WO2019189477A1 - ヒートシンク - Google Patents

ヒートシンク Download PDF

Info

Publication number
WO2019189477A1
WO2019189477A1 PCT/JP2019/013381 JP2019013381W WO2019189477A1 WO 2019189477 A1 WO2019189477 A1 WO 2019189477A1 JP 2019013381 W JP2019013381 W JP 2019013381W WO 2019189477 A1 WO2019189477 A1 WO 2019189477A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat sink
portions
convex
fin
Prior art date
Application number
PCT/JP2019/013381
Other languages
English (en)
French (fr)
Inventor
拓海 中村
英司 安在
智将 平山
裕 平野
Original Assignee
日本軽金属株式会社
日軽熱交株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社, 日軽熱交株式会社 filed Critical 日本軽金属株式会社
Publication of WO2019189477A1 publication Critical patent/WO2019189477A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat sink.
  • Patent Document 1 describes a heat exchanger having fins in a flow path through which a refrigerant body circulates.
  • An object of the present invention is to provide a heat sink capable of improving the cooling efficiency.
  • a heat sink includes a hollow member including a plurality of flow paths through which a refrigerant flows, a hollow member including an inlet and a discharge port for the refrigerant, and a first member disposed in the hollow member.
  • a fin having a plurality of plate-like portions along a direction, wherein the plate-like portion includes a plurality of convex portions protruding in a direction intersecting the first direction, and one of the plate-like portions.
  • a plurality of holes penetrating the first surface and the other surface are provided.
  • the refrigerant strikes the convex portion and passes through the hole portion, and then merges in the plurality of flow paths divided by the plate-like portion. And flow repeatedly.
  • the flow of the refrigerant is likely to be turbulent, and the refrigerant can contact the plate-like portion satisfactorily to increase the cooling efficiency. Therefore, the heat sink can improve the cooling efficiency.
  • the fin has a corrugated cross section when cut by a plane orthogonal to the first direction. According to this, the contact area of a refrigerant
  • the hollow member and the fin are aluminum or an aluminum alloy. According to this, the heat conductivity of the heat sink can be improved and the weight can be reduced. Further, the convex portion and the hole portion can be easily formed with high accuracy.
  • the fin is joined to the inner surface of the hollow member via an aluminum alloy brazing material. According to this, heat conduction between the hollow member and the fin can be improved. For this reason, the cooling efficiency of a heat sink can be improved. Furthermore, the operation
  • the hollow member has a bottom portion that sandwiches the fin in the height direction and a lid portion
  • the plate-like portion includes a plurality of first plate-like portions and the first plate-like portion.
  • a plurality of second plate-like portions having different inclination angles from the one plate-like portion, and the first plate-like portion and the second plate-like portion are alternately arranged in a direction intersecting the first direction.
  • a first flow path is formed by the first plate-shaped portion, the second plate-shaped portion adjacent to one of the first plate-shaped portions, and the bottom portion, and the first plate-shaped portion.
  • a second flow path is formed by the second plate-shaped portion adjacent to the other of the first plate-shaped portion and the lid portion, and the first plate-shaped portion and the second plate-shaped portion.
  • a plurality of the convex portions and a plurality of the hole portions are provided in each.
  • coolant and a fin can be enlarged.
  • the refrigerant flows through the hole portion by repeatedly joining and dividing in the first flow path and the second flow path. Thereby, the flow of the refrigerant is likely to be turbulent, and the refrigerant can satisfactorily contact the plate-like portion, thereby improving the cooling efficiency.
  • the plurality of convex portions and the plurality of hole portions are arranged along the first direction, and the convex portions are inclined with respect to the surface of the plate-like portion.
  • a first convex portion and a second convex portion that is inclined in a direction opposite to the first convex portion with respect to a direction perpendicular to the surface of the plate-like portion, and the plate-like portion includes the first convex portion.
  • the plurality of convex portions and the plurality of hole portions are arranged along the first direction, and the convex portions are substantially arranged with respect to the surface of the plate-like portion.
  • the cooling efficiency can be improved.
  • FIG. 1 is a perspective view of a heat sink according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the heat sink according to the first embodiment.
  • FIG. 5 is an enlarged view of a portion D in FIG.
  • FIG. 6 is an enlarged view of a portion B in FIG.
  • FIG. 9 is an explanatory diagram for explaining the flow of the refrigerant in the heat sink according to the first embodiment.
  • FIG. 9 is an explanatory diagram for explaining the flow of the refrigerant in the heat sink according to the first embodiment.
  • FIG. 10 is a graph showing a relationship between the flow rate of the refrigerant and the temperature difference of the refrigerant in the heat sinks according to the example and the comparative example.
  • FIG. 11 is a schematic diagram illustrating fins of the heat sink according to the first comparative example.
  • FIG. 12 is a plan view schematically showing the configuration of the flat tube fin according to the second comparative example.
  • 13 is a cross-sectional view taken along the line GG in FIG.
  • FIG. 14 is an exploded perspective view of the heat sink according to the second embodiment.
  • FIG. 15 is a plan view of a heat sink according to the second embodiment.
  • FIG. 16 is a cross-sectional view of the second plate-like portion according to the second embodiment.
  • FIG. 17 is an explanatory diagram for explaining the flow of refrigerant in the heat sink according to the second embodiment.
  • FIG. 18 is a cross-sectional view showing a partially enlarged heat sink according to the third embodiment.
  • FIG. 19 is a partially enlarged cross-sectional view of the heat sink according to the fourth embodiment.
  • FIG. 1 is a perspective view of a heat sink according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the heat sink according to the first embodiment.
  • the heat sink 1 of this embodiment includes a hollow member 10 and fins 20.
  • the heat sink 1 of this embodiment is a cooling device for electronic components.
  • one surface of the hollow member 10 is tightly fixed to an electronic component such as a semiconductor, and a liquid (cooling liquid) serving as a coolant is circulated in the internal space 13 of the hollow member 10.
  • a liquid (cooling liquid) serving as a coolant is circulated in the internal space 13 of the hollow member 10.
  • the hollow member 10 has a main body portion 11 and a lid portion 12.
  • the main body 11 and the lid 12 are rectangular in plan view.
  • the main body 11 and the lid 12 are joined to form an internal space 13 inside the main body 11 and the lid 12.
  • the main body 11 includes a bottom 11a, an inflow side wall 11b, a discharge side wall 11c, and side walls 11d and 11e.
  • the bottom portion 11a is disposed to face the lid portion 12.
  • the inflow side wall portion 11b, the discharge side wall portion 11c, and the side walls 11d and 11e are disposed so as to surround the bottom portion 11a.
  • the inflow side wall part 11b and the discharge side wall part 11c are each provided along the long side of the outer periphery of the bottom part 11a, and are provided in a direction perpendicular to the surface of the bottom part 11a.
  • the side walls 11d and 11e are provided along the short side of the outer periphery of the bottom portion 11a, respectively, and are provided in a direction perpendicular to the surface of the bottom portion 11a.
  • the lid portion 12 has a flat plate shape and is joined to the upper end portions of the inflow side wall portion 11b, the discharge side wall portion 11c, and the side walls 11d and 11e.
  • a direction perpendicular to the surface of the bottom portion 11a is defined as a Z direction.
  • the direction along the long side of the bottom 11a is taken as the X direction.
  • a direction perpendicular to the X direction and the Z direction is taken as a Y direction.
  • the present invention is not limited to this, and the Y direction may intersect the X direction at an angle other than 90 °.
  • the Z direction may intersect the X direction and the Y direction at an angle other than 90 °.
  • “plan view” refers to the case of viewing from the Z direction.
  • the inflow side wall 11b is provided with an inlet 14 for allowing the refrigerant to flow into the internal space 13 (see FIG. 1). Further, the discharge side wall 11c faces the inflow side wall 11b in the Y direction. The discharge side wall 11c is provided with a discharge port 15 for discharging the refrigerant from the internal space 13 to the outside. Thereby, a refrigerant
  • the main body 11 and the lid 12 are made of aluminum or an aluminum alloy.
  • the main body 11 is integrally formed by pressing a plate material of aluminum or aluminum alloy.
  • aluminum alloys include JIS standard 1000 series aluminum (pure Al) having excellent thermal conductivity, JIS standard 3000 series aluminum (Al-Mn), and 6000 series aluminum (Al-Mg) having excellent thermal conductivity, formability, and strength. -Si) or the like can be used.
  • the structure of the hollow member 10 is an example to the last, and another shape may be sufficient.
  • the hollow member 10 may have an oval shape, an elliptical shape, a polygonal shape, an irregular shape, or the like in plan view.
  • the lid 12 is not limited to a flat plate shape, and may have the same shape as the main body 11.
  • the lid 12 may have a larger outer shape than the main body 11 in plan view.
  • FIG. 3 is a plan view of a part of the heat sink according to the first embodiment.
  • 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is an enlarged view of a portion D in FIG.
  • FIG. 6 is an enlarged view of a portion B in FIG.
  • FIG. 7 is an enlarged view of a portion C in FIG. 8 is a cross-sectional view taken along line EE in FIG.
  • the fin 20 is provided in the internal space 13 of the hollow member 10.
  • the fin 20 is a so-called corrugated fin formed of aluminum or an aluminum alloy.
  • the fin 20 has a substantially rectangular outer shape as a whole in plan view.
  • the fin 20 is arrange
  • FIG. 3 shows a plan view of a part of the heat sink 1, that is, a plan view of the heat sink 1 with the lid portion 12 removed.
  • the fin 20 includes a plurality of first plate-like portions 31 and a plurality of second plate-like portions 32.
  • the first plate-like portion 31 and the second plate-like portion 32 are provided along the flow direction DF1 (see FIG. 2).
  • the first plate portion 31 is inclined with respect to the surface of the bottom portion 11 a, and the second plate portion 32 has an inclination angle different from that of the first plate portion 31.
  • the first plate-like portions 31 and the second plate-like portions 32 are alternately arranged in the X direction.
  • the first plate-like portion 31 and the second plate-like portion 32 are connected on the side close to the lid portion 12 to form a peak portion 33a. Moreover, the 1st plate-shaped part 31 and the 2nd plate-shaped part 32 are connected by the side near the bottom part 11a, and the trough part 33b is formed.
  • the peak portion 33a and the valley portion 33b each have a curved shape.
  • the peaks 33a and valleys 33b are alternately arranged in the X direction. Thereby, the cross section of the fin 20 at the time of cut
  • the first plate-like portion 31 and the second plate-like portion 32 are provided in line symmetry with a line passing through the apex of the peak portion 33a and perpendicular to the surface of the bottom portion 11a as a symmetric line in cross-sectional view.
  • the 1st plate-shaped part 31 and the 2nd plate-shaped part 32 may be formed asymmetrically.
  • the refrigerant flow direction DF1 is formed along the direction in which the peaks 33a and valleys 33b extend.
  • the pitch P between the peak part 33a and the valley part 33b in the X direction is, for example, 2.4 mm.
  • the height H between the peak portion 33a and the valley portion 33b in the Z direction is, for example, 4.0 mm. In other words, in the present embodiment, the height H is smaller than the interval between the mountain portions 33a adjacent in the X direction.
  • the thickness t of the first plate-like portion 31 and the second plate-like portion 32 is, for example, 0.3 mm. If the thickness t is less than 0.2 mm, the amount of heat transfer is reduced, and the necessary cooling performance may not be obtained. Furthermore, when the refrigerant is a liquid, deformation may occur due to the pressure of the refrigerant.
  • the valley portion 33 b of the fin 20 is joined to the inner surface of the bottom portion 11 a of the main body portion 11 through the aluminum alloy brazing material 60.
  • the aluminum alloy brazing material 60 it is preferable that copper is contained in an amount of 23% by mass or more and 37% by mass or less, silicon is contained in an amount of 4% by mass or more and 10% by mass or less, and the balance is aluminum.
  • the heat conduction between the hollow member 10 and the fin 20 can be improved.
  • the cooling efficiency of the heat sink 1 can be improved.
  • the fin 20 may be joined to the lower surface of the lid 12 or both the inner surface of the bottom portion 11a and the lower surface of the lid 12.
  • the 1st flow path F1 is formed in the area
  • the second flow path F ⁇ b> 2 is formed in a region surrounded by the first plate-like portion 31, the second plate-like portion 32, and the lid portion 12.
  • the first flow path F1 and the second flow path F2 are provided adjacent to each other in the X direction via the first plate portion 31 or the second plate portion 32.
  • the first flow path F1 and the second flow path F2 are provided in a direction parallel to the flow direction DF1 (see FIG. 2).
  • the refrigerant flows toward the discharge port 15 through the first flow path F1 and the second flow path F2.
  • the first plate-like portion 31 is provided with convex portions 34 and 36.
  • the second plate-like portion 32 is provided with convex portions 35 and 37.
  • holes 44 and 46 are provided at the positions where the convex portions 34 and 36 of the first plate-like portion 31 are provided, respectively.
  • the hole parts 45 and 47 are provided in the position in which the convex parts 35 and 37 of the 2nd plate-shaped part 32 were provided, respectively.
  • the convex part 34 and the convex part 36 are arranged in multiple numbers along the Y direction.
  • the convex portion 35 and the convex portion 37 are arranged adjacent to the convex portion 34 and the convex portion 36 in the X direction, respectively.
  • a plurality of convex portions 35 and convex portions 37 are arranged along the Y direction.
  • a portion where the convex portion 34 and the convex portion 35 are provided is referred to as a first fin 21, and a portion where the convex portion 36 and the convex portion 37 are provided is referred to as a second fin 22.
  • a portion where the convex portions 34, 35, 36 and 37 are not provided is referred to as an intermediate portion 23.
  • the first fin 21 and the second fin 22 are arranged adjacent to each other in the Y direction with the intermediate portion 23 interposed therebetween.
  • the projection 34 and the projection 35 are provided so as to be inclined in the same direction with respect to the Y direction, that is, the flow direction DF ⁇ b> 1 (see FIG. 2) in plan view. Further, the convex portion 36 and the convex portion 37 are provided to be inclined in the direction opposite to the convex portion 34 and the convex portion 35 with respect to the Y direction, that is, the flow direction DF1 (see FIG. 2).
  • the convex portion 34 includes a portion protruding from the first surface 31 a of the first plate-shaped portion 31 and a portion protruding from the second surface 31 b.
  • the 1st surface 31a is a surface facing the cover part 12
  • the 2nd surface 31b is a surface on the opposite side to the 1st surface 31a, and is a surface facing the bottom part 11a.
  • the hole 44 is provided so as to penetrate from the first surface 31 a to the second surface 31 b along the convex portion 34.
  • the convex portion 35 includes a portion protruding from the first surface 32a of the second plate-shaped portion 32 and a portion protruding from the second surface 32b.
  • the 1st surface 32a is a surface facing the cover part 12
  • the 2nd surface 32b is a surface on the opposite side to the 1st surface 32a, and is a surface facing the bottom part 11a.
  • the hole 45 is provided so as to penetrate from the first surface 32 a to the second surface 32 b along the convex portion 35.
  • the hole part 46 is formed in the location in which the convex part 36 of the 1st plate-shaped part 31 was provided. Moreover, the hole 47 is formed in the location in which the convex part 37 of the 2nd plate-shaped part 32 was provided. The hole 46 is provided through the first plate-like portion 31. The hole 47 is provided so as to penetrate the second plate-like portion 32.
  • FIG. 8 is a cross-sectional view when the second plate-like portion 32 is cut along the longitudinal direction (Y direction).
  • the convex portion 35 and the hole portion 45 of the first fin 21 are symmetrical with respect to the convex portion 37 and the hole portion 47 of the second fin 22 through a line parallel to the X direction through the intermediate portion 23. It is comprised as line symmetry.
  • the convex part 34 and the hole part 44 of the 1st plate-shaped part 31 are comprised symmetrically with respect to the convex part 36 and the hole part 46 similarly to FIG.
  • the fin 20 presses a plate material of aluminum or aluminum alloy to form the first plate portion 31 and the second plate portion 32 into a corrugated shape at the same time as each protrusion 34. , 35, 36, 37 and holes 44, 45, 46, 47 are formed. In this case, the strength in press working can be increased by forming the convex portions 34, 35, 36, and 37 and the hole portions 44, 45, 46, and 47 in line symmetry.
  • an angle formed by the convex portion 35 and the second plate-like portion 32 is defined as an angle ⁇ 1.
  • an angle formed by the convex portion 37 and the second plate-like portion 32 is an angle ⁇ 2.
  • the convex portion 35 and the convex portion 37 are inclined in directions opposite to each other, and the angle ⁇ 1 and the angle ⁇ 2 are the same size.
  • the angle ⁇ 1 and the angle ⁇ 2 are about 20 °, for example.
  • the width W1 of the hole 45 in the direction orthogonal to the convex portion 35 is, for example, about 0.73 mm.
  • the width W2 of the hole 47 in the direction orthogonal to the convex portion 37 is also about 0.73 mm, for example.
  • the arrangement pitch P1 of the protrusions 35 in the Y direction that is, the interval in the Y direction between the ends of the protrusions 35 protruding from the first surface 32a is, for example, about 3 mm.
  • the arrangement pitch P2 of the convex portions 37 in the Y direction is, for example, about 3 mm.
  • FIG. 9 is an explanatory diagram for explaining the flow of the refrigerant in the heat sink according to the first embodiment. As shown in FIG. 9, the refrigerant passes through the fins 20 in the order of the second fins 22, the intermediate part 23, and the first fins 21 along the flow direction DF ⁇ b> 1.
  • the refrigerant flowing through the first flow path F1 hits the convex portion 37 and is divided into the first direction DF1a and the second direction DF1b.
  • the first direction DF1a is the same direction as the flow direction DF1.
  • the second direction DF1b is a direction along the convex portion 37.
  • a part of the refrigerant flowing through the outermost first flow path F1 passes between the second plate-like portion 32 and the side wall 11e (see FIG. 2) through the hole 47.
  • the refrigerant flowing through the second flow path F2 hits the convex portion 36 and is divided into the first direction DF1a and the second direction DF1b.
  • a part of the refrigerant flowing through the second flow path F2 flows in the second direction DF1b, passes through the hole 46, and joins the adjacent first flow path F1.
  • the refrigerant flowing through the first flow path F1 hits the convex portion 34 and is divided into the first direction DF1a and the third direction DF1c.
  • the third direction DF1c is a direction along the convex portion 34. A part of the refrigerant flowing through the first flow path F1 flows in the third direction DF1c, and joins the adjacent second flow path F2 through the hole 44.
  • the refrigerant flowing through the second flow path F2 hits the convex portion 35 and is divided into the first direction DF1a and the third direction DF1c. A part of the refrigerant flowing through the second flow path F2 flows in the third direction DF1c and joins the adjacent first flow path F1 through the hole 45.
  • the first plate portion 31 and the second plate portion 32 are formed by dividing the plurality of first flow paths F1 and second flow paths F2.
  • the refrigerant hits the convex portions 34, 35, 36, and 37, passes through the holes 44, 45, 46, and 47, and is repeatedly divided and merged multiple times in the plurality of first flow paths F 1 and second flow paths F 2. While flowing.
  • coolant flow path becomes long.
  • coolant can contact the 1st plate-shaped part 31 and the 2nd plate-shaped part 32 favorably, and can improve cooling efficiency. Therefore, good cooling efficiency can be obtained without increasing the height H of the fins 20 (see FIG. 5). Therefore, the heat sink 1 is thin and has good cooling efficiency.
  • the shape, dimension, and number of the convex portions 34, 35, 36, and 37 and the hole portions 44, 45, 46, and 47 are merely examples, and can be changed as appropriate.
  • the shape, size, and number of the first plate portion 31 and the second plate portion 32, that is, the shape, size, and number of the peak portion 33a and the valley portion 33b are merely examples, and can be changed as appropriate.
  • FIG. 10 is a graph showing a relationship between the flow rate of the refrigerant and the temperature difference of the refrigerant in the heat sinks according to the example and the comparative example.
  • FIG. 11 is a schematic diagram illustrating fins of the heat sink according to the first comparative example.
  • FIG. 12 is a plan view schematically showing the configuration of the flat tube fin according to the second comparative example.
  • 13 is a cross-sectional view taken along the line GG in FIG.
  • FIG. 10 shows the temperature difference ( ⁇ Th) between the temperature of the refrigerant at the inlet 14 and the maximum temperature of the refrigerant between the inlet 14 and the outlet 15 for the heat sinks of Comparative Example 1, Comparative Example 2, and Example. -W) shows the result of analysis. That is, FIG. 10 shows that the smaller the temperature difference, the better the cooling efficiency.
  • Ansys ICEPAK v.17.0 manufactured by ANSYS was used.
  • a temperature difference was calculated when only one fin (for example, the first plate-like portion 31) was extracted and the refrigerant was flown through the entire fin.
  • a 50% LLC (Long Life Coolant) solution is used as the refrigerant.
  • FIG. 10 shows the analysis results when the flow rate is different from 5 L / min, 10 L / min, and 20 L / min.
  • the heat sink 1 according to the embodiment has the same configuration as that shown in FIGS.
  • a heat sink 201 of Comparative Example 1 shown in FIG. 11 has fins 220 in which a plate-like member not provided with a hole is bent into a wave shape several times in the flow direction DF1.
  • the heat sink 201 of the comparative example 1 has a wave shape along the flow direction DF1.
  • the flat tube fin 222 has a configuration in which a flat tube having three hollow portions 222 a is bent into a wave shape several times in the flow direction DF ⁇ b> 1 as in the first comparative example. is there.
  • the plate thickness of the fin 220 of the comparative example 1 is 0.9 mm
  • the plate thickness of the flat tube fin of the comparative example 2 is 0.6 mm
  • the plate thickness of the heat sink of the embodiment is 0.3 mm.
  • the heat sink 1 according to the example shows a smaller temperature difference than the heat sink 201 of the comparative example 1 and the heat sink 202 of the comparative example.
  • the temperature difference tends to decrease as the flow rate of the refrigerant increases.
  • the heat sink 1 according to the example has a small temperature difference as compared with Comparative Examples 1 and 2. Therefore, it was shown that the heat sink 1 according to the example has good cooling efficiency.
  • the heat sink 1 of the present embodiment is provided with a plurality of flow paths (first flow path F1 and second flow path F2) through which the refrigerant flows, and the refrigerant inlet 14 and outlet 15 are provided. And a plurality of plate-like portions (first plate-like portion 31 and second plate-like portion 32) provided in the hollow member 10 and extending along the first direction (the refrigerant flow direction DF1).
  • the plate 20 includes a plurality of protrusions 34, 35, 36, and 37 that protrude in a direction intersecting the first direction, and one surface of the plate portion.
  • a plurality of holes 44, 45, 46, 47 penetrating the other surface are provided.
  • the convex portions 34, 35, 36, 37 and the hole portions 44, 45, 46, 47 are provided in the first plate-like portion 31 and the second plate-like portion 32, the refrigerant Passing through the portions 44, 45, 46, 47, the plurality of first flow paths F1 and second flow paths F2 repeatedly flow and merge.
  • the flow of the refrigerant is likely to be turbulent, and the refrigerant can satisfactorily contact the first plate-like portion 31 and the second plate-like portion 32 to improve the cooling efficiency. That is, good cooling efficiency can be obtained without increasing the thickness of the hollow member 10. Therefore, the heat sink 1 can be thin and improve the cooling efficiency.
  • disconnects in the surface orthogonal to the 1st direction (flow direction DF1) is a wave shape. According to this, the contact area between the refrigerant and the fin 20 can be increased.
  • the hollow member 10 and the fin 20 are made of aluminum or an aluminum alloy. According to this, the heat conductivity of the heat sink 1 can be improved and the weight can be reduced. Further, the convex portions 34, 35, 36, and 37 and the hole portions 44, 45, 46, and 47 can be easily formed with high accuracy.
  • the fins 20 are joined to the inner surface of the hollow member 10 via the aluminum alloy brazing material 60. According to this, the heat conduction between the hollow member 10 and the fin 20 can be improved. For this reason, the cooling efficiency of the heat sink 1 can be improved. Furthermore, the operation
  • the hollow member 10 has a bottom portion 11 a that sandwiches the fin 20 in the height direction and a lid portion 12, and the plate-like portion includes a plurality of first plate-like portions 31 and a first plate-like shape. And a plurality of second plate-like portions 32 having different inclination angles from the portion 31.
  • the first plate-like portion 31 and the second plate-like portion 32 are alternately arranged in the direction (X direction) intersecting the first direction (flow direction DF1).
  • a first flow path F1 is formed by the second plate-like portion 32 adjacent to one of the first plate-like portions 31 and the bottom portion 11a, and is adjacent to the first plate-like portion 31 and the other of the first plate-like portions 31.
  • a second flow path F2 is formed by the matching second plate-like portion 32 and the lid portion 12.
  • a plurality of convex portions 34, 35, 36, 37 and a plurality of hole portions 44, 45, 46, 47 are provided on each of the first plate-like portion 31 and the second plate-like portion 32.
  • coolant and the fin 20 can be enlarged.
  • the refrigerant flows through the holes 44, 45, 46, and 47 by repeatedly joining and dividing in the first flow path F1 and the second flow path F2.
  • the flow of the refrigerant tends to be turbulent, and the refrigerant can satisfactorily contact the first plate-like portion 31 and the second plate-like portion 32 to improve the cooling efficiency.
  • the plurality of convex portions 34, 35, 36, 37 and the plurality of hole portions 44, 45, 46, 47 are arranged along the first direction (flow direction DF1).
  • the plate-like portion includes the first convex portion (the convex portions 34 and 35) and the intermediate portion 23 where the second convex portion (the convex portions 36 and 37) is not provided. . According to this, since the plate-like portion has the intermediate portion 23, the strength of the fin can be increased.
  • FIG. 14 is an exploded perspective view of the heat sink according to the second embodiment.
  • FIG. 15 is a plan view of a heat sink according to the second embodiment.
  • FIG. 16 is a cross-sectional view of the second plate-like portion according to the second embodiment.
  • FIG. 17 is an explanatory diagram for explaining the flow of refrigerant in the heat sink according to the second embodiment.
  • FIG. 16 is a cross-sectional view of the second plate-like portion 32 when cut at a location corresponding to the line EE in FIG.
  • symbol is attached
  • the first plate-like portion 31 of the fin 20 ⁇ / b> A is provided with a plurality of convex portions 34 and hole portions 44.
  • the second plate-like portion 32 is provided with a plurality of convex portions 35 and holes 45.
  • the plurality of convex portions 34 are arranged from one end to the other end of the first plate-like portion 31 in the Y direction.
  • the plurality of convex portions 35 are arranged from one end to the other end of the second plate-like portion 32 in the Y direction.
  • the convex part 34 and the convex part 35 are provided with the same inclination angle. That is, in the present embodiment, the intermediate portion 23 and the second fin 22 (see FIG. 2 and the like) of the first embodiment are not provided, and only the first fin 21 is configured.
  • the convex part 35 and the hole part 45 are provided with the fixed array pitch along the Y direction.
  • the structure similar to FIG. 8 can be employ
  • the refrigerant flowing through the first flow path F1 is divided into the first direction DF1a and the third direction DF1c by the convex portion.
  • the first direction DF1a is the same direction as the flow direction DF1.
  • the third direction DF1c is a direction along the convex portion 34. A part of the refrigerant flowing through the first flow path F1 flows in the third direction DF1c, and joins the adjacent second flow path F2 through the hole 44.
  • the refrigerant flowing through the second flow path F2 is divided into the first direction DF1a and the third direction DF1c by the convex portion 35.
  • a part of the refrigerant flowing through the second flow path F2 flows in the third direction DF1c and joins the adjacent first flow path F1 through the hole 45.
  • the refrigerant passes through the holes 44 and 45 and flows while repeating the merging and dividing a plurality of times in the plurality of first flow paths F1 and the second flow paths F2.
  • the refrigerant flow tends to be turbulent, and the refrigerant flow path becomes longer than when the convex portions 34 and 35 and the holes 44 and 45 are not provided.
  • the refrigerant can satisfactorily contact the first plate-like portion 31 and the second plate-like portion 32 to increase the cooling efficiency. Therefore, the heat sink 1A can improve the cooling performance.
  • FIG. 18 is a cross-sectional view showing a partially enlarged heat sink according to the third embodiment.
  • the first plate-like portions 31B and the second plate-like portions 32B are alternately arranged in the X direction.
  • the first plate-like portion 31B and the second plate-like portion 32B are formed in a straight line shape from one end to the other end in the Z direction in a cross-sectional view.
  • the first plate-like portion 31B and the second plate-like portion 32B are connected to form a peak portion 33Ba.
  • the first plate-like portion 31B and the second plate-like portion 32B are connected to form a valley portion 33Bb.
  • the peak part 33Ba and the valley part 33Bb are bent and formed, and the peak part 33a and the valley part 33b are alternately arranged in the X direction.
  • disconnecting in the surface orthogonal to the flow direction DF1 becomes zigzag shape.
  • the convex part 34 and the hole part 44 are provided in the first plate-like part 31B, and the convex part 35 and the hole part 45 are provided in the second plate-like part 32B.
  • the refrigerant tends to be turbulent by repeating the merging and dividing a plurality of times.
  • coolant contacts the 1st plate-shaped part 31B and the 2nd plate-shaped part 32B favorably, cooling efficiency can be improved.
  • FIG. 19 is a partially enlarged cross-sectional view of the heat sink according to the fourth embodiment.
  • the fin 20C includes the first plate-like portion 31C, the second plate-like portion 32C, the third plate-like portion 38, and the fourth plate-like portion 39.
  • the first plate-like portion 31C and the second plate-like portion 32C are provided in a direction perpendicular to the bottom portion 11a and are alternately arranged in the X direction.
  • the third plate-like portion 38 connects the end portions of the first plate-like portion 31C and the second plate-like portion 32C adjacent in the X direction on the side close to the lid portion 12.
  • the fourth plate portion 39 connects the end portions of the first plate portion 31C and the second plate portion 32C adjacent in the X direction on the side close to the bottom portion 11a.
  • the third plate-like portions 38 and the fourth plate-like portions 39 are alternately arranged in the X direction. Thereby, the cross section of fin 20C at the time of cut
  • the fourth plate-shaped portion 39 is joined to the inner surface of the bottom portion 11a of the main body portion 11 via the aluminum alloy brazing material 60. Therefore, since the joining area between the hollow member 10 and the fin 20C becomes large, heat conduction can be improved. For this reason, the cooling efficiency of the heat sink 1C can be increased.
  • the first flow path F1 is formed in a region surrounded by the first plate-like portion 31C, the second plate-like portion 32C, the third plate-like portion 38, and the bottom portion 11a.
  • the second flow path F ⁇ b> 2 is formed in a region surrounded by the first plate-like portion 31 ⁇ / b> C, the second plate-like portion 32 ⁇ / b> C, the fourth plate-like portion 39, and the lid portion 12.
  • the first flow path F1 and the second flow path F2 are provided adjacent to each other in the X direction via the first plate-shaped portion 31C or the second plate-shaped portion 32C.
  • the first plate-like portion 31C is provided with the convex portion 34 and the hole portion 44
  • the second plate-like portion 32C is provided with the convex portion 35 and the hole portion 45.
  • the hole 44 penetrates the first plate 31C from the first surface 31Ca to the second surface 31Cb.
  • the hole 45 penetrates from the first surface 32Ca to the second surface 32Cb of the second plate-like portion 32C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

冷媒が流動する複数の流路が内部に設けられ、冷媒の流入口と排出口とを備える中空部材と、中空部材の内部に設けられ、第1方向に沿う板状部を複数備えたフィンと、を有するヒートシンクであって、板状部には、第1方向と交差する方向に突出する複数の凸部と、板状部の一方の面と他方の面とを貫通する複数の孔部とが設けられている。

Description

ヒートシンク
 本発明は、ヒートシンクに関する。
 半導体素子を備える電子機器には熱が生じる。電子機器に生じる熱は、処理速度の低下又は誤作動の原因となることがある。このため、電子機器に生じる熱を除去するために、電子機器にはヒートシンクが取り付けられる。例えば特許文献1には、冷媒体が流通する流路にフィンを有する熱交換器が記載されている。
特開2015-138840号公報
 ところで、電子機器の高性能化に伴って発熱量が増加している。その一方で、電子機器には小型化が求められる。このため、冷却効率が高いヒートシンクが望まれていた。
 本発明は、冷却効率を向上させることができるヒートシンクを提供することを目的とする。
 本発明の一態様に係るヒートシンクは、冷媒が流動する複数の流路が内部に設けられ、前記冷媒の流入口と排出口とを備える中空部材と、前記中空部材の内部に設けられ、第1方向に沿う板状部を複数備えたフィンと、を有するヒートシンクであって、前記板状部には、前記第1方向と交差する方向に突出する複数の凸部と、前記板状部の一方の面と他方の面とを貫通する複数の孔部とが設けられている。
 これによれば、板状部に凸部と孔部とが設けられているため、冷媒は、凸部に当たるとともに孔部を通過して、板状部で区分けされた複数の流路において、合流と分断を繰り返して流れる。これにより、冷媒の流れが乱流になりやすくなり、冷媒が板状部に良好に接触して冷却効率を高めることができる。したがって、ヒートシンクは、冷却効率を向上させることができる。
 本発明の望ましい態様に係るヒートシンクにおいて、前記第1方向に直交する面で切断した場合の前記フィンの断面が波型形状である。これによれば、冷媒とフィンとの接触面積を大きくすることができる。
 本発明の望ましい態様に係るヒートシンクにおいて、前記中空部材及び前記フィンは、アルミニウム又はアルミニウム合金である。これによれば、ヒートシンクの熱伝導率が向上し、且つ軽量化を図ることができる。また、凸部及び孔部を精度よく、容易に形成することができる。
 本発明の望ましい態様に係るヒートシンクにおいて、前記フィンは、アルミニウム合金ろう材を介して前記中空部材の内側の面に接合される。これによれば、中空部材とフィンとの間の熱伝導を向上させることができる。このため、ヒートシンクの冷却効率を高めることができる。さらに、フィンを中空部材に接合させる作業が容易になる。
 本発明の望ましい態様に係るヒートシンクにおいて、前記中空部材は、前記フィンを高さ方向に挟む底部と、蓋部とを有し、前記板状部は、複数の第1板状部と、前記第1板状部と異なる傾斜角度を有する複数の第2板状部とを含み、前記第1板状部と、前記第2板状部とは、前記第1方向と交差する方向に交互に配列されており、前記第1板状部と、前記第1板状部の一方に隣り合う前記第2板状部と、前記底部とで、第1流路が形成され、前記第1板状部と、前記第1板状部の他方に隣り合う前記第2板状部と、前記蓋部とで、第2流路が形成されており、前記第1板状部及び前記第2板状部のそれぞれに、複数の前記凸部及び複数の前記孔部が設けられる。これにより、冷媒とフィンとの接触面積を大きくすることができる。また、冷媒は、孔部を通過して第1流路及び第2流路において、合流と分断を繰り返して流れる。これにより、冷媒の流れが乱流になりやすくなり、冷媒は板状部に良好に接触し、冷却効率を向上させることができる。
 本発明の望ましい態様に係るヒートシンクにおいて、複数の前記凸部及び複数の前記孔部は、前記第1方向に沿って配列されており、前記凸部は、前記板状部の表面に対して傾斜する第1凸部と、前記板状部の表面に垂直な方向に対して前記第1凸部と反対方向に傾斜する第2凸部と、を含み、前記板状部は、前記第1凸部及び前記第2凸部が設けられていない中間部を含む。これによれば、板状部は中間部を有するため、フィンの強度を高めることができる。
 本発明の望ましい態様に係るヒートシンクにおいて、複数の前記凸部及び複数の前記孔部は、前記第1方向に沿って配列されており、前記凸部は、前記板状部の表面に対して実質的に等しい傾斜角度を有して複数配列される。これによれば、複数の前記凸部及び複数の前記孔部を容易に形成することができる。
 本発明のヒートシンクによれば、冷却効率を向上させることができる。
図1は、第1実施形態に係るヒートシンクの斜視図である。 図2は、第1実施形態に係るヒートシンクの分解斜視図である。 図3は、第1実施形態に係るヒートシンクの一部の平面図である。 図4は、図1におけるA-A断面図である。 図5は、図4におけるD部拡大図である。 図6は、図2におけるB部拡大図である。 図7は、図2におけるC部拡大図である。 図8は、図5におけるE-E断面図である。 図9は、第1実施形態に係るヒートシンクの、冷媒の流れを説明するための説明図である。 図10は、実施例及び比較例に係るヒートシンクの、冷媒の流量と、冷媒の温度差との関係を示すグラフである。 図11は、比較例1に係るヒートシンクのフィンを示す模式図である。 図12は、比較例2に係る偏平管フィンの構成を模式的に示す平面図である。 図13は、図12におけるG-G断面図である。 図14は、第2実施形態に係るヒートシンクの分解斜視図である。 図15は、第2実施形態に係るヒートシンクの平面図である。 図16は、第2実施形態に係る第2板状部の断面図である。 図17は、第2実施形態に係るヒートシンクの、冷媒の流れを説明するための説明図である。 図18は、第3実施形態に係るヒートシンクを部分的に拡大して示す断面図である。 図19は、第4実施形態に係るヒートシンクを部分的に拡大して示す断面図である。
 本発明を実施するための実施形態について、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、一部の構成要素は用いられない場合もある。
(第1実施形態)
 図1は、第1実施形態に係るヒートシンクの斜視図である。図2は、第1実施形態に係るヒートシンクの分解斜視図である。図1に示すように、本実施形態のヒートシンク1は、中空部材10と、フィン20とを有する。本実施形態のヒートシンク1は、電子部品用の冷却装置である。例えば、中空部材10の一方の面を、半導体等の電子部品に密着固定して、中空部材10の内部空間13に冷媒となる液体(冷却液)を流通させる。これにより、半導体等の電子部品から発生する熱を熱交換により冷却する。
 図1及び図2に示すように、中空部材10は、本体部11と蓋部12とを有する。本体部11及び蓋部12は、平面視で矩形状である。本体部11と蓋部12とが接合されて、本体部11と蓋部12とで囲まれた内部に、内部空間13が形成される。
 図2に示すように、本体部11は、底部11aと、流入側壁部11bと、排出側壁部11c、側壁11d、11eとを含む。底部11aは、蓋部12と対向して配置される。流入側壁部11bと、排出側壁部11cと、側壁11d、11eとは、底部11aの周囲を囲んで配置される。流入側壁部11b及び排出側壁部11cは、それぞれ底部11aの外周の長辺に沿って設けられ、底部11aの表面に対して垂直な方向に設けられる。側壁11d、11eは、それぞれ底部11aの外周の短辺に沿って設けられ、底部11aの表面に対して垂直な方向に設けられる。蓋部12は、平板状であり、流入側壁部11b、排出側壁部11c、側壁11d、11eの上端部に接合される。
 ここで、以下の説明では、底部11aの表面に対して垂直な方向をZ方向とする。底部11aの長辺に沿った方向をX方向とする。X方向及びZ方向に対して垂直な方向をY方向とする。なお、これに限定されず、Y方向はX方向に対して90°以外の角度で交差してもよい。Z方向は、X方向及びY方向に対して90°以外の角度で交差してもよい。また、「平面視」とは、Z方向から見た場合をいう。
 流入側壁部11bには、冷媒を内部空間13(図1参照)に流入させるための流入口14が設けられる。また、排出側壁部11cは、流入側壁部11bに対してY方向に対向する。排出側壁部11cには、冷媒を内部空間13から外部に排出するための排出口15が設けられる。これにより、冷媒は、全体として流れ方向DF1に沿って流れる。
 本体部11及び蓋部12は、アルミニウム又はアルミニウム合金である。本体部11は、アルミニウム又はアルミニウム合金の板材をプレス加工することで一体に形成される。アルミニウム合金として、例えば熱伝導性に優れたJIS規格1000系アルミニウム(純Al)、熱伝導性と成形性、および強度に優れるJIS規格3000系アルミニウム(Al-Mn)、6000系アルミニウム(Al-Mg-Si)等を用いることができる。なお、中空部材10の構成はあくまで一例であり、他の形状であってもよい。例えば、中空部材10は、平面視で長円形状、楕円形状、多角形状、異形状等であってもよい。また、蓋部12は、平板状に限られず、本体部11と同様の形状であってもよい。また、蓋部12は、平面視で本体部11よりも大きい外形形状を有していてもよい。
 図1から図8を参照してフィン20の構成を詳細に説明する。図3は、第1実施形態に係るヒートシンクの一部の平面図である。図4は、図1におけるA-A断面図である。図5は、図4におけるD部拡大図である。図6は、図2におけるB部拡大図である。図7は、図2におけるC部拡大図である。図8は、図5におけるE-E断面図である。
 図1及び図2に示すように、フィン20は、中空部材10の内部空間13に設けられる。フィン20は、アルミニウム又はアルミニウム合金等で形成された、いわゆるコルゲートフィンである。
 また、図3に示すように、フィン20は、平面視で、全体として略矩形状の外形形状を有する。フィン20は、本体部11の、流入側壁部11b、排出側壁部11c及び側壁11d、11eで囲まれた領域の全体に配置される。なお、図3では、ヒートシンク1の一部の平面図、すなわち、蓋部12を除いた状態でのヒートシンク1の平面図を示す。
 図4及び図5に示すように、フィン20は、複数の第1板状部31と、複数の第2板状部32とを含む。第1板状部31及び第2板状部32は、流れ方向DF1(図2参照)に沿って設けられる。第1板状部31は底部11aの表面に対して傾斜しており、第2板状部32は、第1板状部31とは異なる傾斜角度を有する。第1板状部31と第2板状部32とが、X方向に交互に配置される。
 蓋部12に近い側で、第1板状部31と第2板状部32とが接続されて山部33aを形成する。また、底部11aに近い側で、第1板状部31と第2板状部32とが接続されて谷部33bを形成する。山部33a及び谷部33bは、それぞれ湾曲形状を有する。山部33aと谷部33bとが、X方向に交互に配列される。これにより、流れ方向DF1に対して直交する面で切断した場合のフィン20の断面は波型形状となる。第1板状部31と第2板状部32とは、断面視で、山部33aの頂点を通り底部11aの表面と垂直な線を対称線として、線対称に設けられる。なお、第1板状部31と第2板状部32とは、非対称に形成されていてもよい。本実施形態では、山部33a及び谷部33bが延びる方向に沿って、冷媒の流れ方向DF1が形成される。
 X方向における、山部33aと谷部33bとの間のピッチPは、例えば2.4mmである。また、Z方向における山部33aと谷部33bとの間の高さHは、例えば4.0mmである。つまり、本実施形態では、X方向に隣り合う山部33a同士の間隔よりも、高さHが小さい薄型形状となっている。また、第1板状部31及び第2板状部32の厚さtは、例えば0.3mmである。厚さtが、0.2mm未満であると、熱伝達量が低下し、必要な冷却性能が得られない可能性がある。さらに冷媒が液体の場合、冷媒の圧力で変形が発生する可能性がある。
 図5に示すように、フィン20の谷部33bは、アルミニウム合金ろう材60を介して本体部11の底部11aの内側の面に接合される。具体的には、アルミニウム合金ろう材60においては、銅が23質量%以上37質量%以下含まれ、シリコンが4質量%以上10質量%以下含まれ、残部がアルミニウムであることが好ましい。これにより、中空部材10とフィン20との間の熱伝導を向上させることができる。このため、ヒートシンク1の冷却効率を向上させることができる。さらに、フィン20を中空部材10に接合させる作業が容易になる。なお、フィン20は蓋部12の下側の面あるいは、底部11aの内側の面と蓋部12の下側の面の両方に接合しても良い。
 図5に示すように、第1板状部31と第2板状部32と底部11aとで囲まれた領域で、第1流路F1が形成される。また、第1板状部31と第2板状部32と蓋部12とで囲まれた領域で、第2流路F2が形成される。第1流路F1と第2流路F2とは、第1板状部31又は第2板状部32を介して、X方向に隣り合って設けられる。第1流路F1及び第2流路F2は、流れ方向DF1(図2参照)に平行な方向に設けられる。冷媒は第1流路F1及び第2流路F2を通過して排出口15に向かって流れる。
 図2に示すように、本実施形態において、第1板状部31には、凸部34、36が設けられている。第2板状部32にも同様に、凸部35、37が設けられている。図6、図7に示すように、第1板状部31の凸部34、36が設けられた位置に、それぞれ孔部44、46が設けられている。また、第2板状部32の凸部35、37が設けられた位置に、それぞれ孔部45、47が設けられている。
 図3に示すように、凸部34と凸部36は、Y方向に沿って複数配列されている。凸部35と凸部37は、それぞれ凸部34と凸部36とX方向に隣り合って配置される。凸部35と凸部37は、Y方向に沿って複数配列されている。ここで、フィン20のうち、凸部34及び凸部35が設けられた部分を第1フィン21とし、凸部36及び凸部37が設けられた部分を第2フィン22とする。また、凸部34、35、36、37が設けられていない部分を中間部23とする。第1フィン21と第2フィン22とは、中間部23を挟んでY方向に隣り合って配置される。
 図3に示すように、平面視で、凸部34と凸部35は、Y方向、すなわち流れ方向DF1(図2参照)に対して、同じ方向に傾斜して設けられる。また、凸部36と凸部37は、Y方向、すなわち流れ方向DF1(図2参照)に対して、凸部34及び凸部35とは反対方向に傾斜して設けられる。
 図5及び図6に示すように、凸部34は、第1板状部31の第1面31aから突出する部分と、第2面31bから突出する部分とを含む。ここで、第1面31aは、蓋部12と対向する面であり、第2面31bは、第1面31aと反対側の面であり、底部11aと対向する面である。孔部44は、凸部34に沿って、第1面31aから第2面31bまで貫通して設けられる。
 同様に、凸部35は、第2板状部32の第1面32aから突出する部分と、第2面32bから突出する部分とを含む。ここで、第1面32aは、蓋部12と対向する面であり、第2面32bは、第1面32aと反対側の面であり、底部11aと対向する面である。孔部45は、凸部35に沿って、第1面32aから第2面32bまで貫通して設けられる。
 図7に示すように、第2フィン22においても、第1板状部31の凸部36が設けられた箇所に孔部46が形成される。また、第2板状部32の凸部37が設けられた箇所に孔部47が形成される。孔部46は、第1板状部31を貫通して設けられる。また、孔部47は、第2板状部32を貫通して設けられる。
 図8は、第2板状部32を長手方向(Y方向)に沿って切断したときの断面図である。図8に示すように第1フィン21の凸部35及び孔部45は、第2フィン22の凸部37及び孔部47に対して、中間部23を通りX方向に平行な線を対称軸として線対称に構成されている。なお、第1板状部31の凸部34及び孔部44は、凸部36及び孔部46に対して図8と同様に線対称に構成されている。
 本実施形態では、フィン20は、アルミニウム又はアルミニウム合金の板材をプレス加工することで、第1板状部31及び第2板状部32を波型形状に形成する工程と同時に、各凸部34、35、36、37及び孔部44、45、46、47が形成される。この場合、各凸部34、35、36、37及び孔部44、45、46、47を線対称に形成することで、プレス加工における強度を高めることができる。
 ここで、凸部35と第2板状部32とがなす角度を角度θ1とする。また、凸部37と第2板状部32とがなす角度を角度θ2とする。凸部35と凸部37とは互いに反対方向に傾斜しており、角度θ1と角度θ2とは同じ大きさである。角度θ1及び角度θ2は、、例えば約20°である。また、孔部45の、凸部35と直交する方向の幅W1は、例えば約0.73mmである。孔部47の、凸部37と直交する方向の幅W2も、例えば約0.73mmである。凸部35の、Y方向の配列ピッチP1、すなわち、第1面32aから突出する凸部35の端部どうしのY方向の間隔は、例えば約3mm程度である。同様に凸部37の、Y方向の配列ピッチP2は、例えば約3mm程度である。
 図9は、第1実施形態に係るヒートシンクの、冷媒の流れを説明するための説明図である。図9に示すように、冷媒は、流れ方向DF1に沿って、第2フィン22、中間部23、第1フィン21の順にフィン20を通過する。
 第2フィン22において、第1流路F1を流れる冷媒は、凸部37に当たって第1方向DF1aと、第2方向DF1bとに分断される。第1方向DF1aは、流れ方向DF1と同じ方向である。また、第2方向DF1bは、凸部37に沿った方向である。第1流路F1を流れる冷媒の一部は、第2方向DF1bに流れ、孔部47を通過して隣の第2流路F2に合流する。なお、最も外側の第1流路F1を流れる冷媒の一部は、孔部47を通って第2板状部32と、側壁11e(図2参照)との間を通過する。
 また、第2フィン22において、第2流路F2を流れる冷媒は、凸部36に当たって第1方向DF1aと、第2方向DF1bとに分断される。第2流路F2を流れる冷媒の一部は、第2方向DF1bに流れて、孔部46を通過して隣の第1流路F1に合流する。
 第1フィン21において、第1流路F1を流れる冷媒は、凸部34に当たって第1方向DF1aと、第3方向DF1cとに分断される。第3方向DF1cは、凸部34に沿った方向である。第1流路F1を流れる冷媒の一部は、第3方向DF1cに流れ、孔部44を通って隣の第2流路F2に合流する。
 また、第1フィン21において、第2流路F2を流れる冷媒は、凸部35に当たって第1方向DF1aと、第3方向DF1cとに分断される。第2流路F2を流れる冷媒の一部は、第3方向DF1cに流れ、孔部45を通って隣の第1流路F1に合流する。
 このように、第1板状部31及び第2板状部32により、複数の第1流路F1及び第2流路F2が区分けされて形成される。冷媒は、凸部34、35、36、37に当たるとともに、孔部44、45、46、47を通過し、複数の第1流路F1及び第2流路F2において、複数回分断と合流を繰り返しつつ流れる。これにより、凸部34、35、36、37及び孔部44、45、46、47を設けない場合に比べて、冷媒の流通経路が長くなる。このため、冷媒は第1板状部31及び第2板状部32に良好に接触し冷却効率を高めることができる。したがって、フィン20の高さH(図5参照)を高くしなくても、良好な冷却効率が得られる。したがって、ヒートシンク1は、薄型化を図るとともに良好な冷却効率を有する。
 なお、凸部34、35、36、37及び孔部44、45、46、47の形状、寸法、数は、あくまで一例であり、適宜変更することができる。第1板状部31及び第2板状部32の形状、寸法、数、つまり、山部33a及び谷部33bの形状、寸法、数は、あくまで一例であり、適宜変更することができる。
(実施例)
 図10は、実施例及び比較例に係るヒートシンクの、冷媒の流量と、冷媒の温度差との関係を示すグラフである。図11は、比較例1に係るヒートシンクのフィンを示す模式図である。図12は、比較例2に係る偏平管フィンの構成を模式的に示す平面図である。図13は、図12におけるG-G断面図である。
 図10は、比較例1、比較例2及び実施例に係るヒートシンクについて、流入口14での冷媒の温度と、流入口14から排出口15までの間の冷媒の最高温度との温度差(ΔTh-w)を解析した結果を示している。つまり、図10において、温度差が小さいほど良好な冷却効率が得られることを示す。解析プログラムとしてはANSYS社製の電子機器熱流体解析ツールAnsys ICEPAK v.17.0を用いた。解析では、1つのフィン(例えば第1板状部31)のみ抜き取ってフィン全体に冷媒を流したときの温度差を計算した。冷媒として、LLC(ロングライフクーラント)50%溶液を用いている。図10では、流量を5L/min、10L/min、20L/minと異ならせた場合の解析結果をそれぞれ示している。
 実施例に係るヒートシンク1は、図1から図9に示したものと同様の構成である。図11に示す比較例1のヒートシンク201は、孔部が設けられていない板状部材を、流れ方向DF1に何重にも波型に屈曲させたフィン220を有する。図11に示すように、比較例1のヒートシンク201は、流れ方向DF1に沿って波型となっている。図12及び図13に示すように、偏平管フィン222は、中空部222aを3か所有する偏平管を、比較例1のように流れ方向DF1に何重にも波型に屈曲させた構成である。ここで、比較例1のフィン220の板厚は0.9mmであり、比較例2の偏平管フィンの板厚は0.6mmであり、実施例のヒートシンクの板厚は0.3mmである。
 図10に示すように、実施例に係るヒートシンク1は、比較例1のヒートシンク201及び比較例のヒートシンク202に比べて小さい温度差を示している。実施例及び比較例1、2は、いずれも冷媒の流量が大きくなるにしたがって、温度差が小さくなる傾向を示す。冷媒の流量が5L/minと小さい場合でも、冷媒の流量が20L/minと大きい場合でも、実施例に係るヒートシンク1は比較例1、2に比べて小さい温度差となっている。したがって、実施例に係るヒートシンク1は、良好な冷却効率を有することが示された。
 以上説明したように、本実施形態のヒートシンク1は、冷媒が流動する複数の流路(第1流路F1及び第2流路F2)が内部に設けられ、冷媒の流入口14と排出口15とを備える中空部材10と、中空部材10の内部に設けられ、第1方向(冷媒の流れ方向DF1)に沿う板状部(第1板状部31及び第2板状部32)を複数備えたフィン20と、を有するヒートシンク1であって、板状部には、第1方向と交差する方向に突出する複数の凸部34、35、36、37と、板状部の一方の面と他方の面とを貫通する複数の孔部44、45、46、47とが設けられている。
 これによれば、第1板状部31及び第2板状部32に凸部34、35、36、37と孔部44、45、46、47とが設けられているため、冷媒は、孔部44、45、46、47を通過して、複数の第1流路F1及び第2流路F2において、合流と分断を繰り返して流れる。これにより、冷媒の流れが乱流になりやすくなり、冷媒は第1板状部31及び第2板状部32に良好に接触し冷却効率を向上させることができる。すなわち、中空部材10の厚みを大きくしなくても、良好な冷却効率が得られる。したがって、ヒートシンク1は、薄型化を図るとともに冷却効率を向上させることができる。
 また、ヒートシンク1において、第1方向(流れ方向DF1)に直交する面で切断した場合のフィン20の断面が波型形状である。これによれば、冷媒とフィン20との接触面積を大きくすることができる。
 また、ヒートシンク1において、中空部材10及びフィン20は、アルミニウム又はアルミニウム合金である。これによれば、ヒートシンク1の熱伝導率が向上し、且つ軽量化を図ることができる。また、凸部34、35、36、37及び孔部44、45、46、47を精度よく、容易に形成することができる。
 また、ヒートシンク1において、フィン20は、アルミニウム合金ろう材60を介して中空部材10の内側の面に接合される。これによれば、中空部材10とフィン20との間の熱伝導を向上させることができる。このため、ヒートシンク1の冷却効率を向上させることができる。さらに、フィン20を中空部材10に接合させる作業が容易になる。
 また、ヒートシンク1において、中空部材10は、フィン20を高さ方向に挟む底部11aと、蓋部12とを有し、板状部は、複数の第1板状部31と、第1板状部31と異なる傾斜角度を有する複数の第2板状部32とを含む。第1板状部31と、第2板状部32とは、第1方向(流れ方向DF1)と交差する方向(X方向)に交互に配列されており、第1板状部31と、第1板状部31の一方に隣り合う第2板状部32と、底部11aとで、第1流路F1が形成され、第1板状部31と、第1板状部31の他方に隣り合う第2板状部32と、蓋部12とで、第2流路F2が形成される。第1板状部31及び第2板状部32のそれぞれに、複数の凸部34、35、36、37及び複数の孔部44、45、46、47が設けられる。これにより、冷媒とフィン20との接触面積を大きくすることができる。また、冷媒は、孔部44、45、46、47を通過して第1流路F1及び第2流路F2において、合流と分断を繰り返して流れる。これにより、冷媒の流れが乱流になりやすくなり、冷媒は第1板状部31及び第2板状部32に良好に接触し、冷却効率を向上させることができる。
 また、ヒートシンク1において、複数の凸部34、35、36、37及び複数の孔部44、45、46、47は、第1方向(流れ方向DF1)に沿って配列されており、凸部は、板状部の表面に対して傾斜する第1凸部(凸部34、35)と、板状部の表面に垂直な方向に対して第1凸部と反対方向に傾斜する第2凸部(凸部36、37)と、を含み、板状部は、第1凸部(凸部34、35)及び第2凸部(凸部36、37)が設けられていない中間部23を含む。これによれば、板状部は中間部23を有するため、フィンの強度を高めることができる。
(第2実施形態)
 図14は、第2実施形態に係るヒートシンクの分解斜視図である。図15は、第2実施形態に係るヒートシンクの平面図である。図16は、第2実施形態に係る第2板状部の断面図である。図17は、第2実施形態に係るヒートシンクの、冷媒の流れを説明するための説明図である。図16は、図5のE-E線に相当する箇所で切断したときの第2板状部32の断面図を示す。なお、上述した第1実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
 図14に示すように、本実施形態のヒートシンク1Aにおいて、フィン20Aの第1板状部31には複数の凸部34及び孔部44が設けられる。また、第2板状部32には複数の凸部35及び孔部45が設けられる。図14及び図15に示すように、凸部34は、第1板状部31のY方向の一端から他端に亘って複数配列される。また、凸部35は、第2板状部32のY方向の一端から他端に亘って複数配列される。凸部34及び凸部35は、同じ傾斜角度を有して設けられる。つまり、本実施形態では、第1実施形態の中間部23及び第2フィン22(図2等参照)が設けられず、第1フィン21のみで構成される。
 図16に示すように、第2板状部32において、凸部35及び孔部45は、Y方向に沿って一定の配列ピッチで複数設けられる。なお、凸部35及び孔部45の角度や、配列ピッチ等は、図8と同様の構成を採用することができる。
 図17に示すように、第1流路F1を流れる冷媒は、凸部34により第1方向DF1aと、第3方向DF1cとに分断される。第1方向DF1aは、流れ方向DF1と同じ方向である。第3方向DF1cは、凸部34に沿った方向である。第1流路F1を流れる冷媒の一部は、第3方向DF1cに流れ、孔部44を通って隣の第2流路F2に合流する。
 また、第2流路F2を流れる冷媒は、凸部35により第1方向DF1aと、第3方向DF1cとに分断される。第2流路F2を流れる冷媒の一部は、第3方向DF1cに流れ、孔部45を通って隣の第1流路F1に合流する。
 このように、本実施形態においても、冷媒は、孔部44、45を通過して、複数の第1流路F1及び第2流路F2において、複数回合流と分断を繰り返しつつ流れる。これにより、冷媒の流れが乱流になりやすくなり、凸部34、35及び孔部44、45を設けない場合に比べて、冷媒の流通経路が長くなる。冷媒は第1板状部31及び第2板状部32に良好に接触し冷却効率を高めることができる。したがって、ヒートシンク1Aは冷却性能を向上させることができる。
(第3実施形態)
 図18は、第3実施形態に係るヒートシンクを部分的に拡大して示す断面図である。図18に示すように、本実施形態のヒートシンク1Bにおいて、第1板状部31Bと第2板状部32BとがX方向に交互に配置される。第1板状部31B及び第2板状部32Bは、断面視で、Z方向の一端から他端まで直線状に形成される。蓋部12に近い側で、第1板状部31Bと第2板状部32Bとが接続されて山部33Baを形成する。また、底部11aに近い側で、第1板状部31Bと第2板状部32Bとが接続されて谷部33Bbを形成する。山部33Ba及び谷部33Bbは、それぞれ折れ曲がって形成されており、山部33aと谷部33bとが、X方向に交互に配列される。これにより、流れ方向DF1に対して直交する面で切断した場合のフィン20Bの断面はジグザグ形状となる。
 本実施形態においても、第1板状部31Bに凸部34及び孔部44が設けられ、第2板状部32Bに凸部35及び孔部45が設けられる。これにより、ヒートシンク1Bにおいて、冷媒は、複数回合流と分断を繰り返すことで冷媒の流れが乱流になりやすくなる。これにより、冷媒が第1板状部31B及び第2板状部32Bに良好に接触するため、冷却効率を向上させることができる。
(第4実施形態)
 図19は、第4実施形態に係るヒートシンクを部分的に拡大して示す断面図である。図19に示すように、本実施形態のヒートシンク1Cにおいて、フィン20Cは、第1板状部31Cと、第2板状部32Cと、第3板状部38と、第4板状部39とを有する。第1板状部31Cと、第2板状部32Cとは、底部11aに対して垂直な方向に設けられており、X方向に交互に配置される。第3板状部38は、X方向に隣り合う第1板状部31Cと第2板状部32Cとの、蓋部12に近い側の端部どうしを接続する。第4板状部39は、X方向に隣り合う第1板状部31Cと第2板状部32Cとの、底部11aに近い側の端部どうしを接続する。第3板状部38と第4板状部39とは、X方向に交互に配置される。これにより、流れ方向DF1に対して直交する面で切断した場合のフィン20Cの断面はミアンダ形状となる。
 本実施形態では、第4板状部39は、アルミニウム合金ろう材60を介して本体部11の底部11aの内側の面に接合される。これにより、中空部材10とフィン20Cとの間の接合面積が大きくなるため、熱伝導を向上させることができる。このため、ヒートシンク1Cの冷却効率を高めることができる。
 図19に示すように、第1板状部31Cと、第2板状部32Cと、第3板状部38と、底部11aとで囲まれた領域で、第1流路F1が形成される。また、第1板状部31Cと、第2板状部32Cと、第4板状部39と、蓋部12とで囲まれた領域で、第2流路F2が形成される。第1流路F1と第2流路F2とは、第1板状部31C又は第2板状部32Cを介して、X方向に隣り合って設けられる。
 本実施形態においても、第1板状部31Cに凸部34及び孔部44が設けられ、第2板状部32Cに凸部35及び孔部45が設けられる。孔部44は、第1板状部31Cの第1面31Caから第2面31Cbまで貫通している。孔部45は、第2板状部32Cの第1面32Caから第2面32Cbまで貫通している。これにより、ヒートシンク1Cにおいて、冷媒が複数回、合流と分断を繰り返すことで第1板状部31C及び第2板状部32Cに良好に接触するため、良好な冷却効率が得られる。
 1、1A ヒートシンク
 10 中空部材
 11 本体部
 11a 底部
 11b 流入側壁部
 11c 排出側壁部
 11d、11e 側壁
 12 蓋部
 13 内部空間
 14 流入口
 15 排出口
 20 フィン
 21 第1フィン
 22 第2フィン
 23 中間部
 31、31B 第1板状部
 31a、32a 第1面
 31b、32b 第2面
 32、32B 第2板状部
 33a、33Ba 山部
 33b、33Bb 谷部
 34、35、36、37 凸部
 38 第3板状部
 39 第4板状部
 44、45、46、47 孔部
 60 アルミニウム合金ろう材
 DF1 流れ方向
 DF1a 第1方向
 DF1b 第2方向
 DF1c 第3方向
 F1 第1流路
 F2 第2流路

Claims (7)

  1.  冷媒が流動する複数の流路が内部に設けられ、前記冷媒の流入口と排出口とを備える中空部材と、
     前記中空部材の内部に設けられ、第1方向に沿う板状部を複数備えたフィンと、を有するヒートシンクであって、
     前記板状部には、前記第1方向と交差する方向に突出する複数の凸部と、前記板状部の一方の面と他方の面とを貫通する複数の孔部とが設けられているヒートシンク。
  2.  前記第1方向に直交する面で切断した場合の前記フィンの断面が波型形状である請求項1に記載のヒートシンク。
  3.  前記中空部材及び前記フィンは、アルミニウム又はアルミニウム合金である請求項1又は請求項2に記載のヒートシンク。
  4.  前記フィンは、アルミニウム合金ろう材を介して前記中空部材の内側の面に接合される請求項1から請求項3のいずれか1項に記載のヒートシンク。
  5.  前記中空部材は、前記フィンを高さ方向に挟む底部と、蓋部とを有し、
     前記板状部は、複数の第1板状部と、前記第1板状部と異なる傾斜角度を有する複数の第2板状部とを含み、
     前記第1板状部と、前記第2板状部とは、前記第1方向と交差する方向に交互に配列されており、
     前記第1板状部と、前記第1板状部の一方に隣り合う前記第2板状部と、前記底部とで、第1流路が形成され、
     前記第1板状部と、前記第1板状部の他方に隣り合う前記第2板状部と、前記蓋部とで、第2流路が形成されており、
     前記第1板状部及び前記第2板状部のそれぞれに、複数の前記凸部及び複数の前記孔部が設けられる請求項1から請求項4のいずれか1項に記載のヒートシンク。
  6.  複数の前記凸部及び複数の前記孔部は、前記第1方向に沿って配列されており、
     前記凸部は、前記板状部の表面に対して傾斜する第1凸部と、前記板状部の表面に垂直な方向に対して前記第1凸部と反対方向に傾斜する第2凸部と、を含み、
     前記板状部は、前記第1凸部及び前記第2凸部が設けられていない中間部を含む請求項1から請求項5のいずれか1項に記載のヒートシンク。
  7.  複数の前記凸部及び複数の前記孔部は、前記第1方向に沿って配列されており、
     前記凸部は、前記板状部の表面に対して実質的に等しい傾斜角度を有して複数配列される請求項1から請求項5のいずれか1項に記載のヒートシンク。
PCT/JP2019/013381 2018-03-30 2019-03-27 ヒートシンク WO2019189477A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-069216 2018-03-30
JP2018069216A JP2021106176A (ja) 2018-03-30 2018-03-30 ヒートシンク

Publications (1)

Publication Number Publication Date
WO2019189477A1 true WO2019189477A1 (ja) 2019-10-03

Family

ID=68059148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013381 WO2019189477A1 (ja) 2018-03-30 2019-03-27 ヒートシンク

Country Status (2)

Country Link
JP (1) JP2021106176A (ja)
WO (1) WO2019189477A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051989A1 (de) * 2021-09-30 2023-04-06 Robert Bosch Gmbh Kühler zum kühlen einer leistungselektronik
TWI817573B (zh) * 2022-06-21 2023-10-01 艾姆勒科技股份有限公司 具有高密度散熱鰭片的兩相浸沒式散熱結構

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198896A (ja) * 1987-10-12 1989-04-17 Nippon Denso Co Ltd 熱交換器
JPH0536888U (ja) * 1991-10-15 1993-05-18 東洋アルミニウム株式会社 放熱器
JP2002033421A (ja) * 2000-07-14 2002-01-31 Shinozaki Seisakusho:Kk 放熱器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198896A (ja) * 1987-10-12 1989-04-17 Nippon Denso Co Ltd 熱交換器
JPH0536888U (ja) * 1991-10-15 1993-05-18 東洋アルミニウム株式会社 放熱器
JP2002033421A (ja) * 2000-07-14 2002-01-31 Shinozaki Seisakusho:Kk 放熱器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051989A1 (de) * 2021-09-30 2023-04-06 Robert Bosch Gmbh Kühler zum kühlen einer leistungselektronik
TWI817573B (zh) * 2022-06-21 2023-10-01 艾姆勒科技股份有限公司 具有高密度散熱鰭片的兩相浸沒式散熱結構

Also Published As

Publication number Publication date
JP2021106176A (ja) 2021-07-26

Similar Documents

Publication Publication Date Title
US7426956B2 (en) Heat dissipating apparatus
JP5901343B2 (ja) 冷却器及び冷却装置
JP5342392B2 (ja) 冷却装置
US7249626B2 (en) Heat dissipation device
US7017655B2 (en) Forced fluid heat sink
JP4586772B2 (ja) 冷却構造及び冷却構造の製造方法
US7409983B2 (en) Heat dissipating apparatus
JP6738226B2 (ja) 冷却装置
US20080023176A1 (en) Heat dissipation device
US7204303B2 (en) Flat tube cold plate assembly
WO2019189477A1 (ja) ヒートシンク
JP2011071386A5 (ja)
US20050039899A1 (en) Turbulator for heat exchanger
JP2012169429A (ja) 熱交換器
CN111868923B (zh) 液冷式冷却器
JP7000777B2 (ja) 熱交換器
CN216563103U (zh) 散热组件、散热器、半导体模块及车辆
JP5556691B2 (ja) 熱交換器
JP6614068B2 (ja) 熱交換器
JP2019054224A (ja) 液冷式冷却装置
CN112146484B (zh) 板式换热器
JP2010109016A (ja) 冷却器
JP4128935B2 (ja) 水冷式ヒートシンク
JP4522725B2 (ja) ヒートシンク
CN215819168U (zh) 散热器、热交换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777671

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19777671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP