F1 interface access point identifier
  • gNB-DU UE F1AP ID a cell radio network temporary identifier
  • C Cell Radio Network Temporary Identifier
  • the bearer identifier is one of the following: a data radio bearer identifier (DRB ID), a signaling radio bearer identifier (SRB ID), a logical channel identify (LCID), and a QoS flow identifier. (Quality of Service flow Identifier, QFI), flow identifier.
  • DRB ID data radio bearer identifier
  • SRB ID signaling radio bearer identifier
  • LCID logical channel identify
  • QoS flow identifier QoS flow identifier.
  • QFI Quality of Service flow Identifier
  • the target node identifier is one of the following: a DU identifier, a CU identifier, a base station identifier, a User Plane Function (UPF) identifier, an Access and Mobility Management Function (AMF) identifier, a cell identifier, and a target.
  • the index number is one of the following: a DU identifier, a CU identifier, a base station identifier, a User Plane Function (UPF) identifier, an Access and Mobility Management Function (AMF) identifier, a cell identifier, and a target.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • the first IAB node obtains routing related information, including one or more of the following manners:
  • the first IAB node obtains the routing related information from an access side network element by using RRC signaling or F1 signaling or X2 signaling or Xn signaling;
  • the first IAB node obtains the routing related information from a core network element by using S1 signaling or NG signaling;
  • the first IAB node obtains the routing related information from an application server
  • the first IAB node obtains the routing related information from an Internet Protocol (IP) layer header of the received data packet.
  • IP Internet Protocol
  • the route related information obtained by the first IAB node is configured by using a UE as a granularity; or
  • the routing related information is configured with the UE's bearer as the granularity, and the first IAB node obtains the bearer identifier and the corresponding routing related information; or
  • the routing related information is configured according to the bearer type of the UE, and the first IAB node obtains the bearer type and corresponding routing related information.
  • the first IAB node sends the data packet to an IAB host, including:
  • the first IAB node adds an adaptation layer header to the data packet; where: the adaptation layer header includes at least one of the following information: a source node identifier, a target node identifier, a UE identifier to which the data packet belongs, and a data packet belongs to The bearer identifier, the channel identifier to which the data packet belongs, the routing path information, the QoS related information, the GTP tunnel information, the control plane indication information, the user plane indication information, and the protocol type indication information.
  • the adaptation layer header includes at least one of the following information: a source node identifier, a target node identifier, a UE identifier to which the data packet belongs, and a data packet belongs to The bearer identifier, the channel identifier to which the data packet belongs, the routing path information, the QoS related information, the GTP tunnel information, the control plane indication information, the user plane indication information, and the protocol type indication information.
  • the protocol type indication information may include one of the following: F1, F1 control plane, F1 user plane, IP, non-IP, Stream Control Transmission Protocol (SCTP), NG, S1, Xn, X2 .
  • the adding the adaptation layer header is performed by an adaptation layer located above the RLC layer; or
  • the adding an adaptation layer header is performed by an adaptation layer located between the RLC layer and the MAC layer;
  • the adding adaptation layer header is performed by an adaptation layer functional entity located at the RLC layer; or
  • the add adaptation layer header is performed by an adaptation layer functional entity located at the MAC layer.
  • the first IAB node sends the data packet to the IAB host, including: sending the data packet to the next hop node by:
  • the first IAB node maps the data packet to the corresponding radio bearer according to the QoS related information of the bearer and/or QoS flow of the data packet and the corresponding mapping rule, and sends the data packet to the next hop node, where
  • the mapping rule includes at least one of the following: a packet mapping rule, a QoS rule, a mapping rule between the QoS related information and the differential service code point DSCP, a mapping rule between the QoS related information and the service type TOS; or
  • the first IAB node according to the logical channel or radio bearer of the UE to which the data packet belongs, or according to a logical channel or a radio bearer of a previous hop IAB node associated with the data packet, according to a corresponding mapping rule, the data is The packet is mapped to the radio bearer or logical channel of the first IAB node for transmission to the next hop node.
  • the first IAB node sends the data packet to an IAB host, including:
  • the first IAB node maps the data packet to a corresponding F1 GTP tunnel according to the radio bearer to which the data packet belongs and the mapping relationship between the radio bearer and the F1 GTP tunnel;
  • the first IAB node adds an adaptation layer header to the data packet, and the adaptation layer header includes at least one of the following information: a source node identifier, a target node identifier, a channel identifier to which the data packet belongs, a routing path information, and QoS related information. , GTP tunnel information, control plane indication information, user plane indication information, protocol type indication information.
  • the method further includes:
  • the first IAB node uses the F1-U encapsulated data packet as a data packet when it acts as a UE identity, and maps the F1-U GTP bearer of the UE to which the data packet belongs to the QoS flow of the first IAB node. Or a radio bearer or logical channel, sent through its own Protocol Data Unit (PDU) session.
  • PDU Protocol Data Unit
  • the method further includes:
  • the target node is an IAB donor, or a gNB-CU in an IAB donor, or a gNB-DU in an IAB donor, or a gNB-DU connected to a gNB-CU in an IAB donor, or an UPF, or an AMF, or a base station. , or an IAB node;
  • the next hop node is an IAB donor or an IAB node.
  • the first IAB node obtains routing related information, including:
  • the method further includes at least one of the following: the first IAB node determines a next hop node according to the routing related information lookup routing table; and adds an adaptation layer header ;
  • the target node is an IAB donor, or a gNB-CU in an IAB donor, or a gNB-DU in an IAB donor, or a gNB-DU connected to a gNB-CU in an IAB donor, or an UPF, or an AMF, or a base station, or IAB node;
  • the next hop node is an IAB donor or an IAB node.
  • the embodiment of the present invention further provides a relay forwarding method for the self-access backhaul link IAB, which is applied to the uplink direction and the IAB host side.
  • the method includes:
  • Step A The IAB host distribution unit DU receives the data packet sent by the IAB node.
  • Step B The IAB host DU obtains first information, where the first information includes at least one of the following information: a source node identifier, a target node identifier, a UE identifier to which the data packet belongs, a bearer identifier to which the data packet belongs, and a channel identifier to which the data packet belongs. , routing path information, QoS related information, GTP tunnel information, control plane indication information, user plane indication information, protocol type indication information;
  • Step 230 The IAB host DU sends the data packet to the IAB host centralized unit CU according to the first information.
  • the IAB host DU is an IAB node, or a DU node in an IAB host, or a DU node wiredly connected to a CU in an IAB host.
  • the IAB host DU obtains the first information, including:
  • the IAB host DU obtains at least part of the information in the first information from an adaptation layer header of the data packet.
  • the IAB host DU sends the data packet to the IAB host centralized unit CU according to the first information, including:
  • the IAB host DU maps the data packet to a corresponding F1 GTP tunnel according to the first information, and sends the data packet to the IAB host CU; or
  • the IAB host DU After the IAB host DU adds an adaptation layer header to the data packet, it is sent to the IAB host CU through an F1 GTP tunnel;
  • the adaptation layer header includes at least one of the following information: a source node identifier, a target node identifier, a UE identifier to which the data packet belongs, a bearer identifier to which the data packet belongs, a channel identifier to which the data packet belongs, a routing path information, and QoS related information, GTP tunnel information, control plane indication information, user plane indication information, and protocol type indication information.
  • the adding the adaptation layer header is performed by an adaptation layer located above the RLC layer; or
  • the adding an adaptation layer header is performed by an adaptation layer located between the RLC layer and the MAC layer;
  • the adding adaptation layer header is performed by an adaptation layer functional entity located at the RLC layer; or
  • the add adaptation layer header is performed by an adaptation layer functional entity located at the MAC layer.
  • the IAB host DU maps the data packet to the corresponding F1 GTP tunnel according to the first information, and sends the data packet to the IAB host centralized unit CU, including:
  • the IAB host CU identifies the UE and the bearer to which the data packet belongs according to the tunnel information in the GTP-U packet header; or
  • the IAB host DU obtains GTP tunnel information from the data packet, and performs GTP-U protocol layer processing and encapsulation, and the GTP tunnel information is included in the GTP-U packet header and sent to the IAB host CU, so that The IAB host CU identifies the UE and the bearer to which the data packet belongs according to the GTP tunnel information in the GTP-U packet header; or
  • the tunnel information is sent to the IAB host CU in the GTP-U header to enable the IAB host CU to identify the UE and bearer to which the data packet belongs according to the GTP tunnel information in the GTP-U header.
  • the method further includes:
  • the data packet belongs to the IAB host DU based on the correspondence between the GTP-U tunnel established by the GTP-U on the adaptation layer and the UE and the bearer. UE and bearer.
  • the embodiment of the present invention further provides a relay forwarding method for the self-access backhaul link (IAB), which is applied to the downlink direction, the IAB host side, and the method includes:
  • Step a the IAB host receives the data packet from the core network element or the application layer;
  • Step b The IAB host sends the data packet to the IAB node to send the data packet directly or indirectly to the UE through the IAB node.
  • the IAB host sends the data packet to the second IAB node, including:
  • the IAB host adds an adaptation layer header to the corresponding protocol layer of the data packet, and the adaptation layer header carries at least one of the following information: a source node identifier, a target node identifier, a UE identifier to which the data packet belongs, and data.
  • the bearer identifier of the packet the channel identifier to which the data packet belongs, the routing path information, the QoS related information, the GTP tunnel information, the control plane indication information, the user plane indication information, and the protocol type indication information.
  • the adding the adaptation layer header is performed by an adaptation layer located above the RLC layer; or
  • the adding an adaptation layer header is performed by an adaptation layer located between the RLC layer and the MAC layer;
  • the adding adaptation layer header is performed by an adaptation layer functional entity located at the RLC layer; or
  • the add adaptation layer header is performed by an adaptation layer functional entity located at the MAC layer.
  • the IAB host comprises an IAB host centralized unit CU and/or a distribution unit DU,
  • the IAB host sends the data packet to the second IAB node, including:
  • the IAB host CU maps the data packet to the UE to which the data packet belongs and the corresponding GTP tunnel to the distribution unit DU, and the distribution unit encapsulates the UE identifier and the bearer identifier in the adaptation layer header Resend the next hop node; or
  • the IAB host CU carries the GTP tunnel information allocated by the serving IAB node in the GTP-U header of the data packet sent to the DU, and after obtaining the GTP tunnel information, the distribution unit encapsulates the GTP tunnel information in the adaptation. Resending the next hop node in the layer header; or
  • the IAB host CU carries the first GTP tunnel information between the IAB host CU and the DU in the GTP-U header of the data packet sent to the DU, and the DU determines the service IAB node allocation corresponding to the first GTP tunnel information.
  • the second GTP tunnel information is encapsulated in the adaptation layer header and sent to the next hop node; or
  • the IAB host CU adds an adaptation layer header to the data packet, and then sends the packet to the DU.
  • the adaptation layer header carries at least one of the following information: a source node identifier, a target node identifier, a UE identifier to which the data packet belongs, and a data packet.
  • the bearer identifier the channel identifier to which the data packet belongs, the routing path information, the QoS related information, the GTP tunnel information, the control plane indication information, the user plane indication information, the protocol type indication information; or
  • the IAB host CU maps the data packet to the corresponding GTP tunnel, performs GTP-U processing and encapsulation, adds an adaptation layer header and sends the packet to the DU, and the adaptation layer header carries at least one of the following information: The source node identifier, the target node identifier, the channel identifier to which the data packet belongs, the routing path information, the QoS related information, the GTP tunnel information, the control plane indication information, the user plane indication information, and the protocol type indication information.
  • the IAB host sends the data packet to the second IAB node, and further includes:
  • the adaptation layer header carries at least one of the following information: the source node identifier, the target node The identifier, the UE identifier to which the data packet belongs, the bearer identifier to which the data packet belongs, the channel identifier to which the data packet belongs, the routing path information, the QoS related information, the GTP tunnel information, the control plane indication information, the user plane indication information, and the protocol type indication information;
  • the adaptation layer header carries at least one of the following information: the source node identifier, the target node Identification, channel identifier to which the data packet belongs, routing path information, QoS related information, GTP tunnel information, control plane indication information, user plane indication information, protocol type indication information;
  • the DU After receiving the data packet sent by the IAB host CU, the DU maps the GTP tunnel between the IAB host CU and the DU to which the data packet belongs to the GTP tunnel between the corresponding service IAB node and the CU. And performing the GTP-U encapsulation and adding the adaptation layer header to the next hop node, where the adaptation layer header carries at least one of the following information: the source node identifier, the target node identifier, and the channel identifier to which the data packet belongs. Routing path information, QoS related information, GTP tunnel information, control plane indication information, user plane indication information, protocol type indication information.
  • the embodiment of the present invention further provides a relay forwarding method for the self-access backhaul link (IAB), which is applied to the downlink direction and the IAB node side, and the method includes:
  • Step I The IAB node receives the data packet from the IAB host
  • Step II The IAB node sends the data packet to the UE.
  • the IAB node sends the data packet to the UE, including:
  • the IAB node obtains the second information from the adaptation layer header, determines the next hop node according to the second information, and sends the data packet to the next node, where the second information includes at least the following One of the information: source node identifier, target node identifier, UE identifier to which the data packet belongs, bearer identifier to which the data packet belongs, channel identifier to which the data packet belongs, routing path information, QoS related information, GTP tunnel information, control plane indication information, user plane indication Information; protocol type indication information.
  • the IAB node sends the data packet to the UE, including:
  • the data packet is sent to the next node, where the second information includes at least one of the following information: a source node identifier, and a target node.
  • the IAB node sends the data packet to the UE, including:
  • the IAB node determines, according to the UE identifier in the second information, the bearer identification information, the UE and the bearer to which the data packet belongs, or the GTP tunnel information in the second information determines the UE and the bearer to which the data packet belongs, and then Transmitting to the UE by the UE and the bearer corresponding QoS flow or radio bearer or logical channel; or
  • the IAB node obtains the GTP tunnel information by parsing the GTP-U protocol layer, determines the UE and the bearer to which the data packet belongs according to the GTP tunnel information, and then sends the QoS flow or the radio bearer or the logical channel corresponding to the UE and the bearer. Give the UE.
  • the embodiment of the invention further provides an information acquisition method, including:
  • the first mapping related information includes at least one of the following:
  • the manner in which the first mapping related information is obtained from the access backhaul link IAB node includes at least one of the following:
  • the IAB node obtains the first mapping related information from an access side network element by using a radio resource control RRC signaling, F1 signaling, X2 signaling, Xn signaling, or other interface information;
  • RRC radio resource control
  • the IAB node obtains the first mapping related information from a core network element by using S1 signaling, NG signaling, or other interface information;
  • the first IAB node obtains the first mapping related information from an application server.
  • the embodiment of the invention further provides an information acquisition method, including:
  • mapping related information is obtained from the access backhaul link IAB host distribution unit DU, and the mapping related information includes at least one of the following:
  • the UE bearer information includes: a UE identifier and/or a bearer identifier;
  • the F1 GTP tunnel information includes: address and/or TEID information.
  • the IAB host DU is an IAB node, or a DU node in an IAB host, or a DU node that has a wired connection with a CU in an IAB host.
  • An embodiment of the present invention further provides an IAB node in a self-access backhaul link IAB, including a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing The computer program implements the processing of any of the methods performed by the IAB node as described above.
  • An embodiment of the present invention further provides an IAB host node in a self-access backhaul link IAB, including a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor.
  • IAB host node in a self-access backhaul link IAB, including a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor.
  • Embodiments of the present invention also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the processing of any of the methods described above.
  • the method in this embodiment is a method for routing according to the adaptation layer information.
  • the protocol stack between the UE and the User Plane Function (UPF) is shown in Figure 2 and Figure 3.
  • the adaptation layer is located above the RLC layer of the IAB node and the IAB donor. It should be noted that the adaptor layer may also be located between the RLC layer and the MAC layer, or the adaptation layer function may be located at the RLC or MAC layer.
