JP2008291152A - Thermosetting resin composition, core shell polymer, and cured object - Google Patents

Thermosetting resin composition, core shell polymer, and cured object Download PDF

Info

Publication number
JP2008291152A
JP2008291152A JP2007139486A JP2007139486A JP2008291152A JP 2008291152 A JP2008291152 A JP 2008291152A JP 2007139486 A JP2007139486 A JP 2007139486A JP 2007139486 A JP2007139486 A JP 2007139486A JP 2008291152 A JP2008291152 A JP 2008291152A
Authority
JP
Japan
Prior art keywords
core
polymer
resin composition
shell
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007139486A
Other languages
Japanese (ja)
Other versions
JP5045239B2 (en
Inventor
Tetsuo Yamanaka
哲郎 山中
Eiji Suzuki
栄司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007139486A priority Critical patent/JP5045239B2/en
Publication of JP2008291152A publication Critical patent/JP2008291152A/en
Application granted granted Critical
Publication of JP5045239B2 publication Critical patent/JP5045239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting resin composition giving a cured object having high toughness excellent in elasticity, without impairing heat resistance, or the like and the cured object obtained by curing the resin composition. <P>SOLUTION: This thermosetting resin composition contains an epoxy resin (A), a core shell polymer (B) having a hydroxy group in a shell part, and a curing agent and/or a curing catalyst (C). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱硬化性樹脂組成物及びそれを硬化して得られる硬化物に関する。   The present invention relates to a thermosetting resin composition and a cured product obtained by curing it.

従来より、エポキシ樹脂の靭性を強化する方法としては、エポキシ樹脂組成物中にゴム成分あるいは熱可塑性樹脂などの改質剤を添加する方法が知られている。ゴム成分を添加する方法としては、反応性液状ゴム(CTBNなど)を添加する方法(例えば、特許文献1参照)が知られている。しかし、反応性液状ゴムは、一旦エポキシ樹脂へ溶解した後、硬化時に相分離するという過程を経るため、配合するエポキシ樹脂の種類や硬化条件の違いによって得られる硬化物のモルホロジーが変化し、所望の改質効果が得られなかったり、品質の再現性に問題があることに加え、硬化後のエポキシ樹脂相にゴム成分が一部溶解し残存するために、硬化物の弾性率やガラス転移温度(以下、Tgとも言う。)が低下してエポキシ樹脂製品の品質が低下する等の問題があった。さらに、エポキシ樹脂製品自体が大型で製品作成のための硬化温度が部位によって異なる場合は、部位により品質が異なってしまう虞もあった。   Conventionally, as a method for enhancing the toughness of an epoxy resin, a method of adding a modifier such as a rubber component or a thermoplastic resin to the epoxy resin composition is known. As a method of adding a rubber component, a method of adding a reactive liquid rubber (CTBN or the like) (for example, see Patent Document 1) is known. However, since the reactive liquid rubber undergoes a process of once dissolving in the epoxy resin and then phase-separating at the time of curing, the morphology of the cured product changes depending on the type of epoxy resin to be blended and the curing conditions. In addition to the fact that the modification effect cannot be obtained or there is a problem in the reproducibility of the quality, the rubber component partially dissolves and remains in the cured epoxy resin phase. (Hereinafter, also referred to as Tg) has been lowered, resulting in a problem that the quality of the epoxy resin product is lowered. Furthermore, when the epoxy resin product itself is large and the curing temperature for producing the product varies depending on the part, the quality may vary depending on the part.

ゴム成分の添加によって問題となるモルホロジーの変化とその制御の問題を解決する方法として、エポキシ樹脂中でアクリル酸エステル等のモノマーを重合することで、エポキシ樹脂中にゴム状粒子が分散した組成物を得る方法が知られている(例えば、特許文献2参照。)。しかしながら、この方法でもゴム成分の一部が硬化後のエポキシ樹脂相に溶解することを避けられず、ガラス転移温度が低下する場合があり、品質的に十分なものとは言えなかった。   A composition in which rubber-like particles are dispersed in an epoxy resin by polymerizing a monomer such as an acrylate ester in the epoxy resin as a method for solving the problem of the change in morphology and the control problem caused by the addition of the rubber component. Is known (see, for example, Patent Document 2). However, even in this method, it is unavoidable that a part of the rubber component is dissolved in the cured epoxy resin phase, and the glass transition temperature may be lowered, so that the quality is not sufficient.

一方、熱可塑性樹脂を添加する方法としては、ガラス転移温度の高い熱可塑性樹脂(いわゆるスーパーエンプラなど)が使用されることが知られている。この方法では、硬化物のガラス転移温度、耐熱性を保持したままある程度の靭性を付与することが可能であるが、一般に添加量を多く要するため、系の粘度が増加し、取り扱い性に問題があり、溶解などの煩雑な工程が必要となったり、モルホロジーのコントロールが必要であるなどの問題があった。   On the other hand, as a method for adding a thermoplastic resin, it is known that a thermoplastic resin having a high glass transition temperature (so-called super engineering plastic or the like) is used. In this method, it is possible to impart a certain degree of toughness while maintaining the glass transition temperature and heat resistance of the cured product, but generally, since a large amount of addition is required, the viscosity of the system increases and there is a problem in handling properties. However, there are problems such as requiring complicated steps such as dissolution and controlling morphology.

また、エポキシ樹脂に不溶なゴム状重合体粒子を含むエポキシ樹脂組成物は、ゴム成分が硬化後のエポキシ樹脂相に溶解することがないため、耐熱性(ガラス転移温度)の低下を抑制することができる。この場合のゴム状重合体粒子はエポキシ樹脂中で重合したものではなく、あらかじめ重合しておいたものをエポキシ樹脂に混合したものである。このようなゴム状重合体粒子としては、いわゆるコアシェルポリマが代表的なものである(例えば、特許文献3若しくは特許文献4参照。)。また、これらのコアシェルポリマは、一次粒子の集合体(凝集体)として、例えば、数十〜数百ミクロンのパウダー状で市販されており、エポキシ樹脂に混合するに際しては、これらを10μm未満に微粉末化したり、更に50〜200℃の温度で加熱攪拌、高速せん断攪拌、熱ロール、インターミキサー、ニーダーや三本ロール等の混錬機で入念に混合しなければ、混合したコアシェルポリマが容易に沈殿あるいは浮上して分離する問題がある。更に数時間に亘るような入念な混合混錬を経た後でも、混合したコアシェルポリマは一次粒子で分散せずに凝集しており、さらにエポキシ樹脂の種類によっては混合したコアシェルポリマが分離しやすいなどの問題や、分散安定剤などを添加する必要があるなど、満足できるものではない。更に、エポキシ樹脂中で実際に分散しているコアシェルポリマの大きさは一次粒子ではないため、コアシェルポリマ粒子の設計を最適化することが難しいなどの問題点があった。これらの背景から、市販されているパウダー状のコアシェルポリマは、エポキシ樹脂の強化剤として充分な性能を有していないのが現状であった。
特公昭62−34251号公報 特開昭59−138254号公報 米国特許第3322852号明細書 米国特許第3496250号明細書
In addition, the epoxy resin composition containing rubber-like polymer particles insoluble in the epoxy resin prevents the heat resistance (glass transition temperature) from decreasing because the rubber component does not dissolve in the cured epoxy resin phase. Can do. The rubber-like polymer particles in this case are not polymerized in the epoxy resin, but are prepolymerized and mixed with the epoxy resin. As such rubber-like polymer particles, a so-called core-shell polymer is representative (see, for example, Patent Document 3 or Patent Document 4). Further, these core-shell polymers are commercially available as primary particle aggregates (aggregates), for example, in the form of powders of several tens to several hundreds of microns. The mixed core-shell polymer is easy if it is not pulverized or mixed thoroughly with a kneader such as a heated stirrer, a high-speed shear stirrer, a hot roll, an intermixer, a kneader or a triple roll at a temperature of 50 to 200 ° C. There is a problem of sedimentation or separation by floating. Even after careful mixing and kneading over several hours, the mixed core-shell polymer is agglomerated without being dispersed with primary particles, and depending on the type of epoxy resin, the mixed core-shell polymer is easy to separate, etc. This problem is unsatisfactory because of this problem and the need to add a dispersion stabilizer. Furthermore, since the size of the core-shell polymer actually dispersed in the epoxy resin is not the primary particles, there is a problem that it is difficult to optimize the design of the core-shell polymer particles. Under these circumstances, a commercially available powdery core-shell polymer does not have sufficient performance as an epoxy resin reinforcing agent.
Japanese Patent Publication No.62-34251 JP 59-138254 A U.S. Pat. No. 3,322,852 US Pat. No. 3,496,250

本発明の目的は、上記のような従来技術が有するエポキシ樹脂強化に際しての種々の問題点を克服し、耐熱性等を損なうことなく、弾性率に優れた高い靭性を有する硬化物を与える熱硬化性樹脂組成物、及びそれを硬化して得られる硬化物を提供することである。   The object of the present invention is to overcome the various problems associated with the epoxy resin reinforcement of the prior art as described above and to provide a cured product having a high toughness with excellent elastic modulus without impairing heat resistance and the like. It is providing the curable resin composition and the hardened | cured material obtained by hardening | curing it.

すなわち、本発明は、(1)エポキシ樹脂(A)、シェル部にヒドロキシル基を有するコアシェルポリマ(B)と、硬化剤及び/または硬化触媒(C)を含むことを特徴とする熱硬化性樹脂組成物に関する。   That is, the present invention includes (1) an epoxy resin (A), a core-shell polymer (B) having a hydroxyl group in the shell portion, and a curing agent and / or a curing catalyst (C). Relates to the composition.

また、本発明は、(2)前記コアシェルポリマ(B)のシェル部の理論ガラス転移温度が、20℃以下であることを特徴とする前記(1)に記載の熱硬化性樹脂組成物に関する。   Moreover, this invention relates to the thermosetting resin composition as described in said (1) characterized by (2) The theoretical glass transition temperature of the shell part of the said core-shell polymer (B) is 20 degrees C or less.

