WO2019189877A1 - Radiation-sensitive resin composition and method for forming resist pattern - Google Patents

Radiation-sensitive resin composition and method for forming resist pattern Download PDF

Info

Publication number
WO2019189877A1
WO2019189877A1 PCT/JP2019/014329 JP2019014329W WO2019189877A1 WO 2019189877 A1 WO2019189877 A1 WO 2019189877A1 JP 2019014329 W JP2019014329 W JP 2019014329W WO 2019189877 A1 WO2019189877 A1 WO 2019189877A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
radiation
carbon atoms
resin composition
anion
Prior art date
Application number
PCT/JP2019/014329
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 土井
下川 努
誠 杉浦
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2019189877A1 publication Critical patent/WO2019189877A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/16Halogens
    • C08F212/20Fluorine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a radiation-sensitive resin composition and a resist pattern forming method.
  • a chemically amplified radiation-sensitive resin composition suitably used for microfabrication by lithography is applied to an exposed portion by irradiation with electromagnetic radiation such as ultraviolet rays, far ultraviolet rays, and extreme ultraviolet rays (EUV), and charged particle beams such as electron beams.
  • electromagnetic radiation such as ultraviolet rays, far ultraviolet rays, and extreme ultraviolet rays (EUV)
  • charged particle beams such as electron beams.
  • a resist pattern is formed on the substrate by a mechanism that generates an acid and causes a difference in the dissolution rate in the developer between the exposed area and the unexposed area by a chemical reaction using this acid as a catalyst. Since it can form a pattern, it is currently used as a mainstream fine pattern forming material.
  • the chemically amplified radiation-sensitive resin composition as described above changes the line width and shape of the resist pattern depending on the retention time (PED) from exposure to post-exposure heat treatment due to the influence of the generated acid. There was a problem with the stability over time.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a radiation-sensitive resin composition and a resist pattern forming method capable of forming a fine pattern while being non-chemically amplified. It is in.
  • structural unit (I) including a first group represented by the following formula (1) (hereinafter also referred to as “group (I)”). ) ”), A radiation-sensitive cation (hereinafter also referred to as“ cation (Y) ”), and an anion (hereinafter referred to as“ anion ”).
  • the content of the structural unit (I) in the polymer [A] is 50 mol% or more, and an acid formed from the anion (X) and a proton (
  • the molecular volume of “acid (P)” is 2.00 ⁇ 10 ⁇ 28 m 3 or less
  • the stabilization energy ( ⁇ E) obtained by the following formula (A) by the density functional method is 0 kJ / It is a radiation sensitive resin composition which is less than mol.
  • Stabilization energy ( ⁇ E) (total energy of the group (I), the cation (Y), and the anion (X) when the group (I) and the anion (X) interact with each other.
  • R 1 is a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • R 2 is a hydrogen atom, a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • It is an organic group. * Represents a site bonded to a part other than the group (I) in the structural unit (I).
  • Another invention made to solve the above problems is a step of directly or indirectly applying the radiation-sensitive resin composition to the substrate, a step of exposing the resist film formed by the coating step, And a step of developing the exposed resist film.
  • organic group means a group containing at least one carbon atom.
  • the radiation-sensitive resin composition and the resist pattern forming method of the present invention a fine pattern can be formed even with a non-chemical amplification type. Therefore, according to the radiation-sensitive resin composition and the resist pattern forming method of the present invention, it can overcome the weaknesses of conventional chemically amplified resists, and is suitably used for manufacturing semiconductor devices where further miniaturization is expected in the future. be able to.
  • the radiation-sensitive resin composition contains a [A] polymer, a cation (Y), and an anion (X) (a combination of the cation (Y) and the anion (X), “[B] compound” Also called).
  • the said radiation sensitive resin composition may contain a [C] solvent as a suitable component, and may contain the other arbitrary components in the range which does not impair the effect of this invention.
  • the radiation-sensitive resin composition contains a [A] polymer and a [B] compound, and as described later, the content ratio of the structural unit (I) in the [A] polymer is 50 mol% or more.
  • the molecular volume of the acid (P) formed from the anion (X) and the proton is 2.00 ⁇ 10 ⁇ 28 m 3 or less and the stabilization energy ( ⁇ E) is 0 kJ / mol or less, although it is a non-chemical amplification type, a fine pattern can be formed.
  • the reason why the radiation-sensitive resin composition has the above-described configuration and thus exhibits the above-mentioned effect is not necessarily clear, but can be inferred as follows, for example.
  • the interaction between the [A] polymer and the [B] compound causes the group (I ) And anion (X) are considered to occur at a certain ratio or more, and the content ratio of the structural unit (I) containing the group (I) in the [A] polymer is set to the above value or more.
  • the [A] polymer can sufficiently reduce the alkali solubility by the interaction with the [B] compound.
  • This [A] polymer becomes alkali-soluble in the exposed area as the radiation-sensitive cation (Y) decomposes upon exposure.
  • the radiation-sensitive resin composition can form a fine pattern even if it is a non-chemical amplification type by such a novel technique.
  • the said radiation sensitive resin composition can improve the difference of the alkali solubility of an exposed part and an unexposed part, and is excellent in resolution and the remaining film property of an unexposed part.
  • the polymer has the structural unit (I), and the content ratio of the structural unit (I) is 50 mol% or more.
  • the polymer may have, in addition to the structural unit (I), a second structural unit containing an acid dissociable group (hereinafter also referred to as “structural unit (II)”).
  • structural unit (II) a second structural unit containing an acid dissociable group
  • Other structural units other than I) and (II) may be included, and each structural unit will be described below.
  • the structural unit (I) is a structural unit containing the group (I).
  • the group (I) is a group represented by the following formula (1).
  • R 1 is a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • R 2 is a hydrogen atom, a fluorine atom or a monovalent organic group having 1 to 20 carbon atoms. * Shows the site
  • Examples of the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R 1 include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and nonafluorobutyl.
  • Fluorinated alkyl groups such as groups; A fluorinated alkenyl group such as a trifluoroethenyl group; Fluorinated chain hydrocarbon groups such as fluorinated alkynyl groups such as fluoroethynyl groups, A fluorinated alicyclic saturated hydrocarbon group such as a fluorocyclopentyl group, a perfluorocyclopentyl group, a fluorocyclohexyl group, a perfluorocyclohexyl group; A fluorinated alicyclic hydrocarbon group such as a fluorinated alicyclic unsaturated hydrocarbon group such as a fluorocyclopentenyl group, Fluorinated aryl groups such as a fluorophenyl group, a trifluorophenyl group, a perfluorophenyl group; Examples thereof include fluorinated aromatic hydrocarbon groups such as a fluorinated aralkyl group such as a fluor
  • R 1 is preferably a fluorinated chain hydrocarbon group, more preferably a fluorinated alkyl group, and even more preferably a trifluoromethyl group.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 2 include a monovalent hydrocarbon group having 1 to 20 carbon atoms, and a divalent heteroatom containing carbon-carbon of the hydrocarbon group.
  • the hetero atom-containing group contains a carbon atom, the number of carbon atoms is also included in the organic group having 1 to 20 carbon atoms.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 carbon atoms. And 20 monovalent aromatic hydrocarbon groups.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, and t-butyl group; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic alicyclic saturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group; Monocyclic alicyclic unsaturated hydrocarbon groups such as cyclopentenyl group and cyclohexenyl group; Polycyclic alicyclic saturated hydrocarbon groups such as norbornyl group, adamantyl group and tricyclodecyl group; Examples thereof include polycyclic alicyclic unsaturated hydrocarbon groups such as a norbornenyl group and a tricyclodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthryl group; Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
  • hetero atom contained in the monovalent or divalent heteroatom-containing group examples include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the divalent heteroatom-containing group include —O—, —CO—, —S—, —CS—, —NR′—, —SO—, —SO 2 —, and combinations of two or more thereof. And the like.
  • R ′ is a hydrogen atom or a monovalent carbon hydrogen group.
  • Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group.
  • R 2 is preferably a fluorinated hydrocarbon group, more preferably a fluorinated chain hydrocarbon group, still more preferably a fluorinated alkyl group, and particularly preferably a trifluoromethyl group.
  • group (I) examples include groups represented by the following formulas (1-1) to (1-9) (hereinafter also referred to as “groups (I-1) to (I-9)”). .
  • the group (I) is preferably bonded to an aromatic ring.
  • structural unit (I) examples include structural units represented by the following formulas (3-1) to (3-9) (hereinafter also referred to as “structural units (I-1) to (I-9)”), etc. Is mentioned.
  • each R 3 is independently a hydrogen atom or a methyl group.
  • each R 4 is independently a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R p , R q , R r , R s , R t and R u are each independently a hydrogen atom, a fluorine atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 5 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the structural unit (I-1) is preferable as the structural unit (I).
  • a content rate of structural unit (I) it is 50 mol% or more with respect to all the structural units which comprise a [A] polymer, 60 mol% or more is preferable, 70 mol% or more is more preferable, 72 mol % Or more is particularly preferable. Moreover, as said content rate, it is 100 mol% or less, for example, 90 mol% or less is preferable and 85 mol% or less is more preferable.
  • the structural unit (I) may have one group (I) or two or more groups (I).
  • the content ratio of the group (I) represented by the following formula (3) is 50 mol%.
  • the above is preferable, 60 mol% is more preferable, 70 mol% is further more preferable, and 75 mol% is especially preferable.
  • the content rate it is 100 mol% or less, for example, 90 mol% or less is preferable and 85 mol% or less is more preferable.
  • the structural unit (II) is a structural unit containing an acid dissociable group.
  • the “acid-dissociable group” refers to a group that replaces a hydrogen atom such as a carboxy group, a sulfo group, or a phenolic hydroxyl group and that dissociates by the action of an acid.
  • the acid dissociable group is dissociated by the action of an acid or the like generated by exposure from the [B] compound described later, and as a result, the developer of [A] polymer It is possible to further improve the solubility change with respect to.
  • structural unit (II) examples include a structural unit represented by the following formula (4-1A) (hereinafter also referred to as “structural unit (II-1-1)”), and a structural unit represented by the following formula (4-1B).
  • structural unit (II-2-2) A structural unit represented by the following formula (4-2B) (hereinafter also referred to as “structural unit (II-2-2)”), and the like.
  • R T each independently represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. is there.
  • R X each independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R Y and R Z are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring member having 3 to 3 ring atoms composed of these groups together with the carbon atom to which they are bonded. This represents a part of the 20 alicyclic structures.
  • R U , R V and R W are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or these groups A part of a ring structure having 4 to 20 ring members constituted by a carbon atom or C—O, in which two or more of them are combined with each other.
  • RT is preferably a hydrogen atom or a methyl group from the viewpoint of the copolymerizability of the monomer that gives the structural unit (II).
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R X to R Z and R U to R W are the same groups as the hydrocarbon groups exemplified as R 1 in the above formula (1). Etc.
  • Examples of the ring structure having 4 to 20 ring members constituted by two or more of R Y and R Z and R U to R W include monocyclic rings such as a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, and a cyclohexane structure.
  • Saturated alicyclic structure Polycyclic saturated alicyclic structures such as norbornane structure, adamantane structure, tricyclodecane structure and tetracyclododecane structure; Monocyclic unsaturated alicyclic structure such as cyclopropene structure, cyclobutene structure, cyclopentene structure, cyclohexene structure; Polycyclic unsaturated alicyclic structures such as norbornene structure, tricyclodecene structure, tetracyclododecene structure, Examples thereof include oxacycloalkane structures such as oxacyclobutane structure, oxacyclopentane structure, and oxacyclohexane structure; oxacycloalkene structures such as oxacyclobutene structure, oxacyclopentene structure, and oxacyclohexene structure.
  • the resist pattern can be formed if the polymer [A] has the structural unit (I), the polymer [A] has the structural unit (II) even if it has the structural unit (II). It does not have to be.
  • the polymer does not have the structural unit (II)
  • the content ratio of the structural unit (II) is preferably 20 mol% or less with respect to all the structural units constituting the [A] polymer, preferably 10 mol. % Or less is more preferable.
  • [Other structural units] for example, structural units derived from substituted or unsubstituted styrene, structural units derived from (meth) acrylic acid or (meth) acrylic acid esters, structural units derived from substituted or unsubstituted ethylene, Examples include a structural unit containing a polar group, a lactone structure, a cyclic carbonate structure, a sultone structure, or a structural unit containing a combination thereof (excluding those corresponding to the structural unit (I) and the structural unit (II)).
  • the polar group include an alcoholic hydroxy group, a carboxy group, a cyano group, a nitro group, and a sulfonamide group.
  • substituted styrene examples include ⁇ -methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, pt-butyl styrene, 2,4,6-trimethyl styrene, p-methoxy styrene, pt -Butoxystyrene, o-vinylstyrene, m-vinylstyrene, p-vinylstyrene, o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, m-chloromethylstyrene, p-chloromethylstyrene, p-fluorostyrene , P-chlorostyrene, p-bromostyrene, p-iodostyrene, p-nitrostyrene, p-cyan
  • (meth) acrylic acid esters examples include (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. ; Cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 2-ethyladamantyl (meth) acrylate, 2- (adamantan-1-yl) propyl (meth) acrylate, etc.
  • substituted ethylene examples include alkenes such as propene, butene, and pentene; Vinylcycloalkanes such as vinylcyclopentane and vinylcyclohexane; Cycloalkenes such as cyclopentene and cyclohexene; Examples include 4-hydroxy-1-butene, vinyl glycidyl ether, vinyl trimethylsilyl ether, and the like.
  • structural units (III-1) to (III-12) examples include structural units represented by the following formulas (5-1) to (5-12) (hereinafter, “structural units (III-1) to (III-12)”).
  • R 6 is a hydrogen atom or a methyl group.
  • R 7 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 8 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the upper limit of the content ratio of the other structural units is preferably 50 mol%, preferably 40 mol% with respect to all the structural units constituting the [A] polymer. Is more preferable, 30 mol% is further more preferable, and 28 mol% is especially preferable. As a minimum of the above-mentioned content rate, 1 mol% is preferred, 5 mol% is more preferred, 10 mol% is still more preferred, and 15 mol% is especially preferred.
  • the lower limit of the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 2,000, more preferably 4,000, still more preferably 6,000, 000 is particularly preferable, 20,000 is further particularly preferable, and 40,000 is most preferable.
  • the upper limit of Mw is preferably 300,000, more preferably 200,000, still more preferably 100,000, and particularly preferably 80,000.
  • the upper limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is preferably 5, more preferably 3, and even more preferably 2.5.
  • the lower limit of the ratio is usually 1, preferably 1.5 and more preferably 1.8.
  • Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
  • GPC equipment “HLC-8220-GPC” by Tosoh Corporation
  • GPC column Tosoh Corporation's “TSK-M” and “TSK2500” connected in series Column temperature: 40 ° C.
  • Developing solvent N, N-dimethylformamide
  • Flow rate 0.5 mL / min
  • Sample concentration 0.01% by mass
  • Sample injection volume 20 ⁇ L
  • Detection method Refractive index method Standard substance: Monodispersed polystyrene
  • the lower limit of the content of the polymer is preferably 50% by mass, more preferably 70% by mass, still more preferably 75% by mass, and 80% by mass with respect to the total solid content of the radiation-sensitive resin composition. % Is particularly preferred. As an upper limit of the said content, 99 mass% is preferable, 97 mass% is more preferable, and 95 mass% is further more preferable.
  • the “total solid content” of the radiation-sensitive resin composition refers to all components other than the [C] solvent.
  • a polymer may use 1 type (s) or 2 or more types.
  • the polymer can be synthesized by a known method, for example, by polymerizing a monomer giving each structural unit in a suitable solvent using a radical polymerization initiator or the like.
  • a compound contains a cation (Y) and an anion (X).
  • the cation (Y) is a radiation-sensitive cation.
  • the “radiation sensitive cation” means a cation that decomposes upon irradiation with radiation.
  • a radiation-sensitive onium cation is preferable.
  • the onium atom in the radiation-sensitive onium cation include an oxygen atom, a nitrogen atom, a phosphorus atom, a sulfur atom, an arsenic atom, a selenium atom, a tellurium atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a sulfur atom or an iodine atom is preferable.
  • the cation (Y) may be monovalent or divalent, but monovalent is preferable.
  • Examples of the monovalent cation (Y) include a first cation represented by the following formula (T-1) (hereinafter also referred to as “cation (Y1)”), and a cation represented by the following formula (T-2). 2 cations (hereinafter also referred to as “cation (Y2)”), a third cation represented by the following formula (T-3) (hereinafter also referred to as “cation (Y3)”), or a combination thereof.
  • R a1 and R a2 are each independently a monovalent organic group having 1 to 20 carbon atoms.
  • k1 is an integer of 0 to 5.
  • R a3 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom.
  • the plurality of R a3 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, or a plurality of R a3 R a3 represents a part of a ring structure having 4 to 20 ring members which is constituted together with the carbon chain to which they are bonded to each other.
  • t1 is an integer of 0 to 3.
  • k2 is an integer of 0 to 7.
  • R a4 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom.
  • the plurality of R a4 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, or a plurality of R a4 R a4 represents a part of a ring structure having 4 to 20 ring members that is constituted together with the carbon chain to which they are bonded together.
  • k3 is an integer of 0-6.
  • R a5 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom.
  • the plurality of R a5 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, a halogen atom, or a plurality of R a5 R a5 represents a part of a ring structure having 3 to 20 ring members constituted together with the carbon chain to which they are bonded to each other.
  • r is an integer of 0 to 3.
  • R a6 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • t2 is an integer of 0-2.
  • k4 is an integer of 0 to 5.
  • R a7 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom.
  • the plurality of Ra7s are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom
  • R a7 represents a part of a ring structure having 4 to 20 ring members which is constituted together with the carbon chain to which they are bonded to each other.
  • k5 is an integer of 0 to 5.
  • R a8 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom.
  • the plurality of R a8 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, or a plurality of R a8 R a8 represents a part of a ring structure having 4 to 20 ring members which is constituted together with the carbon chain to which they are bonded to each other.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R a1 to R a5 and R a7 and R a8 include the same groups as the organic groups exemplified as R 2 in the above formula (1). It is done.
  • Examples of the divalent organic group represented by R a6 include groups obtained by removing one hydrogen atom from a monovalent organic group having 1 to 20 carbon atoms exemplified as R 2 in the above formula (1). It is done.
  • R a6 is particularly preferably a single bond or a divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • R a3 in the above formula (T-1) or R a4 in the above formula (T-2) is an ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl. Group, t-butyl group, halogen atom, —OR ′, —NR ′ 2 or —SR ′ is preferable.
  • R ′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • k1 is preferably 1 or more. As t1, 0 or 1 is preferable, and 0 is more preferable.
  • k2 is preferably 1 or more.
  • k3 is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • r is preferably 2 or 3, more preferably 2.
  • t2 is preferably 0 or 1, and more preferably 1.
  • k4 + k5 is preferably 1 or more.
  • R a1 and R a2 in the formula (T-1) are preferably a substituted or unsubstituted aryl group, and a substituted aryl group It is more preferable that
  • ⁇ E can be further reduced.
  • the resolution and unresolved properties of the radiation-sensitive resin composition can be reduced.
  • the remaining film property of the exposed part can be further improved.
  • Preferred examples of the substituent for the aryl group include the groups exemplified as R a3 in the above formula (T-1).
  • Examples of the cation (Y) include cations represented by the following formulas (6-1-1) to (6-1-6) (hereinafter referred to as “cations (Y1-1) to (Y1-)” as the cation (Y1). 6) ")) etc.
  • Examples of the cation (Y2) include cations represented by the following formulas (6-2-1) and (6-2-2) (hereinafter also referred to as “cations (Y2-1), (Y2-2)”) and the like.
  • Examples of the cation (Y3) include cations represented by the following formulas (6-3-1) to (6-3-3) (hereinafter, “cations (Y3-1) to (Y3-3)”).
  • R A each independently represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R B is each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • Each R C is independently a halogen atom, —NR ′ 2 or —SR ′.
  • R ′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R D is each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R E each independently represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • the cation (Y) is preferably a cation (Y1-1), (Y1-2), (Y1-3), (Y1-4) or (Y1-5) or a cation (Y2-2).
  • the anion (X) may be monovalent or divalent, but monovalent is preferable.
  • anion (X) examples include sulfonate anions such as trifluoromethanesulfonate anion, pentafluoroethanesulfonate anion, heptafluoropropanesulfonate anion, nonafluorobutanesulfonate anion, methanesulfonate anion, cyclohexanesulfonate anion, and benzenesulfonate anion; Halide anions such as fluoride anion, chloride anion, bromide anion, iodo anion; Carboxylate anions such as formate anion, acetate anion, propionate anion; Imide anions such as bis (trifluoromethylcarbonyl) imide anion and bis (trifluoromethylsulfonyl) imide anion; A hydrogen carbonate anion, a hydrogen sulfate anion, etc. are mentioned.
  • the anion (X) forms an acid (hereinafter also referred to as “acid (P)”) together with the proton when a proton is generated from the cation (Y) by decomposition by irradiation of radiation.
  • the upper limit of the molecular volume of the acid (P) is 2.00 ⁇ 10 ⁇ 28 m 3 , preferably 1.70 ⁇ 10 ⁇ 28 m 3, more preferably 1.40 ⁇ 10 ⁇ 28 m 3. 10 ⁇ 10 ⁇ 28 m 3 is more preferable, and 0.90 ⁇ 10 ⁇ 28 m 3 is particularly preferable.
  • the lower limit of the molecular volume is preferably 0.10 ⁇ 10 ⁇ 28 m 3, more preferably 0.20 ⁇ 10 ⁇ 28 m 3, still more preferably 0.25 ⁇ 10 ⁇ 28 m 3 , and 0.40 ⁇ 10 ⁇ 28 m 3 is particularly preferred.
  • anion (X) a sulfonate anion, a halide anion or a hydrogen carbonate anion is preferable, and a trifluoromethanesulfonate anion, a bromide anion or a hydrogen carbonate anion is more preferable.
  • 0.1 mass part is preferred to 100 mass parts of [A] polymer, 1 mass part is more preferred, and 2 mass parts is still more preferred.
  • 30 mass parts is preferable, 20 mass parts is more preferable, and 10 mass parts is further more preferable.
  • the content of the compound is preferably more than 5 parts by mass, more than 6 parts by mass with respect to 100 parts by mass of the polymer (A). Is more preferably 7 parts by mass or more, and particularly preferably 8 parts by mass or more. As said content, 50 mass parts or less are preferable, 40 mass parts or less are more preferable, 30 mass parts or less are more preferable, and 20 mass parts or less are especially preferable.
  • a compound can use 1 type (s) or 2 or more types.
  • Stabilization energy ( ⁇ E) (sum of total energies of group (I), cation (Y) and anion (X) when group (I) and anion (X) interact) — (group (I) Sum of all energies of group (I), cation (Y) and anion (X) when anion (X) does not interact) (A) That is, ⁇ E is a value per 1 mol of the group (I) of the stabilization energy (kJ) due to the interaction.
  • the group (I) and the anion (X) are interacting means that the anion (X), for example, represents a hydrogen atom of —OH in the group (I) of the polymer (A) and a hydrogen bond. It means that it is formed.
  • the group (I) and the anion (X) do not interact means, for example, that the anion (X) does not form a hydrogen bond and has an electrostatic interaction with the cation (Y). It means that.
  • ⁇ E is the group (I) in the [A] polymer in the equilibrium formula represented by the following formula (2) and the cation in the [B] compound.
  • (Y) and anion (X) are obtained by subtracting the sum of the total energies of the substance on the left side from the sum of the energies of the substance on the right side obtained by the density functional method.
  • R ⁇ 1 >, R ⁇ 2 > and * are synonymous with said formula (1).
  • X ⁇ is the monovalent anion (X).
  • Y + is the monovalent cation (Y).
  • ⁇ E can be calculated by quantum chemical calculation (for example, “GAUSSIAN09 program” of GAUSSIAN Inc., B3LYP / 6-31G (d) level or B3LYP / LanL2DZ level).
  • ⁇ E means stabilization energy, and the smaller the value (the larger the absolute value in the case of a negative value), the closer the equilibrium of the above formula (2) is to the right side.
  • the upper limit of ⁇ E is 0 kJ / mol, preferably ⁇ 5 kJ, more preferably ⁇ 10 kJ / mol, further preferably ⁇ 15 kJ / mol, and particularly preferably ⁇ 20 kJ / mol.
  • the lower limit of ⁇ E is preferably ⁇ 50 kJ / mol, and preferably ⁇ 30 kJ / mol.
  • the radiation-sensitive resin composition usually contains a [C] solvent.
  • the solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing at least the [A] polymer, the [B] compound, and other optional components optionally contained.
  • Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • alcohol solvent examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol , Sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec -und
  • ether solvents examples include dialkyl ether solvents such as diethyl ether, dipropyl ether, and dibutyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Linear ketone solvents such as di-iso-butyl ketone and trimethylnonanone; Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone; Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
  • chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, i-pentyl acetate, sec Acetate solvents such as pentyl, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate; Ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-l
  • hydrocarbon solvents examples include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane , Aliphatic hydrocarbon solvents such as methylcyclohexane; Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
  • alcohol solvents, ketone solvents and / or ester solvents are preferable, monoalcohol solvents, polyhydric alcohol partial ether solvents, cyclic ketone solvents and / or polyhydric alcohol partial ether acetate solvents. More preferred are tetrahydrofurfuryl alcohol, propylene glycol monomethyl ether, cyclohexanone and / or propylene glycol monomethyl ether acetate. [C] 1 type (s) or 2 or more types can be used for a solvent.
  • Examples of other optional components include a second polymer other than the [A] polymer (hereinafter also referred to as “[F] polymer”), a low molecular compound, a sensitizer, and the like.
  • the polymer is a polymer other than the [A] polymer.
  • the [F] polymer for example, a polymer having no structural unit (I) and having a structural unit (II), and having no structural unit (I), the fluorine atom content is higher than that of the [A] polymer.
  • a polymer etc. are mentioned.
  • the radiation sensitive resin composition can form a resist film suitable for the immersion exposure method by further containing a polymer having a high fluorine atom content.
  • Examples of the [F] polymer include polyhydroxystyrene, polar group-containing poly (meth) acrylate, polyethylene glycol, epoxy resin, and copolymers thereof from the viewpoint of improving developability and adhesion. . Moreover, a leveling agent, a striation inhibitor, etc. can also be used.
  • the low molecular weight compound is a compound other than a polymer, for example, a compound having a molecular weight or a composition formula weight of 500 or less, preferably 400 or less.
  • Examples of the low molecular compound include a surfactant, an acid diffusion controller, and an ether compound.
  • Surfactant Surfactants have the effect of improving coatability, striation, developability, and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
  • Nonionic surfactants such as stearate; commercially available products include KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the acid diffusion controlling agent controls the diffusion phenomenon in the resist film of the acid generated from the [B] compound or the like by exposure, and has an effect of suppressing an undesirable chemical reaction in the non-exposed region.
  • the storage stability of the radiation-sensitive resin composition is further improved, and the resolution as a resist material is further improved. Furthermore, a change in the line width of the resist pattern due to fluctuations in the holding time from exposure to development processing can be suppressed, and a resist material having excellent process stability can be obtained.
  • Examples of the acid diffusion controller include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.
  • amine compound examples include monoalkylamines such as n-hexylamine; Dialkylamines such as di-n-butylamine; Trialkylamines such as triethylamine and tri-n-pentylamine; Aromatic amines such as aniline; Ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine and the like; Polyamine compounds such as polyethyleneimine and polyallylamine; Examples thereof include polymers such as dimethylaminoethylacrylamide.
  • amide group-containing compound examples include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone and the like. It is done.
  • urea compound examples include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tributylthiourea and the like.
  • nitrogen-containing heterocyclic compound examples include pyridines such as pyridine and 2-methylpyridine; morpholines such as N-propylmorpholine and N- (undecan-1-ylcarbonyloxyethyl) morpholine; pyrazine, pyrazole and the like.
  • a compound having an acid dissociable group can also be used as the nitrogen-containing compound.
  • the nitrogen-containing compound having an acid dissociable group include Nt-butoxycarbonylpiperidine, Nt-butoxycarbonylimidazole, Nt-butoxycarbonylbenzimidazole, Nt-butoxycarbonyl-2- Phenylbenzimidazole, N- (t-butoxycarbonyl) di-n-octylamine, N- (t-butoxycarbonyl) diethanolamine, N- (t-butoxycarbonyl) dicyclohexylamine, N- (t-butoxycarbonyl) diphenylamine, Examples thereof include Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-amyloxycarbonyl-4-hydroxypiperidine and the like.
  • a photodegradable base that is sensitized by exposure can also be used.
  • the photodegradable base include a compound having a radiation-sensitive cation and a weak acid anion.
  • the photodegradable base exhibits acid diffusion controllability due to its basicity in the unexposed area, but loses acid diffusion controllability in the exposed area because it is decomposed by exposure and decreases in basicity.
  • the photodegradable base include triphenylsulfonium salicylate, triphenylsulfonium 10-camphor sulfonate, and the like.
  • ether compound examples include dialiphatic ethers such as dibutyl ether and dicyclohexyl ether; Aromatic-containing ethers such as butoxybenzene, butoxynaphthalene, dibutoxynaphthalene, diphenyl ether; And cyclic ethers such as oxetane, tetrahydrofuran, tetrahydropyran, and di (3-ethyloxetane-3-ylmethyl) ether.
  • dialiphatic ethers such as dibutyl ether and dicyclohexyl ether
  • Aromatic-containing ethers such as butoxybenzene, butoxynaphthalene, dibutoxynaphthalene, diphenyl ether
  • cyclic ethers such as oxetane, tetrahydrofuran, tetrahydropyran, and di (3-ethyloxetane-3-ylmethyl) ether.
  • the sensitizer absorbs radiation and enters an electronically excited state, and electron transfer, energy transfer, and the like can be performed from the sensitizer in the electronically excited state to the cation (Y) of the [B] compound. It is a substance.
  • the said radiation sensitive resin composition can improve a sensitivity more by containing a sensitizer.
  • the form of inclusion of the sensitizer in the radiation-sensitive resin composition may be a low molecular compound form (hereinafter referred to as “sensitizer” as appropriate), or a form incorporated in part of the polymer [A]. Both of these forms may be used.
  • Examples of the sensitizer include compounds having an absorption wavelength in the region of 350 nm to 450 nm.
  • sensitizer examples include naphthalene, anthracene, phenanthrene, naphthacene, pyrene, perylene, triphenylene, 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, 3,7-dimethoxyanthracene, and 9,10-dipropyl.
  • Polynuclear aromatics such as oxyanthracene; Thiazoles such as benzothiazole; Xanthenes such as fluorescein, eosin, erythrosine, rhodamine B, rose bengal; Xanthones such as xanthone, thioxanthone, dimethylthioxanthone, diethylthioxanthone, isopropylthioxanthone; Cyanines such as thiacarbocyanine, oxacarbocyanine; Merocyanines such as merocyanine and carbomerocyanine; Rhodocyanines; Oxonols; Thiazines such as thionine, methylene blue and toluidine blue; Acridines such as acridine, acridine orange, chloroflavin, acriflavine; Acridones such as acridone, 10-butyl-2-chloroacridone; An
  • the said radiation sensitive resin composition contains another arbitrary component
  • an upper limit of content of another arbitrary component 20 mass parts is preferable with respect to 100 mass parts of [A] polymers, and 15 mass parts Is more preferable, and 10 mass parts is further more preferable.
  • it is 0.01 mass part, for example.
  • the [A] polymer, the [B] compound, the [C] solvent, and other optional components as necessary are mixed in a predetermined ratio, and preferably, the obtained mixture is mixed. It can be prepared by filtering with a membrane filter having a pore size of about 1 ⁇ m.
  • the lower limit of the solid content concentration of the radiation-sensitive resin composition is preferably 0.1% by mass, more preferably 1% by mass, further preferably 5% by mass, particularly preferably 10% by mass, and further 15% by mass. Preferably, 20% by mass is most preferable.
  • the upper limit of the solid content concentration is preferably 50% by mass, more preferably 40% by mass, still more preferably 35% by mass, and particularly preferably 30% by mass.
  • the “solid content concentration” of the radiation-sensitive resin composition refers to the concentration (% by mass) of all components other than the [C] solvent.
  • ⁇ Resist pattern formation method> a step of coating the radiation-sensitive resin composition directly or indirectly on a substrate (hereinafter, also referred to as “coating step”) and a resist film formed by the coating step are exposed. And a step of developing the exposed resist film (hereinafter also referred to as “developing step”).
  • coating step a step of coating the radiation-sensitive resin composition directly or indirectly on a substrate
  • developing step a step of developing the exposed resist film
  • the radiation-sensitive resin composition described above since the radiation-sensitive resin composition described above is used, a fine pattern can be formed even in a non-chemical amplification type, and an exposed portion and an unexposed portion The difference in alkali solubility with the resist pattern can be improved, and a resist pattern with high resolution and a large residual film ratio in the unexposed area can be formed.
  • each step will be described.
  • the radiation-sensitive resin composition is applied directly or indirectly to the substrate. Thereby, a resist film is formed.
  • the substrate examples include conventionally known substrates such as a silicon wafer, silicon dioxide, and a wafer coated with aluminum. Further, for example, an organic or inorganic antireflection film disclosed in Japanese Patent Publication No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448 may be formed on the substrate.
  • the coating method include spin coating, spin coating, and roll coating. After coating, pre-baking (PB) may be performed as needed to volatilize the solvent in the coating film.
  • PB pre-baking
  • the lower limit of the PB time is preferably 5 seconds, and more preferably 10 seconds.
  • the upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
  • 10 nm is preferable and 20 nm is more preferable.
  • As an upper limit of the average thickness 1,000 nm is preferable, and 500 nm is more preferable.
  • Exposure process In this step, the resist film formed by the coating step is exposed. This exposure is performed by irradiating exposure light through a photomask (in some cases through an immersion medium such as water).
  • exposure light for example, visible light, ultraviolet light, deep ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), extreme ultraviolet light (EUV), etc.
  • electromagnetic waves such as X-rays and ⁇ -rays; charged particle beams such as electron beams and ⁇ -rays.
  • ultraviolet rays, far ultraviolet rays, EUV or electron beams are preferable.
  • PEB post-exposure baking
  • the dissociation reaction of the acid-dissociable group by the acid generated from the [B] compound or the like by exposure can be promoted in the exposed portion of the resist film.
  • the difference in solubility can be further improved.
  • As a minimum of the temperature of PEB 50 ° C is preferred, 80 ° C is more preferred, and 100 ° C is still more preferred.
  • As an upper limit of the said temperature 180 degreeC is preferable and 130 degreeC is more preferable.
  • the lower limit of the PEB time is preferably 5 seconds, more preferably 10 seconds, and even more preferably 30 seconds.
  • the upper limit of the time is preferably 600 seconds, more preferably 300 seconds, and even more preferably 100 seconds.
  • the PEB is not performed and can be omitted.
  • the exposed resist film is developed. Thereby, a predetermined resist pattern can be formed. After development, it is common to wash with water or a rinse solution such as alcohol and then dry.
  • the development method in the development step may be alkali development or organic solvent development, but alkali development is preferred.
  • examples of the developer used for development include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, and di-n-.
  • TMAH tetramethylammonium hydroxide
  • pyrrole pyrrole
  • piperidine choline
  • 1,8-diazabicyclo- [5.4.0] -7-undecene 1,8-diazabicyclo- [4.3.0] -5-nonene and the like
  • an alkaline aqueous solution in which at least one kind of alkaline compound is dissolved.
  • a TMAH aqueous solution is preferable, and a 2.38 mass% TMAH aqueous solution is more preferable.
  • examples of the developer include hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, and other organic solvents, and solvents containing the above organic solvents.
  • organic solvent the 1 type (s) or 2 or more types of the solvent enumerated as the [C] solvent of the above-mentioned radiation sensitive resin composition are mentioned, for example.
  • an ester solvent or a ketone solvent is preferable.
  • the ester solvent an acetate solvent is preferable, and n-butyl acetate is more preferable.
  • the ketone solvent is preferably a chain ketone, more preferably 2-heptanone.
  • 80 mass% is preferred, 90 mass% is more preferred, 95 mass% is still more preferred, and 99 mass% is especially preferred.
  • components other than the organic solvent in the developer include water and silicone oil.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
  • Examples of the pattern formed by the resist pattern forming method include a line and space pattern and a hole pattern.
  • Mw and Mn of polymer were measured by gel permeation chromatography (GPC) method under the following conditions.
  • GPC equipment “HLC-8220-GPC” by Tosoh Corporation
  • GPC column Tosoh Corporation's “TSK-M” and “TSK2500” connected in series Column temperature: 40 ° C.
  • Developing solvent N, N-dimethylformamide
  • Flow rate 0.5 mL / min
  • Sample concentration 0.01% by mass
  • Sample injection volume 20 ⁇ L
  • Detection method Refractive index method Standard substance: Monodispersed polystyrene
  • the polymerization reaction was carried out for 4 hours by setting the time when the solution reached 61 ° C. as the polymerization start time. After completion of the polymerization reaction, the polymerization reaction solution was cooled with water and cooled to 30 ° C. or lower, and the polymerization reaction solution cooled in 400 g of n-hexane was added, and the precipitated white powder was filtered off. The filtered white powder was washed twice with 100 g of n-hexane, filtered and dried at 50 ° C. overnight to synthesize a white powdery polymer (A-1) (13.4 g, yield). Rate 89%). Mw of the polymer (A-1) was 43,200, and Mw / Mn was 2.00. As a result of 1 H-NMR analysis, the content ratio of the structural unit derived from (M-1) and the structural unit derived from (M-2) was 83 mol% and 17 mol%.
  • B-1 4,7-di-n-butoxynaphthyltetrahydrothiophenium trifluoromethanesulfonate
  • B-2 triphenylsulfonium bromide
  • B-3 triphenylsulfonium trifluoromethanesulfonate
  • B-4 diphenyl (4-methoxyphenyl) Sulfonium trifluoromethanesulfonate
  • B-5 Tris (4-methoxyphenyl) sulfonium trifluoromethanesulfonate
  • B-6 Tris (4-t-butylphenyl) sulfonium hydrogen carbonate
  • B-7 (4-phenylthiophenyl) diphenylsulfonium trifluoro Lomethanesulfonate
  • CB-1 4-n-butoxynaphthyltetrahydrothiophenium nonafluorobutanesulfonate
  • CB-2 Triphenyl
  • D-1 Surfactant (“FTX-218” from Neos Co., Ltd.)
  • D-2 Surfactant ("NBX-15” from Neos Co., Ltd.)
  • Stabilization energy ( ⁇ E) between monomer (A) and [B] compound by quantum chemistry calculation (B3LYP / 6-31G (d) level or B3LYP / LanL2DZ level, “GAUSSIAN09 program” of GAUSSIAN Inc.) ) Is calculated based on the energy value when the monomer (A) and the anion (X) are associated to form the most stable structure, and the energy value when the isolated structure of the cation (Y) has the most stable structure. From the sum of the above, the energy value when the anion (X) and the cation (Y) are associated to form the most stable structure and the energy value when the monomer (A) is the most stable structure in the isolated system It was done as a reduction of the sum.
  • the molecular volume of the acid (P) formed from the anion (X) and the proton was calculated using the above quantum chemistry calculation.
  • the stabilization energy ( ⁇ E) value thus calculated (unit: kJ / mol) and the molecular volume value (unit: 10 ⁇ 28 m 3 ) of the acid (P) for the [B] compound are shown below. It shows in Table 2.
  • Example 1-1 [A] 100 parts by mass of (A-1) as a polymer, 21.3 parts by mass of (B-1) as a [B] compound, [C] 262.5 parts by mass of (C-1) as a solvent, and (C-2) 65.6 parts by mass and (D-1) 0.1 part by mass as other optional components are uniformly mixed at 25 ° C., and foreign matters are removed by a membrane filter having a pore diameter of 1 ⁇ m, and radiation sensitivity is obtained.
  • a resin composition (J1-1) was prepared.
  • the solid content concentration of the radiation sensitive resin composition (J1-1) was 27.0% by mass.
  • the value of the ratio of the dissolution time (T1) to the dissolution time (T2) can be used as an index indicating the difference in alkali solubility between the exposed portion and the unexposed portion.
  • alkali solubility when the value of dissolution time (T1) / dissolution time (T2) is 7 or more, it is “A” (good), and when it is 2 or more and less than 7, “B” (somewhat poor) and less than 2 In the case of, it was evaluated as “C” (defective). The evaluation results are shown in Table 3 below.
  • Example 3-1 [A] 100 parts by mass of (A-8) as a polymer, 5.0 parts by mass of (B-5) as a [B] compound, [C] 484.4 parts by mass of (C-3) as a solvent, and (C-4) 323.0 parts by mass and (D-2) 0.1 part by mass as other optional components were uniformly mixed at 25 ° C., and foreign matter was removed with a polytetrafluoroethylene membrane filter having a pore diameter of 0.2 ⁇ m. Then, a radiation sensitive resin composition (J2-1) was prepared. The solid content concentration of the radiation sensitive resin composition (J2-1) was 12.0% by mass.
  • An underlayer antireflection film (“DUV42” from Brewer Science Co., Ltd.) was coated on a 12-inch silicon wafer using the above photoresist coating and developing apparatus, and then heated at 205 ° C. for 60 seconds to form a lower layer having a thickness of 60 nm. An antireflection film was formed. Next, using the photoresist coating and developing apparatus, each radiation sensitive resin composition shown in Table 6 below was applied, and PB was performed at 120 ° C. for 60 seconds. Thereafter, it was cooled at 23 ° C. for 30 seconds to form a resist film having a thickness of 340 nm.
  • a paddle development was performed for 60 seconds with a 2.38 mass% tetramethylammonium hydroxide aqueous solution, and spin drying was performed by shaking off at 1500 rpm for 30 seconds to form a resist pattern.
  • a scanning electron microscope (“CG4000” manufactured by Hitachi High-Technologies Corporation) was used.
  • the exposure amount that can form a line-and-space (1L1S) with a line width of 300 nm in a one-to-one line width was taken as the optimum exposure amount, and this optimum exposure amount was taken as sensitivity.
  • Pattern top shape With respect to the radiation sensitive resin compositions (J2-4) and (J2-5), the pattern top shape was evaluated. The pattern top shape was evaluated as “good” if the upper part of the resist pattern resolved when exposed at the optimum exposure amount was flat, and “top loss” if there was no flat part. Regarding the pattern top shape, the radiation-sensitive resin composition (J2-4) was “top loss” and the radiation-sensitive resin composition (J2-5) was “good”.
  • the pattern bottom shape was evaluated for the radiation sensitive resin compositions (J2-4) and (J2-5).
  • the pattern bottom shape is evaluated as “good” when there is no resist residue at the interface between the lower part of the resist pattern and the substrate that is resolved when exposed at the optimum exposure amount, and “bottom” when there is resist residue. did.
  • the radiation-sensitive resin composition (J2-4) was “bottom”
  • the radiation-sensitive resin composition (J2-5) was “good”.
  • the radiation-sensitive resin composition and the resist pattern forming method of the present invention According to the radiation-sensitive resin composition and the resist pattern forming method of the present invention, a fine pattern can be formed even in a non-chemical amplification type. Therefore, according to the radiation-sensitive resin composition and the resist pattern forming method of the present invention, it can overcome the weaknesses of conventional chemically amplified resists, and is suitably used for manufacturing semiconductor devices where further miniaturization is expected in the future. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)

Abstract

The present invention is a radiation-sensitive resin composition containing a first polymer having a first structural unit that includes the first group represented by formula (1), a radiation-sensitive cation, and an anion, the proportion of the first structural unit in the first polymer being 50 mol% or more, the molecular volume of an acid formed from the anion and a proton being 2.00 × 10–28 m3 or less, and the stabilization energy (ΔE) required in formula (A) using density functional theory being 0 kJ/mol or less. Formula (A): stabilization energy (ΔE) = (sum of total energy of the first group, the radiation-sensitive cation, and the anion when the first group and the anion are interacting with each other) – (sum of total energy of the first group, the radiation-sensitive cation, and the anion when the first group and the anion are not interacting with each other) In formula (1), R1 is a fluorine atom or a C1-20 monovalent fluorinated hydrocarbon group.

Description

感放射線性樹脂組成物及びレジストパターン形成方法Radiation-sensitive resin composition and resist pattern forming method
 本発明は、感放射線性樹脂組成物及びレジストパターン形成方法に関する。 The present invention relates to a radiation-sensitive resin composition and a resist pattern forming method.
 リソグラフィーによる微細加工に好適に用いられる化学増幅型感放射線性樹脂組成物は、紫外線、遠紫外線、極端紫外線(EUV)等の電磁波、電子線等の荷電粒子線などの放射線の照射により露光部に酸を発生させ、この酸を触媒とする化学反応により露光部と未露光部との現像液に対する溶解速度に差を生じさせるという仕組みで基板上にレジストパターンを形成するものであり、より微細なパターンを形成できるため、現在主流の微細パターン形成材料として用いられている。 A chemically amplified radiation-sensitive resin composition suitably used for microfabrication by lithography is applied to an exposed portion by irradiation with electromagnetic radiation such as ultraviolet rays, far ultraviolet rays, and extreme ultraviolet rays (EUV), and charged particle beams such as electron beams. A resist pattern is formed on the substrate by a mechanism that generates an acid and causes a difference in the dissolution rate in the developer between the exposed area and the unexposed area by a chemical reaction using this acid as a catalyst. Since it can form a pattern, it is currently used as a mainstream fine pattern forming material.
 しかし、上記のような化学増幅型の感放射線性樹脂組成物は、発生した酸の影響により、露光から露光後の加熱処理までの引き置き時間(PED)によってレジストパターンの線幅や形状が変化するなど、経時安定性に問題があった。 However, the chemically amplified radiation-sensitive resin composition as described above changes the line width and shape of the resist pattern depending on the retention time (PED) from exposure to post-exposure heat treatment due to the influence of the generated acid. There was a problem with the stability over time.
 本発明は以上のような事情に基づいてなされたものであり、その目的は、非化学増幅型でありながら微細パターンの形成が可能な感放射線性樹脂組成物及びレジストパターン形成方法を提供することにある。 The present invention has been made based on the above circumstances, and an object thereof is to provide a radiation-sensitive resin composition and a resist pattern forming method capable of forming a fine pattern while being non-chemically amplified. It is in.
 上記課題を解決するためになされた発明は、下記式(1)で表される第1基(以下、「基(I)」ともいう)を含む第1構造単位(以下、「構造単位(I)」ともいう)を有する第1重合体(以下、「[A]重合体」ともいう)と、感放射線性カチオン(以下、「カチオン(Y)」ともいう)と、アニオン(以下、「アニオン(X)」ともいう)とを含有し、上記[A]重合体における上記構造単位(I)の含有割合が50モル%以上であり、上記アニオン(X)とプロトンとから形成される酸(以下、「酸(P)」ともいう)の分子体積が2.00×10-28以下であり、密度汎関数法によって下記式(A)により求められる安定化エネルギー(ΔE)が0kJ/mol以下である感放射線性樹脂組成物である。
 安定化エネルギー(ΔE)=(上記基(I)と上記アニオン(X)とが相互作用している場合の上記基(I)と上記カチオン(Y)と上記アニオン(X)との全エネルギーの総和)-(上記基(I)と上記アニオン(X)とが相互作用していない場合の上記基(I)と上記カチオン(Y)と上記アニオン(X)との全エネルギーの総和) ・・・(A)
Figure JPOXMLDOC01-appb-C000003
 
(式(1)中、Rは、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。Rは、水素原子、フッ素原子又は炭素数1~20の1価の有機基である。*は、上記構造単位(I)における上記基(I)以外の部分に結合する部位を示す。)
The invention made in order to solve the above-mentioned problems is a first structural unit (hereinafter referred to as “structural unit (I)” including a first group represented by the following formula (1) (hereinafter also referred to as “group (I)”). ) ”), A radiation-sensitive cation (hereinafter also referred to as“ cation (Y) ”), and an anion (hereinafter referred to as“ anion ”). (X) "), the content of the structural unit (I) in the polymer [A] is 50 mol% or more, and an acid formed from the anion (X) and a proton ( Hereinafter, the molecular volume of “acid (P)”) is 2.00 × 10 −28 m 3 or less, and the stabilization energy (ΔE) obtained by the following formula (A) by the density functional method is 0 kJ / It is a radiation sensitive resin composition which is less than mol.
Stabilization energy (ΔE) = (total energy of the group (I), the cation (Y), and the anion (X) when the group (I) and the anion (X) interact with each other. (Total)-(sum of all energies of the group (I), the cation (Y), and the anion (X) when the group (I) does not interact with the anion (X))・ (A)
Figure JPOXMLDOC01-appb-C000003

(In the formula (1), R 1 is a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. R 2 is a hydrogen atom, a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. (It is an organic group. * Represents a site bonded to a part other than the group (I) in the structural unit (I).)
 上記課題を解決するためになされた別の発明は、基板に直接又は間接に当該感放射線性樹脂組成物を塗工する工程と、上記塗工工程により形成されたレジスト膜を露光する工程と、上記露光されたレジスト膜を現像する工程とを備えるレジストパターン形成方法である。 Another invention made to solve the above problems is a step of directly or indirectly applying the radiation-sensitive resin composition to the substrate, a step of exposing the resist film formed by the coating step, And a step of developing the exposed resist film.
 ここで、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。 Here, “organic group” means a group containing at least one carbon atom.
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、非化学増幅型であっても微細なパターンの形成が可能になる。従って、本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、従来の化学増幅型レジストの弱点を克服でき、今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。 According to the radiation-sensitive resin composition and the resist pattern forming method of the present invention, a fine pattern can be formed even with a non-chemical amplification type. Therefore, according to the radiation-sensitive resin composition and the resist pattern forming method of the present invention, it can overcome the weaknesses of conventional chemically amplified resists, and is suitably used for manufacturing semiconductor devices where further miniaturization is expected in the future. be able to.
<感放射線性樹脂組成物>
 当該感放射線性樹脂組成物は、[A]重合体と、カチオン(Y)と、アニオン(X)とを含有する(カチオン(Y)とアニオン(X)とを合わせて「[B]化合物」ともいう)。当該感放射線性樹脂組成物は、好適成分として、[C]溶媒を含有してもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。
<Radiation sensitive resin composition>
The radiation-sensitive resin composition contains a [A] polymer, a cation (Y), and an anion (X) (a combination of the cation (Y) and the anion (X), “[B] compound” Also called). The said radiation sensitive resin composition may contain a [C] solvent as a suitable component, and may contain the other arbitrary components in the range which does not impair the effect of this invention.
 当該感放射線性樹脂組成物は、[A]重合体と[B]化合物とを含有し、後述するように、[A]重合体における構造単位(I)の含有割合が50モル%以上であり、アニオン(X)とプロトンとから形成される酸(P)の分子体積が2.00×10-28以下であり、かつ安定化エネルギー(ΔE)が0kJ/mol以下であることで、非化学増幅型でありながら微細なパターンの形成が可能になる。当該感放射線性樹脂組成物が上記構成を備えることで、上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、安定化エネルギー(ΔE)が上記値以下であり、かつ酸(P)の分子体積が上記値以下である場合、[A]重合体と[B]化合物との相互作用により、基(I)とアニオン(X)との会合が一定以上の割合で起こっていると考えられ、かつ[A]重合体における基(I)を含む構造単位(I)の含有割合を上記値以上とすることで、[A]重合体は[B]化合物との相互作用によってアルカリ溶解性を十分低くすることができると考えられる。この[A]重合体は、露光により感放射線性カチオン(Y)が分解することにより、露光部では元通りのアルカリ溶解性になる。当該感放射線性樹脂組成物は、このような新規の技術により、非化学増幅型であっても微細なパターンを形成することが可能になる。
 当該感放射線性樹脂組成物は、露光部と未露光部とのアルカリ溶解性の差を向上させることができ、解像性及び未露光部の残膜性に優れる。
 以下、各成分について説明する。
The radiation-sensitive resin composition contains a [A] polymer and a [B] compound, and as described later, the content ratio of the structural unit (I) in the [A] polymer is 50 mol% or more. The molecular volume of the acid (P) formed from the anion (X) and the proton is 2.00 × 10 −28 m 3 or less and the stabilization energy (ΔE) is 0 kJ / mol or less, Although it is a non-chemical amplification type, a fine pattern can be formed. The reason why the radiation-sensitive resin composition has the above-described configuration and thus exhibits the above-mentioned effect is not necessarily clear, but can be inferred as follows, for example. That is, when the stabilization energy (ΔE) is not more than the above value and the molecular volume of the acid (P) is not more than the above value, the interaction between the [A] polymer and the [B] compound causes the group (I ) And anion (X) are considered to occur at a certain ratio or more, and the content ratio of the structural unit (I) containing the group (I) in the [A] polymer is set to the above value or more. Thus, it is considered that the [A] polymer can sufficiently reduce the alkali solubility by the interaction with the [B] compound. This [A] polymer becomes alkali-soluble in the exposed area as the radiation-sensitive cation (Y) decomposes upon exposure. The radiation-sensitive resin composition can form a fine pattern even if it is a non-chemical amplification type by such a novel technique.
The said radiation sensitive resin composition can improve the difference of the alkali solubility of an exposed part and an unexposed part, and is excellent in resolution and the remaining film property of an unexposed part.
Hereinafter, each component will be described.
<[A]重合体>
 [A]重合体は、構造単位(I)を有し、この構造単位(I)の含有割合が50モル%以上である。[A]重合体は、構造単位(I)以外に、酸解離性基を含む第2構造単位(「以下、「構造単位(II)」ともいう」を有していてもよく、構造単位(I)及び(II)以外のその他の構造単位を有していてもよい。以下、各構造単位について説明する。
<[A] polymer>
[A] The polymer has the structural unit (I), and the content ratio of the structural unit (I) is 50 mol% or more. [A] The polymer may have, in addition to the structural unit (I), a second structural unit containing an acid dissociable group (hereinafter also referred to as “structural unit (II)”). Other structural units other than I) and (II) may be included, and each structural unit will be described below.
[構造単位(I)]
 構造単位(I)は、基(I)を含む構造単位である。基(I)は、下記式(1)で表される基である。
[Structural unit (I)]
The structural unit (I) is a structural unit containing the group (I). The group (I) is a group represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(1)中、Rは、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。Rは、水素原子、フッ素原子又は炭素数1~20の1価の有機基である。*は、上記構造単位(I)における上記基(I)以外の部分に結合する部位を示す。 In the above formula (1), R 1 is a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. R 2 is a hydrogen atom, a fluorine atom or a monovalent organic group having 1 to 20 carbon atoms. * Shows the site | part couple | bonded with parts other than the said group (I) in the said structural unit (I).
 Rで表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば
 フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基等のフッ素化アルキル基;
 トリフルオロエテニル基等のフッ素化アルケニル基;
 フルオロエチニル基等のフッ素化アルキニル基などのフッ素化鎖状炭化水素基、
 フルオロシクロペンチル基、パーフルオロシクロペンチル基、フルオロシクロヘキシル基、パーフルオロシクロヘキシル基等のフッ素化脂環式飽和炭化水素基;
 フルオロシクロペンテニル基等のフッ素化脂環式不飽和炭化水素基などのフッ素化脂環式炭化水素基、
 フルオロフェニル基、トリフルオロフェニル基、パーフルオロフェニル基等のフッ素化アリール基;
 フルオロベンジル基等のフッ素化アラルキル基などのフッ素化芳香族炭化水素基などが挙げられる。
Examples of the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R 1 include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and nonafluorobutyl. Fluorinated alkyl groups such as groups;
A fluorinated alkenyl group such as a trifluoroethenyl group;
Fluorinated chain hydrocarbon groups such as fluorinated alkynyl groups such as fluoroethynyl groups,
A fluorinated alicyclic saturated hydrocarbon group such as a fluorocyclopentyl group, a perfluorocyclopentyl group, a fluorocyclohexyl group, a perfluorocyclohexyl group;
A fluorinated alicyclic hydrocarbon group such as a fluorinated alicyclic unsaturated hydrocarbon group such as a fluorocyclopentenyl group,
Fluorinated aryl groups such as a fluorophenyl group, a trifluorophenyl group, a perfluorophenyl group;
Examples thereof include fluorinated aromatic hydrocarbon groups such as a fluorinated aralkyl group such as a fluorobenzyl group.
 Rとしては、フッ素化鎖状炭化水素基が好ましく、フッ素化アルキル基がより好ましく、トリフルオロメチル基がさらに好ましい。 R 1 is preferably a fluorinated chain hydrocarbon group, more preferably a fluorinated alkyl group, and even more preferably a trifluoromethyl group.
 Rで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む1価の基(g)、上記炭化水素基及び基(g)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した1価の基(h)、上記炭化水素基、基(g)又は基(g)と2価のヘテロ原子含有基とを組み合わせた1価の基(i)等が挙げられる。なお、上記ヘテロ原子含有基に炭素原子が含まれる場合、その炭素原子の数も、有機基の炭素数1~20に含まれるものとする。 Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 2 include a monovalent hydrocarbon group having 1 to 20 carbon atoms, and a divalent heteroatom containing carbon-carbon of the hydrocarbon group. A monovalent group (g) containing a group, a monovalent group (h) in which part or all of the hydrogen atoms of the hydrocarbon group and the group (g) are substituted with a monovalent heteroatom-containing group, the carbonization Examples thereof include a hydrogen group, a group (g) or a monovalent group (i) in which a group (g) and a divalent heteroatom-containing group are combined. When the hetero atom-containing group contains a carbon atom, the number of carbon atoms is also included in the organic group having 1 to 20 carbon atoms.
 炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 carbon atoms. And 20 monovalent aromatic hydrocarbon groups.
 「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。 The “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. The “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. The “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group. The term “alicyclic hydrocarbon group” refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure. “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
 炭素数1~20の1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、i-プロピル基、t-ブチル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, and t-butyl group;
An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group;
Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
 炭素数3~20の1価の脂環式炭化水素基としては、例えば
 シクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基;
 シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環の脂環式飽和炭化水素基;
 ノルボルネニル基、トリシクロデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic alicyclic saturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group;
Monocyclic alicyclic unsaturated hydrocarbon groups such as cyclopentenyl group and cyclohexenyl group;
Polycyclic alicyclic saturated hydrocarbon groups such as norbornyl group, adamantyl group and tricyclodecyl group;
Examples thereof include polycyclic alicyclic unsaturated hydrocarbon groups such as a norbornenyl group and a tricyclodecenyl group.
 炭素数6~20の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthryl group;
Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
 1価又は2価のヘテロ原子含有基に含まれるヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the hetero atom contained in the monovalent or divalent heteroatom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、-SO-、-SO-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭素水素基である。 Examples of the divalent heteroatom-containing group include —O—, —CO—, —S—, —CS—, —NR′—, —SO—, —SO 2 —, and combinations of two or more thereof. And the like. R ′ is a hydrogen atom or a monovalent carbon hydrogen group.
 1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。 Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group.
 Rとしては、フッ素化炭化水素基が好ましく、フッ素化鎖状炭化水素基がより好ましく、フッ素化アルキル基がさらに好ましく、トリフルオロメチル基が特に好ましい。 R 2 is preferably a fluorinated hydrocarbon group, more preferably a fluorinated chain hydrocarbon group, still more preferably a fluorinated alkyl group, and particularly preferably a trifluoromethyl group.
 基(I)としては、例えば下記式(1-1)~(1-9)で表される基(以下、「基(I-1)~(I-9)」ともいう)等が挙げられる。 Examples of the group (I) include groups represented by the following formulas (1-1) to (1-9) (hereinafter also referred to as “groups (I-1) to (I-9)”). .
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(1-1)~(1-9)中、*は、上記式(1)と同義である。 In the above formulas (1-1) to (1-9), * has the same meaning as the above formula (1).
 これらの中で、基(I-1)が好ましい。 Of these, the group (I-1) is preferred.
 構造単位(I)において、基(I)が芳香環に結合していることが好ましい。 In the structural unit (I), the group (I) is preferably bonded to an aromatic ring.
 構造単位(I)としては、例えば下記式(3-1)~(3-9)で表される構造単位(以下、「構造単位(I-1)~(I-9)」ともいう)等が挙げられる。 Examples of the structural unit (I) include structural units represented by the following formulas (3-1) to (3-9) (hereinafter also referred to as “structural units (I-1) to (I-9)”), etc. Is mentioned.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(3-1)~(3-3)中、Rは、それぞれ独立して、水素原子又はメチル基である。
 上記式(3-4)~(3-8)中、Rは、それぞれ独立して、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R、R、R、R、R及びRは、それぞれ独立して、水素原子、フッ素原子又は炭素数1~20の1価の有機基である。
 上記式(3-9)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
In the above formulas (3-1) to (3-3), each R 3 is independently a hydrogen atom or a methyl group.
In the above formulas (3-4) to (3-8), each R 4 is independently a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. R p , R q , R r , R s , R t and R u are each independently a hydrogen atom, a fluorine atom or a monovalent organic group having 1 to 20 carbon atoms.
In the above formula (3-9), R 5 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
 構造単位(I)としては、構造単位(I-1)が好ましい。 The structural unit (I-1) is preferable as the structural unit (I).
 構造単位(I)の含有割合としては、[A]重合体を構成する全構造単位に対して、50モル%以上であり、60モル%以上が好ましく、70モル%以上がより好ましく、72モル%以上が特に好ましい。また、上記含有割合としては、例えば100モル%以下であり、90モル%以下が好ましく、85モル%以下がより好ましい。構造単位(I)の含有割合を上記範囲とすることで、露光部と未露光部とのアルカリ溶解性の差をより向上させることができ、解像性及び未露光部の残膜性をより向上させることができる。 As a content rate of structural unit (I), it is 50 mol% or more with respect to all the structural units which comprise a [A] polymer, 60 mol% or more is preferable, 70 mol% or more is more preferable, 72 mol % Or more is particularly preferable. Moreover, as said content rate, it is 100 mol% or less, for example, 90 mol% or less is preferable and 85 mol% or less is more preferable. By setting the content ratio of the structural unit (I) in the above range, the difference in alkali solubility between the exposed part and the unexposed part can be further improved, and the resolution and the remaining film property of the unexposed part can be further improved. Can be improved.
 構造単位(I)は、1個の基(I)を有していても、2個以上の基(I)を有していてもよい。 The structural unit (I) may have one group (I) or two or more groups (I).
 [A]重合体が構造単位(I)として2個以上の基(I)を有する構造単位を含む場合、下記式(3)で表される基(I)の含有割合としては、50モル%以上が好ましく、60モル%がより好ましく、70モル%がさらに好ましく、75モル%が特に好ましい。また、上記含有割合としては、例えば100モル%以下であり、90モル%以下が好ましく、85モル%以下がより好ましい。
 ([A]重合体中の基(I)の数)×100/([A]重合体中の全構造単位の数) ・・・(3)
[A] When the polymer includes a structural unit having two or more groups (I) as the structural unit (I), the content ratio of the group (I) represented by the following formula (3) is 50 mol%. The above is preferable, 60 mol% is more preferable, 70 mol% is further more preferable, and 75 mol% is especially preferable. Moreover, as said content rate, it is 100 mol% or less, for example, 90 mol% or less is preferable and 85 mol% or less is more preferable.
([A] number of groups (I) in polymer) × 100 / ([A] number of all structural units in polymer) (3)
[構造単位(II)]
 構造単位(II)は、酸解離性基を含む構造単位である。「酸解離性基」とは、カルボキシ基、スルホ基、フェノール性水酸基等の水素原子を置換する基であって、酸の作用により解離する基をいう。[A]重合体が構造単位(II)を有すると、後述する[B]化合物から露光により発生する酸等の作用により酸解離性基が解離し、その結果、[A]重合体の現像液に対する溶解性の変化をより向上させることができる。
[Structural unit (II)]
The structural unit (II) is a structural unit containing an acid dissociable group. The “acid-dissociable group” refers to a group that replaces a hydrogen atom such as a carboxy group, a sulfo group, or a phenolic hydroxyl group and that dissociates by the action of an acid. [A] When the polymer has the structural unit (II), the acid dissociable group is dissociated by the action of an acid or the like generated by exposure from the [B] compound described later, and as a result, the developer of [A] polymer It is possible to further improve the solubility change with respect to.
 構造単位(II)としては、例えば下記式(4-1A)で表される構造単位(以下、「構造単位(II-1-1)」ともいう)、下記式(4-1B)で表される構造単位(以下、「構造単位(II-1-2)」ともいう)、下記式(4-2A)で表される構造単位(以下、「構造単位(II-2-1)」ともいう)、下記式(4-2B)で表される構造単位(以下、「構造単位(II-2-2)」ともいう)等が挙げられる。 Examples of the structural unit (II) include a structural unit represented by the following formula (4-1A) (hereinafter also referred to as “structural unit (II-1-1)”), and a structural unit represented by the following formula (4-1B). Structural unit (hereinafter also referred to as “structural unit (II-1-2)”), a structural unit represented by the following formula (4-2A) (hereinafter also referred to as “structural unit (II-2-1)”) ), A structural unit represented by the following formula (4-2B) (hereinafter also referred to as “structural unit (II-2-2)”), and the like.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(4-1A)、(4-1B)、(4-2A)及び(4-2B)中、Rは、それぞれ独立して、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 上記式(4-1A)及び(4-1B)中、Rは、それぞれ独立して、炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造の一部を表す。
 上記式(4-2A)及び(4-2B)中、R、R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子又はC-Oと共に構成される環員数4~20の環構造の一部を表す。
In the above formulas (4-1A), (4-1B), (4-2A) and (4-2B), R T each independently represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. is there.
In the above formulas (4-1A) and (4-1B), R X each independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms. R Y and R Z are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring member having 3 to 3 ring atoms composed of these groups together with the carbon atom to which they are bonded. This represents a part of the 20 alicyclic structures.
In the above formulas (4-2A) and (4-2B), R U , R V and R W are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or these groups A part of a ring structure having 4 to 20 ring members constituted by a carbon atom or C—O, in which two or more of them are combined with each other.
 Rとしては、構造単位(II)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましい。 RT is preferably a hydrogen atom or a methyl group from the viewpoint of the copolymerizability of the monomer that gives the structural unit (II).
 上記R~R及びR~Rで表される炭素数1~20の1価の炭化水素基としては、例えば上記式(1)のRとして例示した炭化水素基と同様の基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R X to R Z and R U to R W are the same groups as the hydrocarbon groups exemplified as R 1 in the above formula (1). Etc.
 R及びR並びにR~Rのうちの2つ以上が構成する環員数4~20の環構造としては、例えば
 シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造等の単環の飽和脂環構造;
 ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環の飽和脂環構造;
 シクロプロペン構造、シクロブテン構造、シクロペンテン構造、シクロヘキセン構造等の単環の不飽和脂環構造;
 ノルボルネン構造、トリシクロデセン構造、テトラシクロドデセン構造等の多環の不飽和脂環構造、
 オキサシクロブタン構造、オキサシクロペンタン構造、オキサシクロヘキサン構造等のオキサシクロアルカン構造;オキサシクロブテン構造、オキサシクロペンテン構造、オキサシクロヘキセン構造等のオキサシクロアルケン構造などが挙げられる。
Examples of the ring structure having 4 to 20 ring members constituted by two or more of R Y and R Z and R U to R W include monocyclic rings such as a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, and a cyclohexane structure. Saturated alicyclic structure;
Polycyclic saturated alicyclic structures such as norbornane structure, adamantane structure, tricyclodecane structure and tetracyclododecane structure;
Monocyclic unsaturated alicyclic structure such as cyclopropene structure, cyclobutene structure, cyclopentene structure, cyclohexene structure;
Polycyclic unsaturated alicyclic structures such as norbornene structure, tricyclodecene structure, tetracyclododecene structure,
Examples thereof include oxacycloalkane structures such as oxacyclobutane structure, oxacyclopentane structure, and oxacyclohexane structure; oxacycloalkene structures such as oxacyclobutene structure, oxacyclopentene structure, and oxacyclohexene structure.
 [A]重合体が構造単位(I)を有していれば、レジストパターンの形成は可能になるので、[A]重合体は、構造単位(II)を有していても、有していなくてもよい。[A]重合体が構造単位(II)を有さない場合、露光後のポストエクスポージャーベーク(PEB)を行う必要がなく、レジストパターン形成の工程を簡略化することができる。[A]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合としては、[A]重合体を構成する全構造単位に対して、20モル%以下が好ましく、10モル%以下がより好ましい。 Since the resist pattern can be formed if the polymer [A] has the structural unit (I), the polymer [A] has the structural unit (II) even if it has the structural unit (II). It does not have to be. [A] When the polymer does not have the structural unit (II), it is not necessary to perform post-exposure baking (PEB) after exposure, and the process of forming a resist pattern can be simplified. [A] When the polymer has the structural unit (II), the content ratio of the structural unit (II) is preferably 20 mol% or less with respect to all the structural units constituting the [A] polymer, preferably 10 mol. % Or less is more preferable.
[その他の構造単位]
 その他の構造単位としては、例えば置換又は非置換のスチレンに由来する構造単位、(メタ)アクリル酸又は(メタ)アクリル酸エステルに由来する構造単位、置換又は非置換のエチレンに由来する構造単位、極性基を含む構造単位、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位等が挙げられる(但し、構造単位(I)及び構造単位(II)に該当するものを除く)。極性基としては、例えばアルコール性ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基等が挙げられる。[A]重合体がその他の構造単位を有すると、現像液に対する溶解性を調整することができ、その結果、解像性及び未露光部の残膜性をより向上させることができる。
[Other structural units]
As other structural units, for example, structural units derived from substituted or unsubstituted styrene, structural units derived from (meth) acrylic acid or (meth) acrylic acid esters, structural units derived from substituted or unsubstituted ethylene, Examples include a structural unit containing a polar group, a lactone structure, a cyclic carbonate structure, a sultone structure, or a structural unit containing a combination thereof (excluding those corresponding to the structural unit (I) and the structural unit (II)). Examples of the polar group include an alcoholic hydroxy group, a carboxy group, a cyano group, a nitro group, and a sulfonamide group. [A] When the polymer has other structural units, the solubility in the developer can be adjusted, and as a result, the resolution and the remaining film property of the unexposed area can be further improved.
 置換スチレンとしては、例えばα-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、2,4,6-トリメチルスチレン、p-メトキシスチレン、p-t-ブトキシスチレン、o-ビニルスチレン、m-ビニルスチレン、p-ビニルスチレン、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、m-クロロメチルスチレン、p-クロロメチルスチレン、p-フルオロスチレン、p-クロロスチレン、p-ブロモスチレン、p-ヨードスチレン、p-ニトロスチレン、p-シアノスチレン、p-トリメトキシシリルスチレン等が挙げられる。 Examples of the substituted styrene include α-methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, pt-butyl styrene, 2,4,6-trimethyl styrene, p-methoxy styrene, pt -Butoxystyrene, o-vinylstyrene, m-vinylstyrene, p-vinylstyrene, o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, m-chloromethylstyrene, p-chloromethylstyrene, p-fluorostyrene , P-chlorostyrene, p-bromostyrene, p-iodostyrene, p-nitrostyrene, p-cyanostyrene, p-trimethoxysilylstyrene, and the like.
 (メタ)アクリル酸エステルとしては、例えば
 (メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1-メチルシクロペンチル、(メタ)アクリル酸2-エチルアダマンチル、(メタ)アクリル酸2-(アダマンタン-1-イル)プロピル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸フェニル、(メタ)アクリル酸ナフチル等の(メタ)アクリル酸アリールエステル;
 (メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシアダマンチル、(メタ)アクリル酸3-グリシジルプロピル、(メタ)アクリル酸3-トリメチルシリルプロピル等の(メタ)アクリル酸置換アルキルエステルなどが挙げられる。
Examples of (meth) acrylic acid esters include (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. ;
Cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 2-ethyladamantyl (meth) acrylate, 2- (adamantan-1-yl) propyl (meth) acrylate, etc. (Meth) acrylic acid cycloalkyl ester of
(Meth) acrylic acid aryl esters such as phenyl (meth) acrylate and naphthyl (meth) acrylate;
(Meth) acrylic acid-substituted alkyl esters such as 2-hydroxyethyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, 3-glycidylpropyl (meth) acrylate, 3-trimethylsilylpropyl (meth) acrylate, etc. Is mentioned.
 置換エチレンとしては、例えば
 プロペン、ブテン、ペンテン等のアルケン;
 ビニルシクロペンタン、ビニルシクロヘキサン等のビニルシクロアルカン;
 シクロペンテン、シクロヘキセン等のシクロアルケン;
 4-ヒドロキシ-1-ブテン、ビニルグリシジルエーテル、ビニルトリメチルシリルエーテル等が挙げられる。
Examples of the substituted ethylene include alkenes such as propene, butene, and pentene;
Vinylcycloalkanes such as vinylcyclopentane and vinylcyclohexane;
Cycloalkenes such as cyclopentene and cyclohexene;
Examples include 4-hydroxy-1-butene, vinyl glycidyl ether, vinyl trimethylsilyl ether, and the like.
 その他の構造単位としては、例えば下記式(5-1)~(5-12)で表される構造単位(以下、「構造単位(III-1)~(III-12)」等が挙げられる。 Examples of other structural units include structural units represented by the following formulas (5-1) to (5-12) (hereinafter, “structural units (III-1) to (III-12)”).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(5-1)~(5-8)中、Rは、水素原子又はメチル基である。
 上記式(5-9)~(5-11)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 上記式(5-12)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
In the above formulas (5-1) to (5-8), R 6 is a hydrogen atom or a methyl group.
In the above formulas (5-9) to (5-11), R 7 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
In the above formula (5-12), R 8 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
 これらの中で、構造単位(III-1)、(III-2)、(III-4)、(III-6)、(III-7)又は(III-9)が好ましい。 Of these, the structural units (III-1), (III-2), (III-4), (III-6), (III-7) or (III-9) are preferred.
 [A]重合体がその他の構造単位を有する場合、その他の構造単位の含有割合の上限としては、[A]重合体を構成する全構造単位に対して、50モル%が好ましく、40モル%がより好ましく、30モル%がさらに好ましく、28モル%が特に好ましい。上記含有割合の下限としては、1モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましく、15モル%が特に好ましい。その他の構造単位の含有割合を上記範囲とすることで、露光部と未露光部との溶解性の差をより向上させることができ、解像性及び未露光部の残膜性をより向上させることができる。 [A] When the polymer has other structural units, the upper limit of the content ratio of the other structural units is preferably 50 mol%, preferably 40 mol% with respect to all the structural units constituting the [A] polymer. Is more preferable, 30 mol% is further more preferable, and 28 mol% is especially preferable. As a minimum of the above-mentioned content rate, 1 mol% is preferred, 5 mol% is more preferred, 10 mol% is still more preferred, and 15 mol% is especially preferred. By setting the content ratio of other structural units in the above range, the difference in solubility between the exposed portion and the unexposed portion can be further improved, and the resolution and the remaining film property of the unexposed portion are further improved. be able to.
 [A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、2,000が好ましく、4,000がより好ましく、6,000がさらに好ましく、8,000が特に好ましく、20,000がさらに特に好ましく、40,000が最も好ましい。上記Mwの上限としては、300,000が好ましく、200,000がより好ましく、100,000がさらに好ましく、80,000が特に好ましい。[A]重合体のMwを上記範囲とすることで、露光部と未露光部との溶解性の差をより向上させることができ、解像性及び未露光部の残膜性をより向上させることができる。 [A] The lower limit of the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 2,000, more preferably 4,000, still more preferably 6,000, 000 is particularly preferable, 20,000 is further particularly preferable, and 40,000 is most preferable. The upper limit of Mw is preferably 300,000, more preferably 200,000, still more preferably 100,000, and particularly preferably 80,000. [A] By making Mw of a polymer into the said range, the difference of the solubility of an exposed part and an unexposed part can be improved more, and resolution and the remaining film property of an unexposed part are improved more. be able to.
 [A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)の上限としては、5が好ましく、3がより好ましく、2.5がさらに好ましい。上記比の下限は、通常1であり、1.5が好ましく、1.8がより好ましい。 [A] The upper limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is preferably 5, more preferably 3, and even more preferably 2.5. The lower limit of the ratio is usually 1, preferably 1.5 and more preferably 1.8.
 本明細書における重合体のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPC装置:東ソー(株)の「HLC-8220-GPC」
 GPCカラム:東ソー(株)の「TSK-M」及び「TSK2500」を直列に接続
 カラム温度:40℃
 展開溶媒:N,N-ジメチルホルムアミド
 流量:0.5mL/分
 試料濃度:0.01質量%
 試料注入量:20μL
 検出方法:屈折率法
 標準物質:単分散ポリスチレン
Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
GPC equipment: “HLC-8220-GPC” by Tosoh Corporation
GPC column: Tosoh Corporation's “TSK-M” and “TSK2500” connected in series Column temperature: 40 ° C.
Developing solvent: N, N-dimethylformamide Flow rate: 0.5 mL / min Sample concentration: 0.01% by mass
Sample injection volume: 20 μL
Detection method: Refractive index method Standard substance: Monodispersed polystyrene
 [A]重合体の含有量の下限としては、当該感放射線性樹脂組成物の全固形分に対して、50質量%が好ましく、70質量%がより好ましく、75質量%がさらに好ましく、80質量%が特に好ましい。上記含有量の上限としては、99質量%が好ましく、97質量%がより好ましく、95質量%がさらに好ましい。当該感放射線性樹脂組成物の「全固形分」とは、[C]溶媒以外の全成分をいう。[A]重合体は、1種又は2種以上を用いてもよい。 [A] The lower limit of the content of the polymer is preferably 50% by mass, more preferably 70% by mass, still more preferably 75% by mass, and 80% by mass with respect to the total solid content of the radiation-sensitive resin composition. % Is particularly preferred. As an upper limit of the said content, 99 mass% is preferable, 97 mass% is more preferable, and 95 mass% is further more preferable. The “total solid content” of the radiation-sensitive resin composition refers to all components other than the [C] solvent. [A] A polymer may use 1 type (s) or 2 or more types.
<[A]重合体の合成方法>
 [A]重合体は、公知の方法により、例えば各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶媒中で重合することによって合成することができる。
<[A] Polymer Synthesis Method>
[A] The polymer can be synthesized by a known method, for example, by polymerizing a monomer giving each structural unit in a suitable solvent using a radical polymerization initiator or the like.
<[B]化合物>
 [B]化合物は、カチオン(Y)とアニオン(X)とを含む。
<[B] Compound>
[B] A compound contains a cation (Y) and an anion (X).
(カチオン)
 カチオン(Y)は、感放射線性カチオンである。「感放射線性カチオン」とは、放射線の照射により分解するカチオンを意味する。
(Cation)
The cation (Y) is a radiation-sensitive cation. The “radiation sensitive cation” means a cation that decomposes upon irradiation with radiation.
 カチオン(Y)としては、感放射線性オニウムカチオンが好ましい。感放射線性オニウムカチオンにおけるオニウム原子としては、例えば酸素原子、窒素原子、リン原子、硫黄原子、ヒ素原子、セレン原子、テルル原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。これらの中で、硫黄原子又はヨウ素原子が好ましい。 As the cation (Y), a radiation-sensitive onium cation is preferable. Examples of the onium atom in the radiation-sensitive onium cation include an oxygen atom, a nitrogen atom, a phosphorus atom, a sulfur atom, an arsenic atom, a selenium atom, a tellurium atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a sulfur atom or an iodine atom is preferable.
 カチオン(Y)は、1価でも2価以上でもよいが、1価が好ましい。1価のカチオン(Y)としては、例えば下記式(T-1)で表される第1カチオン(以下、「カチオン(Y1)」ともいう)、下記式(T-2)で表される第2カチオン(以下、「カチオン(Y2)」ともいう)、下記式(T-3)で表される第3カチオン(以下、「カチオン(Y3)」ともいう)又はこれらの組み合わせ等が挙げられる。 The cation (Y) may be monovalent or divalent, but monovalent is preferable. Examples of the monovalent cation (Y) include a first cation represented by the following formula (T-1) (hereinafter also referred to as “cation (Y1)”), and a cation represented by the following formula (T-2). 2 cations (hereinafter also referred to as “cation (Y2)”), a third cation represented by the following formula (T-3) (hereinafter also referred to as “cation (Y3)”), or a combination thereof.
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
 上記式(T-1)中、Ra1及びRa2は、それぞれ独立して、炭素数1~20の1価の有機基である。k1は、0~5の整数である。k1が1の場合、Ra3は、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基又はハロゲン原子である。k2が2以上の場合、複数のRa3は、同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基若しくはハロゲン原子であるか、又は複数のRa3が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。t1は、0~3の整数である。 In the formula (T-1), R a1 and R a2 are each independently a monovalent organic group having 1 to 20 carbon atoms. k1 is an integer of 0 to 5. When k1 is 1, R a3 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom. when k2 is 2 or more, the plurality of R a3 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, or a plurality of R a3 R a3 represents a part of a ring structure having 4 to 20 ring members which is constituted together with the carbon chain to which they are bonded to each other. t1 is an integer of 0 to 3.
 上記式(T-2)中、k2は、0~7の整数である。k2が1の場合、Ra4は、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基又はハロゲン原子である。k1が2以上の場合、複数のRa4は、同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基若しくはハロゲン原子であるか、又は複数のRa4が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。k3は、0~6の整数である。k3が1の場合、Ra5は、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基又はハロゲン原子である。k3が2以上の場合、複数のRa5は、同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基若しくはハロゲン原子であるか、又は複数のRa5が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数3~20の環構造の一部を表す。rは、0~3の整数である。Ra6は、単結合又は炭素数1~20の2価の有機基である。t2は、0~2の整数である。 In the above formula (T-2), k2 is an integer of 0 to 7. When k2 is 1, R a4 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom. when k1 is 2 or more, the plurality of R a4 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, or a plurality of R a4 R a4 represents a part of a ring structure having 4 to 20 ring members that is constituted together with the carbon chain to which they are bonded together. k3 is an integer of 0-6. When k3 is 1, R a5 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom. when k3 is 2 or more, the plurality of R a5 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, a halogen atom, or a plurality of R a5 R a5 represents a part of a ring structure having 3 to 20 ring members constituted together with the carbon chain to which they are bonded to each other. r is an integer of 0 to 3. R a6 is a single bond or a divalent organic group having 1 to 20 carbon atoms. t2 is an integer of 0-2.
 上記式(T-3)中、k4は、0~5の整数である。k4が1の場合、Ra7は、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基又はハロゲン原子である。k4が2以上の場合、複数のRa7は、同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基若しくはハロゲン原子であるか、又は複数のRa7が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。k5は、0~5の整数である。k5が1の場合、Ra8は、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基又はハロゲン原子である。k5が2以上の場合、複数のRa8は、同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基若しくはハロゲン原子であるか、又は複数のRa8が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。 In the above formula (T-3), k4 is an integer of 0 to 5. When k4 is 1, R a7 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom. when k4 is 2 or more, the plurality of Ra7s are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, R a7 represents a part of a ring structure having 4 to 20 ring members which is constituted together with the carbon chain to which they are bonded to each other. k5 is an integer of 0 to 5. When k5 is 1, R a8 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom. when k5 is 2 or more, the plurality of R a8 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, or a plurality of R a8 R a8 represents a part of a ring structure having 4 to 20 ring members which is constituted together with the carbon chain to which they are bonded to each other.
 Ra1~Ra5並びにRa7及びRa8で表される炭素数1~20の1価の有機基としては、例えば上記式(1)のRとして例示した有機基と同様の基等が挙げられる。Ra6で表される2価の有機基としては、例えば上記式(1)のRとして例示した炭素数1~20の1価の有機基から1個の水素原子を除いた基等が挙げられる。Ra6としては特に単結合又は炭素数6~20の2価の芳香族炭化水素基が好ましい。 Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R a1 to R a5 and R a7 and R a8 include the same groups as the organic groups exemplified as R 2 in the above formula (1). It is done. Examples of the divalent organic group represented by R a6 include groups obtained by removing one hydrogen atom from a monovalent organic group having 1 to 20 carbon atoms exemplified as R 2 in the above formula (1). It is done. R a6 is particularly preferably a single bond or a divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
 上記式(T-1)のRa3又は上記式(T-2)のRa4としては、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、ハロゲン原子、-OR’、-NR’又は-SR’が好ましい。R’は、水素原子又は炭素数1~20の1価の炭化水素基である。上記式(T-1)のRa3又は上記式(T-2)のRa4を上記基とすることで、当該感放射線性樹脂組成物の解像性及び未露光部の残膜性をより向上させることができる。 R a3 in the above formula (T-1) or R a4 in the above formula (T-2) is an ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl. Group, t-butyl group, halogen atom, —OR ′, —NR ′ 2 or —SR ′ is preferable. R ′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms. By using R a3 of the above formula (T-1) or R a4 of the above formula (T-2) as the above group, the resolution of the radiation-sensitive resin composition and the remaining film property of the unexposed portion can be further improved. Can be improved.
 式(T-1)におけるk1としては、1以上が好ましい。t1としては、0又は1が好ましく、0がより好ましい。式(T-2)におけるk2としては、1以上が好ましい。k3としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。rとしては、2又は3が好ましく、2がより好ましい。t2としては、0又は1が好ましく、1がより好ましい。式(Z-3)におけるk4+k5としては、1以上が好ましい。 In the formula (T-1), k1 is preferably 1 or more. As t1, 0 or 1 is preferable, and 0 is more preferable. In formula (T-2), k2 is preferably 1 or more. k3 is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0. r is preferably 2 or 3, more preferably 2. t2 is preferably 0 or 1, and more preferably 1. In the formula (Z-3), k4 + k5 is preferably 1 or more.
 また、上記式(T-1)におけるk1が1以上の場合、上記式(T-1)のRa1及びRa2の少なくとも一方が置換又は非置換のアリール基であることが好ましく、置換アリール基であることがより好ましい。このように、カチオン(Y1)における芳香環の2以上、好ましくは3つが置換基を有すると、ΔEをより小さくすることができ、その結果、当該感放射線性樹脂組成物の解像性及び未露光部の残膜性をより向上させることができる。上記アリール基の置換基としては、上記式(T-1)のRa3として例示した基を好ましいものとして挙げることができる。 When k1 in the formula (T-1) is 1 or more, at least one of R a1 and R a2 in the formula (T-1) is preferably a substituted or unsubstituted aryl group, and a substituted aryl group It is more preferable that Thus, when 2 or more, preferably 3 of the aromatic rings in the cation (Y1) have a substituent, ΔE can be further reduced. As a result, the resolution and unresolved properties of the radiation-sensitive resin composition can be reduced. The remaining film property of the exposed part can be further improved. Preferred examples of the substituent for the aryl group include the groups exemplified as R a3 in the above formula (T-1).
 カチオン(Y)としては、例えば
 カチオン(Y1)として、下記式(6-1-1)~(6-1-6)で表されるカチオン(以下、「カチオン(Y1-1)~(Y1-6)」ともいう)等が、
 カチオン(Y2)として、下記式(6-2-1)、(6-2-2)で表されるカチオン(以下、「カチオン(Y2-1)、(Y2-2)」ともいう)等が、
 カチオン(Y3)として、下記式(6-3-1)~(6-3-3)で表されるカチオン(以下、「カチオン(Y3-1)~(Y3-3)」等が挙げられる。
Examples of the cation (Y) include cations represented by the following formulas (6-1-1) to (6-1-6) (hereinafter referred to as “cations (Y1-1) to (Y1-)” as the cation (Y1). 6) ")) etc.
Examples of the cation (Y2) include cations represented by the following formulas (6-2-1) and (6-2-2) (hereinafter also referred to as “cations (Y2-1), (Y2-2)”) and the like. ,
Examples of the cation (Y3) include cations represented by the following formulas (6-3-1) to (6-3-3) (hereinafter, “cations (Y3-1) to (Y3-3)”).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(6-1-1)~(6-1-6)中、Rは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基である。Rは、それぞれ独立して、炭素数1~20の1価の炭化水素基である。Rは、それぞれ独立して、ハロゲン原子、-NR’又は-SR’である。R’は、水素原子又は炭素数1~20の1価の炭化水素基である。
 上記式(6-2-1)及び(6-2-2)中、Rは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基である。
 上記式(6-3-1)~(6-3-3)中、Rは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基である。
In the above formulas (6-1-1) to (6-1-6), R A each independently represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms. R B is each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms. Each R C is independently a halogen atom, —NR ′ 2 or —SR ′. R ′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
In the above formulas (6-2-1) and (6-2-2), R D is each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
In the above formulas (6-3-1) to (6-3-3), R E each independently represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
 カチオン(Y)としては、カチオン(Y1-1)、(Y1-2)、(Y1-3)、(Y1-4)若しくは(Y1-5)又はカチオン(Y2-2)が好ましい。 The cation (Y) is preferably a cation (Y1-1), (Y1-2), (Y1-3), (Y1-4) or (Y1-5) or a cation (Y2-2).
 カチオン(Y)の含有量の下限としては、[A]重合体100質量部に対して、1質量部が好ましく、3質量部がより好ましく、4質量部がさらに好ましい。上記含有量の上限としては、40質量部が好ましく、30質量部がより好ましく、20質量部がさらに好ましい。 As a minimum of content of cation (Y), 1 mass part is preferred to 3 mass parts of [A] polymer, 3 mass parts are more preferred, and 4 mass parts are still more preferred. As an upper limit of the said content, 40 mass parts is preferable, 30 mass parts is more preferable, and 20 mass parts is further more preferable.
(アニオン)
 アニオン(X)は、1価でも2価以上でもよいが、1価が好ましい。
(Anion)
The anion (X) may be monovalent or divalent, but monovalent is preferable.
 アニオン(X)としては、例えば
 トリフルオロメタンスルホネートアニオン、ペンタフルオロエタンスルホネートアニオン、へプタフルオロプロパンスルホネートアニオン、ノナフルオロブタンスルホネートアニオン、メタンスルホネートアニオン、シクロヘキサンスルホネートアニオン、ベンゼンスルホネートアニオン等のスルホネートアニオン;
 フロリドアニオン、クロリドアニオン、ブロミドアニオン、ヨードアニオン等のハロゲン化物アニオン;
 ギ酸アニオン、酢酸アニオン、プロピオン酸アニオン等のカルボキシレートアニオン;
 ビス(トリフルオロメチルカルボニル)イミドアニオン、ビス(トリフルオロメチルスルホニル)イミドアニオン等のイミドアニオン;
 ハイドロジェンカーボネートアニオン、ハイドロジェンサルフェートアニオンなどが挙げられる。
Examples of the anion (X) include sulfonate anions such as trifluoromethanesulfonate anion, pentafluoroethanesulfonate anion, heptafluoropropanesulfonate anion, nonafluorobutanesulfonate anion, methanesulfonate anion, cyclohexanesulfonate anion, and benzenesulfonate anion;
Halide anions such as fluoride anion, chloride anion, bromide anion, iodo anion;
Carboxylate anions such as formate anion, acetate anion, propionate anion;
Imide anions such as bis (trifluoromethylcarbonyl) imide anion and bis (trifluoromethylsulfonyl) imide anion;
A hydrogen carbonate anion, a hydrogen sulfate anion, etc. are mentioned.
 アニオン(X)は、カチオン(Y)から放射線の照射による分解によってプロトンが生じる場合、このプロトンと共に酸(以下、「酸(P)」ともいう)を形成する。 The anion (X) forms an acid (hereinafter also referred to as “acid (P)”) together with the proton when a proton is generated from the cation (Y) by decomposition by irradiation of radiation.
 酸(P)の分子体積の上限としては、2.00×10-28であり、1.70×10-28が好ましく、1.40×10-28がより好ましく、1.10×10-28がさらに好ましく、0.90×10-28が特に好ましい。上記分子体積の下限としては、0.10×10-28が好ましく、0.20×10-28がより好ましく、0.25×10-28がさらに好ましく、0.40×10-28が特に好ましい。酸(P)の分子体積を上記範囲とすることで、当該感放射線性樹脂組成物の解像性及び未露光部の残膜性をより向上させることができる。 The upper limit of the molecular volume of the acid (P) is 2.00 × 10 −28 m 3 , preferably 1.70 × 10 −28 m 3, more preferably 1.40 × 10 −28 m 3. 10 × 10 −28 m 3 is more preferable, and 0.90 × 10 −28 m 3 is particularly preferable. The lower limit of the molecular volume is preferably 0.10 × 10 −28 m 3, more preferably 0.20 × 10 −28 m 3, still more preferably 0.25 × 10 −28 m 3 , and 0.40 × 10 −28 m 3 is particularly preferred. By making the molecular volume of acid (P) into the said range, the resolution of the said radiation sensitive resin composition and the remaining film property of an unexposed part can be improved more.
 アニオン(X)としては、スルホネートアニオン、ハロゲン化物アニオン又はハイドロジェンカーボネートアニオンが好ましく、トリフルオロメタンスルホネートアニオン、ブロミドアニオン又はハイドロジェンカーボネートアニオンがより好ましい。 As the anion (X), a sulfonate anion, a halide anion or a hydrogen carbonate anion is preferable, and a trifluoromethanesulfonate anion, a bromide anion or a hydrogen carbonate anion is more preferable.
 アニオン(X)の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、1質量部がより好ましく、2質量部がさらに好ましい。上記含有量の上限としては、30質量部が好ましく、20質量部がより好ましく、10質量部がさらに好ましい。 As a minimum of content of anion (X), 0.1 mass part is preferred to 100 mass parts of [A] polymer, 1 mass part is more preferred, and 2 mass parts is still more preferred. As an upper limit of the said content, 30 mass parts is preferable, 20 mass parts is more preferable, and 10 mass parts is further more preferable.
 [B]化合物の含有量、すなわち、カチオン(Y)とアニオン(X)との合計含有量としては、[A]重合体100質量部に対して、5質量部超が好ましく、6質量部以上がより好ましく、7質量部以上がさらに好ましく、8質量部以上が特に好ましい。上記含有量としては、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましく、20質量部以下が特に好ましい。[B]化合物の含有量を上記範囲とすることで、当該感放射線性樹脂組成物の解像性及び未露光部の残膜性をより向上させることができる。[B]化合物は、1種又は2種以上を用いることができる。 [B] The content of the compound, that is, the total content of the cation (Y) and the anion (X) is preferably more than 5 parts by mass, more than 6 parts by mass with respect to 100 parts by mass of the polymer (A). Is more preferably 7 parts by mass or more, and particularly preferably 8 parts by mass or more. As said content, 50 mass parts or less are preferable, 40 mass parts or less are more preferable, 30 mass parts or less are more preferable, and 20 mass parts or less are especially preferable. By making content of a [B] compound into the said range, the resolution of the said radiation sensitive resin composition and the remaining film property of an unexposed part can be improved more. [B] A compound can use 1 type (s) or 2 or more types.
<[A]重合体と[B]化合物との関係>
 [A]重合体における基(I)と、[B]化合物におけるカチオン(Y)及びアニオン(X)とについて、密度汎関数法によって下記式(A)により求められる安定化エネルギー(ΔE)が0kJ/mol以下である。
 安定化エネルギー(ΔE)=(基(I)とアニオン(X)とが相互作用している場合の基(I)とカチオン(Y)とアニオン(X)との全エネルギーの総和)-(基(I)とアニオン(X)とが相互作用していない場合の基(I)とカチオン(Y)とアニオン(X)との全エネルギーの総和) ・・・(A)
 すなわち、ΔEは、相互作用による安定化エネルギー(kJ)の基(I)1molあたりの値である。
<Relationship between [A] polymer and [B] compound>
[A] For the group (I) in the polymer and the cation (Y) and the anion (X) in the [B] compound, the stabilization energy (ΔE) obtained by the following formula (A) by the density functional method is 0 kJ / Mol or less.
Stabilization energy (ΔE) = (sum of total energies of group (I), cation (Y) and anion (X) when group (I) and anion (X) interact) — (group (I) Sum of all energies of group (I), cation (Y) and anion (X) when anion (X) does not interact) (A)
That is, ΔE is a value per 1 mol of the group (I) of the stabilization energy (kJ) due to the interaction.
 「基(I)とアニオン(X)とが相互作用している」とは、例えばアニオン(X)が、[A]重合体の基(I)中の-OHの水素原子と水素結合等を形成していること等を意味する。「基(I)とアニオン(X)とが相互作用していない」とは、例えばアニオン(X)が、上記水素結合を形成せず、カチオン(Y)と静電的相互作用をしていること等を意味する。 “The group (I) and the anion (X) are interacting” means that the anion (X), for example, represents a hydrogen atom of —OH in the group (I) of the polymer (A) and a hydrogen bond. It means that it is formed. “The group (I) and the anion (X) do not interact” means, for example, that the anion (X) does not form a hydrogen bond and has an electrostatic interaction with the cation (Y). It means that.
 アニオン(X)及びカチオン(Y)が共に1価である場合、ΔEは、下記式(2)で表される平衡式における[A]重合体における基(I)と、[B]化合物におけるカチオン(Y)及びアニオン(X)とについて、密度汎関数法によって求めた右辺の物質の全エネルギーの総和から左辺の物質の全エネルギーの総和を減じて求められる。 When both the anion (X) and the cation (Y) are monovalent, ΔE is the group (I) in the [A] polymer in the equilibrium formula represented by the following formula (2) and the cation in the [B] compound. (Y) and anion (X) are obtained by subtracting the sum of the total energies of the substance on the left side from the sum of the energies of the substance on the right side obtained by the density functional method.
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
 上記式(2)中、R、R及び*は上記式(1)と同義である。Xは、1価の上記アニオン(X)である。Yは、1価の上記カチオン(Y)である。 In said formula (2), R < 1 >, R < 2 > and * are synonymous with said formula (1). X is the monovalent anion (X). Y + is the monovalent cation (Y).
 ΔEは、量子化学計算(例えばGAUSSIAN Inc.社の「GAUSSIAN09プログラム」、B3LYP/6-31G(d)レベル又はB3LYP/LanL2DZレベル)により、計算することができる。ΔEは、安定化エネルギーを意味し、値が小さいほど(負の値の場合は絶対値が大きいほど)、上記式(2)の平衡が右辺側に寄っていることを示す。 ΔE can be calculated by quantum chemical calculation (for example, “GAUSSIAN09 program” of GAUSSIAN Inc., B3LYP / 6-31G (d) level or B3LYP / LanL2DZ level). ΔE means stabilization energy, and the smaller the value (the larger the absolute value in the case of a negative value), the closer the equilibrium of the above formula (2) is to the right side.
 ΔEの上限としては、0kJ/molであり、-5kJが好ましく、-10kJ/molがより好ましく、-15kJ/molがさらに好ましく、-20kJ/molが特に好ましい。ΔEの下限としては、-50kJ/molが好ましく、-30kJ/molが好ましい。ΔEを上記範囲とすることで、当該感放射線性樹脂組成物の解像性及び未露光部の残膜性をより向上させることができる。 The upper limit of ΔE is 0 kJ / mol, preferably −5 kJ, more preferably −10 kJ / mol, further preferably −15 kJ / mol, and particularly preferably −20 kJ / mol. The lower limit of ΔE is preferably −50 kJ / mol, and preferably −30 kJ / mol. By setting ΔE within the above range, the resolution of the radiation-sensitive resin composition and the remaining film property of the unexposed portion can be further improved.
<[C]溶媒>
 当該感放射線性樹脂組成物は、通常[C]溶媒を含有する。[C]溶媒は、少なくとも[A]重合体、[B]化合物及び所望により含有されるその他の任意成分等を溶解又は分散可能な溶媒であれば特に限定されない。
<[C] solvent>
The radiation-sensitive resin composition usually contains a [C] solvent. [C] The solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing at least the [A] polymer, the [B] compound, and other optional components optionally contained.
 [C]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。 [C] Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
 アルコール系溶媒としては、例えば
 メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、iso-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
 エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒等が挙げられる。
Examples of the alcohol solvent include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol , Sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec -Monoalcohol solvents such as heptadecyl alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzyl alcohol, diacetone alcohol;
Ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, 2,4-pentanediol, 2-methyl-2,4-pentanediol, 2,5-hexanediol, 2,4-heptanediol, 2 Polyhydric alcohol solvents such as ethyl-1,3-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol;
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2-ethylbutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol Monomethyl ether, dipropylene glycol monoethyl ether, polyhydric alcohol partial ether solvents such as dipropylene glycol monopropyl ether.
 エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒等が挙げられる。
Examples of ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, and dibutyl ether;
Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran;
And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒;
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒;
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Linear ketone solvents such as di-iso-butyl ketone and trimethylnonanone;
Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone;
Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒等が挙げられる。
Examples of the amide solvent include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone;
Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
 エステル系溶媒としては、例えば
 酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸i-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル等の酢酸エステル系溶媒;
 エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶媒;
 エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒;
 γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
 ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、アセト酢酸メチル、アセト酢酸エチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどが挙げられる。
Examples of ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, i-pentyl acetate, sec Acetate solvents such as pentyl, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate;
Ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether Polyhydric alcohol partial ether acetate solvents such as acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate;
Carbonate solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate;
Lactone solvents such as γ-butyrolactone and δ-valerolactone;
Diethyl acetate, methoxytriglycol acetate, ethyl propionate, n-butyl propionate, iso-amyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl acetoacetate, ethyl acetoacetate, methyl lactate, ethyl lactate N-butyl lactate, n-amyl lactate, diethyl malonate, dimethyl phthalate, diethyl phthalate and the like.
 炭化水素系溶媒としては、例えば
 n-ペンタン、iso-ペンタン、n-ヘキサン、iso-ヘキサン、n-ヘプタン、iso-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、iso-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
 ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、iso-プロピルベンゼン、ジエチルベンゼン、iso-ブチルベンゼン、トリエチルベンゼン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒等が挙げられる。
Examples of hydrocarbon solvents include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane , Aliphatic hydrocarbon solvents such as methylcyclohexane;
Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
 これらの中で、アルコール系溶媒、ケトン系溶媒及び/又はエステル系溶媒が好ましく、モノアルコール系溶媒、多価アルコール部分エーテル系溶媒、環状ケトン系溶媒及び/又は多価アルコール部分エーテルアセテート系溶媒がより好ましく、テトラヒドロフルフリルアルコール、プロピレングリコールモノメチルエーテル、シクロヘキサノン及び/又はプロピレングリコールモノメチルエーテルアセテートがさらに好ましい。[C]溶媒は、1種又は2種以上を用いることができる。 Among these, alcohol solvents, ketone solvents and / or ester solvents are preferable, monoalcohol solvents, polyhydric alcohol partial ether solvents, cyclic ketone solvents and / or polyhydric alcohol partial ether acetate solvents. More preferred are tetrahydrofurfuryl alcohol, propylene glycol monomethyl ether, cyclohexanone and / or propylene glycol monomethyl ether acetate. [C] 1 type (s) or 2 or more types can be used for a solvent.
<その他の任意成分>
 その他の任意成分としては、例えば[A]重合体以外の第2重合体(以下、「[F]重合体」ともいう)、低分子化合物、増感体等が挙げられる。
<Other optional components>
Examples of other optional components include a second polymer other than the [A] polymer (hereinafter also referred to as “[F] polymer”), a low molecular compound, a sensitizer, and the like.
[[F]重合体]
 [F]重合体は、[A]重合体以外の重合体である。[F]重合体としては、例えば構造単位(I)を有さず構造単位(II)を有する重合体、構造単位(I)を有さず[A]重合体よりもフッ素原子含有率が大きい重合体等が挙げられる。当該感放射線性樹脂組成物は、フッ素原子含有率が大きい重合体をさらに含有することで、液浸露光法に好適なレジスト膜を形成することができる。
[[F] polymer]
[F] The polymer is a polymer other than the [A] polymer. As the [F] polymer, for example, a polymer having no structural unit (I) and having a structural unit (II), and having no structural unit (I), the fluorine atom content is higher than that of the [A] polymer. A polymer etc. are mentioned. The radiation sensitive resin composition can form a resist film suitable for the immersion exposure method by further containing a polymer having a high fluorine atom content.
 また、[F]重合体としては、現像性、密着性の改良の観点から、例えばポリヒドロキシスチレン、極性基含有ポリ(メタ)アクリレート、ポリエチレングリコール、エポキシ樹脂、これらの共重合体等が挙げられる。また、レベリング剤、ストリエーション防止剤なども用いることができる。 Examples of the [F] polymer include polyhydroxystyrene, polar group-containing poly (meth) acrylate, polyethylene glycol, epoxy resin, and copolymers thereof from the viewpoint of improving developability and adhesion. . Moreover, a leveling agent, a striation inhibitor, etc. can also be used.
[低分子化合物]
 低分子化合物は、重合体以外の化合物であって、例えば分子量又は組成式量が500以下、好ましくは400以下の化合物をいう。低分子化合物としては、例えば界面活性剤、酸拡散制御剤、エーテル化合物等が挙げられる。
[Low molecular compounds]
The low molecular weight compound is a compound other than a polymer, for example, a compound having a molecular weight or a composition formula weight of 500 or less, preferably 400 or less. Examples of the low molecular compound include a surfactant, an acid diffusion controller, and an ether compound.
(界面活性剤)
 界面活性剤は、塗工性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤;市販品としては、KP341(信越化学工業(株))、ポリフローNo.75、同No.95(以上、共栄社化学(株))、エフトップEF301、同EF303、同EF352(以上、(株)トーケムプロダクツ)、メガファックF171、同F173(以上、DIC(株))、フロラードFC430、同FC431(以上、住友スリーエム(株))、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子(株))、FTX-218、NBX-15((株)ネオス)等が挙げられる。
(Surfactant)
Surfactants have the effect of improving coatability, striation, developability, and the like. Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate. Nonionic surfactants such as stearate; commercially available products include KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no. 95 (above, Kyoeisha Chemical Co., Ltd.), F-top EF301, EF303, EF352 (above, Talkem Products Co., Ltd.), Megafuck F171, F173 (above, DIC Corporation), Florard FC430, FC431 (Sumitomo 3M Co., Ltd.), Asahi Guard AG710, Surflon S-382, SC-101, SC-102, SC-103, SC-104, SC-105, SC-106 ( As mentioned above, Asahi Glass Co., Ltd.), FTX-218, NBX-15 (Neos Co., Ltd.) and the like can be mentioned.
(酸拡散制御剤)
 酸拡散制御剤は、露光により[B]化合物等から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏する。また、当該感放射線性樹脂組成物の貯蔵安定性がさらに向上すると共に、レジスト材料としての解像度がより向上する。さらに、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れたレジスト材料が得られる。
(Acid diffusion control agent)
The acid diffusion controlling agent controls the diffusion phenomenon in the resist film of the acid generated from the [B] compound or the like by exposure, and has an effect of suppressing an undesirable chemical reaction in the non-exposed region. In addition, the storage stability of the radiation-sensitive resin composition is further improved, and the resolution as a resist material is further improved. Furthermore, a change in the line width of the resist pattern due to fluctuations in the holding time from exposure to development processing can be suppressed, and a resist material having excellent process stability can be obtained.
 酸拡散制御剤としては、例えばアミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。 Examples of the acid diffusion controller include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.
 アミン化合物としては、例えば
 n-ヘキシルアミン等のモノアルキルアミン類;
 ジ-n-ブチルアミン等のジアルキルアミン類;
 トリエチルアミン、トリn-ペンチルアミン等のトリアルキルアミン類;
 アニリン等の芳香族アミン類;
 エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン等;
 ポリエチレンイミン、ポリアリルアミン等のポリアミン化合物;
 ジメチルアミノエチルアクリルアミド等の重合体などが挙げられる。
Examples of the amine compound include monoalkylamines such as n-hexylamine;
Dialkylamines such as di-n-butylamine;
Trialkylamines such as triethylamine and tri-n-pentylamine;
Aromatic amines such as aniline;
Ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine and the like;
Polyamine compounds such as polyethyleneimine and polyallylamine;
Examples thereof include polymers such as dimethylaminoethylacrylamide.
 アミド基含有化合物としては、例えばホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等が挙げられる。 Examples of the amide group-containing compound include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone and the like. It is done.
 ウレア化合物としては、例えば尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリブチルチオウレア等が挙げられる。 Examples of the urea compound include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tributylthiourea and the like.
 含窒素複素環化合物としては、例えばピリジン、2-メチルピリジン等のピリジン類;N-プロピルモルホリン、N-(ウンデカン-1-イルカルボニルオキシエチル)モルホリン等のモルホリン類;ピラジン、ピラゾール等が挙げられる。 Examples of the nitrogen-containing heterocyclic compound include pyridines such as pyridine and 2-methylpyridine; morpholines such as N-propylmorpholine and N- (undecan-1-ylcarbonyloxyethyl) morpholine; pyrazine, pyrazole and the like. .
 また、上記含窒素化合物として、酸解離性基を有する化合物を用いることもできる。このような酸解離性基を有する含窒素化合物としては、例えばN-t-ブトキシカルボニルピペリジン、N-t-ブトキシカルボニルイミダゾール、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-(t-ブトキシカルボニル)ジ-n-オクチルアミン、N-(t-ブトキシカルボニル)ジエタノールアミン、N-(t-ブトキシカルボニル)ジシクロヘキシルアミン、N-(t-ブトキシカルボニル)ジフェニルアミン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-アミルオキシカルボニル-4-ヒドロキシピペリジン等が挙げられる。 Moreover, a compound having an acid dissociable group can also be used as the nitrogen-containing compound. Examples of the nitrogen-containing compound having an acid dissociable group include Nt-butoxycarbonylpiperidine, Nt-butoxycarbonylimidazole, Nt-butoxycarbonylbenzimidazole, Nt-butoxycarbonyl-2- Phenylbenzimidazole, N- (t-butoxycarbonyl) di-n-octylamine, N- (t-butoxycarbonyl) diethanolamine, N- (t-butoxycarbonyl) dicyclohexylamine, N- (t-butoxycarbonyl) diphenylamine, Examples thereof include Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-amyloxycarbonyl-4-hydroxypiperidine and the like.