  • Step 1 The data packet of the UE is encapsulated by a corresponding protocol layer (for example, SDAP (Service Data Adaptation Protoco)/Packet Data Convergence Protocol (PDCP)/RLC/MAC/Physical Layer (PHY) And after processing, send to the IAB node 1 through the air interface;
  • SDAP Service Data Adaptation Protoco
  • PDCP Packet Data Convergence Protocol
  • RLC Packet Data Convergence Protocol
  • PHY Physical Layer
  • Step 2 After receiving the data packet of the UE, the IAB node 1 performs corresponding PHY/MAC/RLC parsing, determines the target node and the next hop node of the data packet according to the obtained routing related information, or determines a routing path.
  • the target node is an IAB donor, or a gNB-CU in an IAB donor, or a gNB-DU in an IAB donor, or a gNB-DU connected to a gNB-CU in an IAB donor, or an UPF, or an AMF (Access). And Mobility Management Function), or base station, or IAB node.
  • the routing related information includes at least one of the following:
  • the destination node address such as the Transport Network Layer (TNL) address or IP address;
  • TNL Transport Network Layer
  • routing path information which may include one of the following: a routing path identifier, a routing path number, a routing path index number, such as a path identifier or number or index information in a routing table configured in IAB node 1;
  • the bearer type includes at least one of the following: MCG (master cell group) bearer, SCG (Secondary cell group) bearer, split bearer, MN terminated SCG bearer, SN ( Secondary node secondary node) terminated MCG bearer;
  • the identity of the primary base station or the primary node which may be the identification information of the base station or the CU or the DU;
  • the address of the primary base station or the primary node may be the address information of the base station or the CU or the DU;
  • secondary base station or secondary node identifier may be identification information of a base station or a CU or a DU;
  • a secondary base station or a secondary node address may be address information of a base station or a CU or a DU;
  • routing path information to the primary base station or the primary node; including one of the following: routing path identifier, routing path number, routing path index number, such as the path identifier or number or index in the routing table configured in IAB node 1. information;
  • routing path information to the secondary base station or secondary node; including one of the following: routing path identifier, routing path number, routing path index number, such as path identifier or number or index in the routing table configured in IAB node 1. information;
  • next hop node identifier wherein the next hop node may be an IAB donor, or a gNB-CU in an IAB donor, or a gNB-DU in an IAB donor, or a gNB-DU connected to a gNB-CU in an IAB donor , or UPF, or AMF, or base station, or IAB node.
  • Next hop node address the transport layer TNL address or IP address of the following hop node.
  • the IAB node 1 can obtain routing related information from the access side network element through RRC signaling or F1 signaling or X2 signaling or Xn signaling; wherein, the access side network element is one of the following: gNB- CU, IAB donor, gNB, eNB; or, IAB node 1 may obtain routing related information from the core network element through S1 signaling or NG signaling; or, IAB node 1 may obtain routing related information from the application server;
  • the IAB node 1 can obtain routing related information from the access side network element through RRC signaling or F1 signaling or X2 signaling or Xn signaling; wherein, the access side network element is one of the following: gNB- CU, IAB donor, gNB, eNB; or, IAB node 1 may obtain routing related information from the core network element through S1 signaling or NG signaling; or, IAB node 1 may obtain routing related information from the application server.
  • the routing related information may be configured with the UE as the granularity; or the routing related information may be configured with the UE's bearer as the granularity, that is, the routing related information is configured for each UE bearer; or the routing related information may also be
  • the bearer type is configured as the granularity, that is, the corresponding routing information is configured for each UE bearer type.
  • the IAB node 1 may determine the target node and/or the next hop node of the data packet according to the RLC channel or bearer identity or bearer type and/or corresponding route related information to which the data packet received from the UE belongs.
  • the data of the bearer may be forwarded to two or more different target nodes.
  • the IAB node 1 adds an adaptation layer header to the parsed PDCP PDU.
  • the adaptation layer header contains at least one of the following information: the source node identifier, the target node identifier, the UE identifier to which the data packet belongs, and the bearer identifier to which the data packet belongs.
  • the channel identifier to which the data packet belongs the routing path information, the QoS related information, the GTP tunnel information, the control plane indication information, the user plane indication information, and the protocol type indication information.
  • the GTP tunnel information includes a TNL address and/or GTP TEID information, for example, GTP tunnel information corresponding to the UE bearer allocated by the donor CU.
  • the protocol type indication information includes one of the following: F1, F1 control plane, F1 user plane, IP, non-IP, SCTP, NG, S1, Xn, X2.
  • the IAB node 1 may obtain the UE bearer information and the corresponding GTP tunnel information from the CU, for example, may be obtained through RRC signaling or F1 signaling.
  • Step 4 The IAB node 1 determines that the next hop node is the IAB node 2, and then sends the data packet encapsulated by the adaptation layer to the IAB node 2 through the RLC channel or radio bearer between the IAB node 1 and the IAB node 2.
  • the IAB node 1 needs to map the data packet of the UE to the RLC channel or radio bearer of the IAB node 1 and send it to the IAB node 2. Specifically, the IAB node 1 may map the data packet of the UE to the RLC channel or the radio bearer of the IAB node 1 based on the following methods:
  • Method 1 The IAB node1 maps the data packets of the UE to the corresponding bearers according to a specific mapping rule.
  • the IAB node1 obtains the QCI or 5QI or QFI value or bearer identifier of the bearer or QoS flow to which it belongs from the received UE data packet. Then, corresponding mapping is performed according to the configured bearer mapping relationship information.
  • the bearer mapping relationship information includes at least one of the following:
  • IAB node1 obtains the corresponding DSCP or TOS value according to the QCI or 5QI or QFI value and bearer mapping relationship information of the bearer or QoS flow of the UE data packet, and the IAB node1 according to the DSCP or TOS value, and the configured packet mapping rule (for example, a Packet Filter Set, or a Traffic Flow Template (TFT), maps UE data packets to a radio bearer or RLC channel or QoS flow of the corresponding IAB node 1.
  • the configured packet mapping rule For example, a Packet Filter Set, or a Traffic Flow Template (TFT)
  • the IAB node1 maps the UE data packet to the corresponding QoS flow according to the DSCP or TOS value, and the configured packet mapping rule, the IAB node1 maps the QoS flow to the radio bearer and uses the corresponding radio bearer.
  • the UE data packet is sent to the IAB node2.
  • the IAB node1 derives the QCI or 5QI value or QFI value of the bearer or QoS flow to which it belongs from the received UE data packet.
  • the data packet is then mapped to the QoS flow or bearer or RLC channel corresponding to the QCI or 5QI or QFI value in the configured QoS rules or TFTs. If the UE data packet is mapped to the corresponding QoS flow, the IAB node1 maps the QoS flow to the radio bearer, and sends the UE data packet to the IAB node2 through the corresponding radio bearer.
  • the IAB node 1 is based on the mapping relationship between the logical channel of the configured UE and the logical channel of the IAB node 1 (for example, the mapping relationship between the logical channel ID (logical channel ID)), or the radio bearer and the IAB of the UE.
  • the mapping relationship between the radio bearers of the node 1 (for example, the mapping relationship between the radio bearer IDs) is correspondingly mapped; the mapping relationship may be a predefined one or a one-to-one correspondence. Or configured by one of the following methods: F1 signaling, RRC signaling, X2 signaling, Xn signaling, S1 signaling, and NG signaling.
  • the IAB node 2 After receiving the data packet, the IAB node 2 parses the corresponding protocol layer (for example, PHY/MAC/RLC/adaptor layer), and obtains information in the adaptation layer header, such as the source node identifier, the target node identifier, and the UE identifier to which the data packet belongs. , the bearer identifier of the data packet, the channel identifier to which the data packet belongs, the routing path information, the QoS related information, the GTP tunnel information, the control plane indication information, the user plane indication information, and the protocol type indication information.
  • the IAB node 2 only reads the information in the adaptation layer header without removing the adaptation layer header. In this case, the IAB node 2 does not encapsulate the adaptation layer header.
  • the IAB node 2 determines the target node according to the information in the adaptation layer header, and determines the next hop node as the target node (donor DU) by checking the routing table.
  • the protocol layer for example, PHY/MAC/
  • the IAB node 2 adds an adaptor layer header to the data packet, where the at least one of the following includes: a source node identifier, a target node identifier, a UE identifier to which the data packet belongs, a bearer identifier to which the data packet belongs, a channel identifier to which the data packet belongs, and a routing path.
  • Information QoS related information, GTP tunnel information, control plane indication information; user plane indication information; protocol type indication information.
  • the IAB node 2 sends the encapsulated data packet to the IAB donor through the RLC channel or radio bearer between the IAB node 2 and the IAB donor.
  • the mapping between the RLC channel/radio bearer of the IAB node 1 and the RLC channel/radio bearer of the IAB node 2 refer to the method in step 4.
  • the IAB node 2 then performs the corresponding RLC/MAC/PHY processing on the data packet and sends it to the IAB donor DU (the DU in the IAB donor, or the DU connected to the CU in the IAB donor).
  • the IAB donor DU performs PHY/MAC/RLC/adaptor layer parsing on the data packet, and obtains at least one of the following information: the source node identifier, the target node identifier, the UE identifier to which the data packet belongs, the bearer identifier to which the data packet belongs, and the data packet to which the data packet belongs. Channel identification, routing path information, QoS related information, GTP tunnel information, control plane indication information, user plane indication information, protocol type indication information.
  • the IAB donor DU sends the packet to the IAB donor CU through the F1-U GTP tunnel with the CU.
  • the IAB donor DU needs to obtain mapping related information (for example, obtained from the IAB donor CU), and the mapping related information includes at least one of the following:
  • the UE bearer information includes: a UE identifier and/or a bearer identifier;
  • the F1 GTP tunnel information includes: address and/or TEID information.
  • the IAB donor DU is an IAB node, or a DU node in an IAB host, or a DU node that has a wired connection with a CU in an IAB host.
  • L1 represents the physical layer in the protocol stack model and L2 represents the link layer in the protocol stack model.
  • the IAB donor DU maps each radio bearer of each UE to the F1-U GTP tunnel.
  • the CU can identify the UE and bearer problems to which the data packet belongs by the following three methods:
  • the donor DU obtains the SRB (sigalling radio bearer) or the DRB (data radio bearer) ID of the UE from the donor CU, and the corresponding F1 GTP tunnel information.
  • the IAB donor DU obtains the UE and the bearer identifier carried in the adaptor layer header.
  • the donor DU can map the data packet to the corresponding F1 GTP tunnel according to the mapping relationship between the obtained SRB/DRB and the F1 GTP tunnel.
  • the donor CU is configured to enable the CU to identify the UE and the bearer to which the data packet belongs according to the tunnel information in the GTP-U (or the tunnel information in the GTP-U packet header), and deliver the PDCP entity to the corresponding UE.
  • the candidate DU After receiving the data packet, the candidate DU obtains the GTP tunnel information (TNL address and/or GTP TEID) carried in the adaptor layer header, and then the Donor DU performs the GTP-U protocol layer processing and encapsulation, and the adaptor layer header is used.
  • the GTP tunnel information is sent to the Donor CU in the GTP-U header, so that the CU can identify the UE and the bearer to which the data packet belongs according to the GTP-U header information, and deliver the PDCP entity to the corresponding UE.
  • Method 3 After receiving the data packet of the candidate DU, obtain the GTP tunnel information (TNL address and/or GTP TEID) carried in the adaptor layer header. Then, when the Donor DU performs GTP-U protocol layer processing and encapsulation, according to the GTP tunnel mapping information configured by the CU, the data packet passes the GTP tunnel information between the Donor DU and the Donor CU corresponding to the GTP tunnel information in the adaptor layer header. The information is sent to the Donor CU in the GTP-U packet header, so that the CU can identify the UE and the bearer to which the data packet belongs according to the GTP tunnel, and deliver the PDCP entity to the corresponding UE.
  • GTP tunnel information TNL address and/or GTP TEID
  • the IAB donor DU encapsulates the adaptor layer header for the packet.
  • the adaptor layer header includes at least one of the following: the target node identifier, the UE identifier to which the data packet belongs, the bearer identifier to which the data packet belongs, the channel identifier to which the data packet belongs, the routing path information, and the GTP tunnel information.
  • the IAB donor DU simply reads the information in the adaptation layer header without removing the adaptation layer header. In this case, the IAB donor DU does not encapsulate the adaptation layer header.
  • the IAB donor DU sends data to the IAB donor CU via the F1-U GTP tunnel.
  • Step 7 the Donor CU identifies the UE and the bearer to which the data packet belongs according to the GTP-U tunnel information, and delivers the UE data packet to the PDCP entity corresponding to the corresponding UE for subsequent analysis and processing.
  • the Donor CU parses the adaptation layer and obtains at least one of the following: source node identifier, target node identifier, UE identifier to which the data packet belongs, bearer identifier to which the data packet belongs, channel identifier to which the data packet belongs, routing path information, QoS-related Information, GTP tunnel information, control plane indication information; user plane indication information; protocol type indication information.
  • the Donor CU delivers the UE data packet to the PDCP entity corresponding to the corresponding UE for subsequent analysis processing.
  • the SDAP layer of the Donor CU finds the NG GTP-U tunnel corresponding to the corresponding PDU session according to the flow ID of the UE in the SDAP header and the RB ID of the eNB, and sends the UE data to the UPF through the NG GTP tunnel.
  • the downlink data forwarding process using the method of this embodiment is as follows. It should be noted that the following steps can be used in any combination.
  • Step 1 After receiving the UE data from the UPF, the CU in the IAB donor determines the QoS flow of the UE packet corresponding to the PDU session according to the QFI in the packet header, and then maps the QoS flow to the corresponding radio bearer.
  • the IAB donor needs to determine the target node of the data packet, and the target node of the data packet is the serving IAB node of the UE (ie, IAB node 1).
  • the IAB donor may determine the target node (serving IAB node) of the data packet according to the service IAB node information in the UE context, or the service IAB node information corresponding to the radio bearer, or the service IAB node information corresponding to the bearer type.
  • the CU in the IAB donor sends the UE data packet to the IAB donor DU (ie, the DU in the IAB donor or the DU connected to the CU in the IAB donor).
  • Step 2 The DU in the IAB donor or the DU connected to the IA in the IAB donor receives the data packet.
  • the IAB donor DU obtains mapping related information (for example, obtained from an IAB donor CU), and the mapping related information includes at least one of the following:
  • the UE bearer information includes: a UE identifier and/or a bearer identifier;
  • the F1 GTP tunnel information includes: address and/or TEID information.
  • the IAB donor DU is an IAB node, or a D U node in an IAB host , or a DU node that has a wired connection with a CU in an IAB host.
  • the IAB node 1 identifies the UE and/or the bearer and/or the target node to which the data packet belongs according to the foregoing mapping related information.
  • IAB node 1 can be adapted to the adapter layer by one of the following methods:
  • Method 1 The donor DU acquires the mapping relationship between the UE and the GTP tunnel from the CU, and then determines the UE and the bearer according to the GTP tunnel information. The donor DU then encapsulates the UE identity and bearer identity in the adaptor layer header.
  • the adaptor layer header also includes the target node identifier and/or path information.
  • Method 2 The GTP-U header of the packet sent by the donor CU to the donor DU contains the GTP tunnel information (TNL address and/or GTP TEID) assigned by the IAB node 1.
  • the donor DU resolves the GTP tunnel information and obtains the IAB.
  • the GTP tunnel information allocated by node 1 is encapsulated in the adaptor layer header.
  • the donor DU obtains the GTP tunnel information between the donor DU and the donor CU from the CU and the GTP tunnel information between the corresponding IAB node 1 and the donor CU. After the donor DU receives the UE data packet from the CU, it determines the GTP tunnel between the IAB node 1 and the donor CU corresponding to the GTP tunnel between the donor DU and the donor CU to which the data packet belongs, and the tunnel information (IAB node 1 and donor CU) The inter-GTP tunnel is encapsulated in the adaptor layer header.
  • the CU in the IAB donor adds an adaptor layer header to each PDCP PDU, which includes at least one of the following: a source node identifier, a target node identifier, and a UE identifier to which the data packet belongs.
  • the CU in the IAB donor adds an adaptor layer header to each PDCP PDU, which includes at least one of the following: the target node identifier, the UE identifier to which the data packet belongs, and the bearer to which the data packet belongs. Identification, channel identifier to which the data packet belongs, routing path information, and QoS related information.
  • the QoS related information is a QCI or 5QI value of the UE data packet.
  • the IAB donor DU determines that the next hop node is IAB node 2.
  • the IAB donor DU maps the data packet to the QoS flow of the IAB node 2 corresponding to the QCI or 5QI value according to the mapping relationship between the DSCP or TOS information in the IP packet header and the configured DSCP/TOS to QCI/5QI. Hosted and sent to IAB node 2.
  • Step 3 After receiving the IAB node 2, the at least one of the following is obtained by parsing the adaptor layer: the source node identifier, the target node identifier, the UE identifier to which the data packet belongs, the bearer identifier to which the data packet belongs, the channel identifier to which the data packet belongs, and the routing path information.
  • QoS related information GTP tunnel information, control plane indication information; user plane indication information; protocol type indication information.
  • the IAB node 2 determines the next hop routing node (IAB node 1) based on the above information and the routing table.
  • the IAB node 2 performs the adaptation of the adaptor layer protocol
  • the adaptor layer header includes at least one of the following: a source node identifier, a target node identifier, a UE identifier to which the data packet belongs, a bearer identifier to which the data packet belongs, a channel identifier to which the data packet belongs, and a route.
  • Path information QoS related information, GTP tunnel information, control plane indication information, user plane indication information, protocol type indication information.
  • the IAB node 2 determines its QoS information (QCI or 5QI or QFI value) according to the bearer or QoS flow of the received data packet, or determines its QoS information according to the adaptor layer header information of the received data packet, and then the data packet.
  • the QoS flow/bearer of the IAB node 1 mapped to the corresponding QCI or 5QI or QF value is sent to the IAB node 1.
  • Step 4 After receiving the IAB node 1, the at least one of the following is obtained by parsing the adaptor layer: the source node identifier, the target node identifier, the UE identifier to which the data packet belongs, the bearer identifier to which the data packet belongs, the channel identifier to which the data packet belongs, and the routing path information.
  • QoS related information GTP tunnel information, control plane indication information; user plane indication information; protocol type indication information.
  • the IAB node 1 determines the UE to which the data packet belongs and the associated bearer according to the UE identifier carried in the adaptor layer header of the received data packet, or the IAB node 1 according to the GTP tunnel carried in the adaptor layer header of the received data packet.
  • the information determines that the UE to which the data packet belongs and the associated bearer and then transmits the UE data packet to the UE through the corresponding QoS flow/RLC channel/bearer of the corresponding UE.
  • Embodiment 2 GTP-U+adaptor layer
  • the method in this embodiment is a method for routing according to the adaptation layer information.
  • the GTP-U protocol layer exists on the adaptation layer, that is, an F1 GTP tunnel needs to be established between the IAB node 1 and the IAB donor. , used to deliver the UE's data packets.
  • the protocol stack between the UE and the UPF is shown in Figures 4 and 5.
  • the adaptation layer is located above the RLC layer of the IAB node and the IAB donor.
  • the adaptor layer may also be located between the RLC layer and the MAC layer, or the adaptation layer function may be located at the RLC or MAC layer.
  • the F1-U data between the IAB node1 and the IAB donor is carried by the F1 GTP-U tunnel.
  • the F1 GTP-U tunnel has a one-to-one correspondence with the bearer of the UE, and can be used to identify the UE and the bearer to which the data packet belongs. Therefore, the Adaptor layer header does not need to include the UE identifier and bearer identifier.
  • the method in the first embodiment is also applicable to the second embodiment.
  • the protocol stack of Donor CU and Donor DU can be used in two ways, as shown in Figure 4 and Figure 5, respectively.
  • the protocol stack architecture method shown in Figure 4b is also used.
  • the donor DU sends the data of the F1 GTP-U tunnel of the UE (also referred to as the F1-U tunnel, that is, the GTP tunnel of the F1 interface) to the donor CU through another F1-U tunnel.
  • Two sections of F1-U tunnels correspond one-to-one.
  • the Donor CU can identify the UE to which the data packet belongs and the associated bearer through the TEID information in the F1-U tunnel, and then deliver the same to the corresponding PDCP entity.
  • the uplink data forwarding process using the method of this embodiment is as follows. It should be noted that the following steps can be used in any combination.
  • Step 1 After the data packet of the UE is encapsulated and processed by the corresponding protocol layer (for example, SDAP/PDCP/RLC/MAC/PHY), it is sent to the IAB node 1 through the air interface.
  • the protocol layer for example, SDAP/PDCP/RLC/MAC/PHY
  • Step 2 After receiving the data of the UE and performing the corresponding PHY/MAC/RLC parsing, the IAB node 1 may determine the target node and the next hop node of the data packet according to the obtained routing related information, or determine the routing path.
  • the content included in the routing related information is as described in Embodiment 1.
  • the IAB node 1 can obtain routing related information from the access side network element through RRC signaling or F1 signaling or X2 signaling or Xn signaling; the access side network element is one of the following: gNB-CU, IAB donor, gNB, eNB; or, IAB node 1 may obtain routing related information from the core network element through S1 signaling or NG signaling; or, IAB node 1 obtains routing related information from the application server;
  • the routing related information may be configured with the UE as the granularity; or the routing related information may be configured for each UE's bearer, that is, the routing related information is configured for each UE bearer; or the routing related information may also be configured for each bearer type. That is, the routing related information is configured for each UE bearer type.
  • the IAB node 1 may determine the target node and/or the next hop node of the data packet according to the RLC channel or bearer identity or bearer type and routing related information to which the data packet received from the UE belongs.
  • the data of the bearer may be forwarded to two or more different target nodes.
  • Step 3 The IAB node 1 maps the parsed PDCP PDU to the corresponding F1 GTP tunnel according to the mapping relationship between the configured radio bearer and the F1 GTP tunnel.
  • the data packet is subjected to the adaptation layer processing and encapsulation, that is, the adaptation layer header is added to the UE data packet, and the adaptation layer packet header includes at least one of the following information: the target node identifier. Routing path information.
  • the IAB node 1 may obtain the UE bearer information and the corresponding GTP tunnel information from the CU in the F1 signaling UE context setup request.
  • Step 4 The IAB node 1 determines that the next hop node is the IAB node 2, and then sends the data packet encapsulated by the adaptation layer to the IAB node 2 through the RLC channel or radio bearer between the IAB node 1 and the IAB node 2.
  • the IAB node 1 needs to map the data packet of the UE to the RLC channel or radio bearer of the IAB node 1 and send it to the IAB node 2 (ibid.). Specifically, the IAB node 1 may map the data packet of the UE to the RLC channel or the radio bearer of the IAB node 1 based on the following methods:
  • Method 1 The IAB node1 maps the data packets of the UE to the corresponding bearers according to a specific mapping rule.
  • the IAB node1 obtains the QCI or 5QI value of the bearer or QoS flow to which it belongs from receiving the UE data packet. Then, according to the mapping relationship between the configured QCI and the DSCP (Differentiated Services Code Point), or the mapping relationship between 5QI and DSCP, or the mapping relationship between QCI and TOS (Type of Service), or 5QI and TOS The mapping relationship between them gives the corresponding DSCP or TOS value.
  • the IAB node 1 maps the UE data packet to the bearer or QoS flow of the corresponding IAB node 1 according to the DSCP or TOS value, and the configured packet mapping rule (eg, Packet Filter Set, or TFT).
  • the configured packet mapping rule eg, Packet Filter Set, or TFT
  • the IAB node1 maps the UE data packet to the corresponding QoS flow according to the DSCP or TOS value, and the configured packet mapping rule, the IAB node1 maps the QoS flow to the radio bearer and uses the corresponding radio bearer.
  • the UE data packet is sent to the IAB node2.
  • IAB node1 obtains the QCI or 5QI value of the bearer or QoS flow to which it belongs from receiving the UE data packet. The data packet is then mapped to the QoS flow or bearer corresponding to the QCI or 5QI value in the configured QoS rules or TFTs. Optionally, if the UE data packet is mapped to the corresponding QoS flow, the IAB node1 maps the QoS flow to the radio bearer, and sends the UE data packet to the IAB node2 through the corresponding radio bearer.
  • the IAB node 1 is based on a mapping relationship between a logical channel of the configured UE and a logical channel of the IAB node 1 (for example, a mapping relationship between LCIDs), or a mapping between a radio bearer of the UE and a radio bearer of the IAB node 1.
  • the mapping (for example, the mapping relationship between RBIDs) is correspondingly mapped; the mapping relationship may be a predefined one, or a one-to-one correspondence, or configured by one of the following methods: F1 signaling, RRC signaling, X2 letter Let, Xn signaling, S1 signaling, NG signaling.
  • Step 5 After receiving the data packet, the IAB node 2 parses the corresponding protocol layer (for example, PHY/MAC/RLC/adaptor layer), and obtains information in the adaptation layer header, such as the target node identifier, the UE identifier to which the data packet belongs, and the data packet belongs to The bearer identifier, the channel identifier to which the data packet belongs, and the routing path information.
  • the IAB node 2 only reads the information in the adaptation layer header without removing the adaptation layer header. In this case, the IAB node 2 does not encapsulate the adaptation layer header.
  • the IAB node 2 determines the target node according to the information in the adaptation layer header, and determines the next hop node as the target node (donor DU) by checking the routing table.
  • the IAB node 2 adds an adaptor layer header to the data packet, where the at least one of the following includes: a target node identifier, a channel identifier to which the data packet belongs, and routing path information.
  • the IAB node 2 sends the encapsulated data packet to the IAB donor through the RLC channel or radio bearer between the IAB node 2 and the IAB donor.
  • the mapping between the RLC channel/radio bearer of the IAB node 1 and the RLC channel/radio bearer of the IAB node 2 refer to the method in step 4.
  • the IAB node 2 then performs the corresponding RLC/MAC/PHY processing on the data packet and sends it to the IAB donor DU (the DU in the IAB donor, or the DU connected to the CU in the IAB donor).
  • the IAB donor DU performs PHY/MAC/RLC/adaptor layer and GTP-U parsing on the data packet, and obtains at least one of the following information: the target node identifier, the UE identifier to which the data packet belongs, the bearer identifier to which the data packet belongs, and the data packet to which the data packet belongs. Channel identification, routing path information, GTP-U tunnel information.
  • the IAB donor DU sends the packet to the IAB donor CU through the F1-U GTP tunnel with the CU.
  • the IAB donor DU maps each radio bearer of each UE to the F1-U GTP tunnel.
  • the donor DU determines the GTP tunnel to which the data packet belongs.
  • the donor DU maps the GTP tunnel between the IAB node 1 and the donor DU to the GTP tunnel between the corresponding Donor DU and the donor CU and sends it to the donor CU.
  • the mapping relationship can be configured by donor CU.
  • the IAB donor DU encapsulates the adaptor layer header for the packet, which contains at least one of the following: the target node identifier and the routing path information.
  • the IAB donor DU simply reads the information in the adaptation layer header without removing the adaptation layer header. In this case, the IAB donor DU does not encapsulate the adaptation layer header.
  • the IAB donor DU sends data to the IAB donor CU via the F1-U GTP tunnel.
  • Step 7 the Donor CU identifies the UE and bearer to which the data packet belongs according to the tunnel information in the GTP-U packet header, and delivers the UE data packet to the PDCP entity corresponding to the corresponding UE for subsequent analysis and processing.
  • the Donor CU obtains at least one of the following by parsing the adaptation layer: target node identifier, routing path information. Then, the Donor CU obtains the GTP-U tunnel to which the data packet belongs by parsing the GTP-U protocol layer, and the corresponding data packet belongs to the UE and the bearer, and then delivers the UE data packet to the corresponding PDCP entity of the corresponding UE for subsequent analysis and processing.
  • the SDAP layer of the Donor CU finds the NG GTP-U tunnel corresponding to the corresponding PDU session according to the flow ID of the UE in the packet header and the RBID to which the RB is located, and sends the UE data to the UPF through the NG GTP tunnel.
  • the downlink data forwarding process using the method of this embodiment is as follows. It should be noted that the following steps can be used in any combination.
  • the F1-U data between the IAB node1 and the IAB donor is carried by the F1 GTP-U tunnel.
  • the F1 GTP-U tunnel has a one-to-one correspondence with the bearer of the UE, and can be used to identify the UE and the bearer to which the data packet belongs. Therefore, the Adaptor layer header does not need to include the UE identifier and bearer identifier.
  • Step 1 After receiving the UE data from the UPF, the CU in the IAB donor determines the QoS flow of the UE packet corresponding to the PDU session according to the QFI in the packet header, and then maps the QoS flow to the corresponding radio bearer.
  • the IAB donor needs to determine the target node of the data packet, and the target node of the data packet is the serving IAB node of the UE (ie, IAB node 1).
  • the IAB donor may determine the target node (serving IAB node) of the data packet according to the service IAB node information in the UE context, or the radio bearer and the corresponding service IAB node information, or the bearer type and the corresponding service IAB node information.
  • the CU in the IAB donor sends the UE data packet to the DU in the IAB donor or the DU connected to the CU in the IAB donor.
  • the CU in the IAB donor maps the PDCP PDU to the corresponding F1-U tunnel, and after GTP-U processing and encapsulation, the adaptor layer header is added and sent to the donor DU. It includes at least one of the following: target node identifier, routing path information, and QoS related information.
  • the QoS related information is a QCI or 5QI value of the UE data packet.
  • the donor DU obtains the GTP tunnel information between the donor DU and the donor CU and the corresponding GTP tunnel information between the IAB node 1 and the donor CU.
  • the donor DU receives the UE data packet from the CU, it determines the GTP tunnel between the IAB node 1 and the donor CU corresponding to the GTP tunnel between the donor DU and the donor CU to which the data packet belongs, and connects the tunnel between the IAB node 1 and the donor CU.
  • the GTP tunnel is mapped to the GTP tunnel between the corresponding donor DU and IAB node 1 and the corresponding GTP-U encapsulation is performed.
  • the adaptor layer processing and encapsulation are performed, and the added adaptor layer header includes at least one of the following: target node identifier, routing path information, and QoS related information.
  • the QoS related information is a QCI or 5QI value of the UE data packet.
  • the DU maps the data packet to the QoS flow/bearing of the IAB node 2 of the corresponding QCI or 5QI value according to the DSCP or TOS information in the IP packet header and sends the data to the IAB node 2.
  • the donor DU receives the UE data packet from the CU, the at least one of the following is obtained by parsing the adaptor layer: the target node identifier, the routing path information, and the QoS related information.
  • the donor DU determines the next hop routing node (IAB node 2) based on the above information and the routing table.
  • the donor DU performs the adaptation of the adaptor layer protocol, and the adaptor layer header includes at least one of the following: a target node identifier, routing path information, and QoS related information.
  • the donor DU determines its QoS information according to the adaptor layer header information of the received data packet, or maps the data packet to the QoS flow/bearing of the IAB node 1 corresponding to the QCI or 5QI value according to the DSCP or TOS information in the IP packet header. And sent to IAB node 2.
  • Step 3 After receiving the IAB node 2, by parsing the adaptor layer, at least one of the following: the target node identifier, the routing path information, and the QoS related information are obtained.
  • the IAB node 2 determines the next hop routing node (IAB node 1) based on the above information and the routing table.
  • the IAB node 2 is encapsulated by the adaptor layer protocol, and the adaptor layer header includes at least one of the following: a target node identifier, routing path information, and QoS related information.
  • the IAB node 2 determines its QoS information (QCI or 5QI value) according to the bearer or QoS flow of the received data packet, or determines its QoS information according to the adaptor layer header information of the received data packet, and then maps the data packet to The QoS flow/bearing/logical channel of the IAB node 1 corresponding to the QCI or 5QI value is sent to the IAB node 1.
  • QCI or 5QI value QoS information
  • Step 4 After receiving the IAB node 1, the at least one of the following is obtained by parsing the adaptor layer: the target node identifier, the routing path information, and the QoS related information. Then, the IAB node 1 can obtain the UE and the bearer to which the data packet belongs by parsing the GTP-U protocol layer, and then send the UE data packet to the UE through the corresponding QoS flow/RLC channel/bearer of the corresponding UE.
  • Embodiment 3 PDU session+adaptor
  • the method in this embodiment is a method 3 for routing according to the adaptation layer information.
  • the protocol stack between the UE and the UPF is as shown in FIG. 6.
  • the adaptation layer is located above the RLC layer of the IAB node and the IAB donor.
  • the adaptor layer may also be located between the RLC layer and the MAC layer, or the adaptation layer function may be located at the RLC or MAC layer.
  • the F1-U data between the IAB node1 and the IAB donor is carried by the PDU session of the IAB node 1, and the Adaptor layer header does not need to include the UE identifier and the bearer identifier.
  • the method in the second embodiment is also applicable to the third embodiment.
  • the IAB node1 After receiving the uplink data of the UE, the IAB node1 parses the PDCP PDU and then maps it to the corresponding F1-U GTP tunnel, and then the IAB node uses the F1-U packet of the encapsulated UE as the data when it acts as the UE identity. It is sent to its own UPF through its own PDU session, which may need to be forwarded through the intermediate IAB node. The IAB node 1 needs to map the F1-U GTP bearer of the UE to the QoS flow or bearer of the IAB node 1.
  • the data packet may be according to the QoS information (QCI or 5QI) of the bearer to which the data packet received from the UE belongs and the Packet Filter Set (including the IP Packet Filter Set, Ethernet Packet Filter Set) in the QoS rules. Map to the corresponding QoS flow or bearer.
  • the IAB node 1 may determine the corresponding DSCP/TOS value according to the QoS information of the bearer to which the data packet received from the UE belongs and the mapping relationship between the QoS information and the DSCP/TOS, and then map the UE data packet according to the DSCP/TOS. Go to the corresponding QoS flow or bearer.
  • the IAB node1 maps the UE data packet to the QoS flow, the IAB node1 also needs to map the QoS flow to the DRB of the IAB node1.
  • the adaptor layer header is added, and the added adaptor layer header contains the target node identifier information. , and / or routing path information.
  • One or more intermediate IAB nodes route the packet to the donor DU according to the routing information in the adaptor layer.
  • the CU function of the UE in the IAB donor can identify the UE and bearer to which the data packet belongs according to the GTP-U header information (eg, F1 GTP TEID), and deliver the PDCP entity to the corresponding bearer.
  • GTP-U header information eg, F1 GTP TEID
  • Such software may be distributed on a computer readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • the computer storage medium includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), and an electrically erasable programmable read only memory (EEPROM).
  • Flash or other memory technology Compact Disc Read-Only Memory (CD-ROM), Digital Video Disc (DVD) or other optical disc storage, magnetic box, magnetic tape, disk storage or other magnetic storage
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .

Abstract

本文公开了一种自接入回传链路IAB的中继转发方法,包括:第一IAB节点接收数据包;所述第一IAB节点将所述数据包发送给IAB宿主。本文还公开了信息获取方法、IAB节点、IAB宿主节点以及存储介质。

Description

自接入回传链路的中继转发方法、信息获取方法、节点及存储介质
本申请要求在2018年04月05日提交中国专利局、申请号为201810302723.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,例如,涉及一种自接入回传链路的中继转发方法、信息获取方法、节点及存储介质。
背景技术
第五代移动通信(5th-Generation,5G)新无线(New Radio,NR)与长期演进(Long Term Evolution,LTE)相比更大的可用带宽,大规模(massive)多入多出(Multiple-Input Multiple-Output,MIMO)和多波束(multi-beam)的使用,使得自接入回传链路(integrated access and backhaul links,IAB)的研究和应用成为可能。通过无线的回传链路和中继链路,能更灵活地部署密集的NR小区网络却不需要相应地增加传输网络的密集部署。
部署了IAB的网络的一个示例中,节点A,B,C都是接入节点,用户设备可通过接入链路(access link)接入到接入节点A,B,C,但是只有接入节点A与核心网网元之间存在有线连接,接入节点B和C与核心网网元之间没有有线连接。其中,支持用户设备(User Equipment,UE)的无线接入并且将数据进行无线回传的接入节点称为IAB节点(IAB node)。而为IAB node提供无线回传功能以使得UE与核心网连接的接入节点称为IAB宿主(IAB donor)。接入节点之间可通过无线的回传链路(backhaul link)传输UE的数据。例如,接入节点B可通过无线的backhaul link将从UE接收的数据发送给接入节点A,然后接入节点A再将UE数据发送给核心网网元。对于下行,核心网网元可将UE数据包发送给接入节点A,然后接入节点A再通过无线的backhaul link将UE数据发送给接入节点B,接入节点B再通过接入链路(Access link)将UE数据发送给UE。Access link和backhaul link可使用相同或不同的载频。
在IAB架构中如何进行中继转发,以使得UE的数据能正确发送及接收。 是要解决的问题。
发明内容
本公开实施例提供一种自接入回传链路的中继转发方法、信息获取方法、节点及存储介质,以至少解决在IAB架构中如何进行中继转发,以使得UE的数据能够正确发送及接收的问题。
本发明实施例提供了一种自接入回传链路IAB的中继转发方法,包括:
第一IAB节点接收数据包;
所述第一IAB节点将所述数据包发送给IAB宿主。
本发明实施例还提供了一种自接入回传链路IAB的中继转发方法,包括:
IAB宿主分布单元(Distributed Unit,DU)接收IAB节点发送的数据包;
所述IAB宿主DU获得第一信息,所述第一信息包括以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,服务质量(Quality of Service,QoS)相关信息,通用分组无线服务技术隧道协议(General Packet Radio Service Tunneling Protocol,GTP)隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息;
所述IAB宿主DU根据所述第一信息将所述数据包发送给IAB宿主集中单元(Centralized Unit,CU);
其中,所述IAB宿主DU为IAB节点,或者IAB宿主中的DU节点,或者与IAB宿主中的CU有线连接的DU节点。
本发明实施例还提供了一种自接入回传链路IAB的中继转发方法,包括:
IAB宿主从核心网网元或应用层接收数据包;
所述IAB宿主将所述数据包发送给IAB节点,以通过所述IAB节点将数据包直接或间接发送给UE。
本发明实施例还提供了一种自接入回传链路IAB的中继转发方法,包括:
IAB节点从IAB宿主接收数据包;
所述IAB节点将所述数据包发送给UE。
本发明实施例还提供了一种信息获取方法,包括:
自接入回传链路IAB节点获取第一映射相关信息;所述第一映射相关信息包括以下至少之一:
服务质量等级标识(QoS Class Identifier,QCI)与差分服务代码点(Differentiated Services Code Point,DSCP)之间的映射关系;
第五代移动通信服务质量指示(5th-Generation QoS Indicator,5QI)与服务类型(Type of Service,TOS)之间的映射关系;
QCI与TOS之间的映射关系;
5QI与TOS之间的映射关系;
5QI与QCI之间的映射关系;
QCI与QCI之间的映射关系;
5QI与5QI之间的映射关系;
QFI与QFI之间的映射关系;
承载标识与QFI之间的映射关系;
承载标识与承载标识之间的映射关系。
本发明实施例还提供了一种信息获取方法,包括:
自接入回传链路IAB宿主分布单元DU获取映射相关信息,所述映射相关信息包括以下至少之一:
UE承载信息与F1 GTP隧道信息之间的映射关系;
UE承载信息,目标节点标识与F1 GTP隧道信息之间的映射关系;
目标节点标识与F1 GTP隧道信息之间的映射关系;
F1 GTP隧道信息之间的映射关系;
其中,UE承载信息包括:UE标识和/或承载标识;
F1 GTP隧道信息包括:地址和/或隧道端点标识符(Tunnel End point Identifier,TEID)信息。
其中,所述IAB宿主DU为下述之一:IAB节点,IAB宿主中的DU节点,与IAB宿主中的CU有线连接的DU节点。
本发明实施例还提供了一种自接入回传链路IAB中的IAB节点,包括存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述应用于IAB节点的任一实施例所述的方法。
本发明实施例还提供了一种自接入回传链路IAB中的IAB宿主节点,包括存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述应用于IAB宿主节点的任一实施例所述的方法。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
上述实施例方案可以在IAB架构中进行中继转发,以使得UE的数据能正确发送及接收。
附图说明
图1A是CU/DU不分离的IAB部署场景的示意图;
图1B是CU/DU分离的IAB部署场景的示意图;
图2是本发明实施例一的一种UE与UPF之间协议栈的示意图,CU未设置适配层;
图3是本发明实施例一的另一种UE与UPF之间协议栈的示意图,CU设置有适配层;
图4a是本发明实施例二的一种UE与UPF之间协议栈的示意图,适配层之上存在GTP-U协议层,且CU未设置适配层;
图4b是本发明实施例二的另一种UE与UPF之间协议栈的示意图;
图5是本发明实施例二的另一种UE与UPF之间协议栈的示意图,适配层之上存在GTP-U协议层,CU设置有适配层;
图6是本发明实施例三的UE与UPF之间协议栈的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
UE的数据可能需要通过接入节点与核心网之间的多跳的中继回传链路进行传输,如图1A所示。UE的上行数据包可通过2个IAB node发送至IAB donor,然后再发送至5G核心网(NextGeneration Core,NGC),此时UE直接连接的IAB node 1称为服务IAB node(servering IAB node),而IAB node 2可称为中间IAB node(即intermediate IAB node)。图1B中,UE的数据需要通过IAB node 1、IAB node 2、IAB donor依次传输到核心网。
另外,支持集中单元(Centralized Unit,CU)/分布单元(Distributed Unit,DU)分离部署是NR中一个重要的技术特征,CU/DU分离时IAB的架构如图2所示,IAB node 1具有分布单元(DU,Distribution Unit)和移动终端(Mobile Terminal,MT)(也可称为UE)功能,IAB node 2具有DU功能,IAB donor具有CU功能。
以下为本发明实施例,需注意的是,以下多种实施例方法适用于CU/DU分离,也适用于CU/DU不分离部署场景。其中UE可以为NR UE或者LTE UE。UE可通过SA(standalone)方式或NSA(non-standalone)方式接入。UE可通过双连接或单连接方式接入。IAB node可通过独立(SA,standalone)方式或非独立(NSA,non-standalone)方式接入网络。IAB node可通过双连接或单连接方式接入网络。适配层(adaptor layer)可以位于无线链路控制(Radio Link Control,RLC)层之上,或者RLC层与媒体接入控制(Media Access Control,MAC)层之间,或者适配层功能位于RLC或MAC层。
在一个实施例中,提供一种自接入回传链路IAB的中继转发方法,应用于上行方向,IAB节点侧。所述方法包括:
步骤一,第一IAB节点接收数据包;
步骤二,所述第一IAB节点将所述数据包发送给IAB宿主。
可选地,所述第一IAB节点将所述数据包发送给IAB宿主,包括:所述第 一IAB节点获得路由相关信息,根据所述路由相关信息将所述数据包发送给IAB宿主。
可选地,所述第一IAB节点接收数据包,包括:
所述第一IAB节点从UE接收数据包;或者
所述第一IAB节点从自身的应用层接收数据包;或者
所述第一IAB节点从另一IAB节点接收数据包;
其中,所述数据包为用户面数据或者控制面信令。
可选地,所述第一IAB节点将所述数据包发送给IAB宿主,包括:
所述第一IAB节点直接将所述数据包发送给IAB宿主;或者
所述第一IAB节点将所述数据包转发至另一个IAB节点,由所述另一个IAB节点将数据包直接或间接地发送给IAB宿主。
可选地,所述路由相关信息至少包括以下之一:
源节点标识;
源节点地址;
目标节点标识;
目标节点地址;
路由路径信息;
承载类型;
承载标识;
主基站或主节点标识;
主基站或主节点地址;
次基站或次节点标识;
次基站或次节点地址;
路由至主节点或主基站的路由路径信息;
路由至次节点或次基站的路由路径信息;
下一跳节点标识;
下一跳节点地址;
GTP隧道信息。
其中:UE标识为以下之一:5G基站集中单元用户设备F1接口接入点标识(gNB-CU UE F1AP ID),gNB-DU UE F1AP ID,小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI),S1接口接入点标识(S1 AP ID),X2 AP ID,NG AP ID,Xn AP ID。
承载标识为以下之一:数据无线承载标识(Data Radio Bearer Identifier,DRB ID),信令无线承载标识(signalling radio bearer Identifier,SRB ID),逻辑信道标识(logical channel identify,LCID),QoS流标识(Quality of Service flow Identifier,QFI),流(flow)标识。
目标节点标识为以下之一:DU标识,CU标识,基站标识,用户面功能(User Plane Function,UPF)标识,接入和移动管理模块(Access and Mobility Management Function,AMF)标识,小区标识,目标索引号。
可选地,所述第一IAB节点获得路由相关信息,包括以下一种或多种方式:
所述第一IAB节点通过RRC信令或F1信令或X2信令或Xn信令从接入侧网元获得所述路由相关信息;
所述第一IAB节点通过S1信令或NG信令从核心网网元获得所述路由相关信息;
所述第一IAB节点从应用服务器获得所述路由相关信息;
所述第一IAB节点从接收的所述数据包的适配层包头中获得所述路由相关信息;
所述第一IAB节点从接收的所述数据包的网际协议(Internet Protocol,IP)层包头中获得所述路由相关信息。
可选地,所述第一IAB节点获得的路由相关信息是以UE为粒度配置的;或者
所述路由相关信息是以UE的承载为粒度配置的,所述第一IAB节点获得 承载标识及对应的路由相关信息;或者
所述路由相关信息是以UE的承载类型为粒度配置的,所述第一IAB节点获得承载类型及对应的路由相关信息。
可选地,所述第一IAB节点将所述数据包发送给IAB宿主,包括:
所述第一IAB节点对所述数据包添加适配层包头;其中:所述适配层包头中至少包含以下信息之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息。
其中,所述协议类型指示信息可以包含以下之一:F1,F1控制面,F1用户面,IP,non-IP,流控制传输协议(Stream Control Transmission Protocol,SCTP),NG,S1,Xn,X2。
可选地,所述添加适配层包头由位于RLC层之上的适配层执行;或者
所述添加适配层包头由位于RLC层和MAC层之间的适配层执行;或者
所述添加适配层包头由位于RLC层的适配层功能实体执行;或者
所述添加适配层包头由位于MAC层的适配层功能实体执行。
可选地,所述第一IAB节点将所述数据包发送给IAB宿主,包括:通过以下方式将数据包发送到下一跳节点:
所述第一IAB节点根据所述数据包所属承载和/或QoS流的QoS相关信息,及相应的映射规则,将所述数据包映射到对应的无线承载以发送给下一跳节点,其中,所述映射规则包括以下至少之一:包映射规则、QoS规则、QoS相关信息与差分服务代码点DSCP之间的映射规则、QoS相关信息与服务类型TOS之间的映射规则;或者
所述第一IAB节点根据所述数据包所属UE的逻辑信道或无线承载,或者根据所述数据包相关的上一跳IAB节点的逻辑信道或无线承载,按照相应的映射规则,将所述数据包映射到所述第一IAB节点的无线承载或逻辑信道以发送给下一跳节点。
可选地,所述第一IAB节点将所述数据包发送给IAB宿主,包括:
所述第一IAB节点根据所述数据包所属无线承载,及无线承载与F1 GTP隧道的映射关系,将所述数据包映射到对应的F1 GTP隧道;
所述第一IAB节点对所述数据包添加适配层包头,适配层包头中至少包含以下信息之一:源节点标识,目标节点标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息。
可选地,所述第一IAB节点将所述数据包映射到对应的F1 GTP隧道之后,所述方法还包括:
所述第一IAB节点将添加适配层包头后的数据包映射到逻辑信道或无线承载发送到下一跳节点;或者
所述第一IAB节点将F1-U封装后的数据包作为其自身充当UE身份时的数据包,将所述数据包所属UE的F1-U GTP承载映射到所述第一IAB节点的QoS流或无线承载或逻辑信道,通过自身的协议数据单元(Protocol Data Unit,PDU)会话发送。
可选地,所述第一IAB节点获得所述路由相关信息之后,所述方法还包括:
所述第一IAB节点根据所述路由相关信息确定所述数据包的目标节点和下一跳节点,或者确定路由路径;
其中,所述目标节点为IAB donor,或IAB donor中的gNB-CU,或IAB donor中的gNB-DU,或IAB donor中gNB-CU所连接的gNB-DU,或UPF,或AMF,或基站,或IAB节点;
其中,所述下一跳节点为IAB donor或IAB节点。
可选地,所述第一IAB节点获得路由相关信息,包括:
所述第一IAB节点从接收的所述数据包的适配层包头中获得所述路由相关信息;
所述第一IAB节点获得路由相关信息之后,所述方法还包括以下至少之一:所述第一IAB节点根据所述路由相关信息查找路由表确定下一跳节点;及,添加适配层包头;
其中,目标节点为IAB donor,或IAB donor中的gNB-CU,或IAB donor中的gNB-DU,或IAB donor中gNB-CU所连接的gNB-DU,或UPF,或AMF,或基站,或IAB节点;
其中,所述下一跳节点为IAB donor或IAB节点。
本发明实施例还提供了一种自接入回传链路IAB的中继转发方法,应用于上行方向,IAB宿主侧。所述方法包括:
步骤A,IAB宿主分布单元DU接收IAB节点发送的数据包;
步骤B,所述IAB宿主DU获得第一信息,所述第一信息至少包括以下信息之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息;
步骤230,所述IAB宿主DU根据所述第一信息将所述数据包发送给IAB宿主集中单元CU。
其中,所述IAB宿主DU为IAB节点,或者IAB宿主中的DU节点,或者与IAB宿主中的CU有线连接的DU节点。
可选地,所述IAB宿主DU获得第一信息,包括:
所述IAB宿主DU从所述数据包的适配层包头获得所述第一信息中的至少部分信息。
可选地,所述IAB宿主DU根据所述第一信息将所述数据包发送给IAB宿主集中单元CU,包括:
所述IAB宿主DU根据所述第一信息将所述数据包映射到相应的F1 GTP隧道,发送给所述IAB宿主CU;或者
所述IAB宿主DU对所述数据包添加适配层包头后,通过F1 GTP隧道发送给所述IAB宿主CU;
其中,所述适配层包头中至少包含以下信息之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息, 协议类型指示信息。
可选地,所述添加适配层包头由位于RLC层之上的适配层执行;或者
所述添加适配层包头由位于RLC层和MAC层之间的适配层执行;或者
所述添加适配层包头由位于RLC层的适配层功能实体执行;或者
所述添加适配层包头由位于MAC层的适配层功能实体执行。
可选地,所述IAB宿主DU根据所述第一信息将所述数据包映射到相应的F1 GTP隧道,发送给IAB宿主集中单元CU,包括:
所述IAB宿主DU根据相应的映射规则,确定所述数据包所属的UE和承载对应的F1 GTP隧道,将所述数据包映射到所述F1 GTP隧道发送给所述IAB宿主CU,以使所述IAB宿主CU根据GTP-U包头中的隧道信息识别出所述数据包所属的UE和承载;或者
所述IAB宿主DU从所述数据包中获取GTP隧道信息,进行GTP-U协议层处理和封装时,将所述GTP隧道信息包含在GTP-U包头中发送给所述IAB宿主CU,以使所述IAB宿主CU根据GTP-U包头中的GTP隧道信息识别出所述数据包所属的UE和承载;或者
所述IAB宿主DU从所述数据包中获取GTP隧道信息,进行GTP-U协议层处理和封装时,将所述GTP隧道信息对应的所述IAB宿主DU和所述IAB宿主CU之间的GTP隧道信息包含在GTP-U包头中发送给所述IAB宿主CU,以使所述IAB宿主CU根据GTP-U包头中的GTP隧道信息识别出所述数据包所属的UE和承载。
可选地,所述IAB宿主DU对所述数据包添加的适配层包头中不包含数据包所属UE标识和数据包所属承载标识时,所述方法还包括:
所述IAB宿主DU基于由适配层之上的GTP-U建立的GTP-U隧道与UE、承载之间的对应关系,根据所述数据包所属的GTP-U隧道确定所述数据包所属的UE和承载。
本发明实施例还提供了一种自接入回传链路IAB的中继转发方法,应用于下行方向,IAB宿主侧,所述方法包括:
步骤a,IAB宿主从核心网网元或应用层接收数据包;
步骤b,所述IAB宿主将所述数据包发送给IAB节点,以通过所述IAB节点将数据包直接或间接发送给UE。
可选地,所述IAB宿主将所述数据包发送给第二IAB节点,包括:
所述IAB宿主对所述数据包进行相应协议层解析后添加适配层包头,所述适配层包头中至少携带以下信息之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息。
可选地,所述添加适配层包头由位于RLC层之上的适配层执行;或者
所述添加适配层包头由位于RLC层和MAC层之间的适配层执行;或者
所述添加适配层包头由位于RLC层的适配层功能实体执行;或者
所述添加适配层包头由位于MAC层的适配层功能实体执行。
可选地,所述IAB宿主包括IAB宿主集中单元CU和/或分布单元DU,
所述IAB宿主将所述数据包发送给第二IAB节点,包括:
所述IAB宿主CU将所述数据包映射到所述数据包所属的UE和承载对应的GTP隧道发送到分布单元DU,所述分布单元将所述UE标识和承载标识封装在适配层包头中再发向下一跳节点;或者
所述IAB宿主CU在发送给DU的数据包的GTP-U包头中携带服务IAB节点分配的GTP隧道信息,所述分布单元获得所述GTP隧道信息后,将所述GTP隧道信息封装在适配层包头中再发向下一跳节点;或者
所述IAB宿主CU在发送给DU的数据包的GTP-U包头中携带所述IAB宿主CU和DU之间的第一GTP隧道信息,所述DU确定第一GTP隧道信息对应的服务IAB节点分配的第二GTP隧道信息,将所述第二GTP隧道信息封装在适配层包头中再发向下一跳节点;或者
所述IAB宿主CU为所述数据包添加适配层包头后发送到DU,所述适配层包头中至少携带以下信息之一:源节点标识,目标节点标识,数据包所属UE标 识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息;或者
所述IAB宿主CU将所述数据包映射到对应的GTP隧道,进行GTP-U处理和封装后,添加适配层包头并发送到DU,所述适配层包头中至少携带以下信息之一:源节点标识,目标节点标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息。
可选地,所述IAB宿主将所述数据包发送给第二IAB节点,还包括:
所述DU接收到所述IAB宿主CU发送的数据包,添加适配层包头后发送到下一跳节点,其中,所述适配层包头中至少携带以下信息之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息;或者
所述DU接收到所述IAB宿主CU发送的数据包,添加适配层包头后发送到下一跳节点,其中,所述适配层包头中至少携带以下信息之一:源节点标识,目标节点标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息;或者
所述DU接收到所述IAB宿主CU发送的数据包后,将所述数据包所属的所述IAB宿主CU和DU间的GTP隧道映射到其对应的服务IAB节点和所述CU间的GTP隧道,进行GTP-U封装和添加适配层包头后发送到下一跳节点;其中,所述适配层包头中至少携带以下信息之一:源节点标识,目标节点标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息。
本发明实施例还提供了一种自接入回传链路IAB的中继转发方法,应用于下行方向,IAB节点侧,所述方法包括:
步骤I,IAB节点从IAB宿主接收数据包;
步骤II,所述IAB节点将所述数据包发送给UE。
可选地,所述IAB节点将所述数据包发送给UE,包括:
所述IAB节点从适配层包头获取第二信息,根据所述第二信息确定下一跳节点,将所述数据包发送给所述下一眺节点,其中,所述第二信息至少包括以下信息之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。
可选地,所述IAB节点将所述数据包发送给UE,包括:
所述IAB节点为所述数据包添加适配层包头后,将所述数据包发送给所述下一眺节点,其中,所述第二信息至少包括以下信息之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息。
可选地,所述IAB节点将所述数据包发送给UE,包括:
所述IAB节点根据所述数据包所属承载或QoS流确定对应的QoS相关信息,或者根据所述第二信息确定QoS相关信息,将数据包映射到所述QoS相关信息对应的QoS流或无线承载或逻辑信道发送给下一跳节点;或者
所述IAB节点根据所述第二信息中的UE标识,承载标识信息确定该数据包所属的UE和承载,或者所述第二信息中的GTP隧道信息确定该数据包所属的UE和承载,然后通过所述UE和承载对应的QoS流或无线承载或逻辑信道发送给UE;或者
所述IAB节点通过解析GTP-U协议层获得GTP隧道信息,根据所述GTP隧道信息确定该数据包所属的UE和承载,然后通过所述UE和承载对应的QoS流或无线承载或逻辑信道发送给UE。
本发明实施例还提供了一种信息获取方法,包括:
自接入回传链路IAB节点获取第一映射相关信息;所述第一映射相关信息包括以下至少之一:
QCI与DSCP之间的映射关系;
5QI与TOS之间的映射关系;
QCI与TOS之间的映射关系;
5QI与TOS之间的映射关系;
5QI与QCI之间的映射关系;
QCI与QCI之间的映射关系;
5QI与5QI之间的映射关系;
QFI与QFI之间的映射关系;
承载标识与QFI之间的映射关系;
承载标识与承载标识之间的映射关系。
在一实施例中,自接入回传链路IAB节点获取第一映射相关信息的方式包括以下至少之一:
所述IAB节点通过无线资源控制RRC信令、F1信令、X2信令、Xn信令或者其它接口信息从接入侧网元获得所述第一映射相关信息;
所述IAB节点通过S1信令、NG信令或者其它接口信息从核心网网元获得所述第一映射相关信息;
所述第一IAB节点从应用服务器获得所述第一映射相关信息。
本发明实施例还提供了一种信息获取方法,包括:
自接入回传链路IAB宿主分布单元DU获取映射相关信息,所述映射相关信息包括以下至少之一:
UE承载信息与F1 GTP隧道信息之间的映射关系;
UE承载信息,目标节点标识与F1 GTP隧道信息之间的映射关系;
目标节点标识与F1 GTP隧道信息之间的映射关系;
F1 GTP隧道信息之间的映射关系;
其中,UE承载信息包括:UE标识和/或承载标识;
F1 GTP隧道信息包括:地址和/或TEID信息。
其中,所述IAB宿主DU为IAB节点,或者IAB宿主中的DU节点,或者 与IAB宿主中的CU有有线连接的DU节点。
本发明实施例还提供了一种自接入回传链路IAB中的IAB节点,包括存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的IAB节点执行的任一方法的处理。
本发明实施例还提供了一种自接入回传链路IAB中的IAB宿主节点,包括存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的IAB宿主节点执行的任一方法的处理。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述任一方法的处理。
实施例一
本实施例方法为根据适配层信息进行路由的方法。UE与UPF(User Plane Function,用户面功能)之间协议栈如图2和图3所示,适配层位于IAB node和IAB donor的RLC层之上。需注意的是,适配层(adaptor layer)还可以位于RLC层与MAC层之间,或者适配层功能位于RLC或MAC层。
采用本实施例方法的上行数据转发过程如下:
步骤1,UE的数据包经过相应协议层(例如,SDAP(Service Data Adaptation Protoco)/分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)/RLC/MAC/物理层(Physical Layer,PHY))的封装和处理之后,通过空口发送给IAB node 1;
步骤2,IAB node 1接收UE的数据包后进行相应的PHY/MAC/RLC解析后,根据获得的路由相关信息确定数据包的目标节点和下一跳节点,或者确定路由路径。
本实施例中,目标节点为IAB donor,或IAB donor中的gNB-CU,或IAB donor中的gNB-DU,或IAB donor中gNB-CU所连接的gNB-DU,或UPF,或AMF(Access and Mobility Management Function),或基站,或IAB节点。
路由相关信息至少包括以下之一:
1)目标节点标识;
2)目标节点地址,如传输网络层(Transport Network Layer,TNL)地址或IP地址;
3)路由路径信息,可以包括以下之一:路由路径标识,路由路径编号,路由路径索引号,如IAB node 1中所配置的路由表中的路径标识或编号或索引信息;
3)承载类型,至少包括以下之一:MCG(master cell group)bearer,SCG(Secondary cell group)bearer,分离承载(split bearer),主节点端接的MCG承载(MN terminated SCG bearer),SN(secondary node次节点)terminated MCG bearer;
4)主基站或主节点标识,可以为基站或CU或DU的标识信息;
5)主基站或主节点地址;可以为基站或CU或DU的地址信息;
6)次基站或次节点标识;可以为基站或CU或DU的标识信息;
7)次基站或次节点地址;可以为基站或CU或DU的地址信息;
8)路由至主基站或主节点的路由路径信息;包括以下之一:路由路径标识,路由路径编号,路由路径索引号,如IAB node 1中所配置的路由表中的路径标识或编号或索引信息;
9)路由至次基站或次节点的路由路径信息;包括以下之一:路由路径标识,路由路径编号,路由路径索引号,如IAB node 1中所配置的路由表中的路径标识或编号或索引信息;
10)下一跳节点标识;其中,下一跳节点可以为IAB donor,或IAB donor中的gNB-CU,或IAB donor中的gNB-DU,或IAB donor中gNB-CU所连接的gNB-DU,或UPF,或AMF,或基站,或IAB节点。
11)下一跳节点地址;如下一跳节点的传输层TNL地址或IP地址。
本实施例中,IAB node 1可以通过RRC信令或F1信令或X2信令或Xn信令从接入侧网元获得路由相关信息;其中,接入侧网元为以下之一:gNB-CU,IAB donor,gNB,eNB;或者,IAB node 1可以通过S1信令或NG信令从核心 网网元获得路由相关信息;或者,IAB node 1可以从应用服务器获得路由相关信息;
12)GTP隧道信息。
13)源节点标识;
14)源节点地址;
15)承载标识。
本实施例中,IAB node 1可以通过RRC信令或F1信令或X2信令或Xn信令从接入侧网元获得路由相关信息;其中,接入侧网元为以下之一:gNB-CU,IAB donor,gNB,eNB;或者,IAB node 1可以通过S1信令或NG信令从核心网网元获得路由相关信息;或者,IAB node 1可以从应用服务器获得路由相关信息。
本实施例中,路由相关信息可以以UE为粒度配置;或者,路由相关信息可以以UE的承载为粒度配置,即为每个UE承载配置对应的路由相关信息;或者,路由相关信息还可以为以承载类型为粒度配置,即为每个UE承载类型配置对应的路由相关信息。IAB node1可根据从UE接收到的数据包所属的RLC信道或承载标识或承载类型和/或对应的路由相关信息确定该数据包的目标节点和/或下一跳节点。可选的,对于UE的split bearer,该承载的数据可转发至两个或多个不同的目标节点。
步骤3.IAB node 1为解析出的PDCP PDU添加适配层包头,适配层包头中至少包含以下信息之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。其中,GTP隧道信息包括TNL地址和/或GTP TEID信息,例如,donor CU分配的与UE承载对应的GTP隧道信息。协议类型指示信息包含以下之一:F1,F1控制面,F1用户面,IP,non-IP,SCTP,NG,S1,Xn,X2。
可选的,IAB node 1可从CU获得UE承载信息以及对应的GTP隧道信息,例如,可通过RRC信令或F1信令获得。
步骤4.IAB node 1确定下一跳节点为IAB node 2,则将适配层封装后的数 据包通过IAB node 1与IAB node 2之间的RLC channel或无线承载发送给IAB node 2。
IAB node 1需将UE的数据包映射到IAB node 1的RLC信道或无线承载从而发送给IAB node 2。具体的,IAB node 1可基于以下几种方法将UE的数据包映射到IAB node 1的RLC信道或无线承载:
方法1:IAB node1将UE的数据包根据特定的映射规则映射到相应的承载。
具体的,IAB node1从接收的UE数据包得到其所属承载或QoS flow的QCI或5QI或QFI值或承载标识。然后再根据被配置的承载映射关系信息进行相应的映射。承载映射关系信息包括至少以下之一:
QCI与DSCP之间的映射关系;
5QI与TOS之间的映射关系;
QCI与TOS之间的映射关系;
5QI与TOS之间的映射关系;
5QI与QCI之间的映射关系;
QCI与QCI之间的映射关系;
5QI与5QI之间的映射关系;
QFI与QFI之间的映射关系;
承载标识与QFI之间的映射关系;
IAB node1根据UE数据包所属承载或QoS flow的QCI或5QI或QFI值和承载映射关系信息得到对应的DSCP或TOS值的情况下,IAB node1根据DSCP或TOS值,和被配置的包映射规则(例如,数据包过滤器集(Packet Filter Set),或过滤模板(Traffic Flow Template,TFT))将UE数据包映射到相应的IAB node1的无线承载或RLC信道或QoS flow。可选的,若IAB node1根据DSCP或TOS值,和被配置的包映射规则将UE数据包映射到相应的QoS flow,则IAB node1再将QoS flow映射到无线承载,并通过相应的无线承载将UE数据包发送给IAB node2。
方法2
IAB node1从所接收的UE数据包得到其所属承载或QoS flow的QCI或5QI值或QFI值。然后将该数据包映射到被配置的QoS rules或TFT中该QCI或5QI或QFI值值对应的QoS flow或承载或RLC信道。若将UE数据包映射到相应的QoS flow,则IAB node1再将QoS flow映射到无线承载,并通过相应的无线承载将UE数据包发送给IAB node2。
方法3:
IAB node 1根据被配置的UE的逻辑信道和IAB node 1的逻辑信道之间的映射关系(例如,LCID(logical channel ID,逻辑信道标识)之间的映射关系),或者UE的无线承载和IAB node 1的无线承载之间的映射关系(例如,RBID(radio bearer ID,无线承载标识)之间的映射关系)进行相应的映射;该映射关系可以是预定义的,或者一一对应的关系,或者通过以下方式之一配置:F1信令,RRC信令,X2信令,Xn信令,S1信令,NG信令。
步骤5.IAB node 2接收数据包后进行相应协议层(如,PHY/MAC/RLC/adaptor layer)解析,得到适配层包头中信息,如源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。或者,IAB node 2只读取适配层包头中信息,而并不去除该适配层包头,这种情况下,IAB node 2不封装适配层包头。IAB node 2根据适配层包头中信息确定目标节点,并通过查路由表确定下一跳节点为目标节点(donor DU)。
可选的,IAB node 2为数据包添加adaptor layer包头,其中包含以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。
IAB node 2将封装后的数据包通过IAB node 2与IAB donor之间的RLC信道或radio bearer发送给IAB donor。IAB node 1的RLC信道/radio bearer与IAB node 2的RLC信道/radio bearer之间的映射可参照步骤4中方法。然后IAB node 2对数据包进行相应的RLC/MAC/PHY处理后发送给IAB donor DU(IAB donor中的DU,或IAB donor中的CU所连接DU)。
步骤6.IAB donor DU对数据包进行PHY/MAC/RLC/adaptor layer解析,得到至少以下信息之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。IAB donor DU通过与CU间的F1-U GTP隧道将数据包发送至IAB donor CU。IAB donor DU需获取映射相关信息(例如,从IAB donor CU获取),映射相关信息包括以下至少之一:
UE承载信息与F1 GTP隧道信息之间的映射关系;
UE承载信息,目标节点标识与F1 GTP隧道信息之间的映射关系;
目标节点标识与F1 GTP隧道信息之间的映射关系;
F1 GTP隧道信息之间的映射关系;
其中,UE承载信息包括:UE标识和/或承载标识;
F1 GTP隧道信息包括:地址和/或TEID信息。
其中IAB donor DU为IAB节点,或者IAB宿主中的DU节点,或者与IAB宿主中的CU有有线连接的DU节点。
在图2中,L1表示协议栈模型中的物理层,L2表示协议栈模型中的链路层。
图2架构下,CU上没有adaptor layer。IAB donor DU将每个UE的每个radio bearer一一映射到F1-U GTP隧道。可通过以下三种方法使得CU能识别出数据包所属的UE及承载的问题:
方法1.donor DU从donor CU获得UE的SRB(sigalling radio bearer,信令无线承载)或DRB(data radio bearer,数据无线承载)ID,及其对应的F1 GTP隧道信息。IAB donor DU收到的数据包后,获取adaptor layer包头中携带的UE和承载标识,donor DU可根据获取的SRB/DRB与F1 GTP隧道的映射关系,将数据包映射到相应的F1 GTP隧道发送给donor CU,以使得CU可根据GTP-U中的隧道信息(或称GTP-U包头中的隧道信息)识别出数据包所属UE和承载,并投递给相应UE相应承载的PDCP实体。
方法2.donor DU收到的数据包后,获取adaptor layer包头中携带的GTP隧道信息(TNL地址和/或GTP TEID),然后Donor DU进行GTP-U协议层处理 和封装时,将adaptor layer包头中的GTP隧道信息包含在GTP-U包头中发送给Donor CU,以使得CU可根据GTP-U包头信息识别出数据包所属UE和承载,并投递给相应UE相应承载的PDCP实体。
方法3.donor DU收到的数据包后,获取adaptor layer包头中携带的GTP隧道信息(TNL地址和/或GTP TEID)。然后Donor DU进行GTP-U协议层处理和封装时,根据CU为其配置的GTP隧道映射信息,将数据包通过adaptor layer包头中的GTP隧道信息对应的Donor DU和Donor CU之间的GTP隧道信息包含在GTP-U包头中发送给Donor CU,以使得CU可根据GTP隧道识别出数据包所属UE和承载,并投递给相应UE相应承载的PDCP实体。
图3架构下,可选的,IAB donor DU为数据包封装adaptor layer包头。其中adaptor layer包头中至少包含以下之一:目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,GTP隧道信息。或者,IAB donor DU只是读取适配层包头中信息,而并不去除该适配层包头,这种情况下,IAB donor DU不封装适配层包头。IAB donor DU通过F1-U GTP隧道将数据发送至IAB donor CU。
步骤7.图2架构中,Donor CU根据GTP-U隧道信息识别出数据包所属UE和承载,并将UE数据包投递给相应UE相应承载的PDCP实体进行后续解析处理。
图3架构中,Donor CU解析适配层,获得以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。Donor CU识别出数据包所属UE和承载后,将UE数据包投递给相应UE相应承载的PDCP实体进行后续解析处理。
然后Donor CU的SDAP层根据SDAP包头中的UE的flow ID和所属的RB ID找到对应的PDU session对应的NG GTP-U隧道,并通过该NG GTP隧道将UE数据发送给UPF。
采用本实施例方法的下行数据转发过程如下,需注意的是,以下步骤可任意组合使用。
步骤1.IAB donor中的CU从UPF接收到UE数据后,根据数据包头中的QFI确定该UE数据包对应PDU session的QoS flow,然后再将QoS flow映射到相应的radio bearer。IAB donor需确定数据包的目标节点,此时数据包的目标节点为UE的服务IAB节点(即IAB node 1)。例如,IAB donor可根据UE context中的服务IAB节点信息,或无线承载对应的服务IAB节点信息,或承载类型对应的服务IAB节点信息确定数据包的目标节点(服务IAB节点)。IAB donor中的CU将UE数据包发送给IAB donor DU(即IAB donor中的DU或IAB donor中的CU所连接DU)。
若采用图2架构,CU上无adaptor layer,donor CU通过F1 GTP承载将UE数据发送给donor DU。
步骤2.IAB donor中的DU或IAB donor中的CU所连接DU接收数据包。可选的,IAB donor DU获取映射相关信息(例如,从IAB donor CU获取),映射相关信息包括以下至少之一:
UE承载信息与F1 GTP隧道信息之间的映射关系;
UE承载信息,目标节点标识与F1 GTP隧道信息之间的映射关系;
目标节点标识与F1 GTP隧道信息之间的映射关系;
F1 GTP隧道信息之间的映射关系;
其中,UE承载信息包括:UE标识和/或承载标识;
F1 GTP隧道信息包括:地址和/或TEID信息。
其中IAB donor DU为IAB节点,或者IAB宿主中的D U节点,或者与IAB 宿主中的CU有有线连接的DU节点。
可选的,IAB node 1根据上述映射相关信息识别出数据包所属UE和/或承载和/或目标节点。IAB node 1可通过以下方法之一进行适配层封装:
方法1:donor DU从CU获取UE,承载和GTP隧道的映射关系,然后根据GTP隧道信息确定所属的UE和承载。然后donor DU将UE标识和承载标识封装在adaptor layer包头中。可选的,adaptor layer包头中还包含目标节点标识和/或路径信息等。
方法2:donor CU发送给donor DU的数据包的GTP-U包头中包含IAB node 1分配的GTP隧道信息(TNL地址和/或GTP TEID),donor DU解析后获得该GTP隧道信息,并将IAB node 1分配的GTP隧道信息封装在adaptor layer包头中。
方法3:donor DU从CU获取donor DU和donor CU间的GTP隧道信息和对应的IAB node 1和donor CU间的GTP隧道信息。donor DU从CU接收UE数据包后,确定该数据包所属的donor DU和donor CU间的GTP隧道对应的IAB node 1和donor CU间的GTP隧道,并将该隧道信息(IAB node 1和donor CU间的GTP隧道)封装在adaptor layer包头中。
若采用图3架构,即CU上有adaptor layer,则IAB donor中的CU为每个PDCP PDU添加adaptor layer包头,其中包含以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。
若采用图3架构,即CU上有adaptor layer,则IAB donor中的CU为每个PDCP PDU添加adaptor layer包头,其中包含以下至少之一:目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息。其中QoS相关信息为UE数据包的QCI或5QI值。
IAB donor DU确定下一跳节点为IAB node 2。可选的,IAB donor DU根据IP包头中的DSCP或TOS信息和被配置的DSCP/TOS到QCI/5QI之间的映射关系将数据包映射到相应QCI或5QI值的IAB node 2的QoS flow/承载并发送给IAB node 2。
步骤3.IAB node 2接收后,通过解析adaptor layer,得到以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。IAB node 2根据上述信息以及路由表确定下一跳路由节点(IAB node 1)。可选的,IAB node 2进行adaptor layer协议封装,adaptor layer包头中包含以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信 息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。可选的,IAB node 2根据所接收数据包所属承载或QoS flow确定其QoS信息(QCI或5QI或QFI值),或者根据所接收数据包的adaptor layer包头信息确定其QoS信息,然后将数据包映射到相应QCI或5QI或QF值的IAB node 1的QoS flow/承载并发送给IAB node 1。
步骤4.IAB node 1接收后,通过解析adaptor layer,得到以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。IAB node 1根据所接收数据包的adaptor layer包头中携带的UE标识,承载标识信息确定该数据包所属UE和所属承载;或者,IAB node 1根据所接收数据包的adaptor layer包头中携带的GTP隧道信息确定该数据包所属UE和所属承载然后将UE数据包通过对应UE的相应QoS flow/RLC信道/承载发送给UE。
实施例二:GTP-U+adaptor layer
本实施例方法为根据适配层信息进行路由的方法二,与实施例一不同的是,适配层之上存在GTP-U协议层,即IAB node 1和IAB donor之间需建立F1 GTP隧道,用于传递UE的数据包。UE与UPF之间协议栈如图4和图5所示。图4和图5中,适配层位于IAB node和IAB donor的RLC层之上。需注意的是,在其他实施例中,适配层(adaptor layer)还可以位于RLC层与MAC层之间,或者适配层功能位于RLC或MAC层。
与实施例一方法不同包括,IAB node1与IAB donor之间的F1-U数据由F1 GTP-U隧道承载。F1 GTP-U隧道与UE的承载一一对应,可用于标识数据包所属UE及承载。因此Adaptor layer包头中不需要包含UE标识和承载标识。除此之外,实施例一中方法也适用于实施例二。
Donor CU和Donor DU的协议栈可有两种方式,分别如图4和图5所示。另外,还采用如图4b所示协议栈架构方法。图4方法中,数据到达IAB donor后,donor DU将UE的F1 GTP-U隧道(也简写为F1-U隧道,即F1接口的GTP隧道)数据通过另一段F1-U隧道发送给donor CU,两段F1-U隧道一一对应。 则Donor CU可通过F1-U隧道中的TEID信息识别出数据包所属UE和所属承载,然后可投递至相应的PDCP实体。
采用本实施例方法的上行数据转发过程如下,需注意的是,以下步骤可任意组合使用。
步骤1.UE的数据包经过相应协议层(例如,SDAP/PDCP/RLC/MAC/PHY)的封装和处理之后,通过空口发送给IAB node 1。
步骤2.IAB node 1接收UE的数据后进行相应的PHY/MAC/RLC解析后,可根据获得的路由相关信息确定数据包的目标节点和下一跳节点,或者确定路由路径。
路由相关信息包含的内容参考实施例一中所述。IAB node 1可以通过RRC信令或F1信令或X2信令或Xn信令从接入侧网元获得路由相关信息;接入侧网元为以下之一:gNB-CU,IAB donor,gNB,eNB;或者,IAB node 1可以通过S1信令或NG信令从核心网网元获得路由相关信息;或者,IAB node 1从应用服务器获得路由相关信息;
路由相关信息可以以UE为粒度配置;或者,路由相关信息可以为每个UE的承载配置,即为每个UE承载配置对应的路由相关信息;或者路由相关信息还可以为每个承载类型配置,即为每个UE承载类型配置对应的路由相关信息。IAB node1可根据从UE接收到的数据包所属的RLC信道或承载标识或承载类型和路由相关信息确定该数据包的目标节点和/或下一跳节点。可选的,对于UE的split bearer,该承载的数据可转发至两个或多个不同的目标节点。
步骤3.IAB node 1将解析出的PDCP PDU根据被配置的无线承载与F1 GTP隧道的映射关系映射到相应的F1 GTP隧道。IAB node 1进行GTP-U处理和封装后,对数据包进行适配层处理和封装,即为UE数据包添加适配层包头,适配层包头中至少包含以下信息之一:目标节点标识,路由路径信息。可选的,IAB node 1可在F1信令UE context setup request中从CU获得UE承载信息以及对应的GTP隧道信息。
步骤4.IAB node 1确定下一跳节点为IAB node 2,则将适配层封装后的数据包通过IAB node 1与IAB node 2之间的RLC channel或无线承载发送给IAB node 2。
IAB node 1需将UE的数据包映射到IAB node 1的RLC信道或无线承载从而发送给IAB node 2(同上)。具体的,IAB node 1可基于以下几种方法将UE的数据包映射到IAB node 1的RLC信道或无线承载:
方法1:IAB node1将UE的数据包根据特定的映射规则映射到相应的承载。
具体的,IAB node1从接收UE数据包得到其所属承载或QoS flow的QCI或5QI值。然后再根据被配置的QCI与DSCP(Differentiated Services Code Point)之间的映射关系,或者5QI与DSCP之间的映射关系,或者QCI与TOS(Type of Service)之间的映射关系,或者5QI与TOS之间的映射关系,得到对应的DSCP或TOS值。然后IAB node1根据DSCP或TOS值,和被配置的包映射规则(例如,Packet Filter Set,或TFT)将UE数据包映射到相应的IAB node1的承载或QoS flow。可选的,若IAB node1根据DSCP或TOS值,和被配置的包映射规则将UE数据包映射到相应的QoS flow,则IAB node1再将QoS flow映射到无线承载,并通过相应的无线承载将UE数据包发送给IAB node2。
方法2:IAB node1从接收UE数据包得到其所属承载或QoS flow的QCI或5QI值。然后根据再将该数据包映射到被配置的QoS rules或TFT中该QCI或5QI值对应的QoS flow或承载。可选的,若将UE数据包映射到相应的QoS flow,则IAB node1再将QoS flow映射到无线承载,并通过相应的无线承载将UE数据包发送给IAB node2。
方法3:
IAB node 1根据被配置的UE的逻辑信道和IAB node 1的逻辑信道之间的映射关系(例如,LCID之间的映射关系),或者UE的无线承载和IAB node 1的无线承载之间的映射关系(例如,RBID之间的映射关系)进行相应的映射;该映射关系可以是预定义的,或者一一对应的关系,或者通过以下方式之一配置:F1信令,RRC信令,X2信令,Xn信令,S1信令,NG信令。
步骤5.IAB node 2接收数据包后进行相应协议层(如,PHY/MAC/RLC/adaptor layer)解析,得到适配层包头中信息,如目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息。或者,IAB node 2只读取适配层包头中信息,而并不去除该适配层包头,这种情况下,IAB node 2不封装适配层包头。IAB node 2根据适配层包头中信息确 定目标节点,并通过查路由表确定下一跳节点为目标节点(donor DU)。
可选的,IAB node 2为数据包添加adaptor layer包头,其中包含以下至少之一:目标节点标识,数据包所属信道标识,路由路径信息。IAB node 2将封装后的数据包通过IAB node 2与IAB donor之间的RLC信道或radio bearer发送给IAB donor。IAB node 1的RLC信道/radio bearer与IAB node 2的RLC信道/radio bearer之间的映射可参照步骤4中方法。然后IAB node 2对数据包进行相应的RLC/MAC/PHY处理后发送给IAB donor DU(IAB donor中的DU,或IAB donor中的CU所连接DU)。
步骤6.IAB donor DU对数据包进行PHY/MAC/RLC/adaptor layer和GTP-U解析,得到至少以下信息之一:目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,GTP-U隧道信息。
图4架构下,CU上没有adaptor layer。IAB donor DU通过与CU间的F1-U GTP隧道将数据包发送至IAB donor CU。IAB donor DU将每个UE的每个radio bearer一一映射到F1-U GTP隧道。donor DU收到的数据包后,确定数据包所属GTP隧道,然后donor DU将IAB node 1和donor DU之间的GTP隧道映射到相应的Donor DU和donor CU之间的GTP隧道并发送给donor CU,该映射关系可以donor CU配置。
图5架构下,IAB donor DU为数据包封装adaptor layer包头,其中包含以下至少之一:目标节点标识,路由路径信息。或者,IAB donor DU只是读取适配层包头中信息,而并不去除该适配层包头,这种情况下,IAB donor DU不封装适配层包头。IAB donor DU通过F1-U GTP隧道将数据发送至IAB donor CU。
步骤7.图4架构中,Donor CU根据GTP-U包头中的隧道信息识别出数据包所属UE和承载,并将UE数据包投递给相应UE相应承载的PDCP实体进行后续解析处理。
图5架构中,Donor CU通过解析适配层获得以下至少之一:目标节点标识,路由路径信息。然后Donor CU通过解析GTP-U协议层获得数据包所属GTP-U隧道,及其对应的数据包所属UE和承载后,将UE数据包投递给相应UE相应承载的PDCP实体进行后续解析处理。
然后Donor CU的SDAP层根据包头中的UE的flow ID和所属的RBID找 到对应的PDU session对应的NG GTP-U隧道,并通过该NG GTP隧道将UE数据发送给UPF。
采用本实施例方法的下行数据转发过程如下,需注意的是,以下步骤可任意组合使用。
与实施例一不同的是,IAB node1与IAB donor之间的F1-U数据由F1 GTP-U隧道承载。F1 GTP-U隧道与UE的承载一一对应,可用于标识数据包所属UE及承载。因此Adaptor layer包头中不需要包含UE标识和承载标识。
步骤1.IAB donor中的CU从UPF接收到UE数据后,根据数据包头中的QFI确定该UE数据包对应PDU session的QoS flow,然后再将QoS flow映射到相应的无线承载。IAB donor需确定数据包的目标节点,此时数据包的目标节点为UE的服务IAB节点(即IAB node 1)。IAB donor可根据UE context中的服务IAB节点信息,或无线承载与对应的服务IAB节点信息,或承载类型与对应的服务IAB节点信息确定数据包的目标节点(服务IAB节点)。IAB donor中的CU将UE数据包发送给IAB donor中的DU或IAB donor中的CU所连接DU。
若采用图4架构,CU上无adaptor layer,donor CU通过F1 GTP承载将UE数据发送给donor DU。
若采用图5架构,即CU上有adaptor layer,则IAB donor中的CU将PDCP PDU映射到对应的F1-U隧道,进行GTP-U处理和封装后,添加adaptor layer包头并发送给donor DU,其中包含以下至少之一:目标节点标识,路由路径信息,QoS相关信息。其中QoS相关信息为UE数据包的QCI或5QI值。
步骤2.若采用图4架构,donor DU从CU获取donor DU和donor CU间的GTP隧道信息和对应的IAB node 1和donor CU间的GTP隧道信息。donor DU从CU接收UE数据包后,确定该数据包所属的donor DU和donor CU间的GTP隧道对应的IAB node 1和donor CU间的GTP隧道,并将该隧道(IAB node 1和donor CU间的GTP隧道)映射到相应的donor DU和IAB node 1之间的GTP隧道并进行相应的GTP-U封装。然后再进行adaptor layer处理和封装,添加的adaptor layer包头中包含以下至少之一:目标节点标识,路由路径信息,QoS相 关信息。其中QoS相关信息为UE数据包的QCI或5QI值。可选的,DU根据 IP包头中的DSCP或TOS信息将数据包映射到相应QCI或5QI值的IAB node 2的QoS flow/承载并发送给IAB node 2。
若采用图5架构,donor DU从CU接收UE数据包之后,通过解析adaptor layer,得到以下至少之一:目标节点标识,路由路径信息,QoS相关信息。donor DU根据上述信息以及路由表确定下一跳路由节点(IAB node 2)。可选的,donor DU进行adaptor layer协议封装,adaptor layer包头中包含以下至少之一:目标节点标识,路由路径信息,QoS相关信息。可选的,donor DU根据所接收数据包的adaptor layer包头信息确定其QoS信息,或者根据IP包头中的DSCP或TOS信息将数据包映射到相应QCI或5QI值的IAB node 1的QoS flow/承载并发送给IAB node 2。
步骤3.IAB node 2接收后,通过解析adaptor layer,得到以下至少之一:目标节点标识,路由路径信息,QoS相关信息。IAB node 2根据上述信息以及路由表确定下一跳路由节点(IAB node 1)。可选的,IAB node 2进行adaptor layer协议封装,adaptor layer包头中包含以下至少之一:目标节点标识,路由路径信息,QoS相关信息。可选的,IAB node 2根据所接收数据包所属承载或QoS flow确定其QoS信息(QCI或5QI值),或者根据所接收数据包的adaptor layer包头信息确定其QoS信息,然后将数据包映射到相应QCI或5QI值的IAB node 1的QoS flow/承载/逻辑信道并发送给IAB node 1。
步骤4.IAB node 1接收后,通过解析adaptor layer,得到以下至少之一:目标节点标识,路由路径信息,QoS相关信息。然后IAB node 1可通过解析GTP-U协议层获得数据包所属的UE和承载,然后将UE数据包通过对应UE的相应QoS flow/RLC信道/承载发送给UE。
实施例三:PDU session+adaptor
本实施例方法为根据适配层信息进行路由的方法三。UE与UPF之间协议栈如图6所示。图6中,适配层位于IAB node和IAB donor的RLC层之上。需注意的是,适配层(adaptor layer)还可以位于RLC层与MAC层之间,或者适配层功能位于RLC或MAC层。
与实施例一和实施例二中方法不同的是,IAB node1与IAB donor之间的F1-U数据由IAB node 1的PDU session承载,Adaptor layer包头中不需要包含UE标识和承载标识。除此之外,实施例二中方法也适用于实施例三。
IAB node1收到UE的上行数据后,解析出PDCP PDU后将其对应至相应的F1-U GTP隧道,然后IAB node将封装后的UE的F1-U包作为其自身充当UE身份时的数据,通过自身的PDU session发送至自身的UPF,中途可能需经过中间IAB node的转发。IAB node 1需将UE的F1-U GTP承载映射到IAB node 1的QoS flow或承载。可选的,根据IAB node 1可根据从UE接收的数据包所属的承载的QoS信息(QCI或5QI)和QoS rules中的Packet Filter Set(包括IP Packet Filter Set,Ethernet Packet Filter Set)将数据包映射到相应的QoS flow或承载。或者,IAB node 1可根据从UE接收的数据包所属的承载的QoS信息和QoS信息与DSCP/TOS之间的映射关系确定对应的DSCP/TOS值,然后再根据DSCP/TOS将UE数据包映射到相应的QoS flow或承载。若IAB node1将UE数据包映射到QoS flow,则IAB node1还需将QoS flow映射到IAB node1的DRB,经过相应的PDCP处理之后,添加adaptor layer包头,添加的adaptor layer包头中包含目标节点标识信息,和/或路由路径信息。
一个或多个中间IAB node根据adaptor layer中的路由信息将数据包路由至donor DU。IAB donor中UE的CU功能可根据GTP-U包头信息(如,F1 GTP TEID)识别出数据包所属的UE及承载,并投递给相应承载的PDCP实体。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性 介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable read only memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (34)

  1. 一种自接入回传链路IAB的中继转发方法,包括:
    第一IAB节点接收数据包;
    所述第一IAB节点将所述数据包发送给IAB宿主。
  2. 如权利要求1所述的方法,其中,所述第一IAB节点将所述数据包发送给IAB宿主,包括:
    所述第一IAB节点获得路由相关信息,根据所述路由相关信息将所述数据包发送给IAB宿主。
  3. 如权利要求1所述的方法,其中,所述第一IAB节点接收数据包,包括:
    所述第一IAB节点从用户设备UE接收数据包;或者
    所述第一IAB节点从自身的应用层接收数据包;或者所述第一IAB节点从另一IAB节点接收数据包;
    其中,所述数据包为用户面数据或者控制面信令。
  4. 如权利要求1所述的方法,其中,所述第一IAB节点将所述数据包发送给IAB宿主,包括:
    所述第一IAB节点直接将所述数据包发送给所述IAB宿主;或者所述第一IAB节点将所述数据包转发至另一个IAB节点,通过所述另一个IAB节点将所述数据包直接或间接地发送给所述IAB宿主。
  5. 如权利要求2所述的方法,其中,所述路由相关信息至少包括以下之一:
    源节点标识;
    源节点地址;
    目标节点标识;
    目标节点地址;
    路由路径信息;
    承载类型;
    承载标识;
    主基站或主节点标识;
    主基站或主节点地址;
    次基站或次节点标识;
    次基站或次节点地址;
    路由至主节点或主基站的路由路径信息;
    路由至次节点或次基站的路由路径信息;
    下一跳节点标识;
    下一跳节点地址;
    通用分组无线服务技术隧道协议GTP隧道信息。
  6. 如权利要求2所述的方法,其中,所述第一IAB节点获得路由相关信息的方式包括以下至少之一:
    所述第一IAB节点通过无线资源控制RRC信令、F1信令、X2信令、Xn信令或者其他接口信息从接入侧网元获得所述路由相关信息;
    所述第一IAB节点通过S1信令、NG信令或者其它接口信息从核心网网元获得所述路由相关信息;
    所述第一IAB节点从应用服务器获得所述路由相关信息;
    所述第一IAB节点从接收的所述数据包的适配层包头中获得所述路由相关信息;
    所述第一IAB节点从接收的所述数据包的网际协议IP层包头中获得所述路由相关信息。
  7. 如权利要求2所述的方法,其中,所述路由相关信息的配置方式包括:
    所述第一IAB节点获得的路由相关信息是以UE为粒度配置的;或者
    所述路由相关信息是以UE的承载为粒度配置的,所述第一IAB节点获得承载标识及对应的路由相关信息;或者
    所述路由相关信息是以UE的承载类型为粒度配置的,所述第一IAB节点获得承载类型及对应的路由相关信息。
  8. 如权利要求1所述的方法,其中,所述第一IAB节点将所述数据包发送给IAB宿主,包括:
    所述第一IAB节点对所述数据包添加适配层包头,所述适配层包头中包含以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,服务质量QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息以及协议类型指示信息。
  9. 如权利要求8所述的方法,其中:
    所述添加适配层包头由位于无线链路控制RLC层之上的适配层执行;或者
    所述添加适配层包头由位于RLC层和媒体接入控制MAC层之间的适配层执行;或者
    所述添加适配层包头由位于RLC层的适配层功能实体执行;或者
    所述添加适配层包头由位于MAC层的适配层功能实体执行。
  10. 如权利要求1所述的方法,其中,所述第一IAB节点将所述数据包发送给IAB宿主,包括:
    将所述数据包发送到下一跳节点;其中,将所述数据包发送到下一跳节点的方式包括以下之一:
    所述第一IAB节点根据所述数据包所属承载和QoS流的QoS相关信息中的至少一个,以及映射规则,将所述数据包映射到对应的无线承载以发送给下一跳节点;
    所述第一IAB节点根据所述数据包所属UE的逻辑信道或无线承载,或者根据所述数据包相关的上一跳IAB节点的逻辑信道或无线承载,按照所述映射规则,将所述数据包映射到所述第一IAB节点的无线承载或逻辑信道以发送给下一跳节点;
    其中,所述映射规则包括以下至少之一:包映射规则、QoS规则、QoS相 关信息与差分服务代码点DSCP之间的映射规则、QoS相关信息与服务类型TOS之间的映射规则。
  11. 如权利要求1所述的方法,其中,所述第一IAB节点将所述数据包发送给IAB宿主,包括:
    所述第一IAB节点根据所述数据包所属无线承载,及无线承载与F1接口的GTP隧道的映射关系,将所述数据包映射到所述数据包所属无线承载对应的F1接口的GTP隧道;
    所述第一IAB节点对所述数据包添加适配层包头,所述适配层包头中包含以下至少之一:源节点标识,目标节点标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息以及协议类型指示信息。
  12. 如权利要求11所述的方法,在所述第一IAB节点将所述数据包映射到所述数据包所属无线承载对应的F1接口的GTP隧道之后,还包括以下之一:
    所述第一IAB节点将添加适配层包头后的数据包映射到逻辑信道或无线承载后发送到下一跳节点;所述第一IAB节点将F1用户面接口F1-U封装后的数据包作为所述第一IAB节点自身充当UE身份时的数据包,将所述封装后的数据包所属UE的F1-U GTP承载映射到所述第一IAB节点的QoS流、无线承载或者逻辑信道,通过自身的协议数据单元PDU会话发送。
  13. 如权利要求2、5-7中任一项所述的方法,在所述第一IAB节点获得所述路由相关信息之后,还包括:
    所述第一IAB节点根据所述路由相关信息确定所述数据包的目标节点和下一跳节点,或者所述第一IAB节点根据所述路由相关信息确定路由路径;
    其中,所述目标节点包括下述之一:IAB宿主donor,IAB donor中的基站集中单元gNB-CU,IAB donor中的基站分布单元gNB-DU,IAB donor中gNB-CU所连接的gNB-DU,用户面功能UPF,接入和移动管理模块AMF,基站以及IAB节点;
    其中,所述下一跳节点为IAB donor或IAB节点。
  14. 如权利要求2、5-7中任一项所述的方法,其中,所述第一IAB节点获得路由相关信息,包括:
    所述第一IAB节点从接收的所述数据包的适配层包头中获得所述路由相关信息;
    在所述第一IAB节点获得路由相关信息之后,还包括以下至少之一:所述第一IAB节点根据所述路由相关信息查找路由表确定下一跳节点;及,添加适配层包头;
    其中,所述目标节点为IAB donor,或IAB donor中的gNB-CU,或IAB donor中的gNB-DU,或IAB donor中gNB-CU所连接的gNB-DU,或UPF,或AMF,或基站,或IAB节点;
    其中,所述下一跳节点为IAB donor或IAB节点。
  15. 一种自接入回传链路IAB的中继转发方法,包括:
    IAB宿主分布单元DU接收IAB节点发送的数据包;
    所述IAB宿主DU获得第一信息,所述第一信息包括以下至少之一:源节点标识,目标节点标识,数据包所属用户设备UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,服务质量QoS相关信息,通用分组无线服务技术隧道协议GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息;
    所述IAB宿主DU根据所述第一信息将所述数据包发送给IAB宿主集中单元CU;
    其中,所述IAB宿主DU为以下之一:IAB节点,IAB宿主中的DU节点,与IAB宿主中的CU有线连接的DU节点。
  16. 如权利要求15所述的方法,其中,所述IAB宿主DU获得第一信息,包括:
    所述IAB宿主DU从所述数据包的适配层包头获得所述第一信息中的至少部分信息。
  17. 如权利要求15所述的方法,其中,所述IAB宿主DU根据所述第一信息将所述数据包发送给IAB宿主集中单元CU,包括以下之一:
    所述IAB宿主DU根据所述第一信息将所述数据包映射到相应的F1接口的GTP隧道,发送给所述IAB宿主CU;
    所述IAB宿主DU对所述数据包添加适配层包头后,通过F1接口的GTP隧道发送给所述IAB宿主CU;
    其中,所述适配层包头中包含以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息。
  18. 如权利要求17所述的方法,其中:
    所述添加适配层包头由位于无线链路控制RLC层之上的适配层执行;或者
    所述添加适配层包头由位于RLC层和媒体接入控制MAC层之间的适配层执行;或者
    所述添加适配层包头由位于RLC层的适配层功能实体执行;或者
    所述添加适配层包头由位于MAC层的适配层功能实体执行。
  19. 一种自接入回传链路IAB的中继转发方法,包括:
    IAB宿主从核心网网元或应用层接收数据包;
    所述IAB宿主将所述数据包发送给IAB节点,以通过所述IAB节点将数据包直接或间接发送给用户设备UE。
  20. 如权利要求19所述的方法,其中,所述IAB宿主将所述数据包发送给IAB节点,包括:
    所述IAB宿主对所述数据包进行相应协议层解析后添加适配层包头,所述适配层包头中携带以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,服务质量QoS相关信息,通用分组无线服务技术隧道协议GTP隧道信息,控制面指示信 息,用户面指示信息,协议类型指示信息。
  21. 如权利要求20所述的方法,其中:
    所述添加适配层包头由位于无线链路控制RLC层之上的适配层执行;或者
    所述添加适配层包头由位于RLC层和媒体接入控制MAC层之间的适配层执行;或者
    所述添加适配层包头由位于RLC层的适配层功能实体执行;或者
    所述添加适配层包头由位于MAC层的适配层功能实体执行。
  22. 如权利要求19所述的方法,其中,所述IAB宿主包括下述至少之一:IAB宿主集中单元CU和IAB宿主分布单元DU;
    所述IAB宿主将所述数据包发送给IAB节点,包括以下之一:
    所述IAB宿主CU将所述数据包映射到所述数据包所属的UE和承载对应的GTP隧道发送到分布单元DU,所述分布单元将所述UE的标识和承载标识封装在适配层包头中再发向下一跳节点;所述IAB宿主CU在发送给DU的数据包的GTP用户面GTP-U包头中携带服务IAB节点分配的GTP隧道信息,所述分布单元获得所述GTP隧道信息后,将所述GTP隧道信息封装在适配层包头中再发向下一跳节点;所述IAB宿主CU在发送给DU的数据包的GTP-U包头中携带所述IAB宿主CU和DU之间的第一GTP隧道信息,所述DU确定第一GTP隧道信息对应的服务IAB节点分配的第二GTP隧道信息,将所述第二GTP隧道信息封装在适配层包头中再发向下一跳节点;所述IAB宿主CU为所述数据包添加适配层包头后发送到DU,所述适配层包头中携带以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息;所述IAB宿主CU将所述数据包映射到对应的GTP隧道,进行GTP-U处理和封装后,添加适配层包头并发送到DU,所述适配层包头中携带以下至少之一:源节点标识,目标节点标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息。
  23. 如权利要求22所述的方法,其中,所述IAB宿主将所述数据包发送给IAB节点,还包括以下之一:
    所述DU接收到所述IAB宿主CU发送的数据包,添加适配层包头后发送到下一跳节点,其中,所述适配层包头中携带以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息;所述DU接收到所述IAB宿主CU发送的数据包,添加适配层包头后发送到下一跳节点,其中,所述适配层包头中携带以下至少之一:源节点标识,目标节点标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息;所述DU接收到所述IAB宿主CU发送的数据包后,将所述数据包所属的所述IAB宿主CU和DU间的GTP隧道映射到所述数据包对应的服务IAB节点和所述CU间的GTP隧道,进行GTP-U封装和添加适配层包头后发送到下一跳节点;其中,所述适配层包头中携带以下至少之一:源节点标识,目标节点标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息。
  24. 一种自接入回传链路IAB的中继转发方法,包括:
    IAB节点从IAB宿主接收数据包;
    所述IAB节点将所述数据包发送给用户设备UE。
  25. 如权利要求24所述的方法,其中,所述IAB节点将所述数据包发送给UE,包括:
    所述IAB节点从适配层包头获取信息,根据所述信息确定下一跳节点,将所述数据包发送给所述下一眺节点,其中,所述信息包括以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,服务质量QoS相关信息,通用分组无线服务技术隧道协议GTP隧道信息,控制面指示信息,用户面指示信息,协议类型指示信息。
  26. 如权利要求24所述的方法,其中,所述IAB节点将所述数据包发送给UE,包括:
    所述IAB节点为所述数据包添加适配层包头后,将所述数据包发送给下一眺节点,其中,所述适配层包头中的信息包括以下至少之一:源节点标识,目标节点标识,数据包所属UE标识,数据包所属承载标识,数据包所属信道标识,路由路径信息,QoS相关信息,GTP隧道信息,控制面指示信息;用户面指示信息;协议类型指示信息。
  27. 如权利要求25或26所述的方法,其中,所述IAB节点将所述数据包发送给UE,包括以下之一:
    所述IAB节点根据所述数据包所属承载或QoS流确定对应的QoS相关信息,或者所述IAB节点根据所述信息确定QoS相关信息,将数据包映射到所述QoS相关信息对应的QoS流、无线承载或者逻辑信道发送给下一跳节点;所述IAB节点根据所述信息中的所述数据包所属UE标识和所述数据包所属承载标识确定所述数据包所属的UE和承载,或者所述IAB节点根据所述信息中的GTP隧道信息确定所述数据包所属的UE和承载,然后通过所述UE和承载对应的QoS流、无线承载或者逻辑信道发送给所述UE;所述IAB节点通过解析GTP用户面GTP-U协议层获得GTP隧道信息,根据所述GTP隧道信息确定所述数据包所属的UE和承载,然后通过所述UE和承载对应的QoS流、无线承载或者逻辑信道发送给所述UE。
  28. 一种信息获取方法,包括:
    自接入回传链路IAB节点获取第一映射相关信息;所述第一映射相关信息包括以下至少之一:
    服务质量等级标识QCI与差分服务代码点DSCP之间的映射关系;
    第五代移动通信服务质量指示5QI与服务类型TOS之间的映射关系;
    QCI与TOS之间的映射关系;
    5QI与QCI之间的映射关系;
    QCI与QCI之间的映射关系;
    5QI与5QI之间的映射关系;
    QFI与QFI之间的映射关系;
    承载标识与QFI之间的映射关系;
    承载标识与承载标识之间的映射关系。
  29. 如权利要求28所述的方法,其中,自接入回传链路IAB节点获取第一映射相关信息的方式包括以下至少之一:
    所述IAB节点通过无线资源控制RRC信令、F1信令、X2信令、Xn信令或者其它接口信息从接入侧网元获得所述第一映射相关信息;
    所述IAB节点通过S1信令、NG信令或者其它接口信息从核心网网元获得所述第一映射相关信息;
    所述第一IAB节点从应用服务器获得所述第一映射相关信息。
  30. 一种信息获取方法,包括:
    自接入回传链路IAB宿主分布单元DU获取映射相关信息,所述映射相关信息包括以下至少之一:
    用户设备UE承载信息与F1接口的GTP隧道信息之间的映射关系;
    UE承载信息,目标节点标识与F1接口的GTP隧道信息之间的映射关系;
    目标节点标识与F1接口的GTP隧道信息之间的映射关系;
    F1接口的GTP隧道信息之间的映射关系;
    其中,UE承载信息包括下述至少之一:UE标识和承载标识;
    F1接口的GTP隧道信息包括下述至少之一:地址和隧道端点标识符TEID信息。
    其中,所述IAB宿主DU为下述之一:IAB节点,IAB宿主中的DU节点,与IAB宿主中的集中单元CU有线连接的DU节点。
  31. 如权利要求30所述的方法,其中,自接入回传链路IAB宿主分布单元DU获取映射相关信息的方式包括以下至少之一:
    所述IAB宿主DU通过无线资源控制RRC信令、F1信令、X2信令、Xn信令或者其它接口信息从接入侧网元获得所述映射相关信息;
    所述IAB宿主DU通过S1信令、NG信令或者其它接口信息从核心网网元获得所述映射相关信息;
    所述IAB宿主DU从应用服务器获得所述映射相关信息。
  32. 一种自接入回传链路IAB中的IAB节点,包括存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1-14、24-27或者28-29中任一项所述的方法。
  33. 一种自接入回传链路IAB中的IAB宿主节点,包括存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求15-23或者30-31中任一项所述的方法。
  34. 一种计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-31中任一项所述的方法。
PCT/CN2019/081545 2018-04-05 2019-04-04 自接入回传链路的中继转发方法、信息获取方法、节点及存储介质 WO2019192607A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19780942.9A EP3780877A4 (en) 2018-04-05 2019-04-04 PROCESS FOR PERFORMING A RELAY RE-ROUTING ON INTEGRATED ACCESS AND CONNECTION LINKS, PROCESS FOR ACQUIRING INFORMATION, NODE, AND STORAGE MEDIA
US17/044,017 US11595875B2 (en) 2018-04-05 2019-04-04 Method for performing relay forwarding on integrated access and backhaul links, information acquisition method, node, and storage medium
EP22150967.2A EP4017117A1 (en) 2018-04-05 2019-04-04 Method for performing relay forwarding on integrated access and backhaul links, information acquisition method, node, and storage medium
CA3109180A CA3109180C (en) 2018-04-05 2019-04-04 Method for performing relay forwarding on integrated access and backhaul links, information acquisition method, node, and storage medium
US18/175,271 US11924737B2 (en) 2018-04-05 2023-02-27 Method for performing relay forwarding on integrated access and backhaul links, information acquisition method, node, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810302723.5 2018-04-05
CN201810302723.5A CN110351700B (zh) 2018-04-05 2018-04-05 一种自接入回传链路的中继转发方法及节点

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/044,017 A-371-Of-International US11595875B2 (en) 2018-04-05 2019-04-04 Method for performing relay forwarding on integrated access and backhaul links, information acquisition method, node, and storage medium
US18/175,271 Continuation US11924737B2 (en) 2018-04-05 2023-02-27 Method for performing relay forwarding on integrated access and backhaul links, information acquisition method, node, and storage medium

Publications (1)

Publication Number Publication Date
WO2019192607A1 true WO2019192607A1 (zh) 2019-10-10

Family

ID=68099993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081545 WO2019192607A1 (zh) 2018-04-05 2019-04-04 自接入回传链路的中继转发方法、信息获取方法、节点及存储介质

Country Status (5)

Country Link
US (2) US11595875B2 (zh)
EP (2) EP3780877A4 (zh)
CN (1) CN110351700B (zh)
CA (1) CA3109180C (zh)
WO (1) WO2019192607A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954737A (zh) * 2019-11-26 2021-06-11 内西亚公司 移动网络中用于QoS感知的GTP-U传输的装置和方法
WO2021262045A1 (en) * 2020-06-22 2021-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Processing of data traffic in integrated access and backhaul (iab) communication networks
EP4068647A1 (en) 2021-03-31 2022-10-05 Sterlite Technologies Limited Integrated wireless access backhaul device for network densification using mesh network

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418427B (zh) * 2018-04-28 2021-06-08 华为技术有限公司 一种通信方法及装置
US11425765B2 (en) * 2018-06-20 2022-08-23 Lg Electronics Inc. Method and apparatus for processing signals by node in wireless communication system
WO2020091533A1 (en) * 2018-11-02 2020-05-07 Samsung Electronics Co., Ltd. Method for transmitting control signaling in relay network, configuration method and device
EP3912388B1 (en) * 2019-01-15 2024-03-20 Sony Group Corporation Infrastructure equipment, wireless communications networks and methods
WO2020149653A1 (en) * 2019-01-16 2020-07-23 Lg Electronics Inc. Method and apparatus for controlling radio resource for a redundant route for a dual-connecting iab-node in a wireless communication system
CN111586803B (zh) * 2019-02-15 2021-09-07 华为技术有限公司 一种通信方法及相关设备
US10833984B1 (en) * 2019-05-02 2020-11-10 At&T Intellectual Property I, L.P. Integrated access backhaul network metric exchange for 5G or other next generation network
WO2020222196A1 (en) * 2019-05-02 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Bearer mapping in iab nodes
US20230036769A1 (en) * 2019-12-31 2023-02-02 Lenovo (Beijing) Ltd. Method and apparatus for routing data in a communication system
CN113329276B (zh) * 2020-02-28 2022-10-28 华为技术有限公司 数据传输方法、装置、网关、芯片及存储介质
EP4099762A4 (en) * 2020-02-28 2023-01-18 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND COMMUNICATION DEVICE
CN113596739A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 一种数据传输方法、装置及设备
CN113873587B (zh) * 2020-06-30 2023-09-22 华为技术有限公司 一种用于iab网络通信的方法及相关设备
WO2022006907A1 (zh) * 2020-07-10 2022-01-13 华为技术有限公司 通信方法及装置
WO2022067818A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种数据传输方法及装置
CN116325834A (zh) * 2020-10-21 2023-06-23 华为技术有限公司 一种路由方法及装置
EP4179764A4 (en) * 2020-10-22 2023-10-04 Nokia Solutions and Networks Oy TRAFFIC TRANSMISSION IN INTEGRATED ACCESS AND BACKHAUL COMMUNICATIONS
US11937163B2 (en) * 2020-10-22 2024-03-19 Qualcomm Incorporated BAP configurations for backhaul routing paths in IAB
US20220131798A1 (en) * 2020-10-22 2022-04-28 Qualcomm Incorporated Ip-based routing support in iab
CN115085877B (zh) * 2021-03-11 2024-05-03 维沃移动通信有限公司 信息传输方法、装置及iab节点
US11778515B2 (en) * 2021-04-26 2023-10-03 T-Mobile Innovations Llc Internet protocol (IP) communication service over wireless integrated access and backhaul (IAB) links
CN115278817A (zh) * 2021-04-30 2022-11-01 华为技术有限公司 一种通信方法、装置及系统
CN115515148A (zh) * 2021-06-07 2022-12-23 中兴通讯股份有限公司 数据传输方法、装置和存储介质
DE112021007889T5 (de) * 2021-06-28 2024-04-11 Apple Inc. Systeme und Verfahren zur Konfiguration von Kommunikation mit einer IAB MEC
WO2023013936A1 (ko) * 2021-08-02 2023-02-09 삼성전자 주식회사 무선 통신 시스템에서 무선-코어 융합 제어 평면 운영 방법 및 장치
EP4364465A1 (en) * 2021-08-03 2024-05-08 ZTE Corporation Data transfer schemes in wireless communications
WO2023010364A1 (zh) * 2021-08-04 2023-02-09 富士通株式会社 集成的接入和回传的通信装置以及方法
US11888742B2 (en) * 2021-10-22 2024-01-30 Qualcomm Incorporated Extended routing identifiers for integrated access and backhaul
WO2023151096A1 (en) * 2022-02-14 2023-08-17 Nokia Shanghai Bell Co., Ltd. Service request in an integrated access and backhaul network
WO2024026625A1 (en) * 2022-08-01 2024-02-08 Zte Corporation Multi-path communications for user equipment in centralized unit and distributed unit split architecture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998679A (zh) * 2009-08-13 2011-03-30 华为技术有限公司 一种传输承载的中继方法、装置和通信系统
US20120020278A1 (en) * 2009-03-20 2012-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Radio Bearer Identification for Self Backhauling and Relaying in LTE Advanced

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998668A (zh) * 2009-08-27 2011-03-30 中兴通讯股份有限公司 一种无线连接的gtp-u实体间传输数据的方法和装置
CN106559798A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种无线中继方法、无线中继站及无线中继系统
US11233722B2 (en) * 2017-12-12 2022-01-25 Futurewei Technologies, Inc. System and method for network topology management
US10432295B2 (en) * 2018-01-11 2019-10-01 At&T Intellectual Property I, L.P. Radio link control layer based relaying for integrated access and backhaul transmissions in wireless networks
US20190159277A1 (en) * 2018-01-23 2019-05-23 Intel Corporation Enhancing f1 application protocol (f1-ap) interfaces in a multi-hop relay network with centralized unit (cu) and distributed unit (du)
US10785699B2 (en) * 2018-03-28 2020-09-22 Apple Inc. Next generation node-B (GNB) for integrated access and backhaul (IAB) relay in new radio (NR) networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120020278A1 (en) * 2009-03-20 2012-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Radio Bearer Identification for Self Backhauling and Relaying in LTE Advanced
CN101998679A (zh) * 2009-08-13 2011-03-30 华为技术有限公司 一种传输承载的中继方法、装置和通信系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Adaptation layer based L2 relaying and light L2 relaying", 3GPP TSG-RAN WG3 #99, R3-180814, 2 March 2018 (2018-03-02), XP051401227 *
INTEL CORPORATION: "On RAN architecture for IAB relaying in NR", 3GPP TSG-RAN3 MEETING #99, R3-181351, 2 March 2018 (2018-03-02), XP051401582 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954737A (zh) * 2019-11-26 2021-06-11 内西亚公司 移动网络中用于QoS感知的GTP-U传输的装置和方法
EP3829215A3 (en) * 2019-11-26 2021-07-21 Netsia, Inc. Apparatus and method for qos aware gtp-u transport in mobile networks
US11184843B2 (en) 2019-11-26 2021-11-23 Netsia, Inc. Apparatus and method for QoS aware GTP-U transport in mobile networks
US11812376B2 (en) 2019-11-26 2023-11-07 Netsia, Inc. Apparatus and method for QoS aware GTP-U transport in mobile networks
CN112954737B (zh) * 2019-11-26 2024-02-23 内西亚公司 移动网络中用于QoS感知的GTP-U传输的装置和方法
WO2021262045A1 (en) * 2020-06-22 2021-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Processing of data traffic in integrated access and backhaul (iab) communication networks
EP4068647A1 (en) 2021-03-31 2022-10-05 Sterlite Technologies Limited Integrated wireless access backhaul device for network densification using mesh network

Also Published As

Publication number Publication date
EP4017117A1 (en) 2022-06-22
CA3109180A1 (en) 2019-10-10
CN110351700A (zh) 2019-10-18
US20230224796A1 (en) 2023-07-13
EP3780877A1 (en) 2021-02-17
US11595875B2 (en) 2023-02-28
US20210127319A1 (en) 2021-04-29
CN110351700B (zh) 2022-06-17
US11924737B2 (en) 2024-03-05
EP3780877A4 (en) 2022-01-05
CA3109180C (en) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2019192607A1 (zh) 自接入回传链路的中继转发方法、信息获取方法、节点及存储介质
US11621916B2 (en) Information transmission method and device in IAB architecture
CN110475267B (zh) 一种配置方法、数据传输方法和装置
JP7378433B2 (ja) データパケットの送信方法、受信方法及び装置ならびにデータパケットの伝送システム
US11800429B2 (en) Methods and systems for routing data through IAB nodes in 5G communication networks
US9351192B2 (en) Traffic bearer mapping method and communication device
WO2019242748A1 (zh) 信息传输方法及装置
CN109756925B (zh) 一种通过中继的通信处理方法和装置
US20220225129A1 (en) Methods and devices for routing and bearer mapping configuration
WO2020164596A1 (zh) 一种数据传输方法及装置
JP7462026B2 (ja) 方法及び中継ノード
EP4039061A1 (en) A method of and equipment for performing transfer of data packets in end-to-end multi-hop sidelink radio communication
CN114467288A (zh) 一种数据包传输方法及装置
CN110876171B (zh) 一种多跳数据传输方法及装置
WO2023286690A1 (ja) 通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019780942

Country of ref document: EP

Effective date: 20201105

ENP Entry into the national phase

Ref document number: 3109180

Country of ref document: CA