また、本発明は、(3)前記コアシェルポリマ(B)のシェル部が、エステル部分にヒドロキシル基を有する(メタ)アクリレートを重合して得られるポリマからなることを特徴とする前記(1)又は(2)に記載の熱硬化性樹脂組成物に関する。   In the present invention, (3) the shell part of the core-shell polymer (B) is made of a polymer obtained by polymerizing a (meth) acrylate having a hydroxyl group in an ester part. It is related with the thermosetting resin composition as described in (2).

また、本発明は、(4)前記コアシェルポリマ(B)のコア部が、ジエン系ゴム重合体、アクリル系ゴム重合体、シリコン系ゴム重合体及びオレフィン系ゴム重合体から選択される少なくとも1種であり、コア部のガラス転移温度が0℃以下であることを特徴とする前記(1)〜(3)のいずれか一項に記載の熱硬化性樹脂組成物に関する。   In the present invention, (4) the core portion of the core-shell polymer (B) is at least one selected from a diene rubber polymer, an acrylic rubber polymer, a silicon rubber polymer, and an olefin rubber polymer. And the glass transition temperature of the core portion is 0 ° C. or less, which relates to the thermosetting resin composition according to any one of (1) to (3) above.

また、本発明は、(5)前記コアシェルポリマ(B)が、架橋粒子であることを特徴とする前記(1)〜(4)のいずれか一項に記載の熱硬化性樹脂組成物に関する。   The present invention also relates to (5) the thermosetting resin composition according to any one of (1) to (4), wherein the core-shell polymer (B) is a crosslinked particle.

また、本発明は、(6)前記コアシェルポリマ(B)の粒子径が、30〜500nmであることを特徴とする前記(1)〜(5)に記載の熱硬化性樹脂組成物に関する。   The present invention also relates to (6) the thermosetting resin composition as described in (1) to (5) above, wherein the core-shell polymer (B) has a particle size of 30 to 500 nm.

また、本発明は、(7)硬化促進剤、無機充填剤、有機或いは高分子充填剤、難燃剤、耐電防止剤、導電性付与剤、滑剤、摺動性付与剤、界面活性剤、着色剤から選ばれる1種以上の添加物を含有することを特徴とする前記(1)〜(6)のいずれか一項に記載の熱硬化性樹脂組成物に関する。   The present invention also includes (7) a curing accelerator, an inorganic filler, an organic or polymer filler, a flame retardant, an antistatic agent, a conductivity imparting agent, a lubricant, a slidability imparting agent, a surfactant, and a colorant. The thermosetting resin composition according to any one of (1) to (6), wherein the thermosetting resin composition includes one or more additives selected from the group consisting of:

また、本発明は、(8)エポキシ樹脂に混合することを特徴とする、前記(1)〜(7)のいずれか一項に記載のコアシェルポリマに関する。   Moreover, this invention relates to the core-shell polymer as described in any one of said (1)-(7) characterized by mixing with (8) epoxy resin.

また、本発明は、(9)前記(1)〜(7)のいずれか一項に記載の熱硬化性樹脂組成物を熱硬化して得られる硬化物に関する。   Moreover, this invention relates to the hardened | cured material obtained by thermosetting the thermosetting resin composition as described in any one of (9) said (1)-(7).

また、本発明は、(10)硬化した後も、前記コアシェルポリマ(B)が30〜500nmの粒子径でエポキシ樹脂相に分散していることを特徴とする前記(9)記載の硬化物に関する。   The present invention also relates to the cured product according to (9), wherein (10) the core-shell polymer (B) is dispersed in an epoxy resin phase with a particle size of 30 to 500 nm even after curing. .

本発明によれば、耐熱性等を損なうことなく、弾性率に優れた高い靭性を有する硬化物を与える熱硬化性樹脂組成物、及びそれを硬化して得られる硬化物を提供することができる。   According to the present invention, it is possible to provide a thermosetting resin composition that gives a cured product having excellent elasticity and high toughness without impairing heat resistance and the like, and a cured product obtained by curing it. .

本発明の熱硬化性樹脂組成物は、エポキシ樹脂(A)、シェル部にヒドロキシル基を有するコアシェルポリマ(B)と、硬化剤及び/または硬化触媒(C)を含むことを特徴とする。   The thermosetting resin composition of the present invention comprises an epoxy resin (A), a core-shell polymer (B) having a hydroxyl group in the shell portion, and a curing agent and / or a curing catalyst (C).

本発明で用いられるエポキシ樹脂(A)は、多層回路基板の層間絶縁膜あるいは平坦化膜、電子部品等の保護膜あるいは電気絶縁膜などに用いられるエポキシ樹脂であれば特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、スピロ環型エポキシ樹脂、ビスフェノールアルカン類型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、臭素化クレゾールノボラック型エポキシ樹脂、トリスヒドロキシメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、脂環型エポキシ樹脂、アルコール型エポキシ樹脂、ブチルグリシジルエーテル、フェニルグリシジルエーテル、クレジルグリシジルエーテル、ノニルグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリセリンポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−へキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエーテル、脂肪酸変性エポキシ樹脂、トルイジン型エポキシ樹脂、アニリン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、ヒンダトイン型エポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ダイマー酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエーテル、シリコーン変性エポキシ樹脂、ケイ素含有エポキシ樹脂、ウレタン変性エポキシ樹脂、NBR変性エポキシ樹脂、CTBN変性エポキシ樹脂、エポキシ化ポリブタジエンなどが挙げられる。これらのなかでも、フェノールノボラック型エポキシ樹脂
が好ましい。また、これらのエポキシ樹脂は1種単独でまたは2種以上を混合して使用してもよい。
The epoxy resin (A) used in the present invention is not particularly limited as long as it is an epoxy resin used for an interlayer insulating film or planarizing film of a multilayer circuit board, a protective film such as an electronic component or an electric insulating film, for example, Bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, bisphenol S type epoxy resin, brominated bisphenol A type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy Resin, fluorene type epoxy resin, spiro ring type epoxy resin, bisphenolalkane type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, brominated cresol novolac type epoxy resin, trishydroxymeta Type epoxy resin, tetraphenylolethane type epoxy resin, alicyclic epoxy resin, alcohol type epoxy resin, butyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, nonyl glycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, glycerin polyglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, hexahydrophthalic acid diglycidyl ether, fatty acid-modified epoxy resin, Toluidine type epoxy resin, aniline type epoxy resin, aminophenol type epoxy resin, 1, -Bis (N, N-diglycidylaminomethyl) cyclohexane, hindered-in type epoxy resin, triglycidyl isocyanurate, tetraglycidyl diaminodiphenylmethane, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, dimer acid diglycidyl ester, hexahydrophthal Examples include acid diglycidyl ester, dimer acid diglycidyl ether, silicone-modified epoxy resin, silicon-containing epoxy resin, urethane-modified epoxy resin, NBR-modified epoxy resin, CTBN-modified epoxy resin, and epoxidized polybutadiene. Among these, a phenol novolac type epoxy resin is preferable. These epoxy resins may be used alone or in combination of two or more.

本発明で用いられるコアシェルポリマ(B)は、コア部(B−1)と、コア部の外層を形成するシェル部(B−2)より構成される。コア部(B−1)はエラストマーまたはゴム状のポリマを主成分とするポリマからなることが好ましく、シェル部(B−2)はコア部(B−1)にグラフト重合されたポリマからなることが好ましい。   The core-shell polymer (B) used in the present invention includes a core part (B-1) and a shell part (B-2) that forms an outer layer of the core part. The core part (B-1) is preferably made of a polymer mainly composed of an elastomer or a rubbery polymer, and the shell part (B-2) is made of a polymer graft-polymerized to the core part (B-1). Is preferred.

前記コア部(B−1)を構成するポリマは、シェル部(B−2)とのグラフト重合を阻害するものでなければ特に制限は無く、例えば、ブタジエンゴム、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム等のジエン系ゴム重合体;アクリル酸ブチルゴム、ブタジエン−アクリル酸ブチルゴム、アクリル酸2-エチルヘキシル−アクリル酸ブチルゴム、メタクリル酸2-エチルヘキシル−アクリル酸ブチルゴム、アクリル酸ステアリル−アクリル酸ブチルゴム、ジメチルシロキサン−アクリル酸ブチルゴム、シリコン系/アクリル酸ブチル複合ゴム等のアクリル系ゴム重合体;エチレン−プロピレンゴム、エチレン−プロピレン−ジエンゴム等のオレフィン系ゴム重合体;ポリジメチルシロキサン等のシリコン系ゴム重合体などが挙げられ、これらは、単独でまたは2種以上を混合して使用してもよい。これらのなかでも、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、アクリル酸2-エチルヘキシル−アクリル酸ブチルゴムなどが賞用される。   The polymer constituting the core part (B-1) is not particularly limited as long as it does not inhibit the graft polymerization with the shell part (B-2). For example, butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene Diene rubber polymers such as rubber; butyl acrylate rubber, butadiene-butyl acrylate rubber, 2-ethylhexyl acrylate-butyl acrylate rubber, 2-ethylhexyl methacrylate-butyl acrylate rubber, stearyl acrylate-butyl acrylate rubber, dimethylsiloxane- Acrylic rubber polymers such as butyl acrylate rubber and silicon / butyl acrylate composite rubber; Olefin rubber polymers such as ethylene-propylene rubber and ethylene-propylene-diene rubber; Silicon rubber polymers such as polydimethylsiloxane Gerare, it may be used alone or in combination of two or more. Among these, styrene-butadiene rubber, acrylonitrile-butadiene rubber, 2-ethylhexyl acrylate-butyl acrylate rubber, and the like are used.