 また、酸拡散制御剤として、露光により感光する光崩壊性塩基を用いることもできる。光崩壊性塩基としては、例えば感放射線性カチオンと、弱酸アニオンとを有する化合物等が挙げられる。光崩壊性塩基は、未露光部ではその塩基性により酸拡散制御性を発揮するが、露光部では、露光により分解して塩基性が低下するため、酸拡散制御性を失う。光崩壊性塩基としては、例えばトリフェニルスルホニウムサリチレート、トリフェニルスルホニウム10-カンファースルホネート等が挙げられる。 Further, as the acid diffusion controlling agent, a photodegradable base that is sensitized by exposure can also be used. Examples of the photodegradable base include a compound having a radiation-sensitive cation and a weak acid anion. The photodegradable base exhibits acid diffusion controllability due to its basicity in the unexposed area, but loses acid diffusion controllability in the exposed area because it is decomposed by exposure and decreases in basicity. Examples of the photodegradable base include triphenylsulfonium salicylate, triphenylsulfonium 10-camphor sulfonate, and the like.
(エーテル化合物)
 当該感放射線性樹脂組成物はエーテル化合物を含有すると、このエーテル化合物と[B]化合物のカチオン(Y)とが相互作用し、上記式(2)の平衡式における基(I)とアニオン(X)との会合がより促進されると考えられる。
(Ether compound)
When the radiation-sensitive resin composition contains an ether compound, the ether compound and the cation (Y) of the [B] compound interact, and the group (I) and the anion (X ) Will be promoted more.
 エーテル化合物としては、例えば
 ジブチルエーテル、ジシクロヘキシルエーテル等のジ脂肪族エーテル;
 ブトキシベンゼン、ブトキシナフタレン、ジブトキシナフタレン、ジフェニルエーテル等の芳香族含有エーテル;
 オキセタン、テトラヒドロフラン、テトラヒドロピラン、ジ(3-エチルオキセタン-3-イルメチル)エーテル等の環状エーテルなどが挙げられる。
Examples of the ether compound include dialiphatic ethers such as dibutyl ether and dicyclohexyl ether;
Aromatic-containing ethers such as butoxybenzene, butoxynaphthalene, dibutoxynaphthalene, diphenyl ether;
And cyclic ethers such as oxetane, tetrahydrofuran, tetrahydropyran, and di (3-ethyloxetane-3-ylmethyl) ether.
[増感体]
 増感体は、放射線を吸収して電子励起状態となり、この電子励起状態となった増感体から、[B]化合物のカチオン(Y)等に、電子移動、エネルギー移動等が行うことができる物質である。当該感放射線性樹脂組成物は、増感体を含有することにより、感度をより向上させることができる。当該感放射線性樹脂組成物における増感体の含有形態としては、低分子化合物の形態(以下、適宜「増感剤」と称する)でも、[A]重合体の一部に組み込まれた形態でも、これらの両方の形態であってもよい。
[Sensitizer]
The sensitizer absorbs radiation and enters an electronically excited state, and electron transfer, energy transfer, and the like can be performed from the sensitizer in the electronically excited state to the cation (Y) of the [B] compound. It is a substance. The said radiation sensitive resin composition can improve a sensitivity more by containing a sensitizer. The form of inclusion of the sensitizer in the radiation-sensitive resin composition may be a low molecular compound form (hereinafter referred to as “sensitizer” as appropriate), or a form incorporated in part of the polymer [A]. Both of these forms may be used.
 増感体としては、例えば350nm以上450nm以下の領域に吸収波長を有する化合物等が挙げられる。 Examples of the sensitizer include compounds having an absorption wavelength in the region of 350 nm to 450 nm.
 増感剤としては、例えば
 ナフタレン、アントラセン、フェナントレン、ナフタセン、ピレン、ペリレン、トリフェニレン、9,10-ジブトキシアントラセン、9,10-ジエトキシアントラセン,3,7-ジメトキシアントラセン、9,10-ジプロピルオキシアントラセン等の多核芳香族類;
 ベンゾチアゾール等のチアゾール類;
 フルオレッセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル等のキサンテン類;
 キサントン、チオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、イソプロピルチオキサントン等のキサントン類;
 チアカルボシアニン、オキサカルボシアニン等のシアニン類;
 メロシアニン、カルボメロシアニン等のメロシアニン類;
 ローダシアニン類;
 オキソノール類;
 チオニン、メチレンブルー、トルイジンブルー等のチアジン類;
 アクリジン、アクリジンオレンジ、クロロフラビン、アクリフラビン等のアクリジン類;
 アクリドン、10-ブチル-2-クロロアクリドン等のアクリドン類;
 アントラキノン等のアントラキノン類;
 スクアリウム等のスクアリウム類;
 スチリル類;
 2-[2-[4-(ジメチルアミノ)フェニル]エテニル]ベンゾオキサゾール等のベーススチリル類;
 7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ-4-メチルクマリン、2,3,6,7-テトラヒドロ-9-メチル-1H,5H,11H[l]ベンゾピラノ[6,7,8-ij]キノリジン-11-ノン等のクマリン類などが挙げられる。
Examples of the sensitizer include naphthalene, anthracene, phenanthrene, naphthacene, pyrene, perylene, triphenylene, 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, 3,7-dimethoxyanthracene, and 9,10-dipropyl. Polynuclear aromatics such as oxyanthracene;
Thiazoles such as benzothiazole;
Xanthenes such as fluorescein, eosin, erythrosine, rhodamine B, rose bengal;
Xanthones such as xanthone, thioxanthone, dimethylthioxanthone, diethylthioxanthone, isopropylthioxanthone;
Cyanines such as thiacarbocyanine, oxacarbocyanine;
Merocyanines such as merocyanine and carbomerocyanine;
Rhodocyanines;
Oxonols;
Thiazines such as thionine, methylene blue and toluidine blue;
Acridines such as acridine, acridine orange, chloroflavin, acriflavine;
Acridones such as acridone, 10-butyl-2-chloroacridone;
Anthraquinones such as anthraquinone;
Squariums such as squalium;
Styryls;
Base styryls such as 2- [2- [4- (dimethylamino) phenyl] ethenyl] benzoxazole;
7-diethylamino-4-methylcoumarin, 7-hydroxy-4-methylcoumarin, 2,3,6,7-tetrahydro-9-methyl-1H, 5H, 11H [l] benzopyrano [6,7,8-ij] And coumarins such as quinolizine-11-non.
 当該感放射線性樹脂組成物がその他の任意成分を含有する場合、その他の任意成分の含有量の上限としては、[A]重合体100質量部に対して、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましい。上記含有量の下限としては、例えば0.01質量部である。 When the said radiation sensitive resin composition contains another arbitrary component, as an upper limit of content of another arbitrary component, 20 mass parts is preferable with respect to 100 mass parts of [A] polymers, and 15 mass parts Is more preferable, and 10 mass parts is further more preferable. As a minimum of the above-mentioned content, it is 0.01 mass part, for example.
<感放射線性樹脂組成物の調製方法>
 当該感放射線性樹脂組成物は、例えば[A]重合体、[B]化合物、[C]溶媒及び必要に応じてその他の任意成分を所定の割合で混合し、好ましくは、得られた混合物を孔径1μm程度のメンブランフィルターでろ過することにより調製することができる。当該感放射線性樹脂組成物の固形分濃度の下限としては、0.1質量%が好ましく、1質量%がより好ましく、5質量%がさらに好ましく、10質量%が特に好ましく、15質量%がさらに好ましく、20質量%が最も好ましい。上記固形分濃度の上限としては、50質量%が好ましく、40質量%がより好ましく、35質量%がさらに好ましく、30質量%が特に好ましい。当該感放射線性樹脂組成物の「固形分濃度」とは、[C]溶媒以外の全成分の濃度(質量%)をいう。
<Method for preparing radiation-sensitive resin composition>
In the radiation sensitive resin composition, for example, the [A] polymer, the [B] compound, the [C] solvent, and other optional components as necessary are mixed in a predetermined ratio, and preferably, the obtained mixture is mixed. It can be prepared by filtering with a membrane filter having a pore size of about 1 μm. The lower limit of the solid content concentration of the radiation-sensitive resin composition is preferably 0.1% by mass, more preferably 1% by mass, further preferably 5% by mass, particularly preferably 10% by mass, and further 15% by mass. Preferably, 20% by mass is most preferable. The upper limit of the solid content concentration is preferably 50% by mass, more preferably 40% by mass, still more preferably 35% by mass, and particularly preferably 30% by mass. The “solid content concentration” of the radiation-sensitive resin composition refers to the concentration (% by mass) of all components other than the [C] solvent.
<レジストパターン形成方法>
 当該レジストパターン形成方法は、基板に直接又は間接に当該感放射線性樹脂組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されたレジスト膜を露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備える。以下、各工程について説明する。
<Resist pattern formation method>
In the resist pattern forming method, a step of coating the radiation-sensitive resin composition directly or indirectly on a substrate (hereinafter, also referred to as “coating step”) and a resist film formed by the coating step are exposed. And a step of developing the exposed resist film (hereinafter also referred to as “developing step”). Hereinafter, each step will be described.
 当該レジストパターン形成方法によれば、上述の当該感放射線性樹脂組成物を用いているので、非化学増幅型であっても微細なパターンを形成することができ、また、露光部と未露光部とのアルカリ溶解性の差を向上させることができ、解像度が高く、未露光部の残膜率が大きいレジストパターンを形成することができる。以下、各工程について説明する。 According to the resist pattern forming method, since the radiation-sensitive resin composition described above is used, a fine pattern can be formed even in a non-chemical amplification type, and an exposed portion and an unexposed portion The difference in alkali solubility with the resist pattern can be improved, and a resist pattern with high resolution and a large residual film ratio in the unexposed area can be formed. Hereinafter, each step will be described.
[塗工工程]
 本工程では、基板に直接又は間接に当該感放射線性樹脂組成物を塗工する。これにより、レジスト膜が形成される。
[Coating process]
In this step, the radiation-sensitive resin composition is applied directly or indirectly to the substrate. Thereby, a resist film is formed.
 基板としては、例えばシリコンウェハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等が挙げられる。また、例えば特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗工方法としては、例えば回転塗工(スピンコーティング)、流延塗工、ロール塗工等が挙げられる。塗工した後に、必要に応じて、塗膜中の溶媒を揮発させるため、プレベーク(PB)を行ってもよい。PBの温度の下限としては、60℃が好ましく、80℃がより好ましい。上記温度の上限としては、140℃が好ましく、120℃がより好ましい。PBの時間の下限としては、5秒が好ましく、10秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。形成されるレジスト膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましい。上記平均厚みの上限としては、1,000nmが好ましく、500nmがより好ましい。 Examples of the substrate include conventionally known substrates such as a silicon wafer, silicon dioxide, and a wafer coated with aluminum. Further, for example, an organic or inorganic antireflection film disclosed in Japanese Patent Publication No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448 may be formed on the substrate. Examples of the coating method include spin coating, spin coating, and roll coating. After coating, pre-baking (PB) may be performed as needed to volatilize the solvent in the coating film. As a minimum of the temperature of PB, 60 degreeC is preferable and 80 degreeC is more preferable. As an upper limit of the said temperature, 140 degreeC is preferable and 120 degreeC is more preferable. The lower limit of the PB time is preferably 5 seconds, and more preferably 10 seconds. The upper limit of the time is preferably 600 seconds, and more preferably 300 seconds. As a minimum of the average thickness of the resist film formed, 10 nm is preferable and 20 nm is more preferable. As an upper limit of the average thickness, 1,000 nm is preferable, and 500 nm is more preferable.
[露光工程]
 本工程では、上記塗工工程により形成されたレジスト膜を露光する。この露光は、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)露光光を照射することにより行う。露光光としては、目的とするパターンの線幅等に応じて、例えば可視光線、紫外線、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)等の遠紫外線、極端紫外線(EUV)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中でも、紫外線、遠紫外線、EUV又は電子線が好ましい。
[Exposure process]
In this step, the resist film formed by the coating step is exposed. This exposure is performed by irradiating exposure light through a photomask (in some cases through an immersion medium such as water). As exposure light, for example, visible light, ultraviolet light, deep ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), extreme ultraviolet light (EUV), etc. And electromagnetic waves such as X-rays and γ-rays; charged particle beams such as electron beams and α-rays. Among these, ultraviolet rays, far ultraviolet rays, EUV or electron beams are preferable.
 [A]重合体が構造単位(II)を有し、酸解離性基を有する場合、上記露光の後、ポストエクスポージャーベーク(PEB)を行うことが好ましい。PEBを行うことにより、レジスト膜の露光部において、露光により[B]化合物等から発生した酸による酸解離性基の解離反応を促進させることができ、露光部と未露光部とにおける現像液に対する溶解性の差をさらに向上させることができる。PEBの温度の下限としては、50℃が好ましく、80℃がより好ましく、100℃がさらに好ましい。上記温度の上限としては、180℃が好ましく、130℃がより好ましい。PEBの時間の下限としては、5秒が好ましく、10秒がより好ましく、30秒がさらに好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましく、100秒がさらに好ましい。 [A] When the polymer has the structural unit (II) and has an acid-dissociable group, it is preferable to perform post-exposure baking (PEB) after the exposure. By performing PEB, the dissociation reaction of the acid-dissociable group by the acid generated from the [B] compound or the like by exposure can be promoted in the exposed portion of the resist film. The difference in solubility can be further improved. As a minimum of the temperature of PEB, 50 ° C is preferred, 80 ° C is more preferred, and 100 ° C is still more preferred. As an upper limit of the said temperature, 180 degreeC is preferable and 130 degreeC is more preferable. The lower limit of the PEB time is preferably 5 seconds, more preferably 10 seconds, and even more preferably 30 seconds. The upper limit of the time is preferably 600 seconds, more preferably 300 seconds, and even more preferably 100 seconds.
 [A]重合体が構造単位(II)を有さず、酸解離性基を有さない場合、上記PEBを行わず、省略することができる。 [A] When the polymer does not have the structural unit (II) and does not have an acid-dissociable group, the PEB is not performed and can be omitted.
[現像工程]
 本工程では、上記露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水又はアルコール等のリンス液で洗浄し、乾燥することが一般的である。現像工程における現像方法は、アルカリ現像であっても、有機溶媒現像であってもよいが、アルカリ現像が好ましい。
[Development process]
In this step, the exposed resist film is developed. Thereby, a predetermined resist pattern can be formed. After development, it is common to wash with water or a rinse solution such as alcohol and then dry. The development method in the development step may be alkali development or organic solvent development, but alkali development is preferred.
 アルカリ現像の場合、現像に用いる現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等が挙げられる。これらの中でも、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。 In the case of alkaline development, examples of the developer used for development include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, and di-n-. Propylamine, triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1 , 5-diazabicyclo- [4.3.0] -5-nonene and the like, an alkaline aqueous solution in which at least one kind of alkaline compound is dissolved. Among these, a TMAH aqueous solution is preferable, and a 2.38 mass% TMAH aqueous solution is more preferable.
 有機溶媒現像の場合、現像液としては、炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒、上記有機溶媒を含有する溶媒等が挙げられる。上記有機溶媒としては、例えば上述の感放射線性樹脂組成物の[C]溶媒として列挙した溶媒の1種又は2種以上等が挙げられる。これらの中でも、エステル系溶媒又はケトン系溶媒が好ましい。エステル系溶媒としては、酢酸エステル系溶媒が好ましく、酢酸n-ブチルがより好ましい。ケトン系溶媒としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。現像液中の有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。現像液中の有機溶媒以外の成分としては、例えば水、シリコンオイル等が挙げられる。 In the case of organic solvent development, examples of the developer include hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, and other organic solvents, and solvents containing the above organic solvents. As said organic solvent, the 1 type (s) or 2 or more types of the solvent enumerated as the [C] solvent of the above-mentioned radiation sensitive resin composition are mentioned, for example. Among these, an ester solvent or a ketone solvent is preferable. As the ester solvent, an acetate solvent is preferable, and n-butyl acetate is more preferable. The ketone solvent is preferably a chain ketone, more preferably 2-heptanone. As a minimum of content of the organic solvent in a developing solution, 80 mass% is preferred, 90 mass% is more preferred, 95 mass% is still more preferred, and 99 mass% is especially preferred. Examples of components other than the organic solvent in the developer include water and silicone oil.
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等が挙げられる。 As a developing method, for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
 当該レジストパターン形成方法により形成されるパターンとしては、例えばラインアンドスペースパターン、ホールパターン等が挙げられる。 Examples of the pattern formed by the resist pattern forming method include a line and space pattern and a hole pattern.
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれらの実施例に限定されない。本実施例における物性値は以下の方法により測定した。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. The physical property values in this example were measured by the following methods.
[重合体のMw及びMn]
 重合体のMw及びMnは、下記条件によるゲルパーミエーションクロマトグラフィー(GPC)法にて測定した。
 GPC装置:東ソー(株)の「HLC-8220-GPC」
 GPCカラム:東ソー(株)の「TSK-M」及び「TSK2500」を直列に接続
 カラム温度:40℃
 展開溶媒:N,N-ジメチルホルムアミド
 流量:0.5mL/分
 試料濃度:0.01質量%
 試料注入量:20μL
 検出方法:屈折率法
 標準物質:単分散ポリスチレン
[Mw and Mn of polymer]
Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) method under the following conditions.
GPC equipment: “HLC-8220-GPC” by Tosoh Corporation
GPC column: Tosoh Corporation's “TSK-M” and “TSK2500” connected in series Column temperature: 40 ° C.
Developing solvent: N, N-dimethylformamide Flow rate: 0.5 mL / min Sample concentration: 0.01% by mass
Sample injection volume: 20 μL
Detection method: Refractive index method Standard substance: Monodispersed polystyrene
H-NMR測定]
 核磁気共鳴装置(日本電子(株)の「JNM-ECS 400」)を用い、測定溶媒として重ジメチルスルホキシドを使用して、各重合体における各構造単位の含有割合(モル%)を求める分析を行った。
[ 1 H-NMR measurement]
Using a nuclear magnetic resonance apparatus (“JNM-ECS 400” manufactured by JEOL Ltd.) and using heavy dimethyl sulfoxide as a measurement solvent, an analysis is performed to determine the content (mol%) of each structural unit in each polymer. went.
<[A]重合体の合成>
 重合体の合成に用いた化合物(M-1)~(M-7)を以下に示す。
<[A] Synthesis of polymer>
The compounds (M-1) to (M-7) used for polymer synthesis are shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[合成例1](重合体(A-1)の合成)
 100mLの三口フラスコ中、化合物(M-1)13.68g(80モル%)及び化合物(M-2)1.32g(20モル%)を15gのテトラヒドロフラン(THF)に溶解し、ラジカル重合開始剤としてのアゾビスイソブチロニトリル(AIBN)0.52g(全単量体に対して5モル%)を添加して単量体溶液を調製した。次いで、15分間窒素バブリングを行った後、撹拌しながら80℃に加熱した。溶液が61℃となった時点を重合開始時間として、重合反応を4時間実施した。重合反応終了後、重合反応液を水冷して30℃以下に冷却し、400gのn-ヘキサン中に冷却した重合反応液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を100gのn-ヘキサンで2回洗浄した後、ろ別し、50℃で一晩乾燥させて白色粉末状の重合体(A-1)を合成した(13.4g、収率89%)。重合体(A-1)のMwは43,200であり、Mw/Mnは2.00であった。H-NMR分析の結果、(M-1)に由来する構造単位及び(M-2)に由来する構造単位の含有割合は、83モル%及び17モル%であった。
[Synthesis Example 1] (Synthesis of polymer (A-1))
In a 100 mL three-necked flask, 13.68 g (80 mol%) of the compound (M-1) and 1.32 g (20 mol%) of the compound (M-2) are dissolved in 15 g of tetrahydrofuran (THF), and a radical polymerization initiator is dissolved. Azobisisobutyronitrile (AIBN) 0.52 g (5 mol% based on the total monomers) was added to prepare a monomer solution. Subsequently, nitrogen bubbling was performed for 15 minutes, and then the mixture was heated to 80 ° C. with stirring. The polymerization reaction was carried out for 4 hours by setting the time when the solution reached 61 ° C. as the polymerization start time. After completion of the polymerization reaction, the polymerization reaction solution was cooled with water and cooled to 30 ° C. or lower, and the polymerization reaction solution cooled in 400 g of n-hexane was added, and the precipitated white powder was filtered off. The filtered white powder was washed twice with 100 g of n-hexane, filtered and dried at 50 ° C. overnight to synthesize a white powdery polymer (A-1) (13.4 g, yield). Rate 89%). Mw of the polymer (A-1) was 43,200, and Mw / Mn was 2.00. As a result of 1 H-NMR analysis, the content ratio of the structural unit derived from (M-1) and the structural unit derived from (M-2) was 83 mol% and 17 mol%.
[合成例2~8](重合体(A-2)~(A-8)の合成)
 下記表1に示す種類及び使用量の単量体を用いた以外は合成例1と同様にして、重合体(A-2)~(A-8)を得た。使用する単量体の合計質量は15.0gとした。表1の「-」は該当する単量体を使用しなかったことを示す。得られた重合体の収率(%)、Mw、Mw/Mn及び各構造単位の含有割合(モル%)を表1に合わせて示す。
[Synthesis Examples 2 to 8] (Synthesis of Polymers (A-2) to (A-8))
Polymers (A-2) to (A-8) were obtained in the same manner as in Synthesis Example 1, except that the types and amounts of monomers shown in Table 1 were used. The total mass of the monomers used was 15.0 g. “-” In Table 1 indicates that the corresponding monomer was not used. The yield (%) of the obtained polymer, Mw, Mw / Mn, and the content ratio (mol%) of each structural unit are shown together in Table 1.
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
<感放射線性樹脂組成物の調製>
 感放射線性樹脂組成物の調製に用いた[B]化合物、[C]溶媒及びその他の任意成分について以下に示す。
<Preparation of radiation-sensitive resin composition>
The [B] compound, [C] solvent and other optional components used for the preparation of the radiation sensitive resin composition are shown below.
[[B]化合物]
 B-1:4,7-ジ-n-ブトキシナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート
 B-2:トリフェニルスルホニウムブロミド
 B-3:トリフェニルスルホニウムトリフルオロメタンスルホネート
 B-4:ジフェニル(4-メトキシフェニル)スルホニウムトリフルオロメタンスルホネート
 B-5:トリス(4-メトキシフェニル)スルホニウムトリフルオロメタンスルホネート
 B-6:トリス(4-t-ブチルフェニル)スルホニウムハイドロジェンカーボネート
 B-7:(4-フェニルチオフェニル)ジフェニルスルホニウムトリフルオロメタンスルホネート
 CB-1:4-n-ブトキシナフチルテトラヒドロチオフェニウムノナフルオロブタンスルホネート
 CB-2:トリフェニルスルホニウムカンファースルホネート
[[B] Compound]
B-1: 4,7-di-n-butoxynaphthyltetrahydrothiophenium trifluoromethanesulfonate B-2: triphenylsulfonium bromide B-3: triphenylsulfonium trifluoromethanesulfonate B-4: diphenyl (4-methoxyphenyl) Sulfonium trifluoromethanesulfonate B-5: Tris (4-methoxyphenyl) sulfonium trifluoromethanesulfonate B-6: Tris (4-t-butylphenyl) sulfonium hydrogen carbonate B-7: (4-phenylthiophenyl) diphenylsulfonium trifluoro Lomethanesulfonate CB-1: 4-n-butoxynaphthyltetrahydrothiophenium nonafluorobutanesulfonate CB-2: Triphenylsulfonium camphor Sulfonate
[[C]溶媒]
 C-1:プロピレングリコールモノメチルエーテル
 C-2:テトラヒドロフルフリルアルコール
 C-3:プロピレングリコールモノメチルエーテルアセテート
 C-4:シクロヘキサノン
[[C] solvent]
C-1: Propylene glycol monomethyl ether C-2: Tetrahydrofurfuryl alcohol C-3: Propylene glycol monomethyl ether acetate C-4: Cyclohexanone
[その他の任意成分]
 D-1:界面活性剤((株)ネオスの「FTX-218」)
 D-2:界面活性剤((株)ネオスの「NBX-15」)
[Other optional ingredients]
D-1: Surfactant (“FTX-218” from Neos Co., Ltd.)
D-2: Surfactant ("NBX-15" from Neos Co., Ltd.)
<安定化エネルギー(ΔE)の計算>
 上記式(2)で表される平衡式における安定化エネルギー(ΔE)の計算を、以下のように行った。
<Calculation of stabilization energy (ΔE)>
Calculation of the stabilization energy (ΔE) in the equilibrium equation represented by the above formula (2) was performed as follows.
 基(I)を有する物質として、[A]重合体の構造単位(I)を与える単量体(以下、「単量体(A)」ともいう)である化合物(M-1)の4-(1-ヒドロキシ-1-トリフルオロメチル-2,2,2-トリフルオロエタン-1-イル)スチレンとし、カチオン(Y)及びアニオン(X)として、[B]化合物が含む感放射線性カチオン及びアニオンとした。 As the substance having the group (I), 4- (A) of the compound (M-1) which is a monomer (hereinafter also referred to as “monomer (A)”) that gives the structural unit (I) of the [A] polymer. (1-hydroxy-1-trifluoromethyl-2,2,2-trifluoroethane-1-yl) styrene, the cation (Y) and the anion (X) as the radiation-sensitive cation contained in the compound [B] and Anion.
 量子化学計算(B3LYP/6-31G(d)レベル又はB3LYP/LanL2DZレベル、GAUSSIAN Inc.社の「GAUSSIAN09プログラム」)による単量体(A)と[B]化合物との相互作用安定化エネルギー(ΔE)の計算は、単量体(A)とアニオン(X)が会合し最安定構造になったところでのエネルギー値と、カチオン(Y)の孤立系で最安定構造になったところでのエネルギー値との和から、アニオン(X)とカチオン(Y)とが会合し最安定構造になったところでのエネルギー値と、単量体(A)の孤立系での最安定構造になったところでのエネルギー値との和を減じたものとして行った。 Stabilization energy (ΔE) between monomer (A) and [B] compound by quantum chemistry calculation (B3LYP / 6-31G (d) level or B3LYP / LanL2DZ level, “GAUSSIAN09 program” of GAUSSIAN Inc.) ) Is calculated based on the energy value when the monomer (A) and the anion (X) are associated to form the most stable structure, and the energy value when the isolated structure of the cation (Y) has the most stable structure. From the sum of the above, the energy value when the anion (X) and the cation (Y) are associated to form the most stable structure and the energy value when the monomer (A) is the most stable structure in the isolated system It was done as a reduction of the sum.
 また、上記量子化学計算を用い、アニオン(X)とプロトンとから形成される酸(P)の分子体積を計算した。 Also, the molecular volume of the acid (P) formed from the anion (X) and the proton was calculated using the above quantum chemistry calculation.
 このようにして算出した安定化エネルギー(ΔE)の値(単位:kJ/mol)と、[B]化合物についての酸(P)の分子体積の値(単位:10-28)とを下記表2に示す。 The stabilization energy (ΔE) value thus calculated (unit: kJ / mol) and the molecular volume value (unit: 10 −28 m 3 ) of the acid (P) for the [B] compound are shown below. It shows in Table 2.
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
[実施例1-1]
 [A]重合体としての(A-1)100質量部、[B]化合物としての(B-1)21.3質量部、[C]溶媒としての(C-1)262.5質量部及び(C-2)65.6質量部並びにその他の任意成分としての(D-1)0.1質量部を25℃で均一に混合し、孔径1μmのメンブランフィルターで異物を除去し、感放射線性樹脂組成物(J1-1)を調製した。感放射線性樹脂組成物(J1-1)の固形分濃度は27.0質量%であった。
[Example 1-1]
[A] 100 parts by mass of (A-1) as a polymer, 21.3 parts by mass of (B-1) as a [B] compound, [C] 262.5 parts by mass of (C-1) as a solvent, and (C-2) 65.6 parts by mass and (D-1) 0.1 part by mass as other optional components are uniformly mixed at 25 ° C., and foreign matters are removed by a membrane filter having a pore diameter of 1 μm, and radiation sensitivity is obtained. A resin composition (J1-1) was prepared. The solid content concentration of the radiation sensitive resin composition (J1-1) was 27.0% by mass.
[実施例1-2~1-13並びに比較例1-1及び1-2]
 下記表3に示す種類及び配合量の各成分を用いた以外は実施例1-1と同様にして、感放射線性樹脂組成物(J1-2)~(J1-13)並びに(CJ1-1)及び(CJ1-2)を調製した。
[Examples 1-2 to 1-13 and Comparative Examples 1-1 and 1-2]
Radiation sensitive resin compositions (J1-2) to (J1-13) and (CJ1-1) in the same manner as in Example 1-1 except that the components of the types and blending amounts shown in Table 3 below were used. And (CJ1-2) were prepared.
<評価>
[アルカリ溶解性]
 4インチのシリコンウェハに上記調製した感放射線性樹脂組成物をスピンコートし、その後、ホットプレートを用いて100℃で3分間加熱し、厚さ約5μmの均一な樹脂塗膜を形成した。次いで、2.38質量%濃度のテトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液に23℃で浸漬した。樹脂塗膜が完全に溶解した時間(溶解時間(T1))を測定した。
 また、上記感放射線性樹脂組成物の調製において[B]化合物を添加しないで得られた組成物についても、上記同様の方法で、樹脂塗膜が完全に溶解した時間(溶解時間(T2))を測定した。
 溶解時間(T1)の溶解時間(T2)に対する比の値は、露光部と未露光部とのアルカリ溶解性の差を示す指標とすることができる。
 アルカリ溶解性について、溶解時間(T1)/溶解時間(T2)の値が7以上の場合は「A」(良好)と、2以上7未満の場合は「B」(やや不良)と、2未満の場合は「C」(不良)と評価した。
 評価結果を下記表3に合わせて示す。
<Evaluation>
[Alkali solubility]
The prepared radiation sensitive resin composition was spin-coated on a 4-inch silicon wafer, and then heated at 100 ° C. for 3 minutes using a hot plate to form a uniform resin coating having a thickness of about 5 μm. Subsequently, it was immersed in an aqueous solution of tetramethylammonium hydroxide (TMAH) having a concentration of 2.38% by mass at 23 ° C. The time (dissolution time (T1)) in which the resin coating film was completely dissolved was measured.
Also, for the composition obtained without adding the [B] compound in the preparation of the radiation sensitive resin composition, the time when the resin coating film was completely dissolved by the same method as above (dissolution time (T2)). Was measured.
The value of the ratio of the dissolution time (T1) to the dissolution time (T2) can be used as an index indicating the difference in alkali solubility between the exposed portion and the unexposed portion.
Regarding alkali solubility, when the value of dissolution time (T1) / dissolution time (T2) is 7 or more, it is “A” (good), and when it is 2 or more and less than 7, “B” (somewhat poor) and less than 2 In the case of, it was evaluated as “C” (defective).
The evaluation results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表3の結果から、実施例の感放射線性樹脂組成物によれば、露光部と未露光部とのアルカリ溶解性の差を向上させることができると考えられる。一方、比較例の感放射線性樹脂組成物では、露光部と未露光部とのアルカリ溶解性の差は低いものに留まる。 From the results of Table 3, it is considered that according to the radiation-sensitive resin composition of the example, the difference in alkali solubility between the exposed part and the unexposed part can be improved. On the other hand, in the radiation sensitive resin composition of the comparative example, the difference in alkali solubility between the exposed part and the unexposed part remains low.
<レジストパターンの形成>
[実施例2-1~2-5]
 上記調製した感放射線性樹脂組成物(J1-1)、(J1-8)~(J1-10)及び(J1-12)を、4インチのシリコンウェハにスピンコートし、その後、ホットプレートを用いて100℃で3分間加熱し、厚さ約5μmの均一な樹脂塗膜を形成した。次いで、アライナー(Suss Microtec社の「MA-200」)を用いて、高圧水銀灯からの紫外線を、パターンマスクを介して、波長365nmにおける露光量が300mJ/cmとなるように樹脂塗膜に照射した。次に、樹脂塗膜を2.38質量%濃度のTMAH水溶液を用いて23℃で60秒間浸漬現像し、次いで、現像後の樹脂塗膜を、超純水にて60秒間洗浄し、エアーにて風乾することによりレジストパターンを形成した。
<Formation of resist pattern>
[Examples 2-1 to 2-5]
The prepared radiation sensitive resin compositions (J1-1), (J1-8) to (J1-10) and (J1-12) were spin-coated on a 4-inch silicon wafer, and then a hot plate was used. And heated at 100 ° C. for 3 minutes to form a uniform resin film having a thickness of about 5 μm. Next, using an aligner (“Sus Microtec“ MA-200 ”), the resin coating film is irradiated with UV light from a high-pressure mercury lamp through a pattern mask so that the exposure dose at a wavelength of 365 nm is 300 mJ / cm 2. did. Next, the resin coating film was immersed and developed at 23 ° C. for 60 seconds using a 2.38% by mass TMAH aqueous solution, and then the developed resin coating film was washed with ultrapure water for 60 seconds, The resist pattern was formed by air drying.
<評価>
 上記形成したレジストパターンを用い、下記方法により、感放射線性樹脂組成物の解像性及び未露光部の残膜性について評価した。評価結果を下記表4に合わせて示す。
<Evaluation>
Using the resist pattern thus formed, the resolution of the radiation-sensitive resin composition and the remaining film property of the unexposed part were evaluated by the following methods. The evaluation results are shown in Table 4 below.
[解像性]
 上記レジストパターンを顕微鏡(オリンパス(株)の「MHL110」)にて観察し、解像した最小パターンのパターン寸法(単位:μm)を解像性とした。
[Resolution]
The resist pattern was observed with a microscope ("MHL110" from Olympus Co., Ltd.), and the pattern size (unit: μm) of the resolved minimum pattern was defined as resolution.
[未露光部の残膜性]
 未露光部におけるレジスト膜の平均厚みを、上記レジストパターン形成の際の現像前後においてそれぞれ測定し、(現像後の厚み/現像前の厚み)×100により残膜率(%)を算出した。未露光部の残膜性は、残膜率が90%以上の場合は「A」(良好)と、80%以上90%未満の場合は「B」(やや不良)と、80%未満の場合は「C」(不良)と評価した。
[Remaining film properties of unexposed areas]
The average thickness of the resist film in the unexposed area was measured before and after development when the resist pattern was formed, and the remaining film ratio (%) was calculated by (thickness after development / thickness before development) × 100. The remaining film property of the unexposed area is “A” (good) when the remaining film ratio is 90% or more, “B” (slightly defective) when 80% or more and less than 90%, and less than 80%. Was evaluated as "C" (bad).
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000016
 
 表4の結果から、実施例の感放射線性樹脂組成物は、解像性及び未露光部の残膜性に優れていることが分かる。 From the results of Table 4, it can be seen that the radiation-sensitive resin compositions of the examples are excellent in resolution and remaining film properties of unexposed portions.
<感放射線性樹脂組成物の調製>
[実施例3-1]
 [A]重合体としての(A-8)100質量部、[B]化合物としての(B-5)5.0質量部、[C]溶媒としての(C-3)484.4質量部及び(C-4)323.0質量部並びにその他の任意成分としての(D-2)0.1質量部を25℃で均一に混合し、孔径0.2μmのポリテトラフルオロエチレン製メンブランフィルターで異物を除去し、感放射線性樹脂組成物(J2-1)を調製した。感放射線性樹脂組成物(J2-1)の固形分濃度は12.0質量%であった。
<Preparation of radiation-sensitive resin composition>
[Example 3-1]
[A] 100 parts by mass of (A-8) as a polymer, 5.0 parts by mass of (B-5) as a [B] compound, [C] 484.4 parts by mass of (C-3) as a solvent, and (C-4) 323.0 parts by mass and (D-2) 0.1 part by mass as other optional components were uniformly mixed at 25 ° C., and foreign matter was removed with a polytetrafluoroethylene membrane filter having a pore diameter of 0.2 μm. Then, a radiation sensitive resin composition (J2-1) was prepared. The solid content concentration of the radiation sensitive resin composition (J2-1) was 12.0% by mass.
[実施例3-2~3-5]
 下記表5に示す種類及び配合量の各成分を用いた以外は実施例3-1と同様にして、感放射線性樹脂組成物(J2-2)~(J2-5)を調製した。
[Examples 3-2 to 3-5]
Radiation sensitive resin compositions (J2-2) to (J2-5) were prepared in the same manner as in Example 3-1, except that the components of the types and blending amounts shown in Table 5 below were used.
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000017
 
<評価>
[残膜率]
 12インチシリコンウェハ上に、フォトレジスト塗布現像装置(東京エレクトロン(株)の「CLEAN TRACK ACT-12」)を使用して感放射線性樹脂組成物を塗工した後、120℃で60秒間加熱することにより膜厚340nmの感放射線性樹脂組成物膜を形成した。次いで、上記フォトレジスト塗布現像装置を使用して、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で60秒間パドル現像し1,500rpm、30秒間振り切りでスピンドライ後に膜厚を測定した。現像前の膜厚に対する現像後の残膜の膜厚の百分率を残膜率(%)とした。
<Evaluation>
[Residual film rate]
A 12-inch silicon wafer is coated with a radiation-sensitive resin composition using a photoresist coating and developing apparatus (“CLEAN TRACK ACT-12” manufactured by Tokyo Electron Ltd.), and then heated at 120 ° C. for 60 seconds. As a result, a radiation-sensitive resin composition film having a thickness of 340 nm was formed. Next, using the above photoresist coating and developing apparatus, paddle development was performed for 60 seconds with an aqueous 2.38 mass% tetramethylammonium hydroxide solution, and the film thickness was measured after spin-drying at 1,500 rpm for 30 seconds. The percentage of the remaining film thickness after development relative to the film thickness before development was defined as the remaining film ratio (%).
[感度]
 12インチシリコンウェハ上に、下層反射防止膜(ブルワーサイエンス社の「DUV42」)を上記フォトレジスト塗布現像装置を使用して塗工した後、205℃で60秒間加熱することにより膜厚60nmの下層反射防止膜を形成した。次いで、上記フォトレジスト塗布現像装置を使用して、下記表6に記載の各感放射線性樹脂組成物を塗工し、120℃で60秒間PBを行った。その後23℃で30秒間冷却し、膜厚340nmのレジスト膜を形成した。次いで、KrF露光装置((株)ニコンの「S210D」)を使用し、NA=0.75、σ=0.75の光学条件にて、フォトマスクを介してベストフォーカスの条件で露光量を変えて露光した。次に、上記フォトレジスト塗布現像装置を使用して、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で60秒間パドル現像し1,500rpm、30秒間振り切りでスピンドライすることによりレジストパターンを形成した。なお、レジストパターン評価には、走査型電子顕微鏡((株)日立ハイテクノロジーズの「CG4000」)を用いた。
 線幅300nmのライン・アンド・スペース(1L1S)を1対1の線幅に形成できる露光量を最適露光量とし、この最適露光量を感度とした。
[sensitivity]
An underlayer antireflection film (“DUV42” from Brewer Science Co., Ltd.) was coated on a 12-inch silicon wafer using the above photoresist coating and developing apparatus, and then heated at 205 ° C. for 60 seconds to form a lower layer having a thickness of 60 nm. An antireflection film was formed. Next, using the photoresist coating and developing apparatus, each radiation sensitive resin composition shown in Table 6 below was applied, and PB was performed at 120 ° C. for 60 seconds. Thereafter, it was cooled at 23 ° C. for 30 seconds to form a resist film having a thickness of 340 nm. Next, using a KrF exposure apparatus (Nikon Corporation's “S210D”), the exposure amount was changed under the best focus condition through a photomask under the optical conditions of NA = 0.75 and σ = 0.75. And exposed. Next, using the photoresist coating and developing apparatus, a paddle development was performed for 60 seconds with a 2.38 mass% tetramethylammonium hydroxide aqueous solution, and spin drying was performed by shaking off at 1500 rpm for 30 seconds to form a resist pattern. For the resist pattern evaluation, a scanning electron microscope (“CG4000” manufactured by Hitachi High-Technologies Corporation) was used.
The exposure amount that can form a line-and-space (1L1S) with a line width of 300 nm in a one-to-one line width was taken as the optimum exposure amount, and this optimum exposure amount was taken as sensitivity.
[限界解像度]
 最適露光量で露光したときに解像されるライン・アンド・スペース(1L1S)の最小寸法を限界解像度(nm)とした。
[Limit resolution]
The minimum dimension of the line and space (1L1S) resolved when exposed at the optimum exposure amount was defined as the limit resolution (nm).
[パターントップ形状]
 感放射線性樹脂組成物(J2-4)及び(J2-5)について、パターントップ形状を評価した。パターントップ形状は、最適露光量で露光したときに解像されるレジストパターンの上部が平坦であれば「良好」と、平坦な部分が無ければ「トップロス」と評価した。パターントップ形状は、感放射線性樹脂組成物(J2-4)は「トップロス」であり、感放射線性樹脂組成物(J2-5)は「良好」であった。
[Pattern top shape]
With respect to the radiation sensitive resin compositions (J2-4) and (J2-5), the pattern top shape was evaluated. The pattern top shape was evaluated as “good” if the upper part of the resist pattern resolved when exposed at the optimum exposure amount was flat, and “top loss” if there was no flat part. Regarding the pattern top shape, the radiation-sensitive resin composition (J2-4) was “top loss” and the radiation-sensitive resin composition (J2-5) was “good”.
[パターンボトム形状]
 感放射線性樹脂組成物(J2-4)及び(J2-5)について、パターンボトム形状を評価した。パターンボトム形状は、最適露光量で露光したときに解像されるレジストパターンの下部と基板の界面部分にレジスト残渣が無い場合は「良好」と、レジスト残渣がある場合は「裾引き」と評価した。パターンボトム形状は、感放射線性樹脂組成物(J2-4)は「裾引き」であり、感放射線性樹脂組成物(J2-5)は「良好」であった。
[Pattern bottom shape]
The pattern bottom shape was evaluated for the radiation sensitive resin compositions (J2-4) and (J2-5). The pattern bottom shape is evaluated as “good” when there is no resist residue at the interface between the lower part of the resist pattern and the substrate that is resolved when exposed at the optimum exposure amount, and “bottom” when there is resist residue. did. Regarding the pattern bottom shape, the radiation-sensitive resin composition (J2-4) was “bottom”, and the radiation-sensitive resin composition (J2-5) was “good”.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表6の結果から、実施例の感放射線性樹脂組成物は、残膜率、感度及び限界解像度に優れていることが分かる。 From the results of Table 6, it can be seen that the radiation-sensitive resin compositions of the examples are excellent in the remaining film rate, sensitivity, and limit resolution.
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、非化学増幅型であっても微細なパターンの形成が可能になる。従って、本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、従来の化学増幅型レジストの弱点を克服でき、今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。
 
According to the radiation-sensitive resin composition and the resist pattern forming method of the present invention, a fine pattern can be formed even in a non-chemical amplification type. Therefore, according to the radiation-sensitive resin composition and the resist pattern forming method of the present invention, it can overcome the weaknesses of conventional chemically amplified resists, and is suitably used for manufacturing semiconductor devices where further miniaturization is expected in the future. be able to.

Claims (10)

  1.  下記式(1)で表される第1基を含む第1構造単位を有する第1重合体と、
     感放射線性カチオンと、
     アニオンと
     を含有し、
     上記第1重合体における上記第1構造単位の含有割合が50モル%以上であり、
     上記アニオンとプロトンとから形成される酸の分子体積が2.00×10-28以下であり、
     密度汎関数法によって下記式(A)により求められる安定化エネルギー(ΔE)が0kJ/mol以下である感放射線性樹脂組成物。
     安定化エネルギー(ΔE)=(上記第1基と上記アニオンとが相互作用している場合の上記第1基と上記感放射線性カチオンと上記アニオンとの全エネルギーの総和)-(上記第1基と上記アニオンとが相互作用していない場合の上記第1基と上記感放射線性カチオンと上記アニオンとの全エネルギーの総和) ・・・(A)
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、Rは、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。Rは、水素原子、フッ素原子又は炭素数1~20の1価の有機基である。*は、上記第1構造単位における上記第1基以外の部分に結合する部位を示す。)
    A first polymer having a first structural unit containing a first group represented by the following formula (1);
    A radiation sensitive cation;
    Containing anions and
    The content ratio of the first structural unit in the first polymer is 50 mol% or more,
    The molecular volume of the acid formed from the anion and proton is 2.00 × 10 −28 m 3 or less,
    The radiation sensitive resin composition whose stabilization energy ((DELTA) E) calculated | required by the following formula (A) by a density functional method is 0 kJ / mol or less.
    Stabilization energy (ΔE) = (Sum of all energies of the first group, the radiation-sensitive cation, and the anion when the first group and the anion interact) − (the first group The total energy of the first group, the radiation-sensitive cation, and the anion when the anion and the anion do not interact) (A)
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (1), R 1 is a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. R 2 is a hydrogen atom, a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. (It is an organic group. * Represents a site bonded to a portion other than the first group in the first structural unit.)
  2.  上記第1重合体100質量部に対する上記感放射線性カチオンと上記アニオンとの合計含有量が5質量部超である請求項1に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 1, wherein the total content of the radiation-sensitive cation and the anion with respect to 100 parts by mass of the first polymer is more than 5 parts by mass.
  3.  上記第1基が芳香環に結合している請求項1又は請求項2に記載の感放射線性樹脂組成物。 The radiation sensitive resin composition according to claim 1 or 2, wherein the first group is bonded to an aromatic ring.
  4.  上記第1重合体における酸解離性基を含む第2構造単位の含有割合が20モル%以下である請求項1、請求項2又は請求項3に記載の感放射線性樹脂組成物。 The radiation sensitive resin composition according to claim 1, 2 or 3, wherein the content ratio of the second structural unit containing an acid dissociable group in the first polymer is 20 mol% or less.
  5.  上記感放射線性カチオンが、下記式(T-1)で表される第1カチオン、下記式(T-2)で表される第2カチオン、下記式(T-3)で表される第3カチオン又はこれらの組み合わせである請求項1から請求項4のいずれか1項に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
     
    (式(T-1)中、Ra1及びRa2は、それぞれ独立して、炭素数1~20の1価の有機基である。k1は、0~5の整数である。k1が1の場合、Ra3は、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基又はハロゲン原子である。k1が2以上の場合、複数のRa3は、同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基若しくはハロゲン原子であるか、又は複数のRa3が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。t1は、0~3の整数である。
     式(T-2)中、k2は、0~7の整数である。k2が1の場合、Ra4は、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基又はハロゲン原子である。k2が2以上の場合、複数のRa4は、同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基若しくはハロゲン原子であるか、又は複数のRa4が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。k3は、0~6の整数である。k3が1の場合、Ra5は、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基又はハロゲン原子である。k3が2以上の場合、複数のRa5は、同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基若しくはハロゲン原子であるか、又は複数のRa5が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数3~20の環構造の一部を表す。rは、0~3の整数である。Ra6は、単結合又は炭素数1~20の2価の有機基である。t2は、0~2の整数である。
     式(T-3)中、k4は、0~5の整数である。k4が1の場合、Ra7は、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基又はハロゲン原子である。k4が2以上の場合、複数のRa7は、同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基若しくはハロゲン原子であるか、又は複数のRa7が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。k5は、0~5の整数である。k5が1の場合、Ra8は、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基又はハロゲン原子である。k5が2以上の場合、複数のRa8は、同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、アミノ基、ニトロ基、チオール基若しくはハロゲン原子であるか、又は複数のRa8が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。)
    The radiation-sensitive cation includes a first cation represented by the following formula (T-1), a second cation represented by the following formula (T-2), and a third cation represented by the following formula (T-3). The radiation-sensitive resin composition according to any one of claims 1 to 4, which is a cation or a combination thereof.
    Figure JPOXMLDOC01-appb-C000002

    (In the formula (T-1), R a1 and R a2 are each independently a monovalent organic group having 1 to 20 carbon atoms. K1 is an integer of 0 to 5. In this case, R a3 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, and when k1 is 2 or more, a plurality of R a3 are the same or Differently, it is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, or a plurality of R a3 are combined with each other and configured with a carbon chain to which these are bonded. Represents a part of a ring structure having 4 to 20 ring members, and t1 is an integer of 0 to 3.
    In the formula (T-2), k2 is an integer of 0 to 7. When k2 is 1, R a4 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom. when k2 is 2 or more, the plurality of R a4 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, or a plurality of R a4 R a4 represents a part of a ring structure having 4 to 20 ring members that is constituted together with the carbon chain to which they are bonded together. k3 is an integer of 0-6. When k3 is 1, R a5 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom. when k3 is 2 or more, the plurality of R a5 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, a halogen atom, or a plurality of R a5 R a5 represents a part of a ring structure having 3 to 20 ring members constituted together with the carbon chain to which they are bonded to each other. r is an integer of 0 to 3. R a6 is a single bond or a divalent organic group having 1 to 20 carbon atoms. t2 is an integer of 0-2.
    In the formula (T-3), k4 is an integer of 0 to 5. When k4 is 1, R a7 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom. when k4 is 2 or more, the plurality of Ra7s are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, R a7 represents a part of a ring structure having 4 to 20 ring members which is constituted together with the carbon chain to which they are bonded to each other. k5 is an integer of 0 to 5. When k5 is 1, R a8 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom. when k5 is 2 or more, the plurality of R a8 are the same or different and are a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, an amino group, a nitro group, a thiol group, or a halogen atom, or a plurality of R a8 R a8 represents a part of a ring structure having 4 to 20 ring members which is constituted together with the carbon chain to which they are bonded to each other. )
  6.  上記式(T-1)におけるk1、上記式(T-2)におけるk2及び上記式(T-3)におけるk4+k5が1以上である請求項5に記載の感放射線性樹脂組成物。 6. The radiation-sensitive resin composition according to claim 5, wherein k1 in the formula (T-1), k2 in the formula (T-2), and k4 + k5 in the formula (T-3) are 1 or more.
  7.  上記感放射線性カチオンが上記第1カチオン、上記第2カチオン又はこれらの組み合わせであり、上記式(T-1)におけるRa3及び上記式(T-2)におけるRa4が、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、ハロゲン原子、-OR’、-NR’又は-SR’であり、R’が、水素原子又は炭素数1~20の1価の炭化水素基である請求項6に記載の感放射線性樹脂組成物。 The radiation-sensitive cation is the first cation, the second cation or a combination thereof, and R a3 in the formula (T-1) and R a4 in the formula (T-2) are an ethyl group, n- Propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, halogen atom, —OR ′, —NR ′ 2 or —SR ′, and R ′ is The radiation-sensitive resin composition according to claim 6, which is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  8.  上記式(T-1)におけるRa1及びRa2の少なくとも一方が置換アリール基である請求項5、請求項6又は請求項7に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 5, 6 or 7, wherein at least one of R a1 and R a2 in the formula (T-1) is a substituted aryl group.
  9.  上記第1重合体以外の第2重合体をさらに含有する請求項1から請求項8のいずれか1項に記載の感放射線性樹脂組成物。 The radiation sensitive resin composition according to any one of claims 1 to 8, further comprising a second polymer other than the first polymer.
  10.  基板に直接又は間接に請求項1から請求項9のいずれか1項に記載の感放射線性樹脂組成物を塗工する工程と、
     上記塗工工程により形成されたレジスト膜を露光する工程と、
     上記露光されたレジスト膜を現像する工程と
     を備えるレジストパターン形成方法。
     

     
    Applying the radiation-sensitive resin composition according to any one of claims 1 to 9 directly or indirectly to a substrate;
    Exposing the resist film formed by the coating process;
    And a step of developing the exposed resist film.


PCT/JP2019/014329 2018-03-29 2019-03-29 Radiation-sensitive resin composition and method for forming resist pattern WO2019189877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018065925 2018-03-29
JP2018-065925 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019189877A1 true WO2019189877A1 (en) 2019-10-03

Family

ID=68060194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014329 WO2019189877A1 (en) 2018-03-29 2019-03-29 Radiation-sensitive resin composition and method for forming resist pattern

Country Status (1)

Country Link
WO (1) WO2019189877A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238620A (en) * 2001-12-13 2003-08-27 Central Glass Co Ltd Fluorine-containing polymerizable monomer and polymer compound, anti-reflection coating material and resist material using the polymer
JP2007065024A (en) * 2005-08-29 2007-03-15 Fujifilm Corp Positive resist composition and pattern forming method using the same
JP2007286161A (en) * 2006-04-13 2007-11-01 Tokyo Ohka Kogyo Co Ltd Negative resist composition and method of forming resist pattern
JP2008268743A (en) * 2007-04-24 2008-11-06 Fujifilm Corp Positive photosensitive composition and pattern forming method using the same
JP2014063148A (en) * 2012-08-30 2014-04-10 Central Glass Co Ltd Photosensitive resin composition and pattern formation method using the same
JP2015129908A (en) * 2013-11-01 2015-07-16 セントラル硝子株式会社 Positive photosensitive resin composition, method for producing film using the same, and electronic component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238620A (en) * 2001-12-13 2003-08-27 Central Glass Co Ltd Fluorine-containing polymerizable monomer and polymer compound, anti-reflection coating material and resist material using the polymer
JP2007065024A (en) * 2005-08-29 2007-03-15 Fujifilm Corp Positive resist composition and pattern forming method using the same
JP2007286161A (en) * 2006-04-13 2007-11-01 Tokyo Ohka Kogyo Co Ltd Negative resist composition and method of forming resist pattern
JP2008268743A (en) * 2007-04-24 2008-11-06 Fujifilm Corp Positive photosensitive composition and pattern forming method using the same
JP2014063148A (en) * 2012-08-30 2014-04-10 Central Glass Co Ltd Photosensitive resin composition and pattern formation method using the same
JP2015129908A (en) * 2013-11-01 2015-07-16 セントラル硝子株式会社 Positive photosensitive resin composition, method for producing film using the same, and electronic component

Similar Documents

Publication Publication Date Title
JP7041359B2 (en) Radiation-sensitive resin composition and resist pattern forming method
JP6052283B2 (en) Photoresist composition
JP5928347B2 (en) Pattern formation method
WO2015046021A1 (en) Radiation-sensitive resin composition and resist pattern forming method
JP5724791B2 (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6648452B2 (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6540293B2 (en) Resist pattern refinement composition and micropattern formation method
JP2017156649A (en) Radiation-sensitive resin composition, resist pattern forming method, polymer and compound
JP6561731B2 (en) Radiation sensitive resin composition, resist pattern forming method, acid diffusion controller and compound
WO2022149349A1 (en) Radiation-sensitive composition and method for forming resist pattern
WO2021220648A1 (en) Radiation-sensitive resin composition, method for forming resist pattern using same, and sulfonic acid salt compound and radiation-sensitive acid generator comprising same
JP6052280B2 (en) Photoresist composition, resist pattern forming method, compound, acid generator and photodegradable base
JP5540818B2 (en) Radiation-sensitive resin composition and polymer
JP7061268B2 (en) Method of forming resist pattern and radiation-sensitive resin composition
JP2023090803A (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and electronic device manufacturing method
WO2012043415A1 (en) Radio-sensitive resin composition
JP6555011B2 (en) Radiation-sensitive resin composition and resist pattern forming method
WO2017057203A1 (en) Radiation sensitive resin composition and resist pattern forming method
JP2013254084A (en) Photoresist composition, resist pattern formation method, polymer, compound and method of producing compound
JP6079360B2 (en) Acid diffusion controller, photoresist composition, resist pattern forming method, compound and method for producing compound
JP6069691B2 (en) Acid diffusion controller, radiation sensitive resin composition, and resist pattern forming method
JP2017181696A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP2013040131A (en) Compound and photoresist composition
WO2019194018A1 (en) Resist pattern formation method and chemically amplified resist material
JP2017016068A (en) Radiation-sensitive resin composition and method for forming resist pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP