WO2019192341A1 - 系统消息冗余版本确定方法及装置 - Google Patents

系统消息冗余版本确定方法及装置 Download PDF

Info

Publication number
WO2019192341A1
WO2019192341A1 PCT/CN2019/079493 CN2019079493W WO2019192341A1 WO 2019192341 A1 WO2019192341 A1 WO 2019192341A1 CN 2019079493 W CN2019079493 W CN 2019079493W WO 2019192341 A1 WO2019192341 A1 WO 2019192341A1
Authority
WO
WIPO (PCT)
Prior art keywords
system message
time domain
domain resource
resource unit
window
Prior art date
Application number
PCT/CN2019/079493
Other languages
English (en)
French (fr)
Inventor
高宽栋
黄煌
颜矛
邵华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980001782.1A priority Critical patent/CN110521241B/zh
Priority to ES19780879T priority patent/ES2962577T3/es
Priority to KR1020207028774A priority patent/KR102350170B1/ko
Priority to EP19780879.3A priority patent/EP3764698B1/en
Priority to JP2020554130A priority patent/JP7105907B2/ja
Priority to RU2020135257A priority patent/RU2777447C2/ru
Publication of WO2019192341A1 publication Critical patent/WO2019192341A1/zh
Priority to ZA2020/05868A priority patent/ZA202005868B/en
Priority to US17/036,214 priority patent/US11489645B2/en
Priority to US17/895,843 priority patent/US11736258B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a system message redundancy version determining method and apparatus.
  • a system message is a system level or cell level message sent by a network device to a terminal device.
  • the system message in LTE long term evolution
  • the Transmission Time Interval (TTI) of SIB1 of LTE is 80 milliseconds (ms).
  • the STI is 80 ms, which means that the transmitted SIB1 bears the same information within 80 ms, and the SIB1 carrying different information is sent in the next 80 ms.
  • the transmission period of SIB1 is 20 ms, so it is repeatedly transmitted 4 times in the TTI of 80 ms, that is, SIB1 is transmitted on a radio frame (also referred to as a system frame) with an even number of SFN (System Frame Number), where SFN indicates a radio frame. Frame number.
  • SFN System Frame Number
  • the four SIB1 transmissions use different redundancy versions (RV). Specifically, the RVs used in the above four SIB1 transmissions are 0, 2, 3, and 1, respectively.
  • the first radio frame (ie, the radio frame corresponding to SFN 6) transmits SIB1 with an RV of 1, and the above four SIB1s all carry the same information.
  • FIG. 1B shows an example of SIB2 transmission in LTE, taking the radio frame length as 10 ms as an example.
  • Two SIB2 windows are illustrated in Figure 1B, each window containing two radio frames, one containing radio frame 0 and radio frame 1, and the other containing radio frame 16 and radio frame 17, and the time between the two windows
  • the interval is the transmission period of SIB2 (ie, 160 ms).
  • Each of the above windows contains 20 sub-frames of length 1 ms.
  • NR New Radio
  • beamforming techniques are used to limit the energy of a transmitted signal to a certain direction, thereby increasing the reception efficiency of the signal in that direction.
  • beamforming needs to be combined with beam scanning to cover as many directions as possible, and system messages need to support redundant versions of transmission and reception.
  • An embodiment of the present application provides a method and apparatus for wireless communication.
  • the communication device may be a terminal side device (for example, a terminal device, or a chip that can be used for the terminal device, etc.), or a network side device (for example, may be a base station, or a chip that can be used for a base station, etc.).
  • a terminal side device for example, a terminal device, or a chip that can be used for the terminal device, etc.
  • a network side device for example, may be a base station, or a chip that can be used for a base station, etc.
  • the M is a predefined positive real number.
  • the M is any one of ⁇ 1, 2, 4, 5, 8, 16 ⁇ .
  • the M is a number of time domain resource units included in the system message sub-window.
  • the communications device determines the M according to a sending period of the system message.
  • the sending period of different system messages corresponds to the same M.
  • the sending period of the M or the system message is indicated by an existing field in Downlink Control Information (DCI), or the M or the system message
  • the sending period is configured by the high layer signaling, where the high layer signaling is at least one of a Radio Resource Control (RRC) signaling, a system message, or a Media Access Control-Control Element (MAC-CE).
  • RRC Radio Resource Control
  • MAC-CE Media Access Control-Control Element
  • the transmission period of the M or the system message is configured (indicated) by DCI and high layer signaling, and the high layer signaling is at least one of RRC signaling, system message or MAC-CE.
  • different system messages are respectively defined or configured (indicated) by M of the multiplexing mode of the synchronization signal block or the transmission period of the system message.
  • the multiplexing manner of the different system messages and synchronization signal blocks includes time division multiplexing and frequency division multiplexing.
  • the problem that the beam on the time domain resource unit cannot support the effective RV of the system message and the number of the message beam of the system is reduced is solved.
  • the coverage of the system message is improved, and the RV of the system for transmitting and receiving system messages on the beam can be added in the system message window or the system message sub-window to provide greater frequency selective gain for receiving the system message.
  • the communications device determines the M according to at least one of ⁇ the number of synchronization signal blocks N, the number of time domain resource units D ⁇ included in the sub-window of the system message.
  • D represents the number of time domain resource elements included in a sub-window of the system message
  • n represents a positive integer, which in some implementations can be understood as a multiple of the beam scanning period
  • F represents a non-negative integer, in some implementations It can be obtained by configuration or by predefined means.
  • a beam carrying the system message in a sub-window of the system message is one of beams carrying the N synchronization signal blocks.
  • the problem that the beam on the time domain resource unit cannot support the effective RV of the system message and the number of the message beam of the system is reduced is solved.
  • the coverage of the system message is improved, and the RV of the system for transmitting and receiving system messages on the beam can be added in the system message window or the system message sub-window to provide greater frequency selective gain for receiving the system message.
  • the communication device determines the time domain resource unit Ux according to the number of synchronization signal blocks N.
  • the time domain resource unit Ux is fixed or predefined, or the time domain resource unit Ux is configured or indicated by the communication device.
  • the time domain resource unit Ux includes at least one time domain resource unit for receiving or transmitting a PDCCH of the system message and/or a PDSCH of the system message.
  • the time domain resource unit Ux includes a start time domain resource unit of a PDSCH for receiving or transmitting a PDCCH of the system message and/or the system message.
  • the system message can include RMSI, OSI, or RMSI and OSI.
  • the time domain resource unit may be any one of a symbol, a minislot, a time slot, a subframe, a radio frame, or a sampling point.
  • the number of times the terminal device blindly detects the system message can be reduced, thereby reducing the power consumption and complexity of the terminal device.
  • an embodiment of the present application provides a method and apparatus for wireless communication.
  • the communication device determines at least two time domain resource units contiguous in the time domain that are operable to receive or transmit system messages, and a redundancy version that determines system messages to use on the at least two time domain resource units, the system message
  • the redundancy versions used on the at least two time domain resource units are the same.
  • the communication device receives or transmits a system message using the same redundancy version on the at least two time domain resource units.
  • the at least two time domain resource units are time domain resource units capable of carrying the system message.
  • the at least two time domain resource units belong to one time domain resource unit set.
  • the set of time domain resource elements comprises one or more radio frames; or comprises one or more subframes; or comprises one or more time slots; or comprises one or more minislots; or comprises one or more symbols; Or contain one or more system message windows; or contain one or more system message sub-windows; or contain one or more beam scanning cycles; or contain one or more system message occasions, the system message timing is in the time domain A set of discrete or continuous time domain resource elements, the system message timing may carry a PDCCH of the system message and/or a PDSCH of the system message.
  • the system message includes RMSI, OSI, or RMSI and OSI.
  • the time domain resource unit may be any one of a symbol, a minislot, a time slot, a subframe, a radio frame, or a sampling point.
  • the problem that the beam on the time domain resource unit cannot support the effective RV of the system message and the number of the message beam of the system is reduced is solved.
  • the coverage of the system message is improved, and in some embodiments, the RV of the system for transmitting and receiving system messages on the beam can be added in the system message window or the system message sub-window to provide greater frequency selective gain for receiving the system message.
  • the embodiment of the present application provides a communication device, including: a processing module, where the processing module is configured to determine at least one time domain resource unit Ux, where x is an identifier of the time domain resource unit;
  • the M is a predefined positive real number.
  • the M is any one of ⁇ 1, 2, 4, 5, 8, 16 ⁇ .
  • the M is a number of time domain resource units included in the system message sub-window.
  • the processing module determines the M according to a sending period of the system message.
  • the sending period of different system messages corresponds to the same M.
  • the communications device further includes a transceiver module, including: the sending period of the M or the system message is indicated by an existing field in Downlink Control Information (DCI), or The sending period of the M or the system message is configured by high layer signaling, which is a Radio Resource Control (RRC) signaling, a system message, or a media access control element (Media Access Control-Control). At least one of Element, MAC-CE, or the transmission period of the M or the system message is configured (indicated) by DCI and high layer signaling, and the high layer signaling is RRC signaling, system message or MAC- At least one of the CEs; the DCI and/or higher layer signaling is received or transmitted by the transceiver module.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • Media Access Control-Control media access control element
  • At least one of Element, MAC-CE, or the transmission period of the M or the system message is configured (indicated) by DCI and high layer signaling, and the high layer signaling is R
  • the M or the transmission period of the system message in the multiplexing mode of the different system message and the synchronization signal block are respectively defined or configured (indicated).
  • the multiplexing manner of the different system messages and synchronization signal blocks includes time division multiplexing and frequency division multiplexing.
  • the processing module determines the M according to at least one of ⁇ the number of synchronization signal blocks N, the number of time domain resource units D ⁇ included in the sub-window of the system message.
  • D represents the number of time domain resource units included in a sub-window of the system message
  • n represents a positive integer, which may be understood as a multiple of the beam scanning period in some implementations
  • F represents a non-negative integer, and in some implementations Obtained by configuration or by predefined means.
  • a beam carrying the system message in a sub-window of the system message is one of beams carrying the N synchronization signal blocks.
  • the number of time domain resource units capable of carrying the system message effective RV is improved, so that the problem that the number of bearer signal beams of the bearer system is reduced due to the inability of some time domain resource units to support the effective RV of the system message can be avoided. Therefore, the coverage of the system message can be improved, and the RV of the on-beam transceiver system message can be added in the system message window or the system message sub-window to provide greater frequency selective gain for the reception of the system message.
  • the processing module is configured to determine the time domain resource unit Ux, where the processing module determines the time domain resource unit Ux according to the number N of synchronization signal blocks, where The domain resource unit Ux contains at least one time domain resource unit for receiving or transmitting the PDCCH of the system message and/or the PDSCH of the system message.
  • the communications device further includes a transceiver module; the processing module is configured to determine the time domain resource unit Ux, including: the time domain resource unit Ux is fixed or predefined, or The time domain resource unit Ux is configured or indicated by signaling received or transmitted by the transceiver module; the time domain resource unit Ux includes at least one PDCCH for receiving or transmitting the system message and/or the The time domain resource unit of the PDSCH of the system message.
  • the time domain resource unit Ux includes at least one time domain resource unit for receiving or transmitting a PDCCH of the system message and/or a PDSCH of the system message, including:
  • the domain resource unit Ux contains a start time domain resource unit of a PDSCH for receiving or transmitting the PDCCH of the system message and/or the system message.
  • the number of times the terminal device blindly detects the system message can be reduced, thereby reducing the power consumption and complexity of the terminal device.
  • the processing module determines at least two time domain resource units that are contiguous in a time domain that can be used to receive or send system messages; the processing module determines that the system message is in the at least two A redundancy version used on time domain resource units, the system messages being the same redundancy version used on the at least two time domain resource units.
  • the at least two time domain resource units are time domain resource units capable of carrying the system message.
  • the at least two time domain resource units belong to one time domain resource unit set.
  • the set of time domain resource units includes one or more radio frames; or one or more sub-frames; or one or more time slots; or one or more mini-slots; or one or more symbols Or one or more system message windows; or one or more system message sub-windows; or one or more beam scanning cycles; or one or more system message occasions
  • the system message timing is at A set of discrete or continuous time domain resource elements on the domain, the system message timing may carry a PDCCH of the system message and/or a PDSCH of the system message.
  • the problem that the beam on the time domain resource unit cannot support the effective RV of the system message and the number of the message beam of the system is reduced is solved.
  • the coverage of the system message is improved, and in some embodiments, the RV of the system for transmitting and receiving system messages on the beam can be added in the system message window or the system message sub-window to provide greater frequency selective gain for receiving the system message.
  • the system message includes RMSI, OSI, or RMSI and OSI.
  • the time domain resource unit may be any one of a symbol, a minislot, a time slot, a subframe, a radio frame, or a sampling point.
  • an embodiment of the present application provides a communication device, including: a processor and a memory, where the memory is used to store a program, when the program is executed by the processor, causing the communication device to perform the first aspect described above Or the method of any of the second aspects.
  • an embodiment of the present application provides a storage medium, where the computer program is stored, and the computer program is executed by a processor to implement the method according to any one of the first aspect or the second aspect.
  • an embodiment of the present application provides a chip system, including: a processor, configured to support a communication device to implement the method described in any of the foregoing aspects.
  • the system message redundancy version determining method and apparatus can increase the number of time domain resource units capable of carrying the system message effective RV, and can avoid the fact that the effective RV of the system message cannot be supported by some time domain resource units.
  • FIG. 1A is a schematic diagram of possible transmission of SIB1 in an LTE system
  • FIG. 1B is a schematic diagram of possible transmission of SIB2 in an LTE system
  • FIG. 2 is a schematic diagram of a communication system to which a system message redundancy version determining method according to an embodiment of the present application is applied.
  • 3A is a schematic diagram of a system message window and a system message sub-window
  • 3B is a schematic diagram of another system message window and a system message sub-window
  • Figure 3C is a schematic diagram of possible transmission of RMSI
  • FIG. 4 is a schematic flowchart of determining a redundancy version of a system message according to an embodiment of the present application
  • 5A is a schematic diagram of an RMSI transceiving time domain resource unit
  • 5B is a schematic diagram of an OSI transceiver time domain resource unit
  • FIG. 6 is a schematic flowchart of a method for determining a redundancy version of a system according to an embodiment of the present disclosure
  • FIG. 7A is a schematic diagram of a first RMSI redundancy version determined by a system message redundancy version determining method provided by an embodiment of the present application;
  • FIG. 7B is a schematic diagram of a first RMSI redundancy version and a transceiver RSI determined by the system message redundancy version determining method provided by the embodiment of the present application;
  • FIG. 8A is a schematic diagram of a second RMSI redundancy version determined by the system message redundancy version determining method provided by the embodiment of the present application.
  • FIG. 8B is a schematic diagram of a second RMSI redundancy version and a transceiver RSI determined by the system message redundancy version determining method provided by the embodiment of the present application;
  • FIG. 8B is a schematic diagram of a second RMSI redundancy version and a transceiver RSI determined by the system message redundancy version determining method provided by the embodiment of the present application;
  • FIG. 9A is a schematic diagram of a first OSI redundancy version and a receiving and receiving OSI determined by the system message redundancy version determining method provided by the embodiment of the present application;
  • FIG. 9A is a schematic diagram of a first OSI redundancy version and a receiving and receiving OSI determined by the system message redundancy version determining method provided by the embodiment of the present application;
  • 9B is a schematic diagram of an OSI redundancy version and a transceiver OSI determined by another system message redundancy version determining method
  • 9C is a schematic diagram of a second OSI redundancy version and a receiving and receiving OSI determined by the system message redundancy version determining method provided by the embodiment of the present application;
  • 9D is a schematic diagram of a third OSI redundancy version determined by the system message redundancy version determining method provided by the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of determining a system message redundancy version and receiving a system message according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a third RMSI redundancy version determined by the system message redundancy version determining method provided by the embodiment of the present application;
  • FIG. 12 is a schematic diagram of a fourth RMSI redundancy version determined by the system message redundancy version determining method provided by the embodiment of the present application;
  • FIG. 13 is a schematic diagram of a fifth RMSI redundancy version determined by the system message redundancy version determining method provided by the embodiment of the present application;
  • FIG. 14 is a schematic structural diagram of a communication apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 2 shows a schematic structural diagram of a communication system.
  • the communication system includes one or more network devices (for clarity, network device 10 and network device 20 are shown), and one or more terminal devices in communication with the one or more network devices.
  • the terminal device 11 and the terminal device 12 shown in the figure are connected to the network device 10, and the terminal device 21 and the terminal device 22 are connected to the network device 20.
  • the communication device involved in the present application may be a terminal device or a network device.
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • TDMA frequency division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • LTE long term evolution
  • new radio, NR new radio, NR
  • WiFi wireless-fidelity
  • WiMAX worldwide interoperability for microwave access
  • 3GPP 3rd generation partnership project
  • the network device may be any device having a wireless transceiving function. Including but not limited to: Global System for Mobile (GSM) or base transceiver station (BTS) in CDMA, base station (NodeB) in WCDMA, evolved base station in LTE (NodeB or eNB or e -NodeB, evolutional Node B), base station (gNodeB or gNB) or transmission reception point (TRP) in NR, base station of 3GPP subsequent evolution, access node in WiFi system, wireless relay node, wireless backhaul Nodes, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, and the like.
  • a plurality of base stations can support the networks of the same technology mentioned above, and can also support the networks of the different technologies mentioned above.
  • the base station may include one or more co-site or non-co-located transmission receiving points (TRPs).
  • the network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the network device can also be a server, a wearable device, or an in-vehicle device.
  • the following uses a network device as a base station as an example for description.
  • the multiple network devices may be the same type of base station or different types of base stations.
  • the base station can communicate with the terminal device or with the terminal device through the relay station.
  • the terminal device can communicate with multiple base stations of different technologies.
  • the terminal device can communicate with a base station supporting the LTE network, or can communicate with a base station supporting the 5G network, and can also support the base station of the LTE network and the base station of the 5G network. Double connection.
  • a terminal device is a wireless transceiver function that can be deployed on land, indoors or outdoors, handheld, wearable or on-board; it can also be deployed on the water (such as a ship); it can also be deployed in the air (eg aircraft, Balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control ( Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety
  • the embodiment of the present application does not limit the application scenario.
  • a terminal device may also be referred to as a terminal, a user equipment (UE), an access terminal device, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, and a terminal.
  • Equipment, wireless communication equipment, UE proxy or UE device, etc. The terminal can also be fixed or mobile.
  • the redundancy version RV is used to indicate that after the information bits of the transmission are encoded, one or more code blocks are obtained, and data bits are intercepted from different positions of the code block or the code block sequence as rear data bits for rearrangement, and the row is arranged. After the data modulation of the cloth is mapped to the corresponding time-frequency resource, or is used to indicate that the transmitted information bits are encoded, a code block is obtained, and the code block is divided into different code blocks, and different code block mappings are performed. Different code blocks can correspond to different RVs at different time-frequency positions. .
  • the four different RVs have four different starting positions of the intercepted data in the same information bits, and the intercepted data is modulated and mapped to the corresponding frequency domain.
  • the location also means that the same information bits are mapped to different frequency domain locations.
  • the same information bits can be demodulated from different frequency domain locations, and have better Frequency selective gain for higher demodulation and decoding performance.
  • other numbers of RVs such as 6 RVs, or 8 RVs, can also be used according to system requirements. In the present application, four RVs are taken as an example for description.
  • a wireless communication system defines a synchronization signal block, which includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH). And at least one of a Demodulation Reference Signal (DMRS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • DMRS Demodulation Reference Signal
  • the PSS and the SSS may be used for synchronization by the terminal device, and the PBCH may be used to carry important system messages, and the DMRS may be used to assist in demodulating the PBCH.
  • the above-mentioned synchronization signal block can be transmitted and received by beamforming or beam scanning, that is, one beam carries one synchronization signal block, and different beams are in different time domain resources.
  • the unit is transmitted on a unit, and the time domain resource unit may be a symbol, a minislot, a time slot, a subframe, a radio frame or a sampling point, and the like.
  • the synchronization signal block is transmitted in multiple directions by different beam scanning different directions.
  • the system configuration may be used to transmit a plurality of time domain resource units V1 of the synchronization signal block, the plurality of time domain resource units V1 being used to carry a synchronization signal block that may be transmitted, the possibly transmitted synchronization signal block having an index or number thereof The index or number is used to identify the synchronization signal block that may be transmitted.
  • the above-mentioned possible transmission of the synchronization signal block can be understood as a candidate for the actually transmitted synchronization signal block, and when the synchronization signal block is actually transmitted, part or all of the above-mentioned possible transmission synchronization signal blocks, that is, the actually transmitted synchronization signal, can be transmitted.
  • the block is part or all of the possible transmission of the sync signal block.
  • one or more time domain resource units carrying the actually transmitted synchronization signal block are part or all of the plurality of time domain resource units V1.
  • the actually transmitted synchronization signal block has its index or number, and the index or number is used to identify the actually transmitted synchronization signal block.
  • system messages can also be transmitted and received by beamforming or beam scanning, that is, one beam carries one system message, and different beams are on different time domain resource units.
  • the time domain resource unit may be a symbol, a minislot, a time slot, a subframe, a radio frame or a sampling point, and the like.
  • the transmission of system messages in multiple directions is accomplished by scanning different directions in different beams.
  • System messages are typically sent in a certain period, which may be referred to as the transmission period of the system message.
  • the system message in the embodiment of the present invention can be understood as a channel carrying the system message.
  • the channel carrying the system message may be a Physical Downlink Shared Channel (PDSCH), where the PDSCH is used to carry data information of the system message; and the channel carrying the system message may also be a physical downlink.
  • PDSCH Physical Downlink Shared Channel
  • a control channel Physical Downlink Control Channel, PDCCH
  • the PDCCH is used to carry control information of the system message, and the control information may also be referred to as Downlink Control Information (DCI) of the system message.
  • DCI Downlink Control Information
  • the system message in the embodiment of the present invention may also be understood as data information and/or control information of the system message carried by the channel.
  • the information may be data information of the system message, and the data information may be carried by a PDSCH; the information may also be control information of the system message, where the control information may be carried by a PDCCH, and the control information is also It may be referred to as the DCI of the system message.
  • the data information and/or control information of the foregoing system message may be information before and after processing in any process in the physical layer processing, where the physical layer processing includes segmentation, de-segmentation, channel coding, and solution. At least one of channel coding, rate matching, de-rate matching, scrambling, de-scrambling, modulation, demodulation, physical resource mapping, and de-physical resource mapping.
  • the data information of the system message may be data information of the system message before channel coding, or may be data information of the system message after channel coding; control information of the system message It may be control information of the system message before channel coding, or may be control information of the system message after channel coding.
  • the present application is convenient for presentation, and the PDSCH carrying the data information of the system message or the data information of the system message is referred to as the PDSCH of the system message, and the PDCCH carrying the control information of the system message or the control of the system message is controlled.
  • the information is referred to as the PDCCH of the system message; or the PDCCH of the PDSCH and/or system message of the above system message is collectively referred to as a system message; however, the embodiment of the present invention does not limit the name of the system message.
  • a window can contain one or more child windows.
  • a sub-window can be understood as a period of time within the window, and may include one or more time domain resource units (eg, symbols, mini-slots, time slots, subframes, radio frames or sampling points, etc.), the one or Multiple time domain resource units can be discrete or continuous in the time domain.
  • a sub-window may be associated with a sync signal block, which may be a sync signal block that may be transmitted or a sync signal block that is actually transmitted.
  • the fact that the one sub-window is associated with a synchronization signal block means that the beam carrying the system message in the sub-window is consistent with the beam of the synchronization signal block associated with the sub-window; or the system message carried in the sub-window is associated with
  • the synchronization signal block has a Quasi Co-located (QCL) relationship, wherein the QCL relationship indicates that the two signals can be the same or communicated in terms of Doppler spread, Doppler shift, average gain, and spatial parameters. of.
  • QCL Quasi Co-located
  • One or more of the system messages may be transmitted within the sub-window, and the system message may be transmitted using one or more beams. Different sub-windows may or may not overlap.
  • the system message may be a PDCCH of a system message, and the sub-window may be understood as a time domain location where the PDCCH is located or a time period in which the PDCCH may occur.
  • the terminal device may first search for a PDCCH of the system message in the sub-window. If the PDCCH of the system message is successfully detected, the PDSCH of the system message may be further received according to the PDCCH.
  • the system message may also be a PDSCH of a system message.
  • the PDCCH of the system message may be first searched by the terminal device in the sub-window. If the PDCCH of the system message is successfully detected, the PDSCH of the system message may be further received according to the PDCCH.
  • the window may also be referred to as a system message window, a system message window, a system message transmission window, a system message transmission window, a system message reception window, or a system message reception window.
  • the sub-window may also be referred to as a system message sub-window, a sub-window of a system message, a system message transmission sub-window, a sub-window for system message transmission, a system message receiving sub-window, a receiving sub-window of a system message, a PDCCH timing or a PDCCH sub-window. Window, etc.
  • the window may have its index or number, which is used to identify the window.
  • the sub-window may have its index or number, and the index or number is used to identify the sub-window.
  • Figure 3A shows an illustration of one possible window and sub-window.
  • a wireless frame length of 10 ms, a time slot length of 1 ms, and a radio frame including 10 time slots are taken as an example to illustrate two system message windows, each window containing two radio frames, and one window containing radio frames.
  • radio frame 1 another window containing radio frame 16 and radio frame 17.
  • a system message window including a radio frame 16 and a radio frame 17 includes four system message sub-windows.
  • Each system message sub-window contains 5 time slots discrete in the time domain: System Message Sub-Window 1 contains time slot 0, time slot 4, time slot 8 and time slot 2 in radio frame 17 in radio frame 16.
  • Time slot 6; system message sub-window 2 includes time slot 1, time slot 5, time slot 9 in radio frame 16, and time slot 3, time slot 7 in radio frame 17; system message sub-window 3 contains radio frame 16 Time slot 2, time slot 6 and time slot 0, time slot 4, time slot 8 in radio frame 17; system message sub-window 4 contains time slot 3, time slot 7 and radio frame 17 in radio frame 16 Time slot 1, time slot 5, time slot 9.
  • FIG. 3B shows another possible window and sub-window.
  • the system message sub-window includes continuous time domain resource units in the time domain: system message sub-window 1 Contains time slots 0-4 in radio frame 16; system message sub-window 2 contains time slots 5-9 in radio frame 16; system message sub-window 3 contains time slots 0-4 in radio frame 17; system message sub-window 4 contains time slots 5-9 in radio frame 17.
  • the system message when the system message is transmitted or received by beamforming or beam scanning, the system message is transmitted in multiple directions by different beam scanning in different directions.
  • the number of time or time domain resource units that the beam scans for one or one revolution may be referred to as a beam scanning period.
  • the beam scanning period of the system message is 6 time slots.
  • the system message window includes at least one beam scanning period, which may have an index or number thereof, the index or number used to identify the beam scanning period within the system message window.
  • the length of the system message window may be a multiple of a beam scanning period (for example, it may be 1 time, 2 times, 3 times, 4 times, 6 times, 8 times, 16 times, 12 times, 10 times, 32 times , 20 times, 24 times, 28 times, 36 times, 40 times, 44 times, 48 times, 52 times, 56 times, 60 times, 64 times, or 68 times, etc.).
  • the system message window may have the same time domain start position as the semi-static uplink and downlink resource allocation period.
  • the semi-static uplink and downlink resource allocation period may be that the network device is configured semi-statically for the terminal device by using the high-layer signaling, and the terminal device may also obtain the downlink time domain resource unit in the semi-static uplink and downlink resource allocation period by using the configuration.
  • the flexible time domain resource unit and the uplink time domain resource unit; the terminal can obtain the position and duration of the semi-static uplink and downlink resource allocation period in the time domain, and the semi-static uplink and downlink resource allocation period The distribution of the downlink time domain resource unit, the flexible time domain resource unit, and the uplink time domain resource unit in the time domain.
  • the downlink time domain resource unit may be used as a downlink transmission; the uplink time domain resource unit may be used as an uplink transmission; the flexible time domain resource unit may be used as a downlink transmission or an uplink transmission, and the network device may adopt downlink control signaling. Informing the terminal device of the transmission direction of the flexible time domain resource unit.
  • system messages can be transmitted and received by beamforming or beam scanning.
  • the system message carried on one beam is transmitted on the time domain resource unit, and is transmitted and received by using the corresponding RV.
  • the time domain resource unit may be a symbol, a mini-slot, a time slot, a subframe, a radio frame or a sampling point, and the like. If the RV corresponding to the time domain resource unit is still determined by the method illustrated in FIG. 1A or FIG. 1B, there may be a beam that can carry the system message cannot support a valid RV on some time domain resource units, causing the system message to be at that time. The domain resource unit cannot be sent or received. As a result, the number of message beams in the bearer system is reduced, which in turn leads to poor coverage of system messages.
  • FIG. 3C further clarifies the above problem by taking the transmission of Remaining Minimum System Information (RMSI) under beam scanning as an example.
  • the RMSI is a system message defined in the NR system, which may also be called NR-SIB0. Information, NR-SIB1 information or NR-SIB2 information.
  • SFN when the SFN is odd, SFN/2 is not an integer, so the modulo operation cannot be performed on 4. It can be seen that in the 16 radio frames shown in FIG.
  • the system message redundancy version determining method and apparatus solves the problem that the beam of the time domain resource unit cannot support the effective RV of the system message by increasing the number of time domain resource units capable of carrying the effective RV of the system message. In turn, the problem of reducing the number of message beams of the system is carried, thereby improving the coverage of the system message.
  • the type of system message in the embodiment of the present invention includes at least one of RMSI or other system information (OSI).
  • the RMSI may carry at least one of uplink random access configuration information, scheduling information of the OSI, and periodic information of the synchronization signal and the synchronization signal block;
  • the OSI may carry system message blocks such as SIB2, SIB3, SIB4, and the like.
  • SIB information may also carry other system information, which may be used for cell handover, frequency switching, network handover, and the like.
  • the embodiments of the present invention may also be applied to other kinds of system messages, such as SIB in LTE or NR, system information block, broadcast-based system message, system message based on random access procedure request, etc., the present invention
  • system messages such as SIB in LTE or NR, system information block, broadcast-based system message, system message based on random access procedure request, etc.
  • index or number referred to in the present application is only an example for convenience of description. Those skilled in the art will appreciate that other index values can also be employed. For example, the definition of the standard protocol, or the base station and the terminal pre-arranged, or pre-configured, etc., adopt other index values, so that the communication parties understand the same.
  • FIG. 4 is a flowchart of a method for determining a redundancy version of a system according to an embodiment of the present application. As shown in FIG. 4, the method in this embodiment may include:
  • the communications device determines at least one time domain resource unit Ux, where x can be understood as an identification or index of the time domain resource unit.
  • x in RVx and x in Ux can be understood as corresponding.
  • the time domain resource unit represents a length of time, for example, may be a symbol, a minislot, a time slot, a subframe, a radio frame or a sampling point, etc., and the non-negative integer x is the time domain.
  • the identity or index of the resource unit Taking the time domain resource unit as a radio frame as an example, x may be an SFN (ie, a radio frame number); and the time domain resource unit is a time slot as an example, then x may be a slot number.
  • the time domain resource unit can be used to send or receive system messages.
  • the terminal device may receive the system message on the time domain resource unit; when the communication device is a network device, the network device may be in the The system message is sent on the time domain resource unit.
  • the time domain resource unit Ux and its corresponding identifier or index x may not be distinguished in the embodiment of the present invention.
  • FIG. 5A exemplifies a time domain resource unit that transmits or receives an RMSI, which is a radio frame.
  • FIG. 5A illustrates 16 radio frames, each of which lasts for 10 ms.
  • FIG. 5B is an example of transmitting or receiving a time domain resource unit of an OSI, where the time domain resource unit is a time slot.
  • FIG. 5B illustrates 32 time slots, each of which lasts for 0.25 ms.
  • the identifier x of the time domain resource unit may be independently numbered in a time period, that is, the identifier x of the time domain resource unit may be a time domain resource unit index or a time domain resource unit number in a time period.
  • FIG. 5B exemplifies three time-discrete windows (ie, window 0, window 1 and window 2), which can be understood as a period of time, for example, the window can be in FIG. 3A and FIG. 3B.
  • the number of windows illustrated in FIG. 5B, the position of the window, and the number of time domain resource units within the window are merely examples.
  • the number of windows may be a value other than 3, and the time between windows may be continuous, and the time within the window
  • the number of domain resource units may be values other than 32, 64, and the time domain resource units within the window may be symbols, mini-slots, time slots, subframes, radio frames or sampling points, and the like. If the window is the system message window described in FIG. 3A and FIG.
  • the length of the window may be 50 ms, 60 ms, 70 ms, 80 ms, 90 ms, 100 ms, 110 ms, 120 ms, 130 ms, 140 ms, 150 ms, 160 ms, 320 ms, Or 640ms, etc., for example, may be 80ms or 160ms, or 80ms and 160ms.
  • the identifier x of the time domain resource unit may also be a downlink time domain resource unit index or a downlink time domain resource unit number in a time period, or a time domain resource unit that can be used as a downlink transmission in a time period.
  • the one time period is similar to the description in FIG. 5B, and details are not described herein again.
  • the time domain resource unit that can be used for downlink transmission may include at least one of a downlink time domain resource unit and a flexible time domain resource unit.
  • the identifier x of the time domain resource unit may also be an index of an actually transmitted synchronization signal block, or an index of a synchronization signal block that may be transmitted, or an index of a system message sub-window, or an actual transmission Or the index of the system message sub-window associated with the sync signal block x that may be transmitted, or the index of the beam scan period.
  • the identifier x of the time domain resource unit may also be an index of the actually transmitted synchronization signal block, an index of the synchronization signal block that may be transmitted, an index of the system message sub-window, and a synchronization signal that may be transmitted or may be transmitted. At least one of the index of the system message sub-window associated with the block or the index of the beam scanning period is associated.
  • the association relationship can be understood as that after the at least one index is given, the identifier x of the time domain resource unit can be obtained by the at least one index through a certain transformation relationship (for example, a certain functional relationship).
  • the communications device determines, based on the time domain resource unit Ux, a redundancy version RVx of the system message at the time domain resource unit Ux.
  • Figure 6 shows a detailed example of the flow of determining the redundancy version RVx of the system message in the time domain resource unit Ux. The flow of Fig. 6 is described by taking only the formula illustrated in the portion of Fig. 4402 as an example. It is to be understood that the use of other methods or formulas to obtain the technical effects provided by the embodiments of the present invention is also within the scope of protection of the present invention.
  • the M may be a predefined positive real number, that is, the 602 part is adopted.
  • the communication device may determine the parameter x3 according to the parameter x2, and then determine the redundancy version RVx of the system message in the time domain resource unit Ux according to the parameter x3.
  • the communication device may determine the parameter x3 using a parameter x2 for K modulo, where K is a predefined positive integer.
  • L can also take 2, which can be understood as having 2 RVs predefined. It can be understood that the above formula can be understood as X1 and X2 in the portion of FIG. 4402 are taken as 3 and 2, respectively.
  • the communication device may also obtain the redundancy version RVx of the system message in the time domain resource unit Ux according to other formulas, for example, any one of the following formulas may be employed:
  • x1 x/4.
  • Parts 605 and 606 are similar to the foregoing, and are not described herein again.
  • FIG. 7A shows a schematic representation of the redundancy version RVx of the time domain resource unit Ux of the system message obtained in accordance with the first and second examples above.
  • Figure 7B illustrates the RV used by the PDSCH of the RMSI in an RMSI TTI, taking the RMSI as an example.
  • the redundancy version RVx of the RMSI in the time domain resource unit Ux in Figure 7B is consistent with Figure 7A.
  • RMSI TTI 160ms
  • RMSI transmission period 80ms as an example
  • x1 x/4.
  • x1 x/8.
  • Figure 8A shows a schematic representation of the redundancy version RVx of the system message in the time domain resource unit Ux according to the third and fourth examples above.
  • All of the 16 radio frames in Figure 8A can support the effective RV of the RMSI, so the beams in the illustrated 16 radio frames can be used as beamforming or beam scanning for the RMSI, compared to the existing scheme illustrated in Figure 3C. Increases the number of beams that can be used to carry the RMSI, thereby enhancing the coverage of the RMSI under beamforming or beam scanning.
  • Figure 8B illustrates the RV used by the PDSCH of the RMSI in the RMSI TTI, taking the RMSI as an example.
  • the redundancy version RVx of the RMSI in the time domain resource unit Ux in Figure 8B is consistent with Figure 8A.
  • RV 0 of the PDSCH of the RMSI on the frame
  • the RMSI TTI 160 ms and the RMSI transmission period as 80 ms as an example
  • the scheme corresponding to FIG. 8B can implement RMSI transmission and reception using more redundancy versions in one TTI under the same RMSI transmission period, and can add and receive RMSI on one beam in the RMSI TTI. RV, which provides greater frequency selectivity gain.
  • M can also be determined based on the transmission period of the system message (e.g., RMSI).
  • RMSI the transmission period of the system message
  • the M needs to be determined according to the transmission period of the system message (for example, RMSI) and the subcarrier spacing parameter.
  • the transmission period of the system message for example, RMSI
  • T1 5ms
  • the subcarrier spacing of 15KHz as an example
  • the 604 part, the 605 part, and the 606 part are similar to the foregoing, and are not described herein again.
  • the value of M can also be represented by M1*2 u , where the subcarrier spacing is 15KHz, 30KHz, 60KHz, 120KHz, and u corresponds to 0, 1, 2, and 3 respectively.
  • the value of M1 can be 5 or 10.
  • the same parameter M can also be used for the transmission period of different system messages.
  • the transmission cycle of RMSI includes ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms ⁇ as an example.
  • M has a value of 4.
  • M 2.
  • the 604 part, the 605 part and the 606 part are similar to the foregoing, and will not be described again here.
  • the parameters M in the multiplexing mode of the different system messages and the synchronization signal block can be separately defined or configured (indicated).
  • the multiplexing manner of the different system messages and synchronization signal blocks includes time division multiplexing and frequency division multiplexing.
  • the multiplexing mode of the RMSI and the synchronization signal block includes time division multiplexing and frequency division multiplexing, and can be time division multiplexing of the RMSI and the synchronization signal block and frequency division multiplexing of the RMSI and synchronization signal blocks.
  • the transmissions define or configure (instruct) the respective parameters M.
  • the value of M used for the transmission of the RMSI when the RMSI is time-division multiplexed with the sync signal block may be determined according to the transmission period of the RMSI.
  • the transmission period of the M or RMSI used for the transmission of the RMSI when the RMSI is time division multiplexed with the synchronization signal block may be configured or indicated by the DCI, and the M used for the transmission of the RMSI when the RMSI is time division multiplexed with the synchronization signal block may be transmitted according to the RMSI.
  • the cycle is determined. Parts 604, 605, and 606 are similar to the foregoing, and are not described herein again.
  • some fields in the DCI may be multiplexed, for example, one or more of the following fields are multiplexed, ⁇ Field Redundancy version, field HARQ Process number, field TPC command for PUCCH, field Frequency domain resource assignment, field ARI (ACK/NAK Resource Index), field ARI HARQ timing indicator, field carrier indicator, field BWP indicator, field Time-domain PDSCH resources, field VRB-to -PRB mapping, field Reserved resource set on/off, field Bundling size indicator, field Modulation and coding scheme, second CW, field New data indicator, second CW, field Redundancy version, second CW, field CBGFI, field CBGTI, field Downlink Assignment Index, field Antenna port (s), field TCI (Transmission Configuration Indication) ⁇ .
  • the embodiment of the present application does not limit the rounding manner of x1 in part 604.
  • the following method is
  • M is not limited in the embodiment of the present application.
  • the value of the M may be any one of ⁇ 1, 2, 4, 5, 8, 16 ⁇ , or may be determined according to a sending period of the system message. It can be understood that, in addition to the preferred value, M may take other positive real numbers. For example, M may also be the number of time domain resource units included in the system message sub-window.
  • the system message redundancy version determining method and apparatus solves the problem that the number of time domain resource units capable of carrying the effective RV of the system message is solved, thereby solving the effective RV of the beam on some time domain resource units that cannot support the system message.
  • the problem that the number of message beams of the system is reduced is increased, thereby improving the coverage of the system message, and in some embodiments, the RV of the system for transmitting and receiving system messages on the beam can be added in the system message window or the system message sub-window, which is a system message. Receive provides greater frequency selectivity gain.
  • M in section 601 it may be determined not in the manner described in section 602, but reference to section 603 in FIG. 6, that is, M may be determined according to the number N of synchronization signal blocks actually transmitted.
  • the M may also be determined by the communication device according to at least one of ⁇ the number of synchronization signal blocks N actually transmitted, the number of time domain resource units D ⁇ included in the sub-window of the system message.
  • the number N of synchronization signal blocks actually transmitted may be notified by the network device to the terminal device.
  • the number N of synchronization signal blocks actually transmitted is notified by the network device to the terminal device through the RMSI.
  • the D can also represent a predefined constant, or any of a plurality of predefined constants.
  • the embodiment of the present application illustrated in FIG. 6 can also be understood as the communication device according to the number of synchronization signal blocks N actually transmitted, the number of time domain resource units D ⁇ included in the sub-window of the system message. At least one of the determined system messages is a redundancy version RVx of the time domain resource unit Ux. It can be understood that only one possible meaning of N is illustrated in the 603 part. For example, N can also indicate the number of synchronization signal blocks that may be transmitted.
  • n represents a multiple of the beam scanning period.
  • the system message as the OSI
  • the time domain resource unit as the time slot
  • FIG. 9A shows a redundancy version RVx of the OSI in the time slot Ux according to the above example, taking 32 time slots (slot 0 - time slot 31) as an example, and ⁇ time slot 8, time slot 9,
  • the time slot 18, the time slot 19, the time slot 28, and the time slot 29 ⁇ are uplink time slots, and the remaining time slots are downlink time slots and the OSI is carried in the downlink time slot as an example.
  • 9A further takes a 4-wheel beam scan as an example.
  • FIG. 9A shows a redundancy version RVx of the OSI in the time slot Ux according to the above example, taking 32 time slots (slot 0 - time slot 31) as an example, and ⁇ time slot 8, time slot 9,
  • the time slot 18, the time slot 19, the time slot 28, and the time slot 29 ⁇ are uplink time slots, and the remaining
  • 9A further illustrates the time slot transmitted by the OSI and the RV used therein in the 4-beam beam scan, taking the OSI carried vertically upward beam as an example.
  • the OSI can also be carried on other beams. It can be understood that the OSI is generally transmitted on a beam with better channel conditions.
  • the network device of the NR system can determine the channel condition on which beam is relatively good with the terminal device through the transmission of the synchronization signal block and the feedback of the terminal device in the synchronization process, thereby carrying the OSI on the basis of Corresponding to the beam.
  • the feedback of the terminal device may be that the terminal device directly returns a beam identifier with a relatively good channel condition to the network device, or may be through an uplink channel (eg, a random access channel) or an uplink signal ( For example, the transmission of the sounding reference signal implicitly informs the network device of a relatively good channel condition.
  • the other content of Figure 9B is similar to Figure 9A.
  • FIG. 9C shows the redundancy version RVx of the OSI in the time slot Ux in the case of another time domain resource unit number or time domain resource unit index, with 32 time slots (time slot U0-time)
  • the slot U31) is taken as an example, and ⁇ time slot U8, time slot U9, time slot U18, time slot U19, time slot U28, time slot U29 ⁇ is an uplink time slot, and the remaining time slots are downlink time slots and the OSI is carried in the downlink.
  • the time slot is an example.
  • the x in Figure 9C only identifies the time slots that can carry the OSI, and the time slots marked with '-' cannot carry the OSI.
  • FIG. 9C still takes 4 rounds of beam scanning as an example.
  • FIG. 9C further illustrates the time slot transmitted by the OSI and the RV used therein in the 4-beam beam scan, taking the OSI carried vertically upward beam as an example.
  • M can also be obtained according to other methods.
  • the 604 part, the 605 part and the 606 part are similar to the foregoing, and will not be described again, and the following can be obtained.
  • the OSI shown in 9D is indicated by the redundancy version RVx of the time slot Ux. Compared with FIG.
  • each round of beam scanning in FIG. 9D includes the same number of time domain resource units, while the beam scanning of different rounds in FIG. 9A may contain different numbers of time domain resource units.
  • F is a non-negative integer configured by a network device or predefined.
  • the F can also be obtained by other methods, for example, F can be obtained by using any one of the following methods:
  • N_DL is the number of downlink time domain resource units in the semi-static uplink and downlink resource allocation period
  • N_UL is the number of uplink time domain resource units in the semi-static uplink and downlink resource allocation period
  • N_DU is the time domain resource in the semi-static uplink and downlink resource allocation period.
  • the number of units, N_UK is the number of flexible time domain resource units in the semi-static uplink and downlink resource allocation period.
  • the index of the beam scanning period in the window can also be other constants.
  • the system message redundancy version determining method and apparatus solves the problem that the number of time domain resource units capable of carrying the effective RV of the system message is solved, thereby solving the effective RV of the beam on some time domain resource units that cannot support the system message.
  • the problem that the number of message beams of the system is reduced is increased, thereby improving the coverage of the system message, and in some embodiments, the RV of the system for transmitting and receiving system messages on the beam can be added in the system message window or the system message sub-window, which is a system message. Receive provides greater frequency selectivity gain.
  • the present application provides a method for determining at least one time domain resource unit Ux. It will be appreciated that the method can also be implemented in section 401 of FIG.
  • the communications device may determine the time domain resource unit Ux that carries the system message according to the number N of synchronization signal blocks; the synchronization signal block may be a synchronous signal block that is actually transmitted, or may be A sync signal block that may be transmitted.
  • the time domain resource unit Ux includes a starting time domain resource unit of the system message in one round of beam scanning (which can also be understood as a beam scanning period), which is convenient.
  • the expression identifies the start time domain resource unit of the system message in the y-th beam scan as xy0.
  • the initial time domain resource unit xy0 can be understood as the initial time domain resource unit of the first PDCCH timing of the PDCCH of the system message in the y-th beam scan, and can also be understood as the y-th beam scan.
  • the PDCCH of the system message is associated with the first synchronization signal block or the start time domain resource unit of the corresponding PDCCH occasion.
  • the number of time domain resource units of the OSI cannot be carried during the time period of the round beam scanning.
  • FIG. 9C Another possible implementation manner is shown in FIG. 9C.
  • the x in Figure 9C only identifies the time slots that can carry the OSI, and the time slots marked with '-' cannot carry the OSI.
  • X10 can also be understood as the starting time domain resource unit of the system message window or the starting time domain resource unit of the first round beam scanning in the system message window.
  • Offset can also be understood as the starting time domain resource of the system message window.
  • the embodiments of the present invention do not limit other values and units of x0 and Offset, for example, Offset can also take 5ms.
  • the embodiment of the present invention does not limit the specific method for determining the time domain resource unit Ux according to the actually transmitted number of synchronization signal blocks N.
  • the starting time domain resource unit index xy0 of the system message in the y-th beam scan can also be obtained by any of the following methods:
  • the N_frame may be the number of slots or the number of subframes in one radio frame.
  • the Offset is an optional parameter.
  • the Offset is used as an example of a time slot.
  • the Offset may be any integer from 0 to 80.
  • the Offset unit is used as an example.
  • the Offset may be any integer from 0 to 10, or may be any real number of 1 digit after the decimal point in 0-10. M can be obtained by the method described in Section 602 or Section 603, and will not be described again here.
  • h(y, D, N, N_DL, N_UK) and p(y, D, N, N_DL, N_UK) in the above method can be obtained by any of the following methods, and h(y, D, N, N_DL, N_UK) And p(y, D, N, N_DL, N_UK) can be obtained in the same or different ways:
  • the communication device is to determine at least one time domain resource unit Ux.
  • the communications device may determine the time domain resource unit Ux that carries the system message according to the number N of synchronization signal blocks; the synchronization signal block may be a synchronous signal block that is actually transmitted, or may be A sync signal block that may be transmitted.
  • the time domain resource unit Ux includes at least one time domain resource unit of the system message in one round of beam scanning (which may also be understood as a beam scanning period), for convenience.
  • the expression identifies at least one time domain resource unit of the system message in the y-th beam scan as xyj.
  • the time domain resource unit xy0 represents the start time domain resource unit of the system message in the y-th beam scan, and the method for obtaining the method may refer to the foregoing description, and details are not described herein;
  • the time domain resource unit xyj (j is A positive integer) indicates that the system message is the jth time domain resource unit other than the start time domain resource unit xy0 in the y-th beam scan, and j may also be an index of the SS/PBCH block actually transmitted or possibly transmitted. It can also be an index of system messages.
  • the time domain resource unit xyj can be understood as the starting time domain resource unit of the PDCCH timing other than the first PDCCH timing of the PDCCH of the system message in the y-th beam scanning, and can also be understood as the y-th beam.
  • the PDCCH of the system message in the scan is divided by the synchronization signal block other than the first synchronization signal block or the start time domain resource unit of the corresponding PDCCH occasion.
  • the xyj can be obtained by any of the following methods:
  • M can be obtained by the method described in Section 602 or Section 603, and details are not described herein again.
  • q(y, M, j, D) and r(y, M, j, D) can be obtained by any of the following methods, and q(y, M, j, D) and r(y, M, j, D) can be obtained in the same or different ways:
  • Oj may represent the number of time domain resource units in the y-th round beam scan except the start time domain resource unit xy0 to the time domain resource unit xyj that cannot transmit the system message. Oj can be obtained by any of the following methods:
  • the location of the start time domain resource unit xy0 in the y-th beam scan is fixed when the system message uses beam scanning, and it can be understood that the system message uses beam scanning.
  • the location of the starting time domain resource unit in a round of scanning is predefined, for example, may be at least one of a starting position, a middle position, a 1/4 position, and a 3/4 position of the system message window or the system message sub-window. Or any one.
  • the starting position, the intermediate position, the 1/4 position, and the 3/4 position are respectively 4 positions of 0 ms, 5 ms, 10 ms, and 15 ms of the system message window.
  • the system message is fixed in the initial time domain resource unit in one round of beam scanning to The first time domain resource unit of the system message window.
  • the terminal device further needs to determine that 0 ms and 10 ms should be adopted according to other configuration information. Which one of the positions; for example, the terminal device can determine which of 0ms and 10ms should be used according to the number of synchronization signal blocks actually transmitted and the length of the system message window.
  • the location of the start time domain resource unit xy0 in the y-th beam scan when the system message uses beam scanning may also be configured or indicated by the network device.
  • the network device may adopt RMSI, OSI, Media Access Control-Control Element (MAC-CE), Radio Resource Control (RRC) signaling, and Downlink Control Information (DCI). At least one of the configurations or indicates the location of the starting time domain resource unit in a round of scanning when the system message uses beam scanning.
  • the method and the device provided by the embodiment of the present invention can reduce the number of times that the terminal device blindly detects the system message by determining at least one time domain resource unit in one round of scanning when the system message uses beam scanning, thereby reducing power consumption of the terminal device and the complexity.
  • FIG. 10 is a flowchart of a system message sending and receiving method according to an embodiment of the present disclosure. As shown in FIG. 10, the method in this embodiment may include:
  • the communications device determines at least two time domain resource units contiguous in the time domain that are operable to receive or transmit system messages; the communications device determining that the system messages are used on the at least two time domain resource units a redundancy version, the system message is the same as the redundancy version used on the at least two time domain resource units
  • the communication device receives or transmits the system message using the redundancy version on the at least one time domain resource unit of the at least two time domain resource units that are consecutive in the time domain.
  • At least two consecutive time domain resource units in the time domain in the 1001 part may be understood as time-consuming resource units (such as time domain resource units that cannot carry the system message). After the domain is excluded, the at least two time domain resource units are consecutive in the time domain.
  • the system message is an OSI
  • the communication device can determine the redundancy version of the system message on the time domain resource unit in accordance with the methods illustrated and described in Figures 4, 6, 7A, 8A, 9A, 9C, and 9D.
  • the system message is RMSI
  • the time domain resource unit is a radio frame.
  • the redundancy version is all redundancy version 2.
  • the system message is RMSI
  • the time domain resource unit is a radio frame.
  • the at least two time domain resource units in the 1001 part can also be understood as the one in FIG. 8A.
  • the redundancy version is the redundancy version 2.
  • the at least two time domain resource units described in the 1001 part can also be understood as the identifier in FIG.
  • the system message is an OSI
  • the time domain resource unit is a time slot.
  • the remaining versions are all redundancy version 2.
  • the redundancy version is all redundancy version 1.
  • the at least two time domain resource units described in section 1001 may belong to one time domain resource unit set, and the time domain resource unit set may have multiple possible forms.
  • the time domain resource unit set may have multiple possible forms.
  • the time domain resource unit set may include multiple radio frames, and the time domain resource unit included in the time domain resource unit set may be a symbol, a minislot, a time slot, a subframe, or a radio frame;
  • the time domain resource unit set may further include a radio frame, and the time domain resource unit included in the time domain resource unit set may be a symbol, a minislot, a time slot or a subframe, and the like;
  • the time domain resource unit set may further include multiple subframes, and the time domain resource unit included in the time domain resource unit set may be a symbol, a minislot, a time slot or a subframe, and the like;
  • the time domain resource unit set may further include one subframe, and the time domain resource unit included in the time domain resource unit set may be a symbol, a minislot or a time slot, and the like;
  • the time domain resource unit set may further include multiple time slots, and the time domain resource unit included in the time domain resource element set may be a symbol, a minislot or a time slot, and the like;
  • the time domain resource unit set may further include a time slot, and the time domain resource unit included in the time domain resource unit set may be a symbol or a minislot;
  • the time domain resource unit set may further include multiple minislots, and the time domain resource unit included in the time domain resource unit set may be a symbol or a minislot or the like;
  • the time domain resource unit set may further include a minislot, and the time domain resource unit included in the time domain resource unit set may be a symbol or the like;
  • the time domain resource unit set may further include multiple symbols, and the time domain resource unit included in the time domain resource unit set may be a symbol or the like;
  • the time domain resource unit set may further include one or more system message timings, and the system message timing may be understood as a discrete or continuous time domain resource unit set in the time domain, where the system message timing may carry the The PDCCH of the system message and/or the PDSCH of the system message; the time domain resource unit included in the time domain resource unit set may be a symbol, a minislot, a time slot, a subframe or a radio frame, etc.; taking FIG. 3B as an example
  • the time domain resource element set including the radio frames U0 and U1 and the time domain resource element set including the radio frames U16 and U17 are discrete in the time domain; and FIG. 13 is an example, including the time domain resources of the radio frames U0 and U1.
  • the set of units and the set of time domain resource elements containing radio frames U2 and U3 are contiguous in the time domain.
  • the time domain resource unit set may further include one or more system message windows, and the time domain resource unit included in the time domain resource unit set may be a symbol, a minislot, a time slot, a subframe, or a radio frame;
  • the time domain resource unit set may further include one or more system message sub-windows, and the time domain resource unit included in the time domain resource unit set may be a symbol, a minislot, a time slot, a subframe, or a radio frame;
  • the time domain resource unit set may further include one or more beam scanning periods, and the time domain resource unit included in the time domain resource unit set may be a symbol, a minislot, a time slot, a subframe, or a radio frame.
  • the order of appearance of the four redundant versions in the time domain is ⁇ 0, 2, 3, 1 ⁇ .
  • the example implements the 1001 part, and the present invention does not limit the order of appearance of the redundancy version in the specific embodiment in the time domain.
  • any of the following occurrence sequences can be used:
  • FIG. 7A, FIG. 7B, FIG. 8A, FIG. 8B, FIG. 9A, FIG. 9B, FIG. 9C, and FIG. 9D all implement the 1001 part by taking four redundancy versions as an example, and the present invention is in the specific embodiment.
  • the number of redundancy versions is not limited.
  • the communication device may also determine the redundancy version of the system message in the time domain resource unit included in the time domain resource unit set by using the number of other redundancy versions.
  • the system message may be transceived in a plurality of the time domain resource unit sets, and the system message is in a time domain resource unit included in the plurality of the time domain resource unit sets.
  • the system message is RMSI
  • the time domain resource unit is a radio frame.
  • redundancy version 0 the redundancy version of the RMSI on the radio frame within the illustrated set of four time domain resource units is all redundancy version 0.
  • the RMSI in FIG. 11 can also be other redundancy versions, such as the redundancy version 1 or the redundancy version 2, which is not limited by the embodiment of the present invention.
  • the system message may be sent and received in a plurality of the time domain resource unit sets, and the system message is included in the plurality of the time domain resource unit sets. Only 2 redundant versions are used on the unit.
  • the system message is RMSI
  • the time domain resource unit is a radio frame as an example.
  • the RMSI adopts redundancy version 0 on the time domain resource unit included in the first time domain resource unit set and the third time domain resource unit set, and the second time domain resource unit set and the fourth Redundant version 2 is used on the time domain resource unit contained in the time domain resource unit set.
  • the RMSI in FIG. 12 can also be other redundancy versions or redundancy version sequences, for example, the redundancy versions listed below:
  • the two redundancy versions may be predefined or configured by the network.
  • the two redundancy versions may also be obtained by formula calculation, which is similar to the descriptions in FIG. 6, FIG. 7A, FIG. 7B, FIG. 8A, FIG. 8B, FIG. 9A, FIG. 9C, and FIG. Change the value of the individual parameters in the formula. For example, set the parameter related to the predefined number of RVs in the formula to 2, which will not be described here.
  • the system message may be sent and received in a plurality of the time domain resource unit sets, and the system message is included in the plurality of the time domain resource unit sets. Only 8 redundancy versions are used on the unit.
  • the system message is RMSI
  • the time domain resource unit is a radio frame.
  • the RMSI uses the redundancy version 0 on the time domain resource unit included in the first time domain resource unit set, and the redundancy version 2 on the time domain resource unit included in the second time domain resource unit set.
  • Redundant version 3 is used on the time domain resource unit included in the third time domain resource unit set
  • redundancy version 1 is used on the time domain resource unit included in the fourth time domain resource unit set, in the fifth time
  • the domain resource unit set includes a redundancy version 4 on the time domain resource unit, and a redundancy version 6 on the time domain resource unit included in the sixth time domain resource unit set, and is included in the seventh time domain resource unit set.
  • Redundancy version 7 is used on the time domain resource unit
  • redundancy version 5 is adopted on the time domain resource unit included in the eighth time domain resource unit set.
  • RMSI in FIG. 13 may also be in other redundancy versions or redundancy version order, for example, redundancy versions 0, 1, 2, 3, 4, 5, 6, and 7, in the embodiment of the present invention. There is no limit to this.
  • the eight redundancy versions may be predefined or configured by the network.
  • the eight redundancy versions may also be obtained by formula calculation, which is similar to the descriptions in FIG. 6, FIG. 7A, FIG. 7B, FIG. 8A, FIG. 8B, FIG. 9A, FIG. 9C, and FIG. Change the value of the individual parameters in the formula. For example, set the parameter related to the predefined number of RVs in the formula to 8, which will not be described here.
  • FIG. 7A, FIG. 7B, FIG. 8A, FIG. 8B, FIG. 9A, FIG. 9C, and FIG. 9D are all obtained by using a formula to obtain a redundancy version on a time domain resource unit.
  • the manner of obtaining the redundancy version in the example is not limited. In the 1001 part, the communication device may also obtain the redundancy version on the time domain resource unit in other manners.
  • the correspondence between the time domain resource unit Ux and the redundancy version RVx is predefined, stored, solidified, or pre-configured.
  • the communication device obtains a redundancy version RVx of the system message on the time domain resource unit Ux according to the correspondence between the time domain resource unit Ux and the redundancy version RVx.
  • Table 1 provides an example of the correspondence between the time domain resource unit Ux and the redundancy version RVx.
  • the correspondence RVx of the time domain resource unit set and the redundancy version is predefined, stored, solidified, or pre-configured, and the communication device knows which time domain resource unit set the time domain resource unit Ux belongs to. Based on the correspondence, the redundancy version RVx of the system message on the time domain resource unit Ux can be known. Taking FIG. 12 as an example, Table 2 gives an example of a correspondence between a time domain resource element set and a redundancy version RVx.
  • the network device can configure the redundancy version RVx on the time domain resource unit Ux for the terminal device.
  • the network device may notify the terminal device by using the downlink control information or the high layer signaling, or the correspondence between the time domain resource unit Ux and the redundancy version RVx, or the correspondence between the time domain resource unit set and the redundancy version RVx.
  • the terminal device may determine a redundancy version RVx of the system message on the time domain resource unit Ux based on the correspondence.
  • the redundancy version RVx of the system message on the time domain resource unit Ux in the multiplexing manner of different system messages and synchronization signal blocks can be obtained by different methods (for example, predefined, configured, indicated, etc.).
  • the multiplexing manner of the different system messages and synchronization signal blocks includes time division multiplexing and frequency division multiplexing.
  • the RMSI transmission of the RMSI and the synchronization signal block is time division multiplexed in the time domain resource unit Ux.
  • the adopted redundancy version RVx can be obtained according to the method described in FIG.
  • the RMSI transmission with the RMSI and the synchronization signal block is multiplexed.
  • the redundancy version RVx used in the time domain resource unit Ux can be configured by the DCI or Instructions. In another example, the RMSI transmission of the RMSI and the synchronization signal block is multiplexed.
  • the redundancy version RVx used in the time domain resource unit Ux can be configured or indicated by the DCI, and the RMSI is transmitted in the frequency division multiplexing of the RMSI and the synchronization signal block.
  • the redundancy version RVx adopted by the time domain resource unit Ux can be obtained according to the method described in FIG. 4 and FIG. 6 above.
  • some fields in the DCI may be multiplexed, for example, at least one of the following fields: ⁇ Field Redundancy version, Field HARQ process number, Field TPC command for PUCCH, Field ARI (ACK/NAK Resource Index), field Frequency domain resource assignment, field ARI HARQ timing indicator, field carrier indicator, field BWP indicator, field Time-domain PDSCH resources, field VRB-to-PRB mapping, field Reserved resource set on/ Off, field Bundling size indicator, field Modulation and coding scheme, second CW, field New data indicator, second CW, field Redundancy version, second CW, field CBGFI, field CBGTI, field Downlink Assignment Index, field Antenna port(s), field TCI (Transmission Configuration Indication) ⁇ .
  • fields in the DCI may be multiplexed, for example, at least one of the following fields: ⁇ Field Redundancy version, Field HARQ process number, Field TPC command for PUCCH, Field ARI (ACK/NAK Resource Index), field Fre
  • the network device can simultaneously adopt the method described in FIG. 4 and FIG. 6 above and the method for configuring the RVx in the DCI; the RVx in the DCI of the system message received by the terminal device is described in FIG. 4 and FIG. 6 above.
  • the RVx indicated in the DCI may be used, or the method described in FIG. 4 and FIG. 6 above may be used.
  • the network device may also adopt the method described in the foregoing FIG. 4 and FIG. 6 as a default method. If the RVx is configured in the DCI, the terminal device takes the DCI configuration as the standard.
  • the network device may also carry the RVx in the DCI in the DCI and use the method described in FIG. 4 and FIG. 6 above, and may multiplex any of the above fields for indication.
  • the communications device can use the redundancy version in the at least two consecutive time domain resource units in the time domain according to the methods illustrated and described with respect to Figures 7B, 8B, 9A, 9C
  • the system message is received or transmitted on at least one time domain resource unit.
  • the system message redundancy version determining method and apparatus solves the problem that the number of time domain resource units capable of carrying the effective RV of the system message is solved, thereby solving the effective RV of the beam on some time domain resource units that cannot support the system message.
  • the problem that the number of message beams of the system is reduced is increased, thereby improving the coverage of the system message, and in some embodiments, the RV of the system for transmitting and receiving system messages on the beam can be added in the system message window or the system message sub-window, which is a system message. Receive provides greater frequency selectivity gain.
  • the method implemented by the communication device in the foregoing various method embodiments can also be implemented by components (for example, integrated circuits, chips, etc.) that can be used for the communication device.
  • the embodiment of the present application further provides a corresponding communication device (sometimes referred to as a communication device), where the communication device includes a corresponding one for performing each part in the foregoing embodiment.
  • a corresponding communication device sometimes referred to as a communication device
  • the communication device includes a corresponding one for performing each part in the foregoing embodiment.
  • Module can be software, hardware, or a combination of software and hardware.
  • FIG. 14 is a block diagram showing the structure of a communication device.
  • the communication device 1400 may be the network device 10 or 20 in FIG. 2, or may be the terminal device 11, 12, 21 or 22 in FIG.
  • the communication device can be used to implement the method corresponding to the communication device described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiment.
  • the communication device 1400 can include one or more processors 1401, which can also be referred to as a processing unit, and can implement certain control functions.
  • the processor 1401 may be a general purpose processor or a dedicated processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used for communication devices (eg, base stations, baseband chips, distributed units (DUs), or centralized units (CUs), etc. Control, execute software programs, and process data from software programs.
  • the processor 1401 may also store an instruction 1403, the instructions being executable by the processor, such that the communication device 1400 performs the method corresponding to the communication device described in the foregoing method embodiments. .
  • communication device 1400 can include circuitry that can implement the functions of transmitting or receiving or communicating in the foregoing method embodiments.
  • the communication device 1400 may include one or more memories 1402 on which the instructions 1404 are stored, and the instructions may be executed on the processor, so that the communication device 1400 performs the above method embodiment.
  • the method described in may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and the memory may be provided separately or integrated.
  • the communication device 1400 may further include a transceiver 1405 and/or an antenna 1406.
  • the processor 1401 may be referred to as a processing unit to control a communication device (terminal device or network device).
  • the transceiver 1405 can be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing a transceiving function of the communication device.
  • the processor 1401 determines at least one time domain resource unit Ux, and the processor 1401 determines the time domain resource unit Ux according to the number of synchronization signal blocks N, the time domain resource unit Ux includes at least one for receiving Or transmitting a PDCCH of the system message and/or a time domain resource unit of a PDSCH of the system message.
  • the processor is further configured to support the communication device 1400 to receive or send a system message based on the determined redundancy version RVx.
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board ( Printed circuit board, PCB), electronic equipment, etc.
  • IC integrated circuit
  • analog IC an analog IC
  • radio frequency integrated circuit RFIC a radio frequency integrated circuit
  • mixed signal IC an application specific integrated circuit
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • electronic equipment etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide semiconductor (n-metal oxide semiconductor) (n-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type A positive oxide metal oxide semiconductor (PMOS), a Bipolar Junction Transistor (BJT), a bipolar CMOS (BiCMOS), a silicon germanium (SiGe), or a gallium arsenide (GaAs).
  • CMOS complementary metal oxide semiconductor
  • n-metal oxide semiconductor n-type metal oxide semiconductor
  • PMOS P-type A positive oxide metal oxide semiconductor
  • BJT Bipolar Junction Transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device is described by taking a network device or a terminal device as an example, the scope of the communication device described in the present application is not limited thereto, and the structure of the communication device may not be limited by FIG.
  • the communication device can be a standalone device or can be part of a larger device.
  • the device can be:
  • the set of ICs may also include storage means for storing data and/or instructions;
  • an ASIC such as a modem (MSM);
  • FIG. 15 provides a schematic structural diagram of a terminal device.
  • the terminal device can be adapted for use in the system shown in FIG. 2.
  • FIG. 15 shows only the main components of the terminal device.
  • the terminal 1500 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire terminal, executing software programs, and processing data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 15 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 15 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • an antenna and control circuit having a transceiving function can be regarded as a transceiving unit 1511 of the terminal device 1500, and a processor having a processing function can be regarded as a processing unit 1512 of the terminal device 1500.
  • the terminal device 1500 includes a transceiving unit 1511 and a processing unit 1512.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 1511 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 1511 is regarded as a sending unit, that is, the transceiver unit 1511 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the communication device may be a terminal device, or may be a component of the terminal device (for example, an integrated circuit, a chip, etc.); the communication device may also be a network device or a component of the network device (for example, an integrated circuit, a chip, etc.) Or the communication device may be another communication module for implementing the operation corresponding to the communication device in the method embodiment of the present application.
  • the communication device 1600 can include a processing module 1602.
  • the transceiver module 1601 and the storage module 1603 are further included.
  • the M is a predefined positive real number.
  • the M is any one of ⁇ 1, 2, 4, 5, 8, 16 ⁇ .
  • the M is a number of time domain resource units included in the system message sub-window.
  • the processing module 1602 determines the M according to a sending period of the system message.
  • the sending period of different system messages corresponds to the same M.
  • the sending period of the M or the system message is indicated by an existing field in the DCI, or
  • the sending period of the M or the system message is configured by high layer signaling, and the high layer signaling is at least one of RRC signaling, system message, or MAC-CE, or
  • the sending period of the M or the system message is configured (indicated) by DCI and high layer signaling, and the high layer signaling is at least one of RRC signaling, system message or MAC-CE;
  • the DCI and/or higher layer signaling is received or transmitted by the transceiver module 1601.
  • the different system messages are respectively defined or configured (indicated) by M of the multiplexing mode of the synchronization signal block or the transmission period of the system message.
  • the multiplexing manner of the different system messages and synchronization signal blocks includes time division multiplexing and frequency division multiplexing.
  • the processing module 1602 determines the M according to at least one of ⁇ the number of synchronization signal blocks N, the number of time domain resource units D ⁇ included in the sub-window of the system message.
  • D represents the number of time domain resource elements included in a sub-window of a system message
  • n represents a positive integer, which can be understood as a multiple of the beam scanning period in some implementations
  • F represents a non-negative integer, and in some implementations Obtained by configuration or by predefined means.
  • the beam carrying the system message in the sub-window of the one system message is one of the beams carrying the N synchronization signal blocks.
  • the processing module 1602 determines the time domain resource unit Ux according to the number N of synchronization signal blocks, where the time domain resource unit Ux includes at least one PDCCH for receiving or transmitting the system message, and/or the The time domain resource unit of the PDSCH of the system message.
  • the time domain resource unit Ux is fixed or predefined, or the time domain resource unit Ux is configured or indicated by a signaling received or sent by the transceiver module 1601; the time domain resource unit The Ux includes at least one time domain resource unit for receiving or transmitting a PDCCH of the system message and/or a PDSCH of the system message.
  • the time domain resource unit Ux includes a start time domain resource unit of a PDSCH for receiving or transmitting the PDCCH of the system message and/or the system message.
  • the processing module 1602 determines at least two time domain resource units that are contiguous in the time domain that are operable to receive or transmit system messages; the processing module 1602 determines that the system messages are used on the at least two time domain resource units A redundancy version in which the system message is the same as the redundancy version used on the at least two time domain resource units.
  • the at least two time domain resource units are time domain resource units capable of carrying the system message.
  • the at least two time domain resource units belong to one time domain resource unit set, and the time domain resource unit set includes: one or more radio frames, or one or more subframes, or one or more times Gap, or one or more mini-slots, or one or more symbols, or one or more system message occasions, or one or more system message windows, or one or more system message sub-windows, one or more Beam scanning period.
  • system message includes RMSI, OSI, or RMSI and OSI.
  • the time domain resource unit may be any one of a symbol, a minislot, a time slot, a subframe, a radio frame, or a sampling point.
  • the storage module 1603 is configured to store at least one of parameters, information, and instructions.
  • one or more of the modules in FIG. 16 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors.
  • the implementation is not limited by the embodiment of the present application.
  • the implementation is implemented by one or more processors, a memory, and a transceiver.
  • the processor, the memory, and the transceiver may be separately configured or integrated.
  • processing units for performing these techniques at a communication device may be implemented in one or more general purpose processors, digital signal processors (DSPs), digital Signal processing device (DSPD), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or In any combination.
  • DSPs digital signal processors
  • DSPD digital Signal processing device
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, instructions executed by the processor, or a combination of the two.
  • the memory can be RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the memory can be coupled to the processor such that the processor can read information from the memory and can write information to the memory.
  • the memory can also be integrated into the processor.
  • the processor and the memory can be disposed in the ASIC, and the ASIC can be disposed in the terminal. Alternatively, the processor and memory may also be located in different components in the terminal.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or packet
  • the center transmits to another website site, computer, server, or packet center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a packet storage device that includes one or more available media integrated servers, packet centers, and the like.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)). Combinations of the above should also be included within the scope of the computer readable media.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种系统消息冗余版本的确定方法及装置。通信设备确定至少一个时域资源单元Ux,并根据所述时域资源单元Ux,确定系统消息在所述时域资源单元Ux的冗余版本RVx,其中,x为所述时域资源单元的标识,所述冗余版本RVx满足RVx=(Int1(X1/X2*(Int2(x/M)mod K)))mod L,其中x为非负整数,X1和X2为非零实数,M为正实数,K和L为正整数;mod表示取模;Int1表示上取整或下取整,Int2表示上取整或下取整。

Description

系统消息冗余版本确定方法及装置
本申请要求在2018年4月4日提交中国国家知识产权局、申请号为201810299694.1、发明名称为“系统消息冗余版本确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种系统消息冗余版本确定方法及装置。
背景技术
无线通信网络中,系统消息是网络设备下发给终端设备的系统级别或小区级别的消息。例如,LTE(long term evolution)中的系统消息可以是系统消息块(System Information Block,SIB),且定义有不同的SIB(SIB1、SIB2等),不同的SIB承载不同功能的信息。
LTE的SIB1的传输时间间隔(Transmission Time Interval,TTI)为80毫秒(ms)。所述TTI为80ms,是指在80ms内,发送的SIB1承载的都是相同的信息,在下一个80ms才会发送承载不同信息的SIB1。SIB1的发送周期为20ms,因此其在80ms的TTI内会重复发送4次,即在SFN(System Frame Number)为偶数的无线帧(也可称作系统帧)上传输SIB1,其中SFN表示无线帧的帧号。4次SIB1传输采用不同的冗余版本(Redundancy Version,RV),具体来说,上述4次SIB1传输采用的RV分别为0、2、3、1。图1A给出了上述SIB1传输的一个例子。在SIB1 TTI周期80ms内的第一个20ms发送周期内的第一个无线帧(即SFN=0对应的无线帧)传输RV为0的SIB1,在第二个20ms内的第一个无线帧(即SFN=2对应的无线帧)传输RV为2的SIB1,在第三个20ms内的第一个无线帧(即SFN=4对应的无线帧)传输RV为3的SIB1,在第四个20ms内的第一个无线帧(即SFN=6对应的无线帧)传输RV为1的SIB1,且上述4个SIB1均承载相同的信息。
对于LTE的SIB2,其发送周期为160ms,其遵循基于窗口的传输,所述窗口是指配置的一个时段,SIB2只能在所述窗口中进行传输,且SIB2在一个所述窗口中至少有一次传输。图1B给出了LTE中SIB2传输的一个例子,以无线帧长度为10ms为例。图1B中示意了两个SIB2窗口,每个窗口包含两个无线帧,一个窗口包含无线帧0和无线帧1,另一个窗口包含无线帧16和无线帧17,且两个窗口之间的时间间隔为SIB2的发送周期(即160ms)。每一个上述窗口中包含20个长度为1ms的子帧。所述20个子帧上能够承载的SIB2的RV是由SIB2所在子帧的标识确定的,具体来说,在包含无线帧16和无线帧17的窗口中,{i=0,i=4,i=8,i=12,i=16}的5个子帧可以承载RV为0的SIB2,{i=1,i=5,i=9,i=13,i=17}的5个子帧可以承载RV为2的SIB2,{i=2,i=6,i=10,i=14,i=18}的5个子帧可以承载RV为3的SIB2,{i=3,i=7,i=11,i=15,i=19}的5个子帧可以承载RV为1的SIB2。
又例如,新空口(New Radio,NR)网络中,波束成型技术用来将传输信号的能量限制在某个方向内,从而增加信号在该方向上的接收效率。为了增强覆盖,波束成型需结合波束扫描以尽可能多而全的覆盖不同方向,并且系统消息需支持冗余版本的收发。
发明内容
本申请实施例一方面提供一种用于无线通信的方法和装置。通信设备确定至少一个时域资源单元Ux,x为所述时域资源单元的标识;所述通信设备根据所述时域资源单元Ux,确定系统消息在所述时域资源单元Ux的冗余版本RVx,所述冗余版本RVx满足RVx=(Int1(X1/X2*(Int2(x/M)mod K)))mod L,其中x为非负整数,X1和X2为非零实数,M为正实数,K和L为正整数;mod表示取模;Int1表示上取整或下取整,Int2表示上取整或下取整。在本方案中,通信设备可以为终端侧设备(例如终端设备、或可用于终端设备的芯片等)、或网络侧设备(例如可以为基站,或可用于基站的芯片等)。本方案中,承载系统消息有效RV的时域资源单元数量被提升,可以避免某些时域资源单元上无法支持系统消息的有效RV,从而提高了系统消息的覆盖范围。
在一种可能的实现方式中,所述M为预定义的正实数。优选地,所述M为{1、2、4、5、8、16}中的任意一个。
在一种可能的实现方式中,所述M为系统消息子窗口包含的时域资源单元数量。
在一种可能的实现方式中,所述通信设备根据所述系统消息的发送周期确定所述M。
在一种可能的实现方式中,不同的系统消息的发送周期对应相同的M。
在一种可能的实现方式中,包括:所述M或所述系统消息的发送周期由下行控制信息(Downlink Control Information,DCI)中的已有字段指示,或者所述M或所述系统消息的发送周期由高层信令配置,所述高层信令为无线资源控制(Radio Resource Control,RRC)信令、系统消息或媒体接入控制元素(Media Access Control-Control Element,MAC-CE)中的至少一种,或者所述M或所述系统消息的发送周期由DCI和高层信令配置(指示),所述高层信令为RRC信令、系统消息或MAC-CE中的至少一种。
在一种可能的实现方式中,不同的系统消息与同步信号块的复用方式下的M或所述系统消息的发送周期分别定义或配置(指示)。所述不同的系统消息与同步信号块的复用方式包含时分复用和频分复用。
在上述方案中,通过增加能够承载系统消息有效RV的时域资源单元数量,从而解决了某些时域资源单元上的波束无法支持系统消息的有效RV进而承载系统消息波束数量减少的问题,从而提高了系统消息的覆盖范围,并且能够在系统消息窗口或系统消息子窗口内增加一个波束上收发系统消息的RV,为系统消息的接收提供更大的频选性增益。
在一种可能的实现方式中,所述通信设备根据{同步信号块数量N,系统消息的子窗口包含的时域资源单元数量D}中的至少一项确定所述M。
在一种可能的实现方式中,M=N*D,或者M=n*N*D,或者M=N*D+F,或者M=n*N*D+F。其中D表示所述系统消息的一个子窗口包含的时域资源单元数量;n表示正整数,在某些实现方式中可理解为波束扫描周期的倍数;F表示非负整数,在某些实现方式中可通过配置或预定义的方式获得。
在一种可能的实现方式中,所述系统消息的一个子窗口内承载所述系统消息的波束为承载所述N个同步信号块的波束中的一个。
在上述方案中,通过增加能够承载系统消息有效RV的时域资源单元数量,从而解决了某些时域资源单元上的波束无法支持系统消息的有效RV进而承载系统消息波束数量减少的问题,从而提高了系统消息的覆盖范围,并且能够在系统消息窗口或系统消息子窗口内增加一个波束上收发系统消息的RV,为系统消息的接收提供更大的频选性增益。
在一种可能的实现方式中,所述通信设备根据同步信号块数量N确定所述时域资源单 元Ux。在另一种可能的实现方式中,所述时域资源单元Ux是固定的或是预定义的,或者所述时域资源单元Ux是由通信设备配置或指示的。
在一种可能的实现方式中,所述时域资源单元Ux包含至少一个用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的时域资源单元。例如,所述时域资源单元Ux包含用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的起始时域资源单元。
本方案中,系统消息可以包含RMSI、OSI、或者RMSI和OSI。所述时域资源单元可以为符号、微时隙、时隙、子帧、无线帧、或采样点中的任意一种。
在上述方案中,通过确定系统消息采用波束扫描时在一轮扫描中的至少一个时域资源单元,可以减少终端设备盲检系统消息的次数,从而降低终端设备的功耗和复杂度。
第二方面,本申请实施例提供一种用于无线通信的方法及装置。通信设备确定可用于接收或发送系统消息的至少两个在时域上连续的时域资源单元,以及确定系统消息在所述至少两个时域资源单元上使用的冗余版本,所述系统消息在所述至少两个时域资源单元上使用的冗余版本相同。所述通信设备在所述至少两个时域资源单元上使用相同的冗余版本接收或发送系统消息。
在一种可能的实现方式中,所述至少两个时域资源单元为能够承载所述系统消息的时域资源单元。
在一种可能的实现方式中,所述至少两个时域资源单元属于一个时域资源单元集合。所述时域资源单元集合包含一个或多个无线帧;或者包含一个或多个子帧;或者包含一个或多个时隙;或者包含一个或多个微时隙;或者包含一个或多个符号;或者包含一个或多个系统消息窗口;或者包含一个或多个系统消息子窗口;或者包含一个或多个波束扫描周期;或者包含一个或多个系统消息时机,所述系统消息时机为在时域上离散或连续的时域资源单元集合,所述系统消息时机上可以承载所述系统消息的PDCCH和/或所述系统消息的PDSCH。
上述方案中,所述系统消息包含RMSI、OSI、或者RMSI和OSI。所述时域资源单元可以为符号、微时隙、时隙、子帧、无线帧、或采样点中的任意一种。
在上述方案中,通过增加能够承载系统消息有效RV的时域资源单元数量,从而解决了某些时域资源单元上的波束无法支持系统消息的有效RV进而承载系统消息波束数量减少的问题,从而提高了系统消息的覆盖范围,并且在部分实施方式下能够在系统消息窗口或系统消息子窗口内增加一个波束上收发系统消息的RV,为系统消息的接收提供更大的频选性增益。
第三方面,本申请实施例提供一种通信设备,包括:处理模块;所述处理模块用于确定至少一个时域资源单元Ux,x为所述时域资源单元的标识;所述处理模块根据所述时域资源单元Ux,确定系统消息在所述时域资源单元Ux的冗余版本RVx,所述冗余版本RVx满足RVx=(Int1(X1/X2*(Int2(x/M)mod K)))mod L,其中x为非负整数,X1和X2为非零实数,M为正实数,K和L为正整数;mod表示取模;Int1表示上取整或下取整,Int2表示上取整或下取整。
在一种可能的实现方式中,所述M为预定义的正实数。优选地,所述M为{1、2、4、5、8、16}中的任意一个。
在一种可能的实现方式中,所述M为系统消息子窗口包含的时域资源单元数量。
在一种可能的实现方式中,所述处理模块根据所述系统消息的发送周期确定所述M。
在一种可能的实现方式中,不同的系统消息的发送周期对应相同的M。
在一种可能的实现方式中,所述通信设备还包含收发模块,包括:所述M或所述系统消息的发送周期由下行控制信息(Downlink Control Information,DCI)中的已有字段指示,或者所述M或所述系统消息的发送周期由高层信令配置,所述高层信令为无线资源控制(Radio Resource Control,RRC)信令、系统消息或媒体接入控制元素(Media Access Control-Control Element,MAC-CE)中的至少一种,或者所述M或所述系统消息的发送周期由DCI和高层信令配置(指示),所述高层信令为RRC信令、系统消息或MAC-CE中的至少一种;所述DCI和/或高层信令由所述收发模块接收或发送。
在一种可能的实现方式中,包括:不同的系统消息与同步信号块的复用方式下的M或所述系统消息的发送周期分别定义或配置(指示)。所述不同的系统消息与同步信号块的复用方式包含时分复用和频分复用。
在一种可能的实现方式中,所述处理模块根据{同步信号块数量N,系统消息的子窗口包含的时域资源单元数量D}中的至少一项确定所述M。
在一种可能的实现方式中,M=N*D,或者M=n*N*D,或者M=N*D+F,或者M=n*N*D+F。其中D表示系统消息的一个子窗口包含的时域资源单元数量;n表示正整数,在某些实现方式中可理解为波束扫描周期的倍数;F表示非负整数,在某些实现方式中可通过配置或预定义的方式获得。
在一种可能的实现方式中,所述系统消息的一个子窗口内承载所述系统消息的波束为承载所述N个同步信号块的波束中的一个。
在上述方案中,能够承载系统消息有效RV的时域资源单元数量被提升,从而可以避免因某些时域资源单元无法支持系统消息的有效RV而造成承载系统消息波束数量减少的问题。因此,可以提高系统消息的覆盖范围,并且能够在系统消息窗口或系统消息子窗口内增加一个波束上收发系统消息的RV,为系统消息的接收提供更大的频选性增益。
在一种可能的实现方式中,所述处理模块用于确定所述时域资源单元Ux,包括:所述处理模块根据所述同步信号块数量N确定所述时域资源单元Ux,所述时域资源单元Ux包含至少一个用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的时域资源单元。
在一种可能的实现方式中,所述通信设备还包含收发模块;所述处理模块用于确定时域资源单元Ux,包括:所述时域资源单元Ux是固定的或是预定义的,或者所述时域资源单元Ux是由所述收发模块接收或发送的信令配置或指示的;所述时域资源单元Ux包含至少一个用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的时域资源单元。
在一种可能的实现方式中,所述时域资源单元Ux包含至少一个用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的时域资源单元,包括:所述时域资源单元Ux包含用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的起始时域资源单元。
在上述方案中,通过确定系统消息采用波束扫描时在一轮扫描中的至少一个时域资源单元,可以减少终端设备盲检系统消息的次数,从而降低终端设备的功耗和复杂度。
在一种可能的实现方式中,所述处理模块确定可用于接收或发送系统消息的至少两个 在时域上连续的时域资源单元;所述处理模块确定所述系统消息在所述至少两个时域资源单元上使用的冗余版本,所述系统消息在所述至少两个时域资源单元上使用的冗余版本相同。
在一种可能的实现方式中,所述至少两个时域资源单元为能够承载所述系统消息的时域资源单元。
在一种可能的实现方式中,所述至少两个时域资源单元属于一个时域资源单元集合。所述时域资源单元集合包含包含一个或多个无线帧;或者包含一个或多个子帧;或者包含一个或多个时隙;或者包含一个或多个微时隙;或者包含一个或多个符号;或者包含一个或多个系统消息窗口;或者包含一个或多个系统消息子窗口;或者包含一个或多个波束扫描周期;或者包含一个或多个系统消息时机,所述系统消息时机为在时域上离散或连续的时域资源单元集合,所述系统消息时机上可以承载所述系统消息的PDCCH和/或所述系统消息的PDSCH。
在上述方案中,通过增加能够承载系统消息有效RV的时域资源单元数量,从而解决了某些时域资源单元上的波束无法支持系统消息的有效RV进而承载系统消息波束数量减少的问题,从而提高了系统消息的覆盖范围,并且在部分实施方式下能够在系统消息窗口或系统消息子窗口内增加一个波束上收发系统消息的RV,为系统消息的接收提供更大的频选性增益。
在一种可能的实现方式中,所述系统消息包含RMSI、OSI、或者RMSI和OSI。所述时域资源单元可以为符号、微时隙、时隙、子帧、无线帧、或采样点中的任意一种。
第四方面,本申请实施例提供一种通信设备,包括:处理器和存储器,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得通信设备以执行上述第一方面或第二方面任一项所述的方法。
第五方面,本申请实施例提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面或第二方面任一项所述的方法。
第六方面,本申请实施例提供一种芯片系统,包括:处理器,用于支持通信设备实现上述任一方面所描述的方法。
本申请实施例提供的系统消息冗余版本确定方法及装置,能够承载系统消息有效RV的时域资源单元数量被提升,可以避免因某些时域资源单元上无法支持系统消息的有效RV造成的承载系统消息数量减少的问题,从而提高了系统消息的覆盖范围。
附图说明
图1A为LTE系统中SIB1可能的传输示意图;
图1B为LTE系统中SIB2可能的传输示意图;
图2为本申请实施例提供的系统消息冗余版本确定方法应用的通信系统的示意图
图3A为一种系统消息窗口和系统消息子窗口的示意图;
图3B为另一种系统消息窗口和系统消息子窗口的示意图;
图3C为RMSI可能的传输示意图;
图4为本申请实施例提供的一种确定系统消息冗余版本的流程示意图;
图5A为RMSI收发时域资源单元的示意图;
图5B为OSI收发时域资源单元的示意图;
图6为本申请实施例提供的系统消息冗余版本确定方法的细节流程示意图;
图7A为由本申请实施例提供的系统消息冗余版本确定方法确定的第一种RMSI冗余版本示意图;
图7B为由本申请实施例提供的系统消息冗余版本确定方法确定的第一种RMSI冗余版本以及收发RMSI的示意图;
图8A为由本申请实施例提供的系统消息冗余版本确定方法确定的第二种RMSI冗余版本示意图;
图8B为由本申请实施例提供的系统消息冗余版本确定方法确定的第二种RMSI冗余版本以及收发RMSI的示意图;
图9A为由本申请实施例提供的系统消息冗余版本确定方法确定的第一种OSI冗余版本以及收发OSI的示意图;
图9B为由另一种系统消息冗余版本确定方法确定的一种OSI冗余版本以及收发OSI的示意图;
图9C为由本申请实施例提供的系统消息冗余版本确定方法确定的第二种OSI冗余版本以及收发OSI的示意图;
图9D为由本申请实施例提供的系统消息冗余版本确定方法确定的第三种OSI冗余版本示意图;
图10为本申请实施例提供的系统消息冗余版本确定以及系统消息收发的流程示意图;
图11为由本申请实施例提供的系统消息冗余版本确定方法确定的第三种RMSI冗余版本示意图;
图12为由本申请实施例提供的系统消息冗余版本确定方法确定的第四种RMSI冗余版本示意图;
图13为由本申请实施例提供的系统消息冗余版本确定方法确定的第五种RMSI冗余版本示意图;
图14为本申请实施例提供的一种通信装置的结构示意图;
图15为本申请实施例提供的一种终端设备的结构示意图;
图16为本申请实施例提供的一种通信设备示意图。
具体实施方式
本发明实施例提供的资源配置方法及装置可以应用于通信系统中。如图2示出了一种通信系统结构示意图。该通信系统中包括一个或多个网络设备(清楚起见,图中示出网络设备10和网络设备20),以及与该一个或多个网络设备通信的一个或多个终端设备。图中所示终端设备11和终端设备12与网络设备10连接,所示终端设备21和终端设备22与网络设备20连接。本申请中涉及的通信设备可以为终端设备或网络设备。
本发明实施例描述的技术可用于各种通信系统,例如2G,3G,4G,4.5G,5G通信系统,多种通信系统融合的系统,或者未来演进网络。例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA),长期演进(long term evolution,LTE)系统, 新空口(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)系统,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统等,以及其他此类通信系统。
本申请中,网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:全球移动通信系统(Global System for Mobile,GSM)或CDMA中的基站(base transceiver station,BTS),WCDMA中的基站(NodeB),LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的传输接收点(Transmission receiving point,TRP)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为终端、用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。
为便于说明本发明实施例的技术方案,对本申请涉及的一些术语或概念进行说明。
冗余版本RV,用于表示对传输的信息比特进行编码之后,得到一个或者多个码块,从码块或码块序列不同的位置截取数据比特作为起始数据比特进行重新排布,将排布的数据调制之后映射到对应的时频资源上,或者用于表示对传输的信息比特进行编码之后,得到一个码块,将该码块分为不同的几个码块,不同的码块映射到不同的时频位置上,不同的码块可以对应不同的RV。。例如,数据4次传输采用4个不同的RV,所述4个不同的RV在相同的信息比特中有四个不同的截取数据的起始位置,截取的数据经过调制之后映射到相应的频域位置,也意味着相同的信息比特映射到了不同的频域位置,当信息比特经过频选性比较强的信道的时候,相同的信息比特可以从不同的频域位置解调出来,拥有更好的频选性增益,从而获得更高的解调和解码性能。可以理解,也可以根据系统需求采用 其他个数的RV,例如6个RV,或8个RV等。本申请中以4个RV为例进行说明。
无线通信系统(例如NR)定义有同步信号块,所述同步信号快包含主同步信号(Primary Synchronization signal,PSS)、辅同步信号(Secondary Synchronization signal,SSS)、物理广播信号(Physical broadcast channel,PBCH)、解调参考信号(Demodulation Reference Signal,DMRS)中的至少一项。所述PSS和SSS可以用于终端设备进行同步,所述PBCH可以用于承载重要的系统消息,所述DMRS可以用于辅助解调PBCH。
在采用波束成型或波束扫描的无线通信系统(例如NR)中,上述同步信号块可以采用波束成型或波束扫描的方式收发,即一个波束承载一个同步信号块,不同的波束在不同的时域资源单元上传输,所述时域资源单元可以为符号,微时隙,时隙,子帧,无线帧或采样点等。通过不同的波束扫描不同的方向完成同步信号块在多个方向上的传输。
系统配置可以用于传输同步信号块的多个时域资源单元V1,所述多个时域资源单元V1用于承载可能传输的同步信号块,所述可能传输的同步信号块有其索引或编号,所述索引或编号用以标识所述可能传输的同步信号块。
上述可能传输的同步信号块可以理解为实际传输的同步信号块的候选,在实际传输同步信号块时,可以传输上述可能传输的同步信号块中的部分或全部,即所述实际传输的同步信号块为所述可能传输的同步信号块中的部分或全部。对应地,承载所述实际传输的同步信号块的一个或多个时域资源单元为所述多个时域资源单元V1中的部分或全部。所述实际传输的同步信号块有其索引或编号,所述索引或编号用以标识所述实际传输的同步信号块。
在采用波束成型或波束扫描的无线通信系统(例如NR)中,系统消息也可以采用波束成型或波束扫描的方式收发,即一个波束承载一个系统消息,不同的波束在不同的时域资源单元上传输,所述时域资源单元可以为符号,微时隙,时隙,子帧,无线帧或采样点等。通过不同的波束扫描不同的方向完成系统消息在多个方向上的传输。系统消息一般以一定的周期发送,所述周期可以称为系统消息的发送周期。
本发明实施例中的系统消息可以理解为承载所述系统消息的信道。承载所述系统消息的信道可以是物理下行共享信道(Physical Downlink Shared Channel,PDSCH),所述PDSCH用于承载所述系统消息的数据信息;所述承载所述系统消息的信道也可以是物理下行控制信道(Physical Downlink Control Channel,PDCCH),所述PDCCH用于承载所述系统消息的控制信息,所述控制信息也可称为所述系统消息的下行控制信息(Downlink control information,DCI)。
本发明实施例中的系统消息还可以理解为由信道承载的所述系统消息的数据信息和/或控制信息。所述信息可以是所述系统消息的数据信息,所述数据信息可以由PDSCH承载;所述信息也可以是所述系统消息的控制信息,所述控制信息可以由PDCCH承载,所述控制信息也可称为所述系统消息的DCI。
可以理解的是,上述系统消息的数据信息和/或控制信息可以是在物理层处理过程中任一过程处理前后的信息,所述物理层处理过程包含分段、解分段、信道编码、解信道编码、速率匹配、解速率匹配、加扰、解加扰、调制、解调制、物理资源映射和解物理资源映射中的至少一种。以信道编码过程为例:所述系统消息的数据信息可以是信道编码前的所述系统消息的数据信息,也可以是信道编码后的所述系统消息的数据信息;所述系统消息的控制信息可以是信道编码前的所述系统消息的控制信息,也 可以是信道编码后的所述系统消息的控制信息。
本申请为表述方便,将承载所述系统消息的数据信息的PDSCH或所述系统消息的数据信息称为系统消息的PDSCH,将承载所述系统消息的控制信息的PDCCH或所述系统消息的控制信息称为系统消息的PDCCH;或将上述系统消息的PDSCH和/或系统消息的PDCCH统称为系统消息;但本发明实施例并不限制系统消息的名称。
进一步地,上述系统消息的传输可以是类似于图1B所示例的基于窗口的传输。一个窗口可以包含一个或多个子窗口。一个子窗口可以理解成所述窗口内的一个时段,可以包含一个或多个时域资源单元(例如符号,微时隙,时隙,子帧,无线帧或采样点等),所述一个或多个时域资源单元可以在时域上离散或连续。一个子窗口可以与一个同步信号块关联,所述同步信号块可以是可能传输的同步信号块或实际传输的同步信号块。所述一个子窗口与一个同步信号块关联是指该子窗口内承载系统消息的波束与承载该子窗口关联的同步信号块的波束一致;或者是指该子窗口内承载的系统消息与关联的同步信号块具有准共址(Qusi Co-located,QCL)的关系,其中QCL关系表示两个信号在多普勒扩展、多普勒频移、平均增益、空域参数等方面可以是相同的或者相通的。所述子窗口内可以传输一个或多个所述系统消息,且所述系统消息可以采用一个或多个波束传输。不同的子窗口可以重叠,也可以不重叠。
所述系统消息可以是系统消息的PDCCH,所述子窗口可以理解为所述PDCCH所在的时域位置或所述PDCCH可能出现的时间段。终端设备可以在所述子窗口内先搜索系统消息的PDCCH,如果成功检测到所述系统消息的PDCCH,则可以根据所述PDCCH进一步接收所述系统消息的PDSCH。
所述系统消息也可以为系统消息的PDSCH。终端设备在所述子窗口内可以先搜索系统消息的PDCCH,如果成功检测到所述系统消息的PDCCH,则可以根据所述PDCCH进一步接收所述系统消息的PDSCH。
所述窗口也可以称为系统消息窗口、系统消息的窗口、系统消息发送窗口、系统消息发送的窗口、系统消息接收窗口或系统消息的接收窗口等。所述子窗口也可以称为系统消息子窗口、系统消息的子窗口、系统消息发送子窗口、系统消息发送的子窗口、系统消息接收子窗口、系统消息的接收子窗口、PDCCH时机或PDCCH子窗口等。所述窗口可以有其索引或编号,所述索引或编号用以标识所述窗口。所述子窗口可以有其索引或编号,所述索引或编号用以标识所述子窗口。图3A给出了一种可能的窗口和子窗口的示意。图3A中以无线帧长度为10ms、时隙长度为1ms、一个无线帧包含10个时隙为例,示意了两个系统消息窗口,每个窗口包含两个无线帧,一个窗口包含无线帧0和无线帧1,另一个窗口包含无线帧16和无线帧17。以包含无线帧16和无线帧17的系统消息窗口为例,其包含4个系统消息子窗口。每个系统消息子窗口包含在时域上离散的5个时隙:系统消息子窗口1包含无线帧16中的时隙0、时隙4、时隙8和无线帧17中的时隙2、时隙6;系统消息子窗口2包含无线帧16中的时隙1、时隙5、时隙9和无线帧17中的时隙3、时隙7;系统消息子窗口3包含无线帧16中的时隙2、时隙6和无线帧17中的时隙0、时隙4、时隙8;系统消息子窗口4包含无线帧16中的时隙3、时隙7和无线帧17中的时隙1、时隙5、时隙9。
可以理解的是,本发明实施例对子窗口包含的时域资源单元的数量、分布、类型等均不作限制。例如图3B给出了另一种可能的窗口和子窗口的示意,与图3A相比,图 3B中是以系统消息子窗口包含时域上连续时域资源单元为例的:系统消息子窗口1包含无线帧16中的时隙0-4;系统消息子窗口2包含无线帧16中的时隙5-9;系统消息子窗口3包含无线帧17中的时隙0-4;系统消息子窗口4包含无线帧17中的时隙5-9。
如上所述,系统消息采用波束成型或波束扫描的方式收发时,通过不同的波束扫描不同的方向完成系统消息在多个方向上的传输。波束扫描一轮或一圈持续的时间或时域资源单元数量可以称为波束扫描周期。例如系统消息使用6个波束发送,一个波束使用1个时隙,则所述系统消息的波束扫描周期为6个时隙。系统消息窗口包含至少一个波束扫描周期,所述波束扫描周期可以有其索引或编号,所述索引或编号用以在所述系统消息窗口内标识所述波束扫描周期。可选地,所述系统消息窗口长度可以为波束扫描周期的倍数(例如可以是1倍,2倍,3倍,4倍,6倍,8倍,16倍,12倍,10倍,32倍,20倍,24倍,28倍,36倍,40倍,44倍,48倍,52倍,56倍,60倍,64倍,或68倍等)。可选地,系统消息窗口可以与半静态上下行资源分配周期具有相同的时域起始位置。所述半静态上下行资源分配周期可以是网络设备通过高层信令半静态地为终端设备配置的,终端设备通过该配置还可以获得所述半静态上下行资源分配周期内的下行时域资源单元、灵活时域资源单元和上行时域资源单元;终端通过上述配置,可以获得所述半静态上下行资源分配周期在时域上的位置和时长,以及所述半静态上下行资源分配周期内的下行时域资源单元、灵活时域资源单元和上行时域资源单元在时域上的分布。所述下行时域资源单元可以用作下行传输;所述上行时域资源单元可以用作上行传输;所述灵活时域资源单元可以用作下行传输或上行传输,网络设备可以通过下行控制信令告知终端设备所述灵活时域资源单元的传输方向。
在采用波束成型或波束扫描的无线通信系统(例如NR)中,系统消息可以采用波束成型或波束扫描的方式收发。承载在一个波束上的系统消息在时域资源单元上传输,并采用对应的RV进行收发。所述时域资源单元可以为符号,微时隙(mini-slot),时隙,子帧,无线帧或采样点等。如果仍然采用图1A或图1B所示意的方法确定时域资源单元对应的RV,可能出现可以承载该系统消息的波束在某些时域资源单元上无法支持有效的RV,导致系统消息在该时域资源单元上无法收发,从而导致承载系统消息波束的数量减少,进而导致系统消息的覆盖变差。
图3C以一种波束扫描下剩余最小系统消息(Remaining Minimum System Information,RMSI)的传输为例来进一步阐明上述问题,其中RMSI为NR系统中定义的一种系统消息,也可以称为NR-SIB0信息、NR-SIB1信息或者NR-SIB2信息。图3C示意了16个无线帧(即SFN=0的无线帧-SFN=15的无线帧),每个无线帧持续时长以10ms为例,RMSI的TTI以160ms为例。若仍按照图1A所示的方法(即RVk=(ceil(3/2*k))mod 4,其中k=(SFN/2)mod 4)确定某个无线帧上传输RMSI使用的RV,则只有SFN为偶数的无线帧(即SFN=0,2...14)能够获得有效的RV,而SFN为奇数的无线帧(即SFN=1,3...15)无法通过上述方式获得有效的RV。原因是当SFN为奇数时,SFN/2不是整数,因此无法再对4进行取模操作。由此可以看出,在图3C所示的16个无线帧中,仅有8个无线帧上的波束可以承载RMSI的有效RV,其余8个无线帧上的波束无法承载RMSI的有效RV,因此会导致承载RMSI的波束数量减少,进而导致RMSI的覆盖变差,影响系统性能。
本发明实施例提供的系统消息冗余版本确定方法及装置,通过增加能够承载系统消息有效RV的时域资源单元数量,解决了上述某些时域资源单元上的波束无法支持系统消 息的有效RV进而承载系统消息波束数量减少的问题,从而提高了系统消息的覆盖范围。
本发明实施例中的系统消息的种类包含RMSI或其他系统消息(Other System Information,OSI)中的至少一种。其中RMSI可以携带上行随机接入配置信息、OSI的调度信息、以及同步信号和同步信号块的周期信息等内容中的至少一项内容;OSI可以携带SIB2,SIB3,SIB4...等系统消息块中的至少一种SIB信息,也可以携带其他系统信息,这些系统信息可以用作小区切换,频率切换,网络切换等。需要理解的是,本发明实施例也可以应用于其他种类的系统消息,例如LTE或NR中的SIB、系统信息块、基于广播的系统消息、基于随机接入过程请求的系统消息等,本发明对此不做限定。本领域技术人员可以理解,本发明中以RMSI为例的实施例也可以应用于OSI或其他种类的系统消息,以OSI为例的实施例也可以应用于RMSI或其他种类的系统消息。
需要说明的是,本申请中涉及的索引或编号,仅是为了表述方便的一种举例。本领域的技术人员可以理解,也可以采用其他的索引值。例如通过标准协议定义,或者基站和终端预先约定,或者预配置等方式,采用其他的索引值,使得通信双方理解一致。
下面以具体实施例结合附图对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图4为本申请实施例提供的一种系统消息冗余版本确定方法的流程图。如图4所示,本实施例的方法可以包括:
401部分,通信设备确定至少一个时域资源单元Ux,其中x可以理解为所述时域资源单元的标识或索引。
402部分,所述通信设备根据所述时域资源单元Ux确定系统消息在所述时域资源单元Ux的冗余版本RVx,所述冗余版本RVx满足RVx=(Int1(X1/X2*(Int2(x/M)mod K)))mod L,其中x为非负整数,X1和X2为非零实数,M为正实数,K和L为正整数;mod表示取模(A mod B表示A对B进行取模操作或运算);Int1表示上取整或下取整的操作或运算,Int2表示上取整或下取整的操作或运算。其中RVx中的x与Ux中的x可以理解为对应的。
在401部分中,所述时域资源单元表示一段时间长度,例如,可以是符号,微时隙,时隙,子帧,无线帧或采样点等,所述非负整数x为所述时域资源单元的标识或索引。以所述时域资源单元为无线帧为例,则x可以为SFN(即无线帧的编号);以所述时域资源单元为时隙为例,则x可以为时隙编号。所述时域资源单元可以用作发送或接收系统消息。需要说明的是,当通信设备为终端设备时,则所述终端设备可以在所述时域资源单元上接收所述系统消息;当通信设备为网络设备时,则所述网络设备可以在所述时域资源单元上发送所述系统消息。需要说明的是,为方便描述,本发明实施例中对时域资源单元Ux和其对应的标识或索引x有时也可以不加以区分。
图5A以发送或接收RMSI的时域资源单元为例,所述时域资源单元为无线帧。图5A示意了16个无线帧,每个无线帧持续时长以10ms为例。所述非负整数x在图5A中以x=0,x=1,...,x=15标识图5A中的16个无线帧U0,U1,...U15。
图5B以发送或接收OSI的时域资源单元为例,所述时域资源单元为时隙。图5B示意了32个时隙,每个时隙持续时长以0.25ms为例。所述非负整数x在图5B中以x=0,x=1,...,x=31标识图5B中的32个时隙U0,U1,...U31。
可选地,所述时域资源单元的标识x可以在一个时段内独立编号,即所述时域资源单元的标识x可以是一个时段内的时域资源单元索引或时域资源单元编号。以图5B为例示意了三个时间上离散的窗口(即窗口0、窗口1和窗口2),所述窗口可以理解为所述的一个时段,例如所述窗口可以为图3A和图3B中描述的系统消息窗口或系统消息子窗口。图5B示意了在窗口1中包含32个时隙,所述非负整数x在图5B中以x=0,x=1,...,x=31标识图5B窗口1内的32个时隙。以窗口0包含64个时隙、窗口2包含32个时隙为例,则所述非负整数x以x=0,x=1,...,x=63标识图5B窗口0内的64个时隙,以x=0,x=1,...,x=31标识图5B窗口2内的32个时隙。图5B中示意的窗口数量、窗口的位置以及窗口内的时域资源单元数量仅为示例,例如窗口数量可以是除了3以外的值,窗口之间在时间上可以是连续的,窗口内的时域资源单元数量可以是除了32、64以外的值,窗口内的时域资源单元可以是符号、微时隙、时隙、子帧、无线帧或采样点等。若所述窗口为图3A和图3B中描述的系统消息窗口,则窗口的时间长度可以是50ms,60ms,70ms,80ms,90ms,100ms,110ms,120ms,130ms,140ms,150ms,160ms,320ms,或640ms等,例如可以为80ms或160ms,或者80ms和160ms。
可选地,所述时域资源单元的标识x还可以是一个时段内的下行时域资源单元索引或下行时域资源单元编号,或者是一个时段内的可以用作下行传输的时域资源单元索引或可以用作下行传输的时域资源单元编号。所述一个时段与图5B中的描述类似,在此不再赘述。所述可以用作下行传输的时域资源单元可以包含下行时域资源单元和灵活时域资源单元中的至少一种。
可选地,所述时域资源单元的标识x还可以是实际传输的同步信号块的索引,或是可能传输的同步信号块的索引,或是系统消息子窗口的索引,或是与实际传输或可能传输的同步信号块x关联的系统消息子窗口的索引,或是波束扫描周期的索引。
可选地,所述时域资源单元的标识x还可以与实际传输的同步信号块的索引、可能传输的同步信号块的索引、系统消息子窗口的索引、与实际传输或可能传输的同步信号块关联的系统消息子窗口的索引、或是波束扫描周期的索引中的至少一项索引有关联关系。所述关联关系可以理解为,在给出上述至少一项索引后,可以由所述至少一项索引通过某种变换关系(例如某种函数关系)获得所述时域资源单元的标识x。
在402部分中,所述通信设备根据所述时域资源单元Ux,确定系统消息在所述时域资源单元Ux的冗余版本RVx。图6给出了一套详细的确定所述系统消息在所述时域资源单元Ux的冗余版本RVx的流程示例。图6的流程仅以图4402部分中示意的公式为例进行描述。可以理解的是,采用其他方法或公式获得本发明实施例提供的技术效果的也属于本发明的保护范畴。
在601部分中,通信设备根据x/M确定参数x1,即x1=x/M,其中M为正实数。
进一步地,所述M可以为预定义的正实数,即采用602部分。在第一种示例中,以M=2为例,则x1=x/2。604部分中,所述通信设备对所述参数x1下取整获得参数x2,则x2=floor(x1)=floor(x/2),其中floor(Q2)表示对Q2进行向下取整操作或运算,Q2为正实数。需要说明的是,向下取整也可以称为下取整,还可以使用
Figure PCTCN2019079493-appb-000001
表示;对Q2下取整也可以通过对Q2上取整再减1实现;如果Q2本身就是整数,则floor(Q2)也可理解为不做下取整操作,即floor(Q2)=Q2。额外需要说明的是,本申请中ceil(Q1)表示对Q1进行向上取整操作或运算,Q1为正实数;向上取整也可以称为上取整,还可以使用
Figure PCTCN2019079493-appb-000002
表示;对 Q1上取整也可以通过对Q1下取整再加1实现;如果Q1本身就是整数,则ceil(Q1)也可理解为不做上取整操作,即ceil(Q1)=Q1。
605部分与606部分中,所述通信设备可以根据所述参数x2,确定参数x3,再根据所述参数x3,确定系统消息在所述时域资源单元Ux的冗余版本RVx。在605部分中,所述通信设备可以采用参数x2对K取模确定所述参数x3,其中K为预定义的正整数。例如K可以是预定义的RV个数,以K取4为例,可以理解为预定义有4个RV(例如RV=0,RV=2,RV=3,RV=1),则x3=x2mod K=x2 mod 4=floor(x/2)mod 4。可以理解的是,本申请实施例在605部分中并不限定K的具体取值。例如,K还可以取2或8,则可以理解为预定义有2个或8个RV。
进一步地,在606部分中,所述通信设备可以根据RVx=(ceil(3/2*(x3)))mod L获得系统消息在所述时域资源单元Ux的冗余版本RVx,其中L为预定义的正整数。例如L可以是预定义的RV个数,以L取4为例,可以理解为预定义有4个RV(例如RV=0,RV=2,RV=3,RV=1),则RVx=(ceil(3/2*(x3)))mod L=(ceil(3/2*(floor(x/2)mod 4)))mod 4。可以理解的是,本申请实施例在606部分中并不限定L的具体取值。例如L还可以取2,则可以理解为预定义有2个RV。可以理解的是,上述公式可以理解为图4402部分中的X1和X2分别取3和2。此外,在606部分中所述通信设备还可以根据其他公式获得系统消息在所述时域资源单元Ux的冗余版本RVx,例如可以采用下列公式中的任意一个:
RVx=ceil(3/2*(x3))mod L、RVx=ceil(1/2*(x3))mod L、RVx=ceil(5/2*(x3))mod L、RVx=ceil(7/2*(x3))mod L、RVx=ceil(1/3*(x3))mod L、RVx=ceil(2/3*(x3))mod L、RVx=ceil(4/3*(x3))mod L、RVx=ceil(5/3*(x3))mod L、RVx=ceil(7/3*(x3))mod L、RVx=ceil(1/4*(x3))mod L、RVx=ceil(3/4*(x3))mod L、RVx=ceil(5/4*(x3))mod L、RVx=ceil(7/4*(x3))mod L、RVx=ceil(1/5*(x3))mod L、RVx=ceil(2/5*(x3))mod L、RVx=ceil(3/5*(x3))mod L、RVx=ceil(4/5*(x3))mod L、RVx=ceil(6/5*(x3))mod L、RVx=ceil(7/5*(x3))mod L、RVx=ceil(1/6*(x3))mod L、RVx=ceil(5/6*(x3))mod L、RVx=ceil(7/6*(x3))mod L、RVx=ceil(1/7*(x3))mod L、RVx=ceil(2/7*(x3))mod L、RVx=ceil(3/7*(x3))mod L、RVx=ceil(4/7*(x3))mod L、RVx=ceil(5/7*(x3))mod L或RVx=ceil(6/7*(x3))mod L。上述公式中的ceil也可以替换为floor;X1和X2还可以有其他的取值;此外,X1/X2还可以理解为一个整体,例如X1/X2可以是一个常数。
602部分的第二种示例中,以M=4为例,则x1=x/4。604部分中,所述通信设备对所述参数x1上取整获得参数x2,则x2=ceil(x1)=ceil(x/4),其中ceil(Q2)表示对Q2进行向上取整操作或运算,Q2为正实数。605部分与606部分与前述类似,在此不再赘述。则可以获得系统消息在所述时域资源单元Ux的冗余版本为RVx=(ceil(3/2*(x3)))mod L=(ceil(3/2*(ceil(x/4)mod 4)))mod 4。
图7A给出了依据上述第一种和第二种示例得到的系统消息在时域资源单元Ux的冗余版本RVx示意。图7A以系统消息是RMSI,且有标识为x=0,x=1,...,x=15的16个无线帧为例,示意了可以承载RMSI冗余版本RVx。图7A中所有的16个无线帧均可以支持RMSI的有效RV,因此所示意的16个无线帧中的波束均可用作RMSI的波束成型或波束扫描,与图3C示意的现有方案相比,增加了能够用于承载RMSI的波束数量,从而增强了RMSI在波束成型或波束扫描下的覆盖。
图7B以RMSI为例,示意了在一个RMSI TTI中RMSI的PDSCH使用的RV。图7B中RMSI在时域资源单元Ux的冗余版本RVx与图7A一致。以RMSI TTI为160ms、RMSI发送周期为40ms为例,RMSI在一个TTI中可以在无线帧{x=0,x=4,x=8,x=12}上传输,且在x=0和x=8的无线帧上RMSI的PDSCH的RV=0,在x=4和x=12的无线帧上RMSI的PDSCH的RV=3,共采用了两种RV完成一个TTI内的RMSI收发。以RMSI TTI为160ms、RMSI发送周期为80ms为例,RMSI在一个TTI中可以在无线帧{x=0,x=8}上传输,且在x=0和x=8的无线帧上RMSI的PDSCH的RV=0,共采用了一种RV完成一个TTI内的RMSI收发。
602部分的第三种示例中,以M=4为例,则x1=x/4。604部分中,所述通信设备对所述参数x1下取整获得参数x2,则x2=floor(x1)=floor(x/4)。605部分和606部分与前述类似,在此不再赘述。则可以获得系统消息在时域资源单元Ux的冗余版本为RVx=(ceil(3/2*(floor(x/4)mod 4)))mod 4。
602部分的第四种示例中,以M=8为例,则x1=x/8。604部分中,所述通信设备对所述参数x1上取整获得参数x2,则x2=ceil(x1)=ceil(x/8)。605部分和606部分与前述类似,在此不再赘述。则可以获得系统消息在时域资源单元Ux的冗余版本为RVx=(ceil(3/2*(ceil(x/8)mod 4)))mod 4。
图8A给出了依据上述第三种和第四种示例得到的系统消息在时域资源单元Ux的冗余版本RVx示意。图8A以系统消息是RMSI、且有标识为x=0,x=1,...,x=15的16个无线帧为例,示意了可以承载RMSI冗余版本RVx。图8A中所有的16个无线帧均可以支持RMSI的有效RV,因此所示意的16个无线帧中的波束均可用作RMSI的波束成型或波束扫描,与图3C示意的现有方案相比,增加了能够用于承载RMSI的波束数量,从而增强了RMSI在波束成型或波束扫描下的覆盖。
图8B以RMSI为例,示意了RMSI TTI中RMSI的PDSCH使用的RV。图8B中RMSI在时域资源单元Ux的冗余版本RVx与图8A一致。以RMSI TTI为160ms,RMSI发送周期为40ms为例,RMSI在一个TTI中可以在无线帧{x=0,x=4,x=8,x=12}上传输,且在x=0的无线帧上RMSI的PDSCH的RV=0,在x=4的无线帧上RMSI的PDSCH的RV=2,在x=8的无线帧上RMSI的PDSCH的RV=3,在x=12的无线帧上RMSI的PDSCH的RV=1,共采用了四种RV完成一个TTI内的RMSI收发。以RMSI TTI为160ms,RMSI发送周期为80ms为例,RMSI在一个TTI中可以在无线帧{x=0,x=8}上传输,且在x=0的无线帧上RMSI的PDSCH的RV=0,在x=8的无线帧上RMSI的PDSCH的RV=3,共采用了两种RV完成一个TTI内的RMSI收发。与图7B相比,图8B对应的方案能够实现在相同RMSI发送周期的情况下,在一个TTI内使用更多的冗余版本进行RMSI的收发,能够在RMSI TTI内增加一个波束上收发RMSI的RV,从而能够提供更大的频选性增益。
602部分的第五种示例中,M还可以根据系统消息(例如RMSI)的发送周期确定。以Ux的单位为无线帧、RMSI的发送周期T1=10ms为例,则x1=x/M=x/1;以Ux的单位为无线帧、RMSI的发送周期T1=20ms为例,则x1=x/M=x/2;以Ux的单位为无线帧、RMSI的发送周期T1=40ms为例,则x1=x/M=x/4;以Ux的单位为无线帧、RMSI的发送周期T1=80ms为例,则x1=x/M=x/8,或者x1=x/M=x/4;以Ux的单位为无线帧、RMSI的发送周期T1=80ms为例,则x1=x/M=x/8,或者x1=x/M=x/4;以Ux的单位为无线帧、RMSI的发送周期T1=160ms为例,则x1=x/M=x/16,或者x1=x/M=x/8,或者x1=x/M=x/4。可以 理解的是,若Ux的单位以时隙为例,则M需要根据系统消息(例如RMSI)的发送周期和子载波间隔参数确定。以Ux的单位为时隙、RMSI的发送周期T1=5ms、子载波间隔为15KHz为例,则x1=x/M=x/5;以Ux的单位为时隙、RMSI的发送周期T1=5ms、子载波间隔为30KHz为例,则x1=x/M=x/10;以Ux的单位为时隙、RMSI的发送周期T1=5ms、子载波间隔为60KHz为例,则x1=x/M=x/20;以Ux的单位为时隙、RMSI的发送周期T1=5ms、子载波间隔为120KHz为例,则x1=x/M=x/40;以Ux的单位为时隙、RMSI的发送周期T1=10ms、子载波间隔为15KHz为例,则x1=x/M=x/10;以Ux的单位为时隙、RMSI的发送周期T1=10ms、子载波间隔为30KHz为例,则x1=x/M=x/20。604部分、605部分和606部分与前述类似,在此不再赘述。当Ux的单位为时隙的时候,M的值也可以使用M1*2 u表示,其中子载波间隔为15KHz,30KHz,60KHz,120KHz的时候,u分别对应0、1、2、3。M1的值可以为5,也可以为10。
602部分的第六种示例中,不同的系统消息的发送周期也可以采用相同的参数M。例如,以RMSI的发送周期包含{5ms,10ms,20ms、40ms、80ms和160ms}为例。在一种可能的实施方式下,全部RMSI的发送周期对应相同的参数M;以M=4为例,则无论RMSI的发送周期为{5ms,10ms,20ms、40ms、80ms和160ms}中的哪一个,M的取值都为4。在另一种可能的实施方式下,部分RMSI的发送周期对应相同的参数M;例如,RMSI的发送周期为{20ms、40ms}时采用相同的M=4,RMSI的发送周期为{80ms、160ms}时采用相同的M=2。604部分、605部分和606部分与前述类似,在此不再赘述。
602部分的第七种示例中,不同的系统消息与同步信号块的复用方式下的参数M可以分别定义或配置(指示)。所述不同的系统消息与同步信号块的复用方式包含时分复用和频分复用。以系统消息为RMSI为例,RMSI与同步信号块的复用方式包含时分复用和频分复用,则可以为RMSI与同步信号块时分复用和RMSI与同步信号块频分复用时RMSI的传输分别定义或配置(指示)各自的参数M。例如,RMSI与同步信号块时分复用时RMSI的传输采用的M可以定义为M=2,RMSI与同步信号块频分复用时RMSI的传输采用的M可以定义为M=4。再例如,RMSI与同步信号块时分复用时RMSI的传输采用的M可以定义为M=2,RMSI与同步信号块时分复用时RMSI的传输采用的M的值可以根据RMSI的发送周期确定。再例如,RMSI与同步信号块时分复用时RMSI的传输采用的M可以定义为M=4,RMSI与同步信号块频分复用时RMSI的传输采用的M或RMSI的发送周期可以由DCI配置或指示。再例如,RMSI与同步信号块时分复用时RMSI的传输采用的M或RMSI的发送周期可以由DCI配置或指示,RMSI与同步信号块时分复用时RMSI的传输采用的M可以定义为M=4。再例如,RMSI与同步信号块时分复用时RMSI的传输采用的M或RMSI的发送周期可以由DCI配置或指示,RMSI与同步信号块时分复用时RMSI的传输采用的M可以根据RMSI的发送周期确定。604部分、605部分和606部分与前述类似,在此不再赘述。需要说明的是,当使用DCI配置或指示M取值或RMSI的发送周期时,可以复用DCI中的部分字段,例如复用下述字段中的一个或多个,{字段Redundancy version,字段HARQ process number,字段TPC command for PUCCH,字段Frequency domain resource assignment,字段ARI(ACK/NAK Resource Index),字段ARI HARQ timing indicator,字段Carrier indicator,字段BWP indicator,字段Time-domain PDSCH resources,字段VRB-to-PRB mapping,字段Reserved resource set on/off,字段Bundling size indicator,字段Modulation and coding scheme,second CW, 字段New data indicator,second CW,字段Redundancy version,second CW,字段CBGFI,字段CBGTI,字段Downlink Assignment Index,字段Antenna port(s),字段TCI(Transmission Configuration Indication)}。需要说明的是,本申请实施例在604部分中并不限定对x1的取整方式。优选地,对x1采用下取整的方式。
可以理解的是,本申请实施例在602部分中并不限定M的具体取值。优选地,所述M的取值可以为{1、2、4、5、8、16}中的任意一个,也可以根据系统消息的发送周期确定。可以理解的是,除了所述优选值以外,M还可以取其他正实数,例如M还可以是系统消息子窗口包含的时域资源单元数量。
本申请实施例提供的系统消息冗余版本确定方法及装置,通过增加能够承载系统消息有效RV的时域资源单元数量,从而解决了某些时域资源单元上的波束无法支持系统消息的有效RV进而承载系统消息波束数量减少的问题,从而提高了系统消息的覆盖范围,并且在部分实施方式下能够在系统消息窗口或系统消息子窗口内增加一个波束上收发系统消息的RV,为系统消息的接收提供更大的频选性增益。
可选的,对于601部分中的M,可以不采用602部分描述的方式确定,而是参考图6中的603部分,即M可以根据实际传输的同步信号块数量N确定。例如,所述M还可以由通信设备根据{实际传输的同步信号块数量N,系统消息的子窗口包含的时域资源单元数量D}中的至少一项确定。所述实际传输的同步信号块数量N可以由网络设备通知终端设备,例如在NR中,所述实际传输的同步信号块数量N由网络设备通过RMSI通知给终端设备。所述D也可以表示一个预定义的常数,或是多个预定义常数中的任意一个。需要说明的是,采用603部分时,图6示意的本申请实施方案也可以理解为通信设备根据{实际传输的同步信号块数量N,系统消息的子窗口包含的时域资源单元数量D}中的至少一项确定所述系统消息在时域资源单元Ux的冗余版本RVx。可以理解的是,603部分中仅示意了N的一种可能含义,例如,N也可以表示可能传输的同步信号块数量。
在603部分的第一种可能的实施方式中,以M=N*D或M=n*N*D为例,n表示波束扫描周期的倍数。以所述系统消息为OSI、所述时域资源单元为时隙、OSI的子窗口包含的时隙数量D=1以及实际传输的同步信号块数量N=6、n=1为例,则可以获得M=6*1=6、x1=x/6。可以理解的是,所述实际传输的同步信号块数量N=6也可以理解为包含有N=6个波束,一个波束承载一个实际传输的同步信号块。604部分中,所述通信设备对所述参数x1下取整获得参数x2,x2=floor(x1)=floor(x/6)。605部分和606部分与前述类似,在此不再赘述。则可以获得所述OSI在时隙Ux的冗余版本为RVx=(ceil(3/2*(floor(x/6)mod4)))mod 4。
在603部分的第二种可能的实施方式中,以M=2*N*D为例。以所述系统消息为OSI、所述时域资源单元为时隙、OSI的子窗口包含的时隙数量D=1以及实际传输的同步信号块数量N=6为例,则可以获得M=2*6*1=12、x1=x/12。可以理解的是,所述实际传输的同步信号块数量N=6也可以理解为包含有N=6个波束,一个波束承载一个实际传输的同步信号块。604部分中,所述通信设备对所述参数x1上取整获得参数x2,x2=ceil(x1)=ceil(x/12)。605部分和606部分与前述类似,在此不再赘述。则可以获得所述OSI在时隙Ux的冗余版本为RVx=(ceil(3/2*(ceil(x/12)mod 4)))mod 4。
图9A给出了依据上述示例得到的OSI在时隙Ux的冗余版本RVx示意,以32个时隙(时隙0-时隙31)为例,且以{时隙8、时隙9、时隙18、时隙19、时隙28、时隙29} 为上行时隙,其余时隙为下行时隙且OSI承载于下行时隙为例。图9A进一步以4轮波束扫描为例,一轮波束扫描包含N=6个波束,一个波束在一个下行时隙上传输,OSI可以承载在6个波束中的一个或多个上。图9A进一步以OSI承载于垂直向上的波束为例,示意了在4轮波束扫描中OSI发送的时隙及其使用的RV。示意的承载于垂直向上波束的OSI在{x=0,x=6,x=14,x=22}时隙上,分别使用对应的冗余版本为{RVx=0,RVx=2,RVx=3,RVx=1}。
需要说明的是,OSI也可以承载于其他波束上。可以理解的是,OSI一般会承载在信道条件较好的波束上发送。例如NR系统的网络设备可以在同步过程中通过同步信号块的发送以及终端设备的反馈,确定与所述终端设备间在哪条波束上的信道条件相对较好,由此为依据将OSI承载在相应的波束上。可以理解的是,所述终端设备的反馈可以是由所述终端设备直接显式向网络设备反馈信道条件相对较好的波束标识,也可以通过上行信道(例如随机接入信道)或上行信号(例如探测参考信号)的发送隐式告知网络设备信道条件相对较好的波束。
图9B给出了另一种方法得到的OSI在时隙Ux的冗余版本RVx示意,其中RVx的确定方式为RVx=(ceil(3/2*(x mod 4)))mod 4。图9B的其他内容与图9A类似。图9B中示意的承载于垂直向上波束的OSI在{x=0,x=6,x=14,x=22}时隙上,分别使用对应的冗余版本为{RVx=0,RVx=3,RVx=3,RVx=3}。
通过对比可以看出,图9A与图9B提供的方法相比,能够使用更多的冗余版本进行OSI的收发,能够在系统消息窗口或系统消息子窗口内增加一个波束上收发OSI的RV,从而能够提供更大的频选性增益。
需要说明的是,在603部分中,N还可能有其他取值,例如N=2、4、8等;D还可能有其他取值,例如D=0.5、2、4等。
可选地,图9C给出了在另一种时域资源单元编号或时域资源单元索引的情况下OSI在时隙Ux的冗余版本RVx示意,以32个时隙(时隙U0-时隙U31)为例,且以{时隙U8、时隙U9、时隙U18、时隙U19、时隙U28、时隙U29}为上行时隙,其余时隙为下行时隙且OSI承载于下行时隙为例。图9C中的x仅标识可以承载OSI的时隙,标有‘-’的时隙无法承载OSI。图9C仍以4轮波束扫描为例,一轮波束扫描包含N=6个波束,一个波束在一个下行时隙上传输,OSI可以承载在6个波束中的一个或多个上。图9C进一步以OSI承载于垂直向上的波束为例,示意了在4轮波束扫描中OSI发送的时隙及其使用的RV。示意的承载于垂直向上波束的OSI在{x=0,x=6,x=12,x=18}时隙上,分别使用对应的冗余版本为{RVx=0,RVx=2,RVx=3,RVx=1}。
在603部分的另一种可能的实施方法中,还可以根据其他方法获得M。例如可以采用M=N*D+F获得M。图9D给出了采用M=N*D+F获得M时的一种OSI在时隙Ux的冗余版本RVx示意,其他条件与图9A相同。图9D中以F=2为例,则M=N*D+F=6*1+2=8。604部分、605部分和606部分与前述类似,在此不再赘述,则可以获得如图9D所示的OSI在时隙Ux的冗余版本RVx示意。与图9A相比,图9D中每一轮波束扫描包含的时域资源单元数量相同,而图9A中不同轮的波束扫描可能包含不同的时域资源单元数量。本申请实施例通过采用M=N*D+F获得OSI在时隙Ux的冗余版本RVx,且能够实现相同的一轮波束扫描的时间,从而可以使终端设备更加容易地获得波束扫描的位置,简化终端设备的实现。
需要说明的是,本发明实施例的603部分并不限定上述获得M的方法,例如还可以采用M=f(N,D)+F获得M。其中f(N,D)可以为f(N,D)=N*D,或者为f(N,D)=floor(N*D),或者为f(N,D)=ceil(N*D);F为由网络设备配置的或是预定义的非负整数。所述F还可以由其他方法获得,例如可以采用如下方法中的任意一个获得F:
F=g(D,N,N_DL,N_UK)*N_UL,
F=g(D,N,N_DL,N_UK)*(N_UK+N_UL),
F=g(D,N,N_DL,N_UK)*N_DU;
其中N_DL为半静态上下行资源分配周期内下行时域资源单元的数量,N_UL为半静态上下行资源分配周期内上行时域资源单元的数量,N_DU为半静态上下行资源分配周期内时域资源单元的数量,N_UK为半静态上下行资源分配周期内灵活时域资源单元的数量。其中g(D,N,N_DL,N_UK)可以采用下列方法中的任意一个获得:
f(N,D)/R,floor(f(N,D)/R),ceil(f(N,D)/R),其中R的取值为N_DL、N_UK、N_UK+N_DL中的任意一个。
可以理解的是,本申请实施例在605部分中还可以根据其他方法获得x3,例如可以采用下列方法中的任意一个:
x3=x mod K,x3=floor(x/ceil(D))mod K,x3=(x+z)mod K,其中z可以表示冗余版本的偏移值,该偏移值可以是系统消息窗口内的波束扫描周期的索引,也可以是其他常数。
本申请实施例提供的系统消息冗余版本确定方法及装置,通过增加能够承载系统消息有效RV的时域资源单元数量,从而解决了某些时域资源单元上的波束无法支持系统消息的有效RV进而承载系统消息波束数量减少的问题,从而提高了系统消息的覆盖范围,并且在部分实施方式下能够在系统消息窗口或系统消息子窗口内增加一个波束上收发系统消息的RV,为系统消息的接收提供更大的频选性增益。
为了减少终端设备在接收系统消息时的盲检次数,降低终端设备的功耗和复杂度,本申请提供确定至少一个时域资源单元Ux的方法。可以理解,该方法也可以在图4的401部分中实施。在一种可能的实施方式下,所述通信设备可以根据同步信号块数量N确定承载所述系统消息的时域资源单元Ux;所述同步信号块可以是实际传输的同步信号块,也可以是可能传输的同步信号块。进一步地,在采用波束扫描的情况下,所述时域资源单元Ux包含所述系统消息在其一轮波束扫描(也可以理解为一个波束扫描周期)内的起始时域资源单元,为方便表述,将所述系统消息在第y轮波束扫描中的起始时域资源单元标识为xy0。所述起始时域资源单元xy0可以理解为在第y轮波束扫描中所述系统消息的PDCCH的第一个PDCCH时机的起始时域资源单元,也可以理解为在第y轮波束扫描中所述系统消息的PDCCH由第一个同步信号块关联或对应的PDCCH时机的起始时域资源单元。
例如在图9A中给出了一种可能的实施方式,以OSI进行4轮波束扫描、一轮波束扫描包含N=6个波束、第一轮波束扫描的起始时域资源单元为时隙x10=0为例。则OSI在第二轮波束扫描的起始时域资源单元为时隙x20=x10+N+j1=0+6+0=6,其中,j1为第一轮波束扫描的时间段内不能承载OSI的时域资源单元数量;OSI在第三轮波束扫描的起始时域资源单元为时隙x30=x20+N+j2=6+6+2=14,其中j1为第二轮波束扫描的时间段内不能承载OSI的时域资源单元数量;OSI在第四轮波束扫描的起始时域资源单元为时隙x40=x30+N+j3=14+6+2=22,其中j3为第三轮波束扫描的时间段内不能承载OSI的时域资源单元数量。
例如在图9C中给出了另一种可能的实施方式,以OSI进行4轮波束扫描、一轮波束扫描包含N=6个波束、第一轮波束扫描的起始时域资源单元为时隙x10=0为例。图9C中的x仅标识可以承载OSI的时隙,标有‘-’的时隙无法承载OSI。则OSI在第二轮波束扫描的起始时域资源单元为时隙x20=x10+N=0+6=6;OSI在第三轮波束扫描的起始时域资源单元为时隙x30=x20+N=6+6=12;OSI在第四轮波束扫描的起始时域资源单元为时隙x40=x30+N=12+6=18。
可以理解的的是,第一轮波束扫描的起始时域资源单元还可以是x10=x0+Offset,其中x0可以理解为参考点,其可以是一个非负整数;Offset可以理解为第一轮波束扫描的起始时域资源单元相对上述参考点的偏置,其可以是一个非负整数。x10也可以理解为系统消息窗口的起始时域资源单元或系统消息窗口内第一轮波束扫描的起始时域资源单元,对应地,Offset也可以理解为系统消息窗口的起始时域资源单元相对上述参考点的偏置。在上述x10=0的例子中,可以理解为x0=0且Offset=0,本发明实施例并不限制x0和Offset的其他取值和单位,例如Offset还可以取5ms。
需要说明的是,本发明实施例并不限定根据所述实际传输的同步信号块数量N确定所述时域资源单元Ux的具体方法。例如还可以用下述方法中的任意一种获得系统消息在第y轮波束扫描中的起始时域资源单元索引xy0:
h(y,D,N,N_DL,N_UK)*N_DU+p(y,D,N,N_DL,N_UK)mod N_DU+Offset,
h(y,D,N,N_DL,N_UK)*N_DU+p(y,D,N,N_DL,N_UK)mod N_DL+Offset,
h(y,D,N,N_DL,N_UK)*N_DU+p(y,D,N,N_DL,N_UK)mod(N_DL+N_UK)+Offset,
(h(y,D,N,N_DL,N_UK)*N_DU+p(y,D,N,N_DL,N_UK)mod N_DU+Offset)mod N_frame,
(h(y,D,N,N_DL,N_UK)*N_DU+p(y,D,N,N_DL,N_UK)mod N_DL+Offset)mod N_frame,
(h(y,D,N,N_DL,N_UK)*N_DU+p(y,D,N,N_DL,N_UK)mod(N_DL+N_UK)+Offset)mod N_frame,
y*M+Offset,
(y*M+Offset)mod N_frame;
其中,N_frame可以为一个无线帧内的时隙数目或者子帧数目。Offset为可选参数;可选地,以Offset的单位为时隙为例,则所述Offset可以是0-80中的任一整数;可选地,以Offset的单位为ms为例,则所述Offset可以是0-10中的任一整数,也可以是0-10中小数点后为1位的任一实数。M可以通过602部分或603部分中描述的方法获得,此处不再赘述。
上述方法中的h(y,D,N,N_DL,N_UK)和p(y,D,N,N_DL,N_UK)可以采用如下任意一种方法获得,且h(y,D,N,N_DL,N_UK)和p(y,D,N,N_DL,N_UK)可以采用相同或不同的方法获得:
y*f(D,N)/R,floor(y*f(D,N))/R,ceil(y*f(D,N))/R,floor(y*D)*N/R,ceil(y*D)*N/R,floor(floor(y*f(D,N))/R),floor(ceil(y*f(D,N))/R),floor(y*f(D,N)/R),floor(floor(y*D)*N/R),floor(ceil(y*D)*N/R),ceil(floor(y*f(D,N))/R),ceil(ceil(y*f(D,N))/R),ceil(y*f(D,N)/R),ceil(floor(y*D)*N/R),ceil(ceil(y*D)*N/R);其中R的取值为N_DL、N_UK、N_UK+N_DL中的任意一个。
在图4的401部分中,通信设备要确定至少一个时域资源单元Ux。在一种可能的实施方式下,所述通信设备可以根据同步信号块数量N确定承载所述系统消息的时域资源单元Ux;所述同步信号块可以是实际传输的同步信号块,也可以是可能传输的同步信号块。进一步地,在采用波束扫描的情况下,所述时域资源单元Ux包含所述系统消息在其一轮波束扫描(也可以理解为一个波束扫描周期)内的至少一个时域资源单元,为方便表述,将所述系统消息在第y轮波束扫描中的至少一个时域资源单元标识为xyj。其中时域资源单元xy0表示所述系统消息在第y轮波束扫描中的起始时域资源单元,其获得方法可以参考上述描述,此处不再赘述;所述时域资源单元xyj(j为正整数)表示所述系统消息在第y轮波束扫描中除起始时域资源单元xy0以外的第j个时域资源单元,j也可以为实际发送或可能发送的SS/PBCH block的索引,也可以为系统消息的索引。所述时域资源单元xyj可以理解为在第y轮波束扫描中所述系统消息的PDCCH除第一个PDCCH时机以外的PDCCH时机的起始时域资源单元,也可以理解为在第y轮波束扫描中所述系统消息的PDCCH除由第一个同步信号块以外的同步信号块关联或对应的PDCCH时机的起始时域资源单元。所述xyj可以采用如下任意一种方法获得:
(xy0+f(j,D))mod N_frame,(xy0+f(j,D)+Oj)mod N_frame,floor(q(y,M,j,D)/R)*N_DU+r(y,M,j,D)mod N_DU,(floor(q(y,M,j,D)/R)*N_DU+r(y,M,j,D)mod N_DU)mod N_frame,floor(q(y,M,j,D)/R)*N_DU+r(y,M,j,D)mod R,(floor(q(y,M,j,D)/R)*N_DU+r(y,M,j,D)mod R)mod N_frame,floor(q(y,M,j,D)/R)*N_DU+r(y,M,j,D)mod N_DU+Offset,(floor(q(y,M,j,D)/R)*N_DU+r(y,M,j,D)mod N_DU+Offset)mod N_frame,floor(q(y,M,j,D)/R)*N_DU+r(y,M,j,D)mod R+Offset,(floor(q(y,M,j,D)/R)*N_DU+r(y,M,j,D)mod R+Offset)mod N_frame
其中,M可通过602部分或603部分描述的方法获得,此处不再赘述。q(y,M,j,D)和r(y,M,j,D)可以采用如下任意一种方法获得,且q(y,M,j,D)和r(y,M,j,D)可以采用相同或不同的方法获得:
y*M+f(j,D),floor(y*M+f(j,D)),ceil(y*M+f(j,D))。
其中,Oj可以表示所述系统消息在第y轮波束扫描中除起始时域资源单元xy0到所述时域资源单元xyj之间的不能传输所述系统消息的时域资源单元数目。Oj可以采用如下任意一种方法获得:
Oj=floor(f(j,M)/R)*S,Oj=ceil(f(j,M)/R)*S,Oj=floor((xy0mod N_DU+f(j,D))/N_DL)*N_UL,Oj=ceil((xy0mod N_DU+f(j,D))/N_DL)*N_UL;其中S的取值为N_UL、N_UK、N_UK+N_UL中的任意一个。可以理解的是,Oj可以是必选的参数,也可以是可选的参数。
在另一种可能的实施方式下,所述系统消息采用波束扫描时在第y轮波束扫描中的起始时域资源单元xy0的位置是固定的,可以理解为所述系统消息采用波束扫描时在一轮扫描中的起始时域资源单元的位置是预先定义的,例如可以是系统消息窗口或系统消息子窗口的起始位置、中间位置、1/4位置、3/4位置中至少一个或任意一个。
以系统消息窗口的长度为20ms为例,则所述起始位置、中间位置、1/4位置和3/4位置分别为所述系统消息窗口的0ms,5ms,10ms和15ms这4个位置。在一种可能的实施方式中,以预定义这4个位置中的任意一个为例,例如预定义0ms的位置,则所述系统消息在一轮波束扫描中的起始时域资源单元固定为该系统消息窗口第一个时域资源单元。在另一 种可能的实施方式中,以预定义这4个位置中的至少一个为例,例如预定义0ms和10ms两个位置,则终端设备还需要根据其他的配置信息确定应采用0ms和10ms中的哪一个位置;例如,终端设备可以根据实际传输的同步信号块数量、系统消息窗口的长度决定应采用0ms和10ms中的哪一个位置。
在另一种可能的实施方式下,所述系统消息采用波束扫描时在第y轮波束扫描中的起始时域资源单元xy0的位置还可以是由网络设备配置或指示的。所述网络设备可以通过RMSI、OSI、媒体接入控制元素(Media Access Control-Control Element,MAC-CE)、无线资源控制(Radio Resource Control,RRC)信令、下行控制信息(Downlink Control Information,DCI)中的至少一种配置或者指示所述系统消息采用波束扫描时在一轮扫描中的起始时域资源单元的位置。
本申请实施例提供的方法及装置,通过确定系统消息采用波束扫描时在一轮扫描中的至少一个时域资源单元,可以减少终端设备盲检系统消息的次数,从而降低终端设备的功耗和复杂度。
图10为本申请实施例提供的系统消息收发方法的流程图。如图10所示,本实施例的方法可以包括:
1001部分,通信设备确定可用于接收或发送系统消息的至少两个在时域上连续的时域资源单元;所述通信设备确定所述系统消息在所述至少两个时域资源单元上使用的冗余版本,所述系统消息在所述至少两个时域资源单元上使用的冗余版本相同
1002部分,所述通信设备在所述至少两个在时域上连续的时域资源单元中的至少一个时域资源单元上,使用所述冗余版本接收或发送所述系统消息。
需要说明的是,1001部分中所述至少两个在时域上连续的时域资源单元,可以理解为将某些时域资源单元(例如不能承载所述系统消息的时域资源单元)从时域上排除后,所述至少两个时域资源单元在时域上连续。以图9A为例,以所述系统消息为OSI、所述时域资源单元是时隙为例。以图9A中的标识为{x=8,x=9,x=18,x=19,x=28,x=29}的6个时隙为上行时隙为例,则这6个时隙不能承载OSI,在将上述6个时隙从时域上排除后,标识为{x=6,x=7,x=10,x=11,x=12,x=13}的6个时隙可以认为在时域上连续,且标识为{x=14,x=15,x=16,x=17,x=20,x=21}的6个时隙也可以认为在时域上连续。当然,图9A中标识为{x=0,x=1,x=2,x=3,x=4,x=5}的6个时隙在时域上是连续的,标识为{x=22,x=23,x=24,x=25,x=26,x=27}的6个时隙在时域上也是连续的。
在1001部分中,通信设备可以根据图4、图6、图7A、图8A、图9A、图9C、图9D所示例和描述的方法确定系统消息在时域资源单元上的冗余版本。
在一种可能的实施方式中,以图4、图6和图7A为例,以所述系统消息为RMSI、所述时域资源单元是无线帧为例。1001部分中所述至少两个时域资源单元可以理解为图7A中标识为{x=0,x=1}的2个无线帧,且标识为{x=0,x=1}的2个无线帧在时域上连续;根据图4、图6、图7A的示例和描述的方法,系统消息在标识为{x=0,x=1}的2个无线帧上的冗余版本都是冗余版本0。1001部分中所述至少两个时域资源单元也可以理解为图7A中的标识为{x=2,x=3}的2个无线帧,且标识为{x=2,x=3}的2个无线帧在时域上连续;根据图4、图6、图7A的示例和描述的方法,系统消息在标识为{x=2,x=3}的2个无线帧上的冗余版本都是冗余版本2。1001部分中所述至少两个时域资源单元还可以理解为图7A中的标识为{x=4,x=5}的2个无线帧,且标识为{x=4,x=5}的2个无 线帧在时域上连续;根据图4、图6、图7A的示例和描述的方法,系统消息在标识为{x=4,x=5}的2个无线帧上的冗余版本都是冗余版本3。1001部分中所述至少两个时域资源单元还可以理解为图7A中的标识为{x=6,x=7}的2个无线帧,且标识为{x=6,x=7}的2个无线帧在时域上连续;根据图4、图6、图7A的示例和描述的方法,系统消息在标识为{x=6,x=7}的2个无线帧上的冗余版本都是冗余版本1。
在另一种可能的实施方式中,以图4、图6和图8A为例,以所述系统消息为RMSI、所述时域资源单元是无线帧为例。1001部分中所述至少两个时域资源单元可以理解为图8A中的标识为{x=0,x=1,x=2,x=3}的4个无线帧,且标识为{x=0,x=1,x=2,x=3}的4个无线帧在时域上连续;根据图4、图6、图8A的示例和描述的方法,系统消息在标识为{x=0,x=1,x=2,x=3}的4个无线帧上的冗余版本都是冗余版本0。1001部分中所述至少两个时域资源单元也可以理解为图8A中的标识为{x=4,x=5,x=6,x=7}的4个无线帧,且标识为{x=4,x=5,x=6,x=7}的4个无线帧在时域上连续;根据图4、图6、图8A的示例和描述的方法,系统消息在标识为{x=4,x=5,x=6,x=7}的4个无线帧上的冗余版本都是冗余版本2。1001部分中所述至少两个时域资源单元还可以理解为图8A中的标识为{x=8,x=9,x=10,x=11}的4个无线帧,且标识为{x=8,x=9,x=10,x=11}的4个无线帧在时域上连续;根据图4、图6、图8A的示例和描述的方法,系统消息在标识为{x=8,x=9,x=10,x=11}的4个无线帧上的冗余版本都是冗余版本3。1001部分中所述至少两个时域资源单元还可以理解为图8A中的标识为{x=12,x=13,x=14,x=15}的4个无线帧,且标识为{x=12,x=13,x=14,x=15}的4个无线帧在时域上连续;根据图4、图6、图8A的示例和描述的方法,系统消息在标识为{x=12,x=13,x=14,x=15}的4个无线帧上的冗余版本都是冗余版本1。
在又一种可能的实施方式中,以图4、图6和图9A为例,以所述系统消息为OSI、所述时域资源单元是时隙为例。1001部分中所述至少两个时域资源单元可以理解为图9A中的标识为{x=0,x=1,x=2,x=3,x=4,x=5}的6个时隙,且标识为{x=0,x=1,x=2,x=3,x=4,x=5}的6个时隙在时域上连续;根据图4、图6、图9A的示例和描述的方法,系统消息在标识为{x=0,x=1,x=2,x=3,x=4,x=5}的6个时隙上的冗余版本都是冗余版本0。1001部分中所述至少两个时域资源单元也可以理解为图9A中的标识为{x=6,x=7,x=10,x=11,x=12,x=13}的6个时隙,且标识为{x=6,x=7,x=10,x=11,x=12,x=13}的6个时隙在时域上连续;根据图4、图6、图9A的示例和描述的方法,系统消息在标识为{x=6,x=7,x=10,x=11,x=12,x=13}的6个时隙上的冗余版本都是冗余版本2。1001部分中所述至少两个时域资源单元还可以理解为图9A中的标识为{x=14,x=15,x=16,x=17,x=20,x=21}的6个时隙,且标识为{x=14,x=15,x=16,x=17,x=20,x=21}的6个时隙在时域上连续;根据图4、图6、图9A的示例和描述的方法,系统消息在标识为{x=14,x=15,x=16,x=17,x=20,x=21}的6个时隙上的冗余版本都是冗余版本3。1001部分中所述至少两个时域资源单元还可以理解为图9A中的标识为{x=22,x=23,x=24,x=25,x=26,x=27}的6个时隙,且标识为{x=22,x=23,x=24,x=25,x=26,x=27}的6个时隙在时域上连续;根据图4、图6、图9A的示例和描述的方法,系统消息在标识为{x=22,x=23,x=24,x=25,x=26,x=27}的6个时隙上的冗余版本都是冗余版本1。
可选地,1001部分中所述的至少两个时域资源单元可以属于一个时域资源单元集合, 所述时域资源单元集合可以有多种可能的形式。例如:
所述时域资源单元集合可以包含多个无线帧,所述时域资源单元集合包含的时域资源单元可以是符号,微时隙,时隙、子帧或无线帧等;
所述时域资源单元集合还可以包含一个无线帧,所述时域资源单元集合包含的时域资源单元可以是符号,微时隙,时隙或子帧等;
所述时域资源单元集合还可以包含多个子帧,所述时域资源单元集合包含的时域资源单元可以是符号、微时隙、时隙或子帧等;
所述时域资源单元集合还可以包含一个子帧,所述时域资源单元集合包含的时域资源单元可以是符号、微时隙或时隙等;
所述时域资源单元集合还可以包含多个时隙,所述时域资源单元集合包含的时域资源单元可以是符号、微时隙或时隙等;
所述时域资源单元集合还可以包含一个时隙,所述时域资源单元集合包含的时域资源单元可以是符号或微时隙等;
所述时域资源单元集合还可以包含多个微时隙,所述时域资源单元集合包含的时域资源单元可以是符号或微时隙等;
所述时域资源单元集合还可以包含一个微时隙,所述时域资源单元集合包含的时域资源单元可以是符号等;
所述时域资源单元集合还可以包含多个符号,所述时域资源单元集合包含的时域资源单元可以是符号等;
所述时域资源单元集合还可以包含一个或多个系统消息时机,所述系统消息时机可以理解为在时域上离散或连续的时域资源单元集合,所述系统消息时机上可以承载所述系统消息的PDCCH和/或所述系统消息的PDSCH;所述时域资源单元集合包含的时域资源单元可以是符号,微时隙,时隙、子帧或无线帧等;以图3B为例,包含无线帧U0和U1的时域资源单元集合与包含无线帧U16和U17的时域资源单元集合在时域上为离散的;以图13为例,包含无线帧U0和U1的时域资源单元集合与包含无线帧U2和U3的时域资源单元集合在时域上为连续的。
所述时域资源单元集合还可以包含一个或多个系统消息窗口,所述时域资源单元集合包含的时域资源单元可以是符号,微时隙,时隙、子帧或无线帧等;
所述时域资源单元集合还可以包含一个或多个系统消息子窗口,所述时域资源单元集合包含的时域资源单元可以是符号,微时隙,时隙、子帧或无线帧等;
所述时域资源单元集合还可以包含一个或多个波束扫描周期,所述时域资源单元集合包含的时域资源单元可以是符号,微时隙,时隙、子帧或无线帧等。
需要理解的是,图7A、图7B、图8A、图8B、图9A、图9C、图9D均以4个冗余版本在时域上的出现顺序为{0,2,3,1}为例实现了1001部分,本发明对具体实施例中的冗余版本在时域上的出现顺序并不做限定。例如可以采用下列出现顺序中的任意一个:
{0,2,3,1}、{0,2,1,3}、{0,1,2,3}、{0,1,3,2}、{0,3,1,2}、{0,3,2,1}、{1,0,3,2}、{1,0,2,3}、{1,2,0,3}、{1,2,3,0}、{1,3,2,0}、{1,3,0,2}、{2,0,3,1}、{2,0,1,3}、{2,1,0,3}、{2,1,3,0}、{2,3,1,0}、{2,3,0,1}、{3,0,2,1}、{3,0,1,2}、{3,1,2,0}、{3,1,0,2}、{3,2,0,1}、或{3,2,1,0}等。
另外需要理解的是,图7A、图7B、图8A、图8B、图9A、图9B、图9C、图9D均以4个冗余版本为例实现了1001部分,本发明对具体实施例中的冗余版本个数并不做限 定,在1001部分中,通信设备还可以采用其他冗余版本的个数确定系统消息在时域资源单元集合包含的时域资源单元上的冗余版本。
在一种可能的实施方式中,所述系统消息可以在多个所述时域资源单元集合内收发,且所述系统消息在所述多个所述时域资源单元集合包含的时域资源单元上使用相同的冗余版本,即只使用1个冗余版本。例如在图11中,以所述系统消息为RMSI、所述时域资源单元是无线帧为例。图11中示意了4个时域资源单元集合,第一个时域资源单元集合包含{x=0,x=1,x=2,x=3}4个无线帧,第二个时域资源单元集合包含{x=4,x=5,x=6,x=7}4个无线帧,第三个时域资源单元集合包含{x=8,x=9,x=10,x=11}4个无线帧,第四个时域资源单元集合包含{x=12,x=13,x=14,x=15}4个无线帧。在本实施方式中,以冗余版本0为例,RMSI在所示意的4个时域资源单元集合内的无线帧上的冗余版本都是冗余版本0。可以理解的是,图11中RMSI采用的还可以是其他的冗余版本,例如为冗余版本1或冗余版本2等,本发明实施例对此不做限定。
在另一种可能的实施方式中,所述系统消息可以在多个所述时域资源单元集合内收发,且所述系统消息在所述多个所述时域资源单元集合包含的时域资源单元上只使用2个冗余版本。例如在图12中,以所述系统消息为RMSI、所述时域资源单元是无线帧为例。图12中示意了4个时域资源单元集合,第一个时域资源单元集合包含{x=0,x=1,x=2,x=3}4个无线帧,第二个时域资源单元集合包含{x=4,x=5,x=6,x=7}4个无线帧,第三个时域资源单元集合包含{x=8,x=9,x=10,x=11}4个无线帧,第四个时域资源单元集合包含{x=12,x=13,x=14,x=15}4个无线帧。在本实施方式中,RMSI在第一个时域资源单元集合和第三个时域资源单元集合包含的时域资源单元上采用冗余版本0,在第二个时域资源单元集合和第四个时域资源单元集合包含的时域资源单元上采用冗余版本2。可以理解的是,图12中RMSI采用的还可以是其他的冗余版本或冗余版本顺序,例如为如下所列的冗余版本:
冗余版本2和0,冗余版本0和1,冗余版本1和0,冗余版本0和3,冗余版本3和0,冗余版本1和2,冗余版本2和1,冗余版本1和3,冗余版本3和1,冗余版本2和3,或冗余版本3和2等。
所述2个冗余版本可以是预定义的,也可以是由网络配置的。所述2个冗余版本还可以是通过公式计算获得的,所述公式与图6、图7A、图7B、图8A、图8B、图9A、图9C、图9D中的描述类似,仅需改变公式中个别参数的取值,例如将公式中与预定义的RV个数相关的参数置为2,此处不再赘述。
在另一种可能的实施方式中,所述系统消息可以在多个所述时域资源单元集合内收发,且所述系统消息在所述多个所述时域资源单元集合包含的时域资源单元上只使用8个冗余版本。例如在图13中,以所述系统消息为RMSI、所述时域资源单元是无线帧为例。图13中示意了8个时域资源单元集合,第一个时域资源单元集合包含{x=0,x=1}2个无线帧,第二个时域资源单元集合包含{x=2,x=3}2个无线帧,第三个时域资源单元集合包含{x=4,x=5}2个无线帧,第四个时域资源单元集合包含{x=6,x=7}2个无线帧,第五个时域资源单元集合包含{x=8,x=9}2个无线帧,第六个时域资源单元集合包含{x=10,x=11}2个无线帧,第七个时域资源单元集合包含{x=12,x=13}2个无线帧,第八个时域资源单元集合包含{x=14,x=15}2个无线帧。在本实施方式中,RMSI在第一个时域资源单元集合包含的时域资源单元上采用冗余版本0,在第二个时域资 源单元集合包含的时域资源单元上采用冗余版本2,在第三个时域资源单元集合包含的时域资源单元上采用冗余版本3,在第四个时域资源单元集合包含的时域资源单元上采用冗余版本1,在第五个时域资源单元集合包含的时域资源单元上采用冗余版本4,在第六个时域资源单元集合包含的时域资源单元上采用冗余版本6,在第七个时域资源单元集合包含的时域资源单元上采用冗余版本7,在第八个时域资源单元集合包含的时域资源单元上采用冗余版本5。
可以理解的是,图13中RMSI采用的还可以是其他的冗余版本或冗余版本顺序,例如为冗余版本0、1、2、3、4、5、6、7,本发明实施例对此不做限定。
所述8个冗余版本可以是预定义的,也可以是由网络配置的。所述8个冗余版本还可以是通过公式计算获得的,所述公式与图6、图7A、图7B、图8A、图8B、图9A、图9C、图9D中的描述类似,仅需改变公式中个别参数的取值,例如将公式中与预定义的RV个数相关的参数置为8,此处不再赘述。
还需要理解的是,图7A、图7B、图8A、图8B、图9A、图9C、图9D均以公式计算的方式为例获得时域资源单元上的冗余版本,本发明对具体实施例中的冗余版本的获得方式并不做限定,在1001部分中,通信设备还可以采用其他方式获得时域资源单元上的冗余版本。
例如,预先定义、存储、固化、或者预配置时域资源单元Ux与冗余版本RVx的对应关系。通信设备根据时域资源单元Ux与冗余版本RVx的对应关系获得时域资源单元Ux上系统消息的冗余版本RVx。在一种可能的实施方式中,以图8A为例,可表1给出了一种时域资源单元Ux与冗余版本RVx对应关系的举例。
表1.时域资源单元Ux上系统消息的冗余版本RVx
时域资源单元Ux 冗余版本RVx
0 0
1 0
2 0
3 0
4 2
5 2
6 2
7 2
8 3
9 3
10 3
11 3
12 1
13 1
14 1
15 1
在另一种可能的实施方式中,预先定义、存储、固化、或者预配置时域资源单元 集合与冗余版本的对应关系RVx,通信设备获知时域资源单元Ux属于哪个时域资源单元集合,便能基于所述对应关系,获知所述时域资源单元Ux上系统消息的冗余版本RVx。以图12为例,表2给出了一种时域资源单元集合与冗余版本RVx对应关系的举例。
表2.时域资源单元集合上系统消息的冗余版本RVx
时域资源单元集合 冗余版本RVx
第一个时域资源单元集合 0
第二个时域资源单元集合 2
第三个时域资源单元集合 0
第四个时域资源单元集合 2
再例如,网络设备可以为终端设备配置时域资源单元Ux上的冗余版本RVx。所述网络设备可以通过下行控制信息或高层信令将、或者时域资源单元Ux与冗余版本RVx的对应关系、或者时域资源单元集合与冗余版本的对应关系RVx通知给终端设备。所述终端设备可基于所述对应关系确定所述时域资源单元Ux上系统消息的冗余版本RVx。
可以理解的是,不同的系统消息与同步信号块的复用方式下的所述时域资源单元Ux上系统消息的冗余版本RVx可以采用不同的方法(例如预定义、配置、指示等)获得。所述不同的系统消息与同步信号块的复用方式包含时分复用和频分复用。以系统消息为RMSI,且RMSI与同步信号块的复用方式包含时分复用和频分复用为例,一个例子中,RMSI与同步信号块时分复用时RMSI的传输在时域资源单元Ux采用的冗余版本RVx可以根据上述图4、图6中描述的方法获得,RMSI与同步信号块频分复用时RMSI的传输在时域资源单元Ux采用的冗余版本RVx可以由DCI配置或指示。另一个例子中,RMSI与同步信号块时分复用时RMSI的传输在时域资源单元Ux采用的冗余版本RVx可以由DCI配置或指示,RMSI与同步信号块频分复用时RMSI的传输在时域资源单元Ux采用的冗余版本RVx可以根据上述图4、图6中描述的方法获得。需要说明的是,当使用DCI配置或指示RVx时,可以复用DCI中的部分字段,例如复用下述字段中的至少一个{字段Redundancy version,字段HARQ process number,字段TPC command for PUCCH,字段ARI(ACK/NAK Resource Index),字段Frequency domain resource assignment,字段ARI HARQ timing indicator,字段Carrier indicator,字段BWP indicator,字段Time-domain PDSCH resources,字段VRB-to-PRB mapping,字段Reserved resource set on/off,字段Bundling size indicator,字段Modulation and coding scheme,second CW,字段New data indicator,second CW,字段Redundancy version,second CW,字段CBGFI,字段CBGTI,字段Downlink Assignment Index,字段Antenna port(s),字段TCI(Transmission Configuration Indication)}。可以理解的是,网络设备可以同时采用上述图4、图6中描述的方法和在DCI中配置RVx的方法;当终端设备接收到的系统消息的DCI中RVx与上述图4、图6中描述的方法不相同的时候,可以采用DCI中指示的RVx为准,也可以采用上述图4、图6中描述的方法为准。网络设备也可以将采用上述图4、图6中描述的方法设为默认的方法,如果DCI中配置了RVx,则终端设备以DCI配置为准。网络设备也可以在DCI中携带DCI中配置RVx和用上述图4、图6中描述的方法,可以复用上面的任意字段进行指示。
在1002部分中,通信设备可以根据图7B、图8B、图9A、图9C示例和描述的方法,使用所述冗余版本,在所述至少两个在时域上连续的时域资源单元中的至少一个时域资源单元上接收或发送所述系统消息。详细内容参见图7B、图8B、图9A、图9C对应的描述,此处不再赘述。
本申请实施例提供的系统消息冗余版本确定方法及装置,通过增加能够承载系统消息有效RV的时域资源单元数量,从而解决了某些时域资源单元上的波束无法支持系统消息的有效RV进而承载系统消息波束数量减少的问题,从而提高了系统消息的覆盖范围,并且在部分实施方式下能够在系统消息窗口或系统消息子窗口内增加一个波束上收发系统消息的RV,为系统消息的接收提供更大的频选性增益。
可以理解的是,上述各个方法实施例中由通信设备实现的方法,也可以由可用于通信设备的部件(例如,集成电路,芯片等等)实现。
相应于上述方法实施例给出的无线通信方法,本申请实施例还提供了相应的通信装置(有时也称为通信设备),所述通信装置包括用于执行上述实施例中每个部分相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图14给出了一种通信装置的结构示意图。所述通信装置1400可以是图2中的网络设备10或20,也可以是图2中的终端设备11、12、21或22。通信装置可用于实现上述方法实施例中描述的对应于通信设备的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1400可以包括一个或多个处理器1401,所述处理器1401也可以称为处理单元,可以实现一定的控制功能。所述处理器1401可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,分布单元(distributed unit,DU)或集中单元(centralized unit,CU)等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1401也可以存有指令1403,所述指令可以被所述处理器运行,使得所述通信装置1400执行上述方法实施例中描述的对应于通信设备的方法。
在又一种可能的设计中,通信装置1400可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述通信装置1400中可以包括一个或多个存储器1402,其上存有指令1404,所述指令可在所述处理器上被运行,使得所述通信装置1400执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,所述通信装置1400还可以包括收发器1405和/或天线1406。所述处理器1401可以称为处理单元,对通信装置(终端设备或者网络设备)进行控制。所述收发器1405可以称为收发单元、收发机、收发电路或者收发器等,用于实现通信装置的收发功能。
在一个设计中,一种通信装置1400(例如,集成电路、无线设备、电路模块,网络设备,终端设备等)可包括处理器1401。由处理器1401确定至少一个时域资源单元Ux,x为所述时域资源单元的标识;由处理器1401根据所述时域资源单元Ux,确定系统消息在 所述时域资源单元Ux的冗余版本RVx,所述冗余版本RVx满足RVx=(Int1(X1/X2*(Int2(x/M)mod K)))mod L,其中x为非负整数,X1和X2为非零实数,M为正实数,K和L为正整数;mod表示取模;Int1表示上取整或下取整,Int2表示上取整或下取整。或者,由处理器1401确定至少一个时域资源单元Ux,并由处理器1401根据所述同步信号块数量N确定所述时域资源单元Ux,所述时域资源单元Ux包含至少一个用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的时域资源单元。可选的,所述处理器还可以用于支持通信装置1400基于确定的冗余版本RVx接收或者发送系统消息。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信装置以网络设备或者终端设备为例来描述,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图14的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
图15提供了一种终端设备的结构示意图。该终端设备可适用于图2所示出的系统中。为了便于说明,图15仅示出了终端设备的主要部件。如图15所示,终端1500包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当用户设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图15仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图15中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1500的收发单元1511,将具有处理功能的处理器视为终端设备1500的处理单元1512。如图15所示,终端设备1500包括收发单元1511和处理单元1512。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1511中用于实现接收功能的器件视为接收单元,将收发单元1511中用于实现发送功能的器件视为发送单元,即收发单元1511包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
如图16所示,本申请又一实施例提供了一种通信装置(通信设备)1600。该通信装置可以是终端设备,也可以是终端设备的部件(例如,集成电路,芯片等等);该通信装置还可以是网络设备,也可以是网络设备的部件(例如,集成电路,芯片等等);或者该通信装置也可以是其他通信模块,用于实现本申请方法实施例中对应于通信设备的操作。该通信装置1600可以包括:处理模块1602。可选的,还可以包括收发模块1601和存储模块1603。
处理模块1602用于确定至少一个时域资源单元Ux,其中x为所述时域资源单元的标识;处理模块1602根据所述时域资源单元Ux,确定系统消息在所述时域资源单元Ux的冗余版本RVx,所述冗余版本RVx满足RVx=(Int1(X1/X2*(Int2(x/M)mod K)))mod L,其中x为非负整数,X1和X2为非零实数,M为正实数,K和L为正整数;mod表示取模;Int1表示上取整或下取整,Int2表示上取整或下取整。
可选地,所述M为预定义的正实数。优选地,所述M为{1、2、4、5、8、16}中的任意一个。
可选地,所述M为系统消息子窗口包含的时域资源单元数量。
可选地,处理模块1602根据所述系统消息的发送周期确定所述M。
可选地,不同的系统消息的发送周期对应相同的M。
可选地,所述M或所述系统消息的发送周期由DCI中的已有字段指示,或者
所述M或所述系统消息的发送周期由高层信令配置,所述高层信令为RRC信令、系统消息或MAC-CE中的至少一种,或者
所述M或所述系统消息的发送周期由DCI和高层信令配置(指示),所述高层信令为RRC信令、系统消息或MAC-CE中的至少一种;
所述DCI和/或高层信令由收发模块1601接收或发送。
可选地,不同的系统消息与同步信号块的复用方式下的M或所述系统消息的发送周期分别定义或配置(指示)。所述不同的系统消息与同步信号块的复用方式包含时分复用和频分复用。
可选地,处理模块1602根据{同步信号块数量N,系统消息的子窗口包含的时域资源单元数量D}中的至少一项确定所述M。
可选地,M=N*D,或者M=n*N*D,或者M=N*D+F,或者M=n*N*D+F。其中D表示一个系统消息的子窗口包含的时域资源单元数量;n表示正整数,在某些实现方式中可理解为波束扫描周期的倍数;F表示非负整数,在某些实现方式中可通过配置或预定义的方式获得。
可选地,所述一个系统消息的子窗口内承载所述系统消息的波束为承载所述N个同步信号块的波束中的一个。
可选地,处理模块1602根据所述同步信号块数量N确定所述时域资源单元Ux,所述时域资源单元Ux包含至少一个用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的时域资源单元。
可选地,所述时域资源单元Ux是固定的或是预定义的,或者所述时域资源单元Ux是由收发模块1601接收或发送的信令配置或指示的;所述时域资源单元Ux包含至少一个用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的时域资源单元。
可选地,所述时域资源单元Ux包含用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的起始时域资源单元。
可选地,处理模块1602确定可用于接收或发送系统消息的至少两个在时域上连续的时域资源单元;处理模块1602确定所述系统消息在所述至少两个时域资源单元上使用的冗余版本,所述系统消息在所述至少两个时域资源单元上使用的冗余版本相同。
可选地,所述至少两个时域资源单元为能够承载所述系统消息的时域资源单元。
可选地,所述至少两个时域资源单元属于一个时域资源单元集合,所述时域资源单元集合包含:一个或多个无线帧,或者一个或多个子帧,或者一个或多个时隙,或者一个或多个微时隙,或者一个或多个符号,或者一个或多个系统消息时机,或者一个或多个系统消息窗口,或者一个或多个系统消息子窗口,一个或多个波束扫描周期。
可选地,所述系统消息包含RMSI、OSI、或者RMSI和OSI。
可选地,所述时域资源单元可以为符号、微时隙、时隙、子帧、无线帧、或采样点中的任意一种。
对于本申请提供的实施例,存储模块1603,用于存储参数、信息和指令中的至少一种。
在一种可能的设计中,如图16中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
需要说明的是,本申请实施例中的通信装置1600中各个模块的操作和实现方式可以 进一步参考前述对应方法实施例中的相应描述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请所描述的技术可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、数字信号处理器(DSP)、数字信号处理器件(DSPD)、专用集成电路(ASIC)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的指令、或者这两者的结合。存储器可以是RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介。例如,存储器可以与处理器连接,以使得处理器可以从存储器中读取信息,并可以向存储器存写信息。可选地,存储器还可以集成到处理器中。处理器和存储器可以设置于ASIC中,ASIC可以设置于终端中。可选地,处理器和存储器也可以设置于终端中的不同的部件中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据包中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据包中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介 质集成的服务器、数据包中心等数据包存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。上面的组合也应当包括在计算机可读介质的保护范围之内。
本说明书中各个实施例之间相同或相似的部分可以互相参考。以上所述的本申请实施方式并不构成对本申请保护范围的限定。

Claims (51)

  1. 一种通信方法,其特征在于,包括:
    根据实际传输的同步信号块的数量确定至少一个时域资源单元,其中所述至少一个时域资源单元包含在系统消息窗口中,所述系统消息窗口的时间长度为50ms,60ms,70ms,80ms,90ms,100ms,110ms,120ms,130ms,140ms,150ms,160ms,320ms,或640ms;
    在所述至少一个时域资源单元上接收系统消息的控制信息和/或系统消息的数据信息。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个时域资源单元包含在系统消息子窗口中,所述系统消息子窗口包含在所述系统消息窗口中。
  3. 根据权利要求2所述的方法,其特征在于,所述根据实际传输的同步信号块的数量确定至少一个时域资源单元,包括:
    根据所述实际传输的同步信号块的数量,以及所述实际传输的同步信号块的索引和所述系统消息子窗口包含的时域资源单元的数量确定所述至少一个时域资源单元。
  4. 根据权利要求2或3所述的方法,其特征在于,所述系统消息子窗口包括时域上离散分布的多个时域资源单元,所述系统消息子窗口与所述实际传输的同步信号块中的一个同步信号块关联。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述系统消息窗口包括一个或多个系统消息子窗口,每个系统消息子窗口与所述实际传输的同步信号块中的一个同步信号块关联。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述系统消息的控制信息由物理下行控制信道(PDCCH)承载,所述系统消息的数据信息由物理下行共享信道(PDSCH)承载。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述实际传输的同步信号块为候选同步信号块中的部分或全部。
  8. 一种通信方法,其特征在于,包括:
    根据实际传输的同步信号块的数量确定至少一个时域资源单元,其中所述至少一个时域资源单元包含在系统消息窗口中,所述系统消息窗口的时间长度为50ms,60ms,70ms,80ms,90ms,100ms,110ms,120ms,130ms,140ms,150ms,160ms,320ms,或640ms;
    在所述至少一个时域资源单元上发送系统消息的控制信息和/或系统消息的数据信息。
  9. 根据权利要求8所述的方法,其特征在于,所述至少一个时域资源单元包含在系统消息子窗口中,所述系统消息子窗口包含在所述系统消息窗口中。
  10. 根据权利要求9所述的方法,其特征在于,所述根据实际传输的同步信号块的数量确定至少一个时域资源单元,包括:
    根据所述实际传输的同步信号块的数量,以及所述实际传输的同步信号块的索引和所述系统消息子窗口包含的时域资源单元的数量确定所述至少一个时域资源单元。
  11. 根据权利要求9或10所述的方法,其特征在于,所述系统消息子窗口包括时域上离散分布的多个时域资源单元,所述系统消息子窗口与所述实际传输的同步信号块中的一个同步信号块关联。
  12. 根据权利要求8至11任一项所述的方法,其特征在于,所述系统消息窗口包括一个或多个系统消息子窗口,每个系统消息子窗口与所述实际传输的同步信号块中的一个同 步信号块关联。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述系统消息的控制信息由物理下行控制信道(PDCCH)承载,所述系统消息的数据信息由物理下行共享信道(PDSCH)承载。
  14. 根据权利要求8至13任一项所述的方法,其特征在于,所述实际传输的同步信号块为候选同步信号块中的部分或全部。
  15. 一种装置,其特征在于,包括:处理模块和收发模块;
    所述处理模块用于根据实际传输的同步信号块的数量确定至少一个时域资源单元,其中所述至少一个时域资源单元包含在系统消息窗口中,所述系统消息窗口的时间长度为50ms,60ms,70ms,80ms,90ms,100ms,110ms,120ms,130ms,140ms,150ms,160ms,320ms,或640ms;
    所述收发模块用于在所述至少一个时域资源单元上接收系统消息的控制信息和/或系统消息的数据信息。
  16. 根据权利要求15所述的装置,其特征在于,所述至少一个时域资源单元包含在系统消息子窗口中,所述系统消息子窗口包含在所述系统消息窗口中。
  17. 根据权利要求16所述的装置,其特征在于,所述处理模块用于根据实际传输的同步信号块的数量确定至少一个时域资源单元,包括:
    所述处理模块用于根据所述实际传输的同步信号块的数量,以及所述实际传输的同步信号块的索引和所述系统消息子窗口包含的时域资源单元的数量确定所述至少一个时域资源单元。
  18. 根据权利要求16或17所述的装置,其特征在于,所述系统消息子窗口包括时域上离散分布的多个时域资源单元,所述系统消息子窗口与所述实际传输的同步信号块中的一个同步信号块关联。
  19. 根据权利要求15至18任一项所述的装置,其特征在于,所述系统消息窗口包括一个或多个系统消息子窗口,每个系统消息子窗口与所述实际传输的同步信号块中的一个同步信号块关联。
  20. 根据权利要求15至19任一项所述的装置,其特征在于,所述系统消息的控制信息由物理下行控制信道(PDCCH)承载,所述系统消息的数据信息由物理下行共享信道(PDSCH)承载。
  21. 根据权利要求15至20任一项所述的装置,其特征在于,所述实际传输的同步信号块为候选同步信号块中的部分或全部。
  22. 一种装置,其特征在于,包括:处理模块和收发模块;
    所述处理模块用于根据实际传输的同步信号块的数量确定至少一个时域资源单元,其中所述至少一个时域资源单元包含在系统消息窗口中,所述系统消息窗口的时间长度为50ms,60ms,70ms,80ms,90ms,100ms,110ms,120ms,130ms,140ms,150ms,160ms,320ms,或640ms;
    所述收发模块用于在所述至少一个时域资源单元上发送系统消息的控制信息和/或系统消息的数据信息。
  23. 根据权利要求22所述的装置,其特征在于,所述至少一个时域资源单元包含在系统消息子窗口中,所述系统消息子窗口包含在所述系统消息窗口中。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块用于根据实际传输的同步信号块的数量确定至少一个时域资源单元,包括:
    所述处理模块用于根据所述实际传输的同步信号块的数量,以及所述实际传输的同步信号块的索引和所述系统消息子窗口包含的时域资源单元的数量确定所述至少一个时域资源单元。
  25. 根据权利要求23或24所述的装置,其特征在于,所述系统消息子窗口包括时域上离散分布的多个时域资源单元,所述系统消息子窗口与所述实际传输的同步信号块中的一个同步信号块关联。
  26. 根据权利要求22至25任一项所述的装置,其特征在于,所述系统消息窗口包括一个或多个系统消息子窗口,每个系统消息子窗口与所述实际传输的同步信号块中的一个同步信号块关联。
  27. 根据权利要求22至26任一项所述的装置,其特征在于,所述系统消息的控制信息由物理下行控制信道(PDCCH)承载,所述系统消息的数据信息由物理下行共享信道(PDSCH)承载。
  28. 根据权利要求22至27任一项所述的装置,其特征在于,所述实际传输的同步信号块为候选同步信号块中的部分或全部。
  29. 一种装置,其特征在于,所述装置用于执行如权利要求1至7中任一项所述的方法。
  30. 一种装置,其特征在于,所述装置用于执行如权利要求8至14中任一项所述的方法。
  31. 一种装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至7中任一项所述的方法。
  32. 一种装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求8至14中任一项所述的方法。
  33. 一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至7中任一项所述的方法。
  34. 一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求8至14中任一项所述的方法。
  35. 一种通信系统,其特征在于,包括:如权利要求15至21中任一项所述的装置和如权利要求22至28中任一项所述的装置。
  36. 一种用于无线通信的方法,其特征在于,包括:
    通信设备确定至少一个时域资源单元Ux,x为所述时域资源单元的标识;
    所述通信设备根据所述至少一个时域资源单元Ux,确定系统消息在所述至少一个时域资源单元Ux的冗余版本RVx,所述冗余版本RVx满足RVx=(Int1(X1/X2*(Int2(x/M)mod K)))mod L,其中x为非负整数,X1和X2为非零实数,M为正实数,K和L为正整数;mod表示取模;Int1表示上取整或下取整,Int2表示上取整或下取整。
  37. 根据权利要求36所述的方法,其特征在于,
    所述M为{1、2、4、5、8、16}中的任意一个,或者
    所述通信设备根据所述系统消息的发送周期确定所述M。
  38. 根据权利要求36所述的方法,其特征在于,包括:
    所述通信设备根据同步信号块数量N确定所述M。
  39. 根据权利要求38所述方法,其特征在于,M满足:M=N*D,D表示所述系统消息的一个子窗口包含的时域资源单元数量。
  40. 根据权利要求39所述的方法,其特征在于,所述系统消息的一个子窗口内承载所述系统消息的波束为承载所述N个同步信号块的波束中的一个。
  41. 根据权利要求36至40任一项所述的方法,其特征在于,所述方法还包括:
    所述通信设备根据所述同步信号块数量N确定所述时域资源单元Ux,所述时域资源单元Ux包含至少一个用于接收或发送所述系统消息的物理下行控制信道PDCCH和/或所述系统消息的物理下行共享信道PDSCH的时域资源单元。
  42. 根据权利要求41所述的方法,其特征在于,所述时域资源单元Ux包含至少一个用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的时域资源单元,包括:
    所述时域资源单元Ux包含用于接收或发送所述系统消息的PDCCH和/或所述系统消息的PDSCH的起始时域资源单元。
  43. 一种用于无线通信的方法,其特征在于,包括:
    通信设备确定可用于接收或发送系统消息的至少两个在时域上连续的时域资源单元;
    所述通信设备确定所述系统消息在所述至少两个时域资源单元上使用的冗余版本,所述系统消息在所述至少两个时域资源单元上使用的冗余版本相同。
  44. 根据权利要求43所述的方法,其特征在于,所述方法还包括:
    所述通信设备在所述至少两个在时域上连续的时域资源单元中的至少一个时域资源单元上,使用所述冗余版本接收或发送所述系统消息。
  45. 根据权利要求43或44所述的方法,其特征在于,所述方法还包括:
    所述至少两个时域资源单元为能够承载所述系统消息的时域资源单元。
  46. 根据权利要求43至45所述的任一方法,其特征在于,所述方法还包括:
    所述至少两个时域资源单元属于一个时域资源单元集合。
  47. 根据权利要求36至46所述的任一方法,其特征在于,所述方法还包括:
    所述系统消息包含剩余最小系统消息RMSI、其他系统消息OSI、或者RMSI和OSI。
  48. 根据权利要求36至47所述的任一方法,其特征在于,
    所述时域资源单元可以为符号、微时隙、时隙、子帧、无线帧、或采样点中的任意一种。
  49. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求36至48任一项所述的方法。
  50. 一种通信装置,其特征在于,包括:处理器和存储器,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得通信装置以执行权利要求36至48任一项所述的方法。
  51. 一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求36至48任一项所述的方法。
PCT/CN2019/079493 2018-04-04 2019-03-25 系统消息冗余版本确定方法及装置 WO2019192341A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201980001782.1A CN110521241B (zh) 2018-04-04 2019-03-25 系统消息冗余版本确定方法及装置
ES19780879T ES2962577T3 (es) 2018-04-04 2019-03-25 Transmisión de información del sistema
KR1020207028774A KR102350170B1 (ko) 2018-04-04 2019-03-25 시스템 정보 리던던시 버전 결정 방법 및 장치
EP19780879.3A EP3764698B1 (en) 2018-04-04 2019-03-25 Transmission of system information
JP2020554130A JP7105907B2 (ja) 2018-04-04 2019-03-25 システム情報の冗長バージョンの決定方法および装置
RU2020135257A RU2777447C2 (ru) 2018-04-04 2019-03-25 Способ и устройство для определения версии избыточности системной информации
ZA2020/05868A ZA202005868B (en) 2018-04-04 2020-09-22 System information redundancy version determining method and apparatus
US17/036,214 US11489645B2 (en) 2018-04-04 2020-09-29 System information redundancy version determining method and apparatus
US17/895,843 US11736258B2 (en) 2018-04-04 2022-08-25 System information redundancy version determining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810299694.1 2018-04-04
CN201810299694.1A CN110351809B (zh) 2018-04-04 2018-04-04 系统消息冗余版本确定方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/036,214 Continuation US11489645B2 (en) 2018-04-04 2020-09-29 System information redundancy version determining method and apparatus

Publications (1)

Publication Number Publication Date
WO2019192341A1 true WO2019192341A1 (zh) 2019-10-10

Family

ID=68099758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079493 WO2019192341A1 (zh) 2018-04-04 2019-03-25 系统消息冗余版本确定方法及装置

Country Status (8)

Country Link
US (2) US11489645B2 (zh)
EP (1) EP3764698B1 (zh)
JP (1) JP7105907B2 (zh)
KR (1) KR102350170B1 (zh)
CN (2) CN110351809B (zh)
ES (1) ES2962577T3 (zh)
WO (1) WO2019192341A1 (zh)
ZA (1) ZA202005868B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351809B (zh) * 2018-04-04 2024-04-26 华为技术有限公司 系统消息冗余版本确定方法及装置
FI3764712T3 (fi) * 2018-09-18 2023-03-25 Guangdong Oppo Mobile Telecommunications Corp Ltd Resurssien kohdennusmenetelmä ja päätelaite
CN110621073A (zh) * 2019-11-08 2019-12-27 展讯通信(上海)有限公司 Pdcch监听、发送方法及装置、存储介质、终端、基站
US11432319B2 (en) * 2020-02-14 2022-08-30 Qualcomm Incorporated Signaling for non-transparent single frequency network schemes for PDSCH
CN113726487B (zh) * 2020-05-26 2022-09-02 中国联合网络通信集团有限公司 一种冗余版本的确定方法和装置
WO2022077500A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 一种数据传输方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118240A (zh) * 2008-09-22 2011-07-06 华为技术有限公司 一种冗余版本和无线帧号以及子帧号绑定的方法和装置
US20160006548A1 (en) * 2013-03-13 2016-01-07 Lg Electronics Inc. Method for transmitting wireless signal and device therefor
CN107278383A (zh) * 2017-03-28 2017-10-20 北京小米移动软件有限公司 传输、获取同步信息块的方法及装置
CN107528682A (zh) * 2017-09-20 2017-12-29 宇龙计算机通信科技(深圳)有限公司 参考信号的发送方法及装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183875B (zh) * 2007-12-07 2012-07-04 中兴通讯股份有限公司 一种Turbo码的有限长度循环缓存的速率匹配方法
CN101227259B (zh) * 2008-01-11 2013-06-05 中兴通讯股份有限公司 一种有限长度循环缓存速率匹配的数据读取方法
CN101547075B (zh) * 2008-03-25 2013-08-21 中兴通讯股份有限公司 系统消息发送及接收方法
CN101883387A (zh) 2009-05-04 2010-11-10 大唐移动通信设备有限公司 一种无线通信方法及装置
JP4928621B2 (ja) 2010-05-27 2012-05-09 シャープ株式会社 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
EP2503835A1 (en) 2011-03-23 2012-09-26 Panasonic Corporation Resouce assignment for single and multiple cluster transmission
WO2013141583A1 (ko) * 2012-03-19 2013-09-26 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 전송 방법 및 장치
WO2014185749A1 (ko) * 2013-05-16 2014-11-20 엘지전자 주식회사 커버리지 개선을 위한 신호 전송 방법 및 이를 위한 장치
CN104904175B (zh) * 2013-09-27 2018-12-25 华为技术有限公司 信息的传输方法、基站、用户设备和通信系统
EP3308483B1 (en) * 2015-06-15 2020-02-05 Telefonaktiebolaget LM Ericsson (publ) Variable synchronization block format
CN107182130B (zh) 2016-03-10 2019-10-01 上海朗帛通信技术有限公司 一种基于蜂窝网的窄带通信的方法和装置
EP3843289B1 (en) * 2016-05-11 2022-09-28 Sony Group Corporation Distributed control in wireless systems
KR20170134238A (ko) * 2016-05-27 2017-12-06 주식회사 아이티엘 Nr 시스템을 위한 제어 채널 및 데이터 채널 송수신 방법 및 장치
EP3469851A1 (en) * 2016-06-10 2019-04-17 Telefonaktiebolaget LM Ericsson (Publ) Mbms and pmch in unlicensed bands
CN107623933B (zh) * 2016-07-15 2019-12-10 电信科学技术研究院 一种初始接入信号的传输方法和装置
CN107733573B (zh) 2016-08-10 2022-03-01 中兴通讯股份有限公司 数据处理方法、装置及节点
EP3934357B1 (en) * 2016-08-11 2024-05-15 Samsung Electronics Co., Ltd. Method and apparatus of data transmission in next generation cellular networks
KR102331796B1 (ko) * 2017-01-06 2021-11-25 텔레폰악티에볼라겟엘엠에릭슨(펍) 멀티캐리어 동작을 위한 뉴머롤로지 조합 세트
CN111108705B (zh) * 2017-08-04 2022-05-03 联想(北京)有限公司 具有符号重复的信息
EP3662708A4 (en) * 2017-08-04 2020-12-30 Lenovo (Beijing) Limited AUTHORIZATION-FREE RESOURCE ALLOCATION
EP3665541A4 (en) * 2017-08-11 2021-03-31 Lenovo (Beijing) Limited AIR VEHICLE IDENTIFICATION
CN110383723B (zh) * 2017-08-11 2021-02-02 Lg电子株式会社 用于在coreset中接收/发送控制信道的方法和设备
EP3665819A4 (en) * 2017-08-11 2021-06-23 Lenovo (Beijing) Limited ENCODING THE RECEIVED POWER OF A REFERENCE SIGNAL
EP3669597B1 (en) * 2017-08-14 2022-06-29 Lenovo (Beijing) Limited Responding to radio access network paging failures
WO2019061277A1 (en) * 2017-09-29 2019-04-04 Lenovo (Beijing) Limited FEEDBACK MESSAGE HAVING A SEQUENCE INDICATING FEEDBACK INFORMATION CORRESPONDING TO DATA BLOCKS
US11082111B2 (en) * 2017-11-16 2021-08-03 Lenovo (Beijing) Limited Determining a TPMI for a codebook set
CN110035506B (zh) * 2018-01-11 2021-08-27 维沃移动通信有限公司 一种通信方法及相关设备
US11778659B2 (en) * 2018-02-26 2023-10-03 Telefonaktiebolaget Lm Ericsson (Publ) Beam selection for PDCCH order
CN110351809B (zh) * 2018-04-04 2024-04-26 华为技术有限公司 系统消息冗余版本确定方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118240A (zh) * 2008-09-22 2011-07-06 华为技术有限公司 一种冗余版本和无线帧号以及子帧号绑定的方法和装置
US20160006548A1 (en) * 2013-03-13 2016-01-07 Lg Electronics Inc. Method for transmitting wireless signal and device therefor
CN107278383A (zh) * 2017-03-28 2017-10-20 北京小米移动软件有限公司 传输、获取同步信息块的方法及装置
CN107528682A (zh) * 2017-09-20 2017-12-29 宇龙计算机通信科技(深圳)有限公司 参考信号的发送方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on SS block composition and SS burst set composition", 3GPP TSG RAN WGI MEETING #89, R1-1708161, 19 May 2017 (2017-05-19), XP051273357 *
HUAWEI ET AL.: "Discussion on SS burst set composition and SS block time index indication", 3GPP TSG RAN WGI MEETING #88BIS, R1-1705052, 7 April 2017 (2017-04-07), XP051251712 *

Also Published As

Publication number Publication date
EP3764698B1 (en) 2023-08-16
CN110521241A (zh) 2019-11-29
US20210014025A1 (en) 2021-01-14
EP3764698A4 (en) 2021-05-05
ES2962577T3 (es) 2024-03-19
KR102350170B1 (ko) 2022-01-11
JP2021518721A (ja) 2021-08-02
CN110521241B (zh) 2020-09-08
RU2020135257A3 (zh) 2022-04-27
CN110351809A (zh) 2019-10-18
JP7105907B2 (ja) 2022-07-25
US11736258B2 (en) 2023-08-22
KR20200128135A (ko) 2020-11-11
EP3764698A1 (en) 2021-01-13
US20220416979A1 (en) 2022-12-29
CN110351809B (zh) 2024-04-26
RU2020135257A (ru) 2022-04-27
US11489645B2 (en) 2022-11-01
ZA202005868B (en) 2022-06-29
EP3764698C0 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2019192341A1 (zh) 系统消息冗余版本确定方法及装置
CN110463326A (zh) 窄带通信中的动态带宽配置
CN109151922A (zh) 测量方法、测量配置方法和相关设备
WO2019029621A1 (zh) 一种信息发送、接收方法及装置
US11742968B2 (en) Self interference measurement for clutter echo detection
WO2019214661A1 (zh) 传输寻呼消息的方法和装置
EP3833131A1 (en) Communication system, base station, and communication terminal
US11705948B2 (en) Iterative self interference measurement with power ramping
WO2019029346A1 (zh) 用于传输参考信号的方法和通信装置
CN109196945A (zh) 跨多个尝试的rach组合
WO2018203278A1 (en) Reference signals puncturing within a channel block
US20210297967A1 (en) Communication system, communication terminal, and base station
US11778650B2 (en) UE assistance to configure self-interference measurement
US10999027B2 (en) Method and device for eliminating inter-cell interference
CN111756497B (zh) 通信方法及装置
EP3890384A1 (en) Communication system and communication terminal device
RU2777447C2 (ru) Способ и устройство для определения версии избыточности системной информации
EP4301045A1 (en) Communication system and base station
WO2023272602A1 (zh) 传输信号的方法、网络设备及终端
WO2022216544A1 (en) Channel sensing with self-interference awareness for unlicensed band
CN116095839A (zh) 一种信号组的发送/接收方法及其装置
CN115734212A (zh) 一种信令处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554130

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028774

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019780879

Country of ref document: EP

Effective date: 20201005