前記コア部(B−1)は、ガラス転移温度が0℃以下であることが好ましく、−10℃以下であることがより好ましい。前記コア部(B−1)のガラス転移温度が0℃を超える場合は、得られる熱硬化性樹脂組成物の熱膨張係数が小さくなり難い傾向にある。コア部(B−1)のガラス転移温度は、示差走査熱量法(DSC法)により測定することが出来る。
前記シェル部(B−2)を構成するポリマは、コア部(B−1)を構成するポリマにグラフト重合されており、実質的にコア部(B−1)を構成するポリマと結合していることが好ましく、後述する有機溶媒及びエポキシ樹脂(A)に対して膨潤性、相溶性もしくは親和性を有するものが好ましい。シェル部(B−2)の理論ガラス転移温度は、好ましくは20℃以下、より好ましくは10℃以下、特に好ましくは0℃以下である。前記シェル部(B−2)の理論ガラス転移温度が20℃を超える場合は、得られる熱硬化性樹脂組成物の熱膨張係数が小さくなり難い傾向にある。シェル部(B−2)の理論ガラス転移温度は、下式から算出することができる。
The core part (B-1) preferably has a glass transition temperature of 0 ° C. or lower, and more preferably −10 ° C. or lower. When the glass transition temperature of the said core part (B-1) exceeds 0 degreeC, it exists in the tendency for the thermal expansion coefficient of the thermosetting resin composition obtained to become small easily. The glass transition temperature of the core part (B-1) can be measured by a differential scanning calorimetry (DSC method).
The polymer constituting the shell part (B-2) is graft-polymerized to the polymer constituting the core part (B-1), and is substantially bonded to the polymer constituting the core part (B-1). Preferably, those having swelling property, compatibility or affinity for the organic solvent and epoxy resin (A) described later are preferable. The theoretical glass transition temperature of the shell part (B-2) is preferably 20 ° C. or lower, more preferably 10 ° C. or lower, and particularly preferably 0 ° C. or lower. When the theoretical glass transition temperature of the shell part (B-2) exceeds 20 ° C., the thermal expansion coefficient of the resulting thermosetting resin composition tends not to decrease. The theoretical glass transition temperature of the shell part (B-2) can be calculated from the following equation.

1/Tg=W/T+W/T+・・・W/T
式中のW、W・・・Wは各モノマーの重量%(=(各モノマーの配合量/モノマー全重量)×100)であり、T、T・・・Tは、各モノマーのホモポリマーのガラス転移温度(絶対温度)である。
1 / Tg = W 1 / T 1 + W 2 / T 2 +... W n / T n
W 1, W 2 ··· W n in the formula is the weight percent of each monomer (= (amount / total weight of the monomers in each monomer) × 100), T 1, T 2 ··· T n is It is the glass transition temperature (absolute temperature) of the homopolymer of each monomer.

シェル部(B−2)を構成するポリマは、エステル部分にヒドロキシル基を有する(メタ)アクリレートを重合して得られるポリマであることが好ましい。かかるエステル部分にヒドロキシル基を有する(メタ)アクリレートとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレートなどが挙げられ、これらは、単独でまたは2種以上を混合して使用してもよい。   The polymer constituting the shell part (B-2) is preferably a polymer obtained by polymerizing a (meth) acrylate having a hydroxyl group in the ester part. Examples of the (meth) acrylate having a hydroxyl group in the ester moiety include, for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate. These may be used alone or in combination of two or more.

また、本発明では良好なグラフト重合性と、エポキシ樹脂に対する親和性の双方を可能にできるという点から、前記エステル部分にヒドロキシル基を有する(メタ)アクリレートと共重合可能なモノマを共重合してもよい。かかる共重合可能な単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ナフチル、(メタ)アクリル酸グリシジル等の(メタ)アクリル酸エステル類;α−メチルスチレン、α−エチルスチレン、α−フルオロスチレン、α−クロルスチレン、α−ブロモスチレン、フルオロスチレン、クロロスチレン、ブロモスチレン、メチルスチレン、メトキシスチレン等の芳香族ビニル化合物;(メタ)アクリルアミド、N−ジメチル(メタ)アクリルアミド、N−ジエチル(メタ)アクリルアミド等の(メタ)アクリルアミド類;(メタ)アクリル酸カルシウム、(メタ)アクリル酸バリウム、(メタ)アクリル酸鉛、(メタ)アクリル酸すず、(メタ)アクリル酸亜鉛等の(メタ)アクリル酸金属塩;アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物;(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸トリメチルシクロヘキシル、(メタ)アクリル酸ノルボルニル、(メタ)アクリル酸ノルボルニルメチル、(メタ)アクリル酸シアノノルボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ボルニル、(メタ)アクリル酸メンチル、(メタ)アクリル酸フェンチル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジメチルアダマンチル、(メタ)アクリル酸トリシクロ〔5.2.1.02,6〕デカ−8−イル、(メタ)アクリル酸トリシクロ〔5.2.1.02,6〕デカ−4−メチル、(メタ)アクリル酸シクロデシル等の脂環式炭化水素基を有する(メタ)アクリル酸エステル;N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミド、N−i−プロピルマレイミド、N−ブチルマレイミド、N−i−ブチルマレイミド、N−t−ブチルマレイミド、N−ラウリルマレイミド、N−シクロヘキシルマレイミド、N−ベンジルマレイミド、N−フェニルマレイミド、N−(2−クロロフェニル)マレイミド、N−(4−クロロフェニル)マレイミド、N−(4−ブロモフェニル)フェニルマレイミド、N−(2−メチルフェニル)マレイミド、N−(2−エチルフェニルマレイミド、N−(2−メトキシフェニル)マレイミド、N−(2,4,6−トリメチルフェニル)マレイミド、N−(4−ベンジルフェニル)マレイミド、N−(2,4,6−トリブロモフェニル)マレイミド等のN−置換マレイミド;等が挙げられ、これらは1種又は2種以上で使用してもよい。これらのなかでもアクリル酸n−ブチル、アクリル酸2−エチルヘキシルなどが賞用される。 Further, in the present invention, from the viewpoint that both good graft polymerizability and affinity for the epoxy resin can be made, a monomer copolymerizable with a (meth) acrylate having a hydroxyl group in the ester moiety is copolymerized. Also good. Examples of such copolymerizable monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and i- (meth) acrylate. Butyl, t-butyl (meth) acrylate, pentyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, (meth) acrylic acid (Meth) acrylic such as dodecyl, octadecyl (meth) acrylate, butoxyethyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, naphthyl (meth) acrylate, glycidyl (meth) acrylate Acid esters: α-methylstyrene, α-ethylstyrene, α-fluorostyrene, α-chlorostyrene, α-butyl Aromatic vinyl compounds such as lomostyrene, fluorostyrene, chlorostyrene, bromostyrene, methylstyrene, methoxystyrene; (meth) acrylamides such as (meth) acrylamide, N-dimethyl (meth) acrylamide, N-diethyl (meth) acrylamide (Meth) acrylic acid metal salts such as calcium (meth) acrylate, barium (meth) acrylate, lead (meth) acrylate, tin (meth) acrylate, zinc (meth) acrylate; acrylonitrile, methacrylonitrile Vinyl cyanide compounds such as: cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, methyl cyclohexyl (meth) acrylate, trimethylcyclohexyl (meth) acrylate, norbornyl (meth) acrylate, (meth) acrylate no Bornylmethyl, cyanonorbornyl (meth) acrylate, isobornyl (meth) acrylate, bornyl (meth) acrylate, menthyl (meth) acrylate, fentil (meth) acrylate, adamantyl (meth) acrylate, (meth) Dimethyladamantyl acrylate, tricyclo [5.2.1.0 2,6 ] dec-8-yl (meth) acrylate, tricyclo [5.2.1.0 2,6 ] deca-4 (meth) acrylate -Methyl, (meth) acrylic acid ester having an alicyclic hydrocarbon group such as cyclodecyl (meth) acrylate; N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, Ni-propylmaleimide, N- Butylmaleimide, Ni-butylmaleimide, Nt-butylmaleimide, N-laurylmaleimide, N-cycl Hexylmaleimide, N-benzylmaleimide, N-phenylmaleimide, N- (2-chlorophenyl) maleimide, N- (4-chlorophenyl) maleimide, N- (4-bromophenyl) phenylmaleimide, N- (2-methylphenyl) Maleimide, N- (2-ethylphenylmaleimide, N- (2-methoxyphenyl) maleimide, N- (2,4,6-trimethylphenyl) maleimide, N- (4-benzylphenyl) maleimide, N- (2, N-substituted maleimides such as 4,6-tribromophenyl) maleimide; and the like. These may be used alone or in combination of two or more. Among these, n-butyl acrylate, 2-ethylhexyl acrylate, and the like are used.

本発明では、コアシェルポリマ(B)は架橋粒子であることが好ましい。コアシェルポリマ(B)を架橋粒子とするために、シェル部(B−2)を形成する前記エステル部分にヒドロキシル基を有する(メタ)アクリレートは、分子内に2個以上の(メタ)アクリロイル基又はビニル基を有する単量体と共重合することが好ましい。かかる分子内に2個以上の(メタ)アクリロイル基又はビニル基を有する単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、(メタ)アクリル変性ポリジメチルシロキサンなどの分子内に2個以上の(メタ)アクリロイル基を有する単量体;ジビニルベンゼンなどの分子内に2個以上のビニル基を有する単量体;などが挙げられ、これらは一種類単独で又は二種以上を組み合わせて使用することができる。これらのなかでも1,6−ヘキサンジオールジアクリレート、ジエチレングリコールジアクリレートなどが賞用される。   In the present invention, the core-shell polymer (B) is preferably a crosslinked particle. In order to use the core-shell polymer (B) as a crosslinked particle, the (meth) acrylate having a hydroxyl group in the ester part forming the shell part (B-2) has two or more (meth) acryloyl groups in the molecule or It is preferable to copolymerize with a monomer having a vinyl group. Examples of the monomer having two or more (meth) acryloyl groups or vinyl groups in the molecule include ethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4- Butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, neopentyl glycol di (meth) ) Acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, (meth) acryl modified Such as a monomer having two or more (meth) acryloyl groups in a molecule such as dimethyl siloxane; a monomer having two or more vinyl groups in a molecule such as divinylbenzene; One kind can be used alone, or two or more kinds can be used in combination. Among these, 1,6-hexanediol diacrylate, diethylene glycol diacrylate, and the like are used.

