WO2019189458A1 - Latent curing catalyst for epoxy resin and epoxy resin composition using same - Google Patents

Latent curing catalyst for epoxy resin and epoxy resin composition using same Download PDF

Info

Publication number
WO2019189458A1
WO2019189458A1 PCT/JP2019/013355 JP2019013355W WO2019189458A1 WO 2019189458 A1 WO2019189458 A1 WO 2019189458A1 JP 2019013355 W JP2019013355 W JP 2019013355W WO 2019189458 A1 WO2019189458 A1 WO 2019189458A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl
epoxy resin
monomer
curing catalyst
vinyl monomer
Prior art date
Application number
PCT/JP2019/013355
Other languages
French (fr)
Japanese (ja)
Inventor
一浩 宮内
克司 菅
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to JP2020509249A priority Critical patent/JP7191936B2/en
Publication of WO2019189458A1 publication Critical patent/WO2019189458A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a latent curing catalyst used by blending with an epoxy resin, and an epoxy resin composition comprising the same.
  • the epoxy resin is a compound having two or more highly reactive epoxy groups in the molecule, and is a curable resin that forms a crosslinked network by the reaction of the epoxy group.
  • Epoxy resin usually contains a curing agent such as acid anhydride or polyamine and a curing catalyst (also called curing accelerator) such as phosphine, tertiary amine or imidazole to form an epoxy resin composition, which is then heated. Curing proceeds with.
  • a curing agent such as acid anhydride or polyamine
  • a curing catalyst also called curing accelerator
  • phosphine phosphine
  • tertiary amine tertiary amine or imidazole
  • the epoxy resin composition since a curing catalyst easily starts curing when it comes into contact with an epoxy resin, it is widely practiced to store the epoxy resin composition as a two-pack type composition in which the main agent and the auxiliary agent are separated.
  • the two-pack type it is necessary to measure the required amounts of the main agent and the auxiliary agent immediately before use, and then mix both agents, which is complicated in work.
  • the composition is a one-pack type while avoiding complexity, it is necessary to suppress the progress of the curing reaction by storing it in a frozen or refrigerated state, which is disadvantageous in terms of cost.
  • JP-A-8-73566 JP 2012-136650 A Japanese Unexamined Patent Publication No. 2016-35056 Japanese Unexamined Patent Publication No. 2016-35057 JP 2016-153475 A
  • the encapsulated curing catalyst can be stored in a mixed state.
  • the commercially available encapsulated curing catalyst is a coarse particle having a particle size of about 50 ⁇ m, and has a very narrow gap between bumps / bumps, chips / chips, chips / substrates, etc.
  • the penetration into such a gap is poor and it is not suitable for use.
  • FO-WLP fan-out wafer level package
  • a rewiring layer is formed not only on the lower surface of the semiconductor chip but also on the lower surface of the sealing material projecting out from there, and bumps (I / O terminals) are formed. It is a structure to arrange. In order to form a thin rewiring layer, the smoothness of the lower surface of the chip and the lower surface of the sealing material, which are the coating surfaces, is important.
  • the particle size of the encapsulated curing catalyst is simply reduced, the miscibility with the epoxy resin may deteriorate, or the storage stability, which is the original purpose, may be reduced. Further, when the storage stability of the encapsulated curing catalyst is increased, the reactivity with the epoxy resin may be lowered, that is, there is a problem that good curability of the epoxy resin composition cannot be achieved.
  • the encapsulated curing catalyst is excellent in miscibility with the epoxy resin, but does not proceed with the curing reaction at a temperature lower than the predetermined curing temperature, and exhibits high storage stability, while being heated to the predetermined curing temperature. It is required that the curing reaction proceeds rapidly.
  • the present invention is an epoxy resin having a small particle size, excellent miscibility with an epoxy resin, high storage stability in a composition with the epoxy resin, and excellent curability in view of the above-mentioned present situation. It is an object of the present invention to provide a latent curing catalyst and an epoxy resin composition containing the same.
  • the first aspect of the present invention is a polymer comprising a monomer component containing a core containing a phosphorus curing catalyst and a vinyl polymer, a first vinyl monomer and a first crosslinkable vinyl monomer, or a first polymer.
  • the particle size is 0.01 to 50 ⁇ m, and the weight ratio of the second crosslinkable vinyl monomer in the second vinyl resin is greater than the weight ratio of the first crosslinkable vinyl monomer in the first vinyl resin. It is related with the latent curing catalyst for epoxy resins.
  • the first crosslinkable vinyl monomer and the second crosslinkable vinyl monomer have a (meth) acryl group.
  • the vinyl polymer contained in the core is a vinyl polymer having a crosslinked structure.
  • the weight ratio of the second crosslinkable vinyl monomer in the second vinyl resin is 50 to 100% by weight.
  • the amount of the second vinyl resin relative to 100 parts by weight of the first vinyl resin is 5 to 50 parts by weight.
  • a second aspect of the present invention is a method for producing a latent curing catalyst for an epoxy resin, in which a monomer component containing a vinyl monomer is polymerized by emulsion polymerization in the presence of a phosphorus curing catalyst to form a core.
  • a step of polymerizing a second crosslinkable vinyl monomer to form an outer shell layer covering the inner shell layer is performed in the presence of a monomer-soluble radical polymerization initiator.
  • the third invention relates to an epoxy resin composition containing an epoxy resin and the latent curing catalyst for epoxy resin according to the first invention.
  • the fourth aspect of the present invention is a cured product obtained by curing the epoxy resin composition according to the third aspect of the present invention.
  • the size of the convex part or the concave part on the surface of the cured product is 10 ⁇ m or less.
  • the fifth aspect of the present invention relates to a semiconductor device including the cured product according to the fourth aspect of the present invention as a sealing material.
  • the semiconductor device may have a gap of 100 ⁇ m or less, and the sealing material may enter the gap.
  • a rewiring layer may be formed on the surface of the sealing material.
  • the latent curing for epoxy resins has a small particle size, excellent miscibility with the epoxy resin, high storage stability in the composition with the epoxy resin, and excellent curability.
  • Catalyst, an epoxy resin composition containing the curing catalyst, an epoxy resin composition having extremely good penetration into the sandwiched gap and excellent fluidity, and surface smoothness obtained by heating the epoxy resin composition A cured product having excellent properties can be provided.
  • the epoxy resin composition of the present invention is a liquid composition
  • the viscosity immediately after preparation of the composition is low, and the viscosity hardly increases even after a lapse of time from preparation
  • the epoxy resin of the present invention When the composition is in the form of a solid sheet, the melt viscosity immediately after preparation of the composition is low, and the melt viscosity does not easily increase even after a lapse of time from preparation.
  • the melt viscosity immediately after preparation of the composition is low, and the melt viscosity does not easily increase even after a lapse of time from preparation.
  • an inorganic filler or the like there is an advantage that fluidity is good and penetration into a very narrow gap is good.
  • the latent curing catalyst for epoxy resin according to the present invention is in the form of particles having a layer structure consisting of at least three layers: a core, an inner shell layer covering the core, and an outer shell layer covering the inner shell layer. It is.
  • the core contains a phosphorus-based curing catalyst, thereby functioning as a curing catalyst for the epoxy resin.
  • the outer shell layer and the inner shell layer may be directly laminated, and it is not necessary to arrange a curing catalyst between both layers as in Patent Document 2.
  • the resin contained in the core, the inner shell layer, and the outer shell layer are all vinyl. Since the curing temperature of a general epoxy resin exceeds the glass transition temperature (Tg) of the vinyl resin, the vinyl resin is changed to a rubber state at the curing temperature, and the substance permeability of the capsule is greatly improved. Therefore, the epoxy resin flows into the capsule, and the phosphorus-based curing catalyst can be dissolved and washed out to the outside, or the phosphorus-based curing catalyst itself is spontaneously permeated through the capsule and released into the epoxy resin. . Furthermore, when the stress load on the capsule increases due to the above phenomenon or the capsule is thermally decomposed by heating, the capsule collapses, and the release rate of the phosphorus-based curing catalyst increases remarkably.
  • Tg glass transition temperature
  • the epoxy resin since the vinyl resin itself does not inhibit the curing reaction of the epoxy resin, the epoxy resin exhibits good curability at the curing temperature. On the other hand, at the storage temperature, since the vinyl resin is in a glass state, the substance permeability of the capsule is low, and the penetration of the epoxy resin into the capsule is suppressed. Furthermore, in the latent curing catalyst of the present invention, in addition to the above, the outer shell layer is composed of a highly cross-linked vinyl resin, so that the prevention of the epoxy resin from entering the capsule is extremely high. Therefore, high curability can be exhibited by heating to a predetermined temperature while exhibiting high storage stability below a predetermined temperature.
  • the outer shell layer of the latent curing catalyst of the present invention is composed of a highly crosslinked vinyl resin, only a weak cohesive force due to intermolecular force acts between the particles of the latent curing catalyst (long from the particle surface). Since there is no graft chain, aggregation due to entanglement is unlikely to occur). Therefore, in the combination of the particles and the epoxy resin, the aggregation of the particles is released and the particles are easily mixed with the epoxy resin.
  • the outer shell layer has a functional group such as an ester group
  • the miscibility is further improved by the interaction between the ester group on the particle surface and the epoxy resin. Therefore, the latent curing catalyst of the present invention is highly miscible with the epoxy resin, and can exhibit high curability when heated to a predetermined temperature while exhibiting high storage stability below a predetermined temperature.
  • the phosphorus-based curing catalyst contained in the core is not particularly limited as long as it is a curing catalyst containing phosphorus among curing catalysts that can be used as a curing catalyst for an epoxy resin.
  • Preferred are organic phosphine compounds, specifically, alkylphosphines such as ethylphosphine, propylphosphine and butylphosphine, and first phosphines such as phenylphosphine; dialkyls such as dimethylphosphine, diethylphosphine, dipropylphosphine and diamylphosphine.
  • Second phosphine such as phosphine, diphenylphosphine, methylphenylphosphine, ethylphenylphosphine; trialkylphosphine such as trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, tricyclohexylphosphine, triphenylphosphine, alkyldiphenylphosphine, dialkylphenyl Phosphine, tribenzylphosphine, tolylphosphine (tri-o-tolylphosphite , Tri-p-tolylphosphine, tri-m-tolylphosphine), tri-p-styrylphosphine, tris (2,6-dimethoxyphenyl) phosphine, tri-4-methylphenylphosphine, tri-4-methoxyphenylphosphine, Tertiary
  • the core contains a vinyl polymer in addition to a phosphorus curing catalyst.
  • a vinyl polymer in addition to a phosphorus curing catalyst.
  • the vinyl polymer in the core, it becomes possible to contain the phosphorus-based curing catalyst in the core, and the storage stability of the latent curing catalyst can be improved without lowering the curability. Further, the containment enables the subsequent formation of the inner shell layer.
  • the content of the vinyl polymer in the core is preferably 50 to 500 parts by weight, more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the phosphorus-based curing catalyst.
  • the content of the vinyl polymer in the core may be 50 to 5000 parts by weight with respect to 100 parts by weight of the phosphorus curing catalyst. It may be up to 4000 parts by weight.
  • the phosphorus curing catalyst cannot be dissolved in the vinyl monomer at the stage of adjusting the core component before the polymerization reaction to form the core, and the coarse phosphorus system
  • the curing catalyst may remain, and it may be difficult to contain the phosphorus-based curing catalyst in a minute core.
  • the catalyst may not be completely dissolved in the vinyl monomer at the stage of adjusting the core component before the polymerization reaction for forming the core, and a coarse catalyst may remain. In this case, a minute core cannot be formed.
  • the phosphorus-based curing catalyst is preferably dissolved in the vinyl-based monomer, but the phosphorus-based curing catalyst and the vinyl-based polymer are polymerized by the polymerization of the vinyl-based monomer.
  • the distribution state of the phosphorus-based curing catalyst is not particularly limited inside the core.
  • the core may be one in which a vinyl polymer and a phosphorus curing catalyst are compatible to form a single phase.
  • it may have a double structure in which a phosphorus-based curing catalyst is unevenly distributed in the center of the core and a vinyl polymer surrounds the periphery.
  • a so-called sea-island structure in which a discontinuous phase formed by aggregation of a phosphorus-based curing catalyst is dispersed may be formed.
  • the vinyl polymer and the phosphorus curing catalyst may form a co-continuous structure. Even before the polymerization reaction for forming the core, the phosphorus curing catalyst and the vinyl polymer are polymerized by the vinyl monomer, even if the phosphorus curing catalyst is dissolved in the vinyl monomer. Polymerization reaction induced phase separation may occur.
  • the vinyl polymer in the core is not particularly limited as long as it is a polymer obtained by polymerizing a monomer component containing a radical polymerizable vinyl monomer.
  • (meth) acrylic monomers are preferred.
  • examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid-n-propyl, isopropyl (meth) acrylate, (meth) acrylic acid- n-butyl, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth ) -N-heptyl acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, (Meth) acrylic acid al
  • the vinyl polymer contained in the core is not formed by polymerizing allyl glycidyl ether or glycidyl (meth) acrylate, and may not have a glycidyl group.
  • the vinyl polymer contained in the core may be a vinyl polymer having no cross-linked structure, but is preferably a vinyl polymer having a cross-linked structure (hereinafter also referred to as a cross-linked vinyl polymer). .
  • the crosslinked structure preferably has a low density (has a loose crosslinked structure). Since the vinyl polymer in the core has a cross-linked structure, it becomes possible to contain the phosphorus-based curing catalyst more reliably in the core, and further improve the storage stability of the latent curing catalyst. By making the structure low density, the phosphorus-based curing catalyst is easily released at the curing temperature.
  • the vinyl polymer may be produced by polymerizing the vinyl monomer and the crosslinkable vinyl monomer.
  • the crosslinkable vinyl monomer referred to in the present application is a crosslinkable vinyl monomer having two or more radical polymerizable vinyl groups per molecule and capable of radical polymerization together with the vinyl monomer. Specific examples of such a crosslinkable vinyl monomer include the same specific examples as the first crosslinkable vinyl monomer described later.
  • the crosslinkable vinyl monomer used in the core the same monomer as the first crosslinkable vinyl monomer may be used, or a different monomer may be used.
  • the crosslinkable vinyl monomer used in the core is preferably a monomer having one or more (meth) acrylic groups per molecule.
  • allyl acrylate, allyl methacrylate, or di-, tri-, or tetra- (meth) acrylate esters of polyhydric alcohols or polyphenols are more preferable, and allyl acrylate or methacrylic acid is preferred. Allyl acid is particularly preferred.
  • the amount of the crosslinkable vinyl monomer used in the core is preferably small, and specifically, the crosslinkable vinyl monomer in the crosslinkable vinyl polymer forming the core is used.
  • the weight ratio (weight ratio of the cross-linked vinyl monomer in the entire cross-linked vinyl polymer) is preferably 0.01 to 10% by weight, and more preferably 0.5 to 5% by weight.
  • the inner shell layer is a resin layer that covers the core, and is formed of a first vinyl resin.
  • the first vinyl resin is a polymer of a monomer component containing a first vinyl monomer and a first crosslinkable vinyl monomer, or a polymer of a first vinyl monomer. is there. That is, the first vinyl resin is a polymer having the first vinyl monomer as an essential monomer, and may be polymerized together with the first crosslinkable vinyl monomer which is an arbitrary monomer. Good. Among these, a polymer of a first vinyl monomer and a first crosslinkable vinyl monomer is preferable.
  • the first vinyl resin may be a vinyl resin having no acidic group.
  • the first vinyl monomer is not particularly limited as long as it is a monomer having one radical polymerizable vinyl group per molecule, and specifically, a (meth) acrylic monomer, an olefinic monomer Monomer, styrene monomer (eg, metachlorostyrene, parachlorostyrene, parafluorostyrene, paramethoxystyrene, metatertiary butoxystyrene, paratertiary butoxystyrene, paravinylbenzoic acid, paramethyl- ⁇ -methylstyrene) 1-ethynyl-4-fluorobenzene), vinyl ester monomer (formula: C ⁇ C— (C ⁇ O) —O—R), maleic acid monomer (maleic anhydride monomer) Including), maleimide monomers (eg, phenylmethanemaleimide), vinyl alcohol ester monomers (formula: C ⁇ C—O— (C ⁇ O) —R) (e
  • the monomers may use only 1 type and may use 2 or more types together. Of these monomers, (meth) acrylic monomers are preferred. As the (meth) acrylic monomer, those described above (specific examples are described in the place where (core) is described in detail) can be used. These (meth) acrylic monomers may be used alone or in combination of two or more.
  • the first vinyl resin is not formed by polymerizing allyl glycidyl ether or glycidyl (meth) acrylate, and may not have a glycidyl group.
  • the first crosslinkable vinyl monomer a crosslinkable vinyl monomer having two or more radical polymerizable vinyl groups in one molecule and capable of radical polymerization with the first vinyl monomer is used.
  • the first crosslinkable vinyl monomer include, for example, allyl acrylate, allyl methacrylate; aromatic polyfunctional vinyl monomers such as divinylbenzene, divinyltoluene, and trivinylbenzene; ethylene glycol di (meth) Acrylate, diethylene glycol (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butane Diol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate
  • the polymerizability with the first vinyl monomer is good and the first vinyl resin exhibits good capsule characteristics
  • one or more (meth) acrylic groups per molecule are more preferred.
  • Good capsule characteristics means that the capsule is in a glassy state during storage and exhibits low substance permeability, but at the curing temperature of the epoxy resin, the capsule becomes rubbery and exhibits high substance permeability, resulting in good capsule disintegration. That means.
  • a double bond having a high polymerizability with a (meth) acrylic monomer and the polymerizability is relatively low.
  • the monomer having both double bonds formed a linear polymer having the latter double bond as a graft chain by the polymerization reaction of the former double bond and the (meth) acrylic monomer.
  • the latter double bond is likely to contribute to the formation of cross-linking, and the degree of cross-linking can be achieved according to the formulation design.
  • allyl acrylate or allyl methacrylate is particularly preferable among the monomers having one or more (meth) acryl groups per molecule.
  • the weight ratio of the first crosslinkable vinyl monomer in the first vinyl resin (weight occupied by the first crosslinkable vinyl monomer in the entire first vinyl resin) The ratio is preferably 10 to 60% by weight, more preferably 15 to 40% by weight, and still more preferably 20 to 30% by weight. Further, the weight ratio of the first crosslinkable vinyl monomer in the first vinyl resin is preferably larger than the weight ratio of the crosslinkable vinyl monomer in the vinyl polymer forming the core. .
  • the outer shell layer is a resin layer that covers the inner shell layer, and is formed of a second vinyl resin.
  • the second vinyl resin is a polymer of a monomer component containing a second vinyl monomer and a second crosslinkable vinyl monomer, or is a polymer of the second crosslinkable vinyl monomer. It is a coalescence. That is, the second vinyl resin is a polymer having the second crosslinkable vinyl monomer as an essential monomer, and the second vinyl monomer is an optional monomer and the second crosslinkable vinyl It may be polymerized (copolymerized) together with the monomer or may not be polymerized (copolymerized).
  • the second vinyl resin may be a vinyl resin having no acidic group.
  • the second vinyl resin forming the outer shell layer has a cross-linked structure, it is possible to prevent the phosphorus-based curing catalyst of the core from leaking out of the particle, and the epoxy resin penetrates into the particle. Can be suppressed. Thereby, the storage stability of the latent curing catalyst can be enhanced.
  • the second vinyl monomer as long as it has one radical polymerizable vinyl group per molecule and can be radically polymerized with the second crosslinkable vinyl monomer, Specific examples include (meth) acrylic monomers, olefinic monomers, and styrene monomers (for example, metachlorostyrene, parachlorostyrene, parafluorostyrene, paramethoxystyrene, metatarsia).
  • the monomers may use only 1 type and may use 2 or more types together. Of these monomers, (meth) acrylic monomers are preferred. As the (meth) acrylic monomer, those described above can be used. These (meth) acrylic monomers may be used alone or in combination of two or more.
  • the second vinyl resin is not formed by polymerizing allyl glycidyl ether or glycidyl (meth) acrylate, and may not have a glycidyl group.
  • the second crosslinkable vinyl monomer a monomer having two or more radically polymerizable vinyl groups in one molecule can be used.
  • Specific examples of the second crosslinkable vinyl monomer include the same monomers as the first crosslinkable vinyl monomer described above, and the same monomers as the first crosslinkable vinyl monomer. May be used, or different monomers may be used.
  • the second crosslinkable vinyl monomer is preferably a monomer having one or more (meth) acryl groups per molecule.
  • Allyl acid, allyl methacrylate, or di-, tri-, or tetra- (meth) acrylic acid esters of polyhydric alcohols or polyhydric phenols are more preferred, and allyl acrylate or allyl methacrylate is particularly preferred.
  • the weight ratio of the second crosslinkable vinyl monomer in the second vinyl resin (weight occupied by the second crosslinkable vinyl monomer in the entire second vinyl resin) The ratio is preferably 60 to 100% by weight, more preferably 80 to 100% by weight, and still more preferably 90 to 99.9% by weight.
  • the weight ratio of the second crosslinkable vinyl monomer in the second vinyl resin is preferably larger than the weight ratio of the first crosslinkable vinyl monomer in the first vinyl resin.
  • the inner shell layer that uses a large amount of the crosslinkable vinyl monomer in the outer shell layer and uses a relatively small amount of the crosslinkable vinyl monomer inside or does not use the crosslinkable vinyl monomer. It is possible to form a shell layer having a high degree of cross-linking on the outermost side of the particles by suppressing the leakage of the phosphorus-based curing catalyst and the penetration of the epoxy resin as described above, and the latent curing catalyst. Can improve the storage stability.
  • the degree of crosslinking be increased in the order of the core, the inner shell layer, and the outer shell layer, that is, the crosslinkable vinyl monomer in the vinyl polymer forming the core.
  • the crosslinkable vinyl series in the order of the weight percentage of the body, the weight percentage of the first crosslinkable vinyl monomer in the first vinyl resin, and the weight percentage of the second crosslinkable vinyl monomer in the second vinyl resin.
  • the constitution is such that the weight ratio of the monomer is increased.
  • the weight ratio of the core described above, the first vinyl resin forming the inner shell layer, and the second vinyl resin forming the outer shell layer is not particularly limited.
  • the higher outer shell layer is preferably a thinner film than the inner shell layer.
  • the amount of the second vinyl resin relative to 100 parts by weight of the first vinyl resin is preferably 5 to 50 parts by weight, and more preferably 10 to 30 parts by weight.
  • the center of the particle is formed in the order of a low crosslinking density or an uncrosslinked core containing a phosphorus-based curing catalyst, a thick inner shell layer with a medium crosslinking density, and a thin outer shell layer with a high crosslinking density. It is preferable that a plurality of shell layers are formed outward from the core.
  • a structure in which gradation of the crosslinking density is provided in this way, and the inner shell layer is thick and the outer shell layer is thin is preferable. With such a structure, both excellent stability during storage and excellent curability during curing can be enhanced.
  • the phosphorus-based curing catalyst leaks out of the capsule and the epoxy resin is encapsulated by a thin outer shell layer (thin hard wall) with a high crosslinking density and a thick inner shell layer (thick wall) with a moderate crosslinking density.
  • a thin outer shell layer thin hard wall
  • a thick inner shell layer thin wall
  • the hard, brittle and thin outer shell layer collapses due to thermal shock such as pressure difference inside and outside capsule, thermal expansion difference, stress increase due to mass transfer etc. It's easy to do.
  • the outer shell layer collapses, it is induced to chain the collapse to the inner shell layer and the core. That is, the crack propagates and the whole particle collapses.
  • the inner shell layer having a medium crosslinking density exhibits physical properties that the crosslinking chain moves flexibly (rubber state) and easily releases the phosphorus-based curing catalyst.
  • the greatest feature of the latent curing catalyst according to the embodiment is that the outer shell layer has a high crosslink density and is thin. Since the mobility of the crosslinking chain due to the high crosslinking density is extremely low, the outer shell layer having a high crosslinking density is difficult to permeate the substance and exhibits very high stability during storage. On the other hand, at the curing temperature of the epoxy resin, the outer shell layer is thin and very fragile, so that it easily collapses due to thermal shock, thereby exhibiting good curability.
  • the fact that the outer shell layer has a high crosslink density and is thin contributes greatly to both storage stability and curability.
  • the inner shell layer plays a role of enhancing the function of the outer shell layer. That is, since the inner shell layer is relatively thick with a medium crosslinking density, even if the epoxy resin permeates through the thin outer shell layer during storage, the inner shell layer is a phosphorus-based material in which the epoxy resin is contained in the core. Reaching the curing catalyst can be suppressed, and this structure enhances stability during storage. Further, since the inner shell layer has a medium crosslinking density, the effect of suppressing the collapse of the outer shell layer during curing is low, and the curability is not lowered. However, if the inner shell layer has a high crosslinking density, there is a high possibility that the outer shell layer will be prevented from collapsing during curing.
  • the latent curing catalyst of the present invention is in the form of particles, and the average particle diameter (D 50 (cumulative volume 50%)) is 0.01 to 50 ⁇ m.
  • the thickness is preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 3 ⁇ m, still more preferably 0.3 to 2 ⁇ m, and particularly preferably 0.3 to 1 ⁇ m. Since the average particle size is small in this way, the latent curing catalyst of the present invention has penetration into an extremely narrow gap, etc., and is used for semiconductor devices and electronic parts having such a narrow gap. It can use suitably in the sealing material to perform.
  • the latent curing catalyst for epoxy resins of the present invention can be produced by performing the following steps. First, in the presence of a phosphorus curing catalyst, a monomer component containing a vinyl monomer and optionally a crosslinkable vinyl monomer is polymerized by emulsion polymerization to form a core. Then, in the presence of the core, by emulsion polymerization, a monomer component containing the first vinyl monomer and, optionally, the first crosslinkable vinyl monomer is polymerized to coat the core Form a shell layer.
  • a monomer component containing a second crosslinkable vinyl monomer, and optionally a second vinyl monomer is polymerized, An outer shell layer covering the inner shell layer is formed.
  • Each emulsion polymerization can follow a conventional method.
  • a polymerization initiator and an emulsifier are mixed with water and stirred to form micelles.
  • a polymerization initiator and an emulsifier are mixed with water and stirred to form micelles.
  • a polymerization initiator and an emulsifier are mixed with water and stirred to form micelles.
  • the temperature is raised under an inert atmosphere, and the heat polymerization reaction is allowed to proceed at a predetermined temperature to obtain an emulsion of core particles.
  • the reaction temperature is not particularly limited, but is preferably about 60 to 100 ° C., and the reaction time is preferably about 1 to 10 hours.
  • a radical polymerization initiator such as a thermal radical polymerization initiator or a photo radical polymerization initiator that can be generally used in emulsion polymerization can be used.
  • 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride
  • 2,2′-azobis (2-methylpropionamidine) dihydrochloride 2,2′-azobis- [N- (2-carboxyethyl) -2-methylpropionamidine]
  • 2,2′-azobis- [2-methyl-N- (2-hydroxyethyl) propionamide 4,4′-azobis (4-cyanovaleric acid), etc.
  • Water-soluble azo compounds 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyrate) Nitrile), 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobis (2 Azo compounds such as oil-soluble azo compounds such as methyl propionate), 1,1′-azobis (cyclohexane-1-carbonitrile), dimethyl 1,1′-azobis (1-cyclohexanecarboxylate); Persulfuric compounds such as potassium, sodium persulfate and ammonium persulfate; organic peroxides such as diisopropylbenzene hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide (hydroperoxide) ); Organic per
  • a polymerization initiator that is easily soluble in water is preferable, and examples thereof include water-soluble azo compounds and persulfates.
  • the 10-hour half-life temperature of the thermal polymerization initiator is generally preferably 40 to 90 ° C. If it is lower than this, decomposition proceeds during charging at room temperature, and if it is higher than this, a long time is required for the polymerization reaction. . Many of the organic peroxides have a 10-hour half-life temperature exceeding the above range, and the radical generation rate at a general emulsion polymerization temperature is slow.
  • the organic peroxide redox initiator is preferable because it can be used in a general emulsion polymerization temperature range.
  • polymerization initiators may be used alone or in combination of two or more. In the case of using two or more kinds in combination, only the water-soluble radical polymerization initiator may be used, any combination of the water-soluble radical polymerization initiator and the oil-soluble radical polymerization initiator may be used, or only the oil-soluble radical polymerization initiator may be used.
  • the amount of the polymerization initiator used can be appropriately set. For example, it may be 0.01 to 1.00 parts by weight with respect to 100 parts by weight of the monomer component.
  • the total amount of the polymer is 0.01 to 100 parts by weight with respect to 100 parts by weight of the monomer component. It may be 2.00 parts by weight.
  • Emulsifiers that can be used in emulsion polymerization include alkali metal salts and ammonium salts of higher fatty acids such as disproportionated rosin acid, oleic acid and stearic acid, alkali metal salts and ammonium salts of sulfonic acids such as dodecylbenzenesulfonic acid, anions And emulsifiers and nonionic emulsifiers.
  • the anionic emulsifier is not particularly limited.
  • polyoxyethylene alkyl ether sulfate ester salts for example, sodium polyoxyethylene lauryl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, etc.
  • alkyl examples thereof include diphenyl ether disulfonate (sodium alkyl diphenyl ether disulfonate, sodium alkyl diphenyl ether disulfonate, etc.), reactive anionic surfactant (polyoxyalkylene alkenyl ether ammonium sulfate, etc.) and the like.
  • nonionic emulsifier is not particularly limited, and polyoxyethylene alkyl ether (for example, polyoxyethylene alkyl ether), polyoxyalkylene alkyl ether (for example, polyoxyalkylene alkyl ether), reactive nonionic interface An activator (polyoxyalkylene alkenyl ether etc.) etc. are mentioned.
  • ammonium salt type anionic emulsifiers and nonionic emulsifiers that do not contain metal ions are preferred in order to reduce metal ions in the resulting polymer.
  • the ammonium salt type anionic emulsifier is preferably ammonium lauryl sulfate or ammonium di- (2-ethylhexyl) sulfosuccinate for the purpose of stability of emulsion polymerization, and the nonionic emulsifier is stable in emulsion polymerization. Therefore, polyoxyethylene monotetradecyl ether and polyoxyethylene distyrenated phenyl ether are preferable.
  • sodium salt type anionic emulsifiers are preferred from the viewpoint of industrial availability.
  • sodium salt type anionic emulsifier sodium di- (2-ethylhexyl) sulfosuccinate is preferable.
  • the amount of the emulsifier used can be appropriately set. For example, it may be 0.01 to 10.00 parts by weight with respect to 100 parts by weight of the monomer component.
  • a polymerization initiator and an emulsifier are mixed in water and stirred to form micelles.
  • the monomer components of the inner shell layer are uniformly mixed, they are added to the micelles, and both are mixed and stirred to form an emulsion for the inner shell layer.
  • the emulsion of the core particles is brought to a predetermined temperature under an inert atmosphere, the emulsion for the inner shell layer is added dropwise thereto, and the heat polymerization reaction proceeds at the predetermined temperature while mixing and stirring them.
  • the reaction temperature, reaction time, and the like can be appropriately adjusted with reference to the above-described ranges.
  • an emulsifier and water are mixed, or an emulsifier, a polymerization initiator and water are mixed and stirred to form micelles.
  • the monomer component of the outer shell layer is uniformly mixed, or the monomer component of the outer shell layer and the polymerization initiator are uniformly mixed, then added to the micelle, and both are mixed and stirred to mix the outer shell.
  • a layer emulsion is formed.
  • the emulsion of the single-shelled particles is brought to a predetermined temperature under an inert atmosphere, and then the emulsion for outer shell layer is added dropwise thereto, and these are mixed and stirred, and the heat polymerization reaction is performed at the predetermined temperature.
  • the reaction temperature, reaction time, and the like can be appropriately adjusted with reference to the above-described ranges.
  • the polymerization initiator is used by dissolving in advance only in the monomer component added to the micelle, or by dissolving in advance in the water before the formation of the micelle.
  • the monomer component added to the micelle is preferably dissolved in advance and used.
  • a monomer-soluble radical polymerization initiator it is preferable to use as the polymerization initiator, and in the latter case, a water-soluble radical polymerization initiator is used as the polymerization initiator when dissolved in water, and When dissolving with the monomer component, it is preferable to use a monomer-soluble radical polymerization initiator.
  • radical polymerization initiation reaction occurs in the monomer component in the former case, while radical polymerization initiation reaction occurs in both the monomer component and the aqueous phase in the latter case.
  • the monomer-soluble radical polymerization initiator refers to a radical polymerization initiator having a weight of 0.50 parts by weight or more uniformly dissolved at 25 ° C. with respect to 100 parts by weight of allyl methacrylate (AMA).
  • AMA allyl methacrylate
  • many oil-soluble radical polymerization initiators are applicable.
  • the polymerization initiator may be used by dissolving in advance only in water before the formation of the micelles.
  • a water-soluble radical polymerization initiator is preferably used as the polymerization initiator.
  • radical polymerization initiation reaction occurs in the aqueous phase.
  • Examples of the monomer-soluble radical polymerization initiator include the oil-soluble radical polymerization initiators described above, such as 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvalero). Nitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (4-methoxy-2,4) -Dimethylvaleronitrile), dimethyl 2,2'-azobis (2-methylpropionate), 1,1'-azobis (cyclohexane-1-carbonitrile), dimethyl 1,1'-azobis (1-cyclohexanecarboxylate) And oil-soluble azo compounds such as benzoyl peroxide; and organic peroxides (diacyl peroxide) such as benzoyl peroxide.
  • oil-soluble radical polymerization initiators such as 2,2′-azobisisobutyronitrile, 2,2′-azobis (2
  • a monomer-soluble radical polymerization initiator to promote the progress of the crosslinking reaction by the second crosslinkable vinyl monomer in the outer shell layer and to increase the degree of crosslinking of the outer shell layer.
  • the combined use of a monomer-soluble radical polymerization initiator and a water-soluble radical polymerization initiator is also preferable for increasing the degree of crosslinking of the outer shell layer.
  • a water-soluble radical polymerization initiator it is preferable to use a water-soluble radical polymerization initiator.
  • the latent curing catalyst of the present invention can be obtained by spray drying, freeze drying, or coagulation.
  • the latent curing catalyst of the present invention can also be obtained by separating particles from the emulsion by centrifugation or filtration, followed by washing with water as necessary and drying by a conventional method.
  • the water described in this specification is ion-exchanged water unless otherwise specified, but is not limited thereto.
  • the epoxy resin composition of the present invention contains at least an epoxy resin and the latent curing catalyst described above.
  • the said epoxy resin composition points out what is in the state before hardening, a liquid thing may be sufficient, and the molded object which has a gel-like and fixed shape may be sufficient as it.
  • the shape of such a molded body is not particularly limited and can be appropriately designed depending on the application, and examples thereof include a sheet shape, a film shape, and a tablet shape.
  • the epoxy resin that can be used in the present invention is not particularly limited as long as it is a compound having two or more epoxy groups in the molecule, and generally known ones can be used.
  • biphenyl type epoxy resin tetramethyl biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene phenol addition reaction type Epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol phenol co-condensed novolac type epoxy resin, naphthol cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenolic resin type epoxy Resin, biphenyl novolac epoxy resin, ethylphenol novolac epoxy resin, butylphenol novolac epoxy resin Octylphenol novolac epoxy resin,
  • the epoxy resin may be selected according to desired properties and properties (liquid or solid), and is not particularly limited. For example, among the above specific examples, bis (hydroxyphenyl) alkane-based epoxy resin, naphthalene-based epoxy Resins are preferred.
  • the amount of the latent curing catalyst of the present invention to be used for the epoxy resin is not particularly limited and can be appropriately determined according to a desired curing rate and physical properties of the cured product.
  • the latent curing catalyst of the present invention is preferably 0.05 to 50 parts by weight, more preferably 0.1 to 40 parts by weight, and still more preferably 0.5 to 100 parts by weight of the epoxy resin. -30 parts by weight, particularly preferably 1.0-20 parts by weight.
  • the phosphorus-based curing catalyst contained in the latent curing catalyst of the present invention is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 15 parts by weight, and still more preferably 100 parts by weight of the epoxy resin. May be blended so as to be 0.1 to 10 parts by weight.
  • the epoxy resin composition of the present invention can further contain an epoxy resin curing agent.
  • a curing agent is not particularly limited, and those generally known as a curing agent to be blended with an epoxy resin can be used.
  • the curing agent may be selected according to desired properties and properties (liquid or solid), and is not particularly limited.
  • desired properties and properties liquid or solid
  • acid anhydrides from the viewpoint of heat resistance and chemical resistance.
  • amine-based curing agents are preferred, and from the viewpoint of low outgassing, moisture resistance, heat cycle resistance, etc. during curing, phenol-based curing agents are preferred.
  • phenol-based curing agents are preferred.
  • the amount of the curing agent used for the epoxy resin is not particularly limited, and may be a general usage amount, which can be appropriately determined according to a desired curing rate and physical properties of the cured product.
  • the curing agent is preferably 1 to 300 parts by weight, more preferably 5 to 200 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • additives in the epoxy resin composition can be appropriately blended.
  • additives include fillers such as carbon black, adhesion imparting agents, solvents, reactive diluents, antioxidants, light stabilizers, ultraviolet absorbers, antifoaming agents, leveling agents, pigments, and the like. Is mentioned.
  • the filler is not particularly limited, and a known filler can be used. Examples thereof include fillers made of inorganic oxides, inorganic salts, glass, nitrides, metal powders, and the like.
  • the inorganic oxide include titanium oxide, silicon oxide, aluminum oxide, beryllium oxide, and zirconium oxide.
  • the inorganic salt include calcium carbonate, barium sulfate, zirconium silicate, calcium silicate, magnesium silicate, and the like.
  • Examples of the nitride include boron nitride, aluminum nitride, gallium nitride, indium nitride, and silicon nitride.
  • the metal powder include silver powder, copper powder, silver-plated copper powder, tin-plated copper powder, nickel powder, and aluminum powder. Only one type of filler may be used, or two or more types may be used in combination.
  • adhesion-imparting agent examples include a coupling agent, a phenol resin, and an organic polyisocyanate. Only one type of adhesiveness-imparting agent may be used, or two or more types may be used in combination.
  • the coupling agent examples include various coupling agents such as silane-based, aluminum-based, zircoaluminate-based, and titanium-based materials, and partial hydrolysis condensates thereof.
  • silane coupling agents and partial hydrolysis condensates thereof are preferred because of their high adhesion-imparting effect.
  • the partial hydrolysis-condensation product of a coupling agent may be a partial hydrolysis-condensation product of the same kind of coupling agent, or may be a partial hydrolysis-condensation product of two or more coupling agents.
  • silane coupling agent examples include 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, etc.
  • the compound etc. which contain the alkoxy silyl group of these are mentioned.
  • the solvent is not particularly limited.
  • N-methylpyrrolidone N, N-dimethylformamide; dimethyl sulfoxide; ketones such as methyl ethyl ketone, cyclohexanone and cyclopentanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene
  • Glycol ethers such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether; ethyl acetate, Such as butyl acetate, cellosolve acetate, diethylene glycol monoethyl ether acetate and esterified products of the above glycol ethers.
  • alcohols such as ethanol, propanol, methanol, ethylene glycol and propylene glycol
  • aliphatic hydrocarbons such as octane and decane
  • petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha and solvent naphtha Can be mentioned. Only one type of solvent may be used, or two or more types may be used in combination.
  • the reactive diluent is not particularly limited.
  • the latent curing catalyst for epoxy resins of the present invention can act as a sheeting agent because it itself can act to gel the epoxy resin composition. Therefore, the epoxy resin composition of the present invention can be formed into a molded article such as a sheet without adding a sheeting agent as an additional component. However, when the epoxy resin composition of the present invention is a molded article such as a sheet, a sheeting agent such as a thermoplastic resin powder may be separately added to the epoxy resin composition. The thermoplastic resin powder can absorb and swell epoxy resin or other components to make the composition gel, or can be compatible with epoxy resin or other components to make the composition gel. .
  • thermoplastic resin constituting the powder examples include polyvinyl chloride, polyethylene, polypropylene, polystyrene, and synthetic rubber (polybutadiene, butadiene-styrene copolymer, polyisoprene, polychloroprene, ethylene-propylene copolymer).
  • the epoxy resin composition of the present invention is a sheet-like molded article
  • a photopolymerizable compound and a radical generator that act as a sheeting agent can be blended in the epoxy resin composition.
  • a mixture of the epoxy resin composition and other components, a photopolymerizable compound and a radical generator is prepared, and the resulting mixture is made into a sheet shape, and then irradiated with light to give photopolymerizability.
  • a polymerized compound is used as a gel-like curable sheet.
  • Examples of the photopolymerizable compound include compounds containing one or more (meth) acryloyl groups in the molecule, specifically (meth) acrylic acid, alkyl alcohol, alkylene diol, polyhydric alcohol, and the like. And the compounds described in [0009] to [0012] of JP-A No. 11-12543.
  • the radical generator is a compound that generates radicals upon irradiation with actinic rays such as ultraviolet rays and electron beams.
  • actinic rays such as ultraviolet rays and electron beams.
  • Various conventionally used compounds can be used, for example, 2-hydroxy-2-methyl- 1-phenylpropan-1-one, benzoin, acetophenone, and the like can be used.
  • the epoxy resin composition of the present invention can be obtained by mixing an epoxy resin and the latent curing catalyst of the present invention, and further a curing agent and other additives.
  • the method of mixing these is not particularly limited, and a conventionally known method can be used. For example, a method of stirring using a stirrer, a method of kneading using a three-roll mill, and a ball mill are used. Can do.
  • the components may be mixed as described above and then molded by a usual method such as heat molding. Further, if necessary, the epoxy resin composition heated to a liquid state is made into a coated product whose film thickness is controlled by a roll coater or the like, and it is 0.5 to 30 minutes at 60 to 150 ° C., and 1 at 80 to 120 ° C. It can also be made into a sheet by drying for ⁇ 10 minutes.
  • a cured product can be obtained by curing the epoxy resin composition.
  • the curing method may be a condition for curing a general epoxy resin composition, and is not particularly limited. For example, using a heating device, heating is performed at 100 ° C. for 1 hour, and then at 180 ° C. for 4 hours. And the like. However, specific curing conditions can be appropriately determined according to the use of the epoxy resin composition. It does not specifically limit as said heating apparatus, For example, a ventilation constant temperature dryer, a constant temperature constant temperature dryer, etc. can be used.
  • the surface shape of the cured product of the present invention is preferably such that the size of the convex portion or concave portion on the surface is 10 ⁇ m or less.
  • the surface shape was obtained by depositing gold on the surface of the cured product, and then using a scanning electron microscope (SEM) JSM-6390LV manufactured by JEOL Ltd., an acceleration voltage of 15 kV, an observation angle of 45 °, and a magnification of 400 times (observation area: 300 ⁇ m ⁇ 200 ⁇ m) or 2000 times (observation area: 60 ⁇ m ⁇ 40 ⁇ m).
  • the size of the convex portion or the concave portion can be obtained from the SEM observation image.
  • the SEM observation image can particularly evaluate the size of the concavo-convex region in an arbitrary direction within a plane.
  • the arbitrary direction in a plane is the arbitrary direction in a SEM photograph surface.
  • the surface shape can be observed using a stylus type surface shape measuring device DEKTAK 150 at a scanning speed of 1,000 ⁇ m / 60 s, a scanning distance of 1.0 mm, measurement points of five points, and measurement values of steps. .
  • the stylus type surface shape measuring instrument can particularly evaluate the size of the unevenness in the direction perpendicular to the surface.
  • the plane perpendicular direction is a direction perpendicular to the photographic plane at an arbitrary position on the SEM photographic plane.
  • the use of the epoxy resin composition of this invention is not specifically limited, It can use suitably as a sealing material or an adhesive agent.
  • the latent curing catalyst of the present invention has a small particle size and can penetrate into an extremely narrow gap, etc., so that it is particularly useful as a sealing material used for a semiconductor device or electronic component having such a narrow gap. It can be used suitably.
  • the gap include a gap between the substrate and the chip, a gap between the chip and the chip, and a gap between the solder bump and the solder bump.
  • the width of the gap may be 100 ⁇ m or less, may be 50 ⁇ m or less, and may be 30 ⁇ m or less.
  • the surface of the cured product formed from the epoxy resin composition containing the latent curing catalyst of the present invention is smooth without any unevenness, it is suitable for applications requiring smoothness.
  • a specific application as a sealing material is that a rewiring layer can be formed on the lower surface of the sealing material, so that a circuit such as a sealing material for FO-WLP applications or an antenna on the upper surface of the sealing material is used. Since it can be formed, a sealing material for antenna-on-package (AoP) use in which an antenna and a semiconductor device are integrated, or metal plating on the whole or part of the sealing is possible. It can be suitably used as a sealing material for electromagnetic wave shielding.
  • AoP antenna-on-package
  • a sealing material there is a semiconductor sealing material used when sealing a wafer level chip size package which is a large-area semiconductor package by an overmolding method.
  • the sealing material is an overmolding material that seals the terminals, the device electrodes, and the semiconductor bare chip disposed on the semiconductor wafer substrate.
  • overmold molding include transfer molding and compression molding. Of these, compression molding is preferred.
  • the overmolding is preferably performed at 50 to 200 ° C., more preferably 100 to 175 ° C. for 1 to 15 minutes. If necessary, post-cure can be performed at 100 to 200 ° C. for 30 minutes to 24 hours. By such heating, the epoxy resin composition is cured to form an overmold material.
  • the liquid epoxy resin composition of the present invention can be suitably used.
  • the sealing material is a surface acoustic wave device in which a surface acoustic wave chip is mounted on a substrate on which a wiring pattern is formed, and the electrode surface of the surface acoustic wave chip and the wiring pattern are connected by a bump.
  • the electrode surface and the wiring pattern are not in direct contact, and in a surface acoustic wave device having a hollow structure between the substrate and the chip, the sealing for sealing the surface acoustic wave chip is performed. Stop materials are mentioned.
  • the epoxy resin composition of this invention which is a molded object which has a fixed shape can be used suitably.
  • a sheet-like epoxy resin composition is disposed so as to cover the surface acoustic wave chip, and then heat pressing is performed.
  • the epoxy resin composition is cured while the hollow structure is maintained, and a protective layer for the chip can be formed.
  • the conditions for such a heat press can be appropriately determined.
  • the pressure is 100 Pa to 10 MPa, preferably 0.01 to 2 MPa
  • the temperature is 250 ° C. or less, preferably 60 to 180 ° C.
  • the time is 5 seconds to It may be 3 hours, preferably 1-15 minutes.
  • the emulsifier was dissolved in ion-exchanged water and stirred at a high speed of 1500 rpm for 5 minutes to prepare micelles. After dissolving the radical polymerization initiator in the acrylic monomer, it was added to the micelle and stirred at a high speed of 2000 rpm for 25 minutes to prepare an emulsion composed of the outer layer shell component.
  • the amount of each component is as shown in Table 1.
  • Example 2 In “Synthesis of double-shelled particles” described in Example 1, “(3) Acrylic monomer”, which is “Raw material of outer shell”, in addition to allyl methacrylate (trade name “AMA” manufactured by Mitsubishi Gas Chemical Company) Except for adding a small amount of methyl methacrylate (trade name “acrylic ester M” manufactured by Mitsubishi Chemical Corporation), double-shelled particles were synthesized according to the procedure of Example 1 and dried. The amount of each component is as shown in Table 1.
  • Examples 3 and 4 In “Preparation of emulsion comprising core component” described in Example 1, “(5) inclusion catalyst” which is “raw material of core component” is a predetermined amount (described in Table 1) of curing catalyst tri-p- Double-shelled particles were synthesized and dried according to the procedure of Example 2 except for replacing with tolylphosphine (trade name “TPTP” manufactured by Hokuko Chemical Co., Ltd.). The amount of each component is as shown in Table 1.
  • Comparative Example 1 The emulsion of “single shelled particles” obtained during the production of the double shelled particles of Example 1 was dried by spray drying to obtain single shelled particles of Comparative Example 1. Note that Comparative Example 1 is a different lot from Example 1.
  • Comparative Example 2 The emulsion of “core particles” obtained during the production of the double-shelled particles of Example 1 was dried by spray drying to obtain the core particles of Comparative Example 2. Comparative Example 2 is a different lot from Example 1 and Comparative Example 1.
  • the particles of 1 to 5 or Comparative Examples 1 and 3 were measured.
  • weight reduction due to thermal decomposition of the encapsulated catalyst in the case of TPP and TPTP, weight reduction occurs from about 150 ° C. and continues to less than 300 ° C.
  • weight reduction due to acrylic resin can be confirmed around 300 ° C.
  • the temperature at the start of viscosity increase (temperature at the minimum viscosity) was evaluated. Moreover, the viscosity (minimum viscosity) at the start of the viscosity increase was evaluated. The viscosity at 25 ° C. obtained by the measurement was evaluated as the initial viscosity. The results are shown in Table 2.
  • each obtained cured product was observed and evaluated as follows. After depositing gold on the surface of the cured product, using a scanning electron microscope (SEM) JSM-6390LV manufactured by JEOL Ltd., at an acceleration voltage of 15 kV, an observation angle of 45 °, and a magnification of 400 times (observation area: 300 ⁇ m ⁇ 200 ⁇ m) This was confirmed by SEM observation.
  • SEM scanning electron microscope
  • the maximum value of the step in each of the five measurement points was as follows. First location: 0.41 ⁇ m, second location: 0.46 ⁇ m, third location: 0.87, fourth location: 0.74 ⁇ m, and fifth location: 0.55 ⁇ m. Therefore, it was found that the unevenness in the surface perpendicular direction of the surface of the cured product of the resin composition to which the particles of Example 1 were added was 10 ⁇ m or less.

Abstract

Provided is a latent curing catalyst for epoxy resin which has a small particle size, exhibits excellent miscibility with epoxy resin, has high storage stability as a composition with the epoxy resin, and has excellent curability. The latent curing catalyst for epoxy resin comprises particles which have an average particle size of 0.01 to 50 μm, wherein each particle comprises: a core that is formed from a phosphorus-based curing catalyst and a vinyl-based polymer; an inner shell layer that covers the core and is formed from a first vinyl resin which is a polymer of monomer components including a first vinyl-based monomer and a first cross-linkable vinyl-based monomer or a polymer of the first vinyl-based monomer; and an outer shell layer that covers the inner shell layer and is formed from a second vinyl resin which is a polymer of monomer components including a second vinyl-based monomer and a second cross-linkable vinyl-based monomer or a polymer of the second cross-linkable vinyl-based monomer.

Description

エポキシ樹脂用潜在性硬化触媒、及びこれを用いたエポキシ樹脂組成物Latent curing catalyst for epoxy resin and epoxy resin composition using the same
 本発明は、エポキシ樹脂に配合して用いる潜在性硬化触媒、及び、これを配合してなるエポキシ樹脂組成物に関する。 The present invention relates to a latent curing catalyst used by blending with an epoxy resin, and an epoxy resin composition comprising the same.
 エポキシ樹脂は、反応性の高いエポキシ基を分子中に2個以上持つ化合物であって、当該エポキシ基の反応により架橋ネットワークを形成する硬化性樹脂である。エポキシ樹脂には通常、酸無水物やポリアミンなどの硬化剤と、ホスフィンや三級アミン、イミダゾール等の硬化触媒(硬化促進剤ともいう)を配合してエポキシ樹脂組成物とし、これを加熱することで硬化を進行させる。このようなエポキシ樹脂組成物は様々な用途で広く使用されており、特に半導体装置や電子部品における封止材料として注目されている。 The epoxy resin is a compound having two or more highly reactive epoxy groups in the molecule, and is a curable resin that forms a crosslinked network by the reaction of the epoxy group. Epoxy resin usually contains a curing agent such as acid anhydride or polyamine and a curing catalyst (also called curing accelerator) such as phosphine, tertiary amine or imidazole to form an epoxy resin composition, which is then heated. Curing proceeds with. Such epoxy resin compositions are widely used in various applications, and in particular, are attracting attention as sealing materials in semiconductor devices and electronic components.
 一般に硬化触媒はエポキシ樹脂と接触すると容易に硬化を開始してしまうため、エポキシ樹脂組成物は、主剤と副剤を分離した二液型の組成物として保存することが広く行なわれている。しかし、二液型では使用直前に主剤と副剤それぞれの必要量を計量してから両剤を混合する必要があり、作業上煩雑であった。また、煩雑さを回避して一液型の組成物とすると、冷凍又は冷蔵で保存することによって硬化反応の進行を抑制する必要があり、コスト面で不利であった。また、使用前に冷凍又は冷蔵での保存状態から常温に戻すプロセスで、常温放置の時間が長いと硬化が進行してしまい、封止のために使用するときには、粘度上昇により流動性が低下して充填性が不良となる問題があった。 Generally, since a curing catalyst easily starts curing when it comes into contact with an epoxy resin, it is widely practiced to store the epoxy resin composition as a two-pack type composition in which the main agent and the auxiliary agent are separated. However, in the two-pack type, it is necessary to measure the required amounts of the main agent and the auxiliary agent immediately before use, and then mix both agents, which is complicated in work. In addition, if the composition is a one-pack type while avoiding complexity, it is necessary to suppress the progress of the curing reaction by storing it in a frozen or refrigerated state, which is disadvantageous in terms of cost. In addition, in the process of returning from frozen or refrigerated storage state to room temperature before use, curing proceeds if the time of standing at room temperature is long, and when used for sealing, fluidity decreases due to increased viscosity. As a result, there is a problem that the filling property is poor.
 そこで、冷凍又は冷蔵での保存状態から常温に戻し、その後封止用途として使用する間(例えば、解凍後の常温保管で24時間)に増粘しない、更には、冷凍又は冷蔵しなくとも保存が可能な一液型のエポキシ樹脂組成物を実現するための方法が検討されている。そのような方法の1つとして、硬化触媒をマイクロカプセル化する方法が提案されており(例えば、特許文献1~5を参照)、そのようなカプセル化硬化触媒は市販されているものもある。 Therefore, it does not increase in viscosity while it is returned to normal temperature from its frozen or refrigerated storage state and then used as a sealing application (for example, 24 hours at room temperature storage after thawing). Furthermore, it can be stored without being frozen or refrigerated. A method for realizing a possible one-pack type epoxy resin composition has been studied. As one of such methods, a method of microencapsulating a curing catalyst has been proposed (see, for example, Patent Documents 1 to 5), and such an encapsulated curing catalyst is commercially available.
特開平8-73566号公報JP-A-8-73566 特開2012-136650号公報JP 2012-136650 A 特開2016-35056号公報Japanese Unexamined Patent Publication No. 2016-35056 特開2016-35057号公報Japanese Unexamined Patent Publication No. 2016-35057 特開2016-153475号公報JP 2016-153475 A
 カプセル化硬化触媒は、エポキシ樹脂と接触した状態においても、硬化反応の進行が抑制されているため、両者を混合した状態での保存が可能となる。しかしながら、市販されているカプセル化硬化触媒は、粒径が50μm程度の粗大な粒子であり、極めて狭いバンプ/バンプ間、チップ/チップ間、チップ/基板間等のギャップを有する最先端の半導体装置や電子部品における封止材用途においては、そのようなギャップへの侵入性が悪く、使用に適していないという問題があった。 Since the progress of the curing reaction is suppressed even when the encapsulated curing catalyst is in contact with the epoxy resin, the encapsulated curing catalyst can be stored in a mixed state. However, the commercially available encapsulated curing catalyst is a coarse particle having a particle size of about 50 μm, and has a very narrow gap between bumps / bumps, chips / chips, chips / substrates, etc. In the case of sealing materials in electronic parts, there is a problem that the penetration into such a gap is poor and it is not suitable for use.
 また、最先端のスマートフォンでは膨大な情報(信号)を処理する必要があるので、小型でかつ、これに対応した多数のI/O端子を備えた半導体装置であるファンアウトウエハレベルパッケージ(FO-WLP)が適用されている。FO-WLPでは、I/O端子数を増やすために、半導体チップ下面のみでなく、そこから外に張り出した封止材下面にも再配線層を形成して、バンプ(I/O端子)を配置する構造となっている。薄い再配線層形成のためには被覆面である当該チップ下面及び封止材下面の平滑性が重要であるが、市販の粗大なカプセル硬化剤を用いた封止材では、封止材表面にカプセル由来の凹凸が形成され、再配線層を形成できない問題があった。そこで、このような極めて狭いギャップを備えた半導体装置や、FO-WLPの再配線層形成にも対応できる、粒径がより小さなカプセル化硬化触媒の開発が望まれる。 In addition, since the latest smartphones need to process a large amount of information (signals), a fan-out wafer level package (FO-), which is a semiconductor device that is compact and has a large number of I / O terminals corresponding to it. WLP) is applied. In FO-WLP, in order to increase the number of I / O terminals, a rewiring layer is formed not only on the lower surface of the semiconductor chip but also on the lower surface of the sealing material projecting out from there, and bumps (I / O terminals) are formed. It is a structure to arrange. In order to form a thin rewiring layer, the smoothness of the lower surface of the chip and the lower surface of the sealing material, which are the coating surfaces, is important. However, in the case of a sealing material using a commercially available coarse capsule curing agent, There was a problem that irregularities derived from capsules were formed and a rewiring layer could not be formed. Therefore, it is desired to develop an encapsulated curing catalyst having a smaller particle size, which can be applied to a semiconductor device having such a very narrow gap and formation of a rewiring layer of FO-WLP.
 しかし、単にカプセル化硬化触媒の粒径を小さくすると、エポキシ樹脂との混和性が悪化したり、本来の目的である保存安定性が低下することがあった。また、カプセル化硬化触媒の保存安定性を高めると、エポキシ樹脂との反応性が低くなる場合があり、すなわち、エポキシ樹脂組成物の良好な硬化性を達成できないという問題もあった。 However, if the particle size of the encapsulated curing catalyst is simply reduced, the miscibility with the epoxy resin may deteriorate, or the storage stability, which is the original purpose, may be reduced. Further, when the storage stability of the encapsulated curing catalyst is increased, the reactivity with the epoxy resin may be lowered, that is, there is a problem that good curability of the epoxy resin composition cannot be achieved.
 カプセル化硬化触媒においては、エポキシ樹脂との混和性に優れていながら、所定の硬化温度よりも低い温度では硬化反応が進行せず、高い保存安定性を示す一方、所定の硬化温度まで加熱されると迅速に硬化反応が進行することが求められる。 The encapsulated curing catalyst is excellent in miscibility with the epoxy resin, but does not proceed with the curing reaction at a temperature lower than the predetermined curing temperature, and exhibits high storage stability, while being heated to the predetermined curing temperature. It is required that the curing reaction proceeds rapidly.
 本発明は、上記現状に鑑み、小粒径であり、エポキシ樹脂との混和性に優れ、エポキシ樹脂との組成物において高い保存安定性を有し、かつ、硬化性にも優れた、エポキシ樹脂用潜在性硬化触媒、及び、それを含むエポキシ樹脂組成物を提供することを目的とする。 The present invention is an epoxy resin having a small particle size, excellent miscibility with an epoxy resin, high storage stability in a composition with the epoxy resin, and excellent curability in view of the above-mentioned present situation. It is an object of the present invention to provide a latent curing catalyst and an epoxy resin composition containing the same.
 第一の本発明は、リン系硬化触媒とビニル系重合体を含むコア、第一ビニル系単量体と第一架橋性ビニル系単量体とを含む単量体成分の重合体または第一ビニル系単量体の重合体である第一ビニル樹脂から構成され、前記コアを被覆する内側シェル層、及び第二ビニル系単量体と第二架橋性ビニル系単量体とを含む単量体成分の重合体または第二架橋性ビニル系単量体の重合体である第二ビニル樹脂から構成され、前記内側シェル層を被覆する外側シェル層、を含む粒子からなり、前記粒子は、平均粒径が0.01~50μmであり、第二ビニル樹脂中の第二架橋性ビニル系単量体の重量割合は、第一ビニル樹脂中の第一架橋性ビニル系単量体の重量割合よりも大きい、エポキシ樹脂用潜在性硬化触媒に関する。 The first aspect of the present invention is a polymer comprising a monomer component containing a core containing a phosphorus curing catalyst and a vinyl polymer, a first vinyl monomer and a first crosslinkable vinyl monomer, or a first polymer. A single monomer composed of a first vinyl resin that is a polymer of vinyl monomers, comprising an inner shell layer that covers the core, and a second vinyl monomer and a second crosslinkable vinyl monomer A body component polymer or a second vinyl resin that is a polymer of a second crosslinkable vinyl monomer, and an outer shell layer that covers the inner shell layer. The particle size is 0.01 to 50 μm, and the weight ratio of the second crosslinkable vinyl monomer in the second vinyl resin is greater than the weight ratio of the first crosslinkable vinyl monomer in the first vinyl resin. It is related with the latent curing catalyst for epoxy resins.
 好ましくは、第一架橋性ビニル系単量体および第二架橋性ビニル系単量体は、(メタ)アクリル基を有する。好ましくは、前記コアに含まれる前記ビニル系重合体は、架橋構造を有するビニル系重合体である。好ましくは、第二ビニル樹脂中の第二架橋性ビニル系単量体の重量割合は、50~100重量%である。好ましくは、第一ビニル樹脂100重量部に対する第二ビニル樹脂の量は、5~50重量部である。 Preferably, the first crosslinkable vinyl monomer and the second crosslinkable vinyl monomer have a (meth) acryl group. Preferably, the vinyl polymer contained in the core is a vinyl polymer having a crosslinked structure. Preferably, the weight ratio of the second crosslinkable vinyl monomer in the second vinyl resin is 50 to 100% by weight. Preferably, the amount of the second vinyl resin relative to 100 parts by weight of the first vinyl resin is 5 to 50 parts by weight.
 第二の本発明は、エポキシ樹脂用潜在性硬化触媒を製造する方法であって、リン系硬化触媒の存在下、乳化重合によりビニル系単量体を含む単量体成分を重合して、コアを形成する工程、前記コアの存在下、乳化重合により、第一ビニル系単量体と第一架橋性ビニル系単量体とを含む単量体成分、または、第一ビニル系単量体を重合して、前記コアを被覆する内側シェル層を形成する工程、前記コアを被覆する内側シェル層の存在下、乳化重合により、第二ビニル系単量体と第二架橋性ビニル系単量体とを含む単量体成分、または、第二架橋性ビニル系単量体を重合して、前記内側シェル層を被覆する外側シェル層を形成する工程、を含む方法に関する。好ましくは、外側シェル層を形成する工程における乳化重合は、モノマー溶解性ラジカル重合開始剤の存在下で行なう。 A second aspect of the present invention is a method for producing a latent curing catalyst for an epoxy resin, in which a monomer component containing a vinyl monomer is polymerized by emulsion polymerization in the presence of a phosphorus curing catalyst to form a core. A monomer component containing a first vinyl monomer and a first crosslinkable vinyl monomer by emulsion polymerization in the presence of the core, or a first vinyl monomer. A step of polymerizing to form an inner shell layer covering the core, and a second vinyl monomer and a second crosslinkable vinyl monomer by emulsion polymerization in the presence of the inner shell layer covering the core. And a step of polymerizing a second crosslinkable vinyl monomer to form an outer shell layer covering the inner shell layer. Preferably, the emulsion polymerization in the step of forming the outer shell layer is performed in the presence of a monomer-soluble radical polymerization initiator.
 第三の本発明は、エポキシ樹脂と、第一の本発明に係るエポキシ樹脂用潜在性硬化触媒を含有する、エポキシ樹脂組成物に関する。 The third invention relates to an epoxy resin composition containing an epoxy resin and the latent curing catalyst for epoxy resin according to the first invention.
 第四の本発明は、第三の本発明に係るエポキシ樹脂組成物が硬化したものである硬化物である。好ましくは、硬化物表面の凸部または凹部の大きさが10μm以下である。 The fourth aspect of the present invention is a cured product obtained by curing the epoxy resin composition according to the third aspect of the present invention. Preferably, the size of the convex part or the concave part on the surface of the cured product is 10 μm or less.
 第五の本発明は、第四の本発明に係る硬化物を封止材として含む半導体装置に関する。前記半導体装置は、100μm以下のギャップを有し、前記封止材が前記ギャップに侵入しているものであってよい。また、前記封止材の表面に再配線層が形成されていてもよい。 The fifth aspect of the present invention relates to a semiconductor device including the cured product according to the fourth aspect of the present invention as a sealing material. The semiconductor device may have a gap of 100 μm or less, and the sealing material may enter the gap. A rewiring layer may be formed on the surface of the sealing material.
 本発明によれば、粒径が小さく、エポキシ樹脂との混和性に優れ、エポキシ樹脂との組成物において高い保存安定性を有し、かつ、硬化性にも優れた、エポキシ樹脂用潜在性硬化触媒、当該硬化触媒を含むエポキシ樹脂組成物であって極めて挟いギャップへの侵入性が良好で、流動性に優れたエポキシ樹脂組成物、及び、当該エポキシ樹脂組成物の加熱により得られる表面平滑性に優れた硬化物を提供することができる。 According to the present invention, the latent curing for epoxy resins has a small particle size, excellent miscibility with the epoxy resin, high storage stability in the composition with the epoxy resin, and excellent curability. Catalyst, an epoxy resin composition containing the curing catalyst, an epoxy resin composition having extremely good penetration into the sandwiched gap and excellent fluidity, and surface smoothness obtained by heating the epoxy resin composition A cured product having excellent properties can be provided.
 本発明のエポキシ樹脂組成物が液状の組成物である場合には、組成物作製直後の粘度が低く、かつ、作製から時間が経過した後でも粘度が上昇しにくく、また、本発明のエポキシ樹脂組成物が固形のシート状である場合には、組成物作製直後の溶融粘度が低く、かつ、作製から時間が経過した後でも溶融粘度が上昇しにくいため、液状及び固形シートのいずれの態様においても、無機フィラー等を多量に配合した場合においても、流動性が良好で、極めて狭いギャップへの侵入性が良好であるという利点もある。 When the epoxy resin composition of the present invention is a liquid composition, the viscosity immediately after preparation of the composition is low, and the viscosity hardly increases even after a lapse of time from preparation, and the epoxy resin of the present invention When the composition is in the form of a solid sheet, the melt viscosity immediately after preparation of the composition is low, and the melt viscosity does not easily increase even after a lapse of time from preparation. However, even when a large amount of an inorganic filler or the like is blended, there is an advantage that fluidity is good and penetration into a very narrow gap is good.
硬化物表面のSEM観察像を示す図面である(実施例1)。It is drawing which shows the SEM observation image of hardened | cured material surface (Example 1). 硬化物表面のSEM観察像を示す図面である(比較例3)。It is drawing which shows the SEM observation image of hardened | cured material surface (comparative example 3).
 以下に本発明の実施形態を詳述する。
 本発明のエポキシ樹脂用潜在性硬化触媒は、コアと、当該コアを被覆する内側シェル層と、当該内側シェル層を被覆する外側シェル層という、少なくとも3層からなる層構成を持つ粒子状のものである。そして、前記コアにリン系硬化触媒を含み、これによってエポキシ樹脂用の硬化触媒として機能する。外側シェル層と内側シェル層は直接積層されていてよく、特許文献2のように両層間に硬化触媒が配置されている必要はない。
Hereinafter, embodiments of the present invention will be described in detail.
The latent curing catalyst for epoxy resin according to the present invention is in the form of particles having a layer structure consisting of at least three layers: a core, an inner shell layer covering the core, and an outer shell layer covering the inner shell layer. It is. The core contains a phosphorus-based curing catalyst, thereby functioning as a curing catalyst for the epoxy resin. The outer shell layer and the inner shell layer may be directly laminated, and it is not necessary to arrange a curing catalyst between both layers as in Patent Document 2.
 コア、内側シェル層、外側シェル層に含まれる樹脂はいずれもビニル系のものである。一般的なエポキシ樹脂の硬化温度は、ビニル樹脂のガラス転移温度(Tg)を超えるので、前記硬化温度では、ビニル樹脂はゴム状態に変化していて、カプセルの物質透過性は大幅に向上する。そのため、エポキシ樹脂がカプセル内に流れ込み、リン系硬化触媒を溶かして外部に洗い出すことができ、または、リン系硬化触媒自身が自発的にカプセルを透過してエポキシ樹脂中へ放出されるようになる。更に、上記現象によりカプセルへの応力負荷が増加したり、加熱によりカプセルが熱分解したりすると、カプセルの崩壊が起こり、リン系硬化触媒の放出速度が著しく増加する。また、ビニル樹脂自体はエポキシ樹脂の硬化反応を阻害するものではないので、前記硬化温度でエポキシ樹脂は良好な硬化性を発現する。一方、保存温度では、ビニル樹脂はガラス状態のためカプセルの物質透過性は低く、エポキシ樹脂のカプセル内への侵入を抑制している。更に本発明の潜在性硬化触媒では、上記に加えて外側シェル層が高架橋のビニル樹脂から構成されるため、エポキシ樹脂のカプセル内への侵入の防止性が著しく高い。そのため、所定温度未満では高い保存安定性を示しながら、所定温度まで加熱すると高い硬化性を示すことができる。 The resin contained in the core, the inner shell layer, and the outer shell layer are all vinyl. Since the curing temperature of a general epoxy resin exceeds the glass transition temperature (Tg) of the vinyl resin, the vinyl resin is changed to a rubber state at the curing temperature, and the substance permeability of the capsule is greatly improved. Therefore, the epoxy resin flows into the capsule, and the phosphorus-based curing catalyst can be dissolved and washed out to the outside, or the phosphorus-based curing catalyst itself is spontaneously permeated through the capsule and released into the epoxy resin. . Furthermore, when the stress load on the capsule increases due to the above phenomenon or the capsule is thermally decomposed by heating, the capsule collapses, and the release rate of the phosphorus-based curing catalyst increases remarkably. In addition, since the vinyl resin itself does not inhibit the curing reaction of the epoxy resin, the epoxy resin exhibits good curability at the curing temperature. On the other hand, at the storage temperature, since the vinyl resin is in a glass state, the substance permeability of the capsule is low, and the penetration of the epoxy resin into the capsule is suppressed. Furthermore, in the latent curing catalyst of the present invention, in addition to the above, the outer shell layer is composed of a highly cross-linked vinyl resin, so that the prevention of the epoxy resin from entering the capsule is extremely high. Therefore, high curability can be exhibited by heating to a predetermined temperature while exhibiting high storage stability below a predetermined temperature.
 また、本発明の潜在性硬化触媒の外側シェル層は高架橋のビニル樹脂から構成されるので、潜在性硬化触媒の粒子間には分子間力による弱い凝集力が働くのみである(粒子表面から長いグラフト鎖などがでていることもないので、絡み合いに起因する凝集も起こりにくい)。したがって、当該粒子とエポキシ樹脂との配合では、粒子の凝集が解れて粒子がエポキシ樹脂と混和しやすい。特に、外側シェル層にエステル基などの官能基を有する場合には、粒子表面のエステル基とエポキシ樹脂との相互作用により、混和性は更に向上する。そのため、本発明の潜在性硬化触媒はエポキシ樹脂との混和性が高く、所定温度未満では高い保存安定性を示しながら、所定温度まで加熱されると高い硬化性を示すことができる。 Further, since the outer shell layer of the latent curing catalyst of the present invention is composed of a highly crosslinked vinyl resin, only a weak cohesive force due to intermolecular force acts between the particles of the latent curing catalyst (long from the particle surface). Since there is no graft chain, aggregation due to entanglement is unlikely to occur). Therefore, in the combination of the particles and the epoxy resin, the aggregation of the particles is released and the particles are easily mixed with the epoxy resin. In particular, when the outer shell layer has a functional group such as an ester group, the miscibility is further improved by the interaction between the ester group on the particle surface and the epoxy resin. Therefore, the latent curing catalyst of the present invention is highly miscible with the epoxy resin, and can exhibit high curability when heated to a predetermined temperature while exhibiting high storage stability below a predetermined temperature.
 (コア)
 コアに含まれるリン系硬化触媒としては、エポキシ樹脂に対する硬化触媒として使用可能な硬化触媒のうちリンを含む硬化触媒であれば、特に限定されない。好ましくは有機ホスフィン化合物であり、具体的には、エチルホスフィン、プロピルホスフィン、ブチルホスフィン等のアルキルホスフィン及びフェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジエチルホスフィン、ジプロピルホスフィン、ジアミルホスフィン等のジアルキルホスフィン、ジフェニルホスフィン、メチルフェニルホスフィン、エチルフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、アルキルジフェニルホスフィン、ジアルキルフェニルホスフィン、トリベンジルホスフィン、トリトリルホスフィン(トリ-o-トリルホスフィン、トリ-p-トリルホスフィン、トリ-m-トリルホスフィン)、トリ-p-スチリルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン、トリ-4-メチルフェニルホスフィン、トリ-4-メトキシフェニルホスフィン、トリ-2-シアノエチルホスフィン等の第3ホスフィン;ホスフィノアルカン化合物、例えばビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,4-(ジフェニルホスフィノ)ブタン等;トリフェニルホスフィン-トリフェニルボラン、テトラフェニルホスホニウム・テトラフェニルボレート等が挙げられる。これらのうち、第3ホスフィンがより好ましく、トリフェニルホスフィンが特に好ましい。
(core)
The phosphorus-based curing catalyst contained in the core is not particularly limited as long as it is a curing catalyst containing phosphorus among curing catalysts that can be used as a curing catalyst for an epoxy resin. Preferred are organic phosphine compounds, specifically, alkylphosphines such as ethylphosphine, propylphosphine and butylphosphine, and first phosphines such as phenylphosphine; dialkyls such as dimethylphosphine, diethylphosphine, dipropylphosphine and diamylphosphine. Second phosphine such as phosphine, diphenylphosphine, methylphenylphosphine, ethylphenylphosphine; trialkylphosphine such as trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, tricyclohexylphosphine, triphenylphosphine, alkyldiphenylphosphine, dialkylphenyl Phosphine, tribenzylphosphine, tolylphosphine (tri-o-tolylphosphite , Tri-p-tolylphosphine, tri-m-tolylphosphine), tri-p-styrylphosphine, tris (2,6-dimethoxyphenyl) phosphine, tri-4-methylphenylphosphine, tri-4-methoxyphenylphosphine, Tertiary phosphines such as tri-2-cyanoethylphosphine; phosphinoalkane compounds such as bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,4- (diphenylphosphino) butane, etc .; Examples include triphenylphosphine-triphenylborane, tetraphenylphosphonium tetraphenylborate and the like. Among these, tertiary phosphine is more preferable, and triphenylphosphine is particularly preferable.
 コアには、リン系硬化触媒のほか、ビニル系重合体が含まれる。コアにビニル系重合体を含ませることで、コアにリン系硬化触媒を封じ込めることが可能となり、硬化性を低下させることなく、潜在性硬化触媒の保存安定性を高めることができる。また、当該封じ込めにより、これに続く内側シェル層の形成を可能としている。この観点から、コアにおけるビニル系重合体の含有量は、リン系硬化触媒100重量部に対して50~500重量部が好ましく、100~300重量部がより好ましい。トリ-p-トリルホスフィン等の溶媒溶解性が低い硬化触媒の場合、コアにおけるビニル系重合体の含有量は、リン系硬化触媒100重量部に対して50~5000重量部であってよく、100~4000重量部であってよい。 The core contains a vinyl polymer in addition to a phosphorus curing catalyst. By including the vinyl polymer in the core, it becomes possible to contain the phosphorus-based curing catalyst in the core, and the storage stability of the latent curing catalyst can be improved without lowering the curability. Further, the containment enables the subsequent formation of the inner shell layer. From this viewpoint, the content of the vinyl polymer in the core is preferably 50 to 500 parts by weight, more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the phosphorus-based curing catalyst. In the case of a curing catalyst having low solvent solubility such as tri-p-tolylphosphine, the content of the vinyl polymer in the core may be 50 to 5000 parts by weight with respect to 100 parts by weight of the phosphorus curing catalyst. It may be up to 4000 parts by weight.
 コアにおけるビニル系重合体の含有量が少なくなると、コアを形成するための重合反応前のコア成分の調整の段階で、リン系硬化触媒がビニル系単量体に溶けきれず、粗大なリン系硬化触媒が残存することにもなり、微小なコアにリン系硬化触媒を封じ込めることが困難となる場合がある。例えば、コアを形成するための重合反応前のコア成分の調整の段階で、触媒がビニル系単量体に溶けきれず、粗大な触媒が残存することがある。この場合は、微小なコアを形成することができなくなる。逆に、コアにおけるビニル系重合体の含有量が多くなると、潜在性硬化触媒の粒径が大きくなったり、潜在性触媒粒子中のリン系硬化触媒の含有量が低下して、硬化性が低下したりする不都合がある。 When the content of vinyl polymer in the core decreases, the phosphorus curing catalyst cannot be dissolved in the vinyl monomer at the stage of adjusting the core component before the polymerization reaction to form the core, and the coarse phosphorus system The curing catalyst may remain, and it may be difficult to contain the phosphorus-based curing catalyst in a minute core. For example, the catalyst may not be completely dissolved in the vinyl monomer at the stage of adjusting the core component before the polymerization reaction for forming the core, and a coarse catalyst may remain. In this case, a minute core cannot be formed. Conversely, if the content of the vinyl polymer in the core increases, the particle size of the latent curing catalyst increases or the content of the phosphorus curing catalyst in the latent catalyst particles decreases, resulting in a decrease in curability. There is inconvenience to do.
 コアを形成するための重合反応前には、リン系硬化触媒はビニル系単量体に溶解した状態であるのが好ましいが、ビニル系単量体の重合によりリン系硬化触媒とビニル系重合体が、重合反応誘起相分離を起こす場合もある。本発明では、コアの内部において、リン系硬化触媒の分布状態は特に限定されない。例えば、コアは、ビニル系重合体とリン系硬化触媒が相溶して単一の相が形成されてなるものでもよい。あるいは、コアの中心部にリン系硬化触媒が偏在し、その周囲をビニル系重合体が取り囲んでいる二重構造のものであってよい。また、ビニル系重合体からなる連続相において、リン系硬化触媒が凝集してなる不連続相が分散した、いわゆる海島構造を形成している状態であってもよい。また、ビニル系重合体とリン系硬化触媒が共連続構造を形成している状態であってもよい。コアを形成するための重合反応前には、リン系硬化触媒はビニル系単量体に溶解した状態であっても、ビニル系単量体の重合によりリン系硬化触媒とビニル系重合体が、重合反応誘起相分離を起こす場合もある。 Before the polymerization reaction for forming the core, the phosphorus-based curing catalyst is preferably dissolved in the vinyl-based monomer, but the phosphorus-based curing catalyst and the vinyl-based polymer are polymerized by the polymerization of the vinyl-based monomer. However, polymerization reaction-induced phase separation may occur. In the present invention, the distribution state of the phosphorus-based curing catalyst is not particularly limited inside the core. For example, the core may be one in which a vinyl polymer and a phosphorus curing catalyst are compatible to form a single phase. Alternatively, it may have a double structure in which a phosphorus-based curing catalyst is unevenly distributed in the center of the core and a vinyl polymer surrounds the periphery. Further, in a continuous phase made of a vinyl polymer, a so-called sea-island structure in which a discontinuous phase formed by aggregation of a phosphorus-based curing catalyst is dispersed may be formed. Alternatively, the vinyl polymer and the phosphorus curing catalyst may form a co-continuous structure. Even before the polymerization reaction for forming the core, the phosphorus curing catalyst and the vinyl polymer are polymerized by the vinyl monomer, even if the phosphorus curing catalyst is dissolved in the vinyl monomer. Polymerization reaction induced phase separation may occur.
 本発明では、コアにおけるビニル系重合体としては、ラジカル重合性のビニル系単量体を含む単量体成分を重合してなる重合体であれば特に限定されない。使用できるビニル系単量体としては、(メタ)アクリル系単量体、オレフィン系単量体、スチレン系単量体(例えば、メタクロロスチレン、パラクロロスチレン、パラフロロスチレン、パラメトキシスチレン、メタターシャリーブトキシスチレン、パラターシャリーブトキシスチレン、パラビニル安息香酸、パラメチル-α-メチルスチレン、1-エチニル-4-フロロベンゼン)、ビニルエステル系単量体(式:C=C-(C=O)-O-R)、マレイン酸系単量体(無水マレイン酸系単量体を含む)、マレイミド系単量体(例えば、フェニルメタンマレイミド)、ビニルアルコールエステル系単量体(式:C=C-O-(C=O)-R)(例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル)等が挙げられる。これら単量体は1種類のみを使用してもよいし、2種類以上を併用してもよい。なお、本願でいうビニル系単量体とは、ラジカル重合性のビニル基を1分子に1つ有する単量体である。 In the present invention, the vinyl polymer in the core is not particularly limited as long as it is a polymer obtained by polymerizing a monomer component containing a radical polymerizable vinyl monomer. Examples of vinyl monomers that can be used include (meth) acrylic monomers, olefin monomers, and styrene monomers (eg, metachlorostyrene, parachlorostyrene, parafluorostyrene, paramethoxystyrene, Tertiary butoxystyrene, para tertiary butoxystyrene, paravinylbenzoic acid, paramethyl-α-methylstyrene, 1-ethynyl-4-fluorobenzene), vinyl ester monomer (formula: C = C- (C = O) -O-R), maleic acid monomers (including maleic anhydride monomers), maleimide monomers (eg, phenylmethanemaleimide), vinyl alcohol ester monomers (formula: C = C -O- (C = O) -R) (for example, vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl benzoate), etc. It is. These monomers may use only 1 type and may use 2 or more types together. The vinyl monomer as used in the present application is a monomer having one radical polymerizable vinyl group per molecule.
 これら単量体のうち、(メタ)アクリル系単量体が好ましい。(メタ)アクリル系単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸-tert-ブチル、(メタ)アクリル酸-n-ペンチル、(メタ)アクリル酸-n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸-n-ヘプチル、(メタ)アクリル酸-n-オクチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル等の、炭素数1~18のアルキル基を有する(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシブチル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸2-アミノエチル、(メタ)アクリル酸2-(ジメチルアミノ)エチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸2-パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等が挙げられる。これら(メタ)アクリル系単量体は1種類のみを使用してもよいし、2種類以上を併用してもよい。なお、コアに含まれるビニル系重合体は、アリルグリシジルエーテルまたはグリシジル(メタ)アクリレートを重合してなるものではなく、グリシジル基を持たないものであってよい。 Of these monomers, (meth) acrylic monomers are preferred. Examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid-n-propyl, isopropyl (meth) acrylate, (meth) acrylic acid- n-butyl, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth ) -N-heptyl acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, (Meth) acrylic acid alkyl esters having an alkyl group having 1 to 18 carbon atoms, such as (meth) acrylic acid stearyl; Phenyl lurate, toluyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate , (Meth) acrylic acid-2-hydroxypropyl, (meth) acrylic acid 2-aminoethyl, (meth) acrylic acid 2- (dimethylamino) ethyl, γ- (methacryloyloxypropyl) trimethoxysilane, (meth) acrylic Ethylene oxide adduct of acid, trifluoromethyl methyl (meth) acrylate, 2-trifluoromethyl ethyl (meth) acrylate, 2-perfluoroethyl ethyl (meth) acrylate, 2-perfluoro (meth) acrylate Ethyl-2-perfluorobutylethyl, 2- (perfluoro) (meth) acrylic acid Roethyl, perfluoromethyl (meth) acrylate, diperfluoromethyl methyl (meth) acrylate, 2-perfluoromethyl-2-perfluoroethyl methyl (meth) acrylate, 2-perfluorohexyl (meth) acrylate Examples thereof include ethyl, 2-perfluorodecylethyl (meth) acrylate, and 2-perfluorohexadecylethyl (meth) acrylate. These (meth) acrylic monomers may be used alone or in combination of two or more. The vinyl polymer contained in the core is not formed by polymerizing allyl glycidyl ether or glycidyl (meth) acrylate, and may not have a glycidyl group.
 コアに含まれるビニル系重合体は、架橋構造を有しないビニル系重合体であってもよいが、架橋構造を有するビニル系重合体(以下、架橋ビニル系重合体ともいう)であることが好ましい。前記架橋構造は低密度である(緩い架橋構造を有する)ことが好ましい。コア中のビニル系重合体が架橋構造を有することによって、より確実に、コアにリン系硬化触媒を封じ込めることが可能となり、潜在性硬化触媒の保存安定性をさらに高めることができ、また、架橋構造を低密度とすることで、硬化温度でリン系硬化触媒を放出しやすくなる。 The vinyl polymer contained in the core may be a vinyl polymer having no cross-linked structure, but is preferably a vinyl polymer having a cross-linked structure (hereinafter also referred to as a cross-linked vinyl polymer). . The crosslinked structure preferably has a low density (has a loose crosslinked structure). Since the vinyl polymer in the core has a cross-linked structure, it becomes possible to contain the phosphorus-based curing catalyst more reliably in the core, and further improve the storage stability of the latent curing catalyst. By making the structure low density, the phosphorus-based curing catalyst is easily released at the curing temperature.
 ビニル系重合体に架橋構造を導入するには、上記ビニル系単量体と架橋性ビニル系単量体とを重合することで前記ビニル系重合体を製造すればよい。本願でいう架橋性ビニル系単量体とは、ラジカル重合性のビニル基を1分子に2以上有し、上記ビニル系単量体とともにラジカル重合が可能な架橋性ビニル系単量体である。このような架橋性ビニル系単量体の具体例としては、後述する第一架橋性ビニル系単量体と同じ具体例が挙げられる。コアで使用する架橋性ビニル系単量体としては、第一架橋性ビニル系単量体と同じ単量体を使用してもよいし、異なる単量体を使用してもよい。後述する第一架橋性ビニル系単量体と同じ理由により、コアで使用する架橋性ビニル系単量体としては、1分子に1又は2以上の(メタ)アクリル基を有する単量体が好ましく、具体的には、アクリル酸アリル、メタクリル酸アリル、又は、多価アルコール又は多価フェノールのジ-、トリ-、又はテトラ-(メタ)アクリル酸エステルがより好ましく、アクリル酸アリル、又は、メタクリル酸アリルが特に好ましい。 In order to introduce a crosslinked structure into the vinyl polymer, the vinyl polymer may be produced by polymerizing the vinyl monomer and the crosslinkable vinyl monomer. The crosslinkable vinyl monomer referred to in the present application is a crosslinkable vinyl monomer having two or more radical polymerizable vinyl groups per molecule and capable of radical polymerization together with the vinyl monomer. Specific examples of such a crosslinkable vinyl monomer include the same specific examples as the first crosslinkable vinyl monomer described later. As the crosslinkable vinyl monomer used in the core, the same monomer as the first crosslinkable vinyl monomer may be used, or a different monomer may be used. For the same reason as the first crosslinkable vinyl monomer described later, the crosslinkable vinyl monomer used in the core is preferably a monomer having one or more (meth) acrylic groups per molecule. Specifically, allyl acrylate, allyl methacrylate, or di-, tri-, or tetra- (meth) acrylate esters of polyhydric alcohols or polyphenols are more preferable, and allyl acrylate or methacrylic acid is preferred. Allyl acid is particularly preferred.
 しかし、コア中の架橋ビニル系重合体において架橋性ビニル系単量体の含有量が多くなり架橋度が高くなると、コアにリン系硬化触媒を封じ込めることが困難となったり、硬化温度でもエポキシ樹脂中にリン系硬化触媒を放出しにくくなり、硬化性が低下したりする場合がある。この観点から、コア中での架橋性ビニル系単量体の使用量は少量であることが好ましく、具体的には、コアを形成する架橋ビニル系重合体中の架橋性ビニル系単量体の重量割合(架橋ビニル系重合体全体のうち架橋性ビニル系単量体が占める重量割合)は0.01~10重量%が好ましく、0.5~5重量%がより好ましい。 However, if the content of the crosslinkable vinyl monomer in the cross-linked vinyl polymer in the core increases and the degree of cross-linking increases, it becomes difficult to contain the phosphorus-based curing catalyst in the core. In some cases, it becomes difficult to release the phosphorus-based curing catalyst, and the curability may be lowered. From this viewpoint, the amount of the crosslinkable vinyl monomer used in the core is preferably small, and specifically, the crosslinkable vinyl monomer in the crosslinkable vinyl polymer forming the core is used. The weight ratio (weight ratio of the cross-linked vinyl monomer in the entire cross-linked vinyl polymer) is preferably 0.01 to 10% by weight, and more preferably 0.5 to 5% by weight.
 (内側シェル層)
 内側シェル層は、前記コアを被覆する樹脂層であり、第一ビニル樹脂から形成される。第一ビニル樹脂は、第一ビニル系単量体と第一架橋性ビニル系単量体とを含む単量体成分の重合体であるか、または,第一ビニル系単量体の重合体である。すなわち第一ビニル樹脂は、第一ビニル系単量体を必須の単量体とする重合体であって、任意の単量体である第一架橋性ビニル系単量体とともに重合されていてもよい。このうち、第一ビニル系単量体と第一架橋性ビニル系単量体との重合体が好ましい。第一ビニル樹脂は、酸性基を有しないビニル樹脂であってよい。
(Inner shell layer)
The inner shell layer is a resin layer that covers the core, and is formed of a first vinyl resin. The first vinyl resin is a polymer of a monomer component containing a first vinyl monomer and a first crosslinkable vinyl monomer, or a polymer of a first vinyl monomer. is there. That is, the first vinyl resin is a polymer having the first vinyl monomer as an essential monomer, and may be polymerized together with the first crosslinkable vinyl monomer which is an arbitrary monomer. Good. Among these, a polymer of a first vinyl monomer and a first crosslinkable vinyl monomer is preferable. The first vinyl resin may be a vinyl resin having no acidic group.
 このように、コアと、後述する外側シェル層とのあいだに内側シェル層を設けることで、外側シェル層の架橋度を高めることが可能となり、これによって高い硬化性を示しながら、潜在性硬化触媒の保存安定性を高めることができる。 Thus, by providing the inner shell layer between the core and the outer shell layer, which will be described later, it is possible to increase the degree of cross-linking of the outer shell layer. Can improve the storage stability.
 第一ビニル系単量体としては、ラジカル重合性のビニル基を1分子に1つ有する単量体である限り特に限定されず、具体的には、(メタ)アクリル系単量体、オレフィン系単量体、スチレン系単量体(例えば、メタクロロスチレン、パラクロロスチレン、パラフロロスチレン、パラメトキシスチレン、メタターシャリーブトキシスチレン、パラターシャリーブトキシスチレン、パラビニル安息香酸、パラメチル-α-メチルスチレン、1-エチニル-4-フロロベンゼン)、ビニルエステル系単量体(式:C=C-(C=O)-O-R)、マレイン酸系単量体(無水マレイン酸系単量体を含む)、マレイミド系単量体(例えば、フェニルメタンマレイミド)、ビニルアルコールエステル系単量体(式:C=C-O-(C=O)-R)(例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル)等が挙げられる。これら単量体は1種類のみを使用してもよいし、2種類以上を併用してもよい。これら単量体のうち、(メタ)アクリル系単量体が好ましい。(メタ)アクリル系単量体としては、上述((コア)を詳述した箇所に具体例を記載)したものを使用できる。これら(メタ)アクリル系単量体は1種類のみを使用してもよいし、2種類以上を併用してもよい。なお、第一ビニル樹脂は、アリルグリシジルエーテルまたはグリシジル(メタ)アクリレートを重合してなるものではなく、グリシジル基を持たないものであってよい。 The first vinyl monomer is not particularly limited as long as it is a monomer having one radical polymerizable vinyl group per molecule, and specifically, a (meth) acrylic monomer, an olefinic monomer Monomer, styrene monomer (eg, metachlorostyrene, parachlorostyrene, parafluorostyrene, paramethoxystyrene, metatertiary butoxystyrene, paratertiary butoxystyrene, paravinylbenzoic acid, paramethyl-α-methylstyrene) 1-ethynyl-4-fluorobenzene), vinyl ester monomer (formula: C═C— (C═O) —O—R), maleic acid monomer (maleic anhydride monomer) Including), maleimide monomers (eg, phenylmethanemaleimide), vinyl alcohol ester monomers (formula: C═C—O— (C═O) —R) (eg , Vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl benzoate), and the like. These monomers may use only 1 type and may use 2 or more types together. Of these monomers, (meth) acrylic monomers are preferred. As the (meth) acrylic monomer, those described above (specific examples are described in the place where (core) is described in detail) can be used. These (meth) acrylic monomers may be used alone or in combination of two or more. The first vinyl resin is not formed by polymerizing allyl glycidyl ether or glycidyl (meth) acrylate, and may not have a glycidyl group.
 第一架橋性ビニル系単量体としては、ラジカル重合性のビニル基を1分子中に2以上有し、第一ビニル系単量体とのラジカル重合が可能な架橋性ビニル系単量体を使用できる。このような第一架橋性ビニル単量体としては、例えば、アクリル酸アリル、メタクリル酸アリル;ジビニルベンゼン、ジビニルトルエン、トリビニルベンゼン等の芳香族多官能ビニル単量体;エチレングリコールジ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート等の多価アルコール又は多価フェノールのジ-、トリ-、又はテトラ-(メタ)アクリル酸エステル;ジアリルフタレート、ジアリルセバケート、トリアリルトリアジン、トリアリルシアヌレート、トリアリルイソシアヌレート等のジ又はトリアリル化合物;メチレンビス(メタ)アクリルアミド;4,4’-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサンなどのビスマレイミド系化合物等が挙げられる。これらは単独で用いてもよいし、二種以上を組み合わせて使用してもよい。 As the first crosslinkable vinyl monomer, a crosslinkable vinyl monomer having two or more radical polymerizable vinyl groups in one molecule and capable of radical polymerization with the first vinyl monomer is used. Can be used. Examples of the first crosslinkable vinyl monomer include, for example, allyl acrylate, allyl methacrylate; aromatic polyfunctional vinyl monomers such as divinylbenzene, divinyltoluene, and trivinylbenzene; ethylene glycol di (meth) Acrylate, diethylene glycol (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butane Diol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) Acryle Glycerin di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, bisphenol A ethylene oxide adduct di (meth) acrylate, trimethylol Propane tri (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dimethylol-tricyclodecanedi ( Multivalent such as (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, bisphenol A di (meth) acrylate Di-, tri-, or tetra- (meth) acrylic esters of alcohol or polyphenols; di- or triallyl compounds such as diallyl phthalate, diallyl sebacate, triallyl triazine, triallyl cyanurate, triallyl isocyanurate; methylene bis (Meth) acrylamide; 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 4 -Bismaleimide compounds such as methyl-1,3-phenylenebismaleimide and 1,6'-bismaleimide- (2,2,4-trimethyl) hexane. These may be used alone or in combination of two or more.
 これらのなかでも、第一ビニル系単量体との重合性が良好であり、かつ、第一ビニル樹脂が良好なカプセル特性を示すことから、1分子に1又は2以上の(メタ)アクリル基を有する単量体が好ましく、具体的には、アクリル酸アリル、メタクリル酸アリル、又は、多価アルコール又は多価フェノールのジ-、トリ-、又はテトラ-(メタ)アクリル酸エステルがより好ましい。なお、良好なカプセル特性とは、保存時にはカプセルがガラス状態で低い物質透過性を示しながら、エポキシ樹脂の硬化温度ではカプセルがゴム状態となり高い物質透過性を示し、カプセルの崩壊性が良好になることをいう。 Among these, since the polymerizability with the first vinyl monomer is good and the first vinyl resin exhibits good capsule characteristics, one or more (meth) acrylic groups per molecule. In particular, allyl acrylate, allyl methacrylate, or di-, tri-, or tetra- (meth) acrylic esters of polyhydric alcohols or polyhydric phenols are more preferred. Good capsule characteristics means that the capsule is in a glassy state during storage and exhibits low substance permeability, but at the curing temperature of the epoxy resin, the capsule becomes rubbery and exhibits high substance permeability, resulting in good capsule disintegration. That means.
 さらに、前記1分子に1又は2以上の(メタ)アクリル基を有する単量体のなかでも、(メタ)アクリル系単量体との重合性が高い二重結合と該重合性が比較的低い二重結合を併せ持つ単量体は、前者の二重結合と(メタ)アクリル系単量体との重合反応によって、後者の二重結合をグラフト鎖として有する直鎖状の重合体が形成された後、後者の二重結合が架橋形成に寄与しやすく、配合設計どおりに架橋度を達成できる。この観点から、前記1分子に1又は2以上の(メタ)アクリル基を有する単量体のなかでも、アクリル酸アリル、又は、メタクリル酸アリルが特に好ましい。このように、重合体に二重結合を導入することにより、架橋に寄与しない副反応(分子内反応による環化形成など)を抑制し、配合設計どおりの架橋度を達成することができる。 Furthermore, among the monomers having one or more (meth) acrylic groups in one molecule, a double bond having a high polymerizability with a (meth) acrylic monomer and the polymerizability is relatively low. The monomer having both double bonds formed a linear polymer having the latter double bond as a graft chain by the polymerization reaction of the former double bond and the (meth) acrylic monomer. Later, the latter double bond is likely to contribute to the formation of cross-linking, and the degree of cross-linking can be achieved according to the formulation design. From this viewpoint, allyl acrylate or allyl methacrylate is particularly preferable among the monomers having one or more (meth) acryl groups per molecule. Thus, by introducing a double bond into the polymer, side reactions that do not contribute to crosslinking (such as cyclization by intramolecular reaction) can be suppressed, and the degree of crosslinking according to the formulation design can be achieved.
 内側シェル層を形成する第一ビニル樹脂において、第一ビニル樹脂中の第一架橋性ビニル系単量体の重量割合(第一ビニル樹脂全体のうち第一架橋性ビニル系単量体が占める重量割合)は10~60重量%が好ましく、15~40重量%がより好ましく、20~30重量%が更に好ましい。また、第一ビニル樹脂中の第一架橋性ビニル系単量体の重量割合は、コアを形成するビニル系重合体中の架橋性ビニル系単量体の重量割合より大きいものであることが好ましい。 In the first vinyl resin forming the inner shell layer, the weight ratio of the first crosslinkable vinyl monomer in the first vinyl resin (weight occupied by the first crosslinkable vinyl monomer in the entire first vinyl resin) The ratio is preferably 10 to 60% by weight, more preferably 15 to 40% by weight, and still more preferably 20 to 30% by weight. Further, the weight ratio of the first crosslinkable vinyl monomer in the first vinyl resin is preferably larger than the weight ratio of the crosslinkable vinyl monomer in the vinyl polymer forming the core. .
 (外側シェル層)
 外側シェル層は、前記内側シェル層を被覆する樹脂層であり、第二ビニル樹脂から形成される。第二ビニル樹脂は、第二ビニル系単量体と第二架橋性ビニル系単量体とを含む単量体成分の重合体であるか、または、第二架橋性ビニル系単量体の重合体である。すなわち第二ビニル樹脂は、第二架橋性ビニル系単量体を必須の単量体とする重合体であって、第二ビニル系単量体が任意の単量体として第二架橋性ビニル系単量体と一緒に重合(共重合)されていてもよいし、重合(共重合)されていなくともよい。第二ビニル樹脂は、酸性基を有しないビニル樹脂であってよい。
(Outer shell layer)
The outer shell layer is a resin layer that covers the inner shell layer, and is formed of a second vinyl resin. The second vinyl resin is a polymer of a monomer component containing a second vinyl monomer and a second crosslinkable vinyl monomer, or is a polymer of the second crosslinkable vinyl monomer. It is a coalescence. That is, the second vinyl resin is a polymer having the second crosslinkable vinyl monomer as an essential monomer, and the second vinyl monomer is an optional monomer and the second crosslinkable vinyl It may be polymerized (copolymerized) together with the monomer or may not be polymerized (copolymerized). The second vinyl resin may be a vinyl resin having no acidic group.
 このように外側シェル層を形成する第二ビニル樹脂は、架橋構造を有するので、コアのリン系硬化触媒が粒子の外部に漏出するのを防止でき、また、エポキシ樹脂が粒子の内部に浸透するのを抑制することができる。これにより、潜在性硬化触媒の保存安定性を高めることができる。 Since the second vinyl resin forming the outer shell layer has a cross-linked structure, it is possible to prevent the phosphorus-based curing catalyst of the core from leaking out of the particle, and the epoxy resin penetrates into the particle. Can be suppressed. Thereby, the storage stability of the latent curing catalyst can be enhanced.
 第二ビニル系単量体としては、ラジカル重合性のビニル基を1分子に1つ有し、かつ、第二架橋性ビニル系単量体とのラジカル重合が可能な単量体である限り特に限定されず、具体的には、(メタ)アクリル系単量体、オレフィン系単量体、スチレン系単量体(例えば、メタクロロスチレン、パラクロロスチレン、パラフロロスチレン、パラメトキシスチレン、メタターシャリーブトキシスチレン、パラターシャリーブトキシスチレン、パラビニル安息香酸、パラメチル-α-メチルスチレン、1-エチニル-4-フロロベンゼン)、ビニルエステル系単量体(式:C=C-(C=O)-O-R)、マレイン酸系単量体(無水マレイン酸系単量体を含む)、マレイミド系単量体(例えば、フェニルメタンマレイミド)、ビニルアルコールエステル系単量体(式:C=C-O-(C=O)-R)(例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル)等が挙げられる。これら単量体は1種類のみを使用してもよいし、2種類以上を併用してもよい。これら単量体のうち、(メタ)アクリル系単量体が好ましい。(メタ)アクリル系単量体としては、上述したものを使用できる。これら(メタ)アクリル系単量体は1種類のみを使用してもよいし、2種類以上を併用してもよい。なお、第二ビニル樹脂は、アリルグリシジルエーテルまたはグリシジル(メタ)アクリレートを重合してなるものではなく、グリシジル基を持たないものであってよい。 As the second vinyl monomer, as long as it has one radical polymerizable vinyl group per molecule and can be radically polymerized with the second crosslinkable vinyl monomer, Specific examples include (meth) acrylic monomers, olefinic monomers, and styrene monomers (for example, metachlorostyrene, parachlorostyrene, parafluorostyrene, paramethoxystyrene, metatarsia). Libutoxystyrene, paratertiary butoxystyrene, paravinylbenzoic acid, paramethyl-α-methylstyrene, 1-ethynyl-4-fluorobenzene), vinyl ester monomer (formula: C═C— (C═O) — OR), maleic monomers (including maleic anhydride monomers), maleimide monomers (eg, phenylmethanemaleimide), vinyl alcohol ester Ether-based monomer (formula: C = C-O- (C = O) -R) (e.g., vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl benzoate), and the like. These monomers may use only 1 type and may use 2 or more types together. Of these monomers, (meth) acrylic monomers are preferred. As the (meth) acrylic monomer, those described above can be used. These (meth) acrylic monomers may be used alone or in combination of two or more. The second vinyl resin is not formed by polymerizing allyl glycidyl ether or glycidyl (meth) acrylate, and may not have a glycidyl group.
 第二架橋性ビニル系単量体としては、ラジカル重合性のビニル基を1分子中に2以上有する単量体を使用できる。第二架橋性ビニル系単量体の具体例としては、前述した第一架橋性ビニル系単量体と同様の単量体が挙げられ、第一架橋性ビニル系単量体と同じ単量体を使用してもよいし、異なる単量体を使用してもよい。前述した第一架橋性ビニル系単量体と同じ理由により、第二架橋性ビニル系単量体としては、1分子に1又は2以上の(メタ)アクリル基を有する単量体が好ましく、アクリル酸アリル、メタクリル酸アリル、又は、多価アルコール又は多価フェノールのジ-、トリ-、又はテトラ-(メタ)アクリル酸エステルがより好ましく、アクリル酸アリル、又は、メタクリル酸アリルが特に好ましい。 As the second crosslinkable vinyl monomer, a monomer having two or more radically polymerizable vinyl groups in one molecule can be used. Specific examples of the second crosslinkable vinyl monomer include the same monomers as the first crosslinkable vinyl monomer described above, and the same monomers as the first crosslinkable vinyl monomer. May be used, or different monomers may be used. For the same reason as the first crosslinkable vinyl monomer described above, the second crosslinkable vinyl monomer is preferably a monomer having one or more (meth) acryl groups per molecule. Allyl acid, allyl methacrylate, or di-, tri-, or tetra- (meth) acrylic acid esters of polyhydric alcohols or polyhydric phenols are more preferred, and allyl acrylate or allyl methacrylate is particularly preferred.
 外側シェル層を形成する第二ビニル樹脂において、第二ビニル樹脂中の第二架橋性ビニル系単量体の重量割合(第二ビニル樹脂全体のうち第二架橋性ビニル系単量体が占める重量割合)は60~100重量%が好ましく、80~100重量%がより好ましく、90~99.9重量%が更に好ましい。 In the second vinyl resin forming the outer shell layer, the weight ratio of the second crosslinkable vinyl monomer in the second vinyl resin (weight occupied by the second crosslinkable vinyl monomer in the entire second vinyl resin) The ratio is preferably 60 to 100% by weight, more preferably 80 to 100% by weight, and still more preferably 90 to 99.9% by weight.
 さらに、第二ビニル樹脂中の第二架橋性ビニル系単量体の重量割合は、第一ビニル樹脂中の第一架橋性ビニル系単量体の重量割合より大きいものであることが好ましい。このように外側シェル層において架橋性ビニル系単量体を多く使用し、その内側に架橋性ビニル系単量体の使用量が比較的少ない又は架橋性ビニル系単量体を使用しない内側シェル層を設けることで、架橋度の高いシェル層を粒子の最も外側に形成することが可能となり、これによって、前述したようにリン系硬化触媒の漏出およびエポキシ樹脂の浸透を抑制し、潜在性硬化触媒の保存安定性を高めることができる。 Further, the weight ratio of the second crosslinkable vinyl monomer in the second vinyl resin is preferably larger than the weight ratio of the first crosslinkable vinyl monomer in the first vinyl resin. Thus, the inner shell layer that uses a large amount of the crosslinkable vinyl monomer in the outer shell layer and uses a relatively small amount of the crosslinkable vinyl monomer inside or does not use the crosslinkable vinyl monomer. It is possible to form a shell layer having a high degree of cross-linking on the outermost side of the particles by suppressing the leakage of the phosphorus-based curing catalyst and the penetration of the epoxy resin as described above, and the latent curing catalyst. Can improve the storage stability.
 本発明において特に好ましくは、コア、内側シェル層、外側シェル層の順で架橋度が高くなるように構成することであり、すなわち、コアを形成するビニル系重合体中の架橋性ビニル系単量体の重量割合、第一ビニル樹脂中の第一架橋性ビニル系単量体の重量割合、第二ビニル樹脂中の第二架橋性ビニル系単量体の重量割合の順序で、架橋性ビニル系単量体の重量割合が大きくなるように構成することである。これにより、リン系硬化触媒をコアに確実に封じ込めながら、かつ、架橋度が十分に高い外側シェル層を形成することができ、硬化温度ではリン系触媒をエポキシ樹脂中へ放出しやすくすることができる。 In the present invention, it is particularly preferable that the degree of crosslinking be increased in the order of the core, the inner shell layer, and the outer shell layer, that is, the crosslinkable vinyl monomer in the vinyl polymer forming the core. The crosslinkable vinyl series in the order of the weight percentage of the body, the weight percentage of the first crosslinkable vinyl monomer in the first vinyl resin, and the weight percentage of the second crosslinkable vinyl monomer in the second vinyl resin. The constitution is such that the weight ratio of the monomer is increased. As a result, an outer shell layer having a sufficiently high degree of crosslinking can be formed while the phosphorus-based curing catalyst is reliably contained in the core, and the phosphorus-based catalyst can be easily released into the epoxy resin at the curing temperature. it can.
 以上説明したコアと、内側シェル層を形成する第一ビニル樹脂と、外側シェル層を形成する第二ビニル樹脂の重量割合は特に限定されないが、硬化性の低下を抑制する観点から、架橋度の高い外側シェル層は内側シェル層よりも薄膜とすることが好ましい。この観点から、第一ビニル樹脂100重量部に対する第二ビニル樹脂の量は、5~50重量部であることが好ましく、10~30重量部であることがより好ましい。 The weight ratio of the core described above, the first vinyl resin forming the inner shell layer, and the second vinyl resin forming the outer shell layer is not particularly limited. The higher outer shell layer is preferably a thinner film than the inner shell layer. From this viewpoint, the amount of the second vinyl resin relative to 100 parts by weight of the first vinyl resin is preferably 5 to 50 parts by weight, and more preferably 10 to 30 parts by weight.
 本発明の実施形態に係る潜在性硬化触媒では、リン系硬化触媒を含む低架橋密度又は未架橋のコア、中架橋密度で厚い内側シェル層、高架橋密度で薄い外側シェル層の順に、粒子の中心であるコアから外に向かって複数のシェル層が構成されることが好ましい。このように架橋密度のグラデーションを設けていて、かつ、内側シェル層が厚く、外側シェル層が薄い構造が好ましい。このような構造によって保存時の優れた安定性と、硬化時の優れた硬化性の両立を高めることができる。 In the latent curing catalyst according to the embodiment of the present invention, the center of the particle is formed in the order of a low crosslinking density or an uncrosslinked core containing a phosphorus-based curing catalyst, a thick inner shell layer with a medium crosslinking density, and a thin outer shell layer with a high crosslinking density. It is preferable that a plurality of shell layers are formed outward from the core. A structure in which gradation of the crosslinking density is provided in this way, and the inner shell layer is thick and the outer shell layer is thin is preferable. With such a structure, both excellent stability during storage and excellent curability during curing can be enhanced.
 すなわち、保存時には、高架橋密度で薄い外側シェル層(薄い硬い壁)と、適度な架橋密度で厚い内側シェル層(厚い壁)によって、リン系硬化触媒がカプセル外に漏れることと、エポキシ樹脂がカプセル内部に侵入するのを抑制するが、エポキシ樹脂の硬化温度では、硬くて脆く薄い外側シェル層は、カプセル内外の圧力差、熱膨張差、物質移動による応力増加などのサーマルショックに起因して崩壊しやすい。外側シェル層が崩壊すると、それに誘起されて内側シェル層、コアへと崩壊が連鎖する。つまり、クラックが伝搬し、粒子全体が崩壊することとなる。また、内側シェル層が崩壊しなくとも、中架橋密度である内側シェル層は、架橋鎖がフレキシブルに動き(ゴム状態)、リン系硬化触媒を放出しやすい物性を示す。 That is, during storage, the phosphorus-based curing catalyst leaks out of the capsule and the epoxy resin is encapsulated by a thin outer shell layer (thin hard wall) with a high crosslinking density and a thick inner shell layer (thick wall) with a moderate crosslinking density. Although it suppresses intrusion inside, at the curing temperature of epoxy resin, the hard, brittle and thin outer shell layer collapses due to thermal shock such as pressure difference inside and outside capsule, thermal expansion difference, stress increase due to mass transfer etc. It's easy to do. When the outer shell layer collapses, it is induced to chain the collapse to the inner shell layer and the core. That is, the crack propagates and the whole particle collapses. Even if the inner shell layer does not collapse, the inner shell layer having a medium crosslinking density exhibits physical properties that the crosslinking chain moves flexibly (rubber state) and easily releases the phosphorus-based curing catalyst.
 前記実施形態に係る潜在性硬化触媒の最大の特徴は、外側シェル層が高架橋密度で、かつ薄いことにある。高架橋密度による架橋鎖の運動性は極めて低いので、高架橋密度の外側シェル層は物質を透過しにくく、保存時には非常に高い安定性を示す。一方、エポキシ樹脂の硬化温度では、外側シェル層は薄くて非常に脆いので、サーマルショックにより崩壊しやすく、それによって良好な硬化性が発揮される。 The greatest feature of the latent curing catalyst according to the embodiment is that the outer shell layer has a high crosslink density and is thin. Since the mobility of the crosslinking chain due to the high crosslinking density is extremely low, the outer shell layer having a high crosslinking density is difficult to permeate the substance and exhibits very high stability during storage. On the other hand, at the curing temperature of the epoxy resin, the outer shell layer is thin and very fragile, so that it easily collapses due to thermal shock, thereby exhibiting good curability.
 このように、外側シェル層が高架橋密度で、かつ薄いことが、保存安定性と硬化性の両立に大きく寄与している。また、内側シェル層は外側シェル層の機能を高める役割を果たしている。すなわち、内側シェル層は中程度の架橋密度で比較的厚いので、仮に保存時にエポキシ樹脂が薄い外側シェル層を透過してしまったとしても、内側シェル層は、エポキシ樹脂がコアに含まれるリン系硬化触媒に到達するのを抑制でき、この構造により保存時の安定性を高めている。また、内側シェル層は中程度の架橋密度のため、硬化時の外側シェル層の崩壊を抑制する効果は低く、硬化性の低下を招くこともない。しかし、内側シェル層が高架橋密度のものであれば、硬化時の外側シェル層の崩壊を抑制してしまう可能性が高い。 Thus, the fact that the outer shell layer has a high crosslink density and is thin contributes greatly to both storage stability and curability. The inner shell layer plays a role of enhancing the function of the outer shell layer. That is, since the inner shell layer is relatively thick with a medium crosslinking density, even if the epoxy resin permeates through the thin outer shell layer during storage, the inner shell layer is a phosphorus-based material in which the epoxy resin is contained in the core. Reaching the curing catalyst can be suppressed, and this structure enhances stability during storage. Further, since the inner shell layer has a medium crosslinking density, the effect of suppressing the collapse of the outer shell layer during curing is low, and the curability is not lowered. However, if the inner shell layer has a high crosslinking density, there is a high possibility that the outer shell layer will be prevented from collapsing during curing.
 (粒径)
 本発明の潜在性硬化触媒は、粒子状のものであり、その平均粒径(D50(累積体積50%))は0.01~50μmである。好ましくは0.05~5μmであり、より好ましくは0.1~3μmであり、さらに好ましくは0.3~2μmであり、特に好ましくは0.3~1μmである。このように平均粒径が小さいため、本発明の潜在性硬化触媒は、極めて狭いギャップ等への侵入性を有しており、そのように狭いギャップ等を有する半導体装置や電子部品に対して使用する封止材において好適に使用することができる。
(Particle size)
The latent curing catalyst of the present invention is in the form of particles, and the average particle diameter (D 50 (cumulative volume 50%)) is 0.01 to 50 μm. The thickness is preferably 0.05 to 5 μm, more preferably 0.1 to 3 μm, still more preferably 0.3 to 2 μm, and particularly preferably 0.3 to 1 μm. Since the average particle size is small in this way, the latent curing catalyst of the present invention has penetration into an extremely narrow gap, etc., and is used for semiconductor devices and electronic parts having such a narrow gap. It can use suitably in the sealing material to perform.
 (製法)
 本発明のエポキシ樹脂用潜在性硬化触媒は、以下の工程を実施することにより製造することができる。まず、リン系硬化触媒の存在下、乳化重合によりビニル系単量体と、場合により架橋性ビニル系単量体とを含む単量体成分を重合して、コアを形成する。次いで、前記コアの存在下、乳化重合により、第一ビニル系単量体と、場合により第一架橋性ビニル系単量体とを含む単量体成分を重合して、前記コアを被覆する内側シェル層を形成する。さらに、前記コアを被覆する内側シェル層の存在下、乳化重合により、第二架橋性ビニル系単量体と、場合により第二ビニル系単量体とを含む単量体成分を重合して、前記内側シェル層を被覆する外側シェル層を形成する。
(Manufacturing method)
The latent curing catalyst for epoxy resins of the present invention can be produced by performing the following steps. First, in the presence of a phosphorus curing catalyst, a monomer component containing a vinyl monomer and optionally a crosslinkable vinyl monomer is polymerized by emulsion polymerization to form a core. Then, in the presence of the core, by emulsion polymerization, a monomer component containing the first vinyl monomer and, optionally, the first crosslinkable vinyl monomer is polymerized to coat the core Form a shell layer. Furthermore, in the presence of the inner shell layer covering the core, by emulsion polymerization, a monomer component containing a second crosslinkable vinyl monomer, and optionally a second vinyl monomer, is polymerized, An outer shell layer covering the inner shell layer is formed.
 各乳化重合は常法に従うことができる。具体例を説明すると、まず、コア粒子を形成するために、重合開始剤と乳化剤を水と混合、撹拌してミセルを形成する。別途、リン系硬化触媒とコアの単量体成分を均一に混合した後、該ミセルに添加し、両者を混合、必要に応じて水を加えて、その後撹拌して乳化液を形成する。なお、撹拌の回転数や乳化剤の種類の選択、添加量の調整等によって、乳化液中の油滴の粒径は適宜調整することが可能である。その後、不活性雰囲気下で昇温して、所定の温度で加熱重合反応を進行させ、コア粒子の乳化液を得る。反応温度は、特に限定されないが、60~100℃程度が好ましく、反応時間は1~10時間程度が好ましい。 Each emulsion polymerization can follow a conventional method. To describe a specific example, first, in order to form core particles, a polymerization initiator and an emulsifier are mixed with water and stirred to form micelles. Separately, after uniformly mixing the phosphorus-based curing catalyst and the monomer component of the core, add them to the micelles, mix them, add water as necessary, and then stir to form an emulsion. The particle size of the oil droplets in the emulsified liquid can be appropriately adjusted by selecting the number of rotations of stirring and the type of emulsifier, adjusting the addition amount, and the like. Thereafter, the temperature is raised under an inert atmosphere, and the heat polymerization reaction is allowed to proceed at a predetermined temperature to obtain an emulsion of core particles. The reaction temperature is not particularly limited, but is preferably about 60 to 100 ° C., and the reaction time is preferably about 1 to 10 hours.
 乳化重合で使用可能な重合開始剤としては、一般的に乳化重合で使用可能な熱ラジカル重合開始剤や光ラジカル重合開始剤などのラジカル重合開始剤を使用することができる。例えば、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルフェート二水和物、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロライド、2,2’-アゾビス-[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス-[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド、4,4’-アゾビス(4-シアノバレリックアシッド)等の水溶性アゾ化合物や、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)等の油溶性アゾ化合物等のアゾ系化合物;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム塩等の過硫酸系化合物;ジイソプロピルベンゼンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、キュメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物(ハイドロパーオキサイド);過酸化ベンゾイル等の有機過酸化物(ジアシルパーオキサイド);前記過硫酸系化合物又は前記有機過酸化物にFe2+やCuイオンを加えたレドックス系開始剤等が挙げられる。 As a polymerization initiator that can be used in emulsion polymerization, a radical polymerization initiator such as a thermal radical polymerization initiator or a photo radical polymerization initiator that can be generally used in emulsion polymerization can be used. For example, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate 2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis- [N- (2-carboxyethyl) -2-methylpropionamidine], 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis- [2-methyl-N- (2-hydroxyethyl) propionamide, 4,4′-azobis (4-cyanovaleric acid), etc. Water-soluble azo compounds, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyrate) Nitrile), 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobis (2 Azo compounds such as oil-soluble azo compounds such as methyl propionate), 1,1′-azobis (cyclohexane-1-carbonitrile), dimethyl 1,1′-azobis (1-cyclohexanecarboxylate); Persulfuric compounds such as potassium, sodium persulfate and ammonium persulfate; organic peroxides such as diisopropylbenzene hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide (hydroperoxide) ); Organic peroxides such as benzoyl peroxide (diacyl peroxide) Side); the persulfate compound or the organic peroxide to Fe 2+ and Cu + ions added redox type initiator, and the like.
 これらの重合開始剤のうち、水に溶けやすい重合開始剤が好ましく、例えば、水溶性アゾ化合物や過硫酸塩類等が挙げられる。熱重合開始剤の10時間半減期温度は、一般的に40~90℃の間が好ましく、これより低いと常温での仕込みの間に分解が進み、これより高いと重合反応に長時間を要する。前記の有機過酸化物では、10時間半減期温度が前記範囲を超えるものが多く、一般的な乳化重合の温度でのラジカル生成速度が遅い。そのため、これに低価数の金属イオン(Fe2+、Cuなど)を加えてフェントン反応(レドックス反応)により、前記温度範囲でのラジカル生成速度を向上させている。したがって、前記有機過酸化物のレドックス系開始剤は、一般的な乳化重合の温度範囲で利用できるので好ましい。 Among these polymerization initiators, a polymerization initiator that is easily soluble in water is preferable, and examples thereof include water-soluble azo compounds and persulfates. The 10-hour half-life temperature of the thermal polymerization initiator is generally preferably 40 to 90 ° C. If it is lower than this, decomposition proceeds during charging at room temperature, and if it is higher than this, a long time is required for the polymerization reaction. . Many of the organic peroxides have a 10-hour half-life temperature exceeding the above range, and the radical generation rate at a general emulsion polymerization temperature is slow. For this reason, low-valent metal ions (Fe 2+ , Cu +, etc.) are added thereto, and the radical production rate in the above temperature range is improved by the Fenton reaction (redox reaction). Therefore, the organic peroxide redox initiator is preferable because it can be used in a general emulsion polymerization temperature range.
 これらの重合開始剤は1種を単独で用いてもよく、2種以上を併用してもよい。2種以上の併用の場合には、水溶性ラジカル重合開始剤のみでもよく、水溶性ラジカル重合開始剤と油溶性ラジカル重合開始剤の任意の組み合わせでもよく、油溶性ラジカル重合開始剤のみでもよい。重合開始剤の使用量は適宜設定できるが、例えば、単量体成分100重量部に対し0.01~1.00重量部であってよい。また水溶性ラジカル重合開始剤とその他の重合開始剤(例えば、油溶性ラジカル重合開始剤)を併用する場合は、例えば、単量体成分100重量部に対し、重合体の総量で0.01~2.00重量部であってもよい。 These polymerization initiators may be used alone or in combination of two or more. In the case of using two or more kinds in combination, only the water-soluble radical polymerization initiator may be used, any combination of the water-soluble radical polymerization initiator and the oil-soluble radical polymerization initiator may be used, or only the oil-soluble radical polymerization initiator may be used. The amount of the polymerization initiator used can be appropriately set. For example, it may be 0.01 to 1.00 parts by weight with respect to 100 parts by weight of the monomer component. When a water-soluble radical polymerization initiator and another polymerization initiator (for example, an oil-soluble radical polymerization initiator) are used in combination, for example, the total amount of the polymer is 0.01 to 100 parts by weight with respect to 100 parts by weight of the monomer component. It may be 2.00 parts by weight.
 乳化重合で使用可能な乳化剤としては、不均化ロジン酸、オレイン酸、ステアリン酸等の高級脂肪酸のアルカリ金属塩やアンモニウム塩、ドデシルベンゼンスルホン酸等のスルホン酸のアルカリ金属塩やアンモニウム塩、アニオン系乳化剤、ノニオン系乳化剤を挙げることができる。アニオン系乳化剤としては特に限定されず、例えば、ポリオキシエチレンアルキルエーテル硫酸エステル塩(例えば、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウムなど)、アルキルジフェニルエーテルジスルホン酸塩(アルキルジフェニルエーテルジスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウムなど)、反応型陰イオン性界面活性剤(ポリオキシアルキレンアルケニルエーテル硫酸アンモニウムなど)等が挙げられる。また、ノニオン系乳化剤としても特に限定されず、ポリオキシエチレンアルキルエーテル(例えば、ポリオキシエチレンアルキルエーテルなど)、ポリオキシアルキレンアルキルエーテル(例えば、ポリオキシアルキレンアルキルエーテルなど)、反応型非イオン性界面活性剤(ポリオキシアルキレンアルケニルエーテルなど)等が挙げられる。 Emulsifiers that can be used in emulsion polymerization include alkali metal salts and ammonium salts of higher fatty acids such as disproportionated rosin acid, oleic acid and stearic acid, alkali metal salts and ammonium salts of sulfonic acids such as dodecylbenzenesulfonic acid, anions And emulsifiers and nonionic emulsifiers. The anionic emulsifier is not particularly limited. For example, polyoxyethylene alkyl ether sulfate ester salts (for example, sodium polyoxyethylene lauryl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, etc.), alkyl Examples thereof include diphenyl ether disulfonate (sodium alkyl diphenyl ether disulfonate, sodium alkyl diphenyl ether disulfonate, etc.), reactive anionic surfactant (polyoxyalkylene alkenyl ether ammonium sulfate, etc.) and the like. Also, the nonionic emulsifier is not particularly limited, and polyoxyethylene alkyl ether (for example, polyoxyethylene alkyl ether), polyoxyalkylene alkyl ether (for example, polyoxyalkylene alkyl ether), reactive nonionic interface An activator (polyoxyalkylene alkenyl ether etc.) etc. are mentioned.
 乳化剤のなかでも、得られる重合体中の金属イオンの低減を図るため、金属イオンが含まれていない、アンモニウム塩型アニオン系乳化剤、ノニオン系乳化剤が好ましい。具体的には、アンモニウム塩型アニオン系乳化剤としては、乳化重合の安定性を図るため、ラウリル硫酸アンモニウム、ジ-(2-エチルヘキシル)スルホコハク酸アンモニウムが好ましく、ノニオン系乳化剤としては、乳化重合の安定性を図るため、ポリオキシエチレンモノテトラデシルエーテル、ポリオキシエチレンジスチレン化フェニルエーテルが好ましい。また、工業的に入手しやすい観点では、ナトリウム塩型アニオン系乳化剤が好ましい。ナトリウム塩型アニオン系乳化剤としては、ジ-(2-エチルヘキシル)スルホコハク酸ナトリウムが好ましい。乳化剤の使用量は適宜設定できるが、例えば、単量体成分100重量部に対し0.01~10.00重量部であってよい。 Among the emulsifiers, ammonium salt type anionic emulsifiers and nonionic emulsifiers that do not contain metal ions are preferred in order to reduce metal ions in the resulting polymer. Specifically, the ammonium salt type anionic emulsifier is preferably ammonium lauryl sulfate or ammonium di- (2-ethylhexyl) sulfosuccinate for the purpose of stability of emulsion polymerization, and the nonionic emulsifier is stable in emulsion polymerization. Therefore, polyoxyethylene monotetradecyl ether and polyoxyethylene distyrenated phenyl ether are preferable. In addition, sodium salt type anionic emulsifiers are preferred from the viewpoint of industrial availability. As the sodium salt type anionic emulsifier, sodium di- (2-ethylhexyl) sulfosuccinate is preferable. The amount of the emulsifier used can be appropriately set. For example, it may be 0.01 to 10.00 parts by weight with respect to 100 parts by weight of the monomer component.
 次に内側シェル層を形成するために、まず、重合開始剤と乳化剤とを水に混合、撹拌してミセルを形成する。別途、内側シェル層の単量体成分を均一に混合した後、該ミセルに添加し、両者を混合、撹拌して内側シェル層用乳化液を形成する。次いで、前記コア粒子の乳化液を不活性雰囲気下で所定の温度とした後、これに内側シェル層用乳化液を滴下し、これらを混合、撹拌しつつ、所定の温度で加熱重合反応を進行させ、一重シェル化粒子の乳化液を得る。反応温度や反応時間などは上述した範囲を参照して適宜調節することができる。 Next, in order to form an inner shell layer, first, a polymerization initiator and an emulsifier are mixed in water and stirred to form micelles. Separately, after the monomer components of the inner shell layer are uniformly mixed, they are added to the micelles, and both are mixed and stirred to form an emulsion for the inner shell layer. Next, after the emulsion of the core particles is brought to a predetermined temperature under an inert atmosphere, the emulsion for the inner shell layer is added dropwise thereto, and the heat polymerization reaction proceeds at the predetermined temperature while mixing and stirring them. To obtain an emulsion of single shelled particles. The reaction temperature, reaction time, and the like can be appropriately adjusted with reference to the above-described ranges.
 そして、外側シェル層を形成するために、まず、乳化剤と水とを混合、又は乳化剤と重合開始剤と水とを混合、撹拌してミセルを形成する。別途、外側シェル層の単量体成分を均一に混合、又は外側シェル層の単量体成分と重合開始剤を均一に混合した後、該ミセルに添加し、両者を混合、撹拌して外側シェル層用乳化液を形成する。次いで、前記一重シェル化粒子の乳化液を不活性雰囲気下で所定の温度とした後、これに外側シェル層用乳化液を滴下し、これらを混合、撹拌しつつ、所定の温度で加熱重合反応を進行させ、二重シェル化粒子の乳化液を得る。反応温度や反応時間などは上述した範囲を参照して適宜調節することができる。 In order to form the outer shell layer, first, an emulsifier and water are mixed, or an emulsifier, a polymerization initiator and water are mixed and stirred to form micelles. Separately, the monomer component of the outer shell layer is uniformly mixed, or the monomer component of the outer shell layer and the polymerization initiator are uniformly mixed, then added to the micelle, and both are mixed and stirred to mix the outer shell. A layer emulsion is formed. Next, the emulsion of the single-shelled particles is brought to a predetermined temperature under an inert atmosphere, and then the emulsion for outer shell layer is added dropwise thereto, and these are mixed and stirred, and the heat polymerization reaction is performed at the predetermined temperature. To obtain an emulsion of double shelled particles. The reaction temperature, reaction time, and the like can be appropriately adjusted with reference to the above-described ranges.
 外側シェル層を形成する乳化重合の際には、重合開始剤は、該ミセルに加える単量体成分にのみに予め溶解させて用いるか、又は、該ミセル形成前の水に予め溶解させ、その後、前記ミセルに加える単量体成分にも予め溶解させて用いることが好ましい。前者の場合では、重合開始剤として、モノマー溶解性ラジカル重合開始剤を用いることが好ましく、後者の場合では、重合開始剤として、水と溶解させるときには水溶性ラジカル重合開始剤を用いて、かつ、単量体成分と溶解させるときにはモノマー溶解性ラジカル重合開始剤を用いることが好ましい。すなわち、外側シェルの重合では、前者の場合では単量体成分内でラジカル重合開始反応が起こるが、後者の場合では、単量体成分内と水相内の両方でラジカル重合開始反応が起こる。ここでのモノマー溶解性ラジカル重合開始剤とは、アリルメタクリレート(AMA)100重量部に対して、25℃で均一に溶解する重量が0.50重量部以上であるラジカル重合開始剤をいう。一般的に、多くの油溶性ラジカル重合開始剤が該当する。また、重合開始剤は、該ミセル形成前の水にのみ予め溶解させて用いてもよく、この場合の重合開始剤として、水溶性ラジカル重合開始剤を用いるのが好ましい。前記の場合は、水相内でラジカル重合開始反応が起こる。 At the time of emulsion polymerization for forming the outer shell layer, the polymerization initiator is used by dissolving in advance only in the monomer component added to the micelle, or by dissolving in advance in the water before the formation of the micelle. The monomer component added to the micelle is preferably dissolved in advance and used. In the former case, it is preferable to use a monomer-soluble radical polymerization initiator as the polymerization initiator, and in the latter case, a water-soluble radical polymerization initiator is used as the polymerization initiator when dissolved in water, and When dissolving with the monomer component, it is preferable to use a monomer-soluble radical polymerization initiator. That is, in the outer shell polymerization, radical polymerization initiation reaction occurs in the monomer component in the former case, while radical polymerization initiation reaction occurs in both the monomer component and the aqueous phase in the latter case. Here, the monomer-soluble radical polymerization initiator refers to a radical polymerization initiator having a weight of 0.50 parts by weight or more uniformly dissolved at 25 ° C. with respect to 100 parts by weight of allyl methacrylate (AMA). In general, many oil-soluble radical polymerization initiators are applicable. In addition, the polymerization initiator may be used by dissolving in advance only in water before the formation of the micelles. In this case, a water-soluble radical polymerization initiator is preferably used as the polymerization initiator. In the above case, radical polymerization initiation reaction occurs in the aqueous phase.
 モノマー溶解性ラジカル重合開始剤としては、前述した油溶性ラジカル重合開始剤等が挙げられ、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)等の油溶性アゾ化合物;過酸化ベンゾイル等の有機過酸化物(ジアシルパーオキサイド)等が挙げられる。このように、モノマー溶解性のラジカル重合開始剤を用いることで、外側シェル層における第二架橋性ビニル系単量体による架橋反応の進行を促進し、外側シェル層の架橋度を高めるのに好ましい。また、モノマー溶解性ラジカル重合開始剤と水溶性ラジカル重合開始剤の併用も外側シェル層の架橋度を高めるのに好ましい。一方、コアおよび内側シェル層を形成する乳化重合の際には、水溶性ラジカル重合開始剤を用いることが好ましい。 Examples of the monomer-soluble radical polymerization initiator include the oil-soluble radical polymerization initiators described above, such as 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvalero). Nitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (4-methoxy-2,4) -Dimethylvaleronitrile), dimethyl 2,2'-azobis (2-methylpropionate), 1,1'-azobis (cyclohexane-1-carbonitrile), dimethyl 1,1'-azobis (1-cyclohexanecarboxylate) And oil-soluble azo compounds such as benzoyl peroxide; and organic peroxides (diacyl peroxide) such as benzoyl peroxide. Thus, it is preferable to use a monomer-soluble radical polymerization initiator to promote the progress of the crosslinking reaction by the second crosslinkable vinyl monomer in the outer shell layer and to increase the degree of crosslinking of the outer shell layer. . Further, the combined use of a monomer-soluble radical polymerization initiator and a water-soluble radical polymerization initiator is also preferable for increasing the degree of crosslinking of the outer shell layer. On the other hand, in the emulsion polymerization for forming the core and the inner shell layer, it is preferable to use a water-soluble radical polymerization initiator.
 すべての重合反応が終了した後、噴霧乾燥法、凍結乾燥法、凝固法により、本発明の潜在性硬化触媒を得ることができる。あるいは、乳化液から粒子を遠心分離またはろ過により分離した後、必要に応じて水洗を行い、常法により乾燥することでも本発明の潜在性硬化触媒を得ることができる。これらのうち、得られる粉末がエポキシ樹脂中での分散性に優れることから、噴霧乾燥法を用いることが好ましい。 After the completion of all the polymerization reactions, the latent curing catalyst of the present invention can be obtained by spray drying, freeze drying, or coagulation. Alternatively, the latent curing catalyst of the present invention can also be obtained by separating particles from the emulsion by centrifugation or filtration, followed by washing with water as necessary and drying by a conventional method. Among these, it is preferable to use a spray drying method because the obtained powder is excellent in dispersibility in an epoxy resin.
 本明細書に記載の水は、明記がなければ、イオン交換水を用いるが、これに限定されるものではない。 The water described in this specification is ion-exchanged water unless otherwise specified, but is not limited thereto.
 (エポキシ樹脂組成物) (Epoxy resin composition)
 本発明のエポキシ樹脂組成物は、少なくとも、エポキシ樹脂と、以上で説明した潜在性硬化触媒を含有するものである。上記エポキシ樹脂組成物は、硬化前の状態にあるものを指し、液状のものであってもよいし、ゲル状で一定の形状を有する成形体であってもよい。そのような成形体の形状は特に限定されず、用途に応じて適宜設計できるが、例えば、シート状、フィルム状、タブレット状等が挙げられる。 The epoxy resin composition of the present invention contains at least an epoxy resin and the latent curing catalyst described above. The said epoxy resin composition points out what is in the state before hardening, a liquid thing may be sufficient, and the molded object which has a gel-like and fixed shape may be sufficient as it. The shape of such a molded body is not particularly limited and can be appropriately designed depending on the application, and examples thereof include a sheet shape, a film shape, and a tablet shape.
 本発明で使用できるエポキシ樹脂としては、エポキシ基を分子中に2個以上持つ化合物であれば特に限定されず、一般に知られているものを使用することができる。具体的には、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエンフェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトールフェノール共縮ノボラック型エポキシ樹脂、ナフトールクレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、エチルフェノールノボラック型エポキシ樹脂、ブチルフェノールノボラック型エポキシ樹脂、オクチルフェノールノボラック型エポキシ樹脂、キシリレン骨格含有フェノールノボラック型エポキシ樹脂、フルオレン骨格含有フェノールノボラック型エポキシ樹脂、4,4’-ビフェニルフェノール型エポキシ樹脂、テトラメチル-4,4’-ビフェノール型エポキシ樹脂、ジメチル-4,4’-ビフェニルフェノール型エポキシ樹脂、1-(4-ヒドロキシフェニル)-2-[4-(1,1-ビス(4-ヒドロキシフェニル)エチル)フェニル]プロパン型エポキシ樹脂、2,2’―メチレンビス(4-メチル-6-tert-ブチルフェノール)型エポキシ樹脂、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ピロガロール型エポキシ樹脂、ジイソプロピリデン型エポキシ樹脂、1,1-ジ-4-ヒドロキシフェニルフルオレン型エポキシ樹脂、フェノール化ポリブタジエン型エポキシ樹脂、3,4-エポキシシクロヘキシルメチル-3’,4’-シクロヘキシルカルボキシレート型エポキシ樹脂、1,4-ブタンジオール型エポキシ樹脂、1,6-ヘキサンジオール型エポキシ樹脂、ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ペンタエリスリトール型エポキシ樹脂、キシリレングリコール誘導体型エポキシ樹脂、イソシアヌル環型エポキシ樹脂、ヒダントイン環型エポキシ樹脂、ヘキサヒドロフタル酸ジグリシジルエステル型エポキシ樹脂、テトラヒドロフタル酸ジグリシジルエステル型エポキシ樹脂、アニリン型エポキシ樹脂、トルイジン型エポキシ樹脂、p-フェニレンジアミン型エポキシ樹脂、m-フェニレンジアミン型エポキシ樹脂、ジアミノジフェニルメタン誘導体型エポキシ樹脂、ジアミノメチルベンゼン誘導体型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂、ブロム化クレゾールノボラック型エポキシ樹脂等が挙げられる。エポキシ樹脂は1種類のみを用いてもよいし、2種以上を組み合わせて使用してもよい。エポキシ樹脂は、所望の特性や性状(液状または固状)に応じて選択すればよく、特に限定されないが、例えば、以上の具体例のうち、ビス(ヒドロキシフェニル)アルカン系エポキシ樹脂、ナフタレン系エポキシ樹脂が好ましい。 The epoxy resin that can be used in the present invention is not particularly limited as long as it is a compound having two or more epoxy groups in the molecule, and generally known ones can be used. Specifically, biphenyl type epoxy resin, tetramethyl biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene phenol addition reaction type Epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol phenol co-condensed novolac type epoxy resin, naphthol cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenolic resin type epoxy Resin, biphenyl novolac epoxy resin, ethylphenol novolac epoxy resin, butylphenol novolac epoxy resin Octylphenol novolac epoxy resin, phenol novolac epoxy resin containing xylylene skeleton, phenol novolac epoxy resin containing fluorene skeleton, 4,4'-biphenylphenol epoxy resin, tetramethyl-4,4'-biphenol epoxy resin, dimethyl- 4,4′-biphenylphenol type epoxy resin, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis (4-hydroxyphenyl) ethyl) phenyl] propane type epoxy resin, 2,2 ′ -Methylenebis (4-methyl-6-tert-butylphenol) type epoxy resin, 4,4'-butylidenebis (3-methyl-6-tert-butylphenol) type epoxy resin, trishydroxyphenylmethane type epoxy resin, resorcinol type epoxy resin Xy resin, hydroquinone type epoxy resin, pyrogallol type epoxy resin, diisopropylidene type epoxy resin, 1,1-di-4-hydroxyphenylfluorene type epoxy resin, phenolized polybutadiene type epoxy resin, 3,4-epoxycyclohexylmethyl- 3 ', 4'-cyclohexylcarboxylate type epoxy resin, 1,4-butanediol type epoxy resin, 1,6-hexanediol type epoxy resin, polyethylene glycol type epoxy resin, polypropylene glycol type epoxy resin, pentaerythritol type epoxy resin , Xylylene glycol derivative type epoxy resin, isocyanuric ring type epoxy resin, hydantoin ring type epoxy resin, hexahydrophthalic acid diglycidyl ester type epoxy resin, tetrahydrophthal Diglycidyl ester ester resin, aniline epoxy resin, toluidine epoxy resin, p-phenylenediamine epoxy resin, m-phenylenediamine epoxy resin, diaminodiphenylmethane derivative epoxy resin, diaminomethylbenzene derivative epoxy resin, Brominated phenol novolac type epoxy resins, brominated cresol novolac type epoxy resins and the like can be mentioned. Only one type of epoxy resin may be used, or two or more types may be used in combination. The epoxy resin may be selected according to desired properties and properties (liquid or solid), and is not particularly limited. For example, among the above specific examples, bis (hydroxyphenyl) alkane-based epoxy resin, naphthalene-based epoxy Resins are preferred.
 エポキシ樹脂に対する本発明の潜在性硬化触媒の使用量は特に限定されず、所望の硬化速度や硬化物の物性に応じて適宜決定できる。具体的には、本発明の潜在性硬化触媒は、エポキシ樹脂100重量部に対して、好ましくは0.05~50重量部、より好ましくは0.1~40重量部、さらに好ましくは0.5~30重量部、特に好ましくは1.0~20重量部である。また、本発明の潜在性硬化触媒に含まれるリン系硬化触媒が、エポキシ樹脂100重量部に対して、好ましくは0.01~20重量部、より好ましくは0.05~15重量部、さらに好ましくは0.1~10重量部となるように配合することもできる。 The amount of the latent curing catalyst of the present invention to be used for the epoxy resin is not particularly limited and can be appropriately determined according to a desired curing rate and physical properties of the cured product. Specifically, the latent curing catalyst of the present invention is preferably 0.05 to 50 parts by weight, more preferably 0.1 to 40 parts by weight, and still more preferably 0.5 to 100 parts by weight of the epoxy resin. -30 parts by weight, particularly preferably 1.0-20 parts by weight. Further, the phosphorus-based curing catalyst contained in the latent curing catalyst of the present invention is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 15 parts by weight, and still more preferably 100 parts by weight of the epoxy resin. May be blended so as to be 0.1 to 10 parts by weight.
 本発明のエポキシ樹脂組成物は、さらに、エポキシ樹脂硬化剤を含有することができる。このような硬化剤としては特に限定されず、エポキシ樹脂に配合する硬化剤として一般に知られているものを用いることができる。具体的には、例えば、2-エチル-4-メチルイミダゾール、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾール、三フッ化ホウ素-アミン錯体、グアニジン誘導体、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンにより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、多価ヒドロキシ化合物とホルムアルデヒドとから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトールフェノール共縮ノボラック樹脂、ナフトールクレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、アルコキシ基含有芳香環変性ノボラック樹脂等が挙げられる。硬化剤は1種類のみを用いてもよいし、2種以上を組み合わせて使用してもよい。硬化剤は、所望の特性や性状(液状または固状)に応じて選択すればよく、特に限定されないが、例えば、以上の具体例のうち、耐熱性、耐薬品性の観点からは酸無水物系硬化剤が好ましく、低温硬化性、高接着性の観点からはアミン系硬化剤が好ましく、また硬化時の低アウトガス性、耐湿性、耐ヒートサイクル性などの観点からは、フェノール系硬化剤が好ましく用いられる。 The epoxy resin composition of the present invention can further contain an epoxy resin curing agent. Such a curing agent is not particularly limited, and those generally known as a curing agent to be blended with an epoxy resin can be used. Specifically, for example, 2-ethyl-4-methylimidazole, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, boron trifluoride-amine complex, guanidine derivative, dicyandiamide, linolenic acid Polyamide resin synthesized from dimer and ethylenediamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride , Methylhexahydrophthalic anhydride, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol Mold resin, phenol aralkyl resin, polyhydric phenol novolak resin synthesized from polyvalent hydroxy compound and formaldehyde, naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, naphthol novolac resin, naphthol phenol co-condensed novolak resin Naphthol cresol co-condensed novolak resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, aminotriazine-modified phenol resin, alkoxy group-containing aromatic ring-modified novolak resin, and the like. Only one type of curing agent may be used, or two or more types may be used in combination. The curing agent may be selected according to desired properties and properties (liquid or solid), and is not particularly limited. For example, among the above specific examples, acid anhydrides from the viewpoint of heat resistance and chemical resistance. From the viewpoints of low-temperature curability and high adhesiveness, amine-based curing agents are preferred, and from the viewpoint of low outgassing, moisture resistance, heat cycle resistance, etc. during curing, phenol-based curing agents are preferred. Preferably used.
 エポキシ樹脂に対する硬化剤の使用量は特に限定されず、一般的な使用量であってよく、所望の硬化速度や硬化物の物性に応じて適宜決定できる。具体的には、硬化剤は、エポキシ樹脂100重量部に対して、好ましくは1~300重量部、より好ましくは5~200重量部である。 The amount of the curing agent used for the epoxy resin is not particularly limited, and may be a general usage amount, which can be appropriately determined according to a desired curing rate and physical properties of the cured product. Specifically, the curing agent is preferably 1 to 300 parts by weight, more preferably 5 to 200 parts by weight with respect to 100 parts by weight of the epoxy resin.
 本発明のエポキシ樹脂組成物には、さらに、エポキシ樹脂組成物における公知の添加剤を適宜配合することができる。そのような添加剤としては、例えば、カーボンブラック等の充填剤、接着性付与剤、溶剤、反応性希釈剤、酸化防止剤、光安定剤、紫外線吸収剤、消泡剤、レベリング剤、顔料等が挙げられる。 In the epoxy resin composition of the present invention, known additives in the epoxy resin composition can be appropriately blended. Examples of such additives include fillers such as carbon black, adhesion imparting agents, solvents, reactive diluents, antioxidants, light stabilizers, ultraviolet absorbers, antifoaming agents, leveling agents, pigments, and the like. Is mentioned.
 充填剤としては特に限定されず、公知の充填剤を用いることができ、例えば、無機酸化物、無機塩、ガラス、窒化物、金属粉等からなる充填剤が挙げられる。前記無機酸化物としては、例えば、酸化チタン、酸化ケイ素、酸化アルミニウム、酸化ベリリウム、酸化ジルコニウム等が挙げられる。前記無機塩としては、例えば、炭酸カルシウム、硫酸バリウム、ケイ酸ジルコニウム、ケイ酸カルシウム、ケイ酸マグネシウム等が挙げられる。前記窒化物としては、例えば、窒化ホウ素、窒化アルミニウム、窒化ガリウム、窒化インジウム、窒化ケイ素等が挙げられる。前記金属粉としては、例えば、銀粉、銅粉、銀メッキ銅粉、スズメッキ銅粉、ニッケル粉、アルミニウム粉等が挙げられる。充填剤は1種類のみを用いてもよいし、2種以上を組み合わせて使用してもよい。 The filler is not particularly limited, and a known filler can be used. Examples thereof include fillers made of inorganic oxides, inorganic salts, glass, nitrides, metal powders, and the like. Examples of the inorganic oxide include titanium oxide, silicon oxide, aluminum oxide, beryllium oxide, and zirconium oxide. Examples of the inorganic salt include calcium carbonate, barium sulfate, zirconium silicate, calcium silicate, magnesium silicate, and the like. Examples of the nitride include boron nitride, aluminum nitride, gallium nitride, indium nitride, and silicon nitride. Examples of the metal powder include silver powder, copper powder, silver-plated copper powder, tin-plated copper powder, nickel powder, and aluminum powder. Only one type of filler may be used, or two or more types may be used in combination.
 接着性付与剤としては、例えば、カップリング剤、フェノール樹脂、有機ポリイソシアネート等が挙げられる。接着性付与剤は1種類のみを用いてもよいし、2種以上を組み合わせて使用してもよい。 Examples of the adhesion-imparting agent include a coupling agent, a phenol resin, and an organic polyisocyanate. Only one type of adhesiveness-imparting agent may be used, or two or more types may be used in combination.
 前記カップリング剤としては、例えば、シラン系、アルミニウム系、ジルコアルミネート系、チタン系等の各種カップリング剤や、これらの部分加水分解縮合物等が挙げられる。これらのカップリング剤の中では、シラン系カップリング剤およびその部分加水分解縮合物が、接着性付与効果が高いことから好ましい。なお、カップリング剤の部分加水分解縮合物は、同種のカップリング剤の部分加水分解縮合物であってもよいし、2種以上のカップリング剤の部分加水分解縮合物であってもよい。 Examples of the coupling agent include various coupling agents such as silane-based, aluminum-based, zircoaluminate-based, and titanium-based materials, and partial hydrolysis condensates thereof. Among these coupling agents, silane coupling agents and partial hydrolysis condensates thereof are preferred because of their high adhesion-imparting effect. In addition, the partial hydrolysis-condensation product of a coupling agent may be a partial hydrolysis-condensation product of the same kind of coupling agent, or may be a partial hydrolysis-condensation product of two or more coupling agents.
 前記シラン系カップリング剤としては、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等のアルコキシシリル基を含有する化合物等が挙げられる。 Examples of the silane coupling agent include 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, etc. The compound etc. which contain the alkoxy silyl group of these are mentioned.
 溶剤としては特に限定されず、例えば、N-メチルピロリドン;N,N-ジメチルホルムアミド;ジメチルスルホキシド;メチルエチルケトン、シクロヘキサノン、シクロペンタノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、ジエチレングリコールモノエチルエーテルアセテート及び上記グリコールエーテル類のエステル化物等のエステル類;エタノール、プロパノール、メタノール、エチレングリコール、プロピレングリコール等のアルコール類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等が挙げられる。溶剤は1種類のみを用いてもよいし、2種以上を組み合わせて使用してもよい。 The solvent is not particularly limited. For example, N-methylpyrrolidone; N, N-dimethylformamide; dimethyl sulfoxide; ketones such as methyl ethyl ketone, cyclohexanone and cyclopentanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene Glycol ethers such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether; ethyl acetate, Such as butyl acetate, cellosolve acetate, diethylene glycol monoethyl ether acetate and esterified products of the above glycol ethers. Tells; alcohols such as ethanol, propanol, methanol, ethylene glycol and propylene glycol; aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha and solvent naphtha Can be mentioned. Only one type of solvent may be used, or two or more types may be used in combination.
 反応性希釈剤としては特に限定されず、例えば、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、p-sec-ブチルフェニルグリシジルエーテル、tert-ブチルフェニルグリシジルエーテル、o-フェニルフェノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキシルカルボキシレート、ビス-(3,4-エポキシシクロヘキシル)アジペート、ビス-(3,4-エポキシシクロヘキシルメチレン)アジペート、ビス-(2,3-エポキシシクロペンチル)エーテル、(2,3-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ジシクロペンタジエンジオキサイド等が挙げられる。反応性希釈剤は1種類のみを用いてもよいし、2種以上を組み合わせて使用してもよい。 The reactive diluent is not particularly limited. For example, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, p-sec-butylphenyl glycidyl ether, tert-butylphenyl glycidyl ether, o-phenylphenol glycidyl ether, Ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, 4-vinylcyclohexene monooxide, vinylcyclohexene Dioxide, methylated vinylcyclohexene dioxide, (3,4-epoxy Hexyl) methyl-3,4-epoxycyclohexylcarboxylate, bis- (3,4-epoxycyclohexyl) adipate, bis- (3,4-epoxycyclohexylmethylene) adipate, bis- (2,3-epoxycyclopentyl) ether, (2,3-epoxy-6-methylcyclohexylmethyl) adipate, dicyclopentadiene dioxide and the like. Only one type of reactive diluent may be used, or two or more types may be used in combination.
 本発明のエポキシ樹脂用潜在性硬化触媒はこれ自体がエポキシ樹脂組成物をゲル化する作用を持ち得るため、シート化剤として作用することができる。そのため、追加成分としてシート化剤を配合しなくとも、本発明のエポキシ樹脂組成物をシート状等の成形体とすることができる。しかし、本発明のエポキシ樹脂組成物がシート状等の成形体である場合には、熱可塑性樹脂パウダーなどのシート化剤を上記エポキシ樹脂組成物に別途配合してもよい。該熱可塑性樹脂パウダーは、エポキシ樹脂または他の成分を吸収・膨潤して組成物をゲル状にし得る、または、エポキシ樹脂または他の成分と相溶して組成物をゲル状にし得るものである。 The latent curing catalyst for epoxy resins of the present invention can act as a sheeting agent because it itself can act to gel the epoxy resin composition. Therefore, the epoxy resin composition of the present invention can be formed into a molded article such as a sheet without adding a sheeting agent as an additional component. However, when the epoxy resin composition of the present invention is a molded article such as a sheet, a sheeting agent such as a thermoplastic resin powder may be separately added to the epoxy resin composition. The thermoplastic resin powder can absorb and swell epoxy resin or other components to make the composition gel, or can be compatible with epoxy resin or other components to make the composition gel. .
 このようなパウダーを構成する熱可塑性樹脂としては、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、合成ゴム(ポリブタジエン、ブタジエン-スチレン共重合体、ポリイソプレン、ポリクロロプレン、エチレン-プロピレン共重合体)、ポリ酢酸ビニル、ポリ(メタ)アクリル酸エステル、ポリアクリル酸アミド、ポリオキシメチレン、ポリフェニレンオキシド、ポリエステル、ポリアミド、ポリカーボネート、セルロース系樹脂、ポリアクリロニトリル、熱可塑性ポリイミド、ポリビニルアルコール、ポリビニルピロリドンなどがあげられる。これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。これらのうちではポリメタクリル酸メチルなどのポリメタクリル酸エステルが、シート化性の点から好ましい。 Examples of the thermoplastic resin constituting the powder include polyvinyl chloride, polyethylene, polypropylene, polystyrene, and synthetic rubber (polybutadiene, butadiene-styrene copolymer, polyisoprene, polychloroprene, ethylene-propylene copolymer). , Polyvinyl acetate, poly (meth) acrylic acid ester, polyacrylic acid amide, polyoxymethylene, polyphenylene oxide, polyester, polyamide, polycarbonate, cellulose resin, polyacrylonitrile, thermoplastic polyimide, polyvinyl alcohol, polyvinylpyrrolidone, etc. It is done. These may be used alone or in combination of two or more. Among these, polymethacrylic acid esters such as polymethyl methacrylate are preferable from the viewpoint of sheet formability.
 また、本発明のエポキシ樹脂組成物がシート状等の成形体である場合、シート化剤として作用する光重合性化合物およびラジカル発生剤を上記エポキシ樹脂組成物に配合することもできる。この場合には、まず、エポキシ樹脂組成物および他の成分と、光重合性化合物およびラジカル発生剤の混合物を調製し、得られた混合物をシート状にした後、光を照射し、光重合性化合物を重合させたものが、ゲル状硬化性シートとして使用される。 In addition, when the epoxy resin composition of the present invention is a sheet-like molded article, a photopolymerizable compound and a radical generator that act as a sheeting agent can be blended in the epoxy resin composition. In this case, first, a mixture of the epoxy resin composition and other components, a photopolymerizable compound and a radical generator is prepared, and the resulting mixture is made into a sheet shape, and then irradiated with light to give photopolymerizability. A polymerized compound is used as a gel-like curable sheet.
 前記光重合性化合物としては、例えば、分子内に1個以上の(メタ)アクリロイル基を含有する化合物、具体的には、(メタ)アクリル酸と、アルキルアルコール、アルキレンジオール、多価アルコールなどとのエステルや、特開平11-12543号公報の[0009]~[0012]に記載の化合物等が挙げられる。 Examples of the photopolymerizable compound include compounds containing one or more (meth) acryloyl groups in the molecule, specifically (meth) acrylic acid, alkyl alcohol, alkylene diol, polyhydric alcohol, and the like. And the compounds described in [0009] to [0012] of JP-A No. 11-12543.
 前記ラジカル発生剤は、紫外線、電子線などの活性光線の照射を受けてラジカルを発生する化合物であり、従来から使用されている各種のものを使用でき、例えば、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンゾイン、アセトフェノン等を使用できる。 The radical generator is a compound that generates radicals upon irradiation with actinic rays such as ultraviolet rays and electron beams. Various conventionally used compounds can be used, for example, 2-hydroxy-2-methyl- 1-phenylpropan-1-one, benzoin, acetophenone, and the like can be used.
 本発明のエポキシ樹脂組成物は、エポキシ樹脂と本発明の潜在性硬化触媒、更には硬化剤や他の添加剤を混合することにより得ることができる。これらを混合する方法としては特に限定されず、従来公知の方法を用いることができるが、例えば、撹拌機を用いて撹拌する方法、3本ロールミル、及びボールミルを用いて混練する方法等を用いることができる。 The epoxy resin composition of the present invention can be obtained by mixing an epoxy resin and the latent curing catalyst of the present invention, and further a curing agent and other additives. The method of mixing these is not particularly limited, and a conventionally known method can be used. For example, a method of stirring using a stirrer, a method of kneading using a three-roll mill, and a ball mill are used. Can do.
 本発明のエポキシ樹脂組成物をシート状等の成形体とする場合には、上述のように各成分を混合した後、加熱成形のような通常の方法により成形すればよい。また、必要により加熱して液状にしたエポキシ樹脂組成物を、ロールコーターなどにより膜厚を制御した塗工物とし、60~150℃で0.5~30分、さらには80~120℃で1~10分乾燥させることによりシート状とすることもできる。 When the epoxy resin composition of the present invention is formed into a sheet or the like, the components may be mixed as described above and then molded by a usual method such as heat molding. Further, if necessary, the epoxy resin composition heated to a liquid state is made into a coated product whose film thickness is controlled by a roll coater or the like, and it is 0.5 to 30 minutes at 60 to 150 ° C., and 1 at 80 to 120 ° C. It can also be made into a sheet by drying for ˜10 minutes.
 上記エポキシ樹脂組成物を硬化させることにより、硬化物を得ることができる。硬化させる方法としては、一般的なエポキシ樹脂組成物を硬化させる条件であってよく、特に限定されないが、例えば、加熱装置を用いて、100℃にて1時間、その後180℃にて4時間加熱する方法等が挙げられる。ただし、具体的な硬化条件はエポキシ樹脂組成物の用途に応じて適宜決定することができる。上記加熱装置としては、特に限定されず、例えば、送風定温乾燥器、定温恒温乾燥器等を用いることができる。 A cured product can be obtained by curing the epoxy resin composition. The curing method may be a condition for curing a general epoxy resin composition, and is not particularly limited. For example, using a heating device, heating is performed at 100 ° C. for 1 hour, and then at 180 ° C. for 4 hours. And the like. However, specific curing conditions can be appropriately determined according to the use of the epoxy resin composition. It does not specifically limit as said heating apparatus, For example, a ventilation constant temperature dryer, a constant temperature constant temperature dryer, etc. can be used.
 また、本発明の硬化物の表面形状は、表面の凸部または凹部の大きさが10μm以下であることが好ましい。表面形状は、硬化物表面に金を蒸着した後、日本電子社製走査型電子顕微鏡(SEM)JSM-6390LVを用いて、加速電圧15kV、観察角度45°、倍率400倍(観察エリア:300μm×200μm)又は2000倍(観察エリア:60μm×40μm)でのSEM観察により確認できる。前記SEM観察像から凸部または凹部の大きさを求めることができる。前記SEM観察像は、特に平面内の任意の方向の凹凸領域の大きさを評価できる。なお、平面内の任意方向とはSEM写真面内の任意の方向である。 Further, the surface shape of the cured product of the present invention is preferably such that the size of the convex portion or concave portion on the surface is 10 μm or less. The surface shape was obtained by depositing gold on the surface of the cured product, and then using a scanning electron microscope (SEM) JSM-6390LV manufactured by JEOL Ltd., an acceleration voltage of 15 kV, an observation angle of 45 °, and a magnification of 400 times (observation area: 300 μm × 200 μm) or 2000 times (observation area: 60 μm × 40 μm). The size of the convex portion or the concave portion can be obtained from the SEM observation image. The SEM observation image can particularly evaluate the size of the concavo-convex region in an arbitrary direction within a plane. In addition, the arbitrary direction in a plane is the arbitrary direction in a SEM photograph surface.
 表面形状は、触針式表面形状測定器DEKTAK 150を用いて、走査速度:1,000μm/60s、走査距離:1.0mm、測定箇所:5箇所、及び計測値:段差の条件にて観察できる。触針式表面形状測定器は、特に面に垂直な方向の凹凸の大きさを評価できる。面垂直方向とはSEM写真面の任意の位置で写真面に垂直な方向のことである。 The surface shape can be observed using a stylus type surface shape measuring device DEKTAK 150 at a scanning speed of 1,000 μm / 60 s, a scanning distance of 1.0 mm, measurement points of five points, and measurement values of steps. . The stylus type surface shape measuring instrument can particularly evaluate the size of the unevenness in the direction perpendicular to the surface. The plane perpendicular direction is a direction perpendicular to the photographic plane at an arbitrary position on the SEM photographic plane.
 (用途)
 本発明のエポキシ樹脂組成物の用途は特に限定されないが、封止材または接着剤として好適に用いることができる。なかでも、本発明の潜在性硬化触媒は小粒径のものであり、極めて狭いギャップ等にも侵入できることから、そのような狭いギャップを有する半導体装置または電子部品に対して用いる封止材として特に好適に用いることができる。ギャップとしては、例えば、基板とチップ間のギャップ、チップとチップ間のギャップ、はんだバンプとはんだバンプ間のギャップが挙げられる。ギャップの幅としては、100μm以下であっても良く、さらに50μm以下であっても良く、さらに30μm以下であってもよい。
(Use)
Although the use of the epoxy resin composition of this invention is not specifically limited, It can use suitably as a sealing material or an adhesive agent. Among them, the latent curing catalyst of the present invention has a small particle size and can penetrate into an extremely narrow gap, etc., so that it is particularly useful as a sealing material used for a semiconductor device or electronic component having such a narrow gap. It can be used suitably. Examples of the gap include a gap between the substrate and the chip, a gap between the chip and the chip, and a gap between the solder bump and the solder bump. The width of the gap may be 100 μm or less, may be 50 μm or less, and may be 30 μm or less.
 また、本発明の潜在性硬化触媒を含むエポキシ樹脂組成物から形成された硬化物の表面は凹凸がなく平滑となるため、平滑性が求められる用途に好適である。例えば、封止材としての具体的な用途は、封止材下面への再配線層の形成が可能であることからFO-WLP用途の封止材や、封止材上面へのアンテナ等の回路形成が可能であることから、アンテナと半導体装置を一体化したAntenna-on-Package(AoP)用途の封止材、または、封止全面あるいは一部での金属メッキが可能であるので、半導体装置の電磁波シールド用途の封止材として好適に用いることができる。 Moreover, since the surface of the cured product formed from the epoxy resin composition containing the latent curing catalyst of the present invention is smooth without any unevenness, it is suitable for applications requiring smoothness. For example, a specific application as a sealing material is that a rewiring layer can be formed on the lower surface of the sealing material, so that a circuit such as a sealing material for FO-WLP applications or an antenna on the upper surface of the sealing material is used. Since it can be formed, a sealing material for antenna-on-package (AoP) use in which an antenna and a semiconductor device are integrated, or metal plating on the whole or part of the sealing is possible. It can be suitably used as a sealing material for electromagnetic wave shielding.
 そのような封止材の一例として、大面積の半導体パッケージであるウエハレベルチップサイズパッケージの封止を、オーバーモールド成型法によって行なう際に使用される半導体封止材が挙げられる。当該封止材は、半導体ウエハ基板の上に配置された、端子、素子電極、及び、半導体ベアチップを封止するオーバーモールド材となるものである。オーバーモールド成型としては、例えば、トランスファー成型や圧縮成型等が挙げられる。なかでも、圧縮成型が好ましい。オーバーモールド成型は、好ましくは50~200℃、より好ましくは100~175℃で、1~15分間行う。必要に応じて、100~200℃、30分~24時間のポストキュアを行うことができる。このような加熱によってエポキシ樹脂組成物は硬化してオーバーモールド材を形成する。このような封止材として液状の本発明のエポキシ樹脂組成物を好適に用いることができる。 As an example of such a sealing material, there is a semiconductor sealing material used when sealing a wafer level chip size package which is a large-area semiconductor package by an overmolding method. The sealing material is an overmolding material that seals the terminals, the device electrodes, and the semiconductor bare chip disposed on the semiconductor wafer substrate. Examples of overmold molding include transfer molding and compression molding. Of these, compression molding is preferred. The overmolding is preferably performed at 50 to 200 ° C., more preferably 100 to 175 ° C. for 1 to 15 minutes. If necessary, post-cure can be performed at 100 to 200 ° C. for 30 minutes to 24 hours. By such heating, the epoxy resin composition is cured to form an overmold material. As such a sealing material, the liquid epoxy resin composition of the present invention can be suitably used.
 また、封止材の別の一例として、配線パターンが形成された基板上に弾性表面波チップが実装された弾性表面波デバイスであって、弾性表面波チップの電極面と配線パターンがバンプで接続されているが、該電極面と配線パターンは直接的には接触しておらず、基板とチップの間に中空構造を有する弾性表面波デバイスにおいて、弾性表面波チップの封止を行なうための封止材が挙げられる。このような封止材としては、一定の形状を有する成形体である本発明のエポキシ樹脂組成物を好適に用いることができる。 Another example of the sealing material is a surface acoustic wave device in which a surface acoustic wave chip is mounted on a substrate on which a wiring pattern is formed, and the electrode surface of the surface acoustic wave chip and the wiring pattern are connected by a bump. However, the electrode surface and the wiring pattern are not in direct contact, and in a surface acoustic wave device having a hollow structure between the substrate and the chip, the sealing for sealing the surface acoustic wave chip is performed. Stop materials are mentioned. As such a sealing material, the epoxy resin composition of this invention which is a molded object which has a fixed shape can be used suitably.
 該エポキシ樹脂組成物を用いて弾性表面波チップの封止を行なう際には、例えばシート状のエポキシ樹脂組成物を、弾性表面波チップを被覆するように配置したうえで、ヒートプレスを実施することで、上記中空構造を保持したまま、エポキシ樹脂組成物が硬化してチップの保護層を形成することができる。このようなヒートプレスの条件は適宜決定できるが、例えば、圧力としては100Pa~10MPa、好ましくは0.01~2MPa、温度としては250℃以下、好ましくは60~180℃、時間としては5秒~3時間、好ましくは1~15分であってよい。 When sealing the surface acoustic wave chip using the epoxy resin composition, for example, a sheet-like epoxy resin composition is disposed so as to cover the surface acoustic wave chip, and then heat pressing is performed. Thus, the epoxy resin composition is cured while the hollow structure is maintained, and a protective layer for the chip can be formed. The conditions for such a heat press can be appropriately determined. For example, the pressure is 100 Pa to 10 MPa, preferably 0.01 to 2 MPa, the temperature is 250 ° C. or less, preferably 60 to 180 ° C., and the time is 5 seconds to It may be 3 hours, preferably 1-15 minutes.
 以上、本発明のエポキシ樹脂組成物を好適に使用できる具体的な封止材用途を詳述した。これらの用途では極めて狭いギャップに対して封止材が侵入して硬化することが求められるので、本発明のエポキシ樹脂組成物を適用する意義は極めて大きい。しかし、本発明のエポキシ樹脂組成物の用途がこれらに限定されるわけではない。 The specific encapsulant application that can suitably use the epoxy resin composition of the present invention has been described above. In these applications, since the sealing material is required to enter and cure into an extremely narrow gap, it is very significant to apply the epoxy resin composition of the present invention. However, the use of the epoxy resin composition of the present invention is not limited to these.
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 本発明を以下の実施例により詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 The present invention will be described in detail by the following examples, but the present invention is not limited to these examples.
[実施例1]
 <コア粒子の合成>
 [コア成分からなる乳化液の調製]
 (原料)
(1)乳化剤
非イオン性界面活性剤ポリオキシエチレンジスチレン化フェ二ルエーテル(花王社製 商品名「エマルゲンA-90」)
陰イオン性界面活性剤ジ-(2-エチルヘキシル)スルホコハク酸ナトリウム(新日本理化社製商品名「リカサーフP-10」)
 (2)ラジカル重合開始剤
水溶性ラジカル重合開始剤2,2’-アゾビス-[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン](和光純薬社製 製商品名「VA-057」、10時間半減期温度57℃)
(3)アクリルモノマー
メチルメタクリレート(三菱ケミカル社製 商品名「アクリルエステルM」)
アリルメタクリレート(三菱ガス化学社製 商品名「AMA」)
(4)水
イオン交換水(Deionized Water:DW)
(5)内包用触媒
硬化触媒トリフェニルホスフィン(北興化学社製 商品名「TPP」)
[Example 1]
<Synthesis of core particles>
[Preparation of emulsion consisting of core components]
(material)
(1) Emulsifier nonionic surfactant polyoxyethylene distyrenated phenyl ether (trade name “Emulgen A-90” manufactured by Kao Corporation)
Anionic surfactant sodium di- (2-ethylhexyl) sulfosuccinate (trade name “Rikasurf P-10”, manufactured by Shin Nippon Chemical Co., Ltd.)
(2) Radical polymerization initiator Water-soluble radical polymerization initiator 2,2′-azobis- [N- (2-carboxyethyl) -2-methylpropionamidine] (trade name “VA-057” manufactured by Wako Pure Chemical Industries, Ltd.) (10 hours half-life temperature 57 ° C)
(3) Acrylic monomer methyl methacrylate (trade name “acrylic ester M” manufactured by Mitsubishi Chemical Corporation)
Allyl methacrylate (trade name “AMA” manufactured by Mitsubishi Gas Chemical Company)
(4) Deionized Water (DW)
(5) Encapsulated catalyst curing catalyst triphenylphosphine (trade name “TPP” manufactured by Hokuko Chemical Co., Ltd.)
 (乳化液の調製方法)
 乳化剤及びラジカル重合開始剤をイオン交換水に溶解し、回転速度1500rpmで15分間高速撹拌してミセルを作製した。内包触媒とアクリルモノマーを均一に溶解した後、前記ミセルに加えて混合し、さらに水を添加して、回転速度2000rpmで20分間高速撹拌して乳化液を調製した。各成分の配合量は表1に記載のとおりである。
(Method for preparing emulsion)
The emulsifier and the radical polymerization initiator were dissolved in ion-exchanged water and stirred at a high speed of 1500 rpm for 15 minutes to prepare micelles. After the encapsulated catalyst and the acrylic monomer were uniformly dissolved, the mixture was added to the micelles, mixed, water was further added, and the mixture was stirred at a high speed of 2000 rpm for 20 minutes to prepare an emulsion. The amount of each component is as shown in Table 1.
 [乳化液の加熱によるコア粒子の合成]
 前記乳化液を窒素雰囲気下、75℃で2h加熱して、ラジカル重合(乳化重合)によりコア粒子を合成した。
[Synthesis of core particles by heating emulsion]
The emulsion was heated at 75 ° C. for 2 h under a nitrogen atmosphere, and core particles were synthesized by radical polymerization (emulsion polymerization).
 <一重シェル化粒子の合成>
 [内層シェル成分からなる乳化液の調製]
 (原料)
 前記「コア粒子の合成」中の「コア成分からなる乳化液の調製」で用いた原料(1)乳化剤、(2)ラジカル重合開始剤、(3)アクリルモノマー、及び(4)水を用い、(3)アクリルモノマーは前記以外に以下を追加して用いた。
n-ブチルアクリレート(三菱ケミカル社製 商品名「アクリル酸ブチル」)
<Synthesis of single shelled particles>
[Preparation of emulsion consisting of inner shell component]
(material)
Using the raw materials (1) emulsifier, (2) radical polymerization initiator, (3) acrylic monomer, and (4) water used in “Preparation of emulsion comprising core component” in “Synthesis of core particles”. (3) The acrylic monomer was used in addition to the following.
n-Butyl acrylate (trade name “butyl acrylate” manufactured by Mitsubishi Chemical Corporation)
 (乳化液の調製方法)
 乳化剤及びラジカル重合開始剤をイオン交換水に溶解し、回転速度1500rpmで15分間高速撹拌してミセルを作製した。アクリルモノマーを均一混合した後、前記ミセルに加えて、回転速度2000rpmで20分間高速撹拌して内層シェル成分からなる乳化液を調製した。各成分の配合量は表1に記載のとおりである。
(Method for preparing emulsion)
The emulsifier and the radical polymerization initiator were dissolved in ion-exchanged water and stirred at a high speed of 1500 rpm for 15 minutes to prepare micelles. After uniformly mixing the acrylic monomers, in addition to the micelles, the emulsion was made of an inner layer shell component by stirring at high speed for 20 minutes at a rotational speed of 2000 rpm. The amount of each component is as shown in Table 1.
 [内層シェル成分からなる乳化液の滴下による一重シェル化粒子の合成]
 前記「コア粒子」の乳化液を窒素雰囲気下加熱して75℃とした。その後、前記「内層シェル成分からなる乳化液」を滴下して、75℃で1h、ラジカル重合(乳化重合)により内側シェル層を形成して、一重シェル化粒子を合成した。
[Synthesis of single shelled particles by dropwise addition of emulsion consisting of inner shell component]
The emulsion of the “core particles” was heated to 75 ° C. in a nitrogen atmosphere. Thereafter, the “emulsified liquid comprising the inner layer shell component” was dropped, and an inner shell layer was formed by radical polymerization (emulsion polymerization) at 75 ° C. for 1 h to synthesize single-shelled particles.
 <二重シェル化粒子の合成>
 [外層シェル成分からなる乳化液の調製]
 (原料)
 前記「コア粒子の合成」中の「コア成分からなる乳化液の調製」で用いた原料(1)乳化剤及び(4)水の他に、(2)ラジカル重合開始剤、及び(3)アクリルモノマーは以下を用いた。
 (2)ラジカル重合開始剤
脂溶性ラジカル重合開始剤ジメチル2,2’-アゾビス(2-メチルプロピオネート)(和光純薬社 製商品名「V-601」、10時間半減期温度66℃)
(3)アクリルモノマー
アリルメタクリレート(三菱ガス化学社製 商品名「AMA」)を単独使用
<Synthesis of double shelled particles>
[Preparation of emulsion comprising outer shell component]
(material)
In addition to the raw material (1) emulsifier and (4) water used in “Preparation of emulsion comprising core component” in “Synthesis of core particles”, (2) radical polymerization initiator, and (3) acrylic monomer Used the following:
(2) Radical polymerization initiator Fat-soluble radical polymerization initiator dimethyl 2,2′-azobis (2-methylpropionate) (trade name “V-601”, Wako Pure Chemical Industries, Ltd., 10 hour half-life temperature 66 ° C.)
(3) Acrylic monomer allyl methacrylate (trade name “AMA” manufactured by Mitsubishi Gas Chemical Company) is used alone.
 (乳化液の調製方法)
 乳化剤をイオン交換水に溶解し、回転速度1500rpmで5分間高速撹拌してミセルを作製した。ラジカル重合開始剤をアクリルモノマーに溶解した後、前記ミセルに加えて、回転速度2000rpmで25分間高速撹拌して外層シェル成分からなる乳化液を調製した。各成分の配合量は表1に記載のとおりである。
(Method for preparing emulsion)
The emulsifier was dissolved in ion-exchanged water and stirred at a high speed of 1500 rpm for 5 minutes to prepare micelles. After dissolving the radical polymerization initiator in the acrylic monomer, it was added to the micelle and stirred at a high speed of 2000 rpm for 25 minutes to prepare an emulsion composed of the outer layer shell component. The amount of each component is as shown in Table 1.
 [外層シェル成分からなる乳化液の滴下による二重シェル化粒子の合成]
 前記「一重シェル化粒子」の乳化液を窒素雰囲気下加熱して75℃とした。その後、前記「外層シェル成分からなる乳化液」を滴下して、75℃で1h、ラジカル重合(乳化重合)により外側シェル層を形成させて二重シェル化粒子を合成した。
[Synthesis of double-shelled particles by dripping emulsion containing outer shell component]
The emulsion of the “single shelled particles” was heated to 75 ° C. in a nitrogen atmosphere. Thereafter, the “emulsified liquid composed of the outer shell component” was dropped, and an outer shell layer was formed by radical polymerization (emulsion polymerization) at 75 ° C. for 1 h to synthesize double-shelled particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [乾燥]
 合成後、乳化液をスプレードライにより乾燥して、実施例1の二重シェル化粒子を得た。
[Dry]
After the synthesis, the emulsion was dried by spray drying to obtain double shelled particles of Example 1.
[実施例2]
 実施例1記載の「二重シェル化粒子の合成」において、「外層シェルの原料」である「(3)アクリルモノマー」として、アリルメタクリレート(三菱ガス化学社製 商品名「AMA」)の他に、メチルメタクリレート(三菱ケミカル社製 商品名「アクリルエステルM」)を少量加えた以外は、実施例1の手順に従って二重シェル化粒子を合成して、乾燥させた。各成分の配合量は表1に記載のとおりである。
[Example 2]
In “Synthesis of double-shelled particles” described in Example 1, “(3) Acrylic monomer”, which is “Raw material of outer shell”, in addition to allyl methacrylate (trade name “AMA” manufactured by Mitsubishi Gas Chemical Company) Except for adding a small amount of methyl methacrylate (trade name “acrylic ester M” manufactured by Mitsubishi Chemical Corporation), double-shelled particles were synthesized according to the procedure of Example 1 and dried. The amount of each component is as shown in Table 1.
 [実施例3,4]
 実施例1記載の「コア成分からなる乳化液の調製」において、「コア成分の原料」である「(5)内包用触媒」を、所定量(表1に記載)の硬化触媒トリ-p-トリルホスフィン(北興化学社製 商品名「TPTP」)に代えた以外は、実施例2の手順に従って二重シェル化粒子を合成して、乾燥させた。各成分の配合量は表1に記載のとおりである。
[Examples 3 and 4]
In “Preparation of emulsion comprising core component” described in Example 1, “(5) inclusion catalyst” which is “raw material of core component” is a predetermined amount (described in Table 1) of curing catalyst tri-p- Double-shelled particles were synthesized and dried according to the procedure of Example 2 except for replacing with tolylphosphine (trade name “TPTP” manufactured by Hokuko Chemical Co., Ltd.). The amount of each component is as shown in Table 1.
 [実施例5]
 実施例1記載の「二重シェル化粒子の合成」において、「外層シェルの原料」である「(2)ラジカル重合開始剤」として、水溶性ラジカル重合開始剤2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルフェート二水和物(和光純薬社製 商品名「VA-046B」、10時間半減期温度46℃)、及び油溶性ラジカル重合開始剤ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)(和光純薬社製 商品名「VE-073」、10時間半減期温度73℃)を用い;「(3)アクリルモノマー」として、アリルメタクリレート(三菱ガス化学社製 商品名「AMA」)の他に、メチルメタクリレート(三菱ケミカル社製 商品名「アクリルエステルM」)を少量加え;並びに、実施例1記載の「外層シェル成分からなる乳化液の滴下による二重シェル化粒子の合成」を下記のように変更した;以外は、実施例1の手順に従って二重シェル化粒子を合成して、乾燥させた。各成分の配合量は表1に記載のとおりである。
[Example 5]
In “Synthesis of double-shelled particles” described in Example 1, “(2) radical polymerization initiator” which is “raw material of outer shell” is water-soluble radical polymerization initiator 2,2′-azobis [2- (2-Imidazolin-2-yl) propane] disulfate dihydrate (trade name “VA-046B”, 10 hours half-life temperature 46 ° C., manufactured by Wako Pure Chemical Industries, Ltd.), and oil-soluble radical polymerization initiator dimethyl 1,1 '-Azobis (1-cyclohexanecarboxylate) (trade name “VE-073” manufactured by Wako Pure Chemical Industries, Ltd., 10 hour half-life temperature 73 ° C.) was used; as “(3) acrylic monomer”, allyl methacrylate (Mitsubishi Gas Chemical) A small amount of methyl methacrylate (trade name “acrylic ester M” manufactured by Mitsubishi Chemical Corporation) is added in addition to the product name “AMA” manufactured by the company; The synthetic "double shell particles by dropwise addition of minutes was emulsion was changed as follows; except synthesizes a double shell particles according to the procedure of Example 1, and dried. The amount of each component is as shown in Table 1.
 [外層シェル成分からなる乳化液の滴下による二重シェル化粒子の合成]
 前記「一重シェル化粒子」の乳化液を窒素雰囲気下加熱して65℃とした。その後、前記「外層シェル成分からなる乳化液」を滴下して、65℃で1h、ラジカル重合(乳化重合)を行った後、90℃に昇温して、90℃で1h、ラジカル重合(乳化重合)により外側シェル層を形成させて二重シェル化粒子を合成した。
[Synthesis of double-shelled particles by dripping emulsion containing outer shell component]
The emulsion of the “single shelled particles” was heated to 65 ° C. in a nitrogen atmosphere. Thereafter, the “emulsified liquid composed of the outer layer shell component” was dropped, and after radical polymerization (emulsion polymerization) at 65 ° C. for 1 h, the temperature was raised to 90 ° C. and radical polymerization (emulsification at 90 ° C. for 1 h). The outer shell layer was formed by polymerization) to synthesize double shelled particles.
 [比較例1]
 実施例1の二重シェル化粒子作製途中で得られる「一重シェル化粒子」の乳化液をスプレードライにより乾燥して、比較例1の一重シェル化粒子を得た。なお、比較例1は実施例1とは別ロットである。
[Comparative Example 1]
The emulsion of “single shelled particles” obtained during the production of the double shelled particles of Example 1 was dried by spray drying to obtain single shelled particles of Comparative Example 1. Note that Comparative Example 1 is a different lot from Example 1.
 [比較例2]
 実施例1の二重シェル化粒子作製途中で得られる「コア粒子」の乳化液をスプレードライにより乾燥して、比較例2のコア粒子を得た。なお、比較例2は実施例1及び比較例1とは別ロットである。
[Comparative Example 2]
The emulsion of “core particles” obtained during the production of the double-shelled particles of Example 1 was dried by spray drying to obtain the core particles of Comparative Example 2. Comparative Example 2 is a different lot from Example 1 and Comparative Example 1.
 [比較例3]
 市販の粗大粒子触媒(日本化薬製EP-CAT-T)を用いた。
[Comparative Example 3]
A commercially available coarse particle catalyst (EP-CAT-T manufactured by Nippon Kayaku) was used.
 <粒子の評価方法>
 [粒径:粒度分布]
 Microtrac社製レーザー回折・散乱式粒子径分布測定装置BlueRaytracを用いて、実施例1~5または比較例1~3の粒子を含むイオン交換水中で、体積基準での粒度分布曲線、及び累積体積曲線を測定し、小粒径側から積算して累積体積50%となる粒径D50を求めた。
<Evaluation method of particles>
[Particle size: Particle size distribution]
Volumetric particle size distribution curve and cumulative volume curve in ion-exchanged water containing particles of Examples 1 to 5 or Comparative Examples 1 to 3 using a MicroRay laser diffraction / scattering particle size distribution measuring device BlueRaytrac Were measured, and the particle size D 50 was accumulated from the small particle size side to give a cumulative volume of 50%.
 [シェルの熱安定性]
 エスアイアイ・ナノテクノロジ―社(現在、日立ハイテク社)製示差熱熱重量同時測定装置(TG/DTA)ExstarTG/DTA7200を用いて、窒素雰囲気下、昇温速度10℃/分にて、実施例1~5または比較例1、3の粒子を測定した。内包触媒の熱分解に起因する重量減少後(TPP及びTPTPの場合、150℃位から重量減少が起こり300℃未満まで続く)、300℃付近にアクリル樹脂に起因する重量減少が確認できる。アクリル樹脂に起因する重量減少速度が2%/分(サンプルが5.00mgのときは100ng/分)になった温度をシェルの熱分解温度とした。
[Thermal stability of shell]
Example using a differential thermal and thermogravimetric simultaneous measurement device (TG / DTA) ExstarTG / DTA7200 manufactured by SII Nanotechnology, Inc. (currently Hitachi High-Tech) at a heating rate of 10 ° C./min under a nitrogen atmosphere The particles of 1 to 5 or Comparative Examples 1 and 3 were measured. After weight reduction due to thermal decomposition of the encapsulated catalyst (in the case of TPP and TPTP, weight reduction occurs from about 150 ° C. and continues to less than 300 ° C.), and weight reduction due to acrylic resin can be confirmed around 300 ° C. The temperature at which the weight reduction rate due to the acrylic resin was 2% / min (100 ng / min when the sample was 5.00 mg) was defined as the thermal decomposition temperature of the shell.
 [反応率評価]
 ThermoFisherScientific社製フーリエ変換赤外分光光度計(FT-IR)Nicolet iS50又は/及びiS5を用いて、波数分解能4cm-1の条件で実施例1~5または比較例1、3の粒子をATR法にて測定した。C=Cに由来する1650cm-1のピークと、内部標準であるC-H由来の2950cm-1付近のピークとの高さ比(n(C=C)/n(C-H))を評価した。
[Reaction rate evaluation]
Using the Fourier transform infrared spectrophotometer (FT-IR) Nicolet iS50 or / and iS5 manufactured by ThermoFisher Scientific, the particles of Examples 1 to 5 or Comparative Examples 1 and 3 were subjected to the ATR method under the condition of wave number resolution of 4 cm −1. Measured. Evaluation and the peak of 1650 cm -1, the height ratio of the peak around 2950 cm -1 derived from C-H, which is an internal standard (n (C = C) / n (C-H)) derived from the C = C did.
 <エポキシ樹脂組成物の評価>
 [保存安定性評価 シェルの浸透性]
 液状脂環式エポキシ樹脂(ダイセル社製 商品名セロキサイド2021P(エポキシ当量 138g/eq))と同重量の実施例1~5または比較例3の粒子を加え、ロールミル(ボールミル)にて分散した後、TAインスツルメント社製応力制御型レオメーターAR G2を用いて、20~100℃の間で、昇温速度10℃/分の条件で加熱しながら粘度を測定した。温度上昇に伴う粘度低下後、粒子へのエポキシ樹脂の浸透に伴う粘度上昇が観察された。なお、実施例1,3及び5はロールミル、実施例2,4及び比較例3はボールミルでの分散である。
<Evaluation of epoxy resin composition>
[Storage stability evaluation Shell permeability]
After adding the liquid alicyclic epoxy resin (product name Celoxide 2021P (Epoxy equivalent: 138 g / eq) manufactured by Daicel Corporation) and the same weight of the particles of Examples 1 to 5 or Comparative Example 3, and dispersing in a roll mill (ball mill), Using a stress control type rheometer AR G2 manufactured by TA Instruments, the viscosity was measured while heating at a temperature rising rate of 10 ° C./min between 20 and 100 ° C. After a decrease in viscosity with increasing temperature, an increase in viscosity with penetration of epoxy resin into the particles was observed. Examples 1, 3 and 5 are dispersions in a roll mill, and Examples 2, 4 and Comparative Example 3 are dispersions in a ball mill.
 粘度上昇の開始時点の温度(極小粘度での温度)を評価した。また、粘度上昇の開始時点の粘度(極小粘度)を評価した。前記測定で得た25℃の粘度を初期粘度として評価した。以上の結果を表2に示す。 The temperature at the start of viscosity increase (temperature at the minimum viscosity) was evaluated. Moreover, the viscosity (minimum viscosity) at the start of the viscosity increase was evaluated. The viscosity at 25 ° C. obtained by the measurement was evaluated as the initial viscosity. The results are shown in Table 2.
 [表面凹凸の評価]
 ・平面内の任意方向(平面方向)の凹凸の評価
 液状脂環式エポキシ樹脂(ダイセル社製 商品名セロキサイド2021P(エポキシ当量 138g/eq)) 100重量部、メチルテトラヒドロ無水フタル酸(日立化成株式会社製、酸無水物当量164g/eq) 100重量部、及び実施例1~5または比較例1~3の粒子 100重量部を加え、ロールミル(ボールミル)にて分散して樹脂組成物を調製した。各樹脂組成物を、加熱装置を用いて、100℃にて1時間、その後180℃にて4時間加熱して硬化物を得た。
[Evaluation of surface irregularities]
・ Evaluation of irregularities in an arbitrary direction (plane direction) in a plane Liquid alicyclic epoxy resin (trade name Celoxide 2021P (epoxy equivalent: 138 g / eq) manufactured by Daicel) 100 parts by weight, methyltetrahydrophthalic anhydride (Hitachi Chemical Co., Ltd.) 100 parts by weight of an acid anhydride equivalent of 164 g / eq) and 100 parts by weight of the particles of Examples 1 to 5 or Comparative Examples 1 to 3 were added and dispersed in a roll mill (ball mill) to prepare a resin composition. Each resin composition was heated using a heating apparatus at 100 ° C. for 1 hour and then at 180 ° C. for 4 hours to obtain a cured product.
 得られた各硬化物の表面形状を次のとおり観察し評価した。硬化物表面に金を蒸着した後、日本電子社製走査型電子顕微鏡(SEM)JSM-6390LVを用いて、加速電圧15kV、観察角度45°、倍率400倍(観察エリア:300μm×200μm)でのSEM観察により確認した。 The surface shape of each obtained cured product was observed and evaluated as follows. After depositing gold on the surface of the cured product, using a scanning electron microscope (SEM) JSM-6390LV manufactured by JEOL Ltd., at an acceleration voltage of 15 kV, an observation angle of 45 °, and a magnification of 400 times (observation area: 300 μm × 200 μm) This was confirmed by SEM observation.
 凸部又は凹部の大きさが10μm以下である場合をA、10μmを超える場合をCとした。結果を表2に示す。また、実施例1の粒子を加えた樹脂組成物の硬化物表面のSEM観察像を図1に、比較例3の粒子を加えた樹脂組成物の硬化物表面のSEM観察像を図2に示す。 The case where the size of the convex portion or the concave portion is 10 μm or less is A, and the case where the size exceeds 10 μm is C. The results are shown in Table 2. Moreover, the SEM observation image of the hardened | cured material surface of the resin composition which added the particle | grains of Example 1 is shown in FIG. 1, and the SEM observation image of the hardened | cured material surface of the resin composition which added the particle | grains of the comparative example 3 is shown in FIG. .
 ・面垂直方向の凹凸の評価
 さらに、実施例1の粒子を加えた樹脂組成物の硬化物については、触針式表面形状測定器DEKTAK 150を用いて、走査速度:1,000μm/60s、走査距離:1.0mm、測定箇所:5箇所、及び計測値:段差の条件にて観察した。
Evaluation of irregularities in the direction perpendicular to the plane Furthermore, for the cured product of the resin composition to which the particles of Example 1 were added, using a stylus type surface shape measuring device DEKTAK 150, scanning speed: 1,000 μm / 60 s, scanning Observation was performed under the conditions of distance: 1.0 mm, measurement location: 5 locations, and measurement value: level difference.
 その結果、測定箇所:5箇所のうち、各箇所における段差の最大値は次のとおりであった。第1の箇所:0.41μm、第2の箇所:0.46μm、第3の箇所:0.87、第4の箇所:0.74μm、及び第5の箇所:0.55μm。したがって、実施例1の粒子を加えた樹脂組成物の硬化物の表面の面垂直方向の凹凸は10μm以下であることがわかった。 As a result, the maximum value of the step in each of the five measurement points was as follows. First location: 0.41 μm, second location: 0.46 μm, third location: 0.87, fourth location: 0.74 μm, and fifth location: 0.55 μm. Therefore, it was found that the unevenness in the surface perpendicular direction of the surface of the cured product of the resin composition to which the particles of Example 1 were added was 10 μm or less.
 [狭ギャップ侵入性評価]
 上記「表面凹凸の評価」と同様にして、実施例1~5または比較例1~3の粒子を加えた各樹脂組成物を、バンプ付きダミーチップ(バンプ高さ:50μm)を実装したガラス基板を90℃ホットプレートに載置し、当該樹脂組成物をディスペンサーで塗工して、5分後の侵入性を評価した。
[Narrow gap penetration evaluation]
A glass substrate on which a dummy chip with bumps (bump height: 50 μm) is mounted on each resin composition to which the particles of Examples 1 to 5 or Comparative Examples 1 to 3 are added in the same manner as in “Evaluation of surface irregularities”. Was placed on a 90 ° C. hot plate, the resin composition was applied with a dispenser, and the penetration after 5 minutes was evaluated.
 チップ下に樹脂組成物がボイド等なく侵入ができているものをA、侵入ができているがボイド等があるものをB、侵入ができていないものをCとした。結果を表2に示す。 Suppose that the resin composition can penetrate under the chip without voids, A, B that has penetrated but has voids, and C that has not penetrated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (13)

  1.  リン系硬化触媒とビニル系重合体を含むコア、
     第一ビニル系単量体と第一架橋性ビニル系単量体とを含む単量体成分の重合体または第一ビニル系単量体の重合体である第一ビニル樹脂から構成され、前記コアを被覆する内側シェル層、及び
     第二ビニル系単量体と第二架橋性ビニル系単量体とを含む単量体成分の重合体または第二架橋性ビニル系単量体の重合体である第二ビニル樹脂から構成され、前記内側シェル層を被覆する外側シェル層、
     を含む粒子からなり、
     前記粒子は、平均粒径が0.01~50μmであり、
     第二ビニル樹脂中の第二架橋性ビニル系単量体の重量割合は、第一ビニル樹脂中の第一架橋性ビニル系単量体の重量割合よりも大きい、エポキシ樹脂用潜在性硬化触媒。
    A core containing a phosphorus curing catalyst and a vinyl polymer;
    The core is composed of a first vinyl resin which is a polymer of a monomer component containing a first vinyl monomer and a first crosslinkable vinyl monomer or a polymer of a first vinyl monomer. An inner shell layer for coating the polymer, and a monomer component polymer or a second crosslinkable vinyl monomer polymer containing a second vinyl monomer and a second crosslinkable vinyl monomer. An outer shell layer composed of a second vinyl resin and covering the inner shell layer;
    Consisting of particles containing
    The particles have an average particle diameter of 0.01 to 50 μm,
    The latent curing catalyst for epoxy resins, wherein the weight ratio of the second crosslinkable vinyl monomer in the second vinyl resin is greater than the weight ratio of the first crosslinkable vinyl monomer in the first vinyl resin.
  2.  第一架橋性ビニル系単量体および第二架橋性ビニル系単量体は、(メタ)アクリル基を有する、請求項1に記載のエポキシ樹脂用潜在性硬化触媒。 The latent curing catalyst for epoxy resins according to claim 1, wherein the first crosslinkable vinyl monomer and the second crosslinkable vinyl monomer have a (meth) acryl group.
  3.  前記コアに含まれる前記ビニル系重合体は、架橋構造を有するビニル系重合体である、請求項1又は2に記載のエポキシ樹脂用潜在性硬化触媒。 The latent curing catalyst for epoxy resins according to claim 1 or 2, wherein the vinyl polymer contained in the core is a vinyl polymer having a crosslinked structure.
  4.  第二ビニル樹脂中の第二架橋性ビニル系単量体の重量割合は、50~100重量%である、請求項1~3のいずれかに記載のエポキシ樹脂用潜在性硬化触媒。 4. The latent curing catalyst for epoxy resins according to claim 1, wherein the weight ratio of the second crosslinkable vinyl monomer in the second vinyl resin is 50 to 100% by weight.
  5.  第一ビニル樹脂100重量部に対する第二ビニル樹脂の量は、5~50重量部である、請求項1~4のいずれかに記載のエポキシ樹脂用潜在性硬化触媒。 The latent curing catalyst for epoxy resins according to any one of claims 1 to 4, wherein the amount of the second vinyl resin relative to 100 parts by weight of the first vinyl resin is 5 to 50 parts by weight.
  6.  請求項1~5のいずれかに記載のエポキシ樹脂用潜在性硬化触媒を製造する方法であって、
     リン系硬化触媒の存在下、乳化重合によりビニル系単量体を含む単量体成分を重合して、コアを形成する工程、
     前記コアの存在下、乳化重合により、第一ビニル系単量体と第一架橋性ビニル系単量体とを含む単量体成分、または、第一ビニル系単量体を重合して、前記コアを被覆する内側シェル層を形成する工程、
     前記コアを被覆する内側シェル層の存在下、乳化重合により、第二ビニル系単量体と第二架橋性ビニル系単量体とを含む単量体成分、または、第二架橋性ビニル系単量体を重合して、前記内側シェル層を被覆する外側シェル層を形成する工程、
     を含む方法。
    A method for producing a latent curing catalyst for an epoxy resin according to any one of claims 1 to 5,
    A step of polymerizing a monomer component containing a vinyl monomer by emulsion polymerization in the presence of a phosphorus-based curing catalyst to form a core;
    In the presence of the core, by emulsion polymerization, the monomer component containing the first vinyl monomer and the first crosslinkable vinyl monomer, or the first vinyl monomer is polymerized, Forming an inner shell layer covering the core;
    In the presence of the inner shell layer covering the core, a monomer component containing the second vinyl monomer and the second crosslinkable vinyl monomer or the second crosslinkable vinyl monomer is obtained by emulsion polymerization. Polymerizing a monomer to form an outer shell layer covering the inner shell layer;
    Including methods.
  7.  外側シェル層を形成する工程における乳化重合は、モノマー溶解性ラジカル重合開始剤の存在下で行なう、請求項6に記載の方法。 The method according to claim 6, wherein the emulsion polymerization in the step of forming the outer shell layer is performed in the presence of a monomer-soluble radical polymerization initiator.
  8.  エポキシ樹脂と、請求項1~5のいずれかに記載のエポキシ樹脂用潜在性硬化触媒を含有する、エポキシ樹脂組成物。 An epoxy resin composition comprising an epoxy resin and the latent curing catalyst for epoxy resin according to any one of claims 1 to 5.
  9.  請求項8に記載のエポキシ樹脂組成物が硬化したものである硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 8.
  10.  表面の凸部または凹部の大きさが10μm以下である請求項9記載の硬化物。 The cured product according to claim 9, wherein the size of the convex portion or concave portion on the surface is 10 μm or less.
  11.  請求項9又は10に記載の硬化物を封止材として含む半導体装置。 A semiconductor device comprising the cured product according to claim 9 or 10 as a sealing material.
  12.  前記半導体装置は、100μm以下のギャップを有し、前記封止材が前記ギャップに侵入している、請求項11に記載の半導体装置。 The semiconductor device according to claim 11, wherein the semiconductor device has a gap of 100 μm or less, and the sealing material enters the gap.
  13.  前記封止材の表面に再配線層が形成されている、請求項11又は12に記載の半導体装置。 The semiconductor device according to claim 11 or 12, wherein a rewiring layer is formed on a surface of the sealing material.
PCT/JP2019/013355 2018-03-29 2019-03-27 Latent curing catalyst for epoxy resin and epoxy resin composition using same WO2019189458A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509249A JP7191936B2 (en) 2018-03-29 2019-03-27 Latent curing catalyst for epoxy resin, and epoxy resin composition using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018063755 2018-03-29
JP2018-063755 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019189458A1 true WO2019189458A1 (en) 2019-10-03

Family

ID=68062094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013355 WO2019189458A1 (en) 2018-03-29 2019-03-27 Latent curing catalyst for epoxy resin and epoxy resin composition using same

Country Status (2)

Country Link
JP (1) JP7191936B2 (en)
WO (1) WO2019189458A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873566A (en) * 1994-09-06 1996-03-19 Nippon Kayaku Co Ltd Microencapsulated cure accelerator, epoxy resin composition containing same and cured product thereof
JP2014218594A (en) * 2013-05-09 2014-11-20 京セラケミカル株式会社 Sealing resin composition and method for producing the same, and resin sealing type semiconductor device
JP2016035056A (en) * 2014-07-31 2016-03-17 積水化学工業株式会社 Microcapsule for curing epoxy resin, and epoxy resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873566A (en) * 1994-09-06 1996-03-19 Nippon Kayaku Co Ltd Microencapsulated cure accelerator, epoxy resin composition containing same and cured product thereof
JP2014218594A (en) * 2013-05-09 2014-11-20 京セラケミカル株式会社 Sealing resin composition and method for producing the same, and resin sealing type semiconductor device
JP2016035056A (en) * 2014-07-31 2016-03-17 積水化学工業株式会社 Microcapsule for curing epoxy resin, and epoxy resin composition

Also Published As

Publication number Publication date
JPWO2019189458A1 (en) 2021-04-01
JP7191936B2 (en) 2022-12-19

Similar Documents

Publication Publication Date Title
KR101685775B1 (en) Polymer powder, curable resin composition, and cured product thereof
TWI355720B (en) Area mount type semiconductor device, and encapsul
JP5736776B2 (en) Vinyl polymer powder, curable resin composition, and cured product
TWI580701B (en) Vinyl polymer powder, curable resin composition and cured article
KR20120024507A (en) Method for manufacturing electronic parts device and resin composition sheet for electronic parts encapsulation
WO2012086463A1 (en) Curable epoxy resin composition and photosemiconductor device using same
JP5301399B2 (en) Epoxy resin composition and epoxy cured product obtained by curing the same
JP2012077129A (en) Resin composition and sealing material using the same
TW201439189A (en) Curable epoxy resin composition
TW200908166A (en) Adhesive for electronic component, semiconductor chip stacking method, and semiconductor device
JP6503773B2 (en) Graft copolymer, resin composition and molded body
TWI535738B (en) (methyl)acrylate polymer, resin composition and molded article
TWI593738B (en) Epoxy resin composition, epoxy cured material and led sealing material
JP2008291152A (en) Thermosetting resin composition, core shell polymer, and cured object
JP5845044B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
JP5760347B2 (en) Graft copolymer production method, resin composition, and molded article
WO2019189458A1 (en) Latent curing catalyst for epoxy resin and epoxy resin composition using same
TW201829527A (en) Latent curing agent, method for producing the same, and thermosetting epoxy resin composition
JP5971609B2 (en) Curable resin composition and cured product obtained by curing the same
JP2012092356A (en) Core-shell polymer and cured product
JP2016050221A (en) Curable epoxy resin composition
JP2013215685A (en) Production method for liquid enclosing capsule, liquid enclosing capsule and capsule containing composition
JP2015218317A (en) Stress relaxation agent for curable resin, curable resin composition and molding
TW202202572A (en) Photosensitive resin composition, cured product thereof, and wiring structure containing cured product
KR20220106701A (en) Resin composition, resin paste, cured product, semiconductor chip package, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776380

Country of ref document: EP

Kind code of ref document: A1