WO2019192580A1 - 类橄榄状非对称双向锥形螺纹连接副 - Google Patents

类橄榄状非对称双向锥形螺纹连接副 Download PDF

Info

Publication number
WO2019192580A1
WO2019192580A1 PCT/CN2019/081405 CN2019081405W WO2019192580A1 WO 2019192580 A1 WO2019192580 A1 WO 2019192580A1 CN 2019081405 W CN2019081405 W CN 2019081405W WO 2019192580 A1 WO2019192580 A1 WO 2019192580A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread
spiral
bidirectional
taper
conical surface
Prior art date
Application number
PCT/CN2019/081405
Other languages
English (en)
French (fr)
Inventor
游奕华
Original Assignee
游奕华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 游奕华 filed Critical 游奕华
Publication of WO2019192580A1 publication Critical patent/WO2019192580A1/zh
Priority to US17/037,579 priority Critical patent/US20210010510A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • F16B35/041Specially-shaped shafts
    • F16B35/044Specially-shaped ends
    • F16B35/047Specially-shaped ends for preventing cross-threading, i.e. preventing skewing of bolt and nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/004Sealing; Insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/02Shape of thread; Special thread-forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • F16B35/041Specially-shaped shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/22Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening
    • F16B39/28Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening by special members on, or shape of, the nut or bolt
    • F16B39/30Locking exclusively by special shape of the screw-thread

Definitions

  • the invention belongs to the technical field of equipment, and in particular relates to an olive-like asymmetric bidirectional taper thread connection pair (hereinafter referred to as "two-way taper thread connection pair").
  • Thread is one of the most basic industrial technologies. She is not a specific product. It is a key common technology in the industry. Its technical performance must be embodied in specific products as an application carrier. It is widely used in various industries.
  • the existing thread technology has high standardization level, mature technical theory and long-term practical application. When it is fastened, it is tightened thread; when it is sealed, it is sealed thread; when it is used, it is driven thread.
  • the inclined surface refers to a smooth plane inclined to the horizontal plane, and the spiral is a "beveled” deformation.
  • the thread is like a slope wrapped around the outside of the cylinder. The smoother the slope, the greater the mechanical advantage (see Figure 11) (Yang Jingshan, Wang Xiuya , “Discussion on the Principles of Screws", “Gaussian Arithmetic Research”).
  • the "bevel principle" of modern thread is a slope slider model based on the law of slope (see Figure 12). It is believed that when the static load and temperature change are not large, when the angle of the thread is less than or equal to the equivalent friction angle, the thread The deputy has a self-locking condition.
  • the angle of the thread (see Figure 13), also known as the thread lead angle, is the angle between the tangent of the helix on the medium-diameter cylinder and the plane perpendicular to the axis of the thread, which affects the self-locking and anti-looseness of the thread.
  • the equivalent friction angle is the corresponding friction angle when the different friction forms are finally converted into the most common beveled slider form.
  • the wedge-shaped thread has a wedge-shaped bevel at an angle of 25° to 30° to the axis of the thread at the bottom of the triangular thread (commonly known as a common thread), and the actual operation takes 30°. Wedge bevel. All along, people have studied and solved the problem of thread anti-looseness from the technical level and technical direction of the thread profile.
  • the wedge thread technology is no exception, which is the specific application of the wedge technology.
  • the thread formed on the surface of the cylinder is called a cylindrical thread
  • the thread formed on the surface of the cone is called a conical thread
  • the thread formed on the surface of the end surface such as a cylinder or a truncated cone is called a plane thread
  • the thread formed on the outer surface of the parent body Known as the external thread, the thread formed on the surface of the hole in the mother body is called the internal thread, and the thread formed on the surface of the end surface of the mother is called the end thread
  • the thread that is in the direction of the angle of the screw and the left-hand rule is called the left-hand thread.
  • the thread that conforms to the right-hand rule with the angle of the thread is called the right-hand thread; the thread with only one spiral in the same section of the parent is called the single-thread thread, and the thread with two spirals is called the double-thread thread.
  • the thread of the helix is called a multi-thread thread.
  • a thread having a triangular cross-sectional shape is called a triangular thread
  • a thread having a trapezoidal cross-sectional shape is called a trapezoidal thread
  • a thread having a rectangular cross-sectional shape is called a rectangular thread
  • a thread having a zigzag cross-sectional shape is called a zigzag thread.
  • connection failure is not a simpler non-stationary room temperature environment, there is a linear load nonlinear load or even a superposition of the two and thus a more complex damage load situation, the application conditions are complex, based on this understanding
  • the object of the present invention is to provide an olive-like asymmetric bidirectional tapered threaded connection pair with reasonable design, simple structure, good connection performance and locking performance.
  • the olive-shaped asymmetric bidirectional taper thread connection pair is composed of an asymmetric bidirectional taper external thread and an asymmetric bidirectional tapered internal thread.
  • a special thread pair technology which combines the characteristics of a conical pair and a spiral motion technique
  • the bidirectional taper thread is a thread technology which combines the technical features of a bidirectional cone and a spiral structure
  • the bidirectional cone is It consists of two single cones, that is, two single cones whose left side taper is opposite to the right side taper direction and different in taper direction, and the two-way cone body is spirally distributed on the outer surface of the columnar parent body to form an outer surface.
  • the thread and/or the bidirectional cone described above are spirally distributed on the inner surface of the cylindrical body to form an internal thread, and the full unit thread of the internal thread is a spiral shape and the middle end is small and includes the left side regardless of the external thread of the internal thread.
  • An olive-like asymmetrical special bidirectional tapered geometry with a taper greater than the right taper and/or the taper to the right is less than the taper to the right.
  • the bidirectional tapered threaded coupling pair the olive-like asymmetric bidirectional tapered thread comprises two forms of a taper on the left side greater than a taper on the right side and a taper on the left side of the right side, the definition of which can be expressed as: "in a cylinder or On the surface of the cone, an asymmetric bidirectional tapered hole (or asymmetric bidirectional truncated cone) having a defined left side taper and a right taper and a left taper opposite to the right taper and having a different taper, continuous along the spiral / or discontinuously distributed in the middle of the spiral with large ends and small olive-like special bidirectional tapered geometry.” Due to manufacturing reasons, the screw head and the screw tail of the asymmetric bidirectional taper thread may be incomplete two-way cone Shape geometry.
  • the number of complete unit body threads and/or incomplete unit body threads is no longer in the "number of teeth", but in "number of nodes", ie no longer Weigh a few threads and weigh a few threads.
  • the change in the number of thread names is based on changes in the technical connotation.
  • the mutual thread matching has been transformed from the meshing relationship of the internal and external threads of the modern thread to the inner and outer thread concentric relationship of the two-way taper thread.
  • the bidirectional taper thread connecting pair comprises a bidirectional truncated cone body spirally distributed on the outer surface of the columnar parent body and a bidirectional tapered hole spirally distributed on the inner surface of the cylindrical mother body, that is, an external thread and a thread which are mutually threaded Thread
  • the internal thread is a cylindrical bipolar surface with a spiral bidirectional tapered hole and exists in a "non-physical space" form
  • the external thread is a cylindrical external surface to form a spiral bidirectional truncated cone and in the form of "material entity" Exist
  • the non-physical space refers to a space environment capable of accommodating the above-mentioned material entity
  • the internal thread is a containing member
  • the external thread is a contained member
  • the working state of the thread is: the internal thread, that is, the bidirectional tapered hole and the external thread, that is, the two-way
  • the truncated cone body is a section of bidirectional tapered geometry that fits and is screwed together.
  • the external thread of the internal thread is entangled until one side of the bidirectional bearing or the left side of the right side is simultaneously bidirectionally loaded or until the sizing interference fits.
  • the two-way bearing is related to the actual working conditions in the application field, that is, the one-way tapered hole section contains the bidirectional truncated cone body, that is, the internal thread is a section of the corresponding external snail Pattern.
  • the threaded connecting pair is formed by a spiral outer tapered surface and a spiral inner tapered surface forming a conical pair to form a thread pair, and the outer tapered surface and the inner cone of the bidirectional tapered outer spherical cone
  • the inner tapered surfaces are bidirectional conical surfaces.
  • the technical performance, the self-locking property of the thread, self-positioning, reusability and fatigue resistance mainly depend on the conical surface of the cone-shaped pair of the olive-shaped asymmetric bidirectional taper threaded connection and its taper size, ie, The conical surface of the external thread and its taper size are non-dental threads.
  • the one-way force distributed on the inclined surface and the internal and external threads are different from the meshing relationship between the inner tooth and the outer tooth.
  • the olive-shaped asymmetric bidirectional taper threaded coupling bidirectional cone is different from the existing one. Regardless of whether the single cone is distributed on either side of the left side or the right side, the cross section of the conical axis is bidirectionally composed of two plain lines of the cone, which is a bidirectional state, and the plain line is the intersection of the surface of the cone and the plane passing through the axis of the cone.
  • the cone principle of this type of olive-shaped asymmetric bidirectional taper threaded coupling pair is the axial force and the anti-axis force.
  • Both of them are synthesized by two-way force, and the axial force and the corresponding counter-axis force are opposite.
  • the internal thread and the external thread are in a cohesive relationship, that is, the threaded pair is held by the internal thread to hold the external thread, that is, a section of the tapered hole (inner cone) to converge the corresponding section cone (outer cone) until the hull is sized
  • Self-locking is realized by self-positioning or until the sizing interference contact is achieved, that is, the conical hole and the truncated cone body are radially entangled to realize self-locking or self-positioning of the inner cone and the outer cone, thereby realizing self-locking of the thread pair Tight or self-positioning
  • the internal thread and the external thread which are not the conventional thread constitute a threaded connection pair, and the thread connection performance is achieved by the mutual abutment between the tooth body and the tooth body.
  • the outer cone constitutes a conical pair
  • the inner conical surface of the inner cone encloses the outer conical surface of the outer cone, and the inner conical surface is in close contact with the outer conical surface.
  • the inner conical axial force and the outer conical anti-axis force are the concepts of the force unique to the bi-directional taper thread technology of the present invention, that is, the conical pair technology.
  • the inner cone exists in a form similar to a bushing. Under the action of external loads, the inner cone generates an axial force directed or pressed against the axis of the cone.
  • the axial force is mirrored by a pair of axes centered on the axis of the cone.
  • the axial force cross-section through the conical axis is mirror-directionally distributed on both sides of the conical axis and perpendicular to the two-dimensional line of the cone
  • the two centripetal forces pointing or speaking to the common point of the conical axis and when the above-mentioned cone and spiral structure are combined into a thread and applied to the thread pair the above-mentioned axial force cross-section through the thread axis is centered on the thread axis
  • the mirror image and/or the approximate mirror image are bidirectionally distributed on both sides of the thread axis and respectively perpendicular to the two prime lines of the cone and directed or pressed against a common point of the thread axis and/or approximately centripetal forces, said axis
  • the force is distributed in an axially and circumferentially manner on the conical axis and/or the thread axis, and the axial force correspond
  • the outer cone exists in a shape similar to the axis, and has a strong ability to absorb various external loads.
  • the outer cone generates a counter-axis force with respect to the top of each inner core of the inner cone, and the anti-axis force is A pair of reverse centripetal forces distributed in a mirror image centered on the axis of the cone and perpendicular to the two prime lines of the cone respectively, that is, the cross-axis force is transmitted through the conical axis as a mirror image bidirectionally distributed on the conical axis And the two opposite centripetal forces that are perpendicular to the two plain lines of the cone and are directed by the common point of the conical axis or pressed toward the inner conical surface, and when the above-mentioned cone and spiral structure are combined into a thread and applied to the thread pair,
  • the anti-axis force is perpendicular to the two sides of the thread axis and is perpendicular to the two axial lines of the cone and is common to the thread
  • the common point is directed to or consists of two opposing centripetal forces pressed against the conical surface of the internal thread, said counter-axis force being densely distributed in the axial and circumferential manner on the conical axis and/or a thread axis, the counter-axis force corresponding to a counter-axis force angle, and the angles of the two counter-heart forces constituting the counter-axis force constitute the above-mentioned anti-axis force angle, the anti-axis
  • the size of the heart angle depends on the taper size of the cone, ie the cone angle.
  • the axial force and the anti-axis force are generated when the inner and outer cones of the cone pair are in effective contact, that is, the effective contact between the inner cone and the outer cone of the cone pair always has a pair of corresponding and opposite axial and anti-axis
  • the heart force, the axial force and the anti-axis force are both a bidirectional force centered on the conical axis and/or the thread axis and mirrored bidirectionally, rather than a one-way force, the conical axis coincides with the thread axis
  • the axes are the same axis and/or approximately the same axis, the anti-axis force and the axial force are reverse collinear and when the above-mentioned cone and spiral structure are combined into a thread and the thread pair is reversed collinear and/or approximate
  • the reverse collinear line, through the cohesion of the inner cone and the outer cone until the interference, the axial force and the anti-axial force generate pressure and are evenly distributed axially and circumfer
  • the concentric motion of the inner cone and the outer cone continues until the conical pair reaches the pressure formed by the interference fit, and the inner cone and the outer cone are combined, that is, the above-mentioned pressure can achieve the inner cone hold
  • the outer cone forms a monolithic structure and does not arbitrarily change the direction of the body structure similar to the above-mentioned overall structure, and the inner and outer cones are separated from each other by gravity, and the conical pair is self-locking.
  • the thread pair is self-locking. This self-locking property also has a certain resistance to other external loads other than gravity which may cause the inner and outer cones to be separated from each other.
  • the cone pair also has an inner cone and an outer cone. Self-positioning, but not any axial force angle and/or anti-axis force angle can make the cone pair self-locking and self-positioning.
  • the conical pair When the axial force angle and/or the anti-axis force angle are less than 180° and greater than 127°, the conical pair has self-locking property, and the axial force angle and/or the anti-axis force angle are infinitely close to 180°, the conical pair
  • the self-locking property is the best, the axial load capacity is the weakest, the axial force angle and/or the anti-axis force angle are equal to and/or less than 127° and greater than 0°, then the cone pair is weak in self-locking and/or has no In the self-locking interval, the axial force angle and/or the anti-axis force angle tend to change in an infinitely close to 0° direction, and the self-locking property of the cone pair changes in the direction of the attenuation trend until it has no self-locking ability.
  • the bearing capacity changes in the direction of increasing trend until the axial bearing capacity is the strongest.
  • the cone pair When the axial force angle and/or the anti-axis force angle are less than 180° and greater than 127°, the cone pair is in a strong self-positioning state, and it is easy to achieve strong self-positioning of the inner and outer cones, the axial force angle and/or the anti-axis force angle.
  • the inner and outer cones of the conical pair When infinitely close to 180°, the inner and outer cones of the conical pair have the strongest self-positioning ability, the axial force angle and/or the anti-axis force angle are equal to and/or less than 127° and greater than 0°, and the conical pair is in a weak self-positioning state.
  • the axial force angle and/or the anti-axis force angle tend to change in an infinitely close to 0° direction, and the self-positioning ability of the inner and outer cones of the conical pair changes in the direction of the attenuation trend until it is nearly completely free from self-positioning capability.
  • the two-way tapered threaded coupling pair has a non-reversible one-sided two-way containment and containment relationship of a single-sided load bearing on the one-sided side of the conical surface compared to the one-way tapered thread of the single-cone body previously invented by the applicant.
  • the reversibility of the tapered thread is bidirectionally contained on the left and right sides, so that the left side of the conical surface can be carried and/or the right side of the conical surface and/or the right conical surface of the left conical surface can be respectively carried and/or the right side of the conical surface
  • the conical surface is carried in both directions at the same time, which limits the disordered degree of freedom between the tapered hole and the truncated cone.
  • the helical motion makes the asymmetrical bidirectional taper threaded joint obtain the necessary degree of freedom, and effectively synthesizes the conical pair.
  • the technical characteristics of the thread pair form a new thread technology.
  • the bidirectional tapered threaded coupling pair of the bidirectional tapered threaded external thread has a bidirectional tapered conical surface that cooperates with the bidirectional tapered bore conical surface of the bidirectional tapered threaded internal thread.
  • the bi-directional cone of the conical pair of the olive-shaped asymmetric bidirectional taper threaded coupling pair may not be any taper or any taper angle, and the self-locking or self-locking of the threaded connection pair may be realized. Positioning, the above-mentioned inner and outer cones must reach a certain taper or a certain taper angle, and the asymmetrical bidirectional taper threaded connecting pair has self-locking property and self-positioning, and the taper includes the left and the outer threaded body left.
  • 0° ⁇ first taper angle ⁇ 1 ⁇ 53° preferably, the first taper angle ⁇ 1 takes a value of 2° to 40°
  • the specific special field preferably, the 53° ⁇ the first taper angle ⁇ 1 ⁇ 180°, preferably, the first taper angle ⁇ 1 takes a value of 53° to 90°; preferably, 0° ⁇ the second taper angle ⁇ 2 ⁇ 53°, preferably, the second taper angle ⁇ 2 takes a value of 2° ⁇ 40°.
  • the first taper angle ⁇ 1 takes a value of 2° to 40°; preferably, 0° ⁇
  • the second cone angle ⁇ 2 ⁇ 53°, preferably, the second cone angle ⁇ 1 takes a value of 2° to 40°, and the specific special field, preferably, 53° ⁇ the second taper angle ⁇ 2 ⁇ 180°, preferably the second cone The angle ⁇ 2 is 53° to 90°.
  • the bidirectional taper thread connecting pair is disposed on the outer surface of the columnar parent body, wherein the outer surface of the columnar parent body has a spirally distributed conical body, including an asymmetric bidirectional truncated cone body.
  • the columnar parent body may be solid or hollow, and includes a workpiece and an object such as a cylinder and/or a non-cylindrical body which are required to be threaded on an outer surface thereof, and the outer surface includes a cylindrical surface and a non-cylindrical surface such as a conical surface. Surface geometry.
  • the bidirectional tapered threaded connecting pair is characterized by being symmetrical by the lower bottom surface of two truncated cone bodies having the same lower bottom surface and the same upper top surface but different cone heights And mutually engaging the spirally threaded threads and the upper top surface is at both ends of the bidirectional truncated cone body and forming the bidirectional tapered thread, respectively comprising mutually engaging the upper top surfaces of the adjacent bidirectional truncated cone bodies and/or or respectively
  • the upper top surface of the adjacent bidirectional truncated cone body is screwed into a spiral shape, and the external thread includes a first spiral conical surface of the truncated cone body, a second spiral conical surface of the truncated cone body, and an outer spiral line.
  • asymmetrical bi-directional taper external thread Forming an asymmetrical bi-directional taper external thread, wherein the complete single-section asymmetrical bi-directional taper external thread is a special bi-directional tapered geometry with an olive-like shape at the center and a small end at a cross section through the axis of the thread.
  • the bidirectional truncated cone body comprises a bidirectional truncated cone conical surface, and the left conical surface, that is, the angle between the two plain lines of the first spiral conical surface of the truncated cone body is the first cone angle ⁇ 1, and the truncated cone body is first Spiral conical surface Forming the left side taper and distributing in the left direction, the right conical surface, that is, the angle between the two plain lines of the second spiral conical surface of the truncated cone body is the second taper angle ⁇ 2, and the second spiral conical surface of the truncated cone body Forming a right taper and a rightward distribution, the first taper angle ⁇ 1 is opposite to a taper direction corresponding to the second taper angle ⁇ 2, and the plain line is a line of intersection of the cone surface and a plane passing through the cone axis,
  • the right-angled sides of the right-angled trapezoidal symmetry of the two right-angled trapezoids and the opposite-angled right-angled trapezoidal joints are uniformly rotated in the circumferential direction of the center of rotation, and the right-angled trapezoidal coupling body is simultaneously axially moved along the central axis of the columnar parent body by the right-angled trapezoidal combination body.
  • the spiral outer side surface formed by the two oblique sides has the same shape, and the right angle trapezoidal combined body refers to the lower bottom side symmetry of two right-angled trapezoids having the same lower bottom edge and the same upper bottom edge but different right-angled sides. And to engage the bottom edge respectively at right angle trapezoidal geometry specific binding at both ends thereof.
  • the two-way taper threaded connecting pair is disposed on the inner surface of the cylindrical body, wherein the inner surface of the cylindrical body has a spiral hole distributed in a spiral shape, and the tapered hole
  • the invention comprises an asymmetric bidirectional tapered hole, the cylindrical body comprising a cylindrical body and/or a non-cylindrical body and the like, and a workpiece and an object requiring internal threads on the inner surface thereof, the inner surface comprising a cylindrical surface and a conical surface The inner surface geometry of a non-cylindrical surface, etc.
  • the bidirectional tapered threaded coupling pair is characterized by being symmetrical by a lower bottom surface having two tapered holes having the same lower bottom surface and the same upper top surface but different cone heights And mutually engaging the spirally threaded threads and the upper top surface is at both ends of the bidirectional tapered hole and forming the bidirectional tapered thread comprises respectively engaging the upper top surfaces of the adjacent bidirectional tapered holes and/or respectively
  • the upper top surface of the adjacent bidirectional tapered hole is screwed into a spiral shape, and the internal thread comprises a first spiral conical surface of the tapered hole and a second spiral conical surface and an inner spiral of the tapered hole.
  • asymmetric bidirectional tapered internal thread Forming an asymmetric bidirectional tapered internal thread, wherein the complete single-section asymmetric bidirectional tapered internal thread is a special bidirectional tapered geometry having an olive-like shape with a large intermediate portion and a small end portion in a section passing through the axis of the thread.
  • the bidirectional tapered hole comprises a bidirectional tapered hole conical surface, and the left conical surface, that is, the angle between the two plain lines of the first spiral conical surface of the conical hole is the first taper angle ⁇ 1, and the conical hole first spiral
  • the conical surface forms a left taper and is distributed in the left direction
  • the angle between the two plain lines on the right conical surface, that is, the second spiral conical surface of the tapered hole is the second taper angle ⁇ 2
  • the second spiral conical surface of the tapered hole forms a right taper and is distributed in the right direction.
  • the first taper angle ⁇ 1 is opposite to the taper direction corresponding to the second taper angle ⁇ 2, and the plain line is an intersection line between the cone surface and a plane passing through the cone axis, and the tapered hole of the bidirectional tapered hole is A spiral conical surface and a conical hole have a second spiral conical surface formed in a shape with two lower-angled trapezoids that are identical to the central axis of the cylindrical parent body and have the same lower bottom side but the upper side is different but the right side is different
  • the right-angled side of the symmetrical and oppositely-connected right-angled trapezoidal joint is a revolving body formed by the right-angled rotation of the center of rotation and the right-angled trapezoidal combination simultaneously moves axially along the central axis of the cylindrical parent body and is formed by two oblique sides of the right-angled trapezoidal combination body.
  • the shape of the outer side of the spiral is the same, and the right-angled trapezoidal combination means that the lower bottom sides of the two right-angled trapezoids having the same lower bottom edges and the same upper bottom edges but different right-angled sides are symmetric and oppositely joined and the upper bottom edges are respectively at right angles.
  • Trapezoidal combination Special geometry ends.
  • the bidirectional taper thread connecting pair, the joint of two adjacent spiral conical surfaces of the external thread, and the joint of two adjacent spiral conical surfaces of the internal thread respectively have a sharp angle and/or a non-sharp angle, etc.
  • the pointed angle is a relatively non-sharp angle, and refers to a structural form that is not intentionally subjected to non-sharp processing.
  • the first spiral conical surface of the truncated cone body of the bidirectional truncated cone body of the same spiral and the second spiral shape of the truncated cone body are characterized.
  • the outer diameter of the conical surface that is, the outer diameter of the external thread is connected by an outer sharp-angled shape structure and forms an outer spiral line distributed in a spiral shape
  • the first spiral conical surface of the truncated cone body of the bidirectional truncated cone body of the same spiral is adjacent to
  • the outer diameter of the joint of the first spiral conical surface of the table body is connected by an inner sharp angle structure and forms an outer spiral line which is spirally distributed; the first spiral shape of the tapered hole of the bidirectional tapered hole of the same spiral
  • the joint between the conical surface and the second spiral conical surface of the conical hole, that is, the large diameter of the internal thread is connected by an inner sharp corner shape and forms an inner spiral which is spirally distributed, and the conical hole of the bidirectional
  • the first spiral conical surface of the truncated cone body of the bidirectional truncated cone body of the same spiral and the second spiral shape of the truncated cone body are The outer diameter of the conical surface, that is, the large diameter of the external thread is connected by a non-outer corner and forms an outer spiral structure with a spiral distribution or a flat top or a circular arc, and the first spiral of the truncated cone of the bidirectional truncated cone of the same spiral.
  • the second helical conical surface and the adjacent The outer diameter of the joint of the first spiral conical surface of the truncated cone body of the bidirectional truncated cone body is connected
  • the internal thread diameter is connected by a non-outer sharp angle and formed into a spiral shape
  • the geometric shape of the arc can avoid interference when the internal thread and the external thread are screwed together, and can store oil and store dirt.
  • the external thread diameter and the internal thread diameter can be treated by grooves or arcs.
  • the large diameter of the thread and the diameter of the internal thread are treated with a sharp angle structure and/or the large diameter of the external thread and the small diameter of the internal thread are treated by a flat or circular arc structure, while the diameter of the external thread and the large diameter of the internal thread are treated with a sharp angle structure and/or an external thread.
  • Small diameter, internal thread diameter adopts groove or arc structure
  • the processing is made, and the large diameter of the external thread and the small diameter of the internal thread are treated by a plane or an arc structure.
  • the two-way taper threaded connection When the two-way taper threaded connection is connected by the transmission, the two-way bearing is carried out through the screw connection of the bidirectional tapered hole and the bidirectional tapered body, and there must be a play between the bidirectional tapered body and the bidirectional tapered hole, the internal thread and the outer thread. If oil is lubricated between the threads, it will easily form a bearing oil film, and the clearance is favorable for the formation of the bearing oil film.
  • the two-way tapered threaded coupling pair is applied to the transmission connection as a group of one and/or several pairs of sliding bearings.
  • the sliding bearing pair is composed of two-way tapered internal thread and two-way tapered external thread corresponding to a two-way taper external thread, forming a pair of sliding bearings, and the number of sliding bearings is adjusted according to the application condition, that is, the bidirectional tapered internal thread Effective bidirectional engagement with the bidirectional tapered external thread, ie the number of contained and enclosed thread segments for effective two-way contact, designed according to the application conditions, bidirectionally containing the bidirectional conical body through the bidirectional tapered hole and radial, axial, angular, Positioning in a multi-directional direction, such as circumferential direction, preferably, the bidirectional tapered body is accommodated by the bidirectional tapered hole and the radial and circumferential main positioning is supplemented by the axial and angular auxiliary positioning.
  • the technical performance is achieved by the screwing connection of the bidirectional tapered hole and the bidirectional taper body, that is, the first spiral conical surface and the tapered hole of the truncated cone body.
  • the first spiral conical surface is sized until the interference and/or the second spiral conical surface of the truncated cone body and the second spiral conical surface of the conical hole are sizing until the interference is achieved, and the bearing is achieved in one direction according to the application condition.
  • the bidirectional truncated cone body and the bidirectional tapered hole are guided by the spiral under the inner cone and the outer diameter of the outer cone until the first spiral conical surface of the conical hole and the truncated cone body
  • a spiral conical surface is held in one direction or both directions to carry a sizing fit or until the sizing interference contact and/or the second spiral conical surface of the conical bore meets the second helical conical surface of the truncated cone body
  • the bidirectional tapered hole encloses the bidirectional truncated cone body and is assisted by axial and circumferential main positioning with axial and angular auxiliary positioning to form multidirectional positioning of the inner and outer cones
  • the spiral conical surface and the left taper formed thereof are the first taper angle ⁇ 1 and the second spiral conical surface of the truncated cone body and the right taper formed by the second taper angle ⁇ 2 and the first spiral conical surface of the tapered hole
  • the left taper formed that is, the first taper angle ⁇ 1 and the second spiral conical surface of the tapered hole and the right taper formed by the second taper angle ⁇ 2
  • the material of the columnar matrix and the cylindrical matrix are rubbed
  • the coefficient, processing quality, and application conditions also have a certain influence on the cone fit.
  • the right-angled trapezoidal combined body has a distance of axial movement of the right-angled trapezoidal coupling body at the same time, and the distance between the axial direction of the right-angled trapezoidal coupling body is the same as that of the lower bottom edge and the upper bottom edge is the same.
  • the right angle side is at least double the length of the sum of the right angle sides of the two right-angled trapezoids.
  • the structure ensures that the first spiral conical surface of the truncated cone body and the second spiral conical surface of the truncated cone body and the first spiral conical surface of the conical hole and the second spiral conical surface of the conical hole have sufficient length to ensure two-way
  • the conical body conical surface cooperates with the bi-directional conical hole conical surface to have sufficient effective contact area and strength and the efficiency required for the helical motion.
  • the right-angled trapezoidal combined body is axially moved by a distance equal to the same as the lower base and the upper base is the same.
  • the length of the sum of the right-angled sides of the two right-angled trapezoids with different right-angled sides is the same.
  • the structure ensures that the first spiral conical surface of the truncated cone body and the second spiral conical surface of the truncated cone body and the first spiral conical surface of the conical hole and the second spiral conical surface of the conical hole have sufficient length to ensure two-way
  • the conical body conical surface cooperates with the bi-directional conical hole conical surface to have sufficient effective contact area and strength and the efficiency required for the helical motion.
  • the first spiral conical surface of the truncated cone body and the second spiral conical surface of the truncated cone body are continuous spiral surfaces or non-continuous spiral surfaces;
  • the first spiral conical surface of the tapered hole and the second spiral conical surface of the tapered hole are continuous spiral faces or non-continuous spiral faces.
  • the first spiral conical surface of the truncated cone body and the second spiral conical surface of the truncated cone body and the first spiral conical surface of the conical hole and the second spiral conical surface of the conical hole are continuous spiral surfaces.
  • one end of the columnar parent body is provided with a head having a size larger than the outer diameter of the columnar parent body and/or one end and/or both ends of the columnar matrix body.
  • a head having a bidirectional tapered external thread having a smaller diameter than the cylindrical parent screw body is provided, and the connecting hole is a threaded hole provided in the nut. That is, the columnar parent body is connected to the head as a bolt, and the head and/or the heads at both ends are smaller than the bidirectional taper external thread diameter and/or the studs having the bidirectional taper external threads at both ends of the thread without the thread.
  • the connecting hole is provided in the nut.
  • the olive-shaped asymmetric bidirectional taper threaded coupling pair has the advantages of reasonable design, simple structure, and bifurcated biaxial bearing or sizing straight formed by centering the inner and outer cone coaxial inner and outer diameters.
  • easy to operate, large locking force, large bearing capacity, good anti-loose performance, high transmission efficiency and precision, good mechanical sealing effect, good stability can prevent connection Loose, self-locking and self-positioning.
  • 1 is a schematic view showing the structure of an olive-like (left taper to the right taper) asymmetric bidirectional taper threaded connection of the first embodiment provided by the present invention.
  • FIG. 2 is a schematic view showing the thread structure of a complete unit body of an olive-like (left taper than the right taper) asymmetric bidirectional taper thread external thread and an external thread according to the first embodiment of the present invention.
  • FIG 3 is a schematic view showing the thread structure of the inner body of the olive-like (the left side taper is larger than the right side taper) asymmetric bidirectional taper thread internal thread and the internal thread complete unit body according to the first embodiment of the present invention.
  • FIG. 4 is a schematic view showing the structure of an olive-like (left taper than the right taper) asymmetric bidirectional taper threaded connection of the second embodiment provided by the present invention.
  • Fig. 5 is a schematic view showing the structure of an olive-like (left taper than the right taper) asymmetric bidirectional taper threaded connection of the third embodiment provided by the present invention.
  • FIG. 6 is a schematic view showing the structure of an olive-like (left side taper is larger than the right side taper) asymmetric bidirectional taper threaded connection of the fourth embodiment provided by the present invention.
  • Fig. 7 is a schematic view showing the structure of an olive-like (left taper to the right taper) asymmetric bidirectional taper threaded connection of the fifth embodiment provided by the present invention.
  • FIG. 8 is a schematic view showing the structure of an olive-like (left taper to the right taper) asymmetric bidirectional taper threaded connection of the sixth embodiment provided by the present invention.
  • FIG. 9 is a schematic view showing the thread structure of an olive-like (left taper to the right taper) asymmetric bidirectional taper thread external thread and an external thread complete unit body according to the sixth embodiment of the present invention.
  • FIG. 10 is a schematic view showing the thread structure of the inner body of the olive-like (the left side taper is smaller than the right side taper) asymmetric bidirectional taper thread internal thread and the internal thread complete unit body according to the sixth embodiment of the present invention.
  • Figure 11 is a graphical representation of "the thread of the prior art thread technology is a bevel on a cylindrical or conical surface" as referred to in the background art of the present invention.
  • Fig. 12 is a view showing the "principal thread technique principle - bevel slider model of the bevel principle" involved in the background art of the present invention.
  • Figure 13 is a graphical representation of "thread angles of prior art threading techniques" as referred to in the background art of the present invention.
  • the tapered thread 1 the cylindrical body 2, the nut body 21, the columnar base 3, the screw body 31, the tapered hole 4, the bidirectional tapered hole 41, the bidirectional tapered hole conical surface 42, the tapered first spiral Conical surface 421, first taper angle ⁇ 1, tapered hole second spiral conical surface 422, second taper angle ⁇ 2, inner spiral 5, internal thread 6, bidirectional tapered internal thread groove 61, bidirectional tapered inner Thread plane or arc 62, truncated cone body 7, bidirectional truncated cone body 71, bidirectional truncated cone conical surface 72, truncated cone first spiral conical surface 721, first cone angle ⁇ 1, truncated cone second spiral Conical surface 722, second taper angle ⁇ 2, outer spiral 8, external thread 9, bidirectional tapered external thread groove 91, bidirectional tapered external thread plane or arc 92, olive-like 93, left taper 95, right Side taper 96, leftward distribution 97, rightward distribution 98, threaded coupling pair and/or thread
  • the olive-shaped asymmetric bidirectional taper thread connection pair includes a bidirectional truncated cone 71 which is spirally distributed on the outer surface of the columnar matrix 3 and is spirally distributed in the cylindrical shape.
  • the bidirectional tapered hole 41 of the inner surface of the mother body 2 includes the external thread 9 and the internal thread 6 which are screwed with each other, and the internal thread 6 is distributed in a spiral bidirectional tapered hole 41 and exists in a "non-physical space" form.
  • the external thread 9 is distributed in a spiral bidirectional truncated cone body 71 and exists in the form of a "material solid".
  • the internal thread 6 and the external thread 9 are in the relationship of the containing member and the contained member: the internal thread 6 and the external thread 9 are one
  • the two-way tapered geometry is screwed together and hung together until the interference fit, that is, the bidirectional tapered hole 41 contains a bidirectional truncated cone 71, and the bidirectional containment restricts the tapered bore 4 and the truncated cone 7
  • the disordered degree of freedom between the two, the spiral motion makes the asymmetrical bidirectional taper thread connection pair 10 obtain the necessary degree of freedom, and effectively synthesizes the technical characteristics of the cone pair and the thread pair.
  • the olive-like asymmetric bidirectional taper threaded coupling pair cooperates with the bidirectional tapered bore conical surface 42 in use.
  • the truncated cone body 7 and/or the tapered hole 4 of the bidirectional tapered threaded coupling pair in this embodiment reach a certain taper, that is, the cone forming the conical pair reaches a certain taper angle, and the bidirectional taper threaded coupling pair 10 is self-locking.
  • the taper includes a left taper 95 and a right taper 96, and the left taper 95 corresponds to the left taper angle, that is, the first taper angle ⁇ 1, and the right taper 96 corresponds to the right taper angle.
  • the two-cone angle ⁇ 2 when the asymmetric bi-directional taper thread 1 is that the left taper 95 is greater than the right taper 96, preferably, 0° ⁇ the first taper angle ⁇ 1 ⁇ 53°, preferably, the first taper angle ⁇ 1 is 2° ⁇ 40°, in particular special fields, ie, connection applications where self-locking and/or self-positioning requirements are weak and/or axial bearing capacity is required to be high, preferably 53° ⁇ first
  • the external thread 9 is disposed on the outer surface of the columnar base 3, wherein the columnar body 3 has a screw body 31, and the outer surface of the screw body 31 has a spirally-shaped conical body 7 on the outer surface of the screw body 31.
  • the truncated cone body 7 comprises an asymmetric bidirectional truncated cone body 71, which is a special bidirectional tapered geometry in the form of an olive-like shape 93, which may be solid or Hollow, including cylinders, cones, tubes, etc.
  • the olive-like 93 asymmetric bidirectional truncated cone body 71 is characterized in that it has the same lower bottom surface and the same upper top surface but different cone heights and the taper of the left side taper body is larger than the taper of the right truncated cone body.
  • the lower bottom surfaces of the two truncated cone bodies are symmetrically and oppositely joined to each other and the upper top surface is at both ends of the bidirectional truncated cone body 71 and forms an olive-like 93 asymmetric bidirectional tapered thread 1 respectively including adjacent bidirectional truncated cones
  • the upper top surfaces of the bodies 71 are joined to each other and/or will be respectively engaged with the upper top surfaces of the adjacent bidirectional truncated cone bodies 71.
  • the outer surface of the truncated cone body 7 has an asymmetrical bidirectional truncated cone conical surface 72.
  • the external thread 9 includes a truncated cone first conical surface 721 and a truncated cone second conical surface 722 and an outer spiral 8 which are asymmetrical in a section through the thread axis 02.
  • the bidirectional tapered external thread 9 is a special bidirectional tapered geometry having an olive-like shape 93 which is large in the middle and small in both ends and whose taper of the left frustum is larger than the taper of the right frustum.
  • the conical surface of the left side of the body 71 The angle between the two plain lines of the spiral conical surface 721 is the first taper angle ⁇ 1, and the first spiral conical surface 721 of the truncated cone body forms the left taper 95 corresponding to the first taper angle ⁇ 1 and is distributed in the left direction 97.
  • the right conical surface of the asymmetric bidirectional truncated cone 71 that is, the angle between the two plain lines of the truncated cone second conical surface 722 is the second cone angle ⁇ 2, and the truncated cone second conical surface 722 Forming the right taper 96 corresponding to the second taper angle ⁇ 2 and having a rightward distribution 98, the first taper angle ⁇ 1 is opposite to the taper direction corresponding to the second taper angle ⁇ 2, and the plain line is a conical surface and a pass cone axis a plane intersection of 01, the truncated cone body first spiral conical surface 721 and the truncated cone second spiral conical surface 722 of the bidirectional truncated cone body 71 are formed to have a shape coincident with the central axis of the columnar matrix 3
  • the right-angled sides of the right-angled trapezoidal joints of the two right-angled trapezoids having the same bottom bottom and the same bottom-side but the right-hand side are
  • the central axis of the mother body 3 moves axially at a constant speed and is at right angles
  • the spiral outer side surface formed by the two oblique sides of the combined body has the same shape
  • the right angle trapezoidal combined body refers to the lower bottom side of two right-angled trapezoids having the same lower bottom edge and the same upper bottom edge but different right-angled sides.
  • the special geometry that is symmetrically and oppositely joined and the upper bottom edges are respectively at the ends of the right angle trapezoidal combination.
  • the internal thread 6 is disposed on the inner surface of the cylindrical body 2, wherein the cylindrical body 2 has a nut body 21, and the inner surface of the nut body 21 has a spiral hole 4 which is spirally distributed.
  • the tapered hole 4 includes an asymmetric bidirectional tapered hole 41, and the asymmetric bidirectional tapered hole 41 is a special bidirectional tapered geometry having an olive-like shape 93, and the cylindrical parent body 2 includes Cylindrical bodies and/or non-cylindrical bodies and the like which require internal machining of workpieces and objects on their inner surfaces.
  • the olive-like 93 asymmetric bidirectional tapered hole 41 is characterized in that it has the same lower bottom surface and the upper top surface is the same but the cone height is different and the left tapered hole taper is larger than the right tapered hole taper.
  • the bottom surfaces of the two tapered holes are symmetrically and oppositely joined to each other and the upper top surface is at both ends of the bidirectional tapered hole 41 and the olive-like 93 asymmetric bidirectional tapered thread 1 is formed to include the adjacent bidirectional tapered holes respectively.
  • the upper top surfaces of 41 are joined to each other and/or will respectively engage the upper top surface of an adjacent bi-directional tapered bore 41, said tapered bore 4 including an asymmetric bi-directional tapered bore conical surface 42, said inner
  • the thread 6 comprises a conical bore first helical conical surface 421 and a conical bore second helical conical surface 422 and an inner helix 5, said complete single-section asymmetric bi-directional taper in the section through the thread axis 02
  • the internal thread 6 is a special bidirectional tapered geometry having an olive-like shape 93 which is large in the middle and small in both ends and has a tapered taper on the left side of the taper of the right taper.
  • the tapered surface of the left side of the bi-directional taper hole 41 is The angle formed by the two plain lines of the first spiral conical surface 421 of the tapered hole is the first taper angle ⁇ 1, the first spiral conical surface 421 of the tapered hole forms a left taper 95 corresponding to the first taper angle ⁇ 1 and has a leftward distribution 97, and the right conical surface of the bidirectional tapered hole 41 is a second spiral of the tapered hole
  • the angle formed by the two plain lines of the conical surface 422 is the second taper angle ⁇ 2, and the second spiral conical surface 422 of the tapered hole forms the right taper 96 corresponding to the second taper angle ⁇ 2 and is distributed in the right direction 98.
  • the first taper angle ⁇ 1 is opposite to the taper direction corresponding to the second taper angle ⁇ 2, and the plain line is the intersection of the conical surface and the plane passing through the conical axis 01, and the tapered hole of the bidirectional tapered hole 41 is first.
  • the spiral conical surface 421 and the conical hole second spiral conical surface 422 are formed in a shape with two right-angled trapezoids which are identical to the central axis of the cylindrical parent body 2 and have the same lower bottom side and the upper bottom side but the right side is different.
  • the right-angled side of the right-angled trapezoidal combination of the bottom side symmetry and oppositely joined is a uniform rotation in the circumferential direction of the center of rotation, and the right-angled trapezoidal body simultaneously moves axially along the central axis of the cylindrical body 2 at the same time, and is formed by two oblique sides of the right-angled trapezoidal combination body.
  • the outer side of the spiral has the same shape, the right angle Means a shape conjugate base and the same base on the same base but different cathetus two right angle trapezoidal faces and symmetrically on the base and engaged respectively in the right angle trapezoidal geometry specific binding at both ends thereof.
  • the bidirectional taper thread connecting pair in the embodiment, the joint of the external thread 9 adjacent to the spiral conical surface, and the joint of the internal thread 6 adjacent to the spiral conical surface are connected by sharp angles, and the pointed corner is relatively non-pointed In terms of angles, it refers to a structural form that is not intentionally subjected to non-sharp processing.
  • the bidirectional truncated cone 71 and the bidirectional tapered bore 41 are in the form of an olive-like shape 93, characterized in that the first spiral conical surface 721 of the truncated cone body of the same spiral bidirectional truncated cone body 71 and the truncated cone body second The joint of the spiral conical surface 722, that is, the outer diameter of the external thread 9 is connected by an outer sharp-angled structure and forms an outer spiral 8 which is spirally distributed, and the first spiral of the truncated cone of the bidirectional truncated cone 71 of the same spiral Between the junction of the conical surface 721 and the conical body of the adjacent bidirectional conical body 71, and/or the conical body of the bifurcation of the same spiral, the second conical surface of the conical body The outer diameter of the joint between the joint of the first spiral conical surface 721 of the conical body of the adjacent bidirectional truncated cone body 71, that is, the outer diameter of the outer thread 9 is formed by
  • the olive-like asymmetric bidirectional taper screw connection is connected by a screw, and the bidirectional tapered hole 41 is screwed to the bidirectional truncated cone 71 to be bidirectionally supported.
  • the bidirectional tapered hole 41 is screwed to the bidirectional truncated cone 71 to be bidirectionally supported.
  • the play 101 is advantageous for bearing oil film formation, and the asymmetric bidirectional tapered threaded coupling 10 is equivalent to a pair of sliding bearings.
  • each section of the bidirectional tapered internal thread 6 is bidirectionally contained in a corresponding one-way bidirectional tapered external thread 9, forming a pair of sliding bearings, the number of sliding bearings composed according to the application
  • the working condition adjustment that is, the capacity of the two-way tapered internal thread 6 and the bi-directional tapered external thread 9 for effective engagement and the number of contained thread segments, according to the application condition, the bidirectional outer cone 9 is accommodated by the bidirectional inner cone 6 and the radial and the shaft Positioning in multiple directions, such as direction, angular direction, and circumferential direction, ensures the accuracy, efficiency, and reliability of the transmission connection of the bidirectional tapered threaded coupling pair 10.
  • the technical performance is achieved by the screw connection of the bidirectional tapered hole 41 and the bidirectional truncated cone 71, that is, the truncated cone
  • the first spiral conical surface 721 of the body and the first spiral conical surface 421 of the tapered hole are sized until the interference and/or the second helical conical surface 722 of the truncated cone and the second helical conical surface 422 of the tapered bore are straightened
  • the bearing is carried in one direction and/or the two directions are simultaneously carried respectively, that is, the bidirectional truncated cone body 71 and the bidirectional tapered hole 41 are guided by the spiral under the inner cone and the outer cone outer diameter.
  • the olive-like asymmetric bidirectional taper threaded coupling in the embodiment has the transmission precision, the transmission efficiency, the bearing capacity, the self-locking locking force, the anti-loose ability, the sealing performance, and the repeated use.
  • Technical performance and the first spiral conical surface 721 of the truncated cone body and the left taper 95 formed by the truncated cone body that is, the first taper angle ⁇ 1 and the truncated cone second conical surface 722 and the rightward taper 96 thereof
  • the size of the two cone angle ⁇ 2 is related.
  • the material friction coefficient, processing quality and application conditions of the columnar matrix 3 and the cylindrical matrix 2 also have a certain influence on the cone fit.
  • the right-angled trapezoidal combined body has a distance of axial movement of the right-angled trapezoidal coupling body at the same time, and the distance between the axial direction of the right-angled trapezoidal coupling body is the same as that of the lower bottom edge and the upper bottom edge is the same.
  • the right angle side is at least double the length of the sum of the right angle sides of the two right-angled trapezoids.
  • the structure ensures that the first spiral conical surface 721 of the truncated cone body and the second spiral conical surface 722 of the truncated cone body and the first spiral conical surface 421 of the tapered hole and the second spiral conical surface 422 of the tapered hole have sufficient length
  • the bi-directional truncated cone conical surface 72 cooperates with the bi-directional conical bore conical surface 42 to have sufficient effective contact area and strength and the efficiency required for the helical motion.
  • the right-angled trapezoidal combined body is axially moved by a distance equal to the same as the lower base and the upper base is the same.
  • the length of the sum of the right-angled sides of the two right-angled trapezoids with different right-angled sides is the same.
  • the structure ensures that the first spiral conical surface 721 of the truncated cone body and the second spiral conical surface 722 of the truncated cone body and the first spiral conical surface 421 of the tapered hole and the second spiral conical surface 422 of the tapered hole have sufficient length
  • the bi-directional truncated cone conical surface 72 cooperates with the bi-directional conical bore conical surface 42 with sufficient effective contact area and strength and the efficiency required for the helical motion.
  • the truncated cone first spiral conical surface 721 and the truncated cone second spiral conical surface 722 are continuous spiral faces or discontinuous helicoids.
  • the tapered first spiral conical surface 421 and the tapered second conical conical surface 422 are both continuous spiral surfaces or non-continuous spiral surfaces.
  • one end of the columnar parent body 3 is provided with a head having a size larger than the outer diameter of the columnar parent body 3 and/or one or both ends of the columnar matrix body 3
  • Each of the heads having a small diameter of a taper threaded external thread 9 smaller than the cylindrical body body 3 of the cylindrical body 3 is provided, and the connecting hole is a threaded hole provided in the nut body 21. That is, the columnar parent body 3 is connected to the head as a bolt, and the head and/or the heads at both ends are smaller than the bidirectional tapered external thread 9 and/or the two ends of the thread have a bidirectional tapered external thread 9 at both ends.
  • the stud and the connecting hole are provided in the nut body 21.
  • the olive-shaped asymmetric bidirectional taper threaded coupling pair has the advantages of reasonable design and simple structure, and the conical sizing formed by the inner and outer cones is adjusted to the interference fit to achieve the fastening and Connection function, convenient operation, large locking force, large bearing capacity, good anti-loose performance, high transmission efficiency and precision, good mechanical sealing effect, good stability, can prevent loosening when connecting, self-locking and self-locking GPS.
  • the structure, principle, and implementation steps of the present embodiment are similar to those of the first embodiment.
  • the difference is that the outer diameter of the external thread 9 is the outer spiral structure of the adjacent spiral conical surface joints connected by the grooves 91.
  • the outer spiral structure is a special outer spiral line 8, and the inner diameter of the inner thread 6 is treated by an inner spiral structure connected by a groove 61.
  • the inner spiral structure is a special inner spiral line 5, which can avoid the internal thread 6 and the outer thread. When the thread 9 is screwed, interference occurs, and oil can be stored and stored.
  • the structure, principle and implementation steps of the embodiment are similar to those of the first embodiment.
  • the difference is that the outer diameter of the external thread 9 is treated by an outer spiral structure connected by a plane or an arc 92, and the outer spiral is processed.
  • the structure is a special outer spiral line 8
  • the internal thread 6 has a small diameter, that is, an adjacent spiral conical surface joint is treated by an inner spiral structure connected by a plane or an arc 62, and the inner spiral structure is a special inner spiral line 5, which can be avoided.
  • the structure, the principle and the implementation steps of this embodiment are similar to those of the first embodiment.
  • the difference is that the outer diameter of the external thread 9 is the outer spiral structure of the adjacent spiral conical surface joint connected by the groove 91.
  • the outer diameter of the outer thread 9 is treated by an outer spiral structure connected by a plane or an arc 92.
  • the outer spiral structure is a special outer spiral line 8, and the internal diameter of the internal thread 6 of the thread pair 10 is connected by a sharp angle.
  • the R angle which may be present in the thread pair 10 can be avoided, and the interference between the internal thread 6 and the external thread 9 can be avoided, and the oil can be stored and stored.
  • the structure, principle and implementation steps of the embodiment are similar to those of the first embodiment.
  • the difference is that the large diameter of the internal thread 6 is treated by the inner spiral structure connected by the groove 61, and the internal thread 6 is adjacent to each other.
  • the spiral conical surface joint is treated by an inner spiral structure connected by a plane or an arc 62.
  • the inner spiral structure is a special inner spiral line 5, and the outer diameter 9 of the external thread 9 which constitutes the thread pair 10 is connected by a sharp angle.
  • the R angle which may be present in the thread pair 10 can be avoided, and the interference between the internal thread 6 and the external thread 9 can be avoided, and the oil can be stored and stored.
  • the thread 1 has a left taper 95 that is smaller than the right taper 96, preferably 0° ⁇ a first taper angle ⁇ 1 ⁇ 53°, preferably, the first taper angle ⁇ 1 takes a value of 2° to 40°; preferably, 0 ° ⁇ the second taper angle ⁇ 2 ⁇ 53°, preferably, the second taper angle ⁇ 2 takes a value of 2° to 40°, and the individual special field, preferably, 53° ⁇ the second taper angle ⁇ 2 ⁇ 180°, preferably, The second taper angle ⁇ 2 takes a value of 53° to 90°.
  • taper thread 1 the cylindrical base body 2, the nut body 21, the columnar base body 3, the screw body 31, the tapered hole 4, the bidirectional tapered hole 41, the bidirectional tapered hole conical surface 42, and the taper are used more frequently herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)
  • Earth Drilling (AREA)
  • Prostheses (AREA)

Abstract

一种类橄榄状非对称双向锥形螺纹连接副,包括相互螺纹配合的外螺纹(9)与内螺纹(6),其中内螺纹(6)螺纹体是筒状母体(2)内表面呈螺旋状双向锥形孔(41)并以"非实体空间"形态存在,外螺纹(9)螺纹体是柱状母体(3)外表面呈螺旋状双向圆锥台体(71)并以"材料实体"形态存在,其完整单元体螺纹包括左侧锥度(95)大于和/或小于右侧锥度(96)的呈螺旋状中间大且两端小的类橄榄状(93)双向锥形体,性能主要取决相互配合螺纹体的锥面及锥度大小。内、外螺纹(6、9)通过锥孔包容锥体由双向锥形孔(41)与双向圆锥台体(71)组成一节节圆锥副形成螺纹连接副(10)直至内、外圆锥呈螺旋状圆锥面定径配合或定径过盈实现紧固和连接功能,具有自锁和自定位功能。

Description

类橄榄状非对称双向锥形螺纹连接副 技术领域
本发明属于设备通用技术领域,尤其是涉及一种类橄榄状非对称双向锥形螺纹连接副(以下简称“双向锥形螺纹连接副”)。
背景技术
螺纹的发明,对人类社会进步产生深刻影响。螺纹是最基础工业技术之一,她不是具体产品,是产业关键共性技术,其技术性能必须要有具体产品作为应用载体来体现,各行各业应用广泛。现有螺纹技术,标准化水平高,技术理论成熟,实践应用久远,用之紧固,则是紧固螺纹;用之密封,则为密封螺纹;用之传动,则成传动螺纹。根据国家标准的螺纹术语:“螺纹”是指在圆柱或圆锥表面上,具有相同牙型、沿螺旋线连续凸起的牙体;“牙体”是指相邻牙侧间的材料实体。这也是全球共识的螺纹定义。
[根据细则91更正 28.05.2019] 
现代螺纹始于1841年英国惠氏螺纹。按照现代螺纹技术理论,螺纹自锁基本条件是:当量摩擦角不得小于螺旋升角。这是现代螺纹基于其技术原理——“斜面原理”对螺纹技术的一种认识,成为现代螺纹技术的重要理论依据。最早对斜面原理进行理论解释的是斯蒂文,他研究发现斜面上物体平衡的条件与力合成的平行四边形定律,1586年他提出了著名的斜面定律:放在斜面上的一个物体所受的沿斜面方向的重力与倾角的正弦成正比。所述的斜面,是指与水平面成倾斜的光滑平面,螺旋是“斜面”的变形,螺纹就像包裹在圆柱体外的斜面,斜面越平缓,机械利益越大(见图11)(杨静珊、王绣雅,《螺丝钉的原理探讨》,《高斯算术研究》)。
[根据细则91更正 28.05.2019] 
现代螺纹的“斜面原理”,是基于斜面定律建立起来的斜面滑块模型(见图12),人们认为,在静载荷和温度变化不大条件下,当螺纹升角小于等于当量摩擦角,螺纹副具备自锁条件。螺纹升角(见图13)又称为螺纹导程角,就是在中径圆柱上螺旋线的切线与垂直于螺纹轴线的平面间的夹角,该角度影响螺纹自锁和防松。当量摩擦角就是把不同的摩擦形式最终转化成最普通的斜面滑块形式 时对应的摩擦角。通俗讲,在斜面滑块模型中,当斜面倾斜到一定角度,滑块此时的摩擦力恰好等于重力沿着斜面的分量,此时物体刚好处于受力平衡状态,此时的斜面倾斜角称为当量摩擦角。
美国工程师于上世纪中叶发明了楔形螺纹,其技术原理仍旧遵循“斜面原理”。楔形螺纹的发明,受到“木楔子”启发。具体说,楔形螺纹的结构是在三角形螺纹(俗称普通螺纹)内螺纹(即螺母螺纹)的牙底处有一个与螺纹轴线成25°~30°夹角的楔形斜面,工程实际都取30°楔形斜面。一直以来,人们都是从螺纹牙型角这个技术层面和技术方向去研究和解决螺纹防松脱等问题,楔形螺纹技术也不例外,是斜楔技术的具体运用。
现代螺纹的种类和形式较多,均为牙型螺纹,这是由其技术原理即斜面原理所决定的。具体地,在圆柱表面形成的螺纹称为圆柱螺纹,在圆锥表面形成的螺纹称为圆锥螺纹,在圆柱或圆锥台体等端面表面形成的螺纹称为平面螺纹;在母体外圆表面形成的螺纹称为外螺纹,在母体内圆孔表面形成的螺纹称为内螺纹,在母体端面表面形成的螺纹称为端面螺纹;旋向与螺纹升角方向符合左手定则的螺纹称为左旋螺纹,旋向与螺纹升角方向符合右手定则的螺纹称为右旋螺纹;在母体同一截面内只有一条螺旋线的螺纹称为单线螺纹,有两条螺旋线的螺纹称为双线螺纹,有多条螺旋线的螺纹称为多线螺纹。截面形状为三角形的螺纹称为三角形螺纹,截面形状为梯形的螺纹称为梯形螺纹,截面形状为矩形的螺纹称为矩形螺纹,截面形状为锯齿形的螺纹称为锯齿形螺纹。
但是,现有螺纹存在连接强度低、自定位能力弱、自锁性差、承力值小、稳定性差、兼容性差、重复使用性差、高温低温等问题,典型的是应用现代螺纹技术的螺栓或螺母普遍存在着容易松动缺陷,随着设备频繁振动或震动,引起螺栓与螺母松动甚至脱落,严重的容易发生安全事故。
发明概述
技术问题
问题的解决方案
技术解决方案
任何技术理论,都有理论假设背景,螺纹也不例外。随着科技进步,对连接破 坏已非单纯线性载荷更非静态更非室温环境,存在线性载荷非线性载荷甚至是二者叠加并由此产生更复杂破坏载荷情况,应用工况复杂,基于这样认识,本发明的目的是针对上述问题,提供一种设计合理、结构简单,具有良好连接性能、锁紧性能的类橄榄状非对称双向锥形螺纹连接副。
为达到上述目的,本发明采用了下列技术方案:本类橄榄状非对称双向锥形螺纹连接副,是由非对称双向锥形外螺纹与非对称双向锥形内螺纹组成螺纹连接副使用,是一种特殊的合成了圆锥副与螺旋运动技术特点的螺纹副技术,所述的双向锥形螺纹,是一种合成了双向锥形体与螺旋结构技术特点的螺纹技术,所述的双向锥形体是由两个单锥形体组成,即是由左侧锥度与右侧锥度方向相反且锥度不同的两个单锥形体双向组成,所述的双向锥形体呈螺旋状分布于柱状母体的外表面形成外螺纹和/或上述的双向锥形体呈螺旋状分布于筒状母体的内表面形成内螺纹,无论内螺纹外螺纹,其完整单元体螺纹是一种呈螺旋状且中间大两端小包括左侧锥度大于右侧锥度和/或左侧锥度小于右侧锥度的呈类橄榄状的非对称特殊双向锥形几何体。
本双向锥形螺纹连接副,所述的类橄榄状非对称双向锥形螺纹包括左侧锥度大于右侧锥度和左侧锥度小于右侧锥度两种形式,其定义可以表达为:“在圆柱或圆锥表面上,具有规定左侧锥度和右侧锥度且左侧锥度与右侧锥度的方向相反且锥度不同的非对称双向锥形孔(或非对称双向圆锥台体)、沿着螺旋线连续和/或不连续分布的呈螺旋状中间大两端小的类橄榄状特殊双向锥形几何体。”因制造等方面原因,非对称双向锥形螺纹的螺头、螺尾可能是不完整的双向锥形几何体。与现代螺纹技术不同,完整单元体螺纹和/或不完整单元体螺纹的数量称谓上,双向锥形螺纹不再以“牙数”为单位,而是以“节数”为单位,即不再称几牙螺纹,而称几节螺纹。这种螺纹数量称谓变化,是基于技术内涵变化而发生,相互螺纹配合已由现代螺纹内、外螺纹啮合关系转变为本双向锥形螺纹内、外螺纹抱合关系。
本双向锥形螺纹连接副,包括呈螺旋状分布于柱状母体外表面的双向圆锥台体和呈螺旋状分布于筒状母体内表面的双向锥形孔,即包括相互螺纹配合的外螺纹与内螺纹,内螺纹是筒状母体内表面以呈螺旋状双向锥形孔并以“非实体空间” 形态存在、外螺纹是柱状母体外表面以呈螺旋状双向圆锥台体并以“材料实体”形态存在,所述的非实体空间是指能够容纳上述材料实体的空间环境,内螺纹是包容件,外螺纹是被包容件,螺纹的工作状态是:内螺纹即双向锥形孔与外螺纹即双向圆锥台体是一节一节双向锥形几何体包容旋合套接在一起,内螺纹外螺纹抱合直至一侧双向承载或左侧右侧同时双向承载或直至定径过盈配合,两侧是否同时双向承载与应用领域实际工况有关,即双向锥形孔一节一节包容抱合双向圆锥台体,即内螺纹是一节一节抱合对应外螺纹。
所述的螺纹连接副是由呈螺旋状的外锥面与呈螺旋状的内锥面相互配合构成圆锥副形成螺纹副,所述的双向锥形螺纹外圆锥体的外锥面与内圆锥体的内锥面均为双向圆锥面,当所述的双向锥形螺纹之间组成螺纹连接副,是以内圆锥面与外圆锥面的结合面为支承面,即以圆锥面为支承面,实现连接技术性能,螺纹副自锁性、自定位性、重复使用性和抗疲劳性等能力主要取决于构成本类橄榄状非对称双向锥形螺纹连接副圆锥副的圆锥面及其锥度大小即内、外螺纹的圆锥面及其锥度大小,是一种非牙型螺纹。
与现有螺纹斜面原理所表现的分布于斜面上的单向力以及内、外螺纹是内牙体与外牙体的啮合关系不同,本类橄榄状非对称双向锥形螺纹连接副双向锥形体无论分布于左侧或右侧任何一侧单锥形体通过圆锥轴线截面是由圆锥体两条素线双向组成即呈双向状态,所述的素线是圆锥表面与通过圆锥轴线的平面的交线,本类橄榄状非对称双向锥形螺纹连接副的圆锥原理所表现的是轴心力与反轴心力,二者均是由双向力合成,轴心力与对应的反轴心力对顶,内螺纹与外螺纹是抱合关系,即组成螺纹副是通过内螺纹抱住外螺纹即一节节锥孔(内圆锥体)抱合对应的一节节锥体(外圆锥体)直至抱合定径配合实现自定位或直至定径过盈接触实现自锁,即通过锥形孔与圆锥台体径向抱合在一起实现内圆锥体与外圆锥体自锁紧或自定位进而实现螺纹副的自锁紧或自定位,而非传统螺纹的内螺纹与外螺纹组成螺纹连接副是通过彼此牙体与牙体之间相互抵靠实现螺纹连接性能。
内螺纹与外螺纹的抱合过程达到一定条件会有一种自锁力,所述的自锁力是由内圆锥轴心力与外圆锥反轴心力之间所产生压强生成,即当内圆锥与外圆锥组 成圆锥副,内圆锥体的内圆锥面抱合外圆锥体的外圆锥面,内圆锥面与外圆锥面紧密接触。所述的内圆锥轴心力与外圆锥反轴心力是本发明双向锥形螺纹技术即圆锥副技术所独有的力的概念。
内圆锥体以类似轴套的形态存在,在外来载荷作用下,内圆锥体生成指向或者说压向圆锥轴线的轴心力,所述的轴心力是由一对以圆锥轴线为中心呈镜像分布且分别垂直于圆锥体两条素线的向心力双向合成,即轴心力通过圆锥轴线截面是由以圆锥轴线为中心呈镜像双向分布于圆锥轴线两侧且分别垂直于圆锥体两条素线且指向或者说压向圆锥轴线共同点的两条向心力组成且当上述的圆锥体与螺旋结构合成为螺纹并应用于螺纹副则上述的轴心力通过螺纹轴线截面是由以螺纹轴线为中心呈镜像和/或近似镜像双向分布于螺纹轴线两侧且分别垂直于圆锥体两条素线且指向或者说压向螺纹轴线共同点和/或近似共同点的两条向心力组成,所述的轴心力是以轴向并周向的方式密密麻麻地分布于圆锥轴线和/或螺纹轴线,所述的轴心力对应的有一个轴心力角,组成所述的轴心力的两条向心力的夹角构成上述的轴心力角,所述的轴心力角大小取决于圆锥体的锥度大小即锥角大小。
外圆锥体以类似轴的形态存在,具备较强吸收外来各种载荷能力,外圆锥体生成与内圆锥体每一轴心力对顶的反轴心力,所述的反轴心力是由一对以圆锥轴线为中心呈镜像分布且分别垂直于圆锥体两条素线的反向心力双向合成,即反轴心力通过圆锥轴线截面是由以圆锥轴线为中心呈镜像双向分布于圆锥轴线两侧且分别垂直于圆锥体两条素线且由圆锥轴线共同点指向或者说压向内圆锥面的两条反向心力组成且当上述的圆锥体与螺旋结构合成为螺纹并应用于螺纹副则上述的反轴心力通过螺纹轴线截面是由以螺纹轴线为中心呈镜像和/或近似镜像双向分布于螺纹轴线两侧且分别垂直于圆锥体两条素线且由螺纹轴线共同点和/或近似共同点指向或者说压向内螺纹圆锥面的两条反向心力组成,所述的反轴心力是以轴向并周向的方式密密麻麻地分布于圆锥轴线和/或螺纹轴线,所述的反轴心力对应的有一个反轴心力角,组成所述的反轴心力的两条反向心力的夹角构成上述的反轴心力角,所述的反轴心力角大小取决于圆锥体的锥度大小即锥角大小。
轴心力与反轴心力在圆锥副的内外圆锥有效接触时开始生成,即圆锥副的内圆锥体与外圆锥体的有效接触过程始终存在一对对应且相对顶的轴心力与反轴心力,所述的轴心力与反轴心力均是以圆锥轴线和/或螺纹轴线为中心且呈镜像双向分布的双向力而非单向力,所述的圆锥轴线与螺纹轴线是重合轴线即是同一轴线和/或近似同一轴线,反轴心力与轴心力是反向共线且当上述的圆锥体与螺旋结构合成为螺纹并组成螺纹副是反向共线和/或近似反向共线,通过内圆锥与外圆锥的抱合直至过盈则轴心力与反轴心力由此在内圆锥面与外圆锥面的接触面生成压强并密密麻麻地轴向并周向均匀分布在内外圆锥表面的接触面,当内圆锥与外圆锥的抱合运动一直进行直至圆锥副达到过盈配合所生成压强将内圆锥与外圆锥结合在一起,即上述的压强已能做到内圆锥体抱合外圆锥体形成类似整体构造体并在其促成的外力消失后并不会因为上述的类似整体构造体体位的方向任意变化而在重力作用下导致内外圆锥体相互脱离,圆锥副产生自锁紧即螺纹副产生自锁紧,这种自锁紧性对于除了重力之外的可能导致内外圆锥体彼此相互脱离的其他外来载荷也有一定限度的抵抗作用,圆锥副还具有内圆锥与外圆锥相互配合的自定位性,但并非任意轴心力角和/或反轴心力角都能让圆锥副产生自锁紧和自定位。
当轴心力角和/或反轴心力角小于180°且大于127°,圆锥副具备自锁性,轴心力角和/或反轴心力角无限接近于180°时,圆锥副的自锁性最佳,其轴向承载能力最弱,轴心力角和/或反轴心力角等于和/或小于127°且大于0°,则圆锥副处于自锁性弱和/或不具自锁性区间,轴心力角和/或反轴心力角趋向于向无限接近于0°方向变化,则圆锥副的自锁性呈衰减趋势方向变化直至完全不具自锁紧能力,轴向承载能力呈增强趋势方向变化直至轴向承载能力最强。
当轴心力角和/或反轴心力角小于180°且大于127°,圆锥副处于强自定位状态,容易达到内外圆锥体强自定位,轴心力角和/或反轴心力角无限接近于180°时,圆锥副的内外圆锥体自定位能力最强,轴心力角和/或反轴心力角等于和/或小于127°且大于0°,圆锥副处于弱自定位状态,轴心力角和/或反轴心力角趋向于向无限接近于0°方向变化,则圆锥副的内外圆锥体相互自定位能力呈衰减趋势方向变化直至接近完全不具自定位能力。
本双向锥形螺纹连接副,较之申请人此前发明的单锥形体的单向锥形螺纹只能圆锥面单侧承载的不可逆性单侧双向包容的包容与被包容关系,双锥形体的双向锥形螺纹的可逆性左右两侧双向包容,可以做到圆锥面左侧承载和/或圆锥面右侧承载和/或左侧圆锥面右侧圆锥面分别承载和/或左侧圆锥面右侧圆锥面双向同时承载,更限制锥形孔与圆锥台体之间的无序自由度,螺旋运动又让非对称双向锥形螺纹连接副获取了必须的有序自由度,有效合成了圆锥副与螺纹副技术特点形成全新螺纹技术。
本双向锥形螺纹连接副在使用时双向锥形螺纹外螺纹的双向圆锥台体圆锥面与双向锥形螺纹内螺纹的双向锥形孔圆锥面相互配合。
组成本类橄榄状非对称双向锥形螺纹连接副的圆锥副的双向锥形体即圆锥台体和/或锥形孔并非任意锥度或者说任意锥角均可实现螺纹连接副的自锁紧或自定位,上述的内、外圆锥体必须达到一定锥度或者说一定锥角,非对称双向锥形螺纹连接副才具备自锁性和自定位性,所述的锥度包括上述内、外螺纹体的左侧锥度和右侧锥度,上述的左侧锥度对应左侧锥角即第一锥角α1、右侧锥度对应右侧锥角即第二锥角α2,上述的左侧锥度大于右侧锥度时,优选地,0°<第一锥角α1<53°,优选地,第一锥角α1取值为2°~40°,个别特殊领域,优选地,所述的53°≤第一锥角α1<180°,优选地,第一锥角α1取值为53°~90°;优选地,0°<第二锥角α2<53°,优选地,第二锥角α2取值为2°~40°。
上述的左侧锥度小于右侧锥度时,优选地,0°<第一锥角α1<53°,优选地,第一锥角α1取值为2°~40°;优选地,0°<第二锥角α2<53°,优选地,第二锥角α1取值为2°~40°,个别特殊领域,优选地,53°≤第二锥角α2<180°,优选地,第二锥角α2取值为53°~90°。
上述的个别特殊领域,是指自锁性要求低甚至不需要自锁性和/或自定位性要求弱和/或轴向承载力要求高和/或必须设置防抱死措施的传动连接等等螺纹连接应用领域。
本双向锥形螺纹连接副,所述的外螺纹设置在柱状母体外表面,其特征是,所述的柱状母体外表面上有呈螺旋状分布的圆锥台体,包括非对称双向圆锥台体,所述的柱状母体可以是实心或空心,包括圆柱体和/或非圆柱体等需要在其外 表面加工螺纹的工件和物体,所述的外表面包括圆柱表面和圆锥表面等非圆柱面等外表面几何形状。
本双向锥形螺纹连接副,所述的非对称双向圆锥台体即外螺纹,其特征是,是由具有下底面相同且上顶面相同但锥高不同的两个圆锥台体的下底面对称并相向相互接合呈螺旋状而成螺纹且上顶面处于双向圆锥台体的两端且形成双向锥形螺纹时包括分别与相邻双向圆锥台体的上顶面相互接合和/或或将分别与相邻双向圆锥台体的上顶面相互接合呈螺旋状而成螺纹,所述的外螺纹包括圆锥台体第一螺旋状圆锥面和圆锥台体第二螺旋状圆锥面和外螺旋线,形成非对称双向锥形外螺纹,在通过螺纹轴线的截面内,所述的完整单节非对称双向锥形外螺纹是中间大且两端小的呈类橄榄状的特殊双向锥形几何体,所述的双向圆锥台体包括双向圆锥台体圆锥面,其左侧圆锥面即圆锥台体第一螺旋状圆锥面的两条素线间的夹角为第一锥角α1,圆锥台体第一螺旋状圆锥面形成左侧锥度且呈左向分布,其右侧圆锥面即圆锥台体第二螺旋状圆锥面的两条素线间的夹角为第二锥角α2,圆锥台体第二螺旋状圆锥面形成右侧锥度且呈右向分布,所述的第一锥角α1与第二锥角α2所对应锥度方向相反,所述的素线是圆锥表面与通过圆锥轴线的平面的交线,所述的双向圆锥台体的圆锥台体第一螺旋状圆锥面和圆锥台体第二螺旋状圆锥面形成的形状与以重合于柱状母体中轴线具有下底边相同且上底边相同但直角边不同的两个直角梯形的下底边对称并相向接合的直角梯形结合体的直角边为回转中心周向匀速回转且该直角梯形结合体同时沿柱状母体中轴线匀速轴向移动而由直角梯形结合体两条斜边形成的回旋体的螺旋外侧面形状相同,所述的直角梯形结合体是指具有下底边相同且上底边相同但直角边不同的两个直角梯形的下底边对称并相向接合且上底边分别处于直角梯形结合体两端的特殊几何体。
本双向锥形螺纹连接副,所述的内螺纹设置在筒状母体内表面,其特征是,所述的筒状母体内表面上有呈螺旋状分布的锥形孔,所述的锥形孔包括非对称双向锥形孔,所述的筒状母体包括圆筒体和/或非圆筒体等需要在其内表面加工内螺纹的工件和物体,所述的内表面包括圆柱表面和圆锥表面等非圆柱表面等内表面几何形状。
本双向锥形螺纹连接副,所述的非对称双向锥形孔即内螺纹,其特征是,是由具有下底面相同且上顶面相同但锥高不同的两个锥形孔的下底面对称并相向相互接合呈螺旋状而成螺纹且上顶面处于双向锥形孔的两端且形成双向锥形螺纹时包括分别与相邻双向锥形孔的上顶面相互接合和/或或将分别与相邻双向锥形孔的上顶面相互接合呈螺旋状而成螺纹,所述的内螺纹包括锥形孔第一螺旋状圆锥面和锥形孔第二螺旋状圆锥面和内螺旋线,形成非对称双向锥形内螺纹,在通过螺纹轴线的截面内,所述的完整单节非对称双向锥形内螺纹是中间大且两端小的呈类橄榄状的特殊双向锥形几何体,所述的双向锥形孔包括双向锥形孔圆锥面,其左侧圆锥面即锥形孔第一螺旋状圆锥面的两条素线的夹角为第一锥角α1,锥形孔第一螺旋状圆锥面形成左侧锥度且呈左向分布,其右侧圆锥面即锥形孔第二螺旋状圆锥面的两条素线的夹角为第二锥角α2,锥形孔第二螺旋状圆锥面形成右侧锥度且呈右向分布,所述的第一锥角α1与第二锥角α2所对应锥度方向相反,所述的素线是圆锥表面与通过圆锥轴线的平面的交线,所述的双向锥形孔的锥形孔第一螺旋状圆锥面和锥形孔第二螺旋状圆锥面形成的形状与以重合于筒状母体中轴线具有下底边相同且上底边相同但直角边不同的两个直角梯形的下底边对称并相向接合的直角梯形结合体的直角边为回转中心周向匀速回转且该直角梯形结合体同时沿筒状母体中轴线匀速轴向移动而由直角梯形结合体两条斜边形成的回旋体的螺旋外侧面形状相同,所述的直角梯形结合体是指具有下底边相同且上底边相同但直角边不同的两个直角梯形的下底边对称并相向接合且上底边分别处于直角梯形结合体两端的特殊几何体。
本双向锥形螺纹连接副,外螺纹的两个相邻螺旋状圆锥面结合处、内螺纹的两个相邻螺旋状圆锥面结合处分别有尖角和/或非尖角等相连形式,所述的尖角是相对非尖角而言,是指没有特意进行非尖角处理的结构形式。
在上述的双向锥形螺纹连接副中,所述的相连形式是尖角时,其特征是,同一螺旋的双向圆锥台体的圆锥台体第一螺旋状圆锥面与圆锥台体第二螺旋状圆锥面的结合处之间即外螺纹大径采用外尖角形状结构相连且形成呈螺旋状分布的外螺旋线,同一螺旋的双向圆锥台体的圆锥台体第一螺旋状圆锥面与相邻的双向圆锥台体的圆锥台体第二螺旋状圆锥面的结合处之间和/或同一螺旋的双向圆 锥台体的圆锥台体第二螺旋状圆锥面与相邻的双向圆锥台体的圆锥台体第一螺旋状圆锥面的结合处之间即外螺纹小径采用内尖角形状结构相连且形成呈螺旋状分布的外螺旋线;同一螺旋的双向锥形孔的锥形孔第一螺旋状圆锥面与锥形孔第二螺旋状圆锥面的结合处之间即内螺纹大径采用内尖角形状相连且形成呈螺旋状分布的内螺旋线,同一螺旋的双向锥形孔的锥形孔第一螺旋状圆锥面与相邻的双向锥形孔的锥形孔第二螺旋状圆锥面的结合处之间和/或同一螺旋的双向锥形孔的锥形孔第二螺旋状圆锥面与相邻的双向锥形孔的锥形孔第一螺旋状圆锥面的结合处之间即内螺纹小径采用外尖角形状结构相连且形成呈螺旋状分布的内螺旋线,螺纹结构更紧凑,强度更高,承力值大,具备良好机械连接、锁紧、密封性能,锥形螺纹加工物理空间更宽敞。
在上述的双向锥形螺纹连接副中,所述的相连形式是非尖角时,其特征是,同一螺旋的双向圆锥台体的圆锥台体第一螺旋状圆锥面与圆锥台体第二螺旋状圆锥面的结合处之间即外螺纹大径采用非外尖角相连且形成呈螺旋状分布的或平顶或圆弧的外螺旋构造,同一螺旋的双向圆锥台体的圆锥台体第一螺旋状圆锥面与相邻的双向圆锥台体的圆锥台体第二螺旋状圆锥面的结合处之间和/或同一螺旋的双向圆锥台体的圆锥台体第二螺旋状圆锥面与相邻的双向圆锥台体的圆锥台体第一螺旋状圆锥面的结合处之间即外螺纹小径采用非内尖角相连且形成呈螺旋状分布的或凹槽或圆弧的外螺旋构造;同一螺旋的双向锥形孔的锥形孔第一螺旋状圆锥面与锥形孔第二螺旋状圆锥面的结合处之间即内螺纹大径采用非内尖角相连且形成呈螺旋状分布的或凹槽或圆弧的内螺旋构造,同一螺旋的双向锥形孔的锥形孔第一螺旋状圆锥面与相邻的双向锥形孔的锥形孔第二螺旋状圆锥面的结合处之间和/或同一螺旋的双向锥形孔的锥形孔第二螺旋状圆锥面与相邻的双向锥形孔的锥形孔第一螺旋状圆锥面的结合处之间即内螺纹小径采用非外尖角相连且形成呈螺旋状分布的或平顶或圆弧的内螺旋构造,所述非外尖角是指其剖面是或平面或圆弧等几何形状,所述的非内尖角是指其剖面是或凹槽或圆弧等几何形状,可避免内螺纹与外螺纹旋合时产生干涉,可储油储污,实际应用视情况,可以是外螺纹小径、内螺纹大径采取凹槽或圆弧构造处理,而外螺纹大径、内螺纹小径采取尖角构造处理和/或外螺纹大径、内螺纹小径 采取平面或圆弧构造处理,而外螺纹小径、内螺纹大径采取尖角构造处理和/或外螺纹小径、内螺纹大径采取凹槽或圆弧构造处理,而外螺纹大径、内螺纹小径采取平面或圆弧构造处理等等。
本双向锥形螺纹连接副传动连接时,通过双向锥形孔与双向圆锥台体的旋合连接,双向承载,双向圆锥台体与双向锥形孔之间必须要有游隙,内螺纹与外螺纹之间若有油类等介质润滑,将容易形成承载油膜,游隙有利于承载油膜形成,本双向锥形螺纹连接副应用于传动连接相当于一组由一副和/或数副滑动轴承组成的滑动轴承副,即每一节双向锥形内螺纹双向包容相对应一节双向锥形外螺纹,构成一副滑动轴承,组成的滑动轴承数量根据应用工况调整,即双向锥形内螺纹与双向锥形外螺纹有效双向接合即有效双向接触抱合的包容与被包容螺纹节数,根据应用工况设计,通过双向锥形孔双向包容双向圆锥台体且径向、轴向、角向、周向等多方向定位,优选地,通过双向锥形孔包容双向圆锥台体且以径向、周向的主定位辅之于轴向、角向的辅助定位进而形成内、外圆锥体的多方向定位直至双向锥形孔圆锥面与双向圆锥台体圆锥面抱合实现自定位或直至定径过盈接触产生自锁,构成一种特殊的圆锥副与螺纹副的合成技术,确保锥形螺纹技术尤其是非对称双向锥形螺纹连接副的传动连接精度、效率和可靠性。
本双向锥形螺纹连接副紧固连接、密封连接时,其技术性能是通过双向锥形孔与双向圆锥台体的旋合连接实现的,即圆锥台体第一螺旋状圆锥面与锥形孔第一螺旋状圆锥面定径直至过盈和/或圆锥台体第二螺旋状圆锥面与锥形孔第二螺旋状圆锥面定径直至过盈实现的,根据应用工况,达到一个方向承载和/或两个方向同时分别承载,即双向圆锥台体与双向锥形孔在螺旋线的引导下内圆锥与外圆锥内外径定心直至锥形孔第一螺旋状圆锥面与圆锥台体第一螺旋状圆锥面抱合达到一个方向承载或两个方向同时承载定径配合或直至定径过盈接触和/或锥形孔第二螺旋状圆锥面与圆锥台体第二螺旋状圆锥面抱合达到一个方向承载或两个方向同时承载定径配合或直至定径过盈接触,通过双向内圆锥包容双向外圆锥且径向、轴向、角向、周向等多方向定位,优选地,通过双向锥形孔包容双向圆锥台体且以径向、周向的主定位辅之于轴向、角向的辅助定位进而形 成内、外圆锥体的多方向定位直至双向锥形孔圆锥面与双向圆锥台体圆锥面抱合实现自定位或直至定径过盈接触产生自锁,构成一种特殊的圆锥副与螺纹副的合成技术,从而实现机械机构连接、锁紧、防松、承载、疲劳和密封等技术性能。
因此,本类橄榄状非对称双向锥形螺纹连接副传动精度效率高低、承力能力大小、自锁之锁紧力大小、防松能力大小、密封性能好坏等技术性能与圆锥台体第一螺旋状圆锥面及其形成的左侧锥度即第一锥角α1和圆锥台体第二螺旋状圆锥面及其形成的右侧锥度即第二锥角α2和锥形孔第一螺旋状圆锥面及其形成的左侧锥度即第一锥角α1和锥形孔第二螺旋状圆锥面及其形成的右侧锥度即第二锥角α2的大小有关,柱状母体和筒状母体的材料材质摩擦系数、加工质量、应用工况对圆锥配合也有一定影响。
在上述的类橄榄状非对称双向锥形螺纹连接副中,所述的直角梯形结合体匀速回转一周时所述的直角梯形结合体轴向移动的距离为具有下底边相同且上底边相同但直角边不同的两个直角梯形的直角边之和的长度的至少一倍。该结构保证了圆锥台体第一螺旋状圆锥面和圆锥台体第二螺旋状圆锥面以及锥形孔第一螺旋状圆锥面和锥形孔第二螺旋状圆锥面具有足够长度,从而保证双向圆锥台体圆锥面与双向锥形孔圆锥面配合时具有足够有效接触面积和强度以及螺旋运动所需要的效率。
在上述的类橄榄状非对称双向锥形螺纹连接副中,所述的直角梯形结合体匀速回转一周时所述的直角梯形结合体轴向移动的距离等于具有下底边相同且上底边相同但直角边不同的两个直角梯形的直角边之和的长度。该结构保证了圆锥台体第一螺旋状圆锥面和圆锥台体第二螺旋状圆锥面以及锥形孔第一螺旋状圆锥面和锥形孔第二螺旋状圆锥面具有足够长度,从而保证双向圆锥台体圆锥面与双向锥形孔圆锥面配合时具有足够有效接触面积和强度以及螺旋运动所需要的效率。
在上述的类橄榄状非对称双向锥形螺纹连接副中,所述的圆锥台体第一螺旋状圆锥面和圆锥台体第二螺旋状圆锥面均为连续螺旋面或非连续螺旋面;所述的锥形孔第一螺旋状圆锥面和锥形孔第二螺旋状圆锥面均为连续螺旋面或非连续 螺旋面。优选地,这里的圆锥台体第一螺旋状圆锥面和圆锥台体第二螺旋状圆锥面以及锥形孔第一螺旋状圆锥面和锥形孔第二螺旋状圆锥面均为连续螺旋面。
在上述的类橄榄状非对称双向锥形螺纹连接副中,所述筒状母体连接孔旋入所述的柱状母体的旋入端时,有旋入方向要求,即筒状母体连接孔不能反方向旋入,通过所述的内螺纹第一螺旋状圆锥面与外螺纹第一螺旋状圆锥面接触和/或过盈配合和/或所述的内螺纹第二螺旋状圆锥面与外螺纹第二螺旋状圆锥面接触和/或过盈配合实现螺纹连接功能。
在上述的类橄榄状非对称双向锥形螺纹连接副中,所述的柱状母体的一端设有尺寸大于柱状母体外径的头部和/或所述的柱状母体的一端和/或两端都设有小于柱状母体螺杆体的双向锥形外螺纹小径的头部,所述的连接孔为设于螺母上的螺纹孔。即这里的柱状母体与头部连接为螺栓,没有头部和/或两端头部小于双向锥形外螺纹小径的和/或中间没有螺纹两端各有双向锥形外螺纹的为螺柱,连接孔设置在螺母内。
与现有的技术相比,本类橄榄状非对称双向锥形螺纹连接副的优点在于:设计合理,结构简单,通过内、外圆锥同轴内外径定心形成的圆锥副双向承载或定径直至过盈配合来实现紧固和连接功能,操作方便,锁紧力大,承力值大,防松性能良好,传动效率和精度高,机械密封效果好,稳定性好,能防止连接时出现松脱现象,具有自锁和自定位功能。
发明的有益效果
对附图的简要说明
附图说明
图1是本发明提供的实施例一的类橄榄状(左侧锥度大于右侧锥度)非对称双向锥形螺纹连接副结构示意图。
图2是本发明提供的实施例一的类橄榄状(左侧锥度大于右侧锥度)非对称双向锥形螺纹外螺纹及外螺纹完整单元体螺纹结构示意图。
图3是本发明提供的实施例一的类橄榄状(左侧锥度大于右侧锥度)非对称双向锥形螺纹内螺纹及内螺纹完整单元体螺纹结构示意图。
图4是本发明提供的实施例二的类橄榄状(左侧锥度大于右侧锥度)非对称双向锥形螺纹连接副结构示意图。
图5是本发明提供的实施例三的类橄榄状(左侧锥度大于右侧锥度)非对称双向锥形螺纹连接副结构示意图。
图6是本发明提供的实施例四的类橄榄状(左侧锥度大于右侧锥度)非对称双向锥形螺纹连接副结构示意图。
图7是本发明提供的实施例五的类橄榄状(左侧锥度大于右侧锥度)非对称双向锥形螺纹连接副结构示意图。
图8是本发明提供的实施例六的类橄榄状(左侧锥度小于右侧锥度)非对称双向锥形螺纹连接副结构示意图。
图9是本发明提供的实施例六的类橄榄状(左侧锥度小于右侧锥度)非对称双向锥形螺纹外螺纹及外螺纹完整单元体螺纹结构示意图。
图10是本发明提供的实施例六的类橄榄状(左侧锥度小于右侧锥度)非对称双向锥形螺纹内螺纹及内螺纹完整单元体螺纹结构示意图。
[根据细则91更正 28.05.2019] 
图11是本发明背景技术中所涉及的“现有螺纹技术的螺纹是圆柱或圆锥表面上的斜面”的图示。
[根据细则91更正 28.05.2019] 
图12是本发明背景技术中所涉及的“现有螺纹技术原理——斜面原理的斜面滑块模型”的图示。
[根据细则91更正 28.05.2019] 
图13是本发明背景技术中所涉及的“现有螺纹技术的螺纹升角”的图示。
图中,锥形螺纹1、筒状母体2、螺母体21、柱状母体3、螺杆体31、锥形孔4、双向锥形孔41、双向锥形孔圆锥面42、锥形孔第一螺旋状圆锥面421、第一锥角α1、锥形孔第二螺旋状圆锥面422、第二锥角α2、内螺旋线5、内螺纹6、双向锥形内螺纹凹槽61、双向锥形内螺纹平面或圆弧62、圆锥台体7、双向圆锥台体71、双向圆锥台体圆锥面72、圆锥台体第一螺旋状圆锥面721、第一锥角α1、圆锥台体第二螺旋状圆锥面722、第二锥角α2、外螺旋线8、外螺纹9、双向锥形外螺纹凹槽91、双向锥形外螺纹平面或圆弧92、类橄榄状93、左侧锥度95、右侧锥度96、左向分布97、右向分布98、螺纹连接副和/或螺纹副10、游隙101、圆锥轴线01、螺纹轴线02、斜面体上的滑块A、斜面体B、重力G、重力沿着斜面分量G 1、摩擦力F、螺纹升角
Figure PCTCN2019081405-appb-000001
当量摩擦角P、传统外螺纹大径d、传统外螺纹小径d1、传统外螺纹中径d2。
发明实施例
具体实施方式
下面结合附图和具体实施方式对本发明做进一步详细的说明。
实施例一
如图1、图2、图3所示,本类橄榄状非对称双向锥形螺纹连接副,包括呈螺旋状分布于柱状母体3外表面的双向圆锥台体71和呈螺旋状分布于筒状母体2内表面的双向锥形孔41,即包括相互螺纹配合的外螺纹9与内螺纹6,内螺纹6分布的是呈螺旋状的双向锥形孔41并以“非实体空间”形态存在、外螺纹9分布的是呈螺旋状的双向圆锥台体71并以“材料实体”形态存在,内螺纹6与外螺纹9是包容件与被包容件的关系:内螺纹6与外螺纹9是一节一节双向锥形几何体旋合套接在一起,抱合直至过盈配合,即双向锥形孔41一节一节包容双向圆锥台体71,双向包容限制锥形孔4与圆锥台体7之间的无序自由度,螺旋运动又让非对称双向锥形螺纹连接副10获取了必须的有序自由度,有效合成了圆锥副与螺纹副技术特点。
本实施例中的类橄榄状非对称双向锥形螺纹连接副在使用时双向圆锥台体圆锥面72与双向锥形孔圆锥面42相互配合。
本实施例中的双向锥形螺纹连接副的圆锥台体7和/或锥形孔4达到一定锥度,即组成圆锥副的圆锥体达到一定锥角,双向锥形螺纹连接副10才具备自锁性和自定位性,所述的锥度包括左侧锥度95和右侧锥度96,上述的左侧锥度95对应左侧锥角即第一锥角α1、右侧锥度96对应右侧锥角即第二锥角α2,当非对称双向锥形螺纹1是左侧锥度95大于右侧锥度96,优选地,0°<第一锥角α1<53°,优选地,第一锥角α1取值为2°~40°,个别特殊领域,即或不需要自锁性和/或自定位性要求弱和/或轴向承载力要求高的连接应用领域,优选地,所述的53°≤第一锥角α1<180°,优选地,第一锥角α1取值为53°~90°;优选地,0°<第二锥角α2<53°,优选地,第二锥角α2取值为2°~40°。
所述的外螺纹9设置在柱状母体3外表面,其特征是,所述的柱状母体3有螺杆 体31,所述的螺杆体31外表面上有呈螺旋状分布的圆锥台体7,所述的圆锥台体7包括非对称双向圆锥台体71,所述的非对称双向圆锥台体71是一种呈类橄榄状93的特殊双向锥形几何体,所述的柱状母体3可以是实心或空心的,包括圆柱体、圆锥体、管体等。
所述的呈类橄榄状93非对称双向圆锥台体71,其特征是,是由具有下底面相同且上顶面相同但锥高不同且左侧圆锥台体锥度大于右侧圆锥台体锥度的两个圆锥台体的下底面对称并相向相互接合而成且上顶面处于双向圆锥台体71的两端且形成类橄榄状93非对称双向锥形螺纹1时包括分别与相邻双向圆锥台体71的上顶面相互接合和/或或将分别与相邻双向圆锥台体71的上顶面相互接合,所述的圆锥台体7外表面有非对称双向圆锥台体圆锥面72,所述的外螺纹9包括圆锥台体第一螺旋状圆锥面721和圆锥台体第二螺旋状圆锥面722和外螺旋线8,在通过螺纹轴线02的截面内,所述的完整单节非对称双向锥形外螺纹9是中间大且两端小且左侧圆锥台体的锥度大于右侧圆锥台体的锥度的呈类橄榄状93的特殊双向锥形几何体,所述的非对称双向圆锥台体71的左侧圆锥面即圆锥台体第一螺旋状圆锥面721两条素线间的夹角为第一锥角α1,圆锥台体第一螺旋状圆锥面721形成左侧锥度95对应第一锥角α1且呈左向分布97,所述的非对称双向圆锥台体71的右侧圆锥面即圆锥台体第二螺旋状圆锥面722两条素线间的夹角为第二锥角α2,圆锥台体第二螺旋状圆锥面722形成右侧锥度96对应第二锥角α2且呈右向分布98,所述的第一锥角α1与第二锥角α2所对应锥度方向相反,所述的素线是圆锥表面与通过圆锥轴线01的平面的交线,所述的双向圆锥台体71的圆锥台体第一螺旋状圆锥面721和圆锥台体第二螺旋状圆锥面722形成的形状与以重合于柱状母体3中轴线具有下底边相同且上底边相同但直角边不同的两个直角梯形的下底边对称并相向接合的直角梯形结合体的直角边为回转中心周向匀速回转且该直角梯形结合体同时沿柱状母体3中轴线匀速轴向移动而由直角梯形结合体两条斜边形成的回旋体的螺旋外侧面形状相同,所述的直角梯形结合体是指具有下底边相同且上底边相同但直角边不同的两个直角梯形的下底边对称并相向接合且上底边分别处于直角梯形结合体两端的特殊几何体。
所述的内螺纹6设置在筒状母体2内表面,其特征是,所述的筒状母体2有螺母 体21,所述的螺母体21内表面上有呈螺旋状分布的锥形孔4,所述的锥形孔4包括非对称双向锥形孔41,所述的非对称双向锥形孔41是一种呈类橄榄状93的特殊双向锥形几何体,所述的筒状母体2包括圆筒体和/或非圆筒体等需要在其内表面加工内螺纹的工件和物体。
所述的呈类橄榄状93非对称双向锥形孔41,其特征是,是由具有下底面相同且上顶面相同但锥高不同且左侧锥形孔锥度大于右侧锥形孔锥度的两个锥形孔下底面对称并相向相互接合而成且上顶面处于双向锥形孔41的两端且形成类橄榄状93非对称双向锥形螺纹1时包括分别与相邻双向锥形孔41的上顶面相互接合和/或或将分别与相邻双向锥形孔41的上顶面相互接合,所述的锥形孔4包括非对称双向锥形孔圆锥面42,所述的内螺纹6包括锥形孔第一螺旋状圆锥面421和锥形孔第二螺旋状圆锥面422和内螺旋线5,在通过螺纹轴线02的截面内,所述的完整单节非对称双向锥形内螺纹6是中间大且两端小且左侧锥形孔锥度大于右侧锥形孔锥度的呈类橄榄状93的特殊双向锥形几何体,所述的双向锥形孔41左侧圆锥面即锥形孔第一螺旋状圆锥面421的两条素线形成的夹角为第一锥角α1,锥形孔第一螺旋状圆锥面421形成左侧锥度95对应第一锥角α1且呈左向分布97,所述的双向锥形孔41右侧圆锥面即锥形孔第二螺旋状圆锥面422的两条素线形成的夹角为第二锥角α2,锥形孔第二螺旋状圆锥面422形成右侧锥度96对应第二锥角α2且呈右向分布98,所述的第一锥角α1与第二锥角α2所对应锥度方向相反,所述的素线是圆锥表面与通过圆锥轴线01的平面的交线,所述的双向锥形孔41的锥形孔第一螺旋状圆锥面421和锥形孔第二螺旋状圆锥面422形成的形状与以重合于筒状母体2中轴线具有下底边相同且上底边相同但直角边不同的两个直角梯形的下底边对称并相向接合的直角梯形结合体的直角边为回转中心周向匀速回转且该直角梯形结合体同时沿筒状母体2中轴线匀速轴向移动而由直角梯形结合体两条斜边形成的回旋体的螺旋外侧面形状相同,所述的直角梯形结合体是指具有下底边相同且上底边相同但直角边不同的两个直角梯形的下底边对称并相向接合且上底边分别处于直角梯形结合体两端的特殊几何体。
本实施例中的双向锥形螺纹连接副,外螺纹9相邻螺旋状圆锥面结合处、内螺纹6相邻螺旋状圆锥面结合处采用尖角相连形式,所述的尖角是相对非尖角而言 ,是指没有特意进行非尖角处理的结构形式。
所述的呈类橄榄状93的双向圆锥台体71和双向锥形孔41,其特征是,同一螺旋的双向圆锥台体71的圆锥台体第一螺旋状圆锥面721与圆锥台体第二螺旋状圆锥面722的结合处之间即外螺纹9大径采用外尖角形状结构相连且形成呈螺旋状分布的外螺旋线8,同一螺旋的双向圆锥台体71的圆锥台体第一螺旋状圆锥面721与相邻的双向圆锥台体71的圆锥台体第二螺旋状圆锥面722的结合处之间和/或同一螺旋的双向圆锥台体71的圆锥台体第二螺旋状圆锥面722与相邻的双向圆锥台体71的圆锥台体第一螺旋状圆锥面721的结合处之间即外螺纹9小径采用内尖角形状结构相连且形成呈螺旋状分布的外螺旋线8;同一螺旋的双向锥形孔41的锥形孔第一螺旋状圆锥面421与锥形孔第二螺旋状圆锥面422的结合处之间即内螺纹6大径采用内尖角形状相连且形成呈螺旋状分布的内螺旋线5,同一螺旋的双向锥形孔41的锥形孔第一螺旋状圆锥面421与相邻的双向锥形孔41的锥形孔第二螺旋状圆锥面422的结合处之间和/或同一螺旋的双向锥形孔41的锥形孔第二螺旋状圆锥面422与相邻的双向锥形孔41的锥形孔第一螺旋状圆锥面421的结合处之间即内螺纹6小径采用外尖角形状结构相连且形成呈螺旋状分布的内螺旋线5,锥形螺纹1结构更紧凑,强度更高,承力值大,具备良好机械连接、锁紧、密封性能,加工物理空间更宽敞。
本实施例中的类橄榄状非对称双向锥形螺纹连接副传动连接时,通过双向锥形孔41与双向圆锥台体71的旋合连接,双向承载,当外螺纹9与内螺纹6组成螺纹副10,双向圆锥台体71与双向锥形孔41之间必须要有游隙101,游隙101有利于承载油膜形成,非对称双向锥形螺纹连接副10相当于一组由一副滑动轴承和/或几副滑动轴承组成的滑动轴承副,即每一节双向锥形内螺纹6双向包容相对应一节的双向锥形外螺纹9,构成一副滑动轴承,组成的滑动轴承数量根据应用工况调整,即双向锥形内螺纹6与双向锥形外螺纹9有效接合的包容与被包容螺纹节数,根据应用工况设计,通过双向内圆锥6包容双向外圆锥9且径向、轴向、角向、周向等多方向定位,确保双向锥形螺纹连接副10的传动连接的精度、效率和可靠性。
本实施例中的类橄榄状非对称双向锥形螺纹连接副紧固连接、密封连接时,其 技术性能是通过双向锥形孔41与双向圆锥台体71的旋合连接实现的,即圆锥台体第一螺旋状圆锥面721与锥形孔第一螺旋状圆锥面421定径直至过盈和/或圆锥台体第二螺旋状圆锥面722与锥形孔第二螺旋状圆锥面422定径直至过盈实现的,根据应用工况,达到一个方向承载和/或两个方向同时分别承载,即双向圆锥台体71与双向锥形孔41在螺旋线的引导下内圆锥与外圆锥内外径定心直至锥形孔第一螺旋状圆锥面421与圆锥台体第一螺旋状圆锥面721抱合直至过盈接触和/或锥形孔第二螺旋状圆锥面422与圆锥台体第二螺旋状圆锥面722抱合直至过盈接触,从而实现机械机构连接、锁紧、防松、承载、疲劳和密封等技术性能。
因此,本实施例中的类橄榄状非对称双向锥形螺纹连接副传动精度、传动效率高低、承力能力大小、自锁之锁紧力大小、防松能力大小、密封性能好坏、重复使用性等技术性能与圆锥台体第一螺旋状圆锥面721及其形成的左向锥度95即第一锥角α1和圆锥台体第二螺旋状圆锥面722及其形成的右向锥度96即第二锥角α2和锥形孔第一螺旋状圆锥面421及其形成的左向锥度95即第一锥角α1和锥形孔第二螺旋状圆锥面422及其形成的右向锥度96即第二锥角α2的大小有关。柱状母体3和筒状母体2的材料材质摩擦系数、加工质量、应用工况对圆锥配合也有一定影响。
在上述的类橄榄状非对称双向锥形螺纹连接副中,所述的直角梯形结合体匀速回转一周时所述的直角梯形结合体轴向移动的距离为具有下底边相同且上底边相同但直角边不同的两个直角梯形的直角边之和的长度的至少一倍。该结构保证了圆锥台体第一螺旋状圆锥面721和圆锥台体第二螺旋状圆锥面722以及锥形孔第一螺旋状圆锥面421和锥形孔第二螺旋状圆锥面422具有足够长度,从而保证双向圆锥台体圆锥面72与双向锥形孔圆锥面42配合时具有足够有效接触面积和强度及螺旋运动所需要的效率。
在上述的类橄榄状非对称双向锥形螺纹连接副中,所述的直角梯形结合体匀速回转一周时所述的直角梯形结合体轴向移动的距离等于具有下底边相同且上底边相同但直角边不同的两个直角梯形的直角边之和的长度。该结构保证了圆锥台体第一螺旋状圆锥面721和圆锥台体第二螺旋状圆锥面722以及锥形孔第一螺旋状圆锥面421和锥形孔第二螺旋状圆锥面422具有足够长度,从而保证双向圆 锥台体圆锥面72与双向锥形孔圆锥面42配合时具有足够有效接触面积和强度以及螺旋运动所需要的效率。
在上述的类橄榄状非对称双向锥形螺纹连接副中,所述的圆锥台体第一螺旋状圆锥面721和圆锥台体第二螺旋状圆锥面722均为连续螺旋面或非连续螺旋面;所述的锥形孔第一螺旋状圆锥面421和锥形孔第二螺旋状圆锥面422均为连续螺旋面或非连续螺旋面。
在上述的双向锥形螺纹连接副中,所述的筒状母体2连接孔旋入所述的柱状母体3的旋入端时,有旋入方向要求,不能反方向旋入。
在上述的类橄榄状非对称双向锥形螺纹连接副中,所述的柱状母体3的一端设有尺寸大于柱状母体3外径的头部和/或所述的柱状母体3的一端或两端都设有小于柱状母体3螺杆体31的锥形螺纹外螺纹9小径的头部,所述的连接孔为设于螺母体21上的螺纹孔。即这里的柱状母体3与头部连接为螺栓,没有头部和/或两端头部小于双向锥形外螺纹9小径和/的或中间没有螺纹两端各有双向锥形外螺纹9的为螺柱,连接孔设置在螺母体21内。
与现有的技术相比,本类橄榄状非对称双向锥形螺纹连接副的优点在于:设计合理,结构简单,通过内、外圆锥形成的圆锥副定径直至过盈配合来实现紧固和连接功能,操作方便,锁紧力大,承力值大,防松性能良好,传动效率和精度高,机械密封效果好,稳定性好,能防止连接时出现松脱现象,具有自锁和自定位功能。
实施例二
如图4所示,本实施例的结构、原理以及实施步骤与实施例一类似,不同的地方在于,外螺纹9小径即相邻螺旋状圆锥面结合处采用凹槽91相连的外螺旋构造处理,所述的外螺旋构造是特殊外螺旋线8,内螺纹6大径采用凹槽61相连的内螺旋构造处理,所述的内螺旋构造是特殊内螺旋线5,可以避免内螺纹6与外螺纹9旋合时产生干涉,还可以储油储污。
实施例三
如图5所示,本实施例的结构、原理以及实施步骤与实施例一类似,不同的地方在于,外螺纹9大径采用平面或圆弧92相连的外螺旋构造处理,所述的外螺旋 构造是特殊外螺旋线8,内螺纹6小径即相邻螺旋状圆锥面结合处采用平面或圆弧62相连的内螺旋构造处理,所述的内螺旋构造是特殊内螺旋线5,可避免内螺纹6与外螺纹9旋合时产生干涉,可储油储污。
实施例四
如图6所示,本实施例的结构、原理以及实施步骤与实施例一类似,不同的地方在于,外螺纹9小径即相邻螺旋状圆锥面结合处采用凹槽91相连的外螺旋构造处理,外螺纹9大径采用平面或圆弧92相连的外螺旋构造处理,所述的外螺旋构造是特殊外螺旋线8,与之组成螺纹副10的内螺纹6大径小径均采用尖角相连,可以避开组成螺纹副10可能存在的R角,可以避免内螺纹6与外螺纹9旋合时产生干涉,还可以储油储污。
实施例五
如图7所示,本实施例的结构、原理以及实施步骤与实施例一类似,不同的地方在于,内螺纹6大径采用凹槽61相连的内螺旋构造处理,内螺纹6小径即相邻螺旋状圆锥面结合处采用平面或圆弧62相连的内螺旋构造处理,所述的内螺旋构造是特殊内螺旋线5,与之组成螺纹副10的外螺纹9大径小径均采用尖角相连,可以避开组成螺纹副10可能存在的R角,可以避免内螺纹6与外螺纹9旋合时产生干涉,还可以储油储污。
实施例六
如图8、图9、图10所示,本实施例的结构、原理以及实施步骤与实施例一、二、三、四、五类似,不同的地方在于,本实施例中的非对称双向锥形螺纹1是左侧锥度95小于右侧锥度96,优选地,0°<第一锥角α1<53°,优选地,第一锥角α1取值为2°~40°;优选地,0°<第二锥角α2<53°,优选地,第二锥角α2取值为2°~40°,个别特殊领域,优选地,53°≤第二锥角α2<180°,优选地,第二锥角α2取值为53°~90°。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了锥形螺纹1、筒状母体2、螺母体21、柱状母体3、螺杆体31、锥形孔4、双向锥形孔41、双向锥形孔圆锥面42、锥形孔第一螺旋状圆锥面421、第一锥角α1、锥形孔第二螺旋状圆锥面422、第二锥角α2、内螺旋线5、内螺纹6、双向锥形内螺纹凹槽61、双向锥形内螺纹平面或圆弧62、圆锥台体7、双向圆锥台体71、双向圆锥台体圆锥面72、圆锥台体第一螺旋状圆锥面721、第一锥角α1、圆锥台体第二螺旋状圆锥面722、第二锥角α2、外螺旋线8、外螺纹9、双向锥形外螺纹凹槽91、双向锥形外螺纹平面或圆弧92、类橄榄状93、左侧锥度95、右侧锥度96、左向分布97、右向分布98、螺纹连接副和/或螺纹副10、游隙101、自锁力、自锁紧、自定位、压强、圆锥轴线01、螺纹轴线02、镜像、轴套、轴、非实体空间、材料实体、单锥形体、双锥形体、圆锥体、内圆锥体、锥孔、外圆锥体、锥体、圆锥副、螺旋结构、螺旋运动、螺纹体、完整单元体螺纹、轴心力、轴心力角、反轴心力、反轴心力角、向心力、反向心力、反向共线、内应力、双向力、单向力、滑动轴承、滑动轴承副等等术语,但并不排除使用其它术语的可能性,使用这些术语仅仅是为了更方便地描述和解释本发明的本质,把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (11)

  1. 一种类橄榄状非对称双向锥形螺纹连接副,包括相互螺纹配合的外螺纹(9)与内螺纹(6),其特征是,所述的类橄榄状(93)非对称双向锥形螺纹(1)其完整单元体螺纹是一种呈螺旋状中间大两端小且左侧锥度(95)大于右侧锥度(96)和/或左侧锥度(95)小于右侧锥度(96)的包括双向锥形孔(41)和/或双向圆锥台体(71)的类橄榄状(93)非对称双向锥形体,所述的内螺纹(6)螺纹体是筒状母体(2)内表面呈螺旋状双向锥形孔(41)并以“非实体空间”形态存在,所述的外螺纹(9)螺纹体是柱状母体(3)外表面呈螺旋状双向圆锥台体(71)并以“材料实体”形态存在,上述的非对称双向锥形体的左侧锥面形成左侧锥度(95)对应第一锥角(α1)、右侧锥面形成右侧锥度(96)对应第二锥角(α2),左侧锥度(95)与右侧锥度(96)方向相反且锥度不同,上述的内螺纹(6)与外螺纹(9)通过锥孔包容锥体直至内、外锥面相互承载,技术性能主要取决相互配合螺纹体锥面及锥度大小,左侧锥度(95)大于右侧锥度(96),优选地,0°<第一锥角(α1)<53°,0°<第二锥角(α2)<53°,个别特殊领域,优选地,53°≤第一锥角(α1)<180°;左侧锥度(95)小于右侧锥度(96),优选地,0°<第一锥角(α1)<53°,0°<第二锥角(α2)<53°,个别特殊领域,优选地,53°≤第二锥角(α2)<180°。
  2. 根据权利要求1的螺纹连接副,其特征是,上述的类橄榄状(93)双向锥形内螺纹(6)包括双向锥形孔圆锥面(42)的左侧圆锥面即锥形孔第一螺旋状圆锥面(421)和右侧圆锥面即锥形孔第二螺旋状圆锥面(422)和内螺旋线(5),锥形孔第一螺旋状圆锥面(421)和锥形孔第二螺旋状圆锥面(422)即双向螺旋状圆锥面形成的形状与以重合于筒状母体(2)中轴线的具有下底边相同且上底边相同但直角边不同的两个直角梯形的下底边对称并相向接合的直角梯形结合体的直角边为回转中心周向匀速回转且该直角 梯形结合体同时沿筒状母体(2)中轴线匀速轴向移动而由直角梯形结合体两条斜边形成的回旋体的螺旋外侧面形状相同;上述的类橄榄状(93)双向锥形外螺纹(9)包括双向圆锥台体圆锥面(72)的左侧圆锥面即圆锥台体第一螺旋状圆锥面(721)和右侧圆锥面即圆锥台体第二螺旋状圆锥面(722)和外螺旋线(8),圆锥台体第一螺旋状圆锥面(721)和圆锥台体第二螺旋状圆锥面(722)即双向螺旋状圆锥面形成的形状与以重合于柱状母体(3)中轴线的具有下底边相同且上底边相同但直角边不同的两个直角梯形的下底边对称并相向接合的直角梯形结合体的直角边为回转中心周向匀速回转且该直角梯形结合体同时沿柱状母体(3)中轴线匀速轴向移动而由直角梯形结合体两条斜边形成的回旋体的螺旋外侧面形状相同。
  3. 根据权利要求2的螺纹连接副,其特征是,上述的直角梯形结合体匀速回转一周时所述的直角梯形结合体轴向移动的距离为直角梯形结合体两个直角梯形直角边之和长度的至少一倍。
  4. 根据权利要求2的螺纹连接副,其特征是,上述的直角梯形结合体匀速回转一周时所述的直角梯形结合体轴向移动的距离等于直角梯形结合体两个直角梯形直角边之和长度。
  5. 根据权利要求1的螺纹连接副,其特征是,锥形孔第一螺旋状圆锥面(421)和锥形孔第二螺旋状圆锥面(422)和内螺旋线(5)均为连续螺旋面或非连续螺旋面;圆锥台体第一螺旋状圆锥面(721)和圆锥台体第二螺旋状圆锥面(722)和外螺旋线(8)均为连续螺旋面或非连续螺旋面。
  6. 根据权利要求1的螺纹连接副,其特征是,上述的内螺纹(6)是由具有下底面相同且上顶面相同但锥高不同的两个锥形孔(4)的下底面对称并相向相互接合且上顶面处于双向锥形孔(41)的两端且形成类橄榄状(93)非对称双向锥形螺纹(1)时包括分别与相邻双向锥形孔(41)的上顶面相互接合和/或或将分别与相邻双 向锥形孔(41)的上顶面相互接合呈螺旋状而成类橄榄状(93)非对称双向锥形内螺纹(6),上述的外螺纹(9)是由具有下底面相同且上顶面相同但锥高不同的两个圆锥台体(7)的下底面对称并相向相互接合且上顶面处于双向圆锥台体(71)的两端且形成类橄榄状(93)非对称双向锥形螺纹(1)时包括分别与相邻双向圆锥台体(71)的上顶面相互接合和/或或将分别与相邻双向圆锥台体(71)的上顶面相互接合呈螺旋状而成类橄榄状(93)非对称双向锥形外螺纹(9)。
  7. 根据权利要求1的螺纹连接副,其特征是,包括外螺纹(9)大径采用外尖角形状结构、外螺纹(9)小径采用内尖角形状结构、内螺纹(6)大径采用内尖角形状、内螺纹(6)小径采用外尖角形状结构和/或外螺纹(9)小径采取凹槽(91)、内螺纹(6)大径采取凹槽(61)构造处理、而外螺纹(9)大径、内螺纹(6)小径保持尖角构造和/或外螺纹(9)大径采取平面或圆弧(92)、内螺纹(6)小径采取平面或圆弧(62)构造处理、而外螺纹(9)小径、内螺纹(6)大径保持尖角构造和/或外螺纹(9)小径采取凹槽(91)、内螺纹(6)大径采取凹槽(61)构造处理、而外螺纹(9)大径采取平面或圆弧(92)、内螺纹(6)小径采取平面或圆弧(62)构造处理。
  8. 根据权利要求1的螺纹连接副,其特征是,上述的内螺纹(6)与外螺纹(9)组成螺纹副(10)是由呈螺旋状双向锥形孔(41)与呈螺旋状双向圆锥台体(71)在螺旋线引导下相互定径配合组成一节节圆锥副形成螺纹副(10)且双向圆锥台体(71)与双向锥形孔(41)之间有游隙(101),每一节内螺纹(6)包容相对应一节外螺纹(9)同轴定心定径构成一副滑动轴承,整个螺纹连接副(10)由一副或几副滑动轴承组成,内螺纹(6)与外螺纹(9)有效双向接合即有效双向接触抱合的包容与被包容螺纹节数,根据应用工况进行设计,内螺纹(6)锥形孔(4)双向包容外螺 纹(9)圆锥台体(7)且径向、周向、轴向、角向等多方向定位,每一节内螺纹(6)与外螺纹(9)包括一侧双向承载和/或左右两侧双向承载。
  9. 根据权利要求1的螺纹连接副,其特征是,上述的内螺纹(6)与外螺纹(9)组成螺纹副(10)是由锥形孔第一螺旋状圆锥面(421)和锥形孔第二螺旋状圆锥面(422)与相互配合的圆锥台体第一螺旋状圆锥面(721)和圆锥台体第二螺旋状圆锥面(722)以接触面为支承面在螺旋线的引导下内圆锥与外圆锥内外径定心直至双向锥形孔圆锥面(42)与双向圆锥台体圆锥面(72)抱合达到螺旋状圆锥面一个方向承载和/或螺旋状圆锥面两个方向同时承载和/或直至定径自定位接触和/或直至定径过盈接触产生自锁。
  10. 根据权利要求1的螺纹连接副,其特征是,上述的柱状母体(3)可以是实心或空心的,包括圆柱体和/或非圆柱体等需要在其外表面加工双向锥形外螺纹(9)的工件和物体,上述的筒状母体(2)包括圆筒体和/或非圆筒体等需要在其内表面加工双向锥形内螺纹(6)的工件和物体,上述的外表面和/或内表面包括圆柱面和/或锥面等非圆柱面等表面几何形状。
  11. 根据权利要求1的螺纹连接副,其特征是,上述的内螺纹(6)和/或外螺纹(9)包括单节螺纹体是不完整锥形几何体即单节螺纹体是不完整单元体螺纹。
PCT/CN2019/081405 2018-04-07 2019-04-04 类橄榄状非对称双向锥形螺纹连接副 WO2019192580A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/037,579 US20210010510A1 (en) 2018-04-07 2020-09-29 Olive-like shaped asymmetric bidirectional tapered thread connection pair

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810303106 2018-04-07
CN201810303106.7 2018-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/037,579 Continuation US20210010510A1 (en) 2018-04-07 2020-09-29 Olive-like shaped asymmetric bidirectional tapered thread connection pair

Publications (1)

Publication Number Publication Date
WO2019192580A1 true WO2019192580A1 (zh) 2019-10-10

Family

ID=66968808

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/CN2019/081405 WO2019192580A1 (zh) 2018-04-07 2019-04-04 类橄榄状非对称双向锥形螺纹连接副
PCT/CN2019/081393 WO2019192568A1 (zh) 2018-04-07 2019-04-04 哑铃状锥度左小右大非对称双向锥形螺纹连接副
PCT/CN2019/081403 WO2019192578A1 (zh) 2018-04-07 2019-04-04 类哑铃状与类橄榄状非对称双向锥形螺纹连接副
PCT/CN2019/081371 WO2019192548A1 (zh) 2018-04-07 2019-04-04 橄榄状锥度左大右小非对称双向锥形螺纹连接副
PCT/CN2019/081389 WO2019192564A1 (zh) 2018-04-07 2019-04-04 哑铃状锥度左大右小非对称双向锥形螺纹连接副
PCT/CN2019/081387 WO2019192562A1 (zh) 2018-04-07 2019-04-04 类橄榄状与类哑铃状非对称双向锥形螺纹连接副
PCT/CN2019/081406 WO2019192581A1 (zh) 2018-04-07 2019-04-04 类哑铃状非对称双向锥形螺纹连接副
PCT/CN2019/081376 WO2019192552A1 (zh) 2018-04-07 2019-04-04 橄榄状锥度左小右大非对称双向锥形螺纹连接副

Family Applications After (7)

Application Number Title Priority Date Filing Date
PCT/CN2019/081393 WO2019192568A1 (zh) 2018-04-07 2019-04-04 哑铃状锥度左小右大非对称双向锥形螺纹连接副
PCT/CN2019/081403 WO2019192578A1 (zh) 2018-04-07 2019-04-04 类哑铃状与类橄榄状非对称双向锥形螺纹连接副
PCT/CN2019/081371 WO2019192548A1 (zh) 2018-04-07 2019-04-04 橄榄状锥度左大右小非对称双向锥形螺纹连接副
PCT/CN2019/081389 WO2019192564A1 (zh) 2018-04-07 2019-04-04 哑铃状锥度左大右小非对称双向锥形螺纹连接副
PCT/CN2019/081387 WO2019192562A1 (zh) 2018-04-07 2019-04-04 类橄榄状与类哑铃状非对称双向锥形螺纹连接副
PCT/CN2019/081406 WO2019192581A1 (zh) 2018-04-07 2019-04-04 类哑铃状非对称双向锥形螺纹连接副
PCT/CN2019/081376 WO2019192552A1 (zh) 2018-04-07 2019-04-04 橄榄状锥度左小右大非对称双向锥形螺纹连接副

Country Status (3)

Country Link
US (8) US20210003165A1 (zh)
CN (8) CN110005679A (zh)
WO (8) WO2019192580A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498409B1 (en) 2021-08-13 2022-11-15 Oshkosh Defense, Llc Electrified military vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103027756A (zh) * 2011-09-30 2013-04-10 威廉·洪 齿科人工颈部斜面以及阶梯式植体
CN203756694U (zh) * 2013-12-26 2014-08-06 上海底特精密紧固件股份有限公司 一种防止松动的螺纹紧固件
CN204744455U (zh) * 2015-06-11 2015-11-11 大连大学 具有不对称螺纹结构的口腔种植体
CN105443543A (zh) * 2015-11-24 2016-03-30 游奕华 锥形螺纹连接副
CN105443546A (zh) * 2015-11-24 2016-03-30 游奕华 锥形螺纹螺栓体以及锥形螺纹螺母
CN205315435U (zh) * 2015-11-24 2016-06-15 游奕华 锥形螺纹螺栓体以及锥形螺纹螺母
CN205349976U (zh) * 2015-11-24 2016-06-29 游奕华 锥形螺纹连接副
WO2017085060A1 (de) * 2015-11-19 2017-05-26 Baier & Michels Gmbh & Co. Kg Gewindeformende oder gewindefurchende schraube, insbesondere zur verwendung in leichtmetall

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2036604A (en) * 1935-02-16 1936-04-07 George B Pickop Bolt and nut
BE510903A (zh) * 1951-04-26
FR1140284A (fr) * 1955-02-08 1957-07-18 Voigtlaender Ag Filetage pour appareils optiques, notamment pour objectifs photographiques
WO1987007928A1 (en) * 1986-06-19 1987-12-30 Harald Kolvereid Combi-nut
NO875052L (no) * 1987-05-27 1988-11-28 Harald Kolvereid Festeanordning samt verktoey for fastspenning av samme.
US5216941A (en) * 1987-05-27 1993-06-08 Harald Kolvereid Tool for securing a fastening device
US4799844A (en) * 1988-01-11 1989-01-24 Trw Inc Elliptical thread design
NO900454L (no) * 1990-01-31 1991-08-01 Harald Kolvereid Fremgangsmaater og anordninger for skjoeting av roer, samt festing av slike til stusser paa t-roer, bend og utstyr slik som ventiler, kraner, maaleinstrumenter m.m.
CN2209235Y (zh) * 1993-09-08 1995-10-04 王庆堂 渐变螺纹牙形引导锥
DE19608859A1 (de) * 1996-03-07 1997-09-11 Hilti Ag Ankerstange für Verbundanker
CN1071164C (zh) * 1997-07-25 2001-09-19 欧阳明 高精度螺纹及其制造工具
US7802951B2 (en) * 2006-12-18 2010-09-28 Sandisk Corporation Anti-rotational adhesive insert
CN201159232Y (zh) * 2008-01-14 2008-12-03 易连工业股份有限公司 螺丝
US9140292B2 (en) * 2013-08-16 2015-09-22 Hsiao-Chun LU Anti-loose screw and a die device for forming same
CN203847533U (zh) * 2014-05-15 2014-09-24 天津冶金集团轧三钢铁有限公司 一种单向螺纹连接结构
US9568037B2 (en) * 2015-05-27 2017-02-14 Tadeusz Staniszewski Machine element mounting assembly
CN105443542B (zh) * 2015-11-24 2018-06-15 游奕华 锥形外螺纹与螺纹孔连接结构
CN105443549B (zh) * 2015-11-24 2018-06-15 游奕华 锥形内螺纹与螺纹柱连接结构
CN206449096U (zh) * 2016-12-30 2017-08-29 上海华鞍汽车配件有限公司 简易防松螺母

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103027756A (zh) * 2011-09-30 2013-04-10 威廉·洪 齿科人工颈部斜面以及阶梯式植体
CN203756694U (zh) * 2013-12-26 2014-08-06 上海底特精密紧固件股份有限公司 一种防止松动的螺纹紧固件
CN204744455U (zh) * 2015-06-11 2015-11-11 大连大学 具有不对称螺纹结构的口腔种植体
WO2017085060A1 (de) * 2015-11-19 2017-05-26 Baier & Michels Gmbh & Co. Kg Gewindeformende oder gewindefurchende schraube, insbesondere zur verwendung in leichtmetall
CN105443543A (zh) * 2015-11-24 2016-03-30 游奕华 锥形螺纹连接副
CN105443546A (zh) * 2015-11-24 2016-03-30 游奕华 锥形螺纹螺栓体以及锥形螺纹螺母
CN205315435U (zh) * 2015-11-24 2016-06-15 游奕华 锥形螺纹螺栓体以及锥形螺纹螺母
CN205349976U (zh) * 2015-11-24 2016-06-29 游奕华 锥形螺纹连接副

Also Published As

Publication number Publication date
WO2019192562A1 (zh) 2019-10-10
US20210010511A1 (en) 2021-01-14
US20210003165A1 (en) 2021-01-07
WO2019192552A1 (zh) 2019-10-10
WO2019192568A1 (zh) 2019-10-10
CN110043553A (zh) 2019-07-23
CN109944854A (zh) 2019-06-28
US20210018034A1 (en) 2021-01-21
WO2019192564A1 (zh) 2019-10-10
CN109973494A (zh) 2019-07-05
WO2019192581A1 (zh) 2019-10-10
US20210025430A1 (en) 2021-01-28
CN110043543A (zh) 2019-07-23
WO2019192578A1 (zh) 2019-10-10
US20210010510A1 (en) 2021-01-14
US20210010528A1 (en) 2021-01-14
CN110094398A (zh) 2019-08-06
US20210010513A1 (en) 2021-01-14
CN110005679A (zh) 2019-07-12
CN109915459A (zh) 2019-06-21
CN109973491A (zh) 2019-07-05
WO2019192548A1 (zh) 2019-10-10
US20210003164A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US20210010518A1 (en) Connection pair for symmetric bidirectional tapered thread in olive-like shape
WO2019192580A1 (zh) 类橄榄状非对称双向锥形螺纹连接副
WO2019192571A1 (zh) 类哑铃状对称双向锥形螺纹的螺栓与螺母连接结构
WO2019192551A1 (zh) 橄榄状锥度左小右大双向锥形螺纹螺栓与螺母连接结构
CN213628386U (zh) 类橄榄状对称双向锥形螺纹的螺栓与螺母连接结构
WO2019192558A1 (zh) 类橄榄状对称双向锥形螺纹外螺纹与传统螺纹的连接结构
WO2019192576A9 (zh) 类哑铃状非对称双向锥形螺纹内螺纹与传统螺纹连接结构
CN214331125U (zh) 类橄榄状对称双向锥形螺纹连接副
WO2019192579A1 (zh) 一种合成圆锥副和螺旋技术特点的双向锥形螺纹技术
CN213744405U (zh) 橄榄状锥度左小右大双向锥形内螺纹与传统螺纹连接结构
CN213744397U (zh) 类哑铃状对称双向锥形螺纹外螺纹与传统螺纹的连接结构
WO2019192566A1 (zh) 哑铃状锥度左大右小双向锥形外螺纹与传统螺纹连接结构
CN213744402U (zh) 橄榄状锥度左大右小双向锥形螺纹螺栓与螺母连接结构
US20210025429A1 (en) Connection structure of internal thread of symmetric bidirectional tapered thread in olive-like shape and traditional screw thread

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781060

Country of ref document: EP

Kind code of ref document: A1