分子内に2個以上の(メタ)アクリロイル基又はビニル基を有する単量体の使用量は、シェル部(B−2)を構成する全単量体100重量部に対して1重量部以上であることが好ましく、2重量部以上であることがより好ましい。前記分子内に2個以上の(メタ)アクリロイル基又はビニル基を有する単量体の使用量が1重量部未満である場合は、架橋が不十分となる傾向がある。   The amount of the monomer having two or more (meth) acryloyl groups or vinyl groups in the molecule is 1 part by weight or more with respect to 100 parts by weight of all monomers constituting the shell part (B-2). It is preferable that it is 2 parts by weight or more. When the amount of the monomer having two or more (meth) acryloyl groups or vinyl groups in the molecule is less than 1 part by weight, crosslinking tends to be insufficient.

本発明で用いられるコアシェルポリマ(B)におけるコア部(B−1)/シェル部(B−2)の重量比は、30/70〜90/10の範囲にあることが好ましく、40/60〜80/20の範囲にあることがより好ましい。前記コア部(B−1)/シェル部(B−2)の重量比が30/70を超える(コア部(B−1)の割合が30未満)場合は、エポキシ樹脂(A)に対する靱性の改良効果が低下する傾向がある。前記コア部(B−1)/シェル部(B−2)の重量比が90/10を越える(シェル部(B−2)の割合が10未満である)場合は、取り扱い時に凝集し易く操作性に問題が生じるとともに期待する物性が得られない可能性がある。   The weight ratio of the core part (B-1) / shell part (B-2) in the core-shell polymer (B) used in the present invention is preferably in the range of 30/70 to 90/10, 40/60 to More preferably, it is in the range of 80/20. When the weight ratio of the core part (B-1) / shell part (B-2) exceeds 30/70 (the ratio of the core part (B-1) is less than 30), the toughness to the epoxy resin (A) The improvement effect tends to decrease. When the weight ratio of the core part (B-1) / shell part (B-2) exceeds 90/10 (the ratio of the shell part (B-2) is less than 10), it tends to aggregate during handling. There is a possibility that the expected physical properties may not be obtained.

コアシェルポリマ(B)が架橋粒子である場合の粒子径は、30〜500nmであることが好ましく、40〜200nmであることがより好ましく、45〜150nmであることが特に好ましい。前記粒子径が30nm未満である場合は、30nmよりも小さい粒子径のコアを入手することが難しく量産性の観点から好ましくない傾向にあり、500nmを超える場合は、得られる熱硬化性樹脂組成物のガラス転移温度が低下する傾向にある。なお、前記架橋粒子の粒子径は、超微粒子粒度分布計(Leeds & Northrup製 MICROTRAC UPA150)を用いて測定できる。架橋粒子の粒子径を制御する方法としては特に限定されず、たとえば、乳化重合によりコアシェルポリマ(B)を合成する場合、使用する乳化剤の量により乳化重合中のミセルの数を制御して粒径をコントロールすることができる。   When the core-shell polymer (B) is a crosslinked particle, the particle diameter is preferably 30 to 500 nm, more preferably 40 to 200 nm, and particularly preferably 45 to 150 nm. When the particle size is less than 30 nm, it is difficult to obtain a core having a particle size smaller than 30 nm, which is not preferable from the viewpoint of mass productivity. When the particle size exceeds 500 nm, the resulting thermosetting resin composition is obtained. The glass transition temperature of the glass tends to decrease. The particle diameter of the crosslinked particles can be measured using an ultrafine particle size distribution meter (MICROTRAC UPA150 manufactured by Lees & Northrup). The method for controlling the particle size of the crosslinked particles is not particularly limited. For example, when the core-shell polymer (B) is synthesized by emulsion polymerization, the particle size is controlled by controlling the number of micelles during emulsion polymerization according to the amount of emulsifier used. Can be controlled.

本発明においてコアシェルポリマ(B)の配合量は、前記エポキシ樹脂(A)100重量部に対して、1〜100重量部であることが好ましく、5〜100重量部であることがより好ましい。前記コアシェルポリマ(B)の配合量を前記1〜100重量部の範囲にすることにより、得られる硬化物の強靱性が向上し、長期使用中に硬化部にクラックが発生しにくくなり、また、コアシェルポリマ(B)と他成分との相溶性が向上するとともに得られる硬化物の耐熱性が向上し易くなる。   In this invention, it is preferable that the compounding quantity of a core shell polymer (B) is 1-100 weight part with respect to 100 weight part of said epoxy resins (A), and it is more preferable that it is 5-100 weight part. By setting the blending amount of the core-shell polymer (B) in the range of 1 to 100 parts by weight, the toughness of the resulting cured product is improved, and cracks are less likely to occur in the cured part during long-term use. The compatibility between the core-shell polymer (B) and other components is improved, and the heat resistance of the obtained cured product is easily improved.

コアシェルポリマ(B)の製造方法は特に制限が無く、周知の方法、例えば、乳化重合法、懸濁重合法、マイクロサスペンジョン重合法などが挙げられる。これらの中でも特に乳化重合法による製造方法が好適である。   The method for producing the core-shell polymer (B) is not particularly limited, and examples thereof include well-known methods such as emulsion polymerization, suspension polymerization, and microsuspension polymerization. Among these, a production method by an emulsion polymerization method is particularly preferable.

コアシェルポリマ(B)を乳化重合法により製造する方法は、例えば、コア部(B−1)となるポリマ(b−1)をまず重合し、このポリマ(b−1)をシード粒子として所定量を別の重合容器に添加した後、シェル部(B−2)となるポリマ(b−2)を与える単量体を重合する方法、又は、ポリマ(b−1)を重合し、同一重合容器内でポリマ(b−2)を与える単量体を重合する方法などが挙げられる。ポリマ(b−2)を与える単量体混合物を仕込む方法としては、単量体混合物を全量一括で仕込んで重合する方法、単量体混合物の一部を重合した後、残りを連続的または断続的に添加する方法、単量体混合物を重合の始めから終わりまで連続的に添加する方法、またはこれらの仕込み方法を組み合わせる方法などが挙げられる。重合温度は通常、コア部で50〜90℃、シェル部で30〜90℃である。
コアシェルポリマ(B)を乳化重合法により製造するに際しては、界面活性剤を用いて水中に単量体類を乳化し、重合開始剤として過酸化物触媒やレドックス系触媒などのラジカル重合開始剤を用い、さらに必要に応じてメルカプタン系化合物やハロゲン化炭化水素などの分子量調節剤を添加して、重合を行い、ポリマエマルジョンを製造することができる。このポリマエマルジョンからポリマ析出させ乾燥することにより、コアシェルポリマ(B)を単離することができる。
The method for producing the core-shell polymer (B) by the emulsion polymerization method is, for example, firstly polymerizing the polymer (b-1) to be the core part (B-1), and using this polymer (b-1) as a seed particle for a predetermined amount. Is added to another polymerization vessel, and then the method of polymerizing the monomer that gives the polymer (b-2) to be the shell part (B-2), or the polymer (b-1) is polymerized, and the same polymerization vessel And a method of polymerizing a monomer that gives the polymer (b-2). As a method of charging the monomer mixture that gives the polymer (b-2), a method in which the monomer mixture is charged all at once and polymerized, and after the polymerization of a part of the monomer mixture, the rest is continuously or intermittently performed. For example, a method in which the monomer mixture is continuously added from the beginning to the end of the polymerization, or a method in which these charging methods are combined. The polymerization temperature is usually 50 to 90 ° C. at the core portion and 30 to 90 ° C. at the shell portion.
In producing the core-shell polymer (B) by emulsion polymerization, monomers are emulsified in water using a surfactant, and a radical polymerization initiator such as a peroxide catalyst or a redox catalyst is used as a polymerization initiator. Furthermore, if necessary, a polymer emulsion can be produced by adding a molecular weight regulator such as a mercaptan-based compound or a halogenated hydrocarbon, and performing polymerization. The core-shell polymer (B) can be isolated by polymer precipitation from this polymer emulsion and drying.

コアシェルポリマ(B)を乳化重合で製造する場合に用いる界面活性剤は、特に限定されないが、たとえば、アルキルベンゼンスルホン酸塩等のアニオン系界面活性剤;アルキルナフタレンスルホン酸塩、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩等のカチオン系界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸モノグリセリド等のノニオン系界面活性剤および両性の界面活性剤;ならびに反応性乳化剤を用いることができる。これらの界面活性剤は1種単独で、または2種以上を混合して用いることができる。本発明の製造方法における上記界面活性剤の使用量は、単量体の使用量の合計100重量%に対して0.01〜25重量%が好ましい。前記界面活性剤の使用量が0.01重量%未満である場合は、重合反応中に凝集物が生成しやすい傾向にある。前記界面活性剤の使用量が25重量%を超える場合は、ポリマ粒子を凝集させることが困難になり、また、残存界面活性剤が不純物として影響を及ぼす傾向にある。   The surfactant used in the production of the core-shell polymer (B) by emulsion polymerization is not particularly limited. For example, an anionic surfactant such as alkylbenzene sulfonate; alkyl naphthalene sulfonate, alkyl trimethyl ammonium salt, dialkyl Cationic surfactants such as dimethylammonium salts; nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, polyoxyethylene fatty acid esters, polyoxyethylene sorbitan fatty acid esters, fatty acid monoglycerides, and amphoteric interfaces Activators; as well as reactive emulsifiers can be used. These surfactants can be used alone or in combination of two or more. The amount of the surfactant used in the production method of the present invention is preferably 0.01 to 25% by weight based on 100% by weight of the total amount of monomers used. When the amount of the surfactant used is less than 0.01% by weight, aggregates tend to be generated during the polymerization reaction. When the amount of the surfactant used exceeds 25% by weight, it is difficult to agglomerate the polymer particles, and the remaining surfactant tends to affect as an impurity.

ポリマエマルジョンからポリマを析出させる方法としては、例えば、塩化カルシウム、硫酸マグネシウム、硫酸アルミニウムなどの多価金属塩、塩化ナトリウム、硫酸などの凝固剤を添加する方法;メタノール、エタノールなどのアルコール類、アセトン、メチルエチルケトンなどの有機溶剤を添加する方法;ノニオン系界面活性剤を用い、当該ノニオン系界面活性剤の曇点以下の温度で乳化重合を行った後、前記曇点以上に加熱する方法;ノニオン系界面活性剤を用いて乳化重合を行なった後、当該ノニオン系界面活性剤よりも低曇点のノニオン系界面活性剤、電解質アルコール、脂肪酸などを添加し加熱する方法;アニオン系及び/又はカチオン系界面活性剤と、ノニオン系界面活性剤を用いて乳化重合を行なった後、当該ノニオン系界面活性剤よりも低曇点のノニオン系界面活性剤あるいは電解質を添加し加熱する方法などが挙げられる。   Examples of the method for precipitating the polymer from the polymer emulsion include a method of adding a polyvalent metal salt such as calcium chloride, magnesium sulfate and aluminum sulfate, a coagulant such as sodium chloride and sulfuric acid; alcohols such as methanol and ethanol; acetone , A method of adding an organic solvent such as methyl ethyl ketone; a method of using a nonionic surfactant, performing emulsion polymerization at a temperature below the cloud point of the nonionic surfactant, and then heating to the cloud point or higher; A method in which after emulsion polymerization is performed using a surfactant, a non-ionic surfactant having a lower cloud point than that of the nonionic surfactant, an electrolyte alcohol, a fatty acid and the like are added and heated; anionic and / or cationic After emulsion polymerization using a surfactant and a nonionic surfactant, the nonionic And a method of than the active agent is added a nonionic surfactant or an electrolyte of a low cloud point heating can be mentioned.

ポリマエマルジョンから析出したポリマ凝固物は、必要に応じて水洗、メタノール洗浄等を行なうことができる。次いでポリマ凝固物を、遠心脱水機等による脱水処理、所望により乾燥処理を行うことによりコアシェルポリマ(B)が単離される。ここで、脱水(乾燥)処理後におけるコアシェルポリマ(B)の水分含有率は、5重量%未満であることが好ましく、1重量%未満であることがより好ましい。前記水分含有率が1重量%未満であるコアシェルポリマ(B)は、接着剤などの用途に好適に使用することができる。   The polymer coagulum precipitated from the polymer emulsion can be washed with water, washed with methanol, etc. as necessary. Subsequently, the core-shell polymer (B) is isolated by subjecting the polymer coagulum to a dehydration treatment using a centrifugal dehydrator or the like, and optionally a drying treatment. Here, the water content of the core-shell polymer (B) after the dehydration (drying) treatment is preferably less than 5% by weight, and more preferably less than 1% by weight. The core-shell polymer (B) having a moisture content of less than 1% by weight can be suitably used for applications such as adhesives.

本発明では、コアシェルポリマ(B)をエポキシ樹脂(A)と混合する方法としては、例えば、乳化重合により得られたポリマエマルジョンをエポキシ樹脂(A)に混合する方法、ポリマエマルジョンから単離したコアシェルポリマ(B)を所望の有機溶剤に予め分散した後、エポキシ樹脂(A)と混合する方法などが挙げられる。   In the present invention, as a method of mixing the core-shell polymer (B) with the epoxy resin (A), for example, a method of mixing a polymer emulsion obtained by emulsion polymerization with the epoxy resin (A), a core-shell isolated from the polymer emulsion Examples thereof include a method in which the polymer (B) is dispersed in advance in a desired organic solvent and then mixed with the epoxy resin (A).

コアシェルポリマ(B)を分散させるために用いる有機溶媒としては、特に制限されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル類;プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;ブチルカルビトール等のカルビトール類;乳酸メチル、乳酸エチル、乳酸n−プロピル、乳酸イソプロピル等の乳酸エステル類;酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸n−アミル、酢酸イソアミル、プロピオン酸イソプロピル、プロピオン酸n−ブチル、プロピオン酸イソブチル等の脂肪族カルボン酸エステル類;3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、シクロヘキサノン等のケトン類;N−ジメチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド類;γ−ブチロラクン等のラクトン類を挙げることができる。これらの有機溶媒は、1種単独で、あるいは2種以上を混合して使用することができる。これら有機溶媒のなかでも、シェル部(B−2)を構成するポリマ(b−2)の溶解度パラメータと近い有機溶媒が好ましく、一般的にHansenやHoyの計算方法で用いられるLondon分散力項、双極子間力項、水素結合力項それぞれの差の2乗の和が16以下であることが好ましい。   The organic solvent used for dispersing the core-shell polymer (B) is not particularly limited. For example, ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; propylene glycol monomethyl ether; Propylene glycol monoalkyl ethers such as propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether; propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether Propylene glycol Propylene glycol monoalkyl ether acetates such as monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate; cellosolves such as ethyl cellosolve and butyl cellosolve; carbitols such as butyl carbitol Lactate esters such as methyl lactate, ethyl lactate, n-propyl lactate and isopropyl lactate; ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, isopropyl propionate Aliphatic carboxylic acid esters such as n-butyl propionate and isobutyl propionate; methyl 3-methoxypropionate, 3-methoxy Other esters such as ethyl propionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate; aromatic hydrocarbons such as toluene, xylene; 2-heptanone, 3-heptanone And ketones such as 4-heptanone and cyclohexanone; amides such as N-dimethylformamide, N-methylacetamide, N, N-dimethylacetamide and N-methylpyrrolidone; and lactones such as γ-butyrolacun. These organic solvents can be used individually by 1 type or in mixture of 2 or more types. Among these organic solvents, an organic solvent close to the solubility parameter of the polymer (b-2) constituting the shell part (B-2) is preferable, and a London dispersion force term generally used in the calculation method of Hansen and Hoy, The sum of the squares of the differences between the dipole force term and the hydrogen bond force term is preferably 16 or less.

コアシェルポリマ(B)を有機溶媒に分散させる方法としては、コアシェルポリマ(B)を有機溶媒中に投入し、「ホモミキサー」(特殊機化工業株式会社製〕などを用いて、コアシェルポリマ(B)の粒径が0.5mm以下となるまで粉砕処理を行い、その後、「超音波ホモジナイザ」(日本エマソン株式会社製〕、「ナノマイザー」(吉田機械興業株式会社製〕などを用い、一次粒子まで分散を行うことが好ましい。   As a method of dispersing the core-shell polymer (B) in an organic solvent, the core-shell polymer (B) is introduced into the organic solvent, and the core-shell polymer (B ) Until the particle size becomes 0.5 mm or less, and then use “Ultrasonic Homogenizer” (manufactured by Emerson Japan Ltd.), “Nanomizer” (manufactured by Yoshida Kikai Kogyo Co., Ltd.), etc. It is preferable to carry out dispersion.

本発明で用いられる硬化剤および硬化触媒(C)は特に制限されず、例えば、脂肪族または芳香族のアミン類、ポリアミド樹脂、カルボン酸類、酸無水物類、フェノール樹脂類、ポリスルフィフィド樹脂、ポリビニルフェノール類、ジシアンジアミド、二塩基酸ジヒドラジド、イミダゾール類、有機ボロン、有機ホスフィン、グアニジン類およびこれらの塩などが挙げられる。これらは1種単独で、または2種以上を組み合わせて用いることができる。また、硬化反応を促進する目的で、硬化触媒とともに硬化促進剤を併用することもできる。ここで、「硬化剤」は自ら架橋構造を形成するものであり、「硬化触媒」は自らは架橋構造を形成しないが、架橋反応を促進するものであり、「硬化促進剤」は硬化触媒の触媒作用を増大させるものである。   The curing agent and the curing catalyst (C) used in the present invention are not particularly limited. For example, aliphatic or aromatic amines, polyamide resins, carboxylic acids, acid anhydrides, phenol resins, polysulfide resins, Examples thereof include polyvinylphenols, dicyandiamide, dibasic acid dihydrazide, imidazoles, organic boron, organic phosphine, guanidine, and salts thereof. These can be used individually by 1 type or in combination of 2 or more types. For the purpose of accelerating the curing reaction, a curing accelerator can be used in combination with the curing catalyst. Here, the “curing agent” forms a crosslinked structure by itself, the “curing catalyst” does not form a crosslinked structure by itself, but promotes a crosslinking reaction, and the “curing accelerator” is a curing catalyst. It increases the catalytic action.

前記硬化剤および/または硬化触媒(C)の配合量は、エポキシ樹脂(A)100重量部に対して、0.1〜20重量部であることが好ましく、0.5〜10重量部であることがより好ましい。   The amount of the curing agent and / or curing catalyst (C) is preferably 0.1 to 20 parts by weight, and 0.5 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin (A). It is more preferable.

本発明の熱硬化性樹脂組成物は、必要に応じて、有機溶剤、密着助剤、レベリング剤、無機充填剤、有機或いは高分子充填剤、導電性付与剤、滑剤、摺動性付与剤、着色剤、高分子添加剤、反応性希釈剤、濡れ性改良剤、界面活性剤、可塑剤、酸化防止剤、帯電防止剤、防カビ剤、調湿剤、難燃剤およびその他添加剤などを含有することもでき、これらの添加剤は本発明の効果を損なわない範囲の量を使用することができる。   The thermosetting resin composition of the present invention includes, as necessary, an organic solvent, an adhesion assistant, a leveling agent, an inorganic filler, an organic or polymer filler, a conductivity imparting agent, a lubricant, a slidability imparting agent, Contains colorants, polymer additives, reactive diluents, wettability improvers, surfactants, plasticizers, antioxidants, antistatic agents, antifungal agents, humidity control agents, flame retardants and other additives These additives can be used in amounts that do not impair the effects of the present invention.

また、本発明の熱硬化性樹脂組成物は、本発明の効果を損なわない範囲で、上記エポキシ樹脂(A)以外の樹脂(以下、「その他の樹脂」ともいう)を含有することができる。その他の樹脂としては、例えば、フェノール性水酸基を有する樹脂、ポリイミド、アクリルポリマー、ポリスチレン系樹脂、ポリオレフィン系エラストマー、スチレンブタジエンエラストマー、シリコンエラストマー、トリレンジイソシアネート等のジイソシアネート化合物やそのブロック化物、高密度ポリエチレン、中密度ポリエチレン、ポリプロピレン、ポリカーボネート、ポリアリレート、ポリアミド、ポリアミドイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンスルフィド、(変性)ポリカルボジイミド、ポリエーテルイミド、ポリエステルイミド、変性ポリフェニレンオキシド、フェノール性水酸基を有する樹脂、オキセタン基を有する樹脂等の熱可塑性あるいは熱硬化性の樹脂等を挙げることができる。   In addition, the thermosetting resin composition of the present invention can contain a resin other than the epoxy resin (A) (hereinafter also referred to as “other resin”) as long as the effects of the present invention are not impaired. Other resins include, for example, resins having phenolic hydroxyl groups, polyimides, acrylic polymers, polystyrene resins, polyolefin elastomers, styrene butadiene elastomers, silicon elastomers, tolylene diisocyanate and other diisocyanate compounds and blocked products thereof, and high density polyethylene. , Medium density polyethylene, polypropylene, polycarbonate, polyarylate, polyamide, polyamideimide, polysulfone, polyethersulfone, polyetherketone, polyphenylene sulfide, (modified) polycarbodiimide, polyetherimide, polyesterimide, modified polyphenylene oxide, phenolic hydroxyl group And thermoplastic or thermosetting resins such as resins having oxetane groups and resins having oxetane groups. Can.

本発明に係る熱硬化性樹脂組成物は、各成分が良好な相溶性を示し、耐熱性等を損なうことなく、弾性率に優れた高い靭性を有する硬化物を与えることができる。本発明の硬化物において、前記コアシェルポリマ(B)は30〜500nmの粒子径でエポキシ樹脂相に分散しており、例えば、図1に示す透過電子顕微鏡像(TEM像)により確認することができる。   The thermosetting resin composition according to the present invention can provide a cured product having high toughness with excellent elastic modulus without deteriorating heat resistance and the like, with each component exhibiting good compatibility. In the cured product of the present invention, the core-shell polymer (B) is dispersed in the epoxy resin phase with a particle size of 30 to 500 nm, and can be confirmed by, for example, a transmission electron microscope image (TEM image) shown in FIG. .

従って、本発明の熱硬化性樹脂組成物は、特に、多層回路基板の層間絶縁膜あるいは平坦化膜、各種の電気機器や電子部品等の保護膜あるいは電気絶縁膜、各種電子材料用の接着剤、コンデンサーフィルムなどに極めて好適に用いることができる。また、半導体封止材料、アンダーフィル用材料あるいは液晶封止用材料などとしても好適に使用することができる。また、液状の前記熱硬化性樹脂組成物をガラスクロスなどに含浸させたのち乾燥したプリプレグ、あるいは無溶媒の前記熱硬化性樹脂組成物をガラスクロスなどに含浸させたプリプレグを、銅張り積層板などの積層材などとして用いることもできる。さらに、本発明の熱硬化性樹脂組成物は、たとえば、粉末、ペレット等の形態で、熱硬化性成形材料として用いることもできる。   Accordingly, the thermosetting resin composition of the present invention is particularly useful for interlayer insulating films or planarizing films for multilayer circuit boards, protective films or electric insulating films for various electric devices and electronic components, and adhesives for various electronic materials. It can be used very suitably for condenser films and the like. Also, it can be suitably used as a semiconductor sealing material, an underfill material, a liquid crystal sealing material, or the like. Moreover, a copper-clad laminate is prepared by impregnating a glass cloth or the like with the liquid thermosetting resin composition and then drying the prepreg, or impregnating the glass cloth or the like with the solvent-free thermosetting resin composition. It can also be used as a laminated material. Furthermore, the thermosetting resin composition of the present invention can also be used as a thermosetting molding material in the form of powder, pellets, and the like.

本発明に係る熱硬化性樹脂組成物を予め表面処理した適当な支持体に塗布して熱硬化性薄膜を成形し、この薄膜を支持体とともにラミネーターを用いて基材に転写した後、硬化することにより硬化物層と支持体層を有する基板を得ることができる。また、支持体として表面離型処理したフィルムを用いると、基材に転写後、支持体のみを剥離することにより、熱硬化性樹脂層を形成することができる。得られた熱硬化性フィルムは、電気機器や電子部品等の低応力接着フィルムなどとして用いることができる。   The thermosetting resin composition according to the present invention is applied to a suitable support that has been surface-treated in advance to form a thermosetting thin film, and the thin film is transferred to a substrate together with the support using a laminator and then cured. Thus, a substrate having a cured product layer and a support layer can be obtained. Moreover, when the film which carried out the surface mold release process is used as a support body, a thermosetting resin layer can be formed by peeling only a support body after transfer to a base material. The obtained thermosetting film can be used as a low-stress adhesive film for electrical equipment and electronic parts.

以下、実施例により本発明を具体的に説明するが、これらは本発明の範囲を制限するものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but these do not limit the scope of the present invention.

実施例1
(1)ポリマエマルジョンの製造
4Lのガラス容器に純水1360g、界面活性剤として予め30%水溶液に希釈したエマルゲン109P(ノニオン性界面活性剤、花王株式会社製商品名)328g(正味98g)、及びNipol1562(アクリロニトリル−ブタジエンゴム、日本ゼオン社製品名、ガラス転移温度−20℃)800gを反応器に入れて撹拌混合、窒素置換を行った。その後、ブチルアクリレート280g、1,6−ヘキサンジオールジアクリレート15g、ヒドロキシプロピルアクリレート31g、重合開始剤としてクメンハイドロパーオキサイド4gの混合物を入れ、攪拌しながら含浸を1時間行った。含浸終了後、40℃にて昇温した。昇温後、過硫酸カリウム0.15重量部を純水2重量部に溶解したものを添加し、60℃に昇温した。昇温後、ピロリン酸ナトリウム6g、硫酸鉄(II)0.008gを純水50gに溶解した物を加え6時間撹拌を続け、コアシェルポリマ粒子が分散したポリマエマルジョンを得た。このときの反応率は95%であった。得られたコアシェルポリマ(I)のコア部/シェル部の重量比は、50/50であった。また、シェル部の理論ガラス転移温度は−47℃であった。
Example 1
(1) Manufacture of polymer emulsion 1360 g of pure water in a 4 L glass container, 328 g of Emulgen 109P (nonionic surfactant, trade name manufactured by Kao Corporation) previously diluted in a 30% aqueous solution as a surfactant, and 98 g of net 800 g of Nipol 1562 (acrylonitrile-butadiene rubber, product name of Nippon Zeon Co., Ltd., glass transition temperature—20 ° C.) was placed in a reactor, mixed with stirring, and nitrogen-substituted. Thereafter, a mixture of 280 g of butyl acrylate, 15 g of 1,6-hexanediol diacrylate, 31 g of hydroxypropyl acrylate and 4 g of cumene hydroperoxide as a polymerization initiator was added, and impregnation was performed for 1 hour with stirring. After the impregnation, the temperature was raised at 40 ° C. After raising the temperature, 0.15 parts by weight of potassium persulfate dissolved in 2 parts by weight of pure water was added, and the temperature was raised to 60 ° C. After the temperature rise, 6 g of sodium pyrophosphate and 0.008 g of iron (II) sulfate dissolved in 50 g of pure water were added and stirring was continued for 6 hours to obtain a polymer emulsion in which core-shell polymer particles were dispersed. The reaction rate at this time was 95%. The weight ratio of the core part / shell part of the obtained core-shell polymer (I) was 50/50. The theoretical glass transition temperature of the shell portion was -47 ° C.

得られたポリマエマルジョン中のポリマ粒子の平均粒子径を、超微粒子粒度分布計(Leeds & Northrup製 MICROTRAC UPA150)を用いて、下記の処理を行ったポリマエマルジョンの状態で測定した。   The average particle diameter of the polymer particles in the obtained polymer emulsion was measured in the state of the polymer emulsion subjected to the following treatment using an ultrafine particle size distribution meter (MICROTRAC UPA150 manufactured by Lees & Northrup).

得られたポリマエマルジョンを、純水で100倍に希釈し、超音波洗浄器(Leo Ultrasonic製 LEO−80:周波数46Hz、出力80W)を使用して、超音波を3分間照射することにより、ポリマ粒子を分散させた。このポリマ粒子が分散したエマルジョンを前記超微粒子粒度分布計に入れ、粒子径を測定した。測定時間は3分間とした。   The obtained polymer emulsion was diluted 100 times with pure water and irradiated with ultrasonic waves for 3 minutes using an ultrasonic cleaner (LEO Ultrasonic LEO-80: frequency 46 Hz, output 80 W). The particles were dispersed. The emulsion in which the polymer particles were dispersed was placed in the ultrafine particle size distribution meter, and the particle size was measured. The measurement time was 3 minutes.

測定条件
光源 :ダイオードレーザー(780nm、3mW)
測定レンジ:フルレンジ(0.0032〜6.5406μm)
粒子の性状:透明、球形粒子
分散媒 :水
付属のプログラム(マウンテック製 MICROTRAC Data Handling System SD−UPA150−100)によって、得られた測定データの解析を行ったところ、ポリマ粒子の50%平均粒子径は70nmであった。
Measurement conditions Light source: Diode laser (780 nm, 3 mW)
Measurement range: Full range (0.0032 to 6.5406 μm)
Particle properties: Transparent, spherical particles Dispersion medium: Water Analysis of the obtained measurement data by the attached program (MICROTRAC Data Handling System SD-UPA150-100 manufactured by Mountec) revealed that 50% average particle diameter of polymer particles Was 70 nm.

(2)ガラス織布含浸用樹脂組成物及び測定基板の作製と評価
ノボラックフェノール型エポキシ樹脂 N−770(商品名、大日本インキ化学株式会社製)30g、ノボラックフェノール樹脂 HP−850(商品名、日立化成工業株式会社製)16g、ジシアンジアミド(商品名、日本カーバイド株式会社製)0.04g、上記で合成したコアシェルポリマ(I)2.5g、硬化促進剤2PZ-CNS-PW(商品名、四国化成工業株式会社製)0.1g及びメチルエチルケトン(試薬)80gを混合して樹脂組成物を作製した。
(2) Preparation and evaluation of resin composition for glass woven fabric impregnation and measurement substrate Novolak phenol type epoxy resin N-770 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) 30 g, novolac phenol resin HP-850 (trade name, Hitachi Chemical Co., Ltd.) 16 g, Dicyandiamide (trade name, Nippon Carbide Co., Ltd.) 0.04 g, core shell polymer (I) 2.5 g synthesized above, curing accelerator 2PZ-CNS-PW (trade name, Shikoku) 0.1 g of Kasei Kogyo Co., Ltd. and 80 g of methyl ethyl ketone (reagent) were mixed to prepare a resin composition.

上記により得られた樹脂組成物を、厚みが0.2mmのガラス織布(秤量210g/m)に含浸し、160℃で3分間加熱して半硬化(Bステージ状態)のプリプレグ(樹脂含有率55重量%)を得た。このプリプレグから半硬化樹脂を採取して粉末にし、テフロン(登録商標)シートをスペーサおよび離型シートとして175℃、90分、2.5MPaのプレス条件で硬化して厚さ0.2mmの樹脂板を作製し、測定基板を得た。 The resin composition obtained as described above is impregnated into a 0.2 mm-thick glass woven fabric (weighing 210 g / m 2 ), heated at 160 ° C. for 3 minutes, and semi-cured (B stage state) prepreg (resin-containing 55% by weight). A semi-cured resin is collected from the prepreg to form a powder, and a Teflon (registered trademark) sheet is cured as a spacer and a release sheet at 175 ° C. for 90 minutes under 2.5 MPa pressing conditions, and a 0.2 mm thick resin plate And a measurement substrate was obtained.

得られた測定基板について弾性率、熱膨張率、ガラス転移温度を測定した。結果を表1に示す。
なお、弾性率はレオロジー社製の動的粘弾性スペクトロメータDVE−V4型を用い、チャック間距離20mm、周波数10Hz、昇温速度3℃/分の条件で、50℃における弾性率を測定した。熱膨張率は、Seiko Instruments社製のSSC/5200を用い、昇温速度2℃/分、測定モードを引張りモードとし、40℃〜120℃の値から測定した。ガラス転移温度は、弾性率と同条件で測定を行なった。
The obtained measurement substrate was measured for elastic modulus, coefficient of thermal expansion, and glass transition temperature. The results are shown in Table 1.
The elastic modulus was measured at 50 ° C. using a dynamic viscoelastic spectrometer DVE-V4 manufactured by Rheology under the conditions of a distance between chucks of 20 mm, a frequency of 10 Hz, and a heating rate of 3 ° C./min. The coefficient of thermal expansion was measured from a value of 40 ° C. to 120 ° C. using SSC / 5200 manufactured by Seiko Instruments, with a temperature rising rate of 2 ° C./min and a measurement mode as a tensile mode. The glass transition temperature was measured under the same conditions as the elastic modulus.

実施例2
ポリマエマルジョンの製造においてヒドロキシプロピルアクリレート31gを、ヒドロキシブチルアクリレート31gに変えたこと以外は、実施例1(1)と同様にポリマエマルジョンを製造した(反応率94%)。得られたコアシェルポリマ(II)のコア部/シェル部の重量比は、50/50であり、コアシェルポリマ(II)の粒子径は74nmであった。また、シェル部のガラス転移温度(理論ガラス転移温度)は−48℃であった。
Example 2
A polymer emulsion was produced in the same manner as in Example 1 (1) except that 31 g of hydroxypropyl acrylate was changed to 31 g of hydroxybutyl acrylate in the production of the polymer emulsion (reaction rate 94%). The weight ratio of the core part / shell part of the obtained core-shell polymer (II) was 50/50, and the particle diameter of the core-shell polymer (II) was 74 nm. Moreover, the glass transition temperature (theoretical glass transition temperature) of the shell part was −48 ° C.

次いで、コアシェルポリマ(I)に変えてコアシェルポリマ(II)を用いること以外は実施例1(2)と同様に操作して樹脂組成物及び測定基板を作製し、弾性率、熱膨張率、ガラス転移温度を測定した。結果を表1に示す。
実施例3
ポリマエマルジョンの製造においてヒドロキシプロピルアクリレートの使用量を62gに変えたこと以外は、実施例1と同様にポリマエマルジョンを製造した(反応率97%)。得られたコアシェルポリマ(III)のコア部/シェル部の重量比は、50/50であり、コアシェルポリマ(III)の粒子径は85nmであった。また、シェル部のガラス転移温度(理論ガラス転移温度)は−45℃であった。
Next, a resin composition and a measurement substrate were prepared in the same manner as in Example 1 (2) except that the core-shell polymer (II) was used instead of the core-shell polymer (I), and the elastic modulus, thermal expansion coefficient, glass The transition temperature was measured. The results are shown in Table 1.
Example 3
A polymer emulsion was produced in the same manner as in Example 1 except that the amount of hydroxypropyl acrylate used in the production of the polymer emulsion was changed to 62 g (reaction rate 97%). The weight ratio of the core part / shell part of the obtained core-shell polymer (III) was 50/50, and the particle diameter of the core-shell polymer (III) was 85 nm. Moreover, the glass transition temperature (theoretical glass transition temperature) of the shell part was −45 ° C.

次いで、コアシェルポリマ(I)に変えてコアシェルポリマ(III)を用いること以外は実施例1(2)と同様に操作して樹脂組成物及び測定基板を作製し、弾性率、熱膨張率、ガラス転移温度を測定した。結果を表1に示す。
比較例1
コアシェルポリマ(I)に変えて、シェル部がアクリルガラス体でカルボン酸官能基を有するパラロイドEXL2655(商品名、ロームアンドハース株式会社製、平均粒子径0.2μm)を用いること以外は、実施例1(2)と同様に操作して樹脂組成物及び測定基板を作製し、弾性率、熱膨張率、ガラス転移温度を測定した。結果を表1に示す。
比較例2
コアシェルポリマ(I)に変えて、カルボン酸変性NBR粒子である非コアシェルのXER−91(商品名、JSR株式会社製、平均粒子径70nm)を用いること以外は、実施例1(2)と同様に操作して樹脂組成物及び測定基板を作製し、弾性率、熱膨張率、ガラス転移温度を測定した。結果を表1に示す。
比較例3
コアシェルポリマ(I)に変えて、液状ゴムであるCTBN(宇部興産株式会社製、カルボキシル基末端液状ゴム)を用いること以外は、実施例1(2)と同様に操作して樹脂組成物及び測定基板を作製し、弾性率、熱膨張率、ガラス転移温度を測定した。結果を表1に示す。
比較例4
コアシェルポリマ(I)を用いないこと以外は、実施例1(2)と同様に操作して樹脂組成物及び測定基板を作製し、弾性率、熱膨張率、ガラス転移温度を測定した。結果を表1に示す。
Next, a resin composition and a measurement substrate were prepared in the same manner as in Example 1 (2) except that the core-shell polymer (III) was used instead of the core-shell polymer (I), and the elastic modulus, thermal expansion coefficient, glass The transition temperature was measured. The results are shown in Table 1.
Comparative Example 1
Example except that in place of the core-shell polymer (I), paraloid EXL2655 (trade name, manufactured by Rohm and Haas Co., Ltd., average particle size 0.2 μm) having an acrylic glass body and a carboxylic acid functional group is used A resin composition and a measurement substrate were prepared in the same manner as in 1 (2), and the elastic modulus, thermal expansion coefficient, and glass transition temperature were measured. The results are shown in Table 1.
Comparative Example 2
The same as Example 1 (2) except that in place of the core-shell polymer (I), non-core-shell XER-91 (trade name, manufactured by JSR Corporation, average particle diameter: 70 nm), which is a carboxylic acid-modified NBR particle, is used. To prepare a resin composition and a measurement substrate, and the elastic modulus, thermal expansion coefficient, and glass transition temperature were measured. The results are shown in Table 1.
Comparative Example 3
Resin composition and measurement were carried out in the same manner as in Example 1 (2) except that CTBN (Ube Industries, Ltd., carboxyl group-terminated liquid rubber), which is a liquid rubber, was used instead of the core-shell polymer (I). A substrate was prepared, and the elastic modulus, thermal expansion coefficient, and glass transition temperature were measured. The results are shown in Table 1.
Comparative Example 4
A resin composition and a measurement substrate were prepared in the same manner as in Example 1 (2) except that the core-shell polymer (I) was not used, and the elastic modulus, thermal expansion coefficient, and glass transition temperature were measured. The results are shown in Table 1.

実施例1〜3は、コアシェルポリマ(I)を用いない比較例4と比べ弾性率及び熱膨張率を低減しつつ、ガラス転移温度を向上することができた。これに対し、比較例1〜3は弾性率及び熱膨張率に関しては低減できるが、ガラス転移温度が低下している。   Examples 1 to 3 were able to improve the glass transition temperature while reducing the elastic modulus and the thermal expansion coefficient as compared with Comparative Example 4 in which the core-shell polymer (I) was not used. On the other hand, Comparative Examples 1 to 3 can reduce the elastic modulus and the coefficient of thermal expansion, but the glass transition temperature is lowered.

本発明の硬化物の透過電子顕微鏡像(TEM像)である。It is a transmission electron microscope image (TEM image) of the hardened | cured material of this invention.

Claims (10)

エポキシ樹脂(A)、シェル部にヒドロキシル基を有するコアシェルポリマ(B)と、硬化剤及び/または硬化触媒(C)を含むことを特徴とする熱硬化性樹脂組成物。   A thermosetting resin composition comprising an epoxy resin (A), a core-shell polymer (B) having a hydroxyl group in a shell portion, and a curing agent and / or a curing catalyst (C). 前記コアシェルポリマ(B)のシェル部の理論ガラス転移温度が、20℃以下であることを特徴とする請求項1に記載の熱硬化性樹脂組成物。   2. The thermosetting resin composition according to claim 1, wherein a theoretical glass transition temperature of a shell portion of the core-shell polymer (B) is 20 ° C. or less. 前記コアシェルポリマ(B)のシェル部が、エステル部分にヒドロキシル基を有する(メタ)アクリレートを重合して得られるポリマからなることを特徴とする請求項1又は2に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1 or 2, wherein the shell part of the core-shell polymer (B) is made of a polymer obtained by polymerizing a (meth) acrylate having a hydroxyl group in an ester part. . 前記コアシェルポリマ(B)のコア部が、ジエン系ゴム重合体、アクリル系ゴム重合体、シリコン系ゴム重合体及びオレフィン系ゴム重合体から選択される少なくとも1種であり、コア部のガラス転移温度が0℃以下であることを特徴とする請求項1〜3のいずれか一項に記載の熱硬化性樹脂組成物。   The core part of the core-shell polymer (B) is at least one selected from a diene rubber polymer, an acrylic rubber polymer, a silicon rubber polymer, and an olefin rubber polymer, and the glass transition temperature of the core part. Is 0 degrees C or less, The thermosetting resin composition as described in any one of Claims 1-3 characterized by the above-mentioned. 前記コアシェルポリマ(B)が、架橋粒子であることを特徴とする請求項1〜4のいずれか一項に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 1 to 4, wherein the core-shell polymer (B) is a crosslinked particle. 前記コアシェルポリマ(B)の粒子径が、30〜500nmであることを特徴とする請求項1〜5のいずれか一項に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 1 to 5, wherein the core-shell polymer (B) has a particle size of 30 to 500 nm. 硬化促進剤、無機充填剤、有機或いは高分子充填剤、難燃剤、耐電防止剤、導電性付与剤、滑剤、摺動性付与剤、界面活性剤、着色剤から選ばれる1種以上の添加物を含有することを特徴とする請求項1〜6のいずれか一項に記載の熱硬化性樹脂組成物。   One or more additives selected from curing accelerators, inorganic fillers, organic or polymer fillers, flame retardants, antistatic agents, conductivity imparting agents, lubricants, slidability imparting agents, surfactants, and colorants The thermosetting resin composition according to any one of claims 1 to 6, comprising: エポキシ樹脂に混合することを特徴とする、請求項1〜7のいずれか一項に記載のコアシェルポリマ。   It mixes with an epoxy resin, The core-shell polymer as described in any one of Claims 1-7 characterized by the above-mentioned. 請求項1〜7のいずれか一項に記載の熱硬化性樹脂組成物を熱硬化して得られる硬化物。   Hardened | cured material obtained by thermosetting the thermosetting resin composition as described in any one of Claims 1-7. 硬化した後も、前記コアシェルポリマ(B)が30〜500nmの粒子径でエポキシ樹脂相に分散していることを特徴とする請求項9記載の硬化物。   The cured product according to claim 9, wherein the core-shell polymer (B) is dispersed in the epoxy resin phase with a particle size of 30 to 500 nm even after being cured.
JP2007139486A 2007-05-25 2007-05-25 Thermosetting resin composition, core-shell polymer, cured product Expired - Fee Related JP5045239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139486A JP5045239B2 (en) 2007-05-25 2007-05-25 Thermosetting resin composition, core-shell polymer, cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139486A JP5045239B2 (en) 2007-05-25 2007-05-25 Thermosetting resin composition, core-shell polymer, cured product

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012033004A Division JP2012092356A (en) 2012-02-17 2012-02-17 Core-shell polymer and cured product

Publications (2)

Publication Number Publication Date
JP2008291152A true JP2008291152A (en) 2008-12-04
JP5045239B2 JP5045239B2 (en) 2012-10-10

Family

ID=40166222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139486A Expired - Fee Related JP5045239B2 (en) 2007-05-25 2007-05-25 Thermosetting resin composition, core-shell polymer, cured product

Country Status (1)

Country Link
JP (1) JP5045239B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074024A1 (en) * 2008-12-22 2010-07-01 ダイキン工業株式会社 Film for film capacitor, and film capacitor
KR20120028921A (en) * 2009-06-16 2012-03-23 자에르텍스 게엠베하 운트 코. 카게 Method for producing a textile semi-finished good having improved toughness, and a textile semi-finished good
WO2012165413A1 (en) * 2011-05-30 2012-12-06 三菱レイヨン株式会社 Epoxy resin composition, cured product, and optical semiconductor encapsulation material
WO2013118697A1 (en) * 2012-02-07 2013-08-15 株式会社カネカ Toughness modifier for curable resin, and curable resin composition
CN103602300A (en) * 2013-11-08 2014-02-26 福州大学 High-barrier, flame-retardant and anti-electrostatic epoxy-resin adhesive and preparation method thereof
CN110643149A (en) * 2019-09-26 2020-01-03 麦克奥迪(厦门)智能电气有限公司 Preparation method of anti-cracking ultraviolet-resistant epoxy resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2778199T3 (en) 2013-10-11 2020-08-10 Kaneka Corp Epoxy resin composition containing core-shell polymer, cured product of the same and method for its preparation
CN109180945A (en) * 2018-08-31 2019-01-11 深圳市华星光电技术有限公司 Silicon substrate spherical particle, frame glue and liquid crystal display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001633A (en) * 1998-03-26 2000-01-07 Takeda Chem Ind Ltd Powder coating composition
JP2002146160A (en) * 2000-11-17 2002-05-22 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2006022195A (en) * 2004-07-07 2006-01-26 Sekisui Chem Co Ltd Curable resin composition, adhesive epoxy resin sheet an circuit board joint product
JP2006143973A (en) * 2004-11-24 2006-06-08 Matsushita Electric Works Ltd Epoxy resin composition and prepreg, laminate and printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001633A (en) * 1998-03-26 2000-01-07 Takeda Chem Ind Ltd Powder coating composition
JP2002146160A (en) * 2000-11-17 2002-05-22 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2006022195A (en) * 2004-07-07 2006-01-26 Sekisui Chem Co Ltd Curable resin composition, adhesive epoxy resin sheet an circuit board joint product
JP2006143973A (en) * 2004-11-24 2006-06-08 Matsushita Electric Works Ltd Epoxy resin composition and prepreg, laminate and printed wiring board

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310744B2 (en) * 2008-12-22 2013-10-09 ダイキン工業株式会社 Film capacitor film and film capacitor
WO2010074024A1 (en) * 2008-12-22 2010-07-01 ダイキン工業株式会社 Film for film capacitor, and film capacitor
US8675345B2 (en) 2008-12-22 2014-03-18 Daikin Industries, Ltd. Film for film capacitor and film capacitor
KR20120028921A (en) * 2009-06-16 2012-03-23 자에르텍스 게엠베하 운트 코. 카게 Method for producing a textile semi-finished good having improved toughness, and a textile semi-finished good
JP2012530168A (en) * 2009-06-16 2012-11-29 ゼールテックス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Process for producing a semi-finished woven fabric product having improved toughness, and semi-finished woven fabric product
KR101726788B1 (en) * 2009-06-16 2017-04-13 자에르텍스 게엠베하 운트 코. 카게 Method for producing a textile semi-finished good having improved toughness, and a textile semi-finished good
JPWO2012165413A1 (en) * 2011-05-30 2015-02-23 三菱レイヨン株式会社 Epoxy resin composition, cured product, and optical semiconductor sealing material
WO2012165413A1 (en) * 2011-05-30 2012-12-06 三菱レイヨン株式会社 Epoxy resin composition, cured product, and optical semiconductor encapsulation material
JPWO2013118697A1 (en) * 2012-02-07 2015-05-11 株式会社カネカ Toughness modifier for curable resin and curable resin composition
WO2013118697A1 (en) * 2012-02-07 2013-08-15 株式会社カネカ Toughness modifier for curable resin, and curable resin composition
US9701822B2 (en) 2012-02-07 2017-07-11 Kaneka Corporation Toughness modifier for curable resin, and curable resin composition
CN103602300A (en) * 2013-11-08 2014-02-26 福州大学 High-barrier, flame-retardant and anti-electrostatic epoxy-resin adhesive and preparation method thereof
CN110643149A (en) * 2019-09-26 2020-01-03 麦克奥迪(厦门)智能电气有限公司 Preparation method of anti-cracking ultraviolet-resistant epoxy resin composition

Also Published As

Publication number Publication date
JP5045239B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5045239B2 (en) Thermosetting resin composition, core-shell polymer, cured product
JP5205811B2 (en) Thermosetting resin composition, cured product
KR101685775B1 (en) Polymer powder, curable resin composition, and cured product thereof
WO2016159224A1 (en) Curable epoxy resin composition exhibiting excellent storage stability
TWI652303B (en) Core-shell polymer-containing epoxy resin composition, hardened product thereof, and manufacturing method thereof
WO2018181849A1 (en) Epoxy resin composition for fiber-reinforced composite materials, fiber-reinforced composite material and molded body
JP6694425B2 (en) Curable epoxy resin composition having excellent thixotropy
JP2005255822A (en) Rubber-reinforced epoxy resin product
TWI714240B (en) Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device
JP7199354B2 (en) epoxy resin composition
JP6966154B2 (en) Curable Compositions and Adhesives
TWI812589B (en) Resin composition, prepreg, metal foil with resin, laminate, and printed circuit board
WO2017179653A1 (en) Toughened epoxy resin composition
TW201326229A (en) Vinyl polymer powder, curable resin composition and cured article
TW201900760A (en) Solvent composition and method of producing the same
JPWO2020067044A1 (en) Curable epoxy resin composition and laminate using it
JP2012092356A (en) Core-shell polymer and cured product
JP2012136713A (en) Core-shell polymer
WO2022138807A1 (en) Curable resin composition and adhesive agent
JP2008291153A (en) Thermosetting resin composition, core-shell polymer and cured product
JP6574327B2 (en) Insulating film modifying composition and insulating film curable resin composition
JP6523611B2 (en) Laminate in which dissimilar members are joined by a curable resin composition, and structural panel for vehicle
JP2010001346A (en) Thermosetting resin composition and cured product
JP2010132840A (en) Epoxy resin composition for adhesive sheet
JP2013067755A (en) Conductive resin composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees