WO2019192070A1 - Procédé de préparation de mousse métallique - Google Patents

Procédé de préparation de mousse métallique Download PDF

Info

Publication number
WO2019192070A1
WO2019192070A1 PCT/CN2018/089575 CN2018089575W WO2019192070A1 WO 2019192070 A1 WO2019192070 A1 WO 2019192070A1 CN 2018089575 W CN2018089575 W CN 2018089575W WO 2019192070 A1 WO2019192070 A1 WO 2019192070A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
foam
heat treatment
preparing
diffusion
Prior art date
Application number
PCT/CN2018/089575
Other languages
English (en)
Chinese (zh)
Inventor
吴江明
钟一锋
孙兆荣
Original Assignee
吴江明
钟一锋
孙兆荣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810281497.7A external-priority patent/CN108456904B/zh
Priority claimed from CN201810281496.2A external-priority patent/CN108456795B/zh
Application filed by 吴江明, 钟一锋, 孙兆荣 filed Critical 吴江明
Publication of WO2019192070A1 publication Critical patent/WO2019192070A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the invention relates to the technical field of foam metal preparation, and in particular to a method for preparing a metal foam.
  • Foam metal is an excellent functional environmentally friendly material. It combines the functions of mechanics, thermals, electricity, and acoustics, and has an irreplaceable important position in the field of materials. High porosity and high specific surface area are the structural characteristics and important characteristics of foam metal. They are also the key properties that determine the application advantages of foam metal in the fields of sound absorption, damping, electromagnetic shielding, filtration separation and so on.
  • the three-dimensional network of open-cell foam metal is mainly prepared by electrodeposition and vapor deposition, and the surface of the prepared foam metal fiber is smooth or nearly smooth, as shown in Fig. 1-2. This results in a difficulty in further increasing the high specific surface area of the metal foam, which limits its wider application.
  • the present invention aims to provide a method for preparing a metal foam based on the difference in diffusion rate of a dissimilar metal in a high temperature interdiffusion process, and rapidly lowering the temperature during the most vigorous diffusion to allow the diffusion reaction to stop rapidly, thereby Defects such as vacancies and holes remaining due to incomplete diffusion remain, forming an ultra-high specific surface area foam metal.
  • the present invention adopts one of the following technical solutions:
  • a method for preparing a metal foam comprising the steps of:
  • step S2 the foam metal substrate obtained in step S1 is heat-treated under a hydrogen atmosphere to remove the polyurethane, the heat treatment temperature is 400 ° C -1000 ° C;
  • step S3 depositing another metal material different from the metal electrodeposited in step S1 on the heat-treated metal foam substrate to obtain a foam metal alloy
  • step S4 performing a diffusion heat treatment on the metal foam obtained in step S3 under a reducing atmosphere of hydrogen gas, the temperature of the diffusion heat treatment is 600 ° C - 1000 ° C; after the diffusion heat treatment is finished, rapidly cooling to room temperature, the cooling rate is greater than 10 ° C / min Finally, a foam metal alloy with an ultra-high specific surface area is obtained.
  • the metal in step S1 is nickel, copper or iron.
  • step S1 the specification of the foam metal substrate is 5PPI-200PPI.
  • step S2 the heat treatment time is from 10 min to 300 min.
  • step S3 the deposition is performed by electrodeposition or vapor deposition.
  • the metal material is nickel, copper or iron.
  • step S4 the diffusion heat treatment time is 1 h-20 h.
  • a method for preparing a metal foam comprising the steps of:
  • step S2 the foam metal substrate obtained in step S1 is heat-treated under a hydrogen atmosphere to remove the polyurethane, the heat treatment temperature is 400 ° C -1000 ° C;
  • step S3 depositing another metal material different from the metal electrodeposited in step S1 on the heat-treated metal foam substrate to obtain a foam metal alloy
  • the temperature of the diffusion heat treatment is 600 ° C - 1000 ° C; after the end of the diffusion heat treatment, rapid cooling to room temperature, the cooling rate is greater than 10 ° C / min, and finally obtain a foam metal alloy with ultra-high specific surface area.
  • the metal in step S1 is nickel, copper or iron.
  • step S1 the specification of the foam metal substrate is 5PPI-200PPI.
  • step S2 the heat treatment time is from 10 min to 300 min.
  • step S3 the deposition is performed by electrodeposition or vapor deposition.
  • the metal material is nickel, copper or iron.
  • step S4 the diffusion heat treatment time is 1 h-20 h.
  • the invention is based on the difference of diffusion rate of dissimilar metals in the process of high temperature interdiffusion, and the rapid cooling down when the diffusion is most intense causes the diffusion reaction to stop rapidly, thereby retaining defects such as vacancies and holes left by incomplete diffusion, and forming a defect.
  • Ultra high specific surface area foam metal Ultra high specific surface area foam metal.
  • FIG. 1 is a schematic view showing the surface morphology of a foam metal prepared by the prior art
  • Figure 2 is an enlarged schematic view of Figure 1;
  • FIG. 3 is a schematic view showing the surface morphology of a metal foam prepared by one of the methods of the present invention
  • Figure 4 is an enlarged schematic view of Figure 3;
  • Figure 5 is a schematic view showing the surface morphology of a metal foam prepared by another method of the present invention.
  • Figure 6 is an enlarged schematic view of Figure 5.
  • Conductive treatment was carried out on a 45 PPI polyurethane foam to realize electrodeposition of a nickel metal element, and a foamed nickel having a bulk density of 0.3 Pg/cm 3 of 45 PPI was obtained, and the specific surface area was 2000 cm 2 /cm 3 .
  • the foamed nickel was heat-treated at 900 ° C for 1 hour in a hydrogen atmosphere to remove the polyurethane.
  • metal copper was electrodeposited on the heat-treated foamed nickel to obtain a foamed nickel-copper alloy having a bulk density of 0.6 P/cm 3 of 45 PPI, and subjected to diffusion heat treatment for 8 hours under a hydrogen reducing atmosphere at 800 ° C, and then at 10 ° C.
  • the cooling rate of /min was rapidly cooled to room temperature to obtain an ultrahigh specific surface area foamed nickel-copper alloy having a 45 PPI specific surface area of 6300 cm 2 /cm 3 , which increased the specific surface area by more than three times compared with the original metal foam.
  • the surface topography of the foamed nickel-copper alloy obtained in this embodiment is shown in Figs. 3-4, and the surface thereof has a microporous structure as seen from Fig. 3-4.
  • Conductive treatment was carried out on a 100 PPI polyurethane foam, and a nickel metal element was electrodeposited to obtain a foamed nickel having a 100 PPI bulk density of 0.15 g/cm 3 and a specific surface area of 6500 cm 2 /cm 3 .
  • the foamed nickel was subjected to heat treatment at 800 ° C for 1.5 hours in a hydrogen atmosphere to remove the polyurethane.
  • metal iron was vapor-deposited on the heat-treated foamed nickel to obtain a foamed nickel-iron alloy having a 100 PPI bulk density of 0.22 g/cm 3 .
  • the foamed nickel-iron alloy was subjected to diffusion heat treatment in a hydrogen atmosphere at a temperature of 950 ° C for 10 hours, and then rapidly cooled to room temperature at a cooling rate of 10 ° C / min to obtain an ultrahigh specific surface area having a specific surface area of 15000 cm 2 /cm 3 .
  • Foamed nickel-iron alloy which has more than doubled the specific surface area compared to the original metal foam.
  • the surface topography of the foamed nickel-iron alloy obtained in this example was similar to that of Example 1.
  • Conductive treatment was carried out on a 120 PPI polyurethane foam, and a copper metal element was electrodeposited to obtain a foamed copper having a bulk density of 0.18 g/cm 3 of 120 PPI and a specific surface area of 6000 cm 2 /cm 3 .
  • the heat treatment was carried out for 3 hours at a temperature of 700 ° C in a hydrogen atmosphere to remove the polyurethane.
  • metal iron was electrodeposited on the heat-treated copper foam to obtain a foamed copper-iron alloy having a 120 PPI bulk density of 0.24 g/cm 3 .
  • the foamed copper-iron alloy was subjected to a diffusion heat treatment in a hydrogen atmosphere at a temperature of 980 ° C for 14 hours, and then rapidly cooled to room temperature at a cooling rate of 10 ° C / min to obtain an ultra-high ratio of a specific surface area of 18,500 cm 2 /cm 3 .
  • the surface area of the foamed copper-iron alloy increases the specific surface area by more than three times compared to the original metal foam.
  • the surface topography of the foamed copper-iron alloy obtained in this example was similar to that of Example 1.
  • Conductive treatment was carried out on a 45 PPI polyurethane foam to realize electrodeposition of a nickel metal element, and a foamed nickel having a bulk density of 0.3 Pg/cm 3 of 45 PPI was obtained, and the specific surface area was 2000 cm 2 /cm 3 .
  • the foamed nickel was heat-treated at 900 ° C for 1 hour in a hydrogen atmosphere to remove the polyurethane.
  • metal copper is electrodeposited on the heat-treated foamed nickel to obtain a foamed nickel-copper alloy having a bulk density of 0.6 P/cm 3 of 45 PPI, and is subjected to a protective atmosphere of nitrogen, argon or helium at 800 ° C for 8 hours.
  • the surface topography of the foamed nickel-copper alloy obtained in this embodiment is shown in Fig. 5-6. It can be seen from Fig. 5-6 that the surface has a microporous structure.
  • Conductive treatment was carried out on a 100 PPI polyurethane foam, and a nickel metal element was electrodeposited to obtain a foamed nickel having a 100 PPI bulk density of 0.15 g/cm 3 and a specific surface area of 6500 cm 2 /cm 3 .
  • the foamed nickel was subjected to heat treatment at 800 ° C for 1.5 hours in a hydrogen atmosphere to remove the polyurethane.
  • metal iron was vapor-deposited on the heat-treated foamed nickel to obtain a foamed nickel-iron alloy having a 100 PPI bulk density of 0.22 g/cm 3 .
  • the foamed nickel-iron alloy was subjected to a diffusion heat treatment at a temperature of 950 ° C and a vacuum of less than 1*10 -2 Pa for 10 hours, and then rapidly cooled to room temperature at a cooling rate of 10 ° C / min to obtain a specific surface area of 15000 cm.
  • the 2 /cm 3 ultra-high specific surface area foamed nickel-iron alloy has more than doubled the specific surface area compared to the original metal foam.
  • the surface topography of the foamed nickel-iron alloy obtained in this example was similar to that of Example 1.
  • Conductive treatment was carried out on a 120 PPI polyurethane foam, and a copper metal element was electrodeposited to obtain a foamed copper having a bulk density of 0.18 g/cm 3 of 120 PPI and a specific surface area of 6000 cm 2 /cm 3 .
  • the heat treatment was carried out for 3 hours at a temperature of 700 ° C in a hydrogen atmosphere to remove the polyurethane.
  • metal iron was electrodeposited on the heat-treated copper foam to obtain a foamed copper-iron alloy having a 120 PPI bulk density of 0.24 g/cm 3 .
  • the foamed copper-iron alloy was subjected to a diffusion heat treatment at a temperature of 980 ° C and a vacuum of less than 1*10 -1 Pa for 14 hours, and then rapidly cooled to room temperature at a cooling rate of 10 ° C / min to obtain a specific surface area of 18,500 cm.
  • the 2 /cm 3 ultra-high specific surface area foamed copper-iron alloy has a specific surface area that is more than three times greater than that of the original metal foam.
  • the surface topography of the foamed copper-iron alloy obtained in this example was similar to that of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

L'invention concerne un procédé de préparation d'une mousse métallique. Le procédé comprend : la mise en œuvre d'un traitement conducteur sur une mousse de polyuréthane, et le dépôt électrolytique d'au moins un métal pour obtenir un substrat métallique en mousse ; la mise en œuvre d'un traitement thermique sur le substrat en mousse métallique obtenu dans une atmosphère d'hydrogène pour éliminer le polyuréthane ; le dépôt d'un matériau métallique différent du substrat métallique en mousse sur le substrat métallique en mousse pour obtenir un alliage métallique en mousse ; et la mise en œuvre d'un traitement à chaud de diffusion sur l'alliage métallique en mousse sous une atmosphère réductrice d'hydrogène gazeux, et le refroidissement rapide de l'alliage métallique en mousse après le traitement à chaud par diffusion, ce qui permet d'obtenir finalement un alliage métallique en mousse ayant une surface spécifique ultra-élevée. Sur la base de la différence de vitesse de diffusion de métaux dissemblables dans le processus d'interdiffusion à haute température, la réaction de diffusion peut être rapidement arrêtée par refroidissement rapide au point de diffusion le plus élevé. Par conséquent, des défauts tels que des lacunes et des trous laissés par une diffusion incomplète sont retenus pour former le métal en mousse à surface spécifique ultra-élevée.
PCT/CN2018/089575 2018-04-02 2018-06-01 Procédé de préparation de mousse métallique WO2019192070A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810281496.2 2018-04-02
CN201810281497.7 2018-04-02
CN201810281497.7A CN108456904B (zh) 2018-04-02 2018-04-02 一种超高比表面积泡沫金属制备方法
CN201810281496.2A CN108456795B (zh) 2018-04-02 2018-04-02 一种有效提高比表面积的泡沫金属制备方法

Publications (1)

Publication Number Publication Date
WO2019192070A1 true WO2019192070A1 (fr) 2019-10-10

Family

ID=68099922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089575 WO2019192070A1 (fr) 2018-04-02 2018-06-01 Procédé de préparation de mousse métallique

Country Status (1)

Country Link
WO (1) WO2019192070A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355097A (zh) * 2000-11-30 2002-06-26 北京有色金属研究总院 一种复合泡沫金属及其制备方法
CN1480542A (zh) * 2002-09-02 2004-03-10 北京有色金属研究总院 一种复合金属多孔体及其制备方法
EP1477578A1 (fr) * 2003-05-15 2004-11-17 Efoam S.A. Procédé pour la fabrication d'une mousse métallique revêtue de métal
CN1834272A (zh) * 2006-04-18 2006-09-20 英可高新技术材料(大连)有限公司 椭圆孔型多孔金属材料及其制造工艺
CN106103808A (zh) * 2014-03-06 2016-11-09 住友电气工业株式会社 金属多孔体及金属多孔体的制造方法
WO2017130880A1 (fr) * 2015-08-04 2017-08-03 住友電気工業株式会社 Corps poreux métallique, pile à combustible et procédé de fabrication de corps poreux métallique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355097A (zh) * 2000-11-30 2002-06-26 北京有色金属研究总院 一种复合泡沫金属及其制备方法
CN1480542A (zh) * 2002-09-02 2004-03-10 北京有色金属研究总院 一种复合金属多孔体及其制备方法
EP1477578A1 (fr) * 2003-05-15 2004-11-17 Efoam S.A. Procédé pour la fabrication d'une mousse métallique revêtue de métal
CN1834272A (zh) * 2006-04-18 2006-09-20 英可高新技术材料(大连)有限公司 椭圆孔型多孔金属材料及其制造工艺
CN106103808A (zh) * 2014-03-06 2016-11-09 住友电气工业株式会社 金属多孔体及金属多孔体的制造方法
WO2017130880A1 (fr) * 2015-08-04 2017-08-03 住友電気工業株式会社 Corps poreux métallique, pile à combustible et procédé de fabrication de corps poreux métallique

Similar Documents

Publication Publication Date Title
Valente-Feliciano Superconducting RF materials other than bulk niobium: a review
CN105448528B (zh) 一种金属-石墨烯复合多孔电极材料的制备方法
US7858558B2 (en) Superconducting thin film material and method of manufacturing the same
Gao et al. Structure, optical properties and thermal stability of TiC-based tandem spectrally selective solar absorber coating
CN100384305C (zh) 大晶粒铌材超导腔及其制造方法
CN105256312A (zh) 一种石墨烯和碳纳米管复合多孔电极材料的制备方法
CN108456795B (zh) 一种有效提高比表面积的泡沫金属制备方法
CN108456904B (zh) 一种超高比表面积泡沫金属制备方法
US11535567B2 (en) Polyimide-based composite carbon film with high thermal conductivity and preparation method therefor
WO2019192070A1 (fr) Procédé de préparation de mousse métallique
WO2019233053A1 (fr) Nickel moussé microporeux et procédé de préparation associé
CN109536907B (zh) 一种高强度强立方织构层状复合基带及其制备方法
CN109576644A (zh) 一种制备涂层导体用高钨合金基带的方法
CN111101007B (zh) 一种高性能镍基合金复合带材的制备方法
CN109338161B (zh) 一种立方织构镍合金基带及其制备方法
CN114822919B (zh) 一种石墨烯-金属复合膜的制造方法
CN109371284B (zh) 一种高性能立方织构金属基带及其制备方法
CN109576749B (zh) 一种新型的强立方织构金属基带及其制备方法
CN111118347B (zh) 一种高强度Ni基复合基带的制备方法
US8765268B2 (en) Coated article and method for making said article
JP2018177557A (ja) カーボンナノチューブ複合体の製造方法及び積層体
CN114214602A (zh) 一种三维原位石墨烯增强金属基复合材料的连续化制备方法
US11158843B2 (en) Method for making nanoporous nickel composite material
JP2000196165A (ja) 磁気トンネル素子及びその製造方法
TWI716879B (zh) 氫穿透膜及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913304

Country of ref document: EP

Kind code of ref document: A1