WO2019191988A1 - 随机接入方法及装置 - Google Patents

随机接入方法及装置 Download PDF

Info

Publication number
WO2019191988A1
WO2019191988A1 PCT/CN2018/082034 CN2018082034W WO2019191988A1 WO 2019191988 A1 WO2019191988 A1 WO 2019191988A1 CN 2018082034 W CN2018082034 W CN 2018082034W WO 2019191988 A1 WO2019191988 A1 WO 2019191988A1
Authority
WO
WIPO (PCT)
Prior art keywords
tac
terminal device
msg2
target
msg3
Prior art date
Application number
PCT/CN2018/082034
Other languages
English (en)
French (fr)
Inventor
铁晓磊
邵华
颜矛
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880090783.3A priority Critical patent/CN111886917B/zh
Priority to PCT/CN2018/082034 priority patent/WO2019191988A1/zh
Publication of WO2019191988A1 publication Critical patent/WO2019191988A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a random access method and apparatus.
  • the process of the terminal device randomly accessing the wireless communication network is:
  • the terminal device sends the Msg1 to the network device, and determines a corresponding random access radio network temporary identifier (Random Access Radio Network Temporary Identifier) according to a physical random access channel occasion (PRACH occasion) corresponding to the Msg1.
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the terminal device After the terminal device sends the Msg1, it listens to the common search space for transmitting the Msg2 in the random access response window (RAR window), and if the terminal device detects the RA-RNTI masking
  • the physical downlink control channel (PDCCH) receives the Msg2 information carried in the physical downlink shared channel (PDSCH) of the PDCCH scheduling, and the terminal device checks whether the Msg2 includes the corresponding terminal device.
  • the Msg1 random access response if yes, the terminal device parses the RAR corresponding to the terminal device, and the RAR includes the scheduling information of the Msg3, indicating the uplink sending resource of the Msg3; If the RA-RNTI-masked PDCCH is not detected, or the RA-RNTI-masked PDCCH-scheduled Msg2 does not include the RAR corresponding to the Msg1 sent by the terminal device, the terminal device will continue to monitor the PDCCH in the RAR window until it finds the inclusion. Corresponds to Rs Msg2 or until the RAR window times out.
  • the terminal device sends the Msg3 on the uplink sending resource indicated by the RAR according to the RAR in the Msg2.
  • the terminal device continues to monitor whether there is an instruction to retransmit the PDCCH scheduling Msg3 or a new transmission instruction of the PDCCH scheduling Msg4 on the common search space.
  • the terminal device correctly receives the Msg4 and completes the contention resolution, the random access process succeeds.
  • the time interval between Msg2 and Msg3 (that is, the time interval at which the terminal device receives Msg2 to transmit Msg3) is defined as four parts: N1, L2, N2, and TA max , where N1 is the terminal.
  • N1 is the terminal.
  • MAC Medium Access Control
  • TA max is the maximum timing advance (Time Advance, TA) that can be represented by the Time Advance command (TAC) in Msg2.
  • TA max is The maximum TAC corresponding to the TAC, the maximum TAC supported by the protocol in 5G is 3846. This value is designed to support the maximum cell radius that the 5G protocol can support. However, in actual deployment, the radius of the cell is usually much larger than the maximum supported by the protocol. small radius, so the cell will be greater than TA max terminal required the TA, which will Msg2 that the time between the spacer and the Msg3: N1 + N2 + L2 + TA max may be significant, the result 5G Noodle problem of excessive delay.
  • the present application provides a random access method and apparatus for reducing access delay in a random access procedure.
  • the application provides a random access method, including:
  • the terminal device sends the Msg1 to the network device;
  • the terminal device receives the Msg2 sent by the network device
  • the terminal device Determining, by the terminal device, the maximum timing advance indication according to the received Msg2, the first TAC interval to which the TAC belongs, the maximum TAC being the largest TAC of all the random access responses RAR included in the Msg2; or the terminal device according to the receiving
  • the obtained Msg2 determines a second TAC section to which the TAC in the RAR of the terminal device belongs, and the first TAC section and the second TAC section are intervals according to 0 to TAC max , and the TAC max is The maximum TAC in the RAR supported by the protocol;
  • the time interval between the Msg2 and the Msg3 is determined by the terminal device according to the first TAC interval to which the largest TAC of all the RARs included in the received Msg2 belongs, or is included according to the Msg2.
  • the second TAC interval to which the TAC in the RAR of the terminal device belongs determines the time interval between Msg2 and Msg3, and transmits Msg3 according to the determined time interval, wherein the first TAC interval and the second TAC interval are based on The interval from 0 to TAC max , so the value of the target TA used to calculate the time interval T between Msg2 and Msg3 is between 0 and TA max , thereby reducing the time interval T between Msg2 and Msg3, and decreasing Access delay during random access.
  • the terminal device sends the Msg1 to the network device;
  • the terminal device receives the Msg2 sent by the network device
  • the terminal device Determining, by the terminal device, the maximum timing advance indicating the first TA interval to which the TA corresponding to the TAC belongs according to the received Msg2, where the maximum TAC is the largest TAC of all the random access responses RAR included in the Msg2; or the terminal
  • the device determines, according to the received Msg2, a second TA section to which the TA corresponding to the TAC in the RAR of the terminal device belongs, where the first TA interval and the second TA interval are intervals according to 0 to TA max
  • the TA max is a TA corresponding to the largest TAC in the RAR supported by the protocol;
  • the second TAC interval to which the TA corresponding to the TAC belongs determines the time interval between Msg2 and Msg3, and transmits Msg3 according to the determined time interval, wherein the first TA interval and the second TA interval are divided according to 0 to TA max Interval, therefore, the target TA used to calculate the time interval T between Msg2 and Msg3 ranges from 0 to TA max , thereby reducing the time interval T between Msg2 and Msg3, and reducing the random access process. Access delay.
  • the first TAC interval and the second TAC interval are intervals divided according to the distance between the network device and the terminal device.
  • the first TA interval and the second TA interval are intervals divided according to the distance between the network device and the terminal device.
  • the terminal device before the determining, by the terminal device, the maximum timing advance indication according to the received Msg2, the first TAC interval to which the TAC belongs, the terminal device further includes:
  • the terminal device parses the TAC in all the RARs included in the Msg2 at the medium access control MAC layer, and determines the maximum TAC from the TACs in all the RARs; or
  • the terminal device reads the maximum TAC according to the preset placement position of the maximum TAC.
  • the terminal device determines a time interval between Msg2 and Msg3 according to the first TAC interval or the second TAC interval, including:
  • the terminal device calculates the time interval T according to the following manner:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3;
  • the terminal device calculates the time interval T according to the following manner:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the time domain resource allocation domain in the RAR carries the scheduling time Q, so that the network device can further adjust the actual sending time of the Msg3 by using the time domain resource allocation domain, so that the time for transmitting the Msg3 is compared.
  • Flexible and flexible scheduling
  • the T 1 N1+N2+L2, where N1 is the time required for the terminal device to process the physical downlink shared channel PDSCH carrying the Msg2 in the random access procedure, N2 The time required for the terminal device to transmit the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the value of the target TA is a TA value corresponding to a maximum value of the first TAC section or a TA value corresponding to a maximum value of the second TAC section.
  • the application provides a random access method, including:
  • the network device receives the Msg1 sent by the terminal device
  • the network device sends the Msg2 to the terminal device
  • the network device Determining, by the network device, the first TAC interval to which the TAC belongs according to the Msg2 sent to the terminal device, where the maximum TAC is the largest TAC of all the random access responses RAR included in the Msg2; or the network device Determining, according to the Msg2 sent to the terminal device, a second TAC section to which the TAC in the RAR of the terminal device belongs, where the first TAC section and the second TAC section are intervals according to 0 to TAC max ,
  • the TAC max is the maximum TAC in the RAR supported by the protocol
  • the first TAC section and the second TAC section are intervals according to 0 to TAC max , and therefore the value of the target TA used for calculating the time interval T between Msg2 and Msg3 is calculated.
  • the range is between 0 and TA max , so that the time interval T between Msg2 and Msg3 can be reduced, and the access delay in the random access process is reduced.
  • the network device receives the Msg1 sent by the terminal device
  • the network device sends the Msg2 to the terminal device
  • the network device determines, according to the Msg2 sent to the terminal device, the first TA interval to which the TA corresponding to the TAC belongs, and the maximum TAC is the maximum TAC of all the random access responses RAR included in the Msg2;
  • the network device determines, according to the Msg2 sent to the terminal device, a second TA section to which the TA corresponding to the TAC in the RAR of the terminal device belongs, where the first TA interval and the second TA interval are according to 0 to TA.
  • the interval divided by max , the TA max is a TA corresponding to the largest TAC in the RAR supported by the protocol;
  • the first TA interval and the second TA interval are intervals divided according to 0 to TA max , and therefore the value of the target TA used for calculating the time interval T between Msg2 and Msg3 is calculated.
  • the range is between 0 and TA max , so that the time interval T between Msg2 and Msg3 can be reduced, and the access delay in the random access process is reduced.
  • the network device before the network device determines, according to the Msg2 sent to the terminal device, the maximum timing advance indication before the first TAC interval to which the TAC belongs, the network device further includes:
  • the network device places the maximum TAC according to a preset placement position of the maximum TAC.
  • the network device determines, according to the first TAC interval or the second TAC interval, a time interval between Msg2 and Msg3 corresponding to the RAR of the terminal device, including:
  • the network device calculates the time interval T according to the following manner:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3; or,
  • the network device calculates the time interval T according to the following manner:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the time domain resource allocation domain in the RAR carries the scheduling time Q, so that the network device can further adjust the actual sending time of the Msg3 by using the time domain resource allocation domain, so that the time for transmitting the Msg3 is compared.
  • Flexible and flexible scheduling
  • the T 1 N1+N2+L2, where N1 is the time required for the terminal device to process the physical downlink shared channel PDSCH carrying the Msg2 in the random access procedure, N2 The time required for the terminal device to transmit the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the value of the target TA is a TA value corresponding to a maximum value of the first TAC section or a TA value corresponding to a maximum value of the second TAC section.
  • the application provides a random access method, including:
  • the terminal device receives indication information indicating a target timing advance amount TA or a target timing advance indication TAC, where the target TA is greater than or equal to a maximum TA of the TAs of the plurality of terminal devices within the cell or beam coverage range of the terminal device, And the target TA is less than or equal to the TA value TA max corresponding to the maximum TAC value TAC max in the random access response RAR supported by the protocol, where the target TAC is greater than or equal to multiple within the cell or beam coverage range of the terminal device.
  • a TAC corresponding to a maximum TA in the TA of the terminal device, and the target TAC is less than or equal to the TAC max ;
  • the terminal device determines the target TA according to the indication information
  • the terminal device determines a time interval between Msg2 and Msg3 according to the target TA, and sends Msg3 according to the time interval, where the Msg2 and Msg3 are messages in a random access procedure.
  • the time interval T between the calculation of Msg2 and Msg3 is used.
  • the target TA ranges from 0 to TA max , so that the time interval T between Msg2 and Msg3 can be reduced, and the access delay in the random access process is reduced.
  • the indication information is carried in any one or more of the following messages:
  • Msg2 downlink control information DCI Msg2 protocol data unit PDU, Msg2 medium access control MAC packet header and Msg2RAR, physical broadcast channel PBCH, system information SI and other minimum system information RMSI.
  • the indication information is a scaling factor indicated by K bits, K is a positive integer, and the target TA is the product of the scaling factor and TA max .
  • the terminal device determines a time interval between Msg2 and Msg3 according to the target TA, including:
  • the terminal device calculates the time interval T according to the following manner:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3; or,
  • the terminal device calculates the time interval T according to the following manner:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the time domain resource allocation domain in the RAR carries the scheduling time Q, so that the network device can further adjust the actual sending time of the Msg3 by using the time domain resource allocation domain, so that the time for transmitting the Msg3 is compared.
  • Flexible and flexible scheduling
  • the T 1 N1+N2+L2, where N1 is the time required for the terminal device to process the physical downlink shared channel PDSCH carrying the Msg2 in the random access procedure, N2 The time required for the terminal device to transmit the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the application provides a random access method, including:
  • the network device determines a target timing advance TA or a target timing advance indication TAC, where the target TA is greater than or equal to a maximum TA of the TAs of the plurality of terminal devices in the cell or beam coverage area where the terminal device is located, and the target TA is less than or a TA corresponding to the maximum TAC value TAC max in the random access response RAR supported by the protocol, where the target TAC is greater than or equal to the maximum TA of the TAs of the plurality of terminal devices in the cell or beam coverage area of the terminal device. TAC, and the target TAC is less than or equal to the TAC max ;
  • the network device determines a time interval between Msg2 and Msg3 according to the target TA, and receives the Msg3 according to the time interval, where the Msg2 and Msg3 are messages in a random access procedure.
  • the time interval T between Msg2 and Msg3 is calculated.
  • the target TA ranges from 0 to TA max , so that the time interval T between Msg2 and Msg3 can be reduced, and the access delay in the random access process is reduced.
  • the indication information is carried in any one or more of the following messages:
  • the indication information is a scaling factor indicated by K bits, K is a positive integer, and the target TA is the product of the scaling factor and TA max .
  • the network device determines a time interval between Msg2 and Msg3 according to the target TA, including:
  • the network device calculates the time interval T according to the following manner:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3; or,
  • the network device calculates the time interval T according to the following manner:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the time domain resource allocation domain in the RAR carries the scheduling time Q, so that the network device can further adjust the actual sending time of the Msg3 by using the time domain resource allocation domain, so that the time for transmitting the Msg3 is compared.
  • Flexible and flexible scheduling
  • the T 1 N1+N2+L2, where N1 is the time required for the terminal device to process the physical downlink shared channel PDSCH carrying the Msg2 in the random access procedure, N2 The time required for the terminal device to transmit the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the application provides a terminal device, including:
  • a first processing module configured to determine, according to the received Msg2, a maximum timing advance indicating a first TAC interval to which the TAC belongs, where the maximum TAC is a maximum TAC of all random access responses RAR included in the Msg2; or, according to The received Msg2 determines a second TAC section to which the TAC in the RAR of the terminal device belongs, and the first TAC section and the second TAC section are intervals according to 0 to TAC max , the TAC max The largest TAC in the RAR supported by the protocol;
  • a second processing module configured to determine, according to the first TAC interval or the second TAC interval, a time interval between Msg2 and Msg3 corresponding to the RAR of the terminal device;
  • a sending module configured to send the Msg3 according to the time interval.
  • the first processing module is further configured to:
  • the maximum TAC is read according to a preset placement position of the maximum TAC.
  • the second processing module is used to:
  • the time interval T is calculated as follows:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3;
  • the time interval T is calculated as follows:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the T 1 N1+N2+L2, where N1 is the time required for the terminal device to process the physical downlink shared channel PDSCH carrying the Msg2 in the random access procedure, N2 The time required for the terminal device to transmit the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the value of the target TA is a TA value corresponding to a maximum value of the first TAC section or a TA value corresponding to a maximum value of the second TAC section.
  • the application provides a network device, including:
  • a first processing module configured to determine, according to Msg2 sent to the terminal device, a first TAC interval to which the maximum timing advance indication TAC belongs, where the maximum TAC is the largest TAC of all random access responses RAR included in the Msg2; or Determining, according to the Msg2 sent to the terminal device, a second TAC section to which the TAC in the RAR of the terminal device belongs, where the first TAC section and the second TAC section are intervals according to 0 to TAC max ,
  • the TAC max is the maximum TAC in the RAR supported by the protocol
  • a second processing module configured to determine a time interval between Msg2 and Msg3 according to the first TAC interval or the second TAC interval;
  • a receiving module configured to receive Msg3 according to the time interval.
  • the first processing module is further configured to:
  • the maximum TAC is placed according to a preset placement position of the maximum TAC.
  • the second processing module is used to:
  • the time interval T is calculated as follows:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3; or,
  • the time interval T is calculated as follows:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the T 1 N1+N2+L2, where N1 is the time required for the terminal device to process the physical downlink shared channel PDSCH carrying the Msg2 in the random access procedure, N2 The time required for the terminal device to transmit the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the value of the target TA is a TA value corresponding to a maximum value of the first TAC section or a TA value corresponding to a maximum value of the second TAC section.
  • the application provides a terminal device, including:
  • a receiving module configured to receive indication information for indicating a target timing advance TA or a target timing advance indication TAC, where the target TA is greater than or equal to a TA of multiple terminal devices in a cell or a beam coverage area of the terminal device a maximum TA, and the target TA is less than or equal to a TA value TA max corresponding to a maximum TAC value TAC max in a random access response RAR supported by the protocol, where the target TAC is greater than or equal to a cell or beam coverage of the terminal device.
  • a TAC corresponding to a largest TA of the TAs of the plurality of terminal devices, and the target TAC is less than or equal to the TAC max ;
  • a first processing module configured to determine the target TA according to the indication information
  • a second processing module configured to determine a time interval between Msg2 and Msg3 according to the target TA
  • a sending module configured to send the Msg3 according to the time interval.
  • the indication information is carried in any one or more of the following messages:
  • Msg2 downlink control information DCI Msg2 protocol data unit PDU, Msg2 medium access control MAC packet header and Msg2RAR, physical broadcast channel PBCH, system information SI and other minimum system information RMSI.
  • the indication information is a scaling factor indicated by K bits, K is a positive integer, and the target TA is the product of the scaling factor and TA max .
  • the second processing module is used to:
  • the time interval T is calculated as follows:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3; or,
  • the time interval T is calculated as follows:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the T 1 N1+N2+L2, where N1 is the time required for the terminal device to process the physical downlink shared channel PDSCH carrying the Msg2 in the random access procedure, N2 The time required for the terminal device to transmit the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the beneficial effects brought by the third aspect and the third possible aspect of the third aspect may be referred to herein. Let me repeat.
  • the application provides a network device, including:
  • a first processing module configured to determine a target timing advance amount TA or a target timing advance indication TAC, where the target TA is greater than or equal to a maximum TA of the TAs of the plurality of terminal devices in the cell or beam coverage area where the terminal device is located, and The target TA is less than or equal to the TA corresponding to the maximum TAC value TAC max in the random access response RAR supported by the protocol, where the target TAC is greater than or equal to the TA of multiple terminal devices in the cell or beam coverage area where the terminal device is located.
  • the maximum TA corresponds to the TAC, and the target TAC is less than or equal to the TAC max ;
  • a sending module configured to send, to the terminal device, indication information used to indicate the target TA or a target TAC;
  • a second processing module configured to determine a time interval between Msg2 and Msg3 according to the target TA
  • a receiving module configured to receive Msg3 according to the time interval.
  • the indication information is carried in any one or more of the following messages:
  • the indication information is a scaling factor indicated by K bits, K is a positive integer, and the target TA is the product of the scaling factor and TA max .
  • the second processing module is used to:
  • the time interval T is calculated as follows:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3; or,
  • the time interval T is calculated as follows:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the T 1 N1+N2+L2, where N1 is the time required for the terminal device to process the physical downlink shared channel PDSCH carrying the Msg2 in the random access procedure, N2 The time required for the terminal device to transmit the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the application provides a terminal device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is configured to invoke a program instruction in the memory to perform the random access method in any of the possible aspects of the first aspect and the first aspect or the third aspect and the third aspect.
  • the application provides a network device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is configured to invoke a program instruction in the memory to perform the random access method in any one of the possible aspects of the second aspect and the second aspect or the fourth aspect and the fourth aspect.
  • the application provides a readable storage medium, where an execution instruction is stored, and when at least one processor of the terminal device executes the execution instruction, the terminal device performs the first aspect and the first aspect.
  • a random access method in a possible design or in any of the possible aspects of the third aspect and the third aspect.
  • the present application provides a readable storage medium, where an execution instruction is stored, and when at least one processor of the network device executes the execution instruction, the network device performs the second aspect and the second aspect.
  • a random access method in a possible design or in any of the possible aspects of the fourth aspect and the fourth aspect.
  • the application provides a program product, the program product comprising an execution instruction, the execution instruction being stored in a readable storage medium.
  • At least one processor of the terminal device can read the execution instruction from a readable storage medium, and the at least one processor executes the execution instruction to cause the terminal device to implement the first aspect and any one of the possible aspects of the first aspect or the third aspect and A third aspect of any of the possible designs of random access methods.
  • the application provides a program product, the program product comprising an execution instruction, the execution instruction being stored in a readable storage medium.
  • At least one processor of the network device can read the execution instruction from a readable storage medium, and the at least one processor executes the execution instruction to cause the network device to implement any of the possible aspects or the fourth aspect of the second aspect and the second aspect and A random access method in any of the possible designs of the fourth aspect.
  • the present application provides a chip, the chip is connected to a memory, or a memory is integrated on the chip, and when the software program stored in the memory is executed, implementing the random method described in any one of the above Access method.
  • FIG. 1 is a schematic diagram of a communication system architecture
  • FIG. 2 is a schematic diagram showing a time interval between Msg2 and Msg3 in a random access process
  • 4 is a schematic diagram of a time interval calculation between Msg2 and Msg3;
  • FIG. 5 is a schematic diagram of time interval calculation between Msg2 and Msg3;
  • FIG. 6 is a flowchart of an embodiment of a random access method according to the present application.
  • FIG. 7 is a schematic diagram of a process of determining a time interval between Msg2 and Msg3 after the terminal device receives Msg2;
  • FIG. 8 is a flowchart of an embodiment of a random access method according to the present application.
  • FIG. 9 is an interaction flowchart of an embodiment of a random access method according to the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a terminal device according to the present application.
  • FIG. 11 is a schematic structural diagram of an embodiment of a network device according to the present application.
  • FIG. 12 is a schematic structural diagram of an embodiment of a terminal device according to the present application.
  • FIG. 13 is a schematic structural diagram of an embodiment of a network device according to the present application.
  • FIG. 14 is a schematic structural diagram of a communication apparatus provided by the present application.
  • the embodiments of the present application can be applied to a wireless communication system.
  • the wireless communication system mentioned in the embodiments of the present application includes but is not limited to: Narrow Band-Internet of Things (NB-IoT), global mobile Global System for Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access (CDMA) 2000 System (Code Division Multiple Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), and Next Generation 5G Mobile Communication System .
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000 System
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • Next Generation 5G Mobile Communication System Next Generation 5G Mobile Communication
  • the communication system of the present application may include a network device and a terminal device, and communication between the network device and the terminal device.
  • the communication device involved in the present application mainly includes a network device and a terminal device.
  • Network device may be a base station, or an access point, or an access network device, or may refer to a device in the access network that communicates with the wireless terminal over one or more sectors over the air interface.
  • the network device can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • Network devices can also coordinate attribute management of air interfaces.
  • the network device may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • the base station (NodeB, NB) in the (Wideband Code Division Multiple Access, WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or access A point, or a base station in a future 5G network, such as gNB, is not limited herein.
  • Terminal device may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • RAN Radio Access Network
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the correspondence between the maximum TAC and the maximum TA and the supported cell radius under the subcarrier spacing of different Msg3 is as shown in Table 1: When the Msg3 is used When the carrier spacing is 15 kHz, the maximum TAC3846 corresponds to TA 2 ms.
  • the maximum TAC3846 corresponds to TA 1 ms.
  • the maximum TAC3846 corresponds to TA is 0.5 ms.
  • the maximum TAC3846 corresponds to the TA of 0.25 ms. This value is designed to support the maximum cell radius that the 5G protocol can support.
  • the timing advance indicated by the TAR in the RAR in Msg2 indicates that the corresponding timing advance TA value can be converted. As follows:
  • TA TAC*TAC granularity
  • Subcarrier spacing (kHz) of Msg3 TAC granularity 15 16*64Ts 30 8*64Ts 60 4*64Ts 120 2*64Ts
  • the TA value corresponding to the maximum TAC TA max (2 ms) is to support the 300 km cell radius, but in actual deployment, the radius of the cell is usually much smaller than the maximum cell radius. Therefore, the TA max will be much larger than the TA required by the terminal equipment in the cell, which will cause the time interval T between Msg2 and Msg3 to be large, resulting in a problem of excessive control plane latency of 5G, ITU- The 2020 (ITU-2020 plan) requirement for 5G control plane latency is 20ms. According to the above method of using TA max to determine T, it is possible that 5G NR cannot meet the requirements of ITU-2020.
  • the present application provides a random access method, in which a terminal device determines a time interval between Msg2 and Msg3 according to a first TAC interval to which a maximum TAC of all RARs included in Msg2 belongs, or according to Msg2.
  • the second TAC interval corresponding to the TAC in the RAR of the terminal device is included to determine a time interval between Msg2 and Msg3, wherein the first TAC interval and the second TAC interval are intervals according to 0 to TAC max Therefore, the value of the target TA used to calculate the time interval T between Msg2 and Msg3 is between 0 and TA max , thereby reducing the time interval T between Msg2 and Msg3, and reducing the connection in the random access process. Enter the delay.
  • the target TA used in the time interval T ranges from 0 to TA max , thereby reducing the time interval T between Msg2 and Msg3 and reducing the access delay.
  • FIG. 3 is an interaction flowchart of an embodiment of a random access method according to the present application. As shown in FIG. 3, the method in this embodiment may include:
  • the terminal device sends the Msg1 to the network device.
  • the network device sends the Msg2 to the terminal device.
  • the first TAC interval to which the maximum timing advance indication belongs is determined according to the Msg2, and the maximum TAC is the maximum value among the TACs in all the RARs included in the Msg2; or, the network device is configured according to The Msg2 sent to the terminal device determines the second TAC interval to which the TAC in the RAR of the terminal device belongs, the first TAC interval and the second TAC interval are intervals according to 0 to TAC max , and the TAC max is in the RAR supported by the protocol.
  • the maximum TAC is shown in Table 1.
  • the first TA interval corresponding to the maximum TAC is determined according to the Msg2, and the maximum TAC is the maximum value among the TACs in all the RARs included in the Msg2.
  • the network device determines, according to the Msg2 sent to the terminal device, a second TA interval corresponding to the TAC in the RAR of the terminal device, where the first TA interval and the second TA interval are intervals according to 0 to TA max , TA max
  • the TA value corresponding to the maximum TAC in the RAR supported by the protocol is as shown in Table 1.
  • the maximum timing advance is determined according to the Msg2, and the maximum TA is the maximum value of the TA values corresponding to the TACs in all the RARs included in the Msg2;
  • the network device determines, according to the Msg2 sent to the terminal device, a second TA interval to which the TA corresponding to the TAC in the RAR of the terminal device belongs, and the first TA interval and the second TA interval are intervals according to 0 to TA max .
  • TA max is the TA value corresponding to the maximum TAC in the RAR supported by the protocol, as shown in Table 1.
  • the maximum TAC and the maximum TA are corresponding, and the conversion is performed according to the conversion relationship of the aforementioned TAC and TA.
  • the first TAC interval and the second TAC interval are intervals according to 0 to TAC max , where the TAC max is the maximum TAC in the RAR supported by the protocol, and optionally, the TA corresponding to the largest TAC is determined.
  • TAC max 3846 in the RAR supported by the protocol.
  • the maximum TAC3846 corresponds to TA 2 ms.
  • the maximum TAC3846 corresponds to TA 1 ms, when Msg3 When the subcarrier spacing is 60 kHz, the maximum TAC3846 corresponds to TA of 0.5 ms. When the subcarrier spacing of Msg3 is 120 kHz, the maximum TAC3846 corresponds to TA of 0.25 ms.
  • TAC max corresponding TA max 15kHz subcarrier spacing transmission Msg3 time, TAC max corresponding TA max is 2ms; 30kHz subcarrier spacing transmission Msg3 time, TAC max corresponding TA max is 1ms; 60kHz subcarrier spacing transmission Msg3 time, TAC max corresponding TA max is 0.5ms; 120kHz subcarrier interval transmission Msg3, TAC max corresponding TA max is 0.25ms.
  • How to divide the interval according to 0 to TAC max for example, divide 0 to TAC max into 4 intervals, 6 intervals, or 8 intervals, etc.
  • How to divide the interval according to 0 to TA max for example, divide 0 to TA max It is 4 intervals, 6 intervals, or 8 intervals.
  • the interval 0 ⁇ TAC max may be divided, for example: [0,1 / 4TAC max], [1 / 4TAC max, 1 / 2TAC max], [1 / 2TAC max, 3 / 4TAC max] and [3 / 4TAC max , TAC max ], correspondingly the interval divided according to 0 to TA max corresponds to [0, 1/4TA max ], [1/4TA max , 1/2TA max ], [1/2TA max , 3/4TA max ] and [3/4TA max , TA max ], the interval divided according to 0 to TAC max may be, for example, [0, 1/8 TAC max ], [1/8 TAC max , 1/4 TAC max ], [1/4 TAC max , 1 / 2TAC max] and [1 / 2TAC max, TAC max ], correspondingly, range from 0 to TA max is divided corresponding to: [0,1 / 8TA max], [1 / 8TA max, 1 / 4TA max], [
  • the first TAC interval and the second TAC interval may also be intervals according to distances between the network device and the terminal device, and in this manner, the target required to determine the time interval between Msg2 and Msg3
  • the distance can be converted to TA according to the conversion formula. For example, assuming that the distance between the network device and the terminal device is R, the corresponding TA is: 2*R/C, where C is the speed of light. Therefore, the distance interval between the network device and the terminal device can be correspondingly converted into the TA interval, and then converted into the TAC interval according to the correspondence between the TA and the TAC.
  • the first TA interval and the second TA interval may also be intervals according to distances between the network device and the terminal device.
  • the target required to determine the time interval between Msg2 and Msg3 is selected.
  • the distance can be converted to TA according to the conversion formula. For example, assuming that the distance between the network device and the terminal device is R, the corresponding TA is: 2*R/C, where C is the speed of light. Therefore, the distance interval between the network device and the terminal device can be correspondingly converted into the TA interval.
  • the terminal device determines, according to the received Msg2, that the maximum timing advance indicates that the TAC belongs to the first TAC interval, and the maximum TAC is the largest TAC of all RARs included in the Msg2. Alternatively, the terminal device determines that the terminal device corresponds to the received Msg2.
  • the first TAC section and the second TAC section are intervals according to 0 to TAC max
  • TA max is the TA corresponding to the maximum TAC value TAC max in the RAR supported by the protocol.
  • the terminal device determines, according to the received Msg2, a first TA interval corresponding to the maximum TAC, where the maximum TAC is the largest TAC among all the RARs included in the Msg2; or the terminal device determines the corresponding according to the received Msg2.
  • the first TA section and the second TA section are intervals according to 0 to TA max
  • TA max is the maximum TAC value TAC max in the RAR supported by the protocol.
  • the terminal device determines, according to the received Msg2, the first TA interval to which the maximum TA belongs, and the maximum TA is the maximum value of the TAC corresponding TAs in all RARs included in the Msg2 or all included in the Msg2.
  • TA max is the TA corresponding to the maximum TAC value TAC max in the RAR supported by the protocol.
  • the TA interval and the TAC interval are corresponding, and can be converted by the TAC and TA conversion formulas. Therefore, the above implementation according to the first TAC section or the first TA section is considered to be an equivalent implementation of the present invention, and the present invention is not limited to a specific embodiment.
  • the terminal device After receiving the Msg2, the terminal device can obtain the TAC in all the RARs included in the Msg2 by parsing the Msg2, including the TAR in the RAR of the terminal device (that is, the RAR corresponding to the Msg1 sent by the terminal device), and there are two in this embodiment.
  • the terminal device determines, according to the received Msg2, the first TAC interval to which the maximum TAC belongs, and the maximum TAC is the largest TAC among all the RARs included in the Msg2.
  • the RAPID is a number of a PRACH preamble of the Msg1 transmitted to the terminal device.
  • the Msg1 sent by each of the plurality of terminal devices corresponds to one RAPID, and the terminal device obtains the RAR of the terminal device by finding the RAR corresponding to the RAPID of the Msg1 transmitted by itself at the Msg2.
  • the plurality of terminal devices may be terminal devices in the same cell or beam coverage, and the TACs in the RARs of the plurality of terminal devices are, for example, TAC_1, TAC_2, . . . TAC_N.
  • the terminal device needs to determine the maximum TAC:maximum ⁇ TAC_1, TAC_2, ..., TAC_N ⁇ before determining the first TAC interval to which the maximum TAC belongs according to the received Msg2, and there are two types. Way of implementation:
  • the terminal device parses the TAC in all RARs included in Msg2 at the Medium Access Control (MAC) layer, and determines the maximum TAC from the TACs in all RARs. All RARs included in the one Msg2 correspond to Msg1 sent by multiple terminals. These RARs are indexed by the RAPID, and the TACs in each RAR correspond to the distances between the corresponding terminal devices and the network devices, respectively.
  • MAC Medium Access Control
  • the terminal device reads the maximum TAC according to the preset placement position of the maximum TAC.
  • all RARs in Msg2 can be placed in any order, but the corresponding RAR of the largest TAC is placed in a preset placement position in Msg2, such as the position of the first or last RAR.
  • the terminal device can directly read the maximum TAC from the preset placement position.
  • all RARs in the Msg2 are arranged in a preset order of TAC values (for example, ascending or descending), and the terminal device only needs to read the first in the MAC layer except for finding the TAC in its own RAR.
  • the TAC in the last or last RAR is the maximum TAC in Msg2.
  • the terminal device After the terminal device determines the maximum TAC in Msg2, it can determine the first TAC interval to which the maximum TAC belongs.
  • the terminal device determines, according to the received Msg2, the first TA interval to which the TA corresponding to the maximum TAC belongs, and the maximum TAC is the maximum TAC among all the RARs included in the Msg2.
  • the first TA interval and the first TAC interval are corresponding, and can be obtained by a conversion relationship between TAC and TA.
  • the terminal device determines, according to the received Msg2, the first TA interval to which the maximum TA belongs, and the maximum TA is the TA corresponding to the largest TAC of all the RARs included in the Msg2 or is the Msg2.
  • the RAPID is a number of a PRACH preamble of the Msg1 transmitted to the terminal device.
  • the Msg1 sent by each of the plurality of terminal devices corresponds to one RAPID, and the terminal device obtains the RAR of the terminal device by finding the RAR corresponding to the RAPID of the Msg1 transmitted by itself at the Msg2.
  • the plurality of terminal devices may be terminal devices in the same cell or beam coverage range, and the TACs in the RARs of the plurality of terminal devices are, for example, TAC_1, TAC_2, ... TAC_N, and the corresponding TA values are TA_1, TA_2, ... TA_N.
  • the terminal device needs to determine the maximum TA:maximum ⁇ TA_1, TA_2, ..., TA_N ⁇ before determining the first TA interval to which the maximum TA belongs according to the received Msg2, and there are two implementations. The way:
  • the terminal device parses the TACs in all the RARs included in the Msg2 at the Medium Access Control (MAC) layer to find the corresponding TA value, and determines the maximum TA from the TAC corresponding TA values in all the RARs.
  • All RARs included in the one Msg2 correspond to Msg1 sent by multiple terminals. These RARs are indexed by the RAPID, and the TAC and the indication TA in each RAR correspond to the distance between the corresponding terminal device and the network device, respectively.
  • MAC Medium Access Control
  • the terminal device reads the maximum TAC according to the preset placement position of the maximum TAC, and obtains the maximum TA value according to the maximum TAC conversion.
  • all RARs in Msg2 can be placed in any order, but the corresponding RAR of the largest TAC is placed in a preset placement position in Msg2, such as the position of the first or last RAR.
  • the terminal device can directly read the maximum TAC from the preset placement position.
  • all RARs in the Msg2 are arranged in a preset order of TAC values (for example, ascending or descending), and the terminal device only needs to read the first in the MAC layer except for finding the TAC in its own RAR.
  • the TAC in the last or last RAR is the maximum TAC in Msg2.
  • the first TA interval and the first TAC interval are corresponding, and can be obtained by a conversion relationship between TAC and TA.
  • Manner 2 The terminal device determines, according to the received Msg2, a second TAC interval corresponding to the TAC in the RAR of the terminal device itself. After the terminal device obtains the TAC in the RAR of the terminal device itself by parsing the Msg2, the terminal device can determine the second TAC interval to which the TAC belongs.
  • the terminal device determines that the first TA interval to which the TA corresponding to the maximum TAC belongs, or determines the second TA interval to which the TA corresponding to the TAC in the RAR of the terminal device belongs, the first TA interval and the second
  • the TA section is a section divided by 0 to TA max
  • TA max is a TA corresponding to TAC max .
  • the second TA interval and the second TAC interval are corresponding, and can be obtained by a conversion relationship between TAC and TA.
  • the terminal device determines a time interval between Msg2 and Msg3 according to the first TAC interval or the second TAC interval.
  • the S104 determines that the terminal device determines the time interval between the Msg2 and the Msg3 according to the first TA interval or the second TA interval.
  • the TA interval and the TAC interval are corresponding and can be obtained by a conversion relationship between TAC and TA.
  • the terminal device sends the Msg3 according to the time interval.
  • the S104 may be: the terminal device determines the value of the target TA according to the first TAC interval or the second TAC interval.
  • the value of the target TA is a TA value corresponding to the maximum value of the first TAC interval.
  • the terminal device calculates the time interval T according to the following manner:
  • N2 is the time required for the terminal device to transmit the Msg3 corresponding PUSCH
  • L2 is the time processed by the MAC layer.
  • the terminal device determines the value of the target TA according to the first TA interval or the second TA interval.
  • the value of the target TA is a maximum value of the first TA interval or a maximum value of the second TA interval, and the terminal device is configured according to the terminal device.
  • the time interval T is calculated as follows:
  • N1 is that the terminal device processes the bearer Msg2 in the random access procedure
  • N2 is the time required for the terminal device to transmit the Msg3 corresponding PUSCH
  • L2 is the time processed by the MAC layer.
  • FIG. 4 is a schematic diagram of time interval calculation between Msg2 and Msg3. As shown in FIG. 4, the time interval T can be calculated as follows:
  • T N1+N2+L2+ target TA.
  • the terminal device sends the Msg3 according to the T, which may be: T is the time interval of the downlink time, and the terminal device needs to add the time interval T to the end of the last OFDM symbol of the PDSCH of the Msg2 when the Msg3 is sent in the uplink. Then, the TA adjustment amount indicated by the TAC in the RAR of the terminal device itself is subtracted, and the absolute time at which the terminal device transmits the Msg3 can be determined. The terminal device transmits Msg3 on the uplink transmission resource indicated by the RAR of the terminal device according to the absolute time of transmitting the Msg3.
  • T is the time interval of the downlink time
  • the terminal device needs to add the time interval T to the end of the last OFDM symbol of the PDSCH of the Msg2 when the Msg3 is sent in the uplink.
  • the TA adjustment amount indicated by the TAC in the RAR of the terminal device itself is subtracted, and the absolute time at which the terminal device transmits the Msg
  • S104 may be: the terminal device determines a value of the target TA according to the first TAC interval or the second TAC interval, and optionally, the value of the target TA corresponds to a maximum TAC value of the first TAC interval.
  • FIG. 5 is A schematic diagram of the time interval calculation between Msg2 and Msg3, as shown in FIG. 5, the time interval T can be calculated as follows:
  • T N1+N2+L2+ target TA+Q
  • Q is the scheduling time and Q is carried in the RAR corresponding to the terminal device in Msg2.
  • the Q is carried in a time domain resource allocation domain (Time Domain Resource Allocation, Time Domain RA) field corresponding to the RAR of the terminal device, and the terminal device may determine the scheduling time Q according to the value in the time domain RA domain, where Alternatively, the scheduling time Q may be different for different terminal devices, or may be the same.
  • Table 3 below is a possible RAR format:
  • the terminal device sends the Msg3 according to the T, which may be: T is the time interval of the downlink time corresponding to the Msg2 and the Msg3, and the terminal device needs to end the last OFDM symbol of the PDSCH of the Msg2 when the Msg3 is sent in the uplink.
  • T is the time interval of the downlink time corresponding to the Msg2 and the Msg3
  • the terminal device needs to end the last OFDM symbol of the PDSCH of the Msg2 when the Msg3 is sent in the uplink.
  • the time domain resource allocation domain in the RAR carries the scheduling time Q, so that the network device can further adjust the actual transmission time of the Msg3 by using the time domain resource allocation domain, so that the time for transmitting the Msg3 is flexible and flexible scheduling is implemented.
  • the network device determines, according to the first TAC interval or the second TAC interval, a time interval between Msg2 and Msg3 corresponding to the RAR corresponding to the terminal device, and receives Msg3 according to the time interval.
  • the network device broadcasts the Msg2 to the at least one terminal device. For each terminal device, the network device determines the time interval between the Msg3 corresponding to the RAR corresponding to each terminal device, and respectively corresponding to each terminal device. The time interval receives the corresponding Msg3.
  • the network device determines, according to the first TAC interval or the second TAC interval, that the time interval between Msg2 and Msg3 is the same as the time interval between the Msg2 and the Msg3 determined by the terminal device according to the first TAC interval or the second TAC interval.
  • the related description in the above S104 will not be repeated here.
  • the corresponding time in S106 is that the network device determines the time interval between Msg2 and Msg3 according to the first TA interval or the second TA interval.
  • the network device receives the Msg3 according to the T, which may be: T is the time interval of the downlink time, and the network device adds the time interval T to the end of the last OFDM symbol of the PDSCH of the Msg2, and then subtracts the indication of the terminal device itself.
  • the TA adjustment amount indicated by the TAC in the RAR determines the absolute time of receiving the Msg3 transmitted by the corresponding terminal device.
  • the network device receives Msg3 according to the absolute time of receiving Msg3.
  • the terminal device determines the time interval between Msg2 and Msg3 according to the first TAC interval to which the largest TAC of all RARs included in the received Msg2 belongs, or according to the content included in Msg2.
  • FIG. 6 is a flowchart of an embodiment of a random access method according to the present application. As shown in FIG. 6, the method in this embodiment may include:
  • the terminal device sends the Msg1 to the network device, and determines the corresponding RA-RNTI according to the PRACH occasion corresponding to the Msg1.
  • FIG. 7 is a schematic diagram of a process of determining a time interval between Msg2 and Msg3 after the terminal device receives the Msg2. If the terminal device detects the RA-RNTI-masked PDCCH and receives the Msg2 information carried in the PDSCH scheduled by the PDCCH, the terminal device checks the Msg2. Whether or not the RAR corresponding to the Msg1 sent by the terminal device is included. For example, if the terminal device sends Msg1 and its corresponding number is RAPID1, the terminal confirms that RAR1 corresponding to RAPID1 is the RAR of the terminal. If the terminal device confirms that it is the RAR of the terminal device, as shown in FIG.
  • the terminal device parses the related information in the RAR corresponding to the terminal device from the corresponding RAR according to a preset format, where the RAR includes the Msg3.
  • the scheduling information indicates the uplink transmission resource of the Msg3 and the TAC corresponding to the terminal device.
  • the terminal device further parses the TACs (TAC_1, TAC_2, ..., TAC_N) in all RARs (RAR_1, RAR_2, ..., RAR_N) included in the Msg2, and determines the maximum TAC: maximum ⁇ TAC_1 , TAC_2, ..., TAC_N ⁇ , can be used in the following two ways:
  • the terminal device parses the TAC in all RARs included in Msg2 at the MAC layer, and determines the maximum TAC from the TACs in all RARs.
  • the terminal device reads the maximum TAC according to the preset placement position of the maximum TAC.
  • the terminal device will continue to monitor the PDCCH in the RAR window until Find the Msg2 containing the corresponding RAR or until the RAR window times out.
  • the terminal device determines a first TAC section to which the maximum ⁇ TAC_1, TAC_2, ..., TAC_N ⁇ belongs, and determines a value of the target TA according to the first TAC section.
  • the interval according to 0 to TAC max is [0, 1/4 TAC max ], [1/4 TAC max , 1/2 TAC max ], [1/2 TAC max , 3/4 TAC max ], and [3/4 TAC max , TAC max ], then:
  • the terminal device determines that the target TA is 1/4 TA max
  • the terminal device can obtain TA max according to TAC max conversion;
  • the terminal device determines the target.
  • TA is 1/2TA max , and the terminal device can convert TA max according to TAC max conversion;
  • the terminal device determines the target TA For 3/4TA max , the terminal device can convert TA max according to TAC max conversion;
  • the terminal device determines the target TA is the TA max, The terminal device can derive TA max according to the TAC max conversion.
  • the terminal device can obtain the TA according to the TAC conversion. Therefore, the terminal device can first convert the maximum ⁇ TAC_1, TAC_2, ..., TAC_N ⁇ into the corresponding maximum TA value, thereby determining the first TA interval, then:
  • the terminal device determines that the target TA is 1/4 TA max ;
  • the terminal device determines that the target TA is 1/2TA max ;
  • the terminal device determines that the target TA is 3/4 TA max ;
  • the terminal device determines that the target TA is TA max .
  • the terminal device calculates the time interval T according to the target TA.
  • the terminal device sends Msg3 according to T.
  • T is a time interval of downlink time corresponding to Msg2 and Msg3, and the terminal device needs to add a time interval T to the end of the last OFDM symbol of the PDSCH of the Msg2, and then subtract the terminal device when transmitting the uplink Msg3.
  • the TA adjustment amount indicated by the TAC in the RAR of the RAR determines the absolute time at which the terminal device transmits the Msg3.
  • the terminal device transmits Msg3 on the uplink transmission resource indicated by the RAR of the terminal device according to the absolute time of transmitting the Msg3. .
  • the first TAC interval to which the maximum TAC belongs is determined according to the Msg2, and the network device determines the time interval between the Msg2 and the Msg3 according to the first TAC interval, and is adopted by the terminal device side. For the same manner, refer to the same description of the two. The details are not described here. After the network device determines the time interval between Msg2 and Msg3, it receives Msg3 according to the time interval.
  • FIG. 8 is a flowchart of an embodiment of a random access method according to the present application. As shown in FIG. 8 , the method in this embodiment may include:
  • the terminal device sends the Msg1 to the network device, and determines the corresponding RA-RNTI according to the PRACH occasion corresponding to the Msg1.
  • the terminal device checks whether the Msg2 includes the RAR corresponding to the Msg1 sent by the terminal device, for example, if the terminal device sends Msg1, whose corresponding number is RAPID1, confirms that RAR1 corresponding to RAPID1 is the RAR of the terminal.
  • the terminal device parses the related information in the RAR corresponding to the terminal device from the corresponding RAR according to a preset format, where the RAR includes scheduling information of the Msg3, indicating the Msg3 The uplink transmission resource and the TAC corresponding to the terminal device.
  • the terminal device will continue to monitor the PDCCH in the RAR window until Find the Msg2 containing the corresponding RAR or until the RAR window times out.
  • the terminal device determines a second TAC section corresponding to the TAC in the RAR of the terminal device itself, and determines a value of the target TA according to the second TAC section.
  • the interval according to 0 to TAC max is [0, 1/4 TAC max ], [1/4 TAC max , 1/2 TAC max ], [1/2 TAC max , 3/4 TAC max ], and [3/4 TAC max , TAC max ], then:
  • the terminal device determines that the target TA is 1/4 TA max , the terminal The device can obtain TA max according to TAC max conversion;
  • the terminal device determines that the target TA is 1/2TA max , the terminal device can obtain TA max according to TAC max conversion;
  • the terminal device determines that the target TA is 3/4TA max , the terminal device can obtain TA max according to TAC max conversion;
  • the terminal device determines the target TA is the TA max, terminal The device can derive TA max according to the TAC max conversion.
  • the terminal device can obtain the TA according to the TAC conversion. Therefore, the terminal device can first convert the TAC in the RAR corresponding to the terminal device itself into a corresponding TA value, thereby determining the second TA interval, then:
  • the terminal device determines that the target TA is 1/4 TA max ;
  • the terminal device determines that the target TA is 1/2TA max ;
  • the terminal device determines that the target TA is 3/4 TA max ;
  • the terminal device determines that the target TA is TA max .
  • the terminal device calculates the time interval T according to the target TA.
  • the terminal device sends Msg3 according to T.
  • T is a time interval of downlink time corresponding to Msg2 and Msg3, and the terminal device needs to add a time interval T to the end of the last OFDM symbol of the PDSCH of the Msg2, and then subtract the terminal device when transmitting the uplink Msg3.
  • the TA adjustment amount indicated by the TAC in the RAR of the RAR determines the absolute time at which the terminal device transmits the Msg3.
  • the terminal device transmits Msg3 on the uplink transmission resource indicated by the RAR of the terminal device according to the absolute time of transmitting the Msg3.
  • the network device determines, according to the Msg2 sent to the terminal device, the second TAC interval corresponding to the TAC in the RAR of the terminal device, and the network device according to the second TAC interval.
  • the time interval between the Msg2 and the Msg3 is the same as that of the terminal device. For details, refer to the same description.
  • the network device determines the time interval between Msg2 and Msg3. Receive Msg3.
  • FIG. 9 is an interaction flowchart of an embodiment of a random access method according to the present application. As shown in FIG. 9, the method in this embodiment may include:
  • the network device determines a target TA or a target TAC, where the target TA is greater than or equal to a maximum TA of the TAs of the multiple terminal devices in the cell or beam coverage area where the terminal device is located, and the target TA is less than or equal to the maximum of the RARs supported by the protocol.
  • the TA corresponding to the TAC value TAC max the target TAC is greater than or equal to the TAC corresponding to the largest TA of the TAs of the plurality of terminal devices in the cell or beam coverage area where the terminal device is located, and the target TAC is less than or equal to TAC max .
  • the network device first determines the maximum TA in the TA of the multiple terminal devices in the cell or beam coverage area where the terminal device is located, and after the maximum TA is determined, the maximum TA corresponding to the converted TA can be obtained.
  • the maximum TAC, the TA corresponding to the TAC max is TA max
  • the plurality of terminal devices are terminal devices that perform random access, and then the network device can determine the target TA according to the maximum TA and TA max of the TAs of the plurality of terminal devices,
  • the value of the target TA is greater than or equal to the maximum TA of the TAs of the plurality of terminal devices, and is less than or equal to TA max .
  • the network device determines the target TAC according to the maximum TAC and TAC max , and the value of the target TAC is greater than or equal to the maximum TAC and less than or equal to TAC max .
  • TAC max 3846 in the RAR supported by the protocol
  • the maximum TAC3846 corresponds to TA of 2 ms
  • the subcarrier spacing of Msg3 is 30 kHz
  • the maximum TAC3846 corresponds.
  • the TA is 1 ms.
  • the maximum TAC3846 corresponds to TA of 0.5 ms.
  • the maximum TAC3846 corresponds to TA of 0.25 ms. Namely: 15kHz subcarrier spacing transmission Msg3 time, TAC max corresponding TA max is 2ms; 30kHz subcarrier spacing transmission Msg3 time, TAC max corresponding TA max is 1ms; 60kHz subcarrier spacing transmission Msg3 time, TAC max corresponding TA max is 0.5ms; 120kHz subcarrier interval transmission Msg3, TAC max corresponding TA max is 0.25ms.
  • the network device sends indication information for indicating the target TA or the target TAC to the terminal device.
  • the terminal device receives indication information for indicating the target TA or the target TAC, and determines the target TA according to the indication information.
  • the indication information indicates a value of the target TA or the target TAC.
  • the indication information is carried in any one or more of the following messages:
  • DCI Downlink Control Information
  • PDU Protocol Data Unit
  • Msg2MAC Header Msg2RAR
  • PBCH Physical Broadcast Channel
  • SI System Information
  • RMSI other minimum system information
  • the indication information is carried in any one or more of the Msg2DCI, the Msg2 PDU, the Msg2MAC packet header, and the Msg2RAR, multiple terminal devices in the cell or beam coverage area where the terminal device is located may be randomly accessed within the beam coverage range. Multiple terminal devices, different beams may have different indication information; if the indication information is carried in any one or more of PBCH, SI, and RMSI, multiple terminal devices within the cell or beam coverage area where the terminal device is located may It is a plurality of terminal devices in the cell that perform random access, and different beams may have the same indication information.
  • the indication information is carried in any one or more of the Msg2DCI, the Msg2 PDU, the Msg2MAC packet header, and the Msg2RAR, as an implementable manner, the indication information is a target TA or a target TAC indicated by X bits.
  • Table 4 The symbols and slots in Table 4 are based on the length of the msg3 subcarrier spacing, and one slot is 4 symbols, for example, 120 kHz. Optionally, it can be expressed in equivalent time units.
  • the division manner of the possible target TA values and the number of bits used for indication are not limited, and only the target TA is limited to be less than or equal to TA max .
  • the indication information indicates the target TAC value used to calculate the target TA.
  • TAC max is the maximum TAC value in the RAR supported by the protocol.
  • the manner of dividing the possible target TAC values and the number of bits used for indication are not limited, and only the target TAC is limited to be less than or equal to TAC max .
  • the indication information is carried in any one or more of PBCH, SI, and RMSI, as an implementable manner, the indication information is a scaling factor indicated by K bits, K is a positive integer, and the target TA is a scaling factor and The product of TA max .
  • the scaling factor of the network device configuration can be:
  • the terminal device calculates the target TA value according to the following formula:
  • Target TA Factor*TA max
  • TA max is the TA corresponding to the maximum TAC value TAC max in the RAR supported by the protocol, for example, the TAC max is 3846, or other values smaller than 3846.
  • the specific value and the number X of the scaling factor are not limited, and the network device may use the ceil (log2 (X)) bit to indicate.
  • the S401 may further be that the network device determines the target distance, and the distance between the network device and the terminal device may convert the distance into a TA according to a conversion formula, for example, if the distance between the network device and the terminal device is R, The corresponding TA is: 2*R/C, where C is the speed of light. Therefore, the target distance may also be indicated in the indication information in S402, that is, the network device sends indication information indicating the target distance to the terminal device.
  • S403 may be correspondingly: the terminal device receives the indication information for indicating the target distance, and determines the target TA according to the indication information, that is, according to the target distance indicated by the indication information, the target TA may be converted.
  • the terminal device determines a time interval between Msg2 and Msg3 according to the target TA, and sends the Msg3 according to the time interval.
  • the terminal device can calculate the time interval T as follows:
  • the required time N2 is the time required for the terminal device to send the Msg3 corresponding PUSCH, and L2 is the time processed by the MAC layer.
  • FIG. 4 is a schematic diagram of time interval calculation between Msg2 and Msg3. As shown in FIG. 4, the time interval T can be calculated as follows:
  • T N1+N2+L2+ target TA.
  • the terminal device calculates the time interval T according to the following manner:
  • FIG. 5 is a schematic diagram of time interval calculation between Msg2 and Msg3, as shown in FIG. 5, the time interval can be calculated as follows T:
  • Q is the scheduling time and Q is carried in the RAR corresponding to the terminal device in Msg2.
  • the Q is carried in a time domain resource allocation domain in the RAR corresponding to the terminal device, and the terminal device may determine the scheduling time Q according to the value in the time domain resource allocation domain, optionally, scheduling time for different terminal devices.
  • Q can be different or the same.
  • the terminal device sends the Msg3 according to the T, which may be: T is the time interval of the downlink time, and the terminal device needs to add the time interval T to the end of the last OFDM symbol of the PDSCH of the Msg2 when the Msg3 is sent in the uplink.
  • the absolute time of the terminal device transmitting Msg3 can be determined by subtracting the TA adjustment amount indicated by the TAC in the RAR of the terminal device.
  • the terminal device transmits Msg3 on the uplink transmission resource indicated by the RAR of the terminal device according to the absolute time of transmitting the Msg3.
  • the value of the target TA used to calculate the time interval T between Msg2 and Msg3 ranges from 0 to TA max , thereby reducing the time interval T between Msg2 and Msg3. Reduce access latency.
  • the network device determines a time interval between Msg2 and Msg3 according to the target TA, and receives Msg3 according to the time interval.
  • the network device broadcasts the Msg2 to the at least one terminal device. For each terminal device, the network device determines the time interval between the Msg3 corresponding to the RAR corresponding to each terminal device, and respectively corresponding to each terminal device. The time interval receives the corresponding Msg3.
  • the network device can calculate the time interval T as follows:
  • T N1+N2+L2+ target TA.
  • the terminal device calculates the time interval T according to the following manner:
  • T N1+N2+L2+ target TA+Q
  • Q is the scheduling time and Q is carried in the RAR corresponding to the terminal device in Msg2.
  • the Q is carried in a time domain resource allocation domain in the RAR corresponding to the terminal device, and the terminal device may determine the scheduling time Q according to the value in the time domain resource allocation domain, optionally, scheduling time for different terminal devices.
  • Q can be different or the same.
  • the network device receives the Msg3 according to the T, which may be: T is the time interval of the downlink time, and the network device adds the time interval T to the end of the last OFDM symbol of the PDSCH of the Msg2, and then subtracts the indication of the terminal device itself.
  • the TA adjustment amount indicated by the TAC in the RAR determines the absolute time of receiving the Msg3 transmitted by the corresponding terminal device.
  • the network device receives Msg3 according to the absolute time of receiving Msg3.
  • the target TA or the target TAC is determined by the network device, and the value of the target TA is greater than or equal to the maximum TA of the TAs of the plurality of terminal devices in the cell or the beam coverage range of the terminal device, and If the value is less than or equal to TA max , the value of the target TAC is greater than or equal to the maximum TAC corresponding to the largest TA of the TAs of the plurality of terminal devices in the cell or beam coverage area of the terminal device, and is less than or equal to TAC max , and then the network device is to the terminal.
  • the device sends indication information for indicating the target TA or the target TAC, the terminal device determines the target TA according to the indication information, finally determines the time interval between Msg2 and Msg3 according to the target TA, and transmits Msg3 according to the time interval, because the target TA is less than or equal to TA max , or the target TAC is less than or equal to TAC max , so the time interval T used to calculate the time interval T between Msg2 and Msg3 ranges from 0 to TA max , thereby reducing the time between Msg2 and Msg3.
  • the interval T reduces the access delay in the random access process.
  • the device in this embodiment may include: a first processing module 11, a second processing module 12, and a sending module 13, where
  • the first processing module 11 is configured to determine, according to the received Msg2, a first TAC interval to which the maximum timing advance indication TAC belongs, where the maximum TAC is the largest TAC of all random access responses RAR included in the Msg2; or, according to The received Msg2 determines a second TAC section to which the TAC in the RAR of the terminal device belongs, and the first TAC section and the second TAC section are intervals according to 0 to TAC max , the TAC max The largest TAC in the RAR supported by the protocol;
  • the second processing module 12 is configured to determine a time interval between Msg2 and Msg3 according to the first TAC interval or the second TAC interval;
  • the sending module 13 is configured to send Msg3 according to the time interval.
  • the first processing module is further configured to:
  • the maximum TAC is read according to a preset placement position of the maximum TAC.
  • the second processing module 12 is configured to:
  • the time interval T is calculated as follows:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3;
  • the time interval T is calculated as follows:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the T 1 N1 + N2 + L2 , where, for the terminal apparatus Nl random access procedure at the time of the physical downlink shared channel PDSCH Msg2 processing required bearer, N2 for the terminal The time required for the device to send the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the value of the target TA is a TA value corresponding to a maximum value of the first TAC section or a TA value corresponding to a maximum value of the second TAC section.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 3, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 11, the device in this embodiment may include: a first processing module 21, a second processing module 22, and a receiving module 23, where
  • the first processing module 21 is configured to determine, according to the Msg2 sent to the terminal device, a first TAC interval to which the maximum timing advance indication TAC belongs, where the maximum TAC is the largest TAC among all the random access responses RAR included in the Msg2; or Determining, according to the Msg2 sent to the terminal device, a second TAC section to which the TAC in the RAR of the terminal device belongs, where the first TAC section and the second TAC section are intervals according to 0 to TAC max ,
  • the TAC max is the maximum TAC in the RAR supported by the protocol;
  • the second processing module 22 is configured to determine, according to the first TAC interval or the second TAC interval, a time interval between Msg2 and Msg3 corresponding to the RAR of the terminal device;
  • the receiving module 23 is configured to receive Msg3 according to the time interval.
  • the first processing module 21 is further configured to:
  • the maximum TAC is placed according to a preset placement position of the maximum TAC.
  • the second processing module 22 is configured to:
  • the time interval T is calculated as follows:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3; or,
  • the time interval T is calculated as follows:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the T 1 N1 + N2 + L2 , where, for the terminal apparatus Nl random access procedure at the time of the physical downlink shared channel PDSCH Msg2 processing required bearer, N2 for the terminal The time required for the device to send the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the value of the target TA is a TA value corresponding to a maximum value of the first TAC section or a TA value corresponding to a maximum value of the second TAC section.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 3, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of an embodiment of a terminal device according to the present application.
  • the device in this embodiment may include: a receiving module 31, a first processing module 32, a second processing module 33, and a sending module 34. ,among them,
  • the receiving module 31 is configured to receive indication information for indicating a target timing advance TA or a target timing advance indication TAC, where the target TA is greater than or equal to a TA of multiple terminal devices in a cell or a beam coverage range of the terminal device.
  • a maximum TA and the target TA is less than or equal to a TA value TA max corresponding to a maximum TAC value TAC max in a random access response RAR supported by the protocol, where the target TAC is greater than or equal to a cell or beam coverage of the terminal device.
  • the first processing module 32 is configured to determine the target TA according to the indication information
  • the second processing module 33 is configured to determine a time interval between Msg2 and Msg3 according to the target TA;
  • the sending module 34 is configured to send Msg3 according to the time interval.
  • the indication information is carried in any one or more of the following messages:
  • Msg2 downlink control information DCI Msg2 protocol data unit PDU, Msg2 medium access control MAC packet header and Msg2RAR, physical broadcast channel PBCH, system information SI and other minimum system information RMSI.
  • the indication information is a scaling factor indicated by K bits, K is a positive integer, and the target TA is a product of the scaling factor and TA max .
  • the second processing module 33 is configured to:
  • the time interval T is calculated as follows:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3; or,
  • the time interval T is calculated as follows:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the T 1 N1 + N2 + L2 , where, for the terminal apparatus Nl random access procedure at the time of the physical downlink shared channel PDSCH Msg2 processing required bearer, N2 for the terminal The time required for the device to send the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 9.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of an embodiment of a network device according to the present application.
  • the apparatus in this embodiment may include: a first processing module 41, a sending module 42, a second processing module 43, and a receiving module 44. ,among them,
  • the first processing module 41 is configured to determine a target timing advance amount TA or a target timing advance indication TAC, where the target TA is greater than or equal to a maximum TA of the TAs of the plurality of terminal devices in the cell or beam coverage area where the terminal device is located, and The target TA is less than or equal to the TA corresponding to the maximum TAC value TAC max in the random access response RAR supported by the protocol, where the target TAC is greater than or equal to the TA of multiple terminal devices in the cell or beam coverage area where the terminal device is located.
  • the maximum TA corresponds to the TAC, and the target TAC is less than or equal to the TAC max ;
  • the sending module 42 is configured to send, to the terminal device, indication information for indicating the target TA or the target TAC;
  • the second processing module 43 is configured to determine a time interval between Msg2 and Msg3 according to the target TA;
  • the receiving module 44 is configured to receive Msg3 according to the time interval.
  • the indication information is carried in any one or more of the following messages:
  • the indication information is a scaling factor indicated by K bits, K is a positive integer, and the target TA is a product of the scaling factor and TA max .
  • the second processing module 43 is configured to:
  • the time interval T is calculated as follows:
  • T T 1 + target TA, where T 1 corresponds to the subcarrier spacing of Msg1 and Msg3; or,
  • the time interval T is calculated as follows:
  • T T 1 + target TA + Q, where Q is the scheduling time, and Q is carried in the RAR corresponding to the terminal device in the Msg2.
  • the T 1 N1 + N2 + L2 , where, for the terminal apparatus Nl random access procedure at the time of the physical downlink shared channel PDSCH Msg2 processing required bearer, N2 for the terminal The time required for the device to send the Msg3 corresponding to the physical uplink shared channel PUSCH, and L2 is the time for the media access control MAC layer to process.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 9.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • the application may divide the function module into the sending device according to the above method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • the network device is completely corresponding to the network device or the terminal device in the embodiment of the terminal device and the method, and the corresponding module performs corresponding steps, for example, the sending module performs the steps sent in the method embodiment, and the receiving module performs the method received in the embodiment. Steps, other than sending and receiving, may be performed by the processing module.
  • the function of the specific module can refer to the corresponding method embodiment.
  • the network device and the terminal device of the foregoing various solutions have the functions of implementing the corresponding steps performed by the network device and the terminal device in the foregoing method; the functions may be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transmitting module may be replaced by a transmitter, the receiving module may be replaced by a receiver, and other modules, such as a processing module, etc., may be replaced by a processor and executed separately Transmission operations, reception operations, and related processing operations in various method embodiments.
  • each module included in each of the above devices has a function corresponding to each of the above methods.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a module can also be called a unit.
  • the determination or calculation of each parameter (such as TA) mentioned in the above method is implemented by the processing module, and the sending or receiving of the indication information is implemented by the sending module or the receiving module.
  • each of the foregoing devices may include: a processing unit (module) and a transceiver unit (module), and the transceiver unit may include a transmitting unit (module) and a receiving unit (module), respectively performing the sending in each method described above.
  • the transceiver unit may be, for example, a transceiver for performing the transmitting and receiving steps in the above method; the transceiver includes a radio frequency circuit, The transmitter and the receiver may be respectively included for performing the steps of the transmitting class and the receiving class in the method; the processing unit may be a processor for performing steps other than transmitting and receiving in the above methods, and processing
  • the unit or processor can be one or more.
  • FIG. 14 is a schematic structural diagram of a communication apparatus provided by the present application.
  • the communication device 30 can be the network device or the terminal device in FIG.
  • the communication device can be used to implement the method of the corresponding part described in the above method embodiments, and is specifically referred to the description in the above method embodiment.
  • the communication device 30 may include one or more processors 31, which may also be referred to as processing units, to implement certain control functions.
  • the processor 31 may be a general purpose processor or a dedicated processor or the like. For example, it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (eg, base stations, baseband chips, DUs, or CUs, etc.), execute software programs, and process data of software programs. .
  • the processor 31 may also store instructions 33 that may be executed by the processor such that the communication device 30 performs the operations described in the above method embodiments corresponding to the terminal or network device. method.
  • communication device 30 may include circuitry that may implement the functions of transmitting or receiving or communicating in the foregoing method embodiments.
  • the communication device 30 may include one or more memories 32 on which instructions 34 or intermediate data are stored, the instructions 34 being operative on the processor 31 such that the communication device 30 The method described in the above method embodiments is performed.
  • other related data may also be stored in the memory.
  • instructions and/or data may also be stored in processor 31.
  • the processor 31 and the memory 32 may be provided separately or integrated.
  • the communication device 30 may also include a transceiver 35 and/or an antenna 36.
  • the processor 31 can be referred to as a processing unit.
  • the transceiver 35 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing a transceiving function of the communication device.
  • a communication device may include a processor and a transceiver.
  • the communication device is configured to implement operations corresponding to the terminal device in any of the embodiments shown in FIG. 3, FIG. 6, FIG. 8 or FIG. 9, for example, the steps of transmitting and receiving in the embodiment of the transceiver execution method, except for transmitting and receiving Other steps than others can be performed by the processor.
  • the function of the specific module can refer to the corresponding method embodiment.
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board ( Printed circuit board, PCB), electronic equipment, etc.
  • IC integrated circuit
  • analog IC an analog IC
  • radio frequency integrated circuit RFIC a radio frequency integrated circuit
  • mixed signal IC an application specific integrated circuit
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • electronic equipment etc.
  • the processor and transceiver can also be fabricated using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide semiconductor (n-metal oxide semiconductor) (n-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type A positive oxide metal oxide semiconductor (PMOS), a Bipolar Junction Transistor (BJT), a bipolar CMOS (BiCMOS), a silicon germanium (SiGe), or a gallium arsenide (GaAs).
  • CMOS complementary metal oxide semiconductor
  • n-metal oxide semiconductor n-type metal oxide semiconductor
  • PMOS P-type A positive oxide metal oxide semiconductor
  • BJT Bipolar Junction Transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device is described by taking the network device 20 or the terminal device 10 as an example, the scope of the communication device described in the present application is not limited to the network device, and the structure of the communication device may not be in FIG. limits.
  • the communication device can be a standalone device or can be part of a larger device.
  • the device can be:
  • the set of ICs may also include storage means for storing data and/or instructions;
  • an ASIC such as a modem (MSM);
  • the present application further provides a readable storage medium.
  • the readable storage medium stores execution instructions. When at least one processor of the terminal device executes the execution instruction, the terminal device performs the random access method in the foregoing method embodiment.
  • the present application further provides a readable storage medium.
  • the readable storage medium stores execution instructions. When at least one processor of the network device executes the execution instruction, the network device performs the random access method in the foregoing method embodiment.
  • the present application further provides a chip, the chip is connected to a memory, or a memory is integrated on the chip, and when a software program stored in the memory is executed, the random access method in the foregoing method embodiment is implemented.
  • the application also provides a program product comprising an execution instruction stored in a readable storage medium.
  • the at least one processor of the terminal device can read the execution instruction from the readable storage medium, and the at least one processor executes the execution instruction to cause the terminal device to implement the random access method in the above method embodiment.
  • the application also provides a program product comprising an execution instruction stored in a readable storage medium.
  • At least one processor of the network device can read the execution instructions from a readable storage medium, and the at least one processor executes the execution instructions such that the network device implements the random access method of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种随机接入方法及装置。该方法包括:终端设备根据接收到的Msg2确定最大TAC所属的第一TAC区间,最大TAC为Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,终端设备根据接收到的Msg2确定对应于终端设备的RAR中的TAC所属的第二TAC区间,第一TAC区间和第二TAC区间为根据0~TAC max划分的区间,TAC max为协议支持的RAR中的最大TAC;终端设备根据第一TAC区间或第二TAC区间确定Msg2与Msg3之间的时间间隔,并根据时间间隔发送Msg3。从而可降低随机接入过程中的接入时延。

Description

随机接入方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种随机接入方法及装置。
背景技术
在第五代移动通信(the 5th Generation mobile communication technology,5G)系统中,终端设备随机接入无线通信网络的过程为:
1、终端设备向网络设备发送Msg1,并根据Msg1对应的物理随机接入信道时机((Physical Random Access Channel occasion,PRACH occasion)确定对应的随机接入无线网络临时标识(Random access Radio Network Temporary Identifier,RA-RNTI)。
2、终端设备发送Msg1之后,在随机接入响应窗(Random Access Response window,RAR window)内监听用于发送Msg2的公共搜索空间(common search space),如果终端设备检测到RA-RNTI加掩的物理下行控制信道(Physical Downlink Control Channel,PDCCH),并接收PDCCH调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)中承载的Msg2信息,终端设备会检查Msg2中是否包含了对应于终端设备发送的Msg1的随机接入响应(Random Access Response,RAR),若是,则终端设备解析出对应于该终端设备的RAR,该RAR中包含了Msg3的调度信息,指示了Msg3的上行发送资源;如果终端未检测到RA-RNTI加掩的PDCCH,或者RA-RNTI加掩的PDCCH调度的Msg2中不包含对应于终端设备发送的Msg1的RAR,则终端设备将在RAR window中继续监听PDCCH,直到找到包含对应RAR的Msg2或直到RAR window超时。
3、终端设备根据Msg2中的RAR,在RAR指示的上行发送资源上发送Msg3。
4、终端设备继续在公共搜索空间上监听是否有PDCCH调度Msg3的重传的指令或者有PDCCH调度Msg4的新传的指令。
5、若终端设备正确接收到Msg4,并完成了冲突解决过程(contention resolution),则随机接入过程成功。
上述随机接入过程中,Msg2与Msg3之间的时间间隔(即终端设备接收到Msg2至发送Msg3的时间间隔)定义为由四部分组成:N1、L2、N2和TA max,其中,N1为终端设备在随机接入过程中处理承载Msg2的PDSCH所需要的时间,N2为终端准备发送Msg3对应物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)所需要的时间,L2为为媒体接入控制(Medium Access Control,MAC)层处理的时间,TA max为Msg2中的定时提前指示(Time Advance command,TAC)所能表示的最大定时提前量(Time Advance,TA),相关技术中,TA max是最大TAC对应的TA值,5G中协议支持的最大TAC为3846,该值是为了支持5G协议能够支持的最大小区半径设 计的,但在实际部署中,小区的半径通常远比协议支持的最大小区半径小,因此TA max将远大于小区内终端设备所需要的TA,从而会使得Msg2与Msg3之间的时间间隔:N1+N2+L2+TA max会很大,造成5G的控制面延时过大的问题。
发明内容
本申请提供一种随机接入方法及装置,降低随机接入过程中的接入时延。
第一方面,本申请提供一种随机接入方法,包括:
终端设备向网络设备发送Msg1;
终端设备接收网络设备发送的Msg2;
终端设备根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,所述终端设备根据接收到的Msg2确定对应于所述终端设备的RAR中的TAC所属的第二TAC区间,所述第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,所述TAC max为协议支持的RAR中的最大TAC;
所述终端设备根据所述第一TAC区间或所述第二TAC区间确定Msg2与Msg3之间的时间间隔,并根据所述时间间隔发送Msg3,其中,所述Msg1、Msg2和Msg3为随机接入过程中的消息。
通过第一方面提供的随机接入方法,通过终端设备根据接收到的Msg2中包含的所有RAR中的最大TAC所属的第一TAC区间来确定Msg2与Msg3之间的时间间隔,或者根据Msg2中包含的对应于该终端设备的RAR中的TAC所属的第二TAC区间来确定Msg2与Msg3之间的时间间隔,并根据所确定的时间间隔发送Msg3,其中第一TAC区间和第二TAC区间为根据0~TAC max划分的区间,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低随机接入过程中的接入时延。
或者,
终端设备向网络设备发送Msg1;
终端设备接收网络设备发送的Msg2;
终端设备根据接收到的Msg2确定最大定时提前指示TAC对应的TA所属的第一TA区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,所述终端设备根据接收到的Msg2确定对应于所述终端设备的RAR中的TAC对应的TA所属的第二TA区间,所述第一TA区间和所述第二TA区间为根据0~TA max划分的区间,所述TA max为协议支持的RAR中的最大TAC对应的TA;
所述终端设备根据所述第一TA区间或所述第二TA区间确定Msg2与Msg3之间的时间间隔,并根据所述时间间隔发送Msg3其中,所述Msg1、Msg2和Msg3为随机接入过程中的消息。
通过终端设备根据接收到的Msg2中包含的所有RAR中的最大TAC对应的TA所属的第一TA区间来确定Msg2与Msg3之间的时间间隔,或者根据Msg2中包含的对应于该终端设备的RAR中的TAC对应的TA所属的第二TAC区间来确定Msg2与Msg3之间的时间间隔,并根据所确定的时间间隔发送Msg3,其中第一TA区间和第 二TA区间为根据0~TA max划分的区间,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低随机接入过程中的接入时延。
在一种可能的设计中,第一TAC区间和第二TAC区间为根据网络设备与终端设备之间的距离划分的区间。
在一种可能的设计中,第一TA区间和第二TA区间为根据网络设备与终端设备之间的距离划分的区间。
在一种可能的设计中,所述终端设备根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间之前,还包括:
所述终端设备在媒体接入控制MAC层解析出所述Msg2中包含的所有RAR中的TAC,从所述所有RAR中的TAC中确定出所述最大TAC;或者,
所述终端设备根据所述最大TAC的预设放置位置读取所述最大TAC。
在一种可能的设计中,所述终端设备根据所述第一TAC区间或所述第二TAC区间确定Msg2与Msg3之间的时间间隔,包括:
所述终端设备根据所述第一TAC区间或所述第二TAC区间确定目标TA的值;
所述终端设备根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;
或者,
所述终端设备根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
通过该实施方式提供的随机接入方法,通过RAR中的时域资源分配域携带调度时间Q,使得网络设备能够进一步使用时域资源分配域调整Msg3的实际发送时间,从而使得发送Msg3的时间比较灵活,实现灵活调度。
在一种可能的设计中,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
在一种可能的设计中,所述目标TA的值为所述第一TAC区间的最大值对应的TA值或所述第二TAC区间的最大值对应的TA值。
第二方面,本申请提供一种随机接入方法,包括:
网络设备接收终端设备发送的Msg1;
网络设备向终端设备发送Msg2;
网络设备根据发送给终端设备的Msg2确定最大定时提前指示TAC所属的第一TAC区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,所述网络设备根据发送给终端设备的Msg2确定对应于所述终端设备的RAR中的TAC所属的第二TAC区间,所述第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,所述TAC max为协议支持的RAR中的最大TAC;
所述网络设备根据所述第一TAC区间或所述第二TAC区间确定Msg2与所述终 端设备的RAR对应的Msg3之间的时间间隔,并根据所述时间间隔接收所述Msg3,其中,所述Msg1、Msg2和Msg3为随机接入过程中的消息。
通过第二方面提供的随机接入方法,其中第一TAC区间和第二TAC区间为根据0~TAC max划分的区间,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低随机接入过程中的接入时延。
或者,
网络设备接收终端设备发送的Msg1;
网络设备向终端设备发送Msg2;
网络设备根据发送给终端设备的Msg2确定最大定时提前指示TAC对应的TA所属的第一TA区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,所述网络设备根据发送给终端设备的Msg2确定对应于所述终端设备的RAR中的TAC对应的TA所属的第二TA区间,所述第一TA区间和所述第二TA区间为根据0~TA max划分的区间,所述TA max为协议支持的RAR中的最大TAC对应的TA;
所述网络设备根据所述第一TA区间或所述第二TA区间确定Msg2与所述终端设备的RAR对应的Msg3之间的时间间隔,并根据所述时间间隔接收所述Msg3,其中,所述Msg1、Msg2和Msg3为随机接入过程中的消息。
通过第二方面提供的随机接入方法,其中第一TA区间和第二TA区间为根据0~TA max划分的区间,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低随机接入过程中的接入时延。
在一种可能的设计中,所述网络设备根据发送给终端设备的Msg2确定最大定时提前指示TAC所属的第一TAC区间之前,还包括:
所述网络设备从所述Msg2中包含的所有RAR中的TAC中确定出所述最大TAC;或者,
所述网络设备根据所述最大TAC的预设放置位置放置所述最大TAC。
在一种可能的设计中,所述网络设备根据所述第一TAC区间或所述第二TAC区间确定Msg2与所述终端设备的RAR对应的Msg3之间的时间间隔,包括:
所述网络设备根据所述第一TAC区间或所述第二TAC区间确定目标TA的值;
所述网络设备根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
所述网络设备根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
通过该实施方式提供的随机接入方法,通过RAR中的时域资源分配域携带调度时间Q,使得网络设备能够进一步使用时域资源分配域调整Msg3的实际发送时间,从而使得发送Msg3的时间比较灵活,实现灵活调度。
在一种可能的设计中,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接 入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
在一种可能的设计中,所述目标TA的值为所述第一TAC区间的最大值对应的TA值或所述第二TAC区间的最大值对应的TA值。
第三方面,本申请提供一种随机接入方法,包括:
终端设备接收用于指示目标定时提前量TA或目标定时提前指示TAC的指示信息,所述目标TA大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且所述目标TA小于或等于协议支持的随机接入响应RAR中的最大TAC值TAC max对应的TA值TA max,所述目标TAC大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且所述目标TAC小于或等于所述TAC max
所述终端设备根据所述指示信息确定所述目标TA;
所述终端设备根据所述目标TA确定Msg2与Msg3之间的时间间隔,并根据所述时间间隔发送Msg3,其中,所述Msg2和Msg3为随机接入过程中的消息。
通过第三方面提供的随机接入方法,由于指示信息指示的目标TA小于或等于TA max,或者指示信息指示的目标TAC小于或等于TAC max,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低随机接入过程中的接入时延。
在一种可能的设计中,所述指示信息携带在以下任意一种或多种消息中:
Msg2下行控制信息DCI、Msg2协议数据单元PDU、Msg2媒体接入控制MAC报文头和Msg2RAR、物理广播信道PBCH、系统信息SI和其他最小系统信息RMSI。
在一种可能的设计中,所述指示信息为通过K比特指示的缩放因子,K为正整数,所述目标TA为所述缩放因子与TA max的乘积。
在一种可能的设计中,所述终端设备根据所述目标TA确定Msg2与Msg3之间的时间间隔,包括:
所述终端设备根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
所述终端设备根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
通过该实施方式提供的随机接入方法,通过RAR中的时域资源分配域携带调度时间Q,使得网络设备能够进一步使用时域资源分配域调整Msg3的实际发送时间,从而使得发送Msg3的时间比较灵活,实现灵活调度。
在一种可能的设计中,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
第四方面,本申请提供一种随机接入方法,包括:
网络设备确定出目标定时提前量TA或目标定时提前指示TAC,所述目标TA大于或等于终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且所述目标TA小于或等于协议支持的随机接入响应RAR中的最大TAC值TAC max对应的TA,所述目标TAC大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且所述目标TAC小于或等于所述TAC max
所述网络设备向所述终端设备发送用于指示所述目标TA或目标TAC的指示信息;
所述网络设备根据所述目标TA确定Msg2与Msg3之间的时间间隔,并根据所述时间间隔接收所述Msg3,其中,所述Msg2和Msg3为随机接入过程中的消息。
通过第四方面提供的随机接入方法,由于指示信息指示的目标TA小于或等于TA max,或者指示信息指示的目标TAC小于或等于TAC max,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低随机接入过程中的接入时延。
在一种可能的设计中,所述指示信息携带在以下任意一种或多种消息中:
Msg2下行控制信息DCI、Msg2协议数据单元PDU、Msg2媒体接入控制MAC报文头和Msg2随机接入响应RAR、物理广播信道PBCH、系统信息SI和其他最小系统信息RMSI。
在一种可能的设计中,所述指示信息为通过K比特指示的缩放因子,K为正整数,所述目标TA为所述缩放因子与TA max的乘积。
在一种可能的设计中,所述网络设备根据所述目标TA确定Msg2与Msg3之间的时间间隔,包括:
所述网络设备根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
所述网络设备根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
通过该实施方式提供的随机接入方法,通过RAR中的时域资源分配域携带调度时间Q,使得网络设备能够进一步使用时域资源分配域调整Msg3的实际发送时间,从而使得发送Msg3的时间比较灵活,实现灵活调度。
在一种可能的设计中,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
第五方面,本申请提供一种终端设备,包括:
第一处理模块,用于根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,根据接收到的Msg2确定对应于所述终端设备的RAR中的TAC所属的第二TAC区间,所述第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,所述TAC max为协议支持的RAR中的最大TAC;
第二处理模块,用于根据所述第一TAC区间或所述第二TAC区间确定Msg2与 所述终端设备的RAR对应的Msg3之间的时间间隔;
发送模块,用于根据所述时间间隔发送Msg3。
在一种可能的设计中,所述第一处理模块还用于:
在根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间之前,在媒体接入控制MAC层解析出所述Msg2中包含的所有RAR中的TAC,从所述所有RAR中的TAC中确定出所述最大TAC;或者,
根据所述最大TAC的预设放置位置读取所述最大TAC。
在一种可能的设计中,所述第二处理模块用于:
根据所述第一TAC区间或所述第二TAC区间确定目标TA的值;
根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;
或者,
根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
在一种可能的设计中,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
在一种可能的设计中,所述目标TA的值为所述第一TAC区间的最大值对应的TA值或所述第二TAC区间的最大值对应的TA值。
上述第五方面以及上述第五方面的各可能的设计中所提供的终端设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第六方面,本申请提供一种网络设备,包括:
第一处理模块,用于根据发送给终端设备的Msg2确定最大定时提前指示TAC所属的第一TAC区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,根据发送给终端设备的Msg2确定对应于所述终端设备的RAR中的TAC所属的第二TAC区间,所述第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,所述TAC max为协议支持的RAR中的最大TAC;
第二处理模块,用于根据所述第一TAC区间或所述第二TAC区间确定Msg2与Msg3之间的时间间隔;
接收模块,用于根据所述时间间隔接收Msg3。
在一种可能的设计中,所述第一处理模块还用于:
在根据发送给终端设备的Msg2确定最大定时提前指示TAC所属的第一TAC区间之前,从所述Msg2中包含的所有RAR中的TAC中确定出所述最大TAC;或者,
根据所述最大TAC的预设放置位置放置所述最大TAC。
在一种可能的设计中,所述第二处理模块用于:
根据所述第一TAC区间或所述第二TAC区间确定目标TA的值;
根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
在一种可能的设计中,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
在一种可能的设计中,所述目标TA的值为所述第一TAC区间的最大值对应的TA值或所述第二TAC区间的最大值对应的TA值。
上述第六方面以及上述第六方面的各可能的设计中所提供的网络设备,其有益效果可以参见上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第七方面,本申请提供一种终端设备,包括:
接收模块,用于接收用于指示目标定时提前量TA或目标定时提前指示TAC的指示信息,所述目标TA大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且所述目标TA小于或等于协议支持的随机接入响应RAR中的最大TAC值TAC max对应的TA值TA max,所述目标TAC大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且所述目标TAC小于或等于所述TAC max
第一处理模块,用于根据所述指示信息确定所述目标TA;
第二处理模块,用于根据所述目标TA确定Msg2与Msg3之间的时间间隔;
发送模块,用于根据所述时间间隔发送Msg3。
在一种可能的设计中,所述指示信息携带在以下任意一种或多种消息中:
Msg2下行控制信息DCI、Msg2协议数据单元PDU、Msg2媒体接入控制MAC报文头和Msg2RAR、物理广播信道PBCH、系统信息SI和其他最小系统信息RMSI。
在一种可能的设计中,所述指示信息为通过K比特指示的缩放因子,K为正整数,所述目标TA为所述缩放因子与TA max的乘积。
在一种可能的设计中,所述第二处理模块用于:
根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
在一种可能的设计中,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
上述第七方面以及上述第七方面的各可能的设计中所提供的终端设备,其有益效果可以参见上述第三方面和第三方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第八方面,本申请提供一种网络设备,包括:
第一处理模块,用于确定出目标定时提前量TA或目标定时提前指示TAC,所述目标TA大于或等于终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且所述目标TA小于或等于协议支持的随机接入响应RAR中的最大TAC值TAC max对应的TA,所述目标TAC大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且所述目标TAC小于或等于所述TAC max
发送模块,用于向所述终端设备发送用于指示所述目标TA或目标TAC的指示信息;
第二处理模块,用于根据所述目标TA确定Msg2与Msg3之间的时间间隔;
接收模块,用于根据所述时间间隔接收Msg3。
在一种可能的设计中,所述指示信息携带在以下任意一种或多种消息中:
Msg2下行控制信息DCI、Msg2协议数据单元PDU、Msg2媒体接入控制MAC报文头和Msg2随机接入响应RAR、物理广播信道PBCH、系统信息SI和其他最小系统信息RMSI。
在一种可能的设计中,所述指示信息为通过K比特指示的缩放因子,K为正整数,所述目标TA为所述缩放因子与TA max的乘积。
在一种可能的设计中,所述第二处理模块用于:
根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
在一种可能的设计中,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
上述第八方面以及上述第八方面的各可能的设计中所提供的网络设备,其有益效果可以参见上述第四方面和第四方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第九方面,本申请提供一种终端设备,包括:存储器和处理器;
存储器用于存储程序指令;
处理器用于调用存储器中的程序指令执行第一方面及第一方面任一种可能的设计中或者第三方面及第三方面任一种可能的设计中的随机接入方法。
第十方面,本申请提供一种网络设备,包括:存储器和处理器;
存储器用于存储程序指令;
处理器用于调用存储器中的程序指令执行第二方面及第二方面任一种可能的设计中或者第四方面及第四方面任一种可能的设计中的随机接入方法。
第十一方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,终端设备执行第一方面及第一方面任一种可能的设计中或者第三方面及第三方面任一种可能的设计中的随机接入方法。
第十二方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当网络设备的至少一个处理器执行该执行指令时,网络设备执行第二方面及第二方面任一种可能的设计中或者第四方面及第四方面任一种可能的设计中的随机接入方法。
第十三方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得终端设备实施第一方面及第一方面任一种可能的设计中或者第三方面及第三方面任一种可能的设计中的随机接入方法。
第十四方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得网络设备实施第二方面及第二方面任一种可能的设计中或者第四方面及第四方面任一种可能的设计中的随机接入方法。
第十五方面,本申请提供一种芯片,所述芯片与存储器相连,或者所述芯片上集成有存储器,当所述存储器中存储的软件程序被执行时,实现上述任一项所述的随机接入方法。
附图说明
图1为一种通信系统架构示意图;
图2为一种随机接入过程中Msg2与Msg3之间的时间间隔示意图;
图3为本申请提供的一种随机接入方法实施例的交互流程图;
图4为一种Msg2与Msg3之间的时间间隔计算示意图;
图5为一种Msg2与Msg3之间的时间间隔计算示意图;
图6为本申请提供的一种随机接入方法实施例的流程图;
图7为终端设备接收Msg2之后确定Msg2与Msg3之间的时间间隔过程示意图;
图8为本申请提供的一种随机接入方法实施例的流程图;
图9为本申请提供的一种随机接入方法实施例的交互流程图;
图10为本申请提供的一种终端设备实施例的结构示意图;
图11为本申请提供的一种网络设备实施例的结构示意图;
图12为本申请提供的一种终端设备实施例的结构示意图;
图13为本申请提供的一种网络设备实施例的结构示意图;
图14为本申请提供的一种通信装置的结构示意图。
具体实施方式
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、 全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及下一代5G移动通信系统。
图1为一种通信系统架构示意图,如图1所示,本申请的通信系统可以包括网络设备和终端设备,网络设备和终端设备之间进行通信。本申请涉及的通信装置主要包括网络设备和终端设备。
网络设备:可以是基站,或者接入点,或者接入网设备,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。网络设备可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。网络设备还可协调对空中接口的属性管理。例如,网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站,例如gNB等,在此并不限定。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网络(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
相关技术中,图2为一种随机接入过程中Msg2与Msg3之间的时间间隔示意图,如图2所示,Msg2与Msg3之间的时间间隔T=N1+N2+L2+TA max,TA max是最大TAC对应的TA值,5G中协议支持的最大TAC为3846,不同Msg3的子载波间隔下的最大TAC与最大TA以及支持的小区半径的对应关系如下表一所示:当Msg3的子载波间隔为15kHz时,最大TAC3846对应TA为2ms,当Msg3的子载波间隔为30kHz时,最大TAC3846对应TA为1ms,当Msg3的子载波间隔为60kHz时,最大TAC3846对应TA为0.5ms,当Msg3的子载波间隔为120kHz时,最大TAC3846对应TA为 0.25ms,该值是为了支持5G协议能够支持的最大小区半径设计的。
表一
Figure PCTCN2018082034-appb-000001
在Msg2中的RAR中指示的定时提前指示TAC,可以换算得到对应的定时提前TA值。如下述方法:
TA=TAC*TAC granularity
其中TAC granularity表示TAC的粒度,具体的TAC粒度和Msg3的子载波间隔相关,如下表二所示,其中::T s=1/(64*30.72*10 6)seconds。
表二
Msg3的子载波间隔(kHz) TAC粒度
15 16*64Ts
30 8*64Ts
60 4*64Ts
120 2*64Ts
如表一所示,在15kHz子载波间隔时,最大TAC所对应的TA值TA max(2ms)是为了支持300km小区半径的,但在实际部署中,小区的半径通常远比最大小区半径小,因此TA max将远大于小区内终端设备所需要的TA,从而会使得Msg2与Msg3之间的时间间隔T会很大,造成5G的控制面延时(control plane latency)过大的问题,ITU-2020(国际电联-2020计划)对5G的control plane latency的要求是20ms,按照上述使用TA max来确定T的方式,有可能造成5G NR无法满足ITU-2020的要求。为解决这一问题,本申请提供一种随机接入方法,终端设备根据Msg2中包含的所有RAR中的最大TAC所属的第一TAC区间来确定Msg2与Msg3之间的时间间隔,或者根据Msg2中包含的对应于该终端设备的RAR中的TAC所属的第二TAC区间来确定Msg2与Msg3之间的时间间隔,其中第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低随机接入过程中的接入时延。或者根据接收到的用于指示目标TA或目标TAC的指示信息确定目标TA,进而根据目标TA确定Msg2与Msg3之间的时间间隔,其中的目标TA小于或等于TA max,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在 0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低接入时延。下面结合附图详细说明本申请的技术方案。
图3为本申请提供的一种随机接入方法实施例的交互流程图,如图3所示,本实施例的方法可以包括:
S101、终端设备向网络设备发送Msg1。
S102、网络设备向终端设备发送Msg2。
具体地,网络设备向终端设备发送Msg2之前或之后,根据Msg2确定最大定时提前指示所属的第一TAC区间,最大TAC为Msg2中包含的所有RAR中的TAC中的最大值;或者,网络设备根据发送给终端设备的Msg2确定对应于终端设备的RAR中的TAC所属的第二TAC区间,第一TAC区间和第二TAC区间为根据0~TAC max划分的区间,TAC max为协议支持的RAR中的最大TAC,如表一所示。
作为一种可实施的方式,具体地,网络设备向终端设备发送Msg2之前或之后,根据Msg2确定最大TAC对应的第一TA区间,最大TAC为Msg2中包含的所有RAR中的TAC中的最大值;或者,网络设备根据发送给终端设备的Msg2确定对应于终端设备的RAR中的TAC对应的第二TA区间,第一TA区间和第二TA区间为根据0~TA max划分的区间,TA max为协议支持的RAR中的最大TAC对应的TA值,如表一所示。
作为一种可实施的方式,具体地,网络设备向终端设备发送Msg2之前或之后,根据Msg2确定最大定时提前,最大TA为Msg2中包含的所有RAR中的TAC对应的TA值中的最大值;或者,网络设备根据发送给终端设备的Msg2确定对应于终端设备的RAR中的TAC对应的TA所属的第二TA区间,第一TA区间和第二TA区间为根据0~TA max划分的区间,TA max为协议支持的RAR中的最大TAC对应的TA值,如表一所示。
所述最大TAC和最大TA是对应的,根据前述TAC和TA的转换关系进行转换。
其中,第一TAC区间和第二TAC区间为根据0~TAC max划分的区间,其中的TAC max为协议支持的RAR中的最大TAC,可选的,还可以是确定最大TAC对应的TA所属的第一TA区间,或者确定对应于终端设备的RAR中的TAC对应的TA所属的第二TA区间,第一TA区间和第二TA区间为根据0~TA max划分的区间,TA max为TAC max对应的TA。例如,协议支持的RAR中的TAC max=3846,当Msg3的子载波间隔为15kHz时,最大TAC3846对应TA为2ms,当Msg3的子载波间隔为30kHz时,最大TAC3846对应TA为1ms,当Msg3的子载波间隔为60kHz时,最大TAC3846对应TA为0.5ms,当Msg3的子载波间隔为120kHz时,最大TAC3846对应TA为0.25ms。即:15kHz子载波间隔发送Msg3时,TAC max对应的TA max为2ms;30kHz子载波间隔发送Msg3时,TAC max对应的TA max为1ms;60kHz子载波间隔发送Msg3时,TAC max对应的TA max为0.5ms;120kHz子载波间隔发送Msg3时,TAC max对应的TA max为0.25ms。如何根据0~TAC max划分区间,例如可以是将0~TAC max划分为4个区间、6个区间或8个区间等,如何根据0~TA max划分区间,例如可以是将0~TA max划分为4个区间、6个区间或8个区间等。根据0~TAC max划分的区间例如可以是:[0,1/4TAC max]、[1/4TAC max,1/2TAC max]、[1/2TAC max,3/4TAC max]和[3/4TAC max,TAC max],对应地根 据0~TA max划分的区间对应为[0,1/4TA max]、[1/4TA max,1/2TA max]、[1/2TA max,3/4TA max]和[3/4TA max,TA max],根据0~TAC max划分的区间例如还可以是:[0,1/8TAC max]、[1/8TAC max,1/4TAC max]、[1/4TAC max,1/2TAC max]和[1/2TAC max,TAC max],对应地,0~TA max划分的区间对应为:[0,1/8TA max]、[1/8TA max,1/4TA max]、[1/4TA max,1/2TA max]和[1/2TA max,TA max]。还可以使用其它的区间划分方式,本发明对此不做限制。
可选的,第一TAC区间和第二TAC区间还可以是根据网络设备与终端设备之间的距离划分的区间,在该种方式下,在确定Msg2与Msg3之间的时间间隔所需的目标TA时,可根据转换公式将距离转换为TA。例如,假定网络设备和终端设备之间的距离为R时,则对应的TA为:2*R/C,其中C为光速。因此网络设备和终端设备之间的距离区间,可以对应地转换为TA区间,再根据TA和TAC的对应关系可以转换为TAC区间。
可选的,第一TA区间和第二TA区间还可以是根据网络设备与终端设备之间的距离划分的区间,在该种方式下,在确定Msg2与Msg3之间的时间间隔所需的目标TA时,可根据转换公式将距离转换为TA。例如,假定网络设备和终端设备之间的距离为R时,则对应的TA为:2*R/C,其中C为光速。因此网络设备和终端设备之间的距离区间,可以对应地转换为TA区间。
S103、终端设备根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间,最大TAC为Msg2中包含的所有RAR中的最大TAC;或者,终端设备根据接收到的Msg2确定对应于终端设备的RAR中的TAC所属的第二TAC区间,第一TAC区间和第二TAC区间为根据0~TAC max划分的区间,TA max为协议支持的RAR中的最大TAC值TAC max对应的TA。
作为一种可实施的方式,终端设备根据接收到的Msg2确定最大TAC对应的第一TA区间,最大TAC为Msg2中包含的所有RAR中的最大TAC;或者,终端设备根据接收到的Msg2确定对应于终端设备的RAR中的TAC对应的第二TA区间,第一TA区间和第二TA区间为根据0~TA max划分的区间,TA max为协议支持的RAR中的最大TAC值TAC max对应的TA。
作为一种可实施的方式,终端设备根据接收到的Msg2确定最大TA所属的第一TA区间,最大TA为Msg2中包含的所有RAR中的TAC对应TA中的最大值或者为Msg2中包含的所有RAR中的TAC的最大值对应的TA值;或者,终端设备根据接收到的Msg2确定对应于终端设备的RAR中的TAC对应的TA所属的第二TA区间,第一TA区间和第二TA区间为根据0~TA max划分的区间,TA max为协议支持的RAR中的最大TAC值TAC max对应的TA。
以上,TA区间和TAC区间是对应的,可以通过TAC和TA转换公式进行转换。因此,以上根据第一TAC区间或者第一TA区间的实现方式,认为是本发明的等效实现方式,本发明并不局限于有一种特定实施方式。
终端设备接收到Msg2之后,通过解析Msg2可获取Msg2中包含的所有RAR中的TAC,包括终端设备自身的RAR(即对应于终端设备发送的Msg1的RAR)中的TAC,本实施例中有两种可实施的方式:
方式一、终端设备根据接收到的Msg2确定最大TAC所属的第一TAC区间,最大TAC为Msg2中包含的所有RAR中的最大TAC。其中,Msg2中包含在随机接入过程中的多个终端设备的RAR,例如为RAR_1、RAR_2、……RAR_N,每一个RAR与终端设备发送的Msg1对应的随机接入前导索引(Random Access Preamble Index,RAPID)对应,所述RAPID为对终端设备发送的Msg1的PRACH前导(preamble)的编号。多个终端设备中的每个终端设备发送的Msg1都对应于一个RAPID,终端设备通过在Msg2查找对应对于自己发送的Msg1的RAPID的RAR即可获得所述终端设备自己的RAR。该多个终端设备可以是同一小区或波束覆盖范围内的终端设备,多个终端设备的RAR中的TAC例如为TAC_1、TAC_2、……TAC_N。
本实施例中,可选的,终端设备根据接收到的Msg2确定最大TAC所属的第一TAC区间之前,还需要确定出最大TAC:maximum{TAC_1,TAC_2,……,TAC_N},有两种可实施的方式:
1、终端设备在媒体接入控制(Medium Access Control,MAC)层解析出Msg2中包含的所有RAR中的TAC,从所有RAR中的TAC中确定出最大TAC。所述一个Msg2中包含的所有RAR,对应于多个终端发送的Msg1。这些RAR通过RAPID索引,每个RAR中的TAC分别与对应终端设备和网络设备之间的距离对应。
2、终端设备根据最大TAC的预设放置位置读取最大TAC。例如,按照协议预设规则,Msg2中的所有RAR可以按照任意顺序摆放,但是其中最大TAC的对应RAR放置在Msg2中的某个预设放置位置,如第一个或者最后一个RAR的位置上,终端设备可从预设放置位置上直接读取最大TAC。又例如,按照协议预设规则,Msg2中的所有RAR都按照TAC值的预设顺序排列(例如升序或者降序),终端设备在MAC层除了找到自身RAR中的TAC外,只需要读取第一个或最后一个RAR中的TAC即为Msg2中的最大TAC。
终端设备确定出Msg2中的最大TAC后,即可判定最大TAC所属的第一TAC区间。
可选的,作为方式一的另一种实现方式,终端设备根据接收到的Msg2确定最大TAC对应的TA所属第一TA区间,最大TAC为Msg2中包含的所有RAR中的最大TAC。所述第一TA区间和第一TAC区间是对应的,可以通过TAC和TA的转换关系得到。
可选的,作为方式一的另一种实现方式,终端设备根据接收到的Msg2确定最大TA所属的第一TA区间,最大TA为Msg2中包含的所有RAR中的最大TAC对应的TA或者为Msg2中包含的所有RAR中TAC对应TA的最大值。其中,Msg2中包含在随机接入过程中的多个终端设备的RAR,例如为RAR_1、RAR_2、……RAR_N,每一个RAR与终端设备发送的Msg1对应的随机接入前导索引(Random Access Preamble Index,RAPID)对应,所述RAPID为对终端设备发送的Msg1的PRACH前导(preamble)的编号。多个终端设备中的每个终端设备发送的Msg1都对应于一个RAPID,终端设备通过在Msg2查找对应对于自己发送的Msg1的RAPID的RAR即可获得所述终端设备自己的RAR。该多个终端设备可以是同一小区或波束覆盖范围内的终端设备,多个终端设备的RAR中的TAC例如为TAC_1、TAC_2、……TAC_N,其 对应的TA值分别为TA_1、TA_2、……TA_N。
本实施例中,可选的,终端设备根据接收到的Msg2确定最大TA所属的第一TA区间之前,还需要确定出最大TA:maximum{TA_1、TA_2、……TA_N},有两种可实施的方式:
1、终端设备在媒体接入控制(Medium Access Control,MAC)层解析出Msg2中包含的所有RAR中的TAC,从而找到对应TA值,从所有RAR中的TAC对应TA值中确定出最大TA。所述一个Msg2中包含的所有RAR,对应于多个终端发送的Msg1。这些RAR通过RAPID索引,每个RAR中的TAC和指示TA分别与对应终端设备和网络设备之间的距离对应。
2、终端设备根据最大TAC的预设放置位置读取最大TAC,并根据最大TAC转换得到最大TA值。例如,按照协议预设规则,Msg2中的所有RAR可以按照任意顺序摆放,但是其中最大TAC的对应RAR放置在Msg2中的某个预设放置位置,如第一个或者最后一个RAR的位置上,终端设备可从预设放置位置上直接读取最大TAC。又例如,按照协议预设规则,Msg2中的所有RAR都按照TAC值的预设顺序排列(例如升序或者降序),终端设备在MAC层除了找到自身RAR中的TAC外,只需要读取第一个或最后一个RAR中的TAC即为Msg2中的最大TAC。
所述第一TA区间和第一TAC区间是对应的,可以通过TAC和TA的转换关系得到。
方式二、终端设备根据接收到的Msg2确定对应于终端设备自身的RAR中的TAC所属的第二TAC区间。终端设备在MAC层通过解析Msg2可获取终端设备自身的RAR中的TAC后,即可判定自身的TAC所属的第二TAC区间。
可选的,还可以是终端设备确定最大TAC对应的TA所属的第一TA区间,或者确定对应于终端设备的RAR中的TAC对应的TA所属的第二TA区间,第一TA区间和第二TA区间为根据0~TA max划分的区间,TA max为TAC max对应的TA。所述第二TA区间和第二TAC区间是对应的,可以通过TAC和TA的转换关系得到。
S104、终端设备根据第一TAC区间或第二TAC区间确定Msg2与Msg3之间的时间间隔。
可选的,S103中若终端设备确定的是第一TA区间或第二TA区间,则S104中相应为终端设备根据第一TA区间或第二TA区间确定Msg2与Msg3之间的时间间隔。
所述TA区间和TAC区间是对应的,可以通过TAC和TA的转换关系得到。
S105、终端设备根据时间间隔发送Msg3。
作为一种可实施的方式,S104可以为:终端设备根据第一TAC区间或第二TAC区间确定目标TA的值,可选的,目标TA的值为第一TAC区间的最大值对应的TA值或第二TAC区间的最大值对应的TA值,终端设备根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应,其中,T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应PUSCH所需要的时间,L2为MAC层处理的时间。可选的,终端设备根据第一TA区间或第二TA区间确定目标TA的值,可选的, 目标TA的值为第一TA区间的最大值或第二TA区间的最大值,终端设备根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应,其中,T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应PUSCH所需要的时间,L2为MAC层处理的时间。
图4为一种Msg2与Msg3之间的时间间隔计算示意图,如图4所示,可根据如下方式计算时间间隔T:
T=N1+N2+L2+目标TA。
T确定后,S105中终端设备根据T发送Msg3,具体可以为:T为下行时间的时间间隔,终端设备需要在上行发送Msg3时,将Msg2的PDSCH的最后一个OFDM符号的结尾加上时间间隔T,再减去终端设备自身的RAR中TAC指示的TA调整量,即可确定终端设备发送Msg3的绝对时间。终端设备根据发送Msg3的绝对时间在终端设备自身的RAR指示的上行发送资源上发送Msg3。
作为另一种可实施的方式,S104可以为:终端设备根据第一TAC区间或第二TAC区间确定目标TA的值,可选的,目标TA的值为第一TAC区间的最大TAC值对应的TA或第二TAC区间的最大TAC值对应的TA,终端设备根据如下方式计算所述时间间隔T:T=T 1+目标TA+Q,其中,T 1=N1+N2+L2,图5为一种Msg2与Msg3之间的时间间隔计算示意图,如图5所示,可根据如下方式计算时间间隔T:
T=N1+N2+L2+目标TA+Q,其中,Q为调度时间,Q携带在Msg2中对应于终端设备的RAR中。可选的,Q携带在对应于终端设备的RAR中的时域资源分配域(Time Domain Resource Allocation,Time Domain RA)域,终端设备可根据该time domain RA域中的值确定调度时间Q,可选的,对于不同的终端设备调度时间Q可以不同,也可以相同。如下表三为一种可能的RAR格式:
表三
Figure PCTCN2018082034-appb-000002
Figure PCTCN2018082034-appb-000003
T确定后,S105中终端设备根据T发送Msg3,具体可以为:T为Msg2和Msg3对应的下行时间的时间间隔,终端设备需要在上行发送Msg3时,将Msg2的PDSCH的最后一个OFDM符号的结尾加上时间间隔T,再减去终端设备自身的RAR中TAC指示的TA调整量,即可确定终端设备发送Msg3的绝对时间。终端设备根据发送Msg3的绝对时间在终端设备自身的RAR指示的上行发送资源上发送Msg3。
本实施方式中,通过RAR中的时域资源分配域携带调度时间Q,使得网络设备能够进一步使用时域资源分配域调整Msg3的实际发送时间,从而使得发送Msg3的时间比较灵活,实现灵活调度。
S106、网络设备根据第一TAC区间或第二TAC区间确定Msg2与所述终端设备对应的RAR对应的Msg3之间的时间间隔,并根据时间间隔接收Msg3。
需要说明的是,网络设备向至少一个终端设备广播Msg2,对于每一个终端设备,网络设备要确定与每一个终端设备对应的RAR对应的Msg3之间的时间间隔,并分别根据每一个终端设备对应的时间间隔接收相应的Msg3。
具体地,网络设备根据第一TAC区间或第二TAC区间确定Msg2与Msg3之间的时间间隔与终端设备根据第一TAC区间或第二TAC区间确定Msg2与Msg3之间的时间间隔相同,可参见上述S104中的相关描述,此处不再赘述。
可选的,S103中若终端设备确定的是第一TA区间或第二TA区间,则S106中相应为网络设备根据第一TA区间或第二TA区间确定Msg2与Msg3之间的时间间隔。
T确定后,网络设备根据T接收Msg3,具体可以为:T为下行时间的时间间隔,网络设备将Msg2的PDSCH的最后一个OFDM符号的结尾加上时间间隔T,再减去指示终端设备自身的RAR中TAC指示的TA调整量,即可确定接收对应终端设备所发送的Msg3的绝对时间。网络设备根据接收Msg3的绝对时间接收Msg3。
本实施例提供的随机接入方法,通过终端设备根据接收到的Msg2中包含的所有RAR中的最大TAC所属的第一TAC区间来确定Msg2与Msg3之间的时间间隔,或者根据Msg2中包含的对应于该终端设备的RAR中的TAC所属的第二TAC区间来确定Msg2与Msg3之间的时间间隔,并根据所确定的时间间隔发送Msg3,其中第一TAC区间和第二TAC区间为根据0~TAC max划分的区间,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低随机接入过程中的接入时延。
下面采用一个具体的实施例,对图3所示方法实施例的技术方案进行详细说明。
图6为本申请提供的一种随机接入方法实施例的流程图,如图6所示,本实施例的方法可以包括:
S201、终端设备向网络设备发送Msg1,并根据Msg1对应的PRACH occasion确定对应的RA-RNTI。
S202、终端设备送Msg1之后,在RAR window内监听用于发送Msg2的公共搜索空间。
图7为终端设备接收Msg2之后确定Msg2与Msg3之间的时间间隔过程示意图,如果终端设备检测到RA-RNTI加掩的PDCCH,并接收PDCCH调度的PDSCH中承载 的Msg2信息,终端设备会检查Msg2中是否包含了对应于终端设备发送的Msg1的RAR。例如假设终端设备发送了Msg1,其对应编号为RAPID1,则终端确认RAPID1对应的RAR1为所述终端的RAR。若终端设备确认是所述终端设备的RAR,如图7所示,则终端设备从对应RAR中按照预设格式解析出对应于该终端设备的RAR中的相关信息,该RAR中包含了Msg3的调度信息,指示了Msg3的上行发送资源,以及对应于所述终端设备的TAC。在本申请实施例中,终端设备还要解析出Msg2中包含的所有RAR(RAR_1、RAR_2、……RAR_N)中的TAC(TAC_1、TAC_2、……TAC_N),并确定出最大TAC:maximum{TAC_1,TAC_2,……,TAC_N},可以采用如下两种方式:
1、终端设备在MAC层解析出Msg2中包含的所有RAR中的TAC,从所有RAR中的TAC中确定出最大TAC。
2、终端设备根据最大TAC的预设放置位置读取最大TAC。
如果终端未检测到RA-RNTI加掩的PDCCH,或者RA-RNTI加掩的PDCCH调度的Msg2中不包含对应于终端设备发送的Msg1的RAR,则终端设备将在RAR window中继续监听PDCCH,直到找到包含对应RAR的Msg2或直到RAR window超时。
S203、终端设备判定maximum{TAC_1,TAC_2,……,TAC_N}所属的第一TAC区间,并根据第一TAC区间确定目标TA的值。
例如,根据0~TAC max划分的区间为[0,1/4TAC max]、[1/4TAC max,1/2TAC max]、[1/2TAC max,3/4TAC max]和[3/4TAC max,TAC max],则:
当所述maximum{TAC_1,TAC_2,……,TAC_N}位于[0,1/4TAC max]时,则第一TAC区间为[0,1/4TAC max],终端设备确定目标TA为1/4TA max,终端设备可根据TAC max转换得到TA max
当所述maximum{TAC_1,TAC_2,……,TAC_N}位于[1/4TAC max,1/2TAC max]时,则第一TAC区间为[1/4TAC max,1/2TAC max],终端设备确定目标TA为1/2TA max,终端设备可根据TAC max转换得到TA max
当所述maximum{TAC_1,TAC_2,……,TAC_N}位于[1/2TAC max,3/4TAC max]时,第一TAC区间为[1/2TAC max,3/4TAC max],终端设备确定目标TA为3/4TA max,终端设备可根据TAC max转换得到TA max
当所述maximum{TAC_1,TAC_2,……,TAC_N}位于[3/4TAC max,TAC max]时,第一TAC区间为[3/4TAC max,TAC max],终端设备确定目标TA为TA max,终端设备可根据TAC max转换得到TA max
例如:根据0~TA max划分的区间为:[0,1/4TA max]、[1/4TA max,1/2TA max]、[1/2TA max,3/4TA max]和[3/4TA max,TA max],终端设备可根据TAC转换得到TA,因此,终端设备可先将maximum{TAC_1,TAC_2,……,TAC_N}转换为对应的maximumTA值,进而确定出第一TA区间,则:
当所述maximumTA位于[0,1/4TA max]时,则第一TA区间为[0,1/4TA max],终端设备确定目标TA为1/4TA max
当所述maximumTA位于[1/4TA max,1/2TA max]时,则第一TA区间为[1/4TA max,1/2TA max],终端设备确定目标TA为1/2TA max
当所述maximumTA位于[1/2TA max,3/4TA max]时,第一TA区间为[1/2 TA max,3/4TA max],终端设备确定目标TA为3/4TA max
当所述maximumTA位于[3/4TA max,TA max]时,第一TA区间为[3/4TA max,TA max],终端设备确定目标TA为TA max
S204、终端设备根据目标TA计算时间间隔T。
可选的,T=N1+N2+L2+目标TA,如图7所示,T=N1+N2+L2+1/4TA max,或者,T=N1+N2+L2+1/2TA max,或者,T=N1+N2+L2+3/4TA max,T=N1+N2+L2+TA max
可选的,T=N1+N2+L2+目标TA+Q,其中,Q为调度时间,Q携带在Msg2中对应于终端设备的RAR中。如图7所示,T=N1+N2+L2+1/4TA max+Q,或者,T=N1+N2+L2+1/2TA max+Q,或者,T=N1+N2+L2+3/4TA max+Q,T=N1+N2+L2+TA max+Q。
S205、终端设备根据T发送Msg3。
具体地,可以为:T为Msg2和Msg3对应的下行时间的时间间隔,终端设备需要在上行发送Msg3时,将Msg2的PDSCH的最后一个OFDM符号的结尾加上时间间隔T,再减去终端设备自身的RAR中TAC指示的TA调整量,即可确定终端设备发送Msg3的绝对时间。终端设备根据发送Msg3的绝对时间在终端设备自身的RAR指示的上行发送资源上发送Msg3。。
本实施例中,网络设备向终端设备发送Msg2之前,根据Msg2确定最大TAC所属的第一TAC区间,以及网络设备根据第一TAC区间确定Msg2与Msg3之间的时间间隔,与终端设备侧采用的方式相同,可参见二者对应的相同描述,此处不再赘述,网络设备确定Msg2与Msg3之间的时间间隔后,根据时间间隔接收Msg3。
图8为本申请提供的一种随机接入方法实施例的流程图,如图8所示,本实施例的方法可以包括:
S301、终端设备向网络设备发送Msg1,并根据Msg1对应的PRACH occasion确定对应的RA-RNTI。
S302、终端设备送Msg1之后,在RAR window内监听用于发送Msg2的公共搜索空间。
如果终端设备检测到RA-RNTI加掩的PDCCH,并接收PDCCH调度的PDSCH中承载的Msg2信息,终端设备会检查Msg2中是否包含了对应于终端设备发送的Msg1的RAR,例如假设终端设备发送了Msg1,其对应编号为RAPID1,则终端确认RAPID1对应的RAR1为所述终端的RAR。若终端设备确认是所述终端设备的RAR,则终端设备从对应RAR中按照预设格式解析出对应于该终端设备的RAR中的相关信息,该RAR中包含了Msg3的调度信息,指示了Msg3的上行发送资源,以及对应于所述终端设备的TAC。
如果终端未检测到RA-RNTI加掩的PDCCH,或者RA-RNTI加掩的PDCCH调度的Msg2中不包含对应于终端设备发送的Msg1的RAR,则终端设备将在RAR window中继续监听PDCCH,直到找到包含对应RAR的Msg2或直到RAR window超时。
S303、终端设备判定对应于终端设备自身的RAR中的TAC所属的第二TAC区间,并根据第二TAC区间确定目标TA的值。
例如,根据0~TAC max划分的区间为[0,1/4TAC max]、[1/4TAC max,1/2TAC max]、[1/2TAC max,3/4TAC max]和[3/4TAC max,TAC max],则:
当对应于终端设备自身的RAR中的TAC位于[0,1/4TAC max]时,则第二TAC区间为[0,1/4TAC max]时,终端设备确定目标TA为1/4TA max,终端设备可根据TAC max转换得到TA max
当对应于终端设备自身的RAR中的TAC位于[1/4TAC max,1/2TAC max]时,则第二TAC区间为[1/4TAC max,1/2TAC max]时,终端设备确定目标TA为1/2TA max,终端设备可根据TAC max转换得到TA max
当对应于终端设备自身的RAR中的TAC位于[1/2TAC max,3/4TAC max]时,则第二TAC区间为[1/2TAC max,3/4TAC max]时,终端设备确定目标TA为3/4TA max,终端设备可根据TAC max转换得到TA max
当对应于终端设备自身的RAR中的TAC位于[3/4TAC max,TAC max]时,则第二TAC区间为[3/4TAC max,TAC max]时,终端设备确定目标TA为TA max,终端设备可根据TAC max转换得到TA max
例如:根据0~TA max划分的区间为:[0,1/4TA max]、[1/4TA max,1/2TA max]、[1/2TA max,3/4TA max]和[3/4TA max,TA max],终端设备可根据TAC转换得到TA,因此,终端设备可先将对应于终端设备自身的RAR中的TAC转换为对应的TA值,进而确定出第二TA区间,则:
当转换的TA位于[0,1/4TA max]时,则第二TA区间为[0,1/4TA max],终端设备确定目标TA为1/4TA max
当转换的TA位于[1/4TA max,1/2TA max]时,则第二TA区间为[1/4TA max,1/2TA max],终端设备确定目标TA为1/2TA max
当转换的TA位于[1/2TA max,3/4TA max]时,第二TA区间为[1/2TA max,3/4TA max],终端设备确定目标TA为3/4TA max
当转换的TA位于[3/4TA max,TA max]时,第二TA区间为[3/4TA max,TA max],终端设备确定目标TA为TA max
S304、终端设备根据目标TA计算时间间隔T。
本实施例中计算时间间隔T的过程与205中相同,此处不再赘述。
S305、终端设备根据T发送Msg3。
具体地,可以为:T为Msg2和Msg3对应的下行时间的时间间隔,终端设备需要在上行发送Msg3时,将Msg2的PDSCH的最后一个OFDM符号的结尾加上时间间隔T,再减去终端设备自身的RAR中TAC指示的TA调整量,即可确定终端设备发送Msg3的绝对时间。终端设备根据发送Msg3的绝对时间在终端设备自身的RAR指示的上行发送资源上发送Msg3。
本实施例中,网络设备向终端设备发送Msg2之前或之后,网络设备根据发送给终端设备的Msg2确定对应于终端设备的RAR中的TAC所属的第二TAC区间,以及网络设备根据第二TAC区间确定Msg2与Msg3之间的时间间隔,与终端设备侧采用的方式相同,可参见二者对应的相同描述,此处不再赘述,网络设备确定Msg2与Msg3之间的时间间隔后,根据时间间隔接收Msg3。
图9为本申请提供的一种随机接入方法实施例的交互流程图,如图9所示,本实施例的方法可以包括:
S401、网络设备确定出目标TA或目标TAC,目标TA大于或等于终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且目标TA小于或等于协议支持的RAR中的最大TAC值TAC max对应的TA,目标TAC大于或等于终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且目标TAC小于或等于TAC max
具体地,在随机接入过程中,网络设备先确定出终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,该最大TA确定后,经转换计算可得到该最大TA对应的最大TAC,TAC max对应的TA为TA max,该多个终端设备是进行随机接入的终端设备,接着网络设备可根据多个终端设备的TA中的最大TA和TA max确定出目标TA,目标TA的取值大于或等于多个终端设备的TA中的最大TA,且小于或等于TA max。或者,网络设备根据该最大TAC和TAC max确定出目标TAC,目标TAC的取值大于或等于该最大TAC,且小于或等于TAC max。如上文表一所示,例如,协议支持的RAR中的TAC max=3846,当Msg3的子载波间隔为15kHz时,最大TAC3846对应TA为2ms,当Msg3的子载波间隔为30kHz时,最大TAC3846对应TA为1ms,当Msg3的子载波间隔为60kHz时,最大TAC3846对应TA为0.5ms,当Msg3的子载波间隔为120kHz时,最大TAC3846对应TA为0.25ms。即:15kHz子载波间隔发送Msg3时,TAC max对应的TA max为2ms;30kHz子载波间隔发送Msg3时,TAC max对应的TA max为1ms;60kHz子载波间隔发送Msg3时,TAC max对应的TA max为0.5ms;120kHz子载波间隔发送Msg3时,TAC max对应的TA max为0.25ms。
S402、网络设备向终端设备发送用于指示目标TA或目标TAC的指示信息。
S403、终端设备接收用于指示目标TA或目标TAC的指示信息,根据指示信息确定目标TA。
具体地,指示信息指示标TA或目标TAC的值,可选的,指示信息携带在以下任意一种或多种消息中:
Msg2下行控制信息(Downlink Control Information,DCI)、Msg2协议数据单元(Protocol Data Unit,PDU)、Msg2MAC报文头和Msg2RAR、物理广播信道((Physical Broadcast Channel,PBCH)、系统信息(system information,SI)和其他最小系统信息(Remaining minimum system information,RMSI)。
其中,若指示信息携带在Msg2DCI、Msg2PDU、Msg2MAC报文头和Msg2RAR中的任意一个或多个中时,终端设备所在小区或波束覆盖范围内多个终端设备可以是波束覆盖范围内进行随机接入的多个终端设备,不同的波束可以具有不同的指示信息;若指示信息携带在PBCH、SI和RMSI中的任意一个或多个中时,终端设备所在小区或波束覆盖范围内多个终端设备可以是小区中多个的进行随机接入的终端设备,不同的波束可以具有相同的指示信息。
若指示信息携带在Msg2DCI、Msg2PDU、Msg2MAC报文头和Msg2RAR中的任意一个或多个中时,作为一种可实施的方式,指示信息为通过X比特(bit)指示的目标TA或目标TAC,以目标TA为例,如下表四为一种指示信息的指示方式,X=4bit,可指示16种可能的目标TA:
表四
索引(index) TA[符号] 索引(index) TA[时隙]
0 1 8 1
1 2 9 2
2 3 10 3
3 4 11 4
4 5 12 6
5 6 13 8
6 7 14 12
7 8 15 16
表四中符号(symbols)和时隙(slot)基于msg3子载波间隔长度,1个时隙是4个符号,例如为120KHz。可选的,可以用等效的时间单位表示,如下表五为一种指示信息的指示方式,X=4bit,可指示16种可能的目标TA:
表五
索引(index) TA(us) 索引(index) TA(us)
0 9 8 125
1 18 9 250
2 27 10 375
3 36 11 500
4 45 12 750
5 54 13 1000
6 63 14 1500
7 72 15 2000
如下表六为一种指示信息的指示方式,X=2bit,可指示4种可能的目标TA值:
表六
索引(index) TA(us) 索引(index) TA(us)
0 500 1 1000
2 1500 3 2000
本实施例中,对于可能的目标TA数值的划分方式和用于指示的比特数目不做限定,仅限定目标TA小于或等于TA max
下面以目标TAC为例,指示信息指示用于计算目标TA的目标TAC数值,如下表七为一种指示信息的指示方式,X=2bit,可指示4种可能的目标TAC:
表七
索引(index) TAC 索引(index) TAC
0 1/4*TAC max 1 1/2*TAC max
2 3/4*TAC max 3 TAC max
如下表八为一种指示信息的指示方式,X=2bit,可指示4种可能的目标TAC:
表八
索引(index) TAC 索引(index) TAC
0 1/8*TAC max 1 1/4*TAC max
2 1/2*TAC max 3 TAC max
其中,TAC max为协议支持的RAR中的最大TAC值。
本实施例中,对于可能的目标TAC数值的划分方式和用于指示的比特数目不做限定,仅限定目标TAC小于或等于TAC max
若指示信息携带在PBCH、SI和RMSI中的任意一个或多个中时,作为一种可实施的方式,指示信息为通过K比特指示的缩放因子,K为正整数,目标TA为缩放因子与TA max的乘积。例如,网络设备配置的缩放因子Factor可以为:
Factor={1,1/2,1/4,1/8,1/16,1/32,1/64,1/128},可用3bit进行指示。终端设备接收到该缩放因子之后,根据下述公式计算目标TA值:
目标TA=Factor*TA max
其中,TA max为协议支持的RAR中的最大TAC值TAC max对应的TA,例如TAC max为3846,或者比3846小的其其它数值。本实施例中,不限定缩放因子的具体数值和个数X,网络设备可采用ceil(log2(X))比特进行指示。
可选的,S401还可以是网络设备确定目标距离,网络设备和终端设备之间的距离可根据转换公式将距离转换为TA,例如,假定网络设备和终端设备之间的距离为R时,则对应的TA为:2*R/C,其中C为光速。因此,S402中的指示信息中还可以指示目标距离,即网络设备向终端设备发送用于指示目标距离的指示信息。S403相应地可以为:终端设备接收用于指示目标距离的指示信息,根据指示信息确定目标TA,即根据指示信息指示的目标距离,可以转换得到目标TA。
S404、终端设备根据目标TA确定Msg2与Msg3之间的时间间隔,并根据时间间隔发送Msg3。
作为一种可实施的方式,终端设备可根据如下方式计算时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应,其中,T 1=N1+N2+L2,其中,N1为终端设备在随机接入过程中处理承载Msg2的PDSCH所需要的时间,N2为终端设备准备发送Msg3对应PUSCH所需要的时间,L2为MAC层处理的时间。图4为一种Msg2与Msg3之间的时间间隔计算示意图,如图4所示,可根据如下方式计算时间间隔T:
T=N1+N2+L2+目标TA。
作为另一种可实施的方式,终端设备根据如下方式计算时间间隔T:
T=T 1+目标TA+Q,其中,T 1=N1+N2+L2,图5为一种Msg2与Msg3之间的时间间隔计算示意图,如图5所示,可根据如下方式计算时间间隔T:
T=N1+N2+L2+目标TA+Q,其中,Q为调度时间,Q携带在Msg2中对应于终端 设备的RAR中。可选的,Q携带在对应于终端设备的RAR中的时域资源分配域,终端设备可根据该时域资源分配域中的值确定调度时间Q,可选的,对于不同的终端设备调度时间Q可以不同,也可以相同。
T确定后,终端设备根据T发送Msg3,具体可以为:T为下行时间的时间间隔,终端设备需要在上行发送Msg3时,将Msg2的PDSCH的最后一个OFDM符号的结尾加上时间间隔T,再减去终端设备自身的RAR中TAC指示的TA调整量,即可确定终端设备发送Msg3的绝对时间。终端设备根据发送Msg3的绝对时间在终端设备自身的RAR指示的上行发送资源上发送Msg3。
由于目标TA小于或等于TA max,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低接入时延。
S405、网络设备根据目标TA确定Msg2与Msg3之间的时间间隔,并根据时间间隔接收Msg3。
需要说明的是,网络设备向至少一个终端设备广播Msg2,对于每一个终端设备,网络设备要确定与每一个终端设备对应的RAR对应的Msg3之间的时间间隔,并分别根据每一个终端设备对应的时间间隔接收相应的Msg3。
同样地,作为一种可实施的方式,网络设备可根据如下方式计算时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应,其中,T 1=N1+N2+L2,即:
T=N1+N2+L2+目标TA。
作为另一种可实施的方式,终端设备根据如下方式计算时间间隔T:
T=T 1+目标TA+Q,其中,T 1=N1+N2+L2,即:
T=N1+N2+L2+目标TA+Q,其中,Q为调度时间,Q携带在Msg2中对应于终端设备的RAR中。可选的,Q携带在对应于终端设备的RAR中的时域资源分配域,终端设备可根据该时域资源分配域中的值确定调度时间Q,可选的,对于不同的终端设备调度时间Q可以不同,也可以相同。
T确定后,网络设备根据T接收Msg3,具体可以为:T为下行时间的时间间隔,网络设备将Msg2的PDSCH的最后一个OFDM符号的结尾加上时间间隔T,再减去指示终端设备自身的RAR中TAC指示的TA调整量,即可确定接收对应终端设备所发送的Msg3的绝对时间。网络设备根据接收Msg3的绝对时间接收Msg3。
本实施例提供的随机接入方法,通过网络设备确定出目标TA或目标TAC,目标TA的取值大于或等于终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且小于或等于TA max,目标TAC的取值大于或等于终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的最大TAC,且小于或等于TAC max,接着网络设备向终端设备发送用于指示目标TA或目标TAC的指示信息,终端设备根据指示信息确定目标TA,最后根据目标TA确定Msg2与Msg3之间的时间间隔,并根据时间间隔发送Msg3,由于目标TA小于或等于TA max,或者目标TAC小于或等于TAC max,因此计算Msg2与Msg3之间的时间间隔T所使用的目标TA的取值范围在0~TA max之间,从而可降低Msg2与Msg3之间的时间间隔T,降低随机接入过程中的 接入时延。
图10为本申请提供的一种终端设备实施例的结构示意图,如图10所示,本实施例的装置可以包括:第一处理模块11、第二处理模块12和发送模块13,其中,
第一处理模块11用于根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,根据接收到的Msg2确定对应于所述终端设备的RAR中的TAC所属的第二TAC区间,所述第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,所述TAC max为协议支持的RAR中的最大TAC;
第二处理模块12用于根据所述第一TAC区间或所述第二TAC区间确定Msg2与Msg3之间的时间间隔;
发送模块13用于根据所述时间间隔发送Msg3。
可选的,第一处理模块还用于:
在根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间之前,在媒体接入控制MAC层解析出所述Msg2中包含的所有RAR中的TAC,从所述所有RAR中的TAC中确定出所述最大TAC;或者,
根据所述最大TAC的预设放置位置读取所述最大TAC。
可选的,第二处理模块12用于:
根据所述第一TAC区间或所述第二TAC区间确定目标TA的值;
根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;
或者,
根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
可选的,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
可选的,所述目标TA的值为所述第一TAC区间的最大值对应的TA值或所述第二TAC区间的最大值对应的TA值。
本实施例的装置,可以用于执行图3所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图11为本申请提供的一种网络设备实施例的结构示意图,如图11所示,本实施例的装置可以包括:第一处理模块21、第二处理模块22和接收模块23,其中,
第一处理模块21用于根据发送给终端设备的Msg2确定最大定时提前指示TAC所属的第一TAC区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,根据发送给终端设备的Msg2确定对应于所述终端设备的RAR中的TAC所属的第二TAC区间,所述第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,所述TAC max为协议支持的RAR中的最大TAC;
第二处理模块22用于根据所述第一TAC区间或所述第二TAC区间确定Msg2与所述终端设备的RAR对应的Msg3之间的时间间隔;
接收模块23用于根据所述时间间隔接收Msg3。
可选的,第一处理模块21还用于:
在根据发送给终端设备的Msg2确定最大定时提前指示TAC所属的第一TAC区间之前,从所述Msg2中包含的所有RAR中的TAC中确定出所述最大TAC;或者,
根据所述最大TAC的预设放置位置放置所述最大TAC。
可选的,第二处理模块22用于:
根据所述第一TAC区间或所述第二TAC区间确定目标TA的值;
根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
可选的,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
可选的,所述目标TA的值为所述第一TAC区间的最大值对应的TA值或所述第二TAC区间的最大值对应的TA值。
本实施例的装置,可以用于执行图3所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图12为本申请提供的一种终端设备实施例的结构示意图,如图12所示,本实施例的装置可以包括:接收模块31、第一处理模块32、第二处理模块33和发送模块34,其中,
接收模块31用于接收用于指示目标定时提前量TA或目标定时提前指示TAC的指示信息,所述目标TA大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且所述目标TA小于或等于协议支持的随机接入响应RAR中的最大TAC值TAC max对应的TA值TA max,所述目标TAC大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且所述目标TAC小于或等于所述TAC max
第一处理模块32用于根据所述指示信息确定所述目标TA;
第二处理模块33用于根据所述目标TA确定Msg2与Msg3之间的时间间隔;
发送模块34用于根据所述时间间隔发送Msg3。
可选的,所述指示信息携带在以下任意一种或多种消息中:
Msg2下行控制信息DCI、Msg2协议数据单元PDU、Msg2媒体接入控制MAC报文头和Msg2RAR、物理广播信道PBCH、系统信息SI和其他最小系统信息RMSI。
可选的,所述指示信息为通过K比特指示的缩放因子,K为正整数,所述目标TA为所述缩放因子与TA max的乘积。
可选的,所述第二处理模块33用于:
根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
可选的,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
本实施例的装置,可以用于执行图9所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图13为本申请提供的一种网络设备实施例的结构示意图,如图13所示,本实施例的装置可以包括:第一处理模块41、发送模块42、第二处理模块43和接收模块44,其中,
第一处理模块41用于确定出目标定时提前量TA或目标定时提前指示TAC,所述目标TA大于或等于终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且所述目标TA小于或等于协议支持的随机接入响应RAR中的最大TAC值TAC max对应的TA,所述目标TAC大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且所述目标TAC小于或等于所述TAC max
发送模块42用于向所述终端设备发送用于指示所述目标TA或目标TAC的指示信息;
第二处理模块43用于根据所述目标TA确定Msg2与Msg3之间的时间间隔;
接收模块44用于根据所述时间间隔接收Msg3。
可选的,指示信息携带在以下任意一种或多种消息中:
Msg2下行控制信息DCI、Msg2协议数据单元PDU、Msg2媒体接入控制MAC报文头和Msg2随机接入响应RAR、物理广播信道PBCH、系统信息SI和其他最小系统信息RMSI。
可选的,指示信息为通过K比特指示的缩放因子,K为正整数,所述目标TA为所述缩放因子与TA max的乘积。
可选的,所述第二处理模块43用于:
根据如下方式计算所述时间间隔T:
T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
根据如下方式计算所述时间间隔T:
T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
可选的,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备 发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
本实施例的装置,可以用于执行图9所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本申请可以根据上述方法示例对发送设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请各实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
上述网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块执行方法实施例中发送的步骤,接收模块执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块执行。具体模块的功能可以参考相应的方法实施例。
上述各个方案的网络设备及终端设备具有实现上述方法中网络设备及终端设备执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如发送模块可以由发射机替代,接收模块可以由接收机替代,其它模块,如处理模块等可以由处理器替代,分别执行各个方法实施例中的发送操作、接收操作以及相关的处理操作。
另外,上述各个装置包括的各个模块具有实现上述各个方法对应的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。模块也可以称为单元。例如:上述方法中提到的各个参数(如TA)的确定或计算由处理模块实现,指示信息的发送或接收由发送模块或接收模块实现。
在一种可能的设计中,上述各个装置可以包括:处理单元(模块)和收发单元(模块),收发单元可以包括发射单元(模块)和接收单元(模块),分别执行上述各个方法中发送及接收的相应步骤,处理单元执行上述各个方法中除了发送及接收外的其它步骤;所述收发单元例如可以是收发器,用于执行上述方法中的收发步骤;所述收发器包括射频电路,也可以包括发射器和接收器,分别用于执行方法中的发送类的步骤和接收类的步骤;所述处理单元可以是处理器,用于执行上述各方法中除发送接收之外的步骤,处理单元或处理器可以为一个或多个。
图14为本申请提供的一种通信装置的结构示意图。所述通信装置30可以是图1中的网络设备或者终端设备。通信装置可用于实现上述方法实施例中描述的对应部分的方法,具体参见上述方法实施例中的说明。
所述通信装置30可以包括一个或多个处理器31,所述处理器31也可以称为处理单元,可以实现一定的控制功能。所述处理器31可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,DU,或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,处理器31也可以存有指令33,所述指令可以被所述处理 器运行,使得所述通信装置30执行上述方法实施例中描述的对应于终端或者网络设备的方法。
在又一种可能的设计中,通信装置30可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选地,所述通信装置30中可以包括一个或多个存储器32,其上存有指令34或者中间数据,所述指令34可在所述处理器31上被运行,使得所述通信装置30执行上述方法实施例中描述的方法。可选地,所述存储器中还可以存储有其他相关数据。可选地,处理器31中也可以存储指令和/或数据。所述处理器31和存储器32可以单独设置,也可以集成在一起。
可选地,所述通信装置30还可以包括收发器35和/或天线36。所述处理器31可以称为处理单元。所述收发器35可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信装置的收发功能。
在一个设计中,一种通信装置(例如,集成电路、无线设备、电路模块,网络设备,终端等)可包括处理器和收发器。该通信装置用于实现对应于图3、图6、图8或图9所示任一实施例中终端设备的操作,例如收发器执行方法实施例中发送的步骤和接收的步骤,除发送接收外的其它步骤可以由处理器执行。具体模块的功能可以参考相应的方法实施例。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信装置以网络设备20或者终端设备10为例来描述,但本申请中描述的通信装置的范围并不限于网络设备,而且通信装置的结构可以不受图14的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选地,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、蜂窝电话、无线设备、手持机、移动单元,网络设备等等;
(6)其他等等。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,终端设备执行上述方法实施例中的随机接入方法。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当网络设备的至少一个处理器执行该执行指令时,网络设备执行上述方法实施例中的随机接入方法。
本申请还提供一种芯片,所述芯片与存储器相连,或者所述芯片上集成有存储器,当所述存储器中存储的软件程序被执行时,实现上述方法实施例中的随机接入方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得终端设备实施上述方法实施例中的随机接入方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得网络设备实施上述方法实施例中的随机接入方法。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (40)

  1. 一种随机接入方法,其特征在于,包括:
    终端设备根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,所述终端设备根据接收到的Msg2确定对应于所述终端设备的RAR中的TAC所属的第二TAC区间,所述第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,所述TAC max为协议支持的RAR中的最大TAC;
    所述终端设备根据所述第一TAC区间或所述第二TAC区间确定Msg2与Msg3之间的时间间隔,并根据所述时间间隔发送Msg3。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间之前,还包括:
    所述终端设备在媒体接入控制MAC层解析出所述Msg2中包含的所有RAR中的TAC,从所述所有RAR中的TAC中确定出所述最大TAC;或者,
    所述终端设备根据所述最大TAC的预设放置位置读取所述最大TAC。
  3. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一TAC区间或所述第二TAC区间确定Msg2与Msg3之间的时间间隔,包括:
    所述终端设备根据所述第一TAC区间或所述第二TAC区间确定目标TA的值;
    所述终端设备根据如下方式计算所述时间间隔T:
    T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;
    或者,
    所述终端设备根据如下方式计算所述时间间隔T:
    T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
  4. 根据权利要求3所述的方法,其特征在于,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
  5. 根据权利要求3或4所述的方法,其特征在于,所述目标TA的值为所述第一TAC区间的最大值对应的TA值或所述第二TAC区间的最大值对应的TA值。
  6. 一种随机接入方法,其特征在于,包括:
    网络设备根据发送给终端设备的Msg2确定最大定时提前指示TAC所属的第一TAC区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,所述网络设备根据发送给终端设备的Msg2确定对应于所述终端设备的RAR中的TAC所属的第二TAC区间,所述第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,所述TAC max为协议支持的RAR中的最大TAC;
    所述网络设备根据所述第一TAC区间或所述第二TAC区间确定Msg2与所述终端设备的RAR对应的Msg3之间的时间间隔,并根据所述时间间隔接收所述Msg3。
  7. 根据权利要求6所述的方法,其特征在于,所述网络设备根据发送给终端设备的Msg2确定最大定时提前指示TAC所属的第一TAC区间之前,还包括:
    所述网络设备从所述Msg2中包含的所有RAR中的TAC中确定出所述最大TAC;或者,
    所述网络设备根据所述最大TAC的预设放置位置放置所述最大TAC。
  8. 根据权利要求6所述的方法,其特征在于,所述网络设备根据所述第一TAC区间或所述第二TAC区间确定Msg2与所述终端设备的RAR对应的Msg3之间的时间间隔,包括:
    所述网络设备根据所述第一TAC区间或所述第二TAC区间确定目标TA的值;
    所述网络设备根据如下方式计算所述时间间隔T:
    T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
    所述网络设备根据如下方式计算所述时间间隔T:
    T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
  9. 根据权利要求8所述的方法,其特征在于,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
  10. 根据权利要求8或9所述的方法,其特征在于,所述目标TA的值为所述第一TAC区间的最大值对应的TA值或所述第二TAC区间的最大值对应的TA值。
  11. 一种随机接入方法,其特征在于,包括:
    终端设备接收用于指示目标定时提前量TA或目标定时提前指示TAC的指示信息,所述目标TA大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且所述目标TA小于或等于协议支持的随机接入响应RAR中的最大TAC值TAC max对应的TA值TA max,所述目标TAC大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且所述目标TAC小于或等于所述TAC max
    所述终端设备根据所述指示信息确定所述目标TA;
    所述终端设备根据所述目标TA确定Msg2与Msg3之间的时间间隔,并根据所述时间间隔发送Msg3。
  12. 根据权利要求11所述的方法,其特征在于,所述指示信息携带在以下任意一种或多种消息中:
    Msg2下行控制信息DCI、Msg2协议数据单元PDU、Msg2媒体接入控制MAC报文头和Msg2 RAR、物理广播信道PBCH、系统信息SI和其他最小系统信息RMSI。
  13. 根据权利要求11或12所述的方法,其特征在于,所述指示信息为通过K比特指示的缩放因子,K为正整数,所述目标TA为所述缩放因子与TA max的乘积。
  14. 根据权利要求11所述的方法,其特征在于,所述终端设备根据所述目标TA确定Msg2与Msg3之间的时间间隔,包括:
    所述终端设备根据如下方式计算所述时间间隔T:
    T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
    所述终端设备根据如下方式计算所述时间间隔T:
    T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
  15. 根据权利要求14所述的方法,其特征在于,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
  16. 一种随机接入方法,其特征在于,包括:
    网络设备确定出目标定时提前量TA或目标定时提前指示TAC,所述目标TA大于或等于终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且所述目标TA小于或等于协议支持的随机接入响应RAR中的最大TAC值TAC max对应的TA,所述目标TAC大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且所述目标TAC小于或等于所述TAC max
    所述网络设备向所述终端设备发送用于指示所述目标TA或目标TAC的指示信息;
    所述网络设备根据所述目标TA确定Msg2与Msg3之间的时间间隔,并根据所述时间间隔接收所述Msg3。
  17. 根据权利要求16所述的方法,其特征在于,所述指示信息携带在以下任意一种或多种消息中:
    Msg2下行控制信息DCI、Msg2协议数据单元PDU、Msg2媒体接入控制MAC报文头和Msg2随机接入响应RAR、物理广播信道PBCH、系统信息SI和其他最小系统信息RMSI。
  18. 根据权利要求16或17所述的方法,其特征在于,所述指示信息为通过K比特指示的缩放因子,K为正整数,所述目标TA为所述缩放因子与TA max的乘积。
  19. 根据权利要求16所述的方法,其特征在于,所述网络设备根据所述目标TA确定Msg2与Msg3之间的时间间隔,包括:
    所述网络设备根据如下方式计算所述时间间隔T:
    T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
    所述网络设备根据如下方式计算所述时间间隔T:
    T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
  20. 根据权利要求19所述的方法,其特征在于,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
  21. 一种终端设备,其特征在于,包括:
    第一处理模块,用于根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,根据接收到的Msg2确定对应于所述终端设备的RAR中的TAC所属的第二TAC区间,所述第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,所述TAC max为协议支持的RAR中的最大TAC;
    第二处理模块,用于根据所述第一TAC区间或所述第二TAC区间确定Msg2与Msg3之间的时间间隔;
    发送模块,用于根据所述时间间隔发送Msg3。
  22. 根据权利要求21所述的终端设备,其特征在于,所述第一处理模块还用于:
    在根据接收到的Msg2确定最大定时提前指示TAC所属的第一TAC区间之前,在媒体接入控制MAC层解析出所述Msg2中包含的所有RAR中的TAC,从所述所有RAR中的TAC中确定出所述最大TAC;或者,
    根据所述最大TAC的预设放置位置读取所述最大TAC。
  23. 根据权利要求21所述的终端设备,其特征在于,所述第二处理模块用于:
    根据所述第一TAC区间或所述第二TAC区间确定目标TA的值;
    根据如下方式计算所述时间间隔T:
    T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;
    或者,
    根据如下方式计算所述时间间隔T:
    T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
  24. 根据权利要求23所述的终端设备,其特征在于,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
  25. 根据权利要求23或24所述的终端设备,其特征在于,所述目标TA的值为所述第一TAC区间的最大值对应的TA值或所述第二TAC区间的最大值对应的TA值。
  26. 一种网络设备,其特征在于,包括:
    第一处理模块,用于根据发送给终端设备的Msg2确定最大定时提前指示TAC所属的第一TAC区间,所述最大TAC为所述Msg2中包含的所有随机接入响应RAR中的最大TAC;或者,根据发送给终端设备的Msg2确定对应于所述终端设备的RAR中的TAC所属的第二TAC区间,所述第一TAC区间和所述第二TAC区间为根据0~TAC max划分的区间,所述TAC max为协议支持的RAR中的最大TAC;
    第二处理模块,用于根据所述第一TAC区间或所述第二TAC区间确定Msg2与所述终端设备的RAR对应的Msg3之间的时间间隔;
    接收模块,用于根据所述时间间隔接收Msg3。
  27. 根据权利要求26所述的网络设备,其特征在于,所述第一处理模块还用于:
    在根据发送给终端设备的Msg2确定最大定时提前指示TAC所属的第一TAC区间之前,从所述Msg2中包含的所有RAR中的TAC中确定出所述最大TAC;或者,
    根据所述最大TAC的预设放置位置放置所述最大TAC。
  28. 根据权利要求26所述的网络设备,其特征在于,所述第二处理模块用于:
    根据所述第一TAC区间或所述第二TAC区间确定目标TA的值;
    根据如下方式计算所述时间间隔T:
    T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
    根据如下方式计算所述时间间隔T:
    T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
  29. 根据权利要求28所述的网络设备,其特征在于,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
  30. 根据权利要求28或29所述的网络设备,其特征在于,所述目标TA的值为所述第一TAC区间的最大值对应的TA值或所述第二TAC区间的最大值对应的TA值。
  31. 一种终端设备,其特征在于,包括:
    接收模块,用于接收用于指示目标定时提前量TA或目标定时提前指示TAC的指示信息,所述目标TA大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且所述目标TA小于或等于协议支持的随机接入响应RAR中的最大TAC值TAC max对应的TA值TA max,所述目标TAC大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且所述目标TAC小于或等于所述TAC max
    第一处理模块,用于根据所述指示信息确定所述目标TA;
    第二处理模块,用于根据所述目标TA确定Msg2与Msg3之间的时间间隔;
    发送模块,用于根据所述时间间隔发送Msg3。
  32. 根据权利要求31所述的终端设备,其特征在于,所述指示信息携带在以下任意一种或多种消息中:
    Msg2下行控制信息DCI、Msg2协议数据单元PDU、Msg2媒体接入控制MAC报文头和Msg2 RAR、物理广播信道PBCH、系统信息SI和其他最小系统信息RMSI。
  33. 根据权利要求31或32所述的终端设备,其特征在于,所述指示信息为通过K比特指示的缩放因子,K为正整数,所述目标TA为所述缩放因子与TA max的乘积。
  34. 根据权利要求31所述的终端设备,其特征在于,所述第二处理模块用于:
    根据如下方式计算所述时间间隔T:
    T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
    根据如下方式计算所述时间间隔T:
    T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
  35. 根据权利要求34所述的终端设备,其特征在于,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
  36. 一种网络设备,其特征在于,包括:
    第一处理模块,用于确定出目标定时提前量TA或目标定时提前指示TAC,所述目标TA大于或等于终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA,且所述目标TA小于或等于协议支持的随机接入响应RAR中的最大TAC值 TAC max对应的TA,所述目标TAC大于或等于所述终端设备所在小区或波束覆盖范围内多个终端设备的TA中的最大TA对应的TAC,且所述目标TAC小于或等于所述TAC max
    发送模块,用于向所述终端设备发送用于指示所述目标TA或目标TAC的指示信息;
    第二处理模块,用于根据所述目标TA确定Msg2与Msg3之间的时间间隔;
    接收模块,用于根据所述时间间隔接收Msg3。
  37. 根据权利要求36所述的网络设备,其特征在于,所述指示信息携带在以下任意一种或多种消息中:
    Msg2下行控制信息DCI、Msg2协议数据单元PDU、Msg2媒体接入控制MAC报文头和Msg2随机接入响应RAR、物理广播信道PBCH、系统信息SI和其他最小系统信息RMSI。
  38. 根据权利要求36或37所述的网络设备,其特征在于,所述指示信息为通过K比特指示的缩放因子,K为正整数,所述目标TA为所述缩放因子与TA max的乘积。
  39. 根据权利要求36所述的网络设备,其特征在于,所述第二处理模块用于:
    根据如下方式计算所述时间间隔T:
    T=T 1+目标TA,其中,T 1与Msg1和Msg3的子载波间隔对应;或者,
    根据如下方式计算所述时间间隔T:
    T=T 1+目标TA+Q,其中,Q为调度时间,Q携带在所述Msg2中对应于所述终端设备的RAR中。
  40. 根据权利要求39所述的网络设备,其特征在于,所述T 1=N1+N2+L2,其中,N1为所述终端设备在随机接入过程中处理承载Msg2的物理下行链路共享信道PDSCH所需要的时间,N2为所述终端设备准备发送Msg3对应物理上行链路共享信道PUSCH所需要的时间,L2为媒体接入控制MAC层处理的时间。
PCT/CN2018/082034 2018-04-04 2018-04-04 随机接入方法及装置 WO2019191988A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880090783.3A CN111886917B (zh) 2018-04-04 2018-04-04 随机接入方法及装置
PCT/CN2018/082034 WO2019191988A1 (zh) 2018-04-04 2018-04-04 随机接入方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082034 WO2019191988A1 (zh) 2018-04-04 2018-04-04 随机接入方法及装置

Publications (1)

Publication Number Publication Date
WO2019191988A1 true WO2019191988A1 (zh) 2019-10-10

Family

ID=68100019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082034 WO2019191988A1 (zh) 2018-04-04 2018-04-04 随机接入方法及装置

Country Status (2)

Country Link
CN (1) CN111886917B (zh)
WO (1) WO2019191988A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102511189A (zh) * 2011-11-10 2012-06-20 华为技术有限公司 通信方法、用户设备、基站和通信设备
WO2013051991A1 (en) * 2011-10-07 2013-04-11 Telefonaktiebolaget L M Ericsson (Publ) Uplink synchronization method and user equipment
CN107801240A (zh) * 2016-09-07 2018-03-13 中兴通讯股份有限公司 一种发送、接收定时提前量的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150327198A1 (en) * 2014-05-12 2015-11-12 Telefonaktiebolaget L M Ericsson (Publ) Handling of Cells Associated with Timing Advance Groups in a Wireless Communications System
US20160174177A1 (en) * 2014-12-12 2016-06-16 Nokia Solutions And Networks Oy Timing advance methods and apparatuses
WO2017101048A1 (en) * 2015-12-16 2017-06-22 Qualcomm Incorporated Timing adjustment during random access channel procedure
CN107690201B (zh) * 2016-08-05 2020-05-15 电信科学技术研究院 一种进行随机接入的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051991A1 (en) * 2011-10-07 2013-04-11 Telefonaktiebolaget L M Ericsson (Publ) Uplink synchronization method and user equipment
CN102511189A (zh) * 2011-11-10 2012-06-20 华为技术有限公司 通信方法、用户设备、基站和通信设备
CN107801240A (zh) * 2016-09-07 2018-03-13 中兴通讯股份有限公司 一种发送、接收定时提前量的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Remaining Details on RACH Procedure", 3GPP TSG RAN WGI MEETING AHI-18, RL-1800557, 12 January 2018 (2018-01-12), pages 1 - 9, XP051384468 *

Also Published As

Publication number Publication date
CN111886917A (zh) 2020-11-03
CN111886917B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US10554321B2 (en) Information communication method, user equipment, and network device
KR101851544B1 (ko) 사이클릭 프리픽스 길이를 설정하기 위한 시스템 및 방법
CN111279757B (zh) 一种传输消息的方法及设备
US11109392B2 (en) Communication method, network device, and relay device
WO2018059307A1 (zh) 通信方法、基站和终端设备
WO2019029323A1 (zh) 发送和接收随机接入前导码的方法和装置
WO2018082636A1 (zh) 控制信息的检测方法与发送方法及设备
WO2012163192A1 (zh) 一种数据传输方法和装置
EP3968713A1 (en) Method and device for determining resource of asynchronous physical uplink shared channel
CN107615857B (zh) 终端装置、集成电路以及通信方法
US11902884B2 (en) System and method for minimizing management frame overhead in wireless networks
WO2020186465A1 (zh) 用于两步随机接入的方法、终端设备和网络设备
WO2019214583A1 (zh) 上行传输的方法和用户设备
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
US11108531B2 (en) Method and apparatus for setting symbol
WO2019191988A1 (zh) 随机接入方法及装置
WO2022078472A1 (en) Method of propagation delay compensation and related devices
WO2022160298A1 (zh) 时间同步方法、装置和系统
WO2019006882A1 (zh) 一种训练传输波束的方法、装置及系统
WO2017166023A1 (zh) 一种随机接入的方法及装置
WO2023133740A1 (zh) 通信方法、终端设备以及网络设备
WO2024098212A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024060187A1 (zh) 用于侧行通信方法以及终端设备
WO2023225876A1 (zh) 波束确定方法和装置
WO2023151508A1 (zh) 通信方法与装置、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913755

Country of ref document: EP

Kind code of ref document: A1