WO2019189380A1 - Trp channel activity inhibitor - Google Patents

Trp channel activity inhibitor Download PDF

Info

Publication number
WO2019189380A1
WO2019189380A1 PCT/JP2019/013230 JP2019013230W WO2019189380A1 WO 2019189380 A1 WO2019189380 A1 WO 2019189380A1 JP 2019013230 W JP2019013230 W JP 2019013230W WO 2019189380 A1 WO2019189380 A1 WO 2019189380A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
activity
fluorescence intensity
trp channel
test sample
Prior art date
Application number
PCT/JP2019/013230
Other languages
French (fr)
Japanese (ja)
Inventor
郁尚 藤田
香織 齋藤
文裕 岡田
石井 健
Original Assignee
株式会社マンダム
国立研究開発法人医薬基盤・健康・栄養研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マンダム, 国立研究開発法人医薬基盤・健康・栄養研究所 filed Critical 株式会社マンダム
Priority to JP2020509202A priority Critical patent/JPWO2019189380A1/en
Priority to CN201980007133.2A priority patent/CN111542327A/en
Priority to KR1020207018268A priority patent/KR20200093001A/en
Publication of WO2019189380A1 publication Critical patent/WO2019189380A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/26Aluminium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention relates to a TRP channel activity inhibitor. More specifically, the present invention relates to a TRP channel activity inhibitor and a TRP channel activity suppression method.
  • the external preparation for skin is an external preparation that is applied to the skin and has a useful effect on the skin.
  • the topical skin preparation may cause an unpleasant sensation or an unpleasant physiological event depending on the skin condition of the user.
  • substances and methods that cause or do not cause unpleasant sensations or unpleasant physiological events to the user and that sufficiently express useful effects are awaited. It is.
  • the TRP channel is a transient receptor potential channel involved in sensory reception for receiving various stimuli received from the outside world. It has been found by the present inventors that TRPA1, which is one of the TRP channels, is involved in the expression of unpleasant sensations due to, for example, an alkaline agent (see, for example, Patent Document 1).
  • the present invention has been made in view of the above prior art, and an object thereof is to provide a TRP channel activity inhibitor and a TRP channel activity suppression method that effectively suppress the activity of a TRP channel.
  • the present invention (1) A TRP channel activity inhibitor for suppressing the activity of a TRP channel, which contains aluminum ions as an active ingredient for suppressing the activity of the TRP channel.
  • Agent (2) A TRP channel activity inhibitor for suppressing the activity of the TRP channel, wherein a substance capable of dissociating into aluminum ions is blended as an active ingredient for suppressing the activity of the TRP channel.
  • the present invention relates to a TRP channel activity inhibitor, and (3) an activity suppression method for suppressing the activity of a TRP channel, which comprises contacting an aluminum ion with a TRP channel.
  • the TRP channel activity inhibitor and the TRP channel activity suppression method of the present invention have an excellent effect of effectively suppressing the activity of the TRP channel.
  • Test Example 1 it is a graph showing the results of examining time-dependent changes in current in TRPV1-expressing cells.
  • Experiment 2 it is a graph which shows the result of having investigated the time-dependent change of the electric current in a TRPV1 expression cell.
  • Experiment 3 it is a graph which shows the result of having investigated the relationship between aluminum potassium sulfate concentration and TRPV1 activity.
  • Test Example 4 it is a graph showing the results of examining time-dependent changes in current in TRPA1-expressing cells.
  • Experiment 5 it is a graph which shows the result of having investigated the relationship between an aluminum chloride density
  • Experiment 6 it is a graph which shows the result of having investigated the time-dependent change of the electric current in TRPM8 expression cell.
  • Test Example 7 it is a graph showing the results of examining the change over time of the fluorescence intensity ratio.
  • Test Example 8 it is a graph showing the results of examining the change over time of the fluorescence intensity ratio.
  • Experiment 9 it is a graph which shows the result of having investigated the relationship between the kind of sample, and TRPV1 activity.
  • Experiment 10 it is a graph which shows the result of having investigated the relationship between the kind of sample, and TRPA1 activity.
  • Experiment 11 it is a graph which shows the result of having investigated the relationship between aluminum potassium sulfate concentration and the inhibition rate.
  • Experiment 12 it is a graph which shows the result of having investigated the relationship between pH of a test sample, and a suppression rate.
  • the present invention is a TRP channel activity inhibitor for suppressing the activity of a TRP channel, and contains aluminum ions as an active ingredient for suppressing the activity of a TRP channel.
  • the present invention relates to a TRP channel activity inhibitor (hereinafter referred to as “activity inhibitor A”).
  • Aluminum ions suppress the activity of TRP channels by agonists. Therefore, since the activity inhibitor A of the present invention contains aluminum ions as an active ingredient, the activity of the TRP channel is effectively suppressed by bringing the activity inhibitor A of the present invention into contact with the TRP channel. be able to.
  • aluminum ions may be present in a dissociated state in an aqueous solvent, for example.
  • the aqueous solvent include water, citrate buffer, and phosphate buffer, but the present invention is not limited to such examples.
  • the pH of the activity inhibitor A of the present invention is preferably 7.5 to 14 (hereinafter referred to as “high pH”) from the viewpoint of stably presenting aluminum ions in a dissociated state in water. ) Or 1 to 6.5 (hereinafter referred to as “low pH”).
  • the pH of the activity inhibitor A of the present invention is preferably 7.5 or more from the viewpoint of stably presenting aluminum ions in a dissociated state in water. More preferably, it is 8 or more, more preferably 8.5 or more, and preferably 14 or less, more preferably 13 or less, from the viewpoint of stably presenting aluminum ions in a dissociated state in water.
  • the pH of the activity inhibitor A of the present invention is low, it is preferably 1 or more, more preferably 2 or more, and is dissociated in water from the viewpoint of stably presenting aluminum ions in a dissociated state in water. From the viewpoint of stably presenting aluminum ions, it is preferably 6.5 or less, more preferably 6 or less, and even more preferably 5 or less.
  • the aluminum ion concentration in the activity inhibitor A of the present invention varies depending on the type of TRP channel to be applied, the use of the activity inhibitor A of the present invention, and the like, it cannot be determined unconditionally. It is preferable to determine appropriately depending on the type of the agent and the use of the activity inhibitor A of the present invention.
  • the concentration of aluminum ions in the activity inhibitor A of the present invention is usually preferably 10 ⁇ M or more, more preferably 100 ⁇ M or more from the viewpoint of sufficiently exerting the inhibitory effect on the activity of the TRP channel, and the activity inhibitor A of the present invention. From the viewpoint of improving the storage stability, it is preferably 20 mM or less, more preferably 10 mM or less.
  • the aluminum ion concentration is a value measured using a metal indicator (trade name: Cu-PAN, manufactured by Dojindo Laboratories).
  • the activity inhibitor A of the present invention may contain other components such as a pH adjuster and a surfactant within a range that does not hinder the object of the present invention.
  • the activity inhibitor A of the present invention can be produced, for example, by mixing a substance that dissociates into aluminum ions and an aqueous solvent.
  • the activity inhibitor A of the present invention contains other components such as a pH adjuster and a surfactant
  • the activity inhibitor A is obtained by, for example, mixing a substance that dissociates into aluminum ions and other components. Can be manufactured.
  • Examples of the substance dissociating into aluminum ions include aluminum halides, inorganic acid aluminum salts, and organic acid aluminum salts, but the present invention is not limited to such examples.
  • Examples of the aluminum halide include aluminum chloride, but the present invention is not limited to such examples.
  • the inorganic acid aluminum salt may be an inorganic acid aluminum single salt or an inorganic acid aluminum double salt. As an inorganic acid aluminum single salt, although aluminum phosphate etc. are mentioned, for example, this invention is not limited only to this illustration.
  • Examples of inorganic acid aluminum double salts include aluminum sulfate double salts, but the present invention is not limited to such examples.
  • Examples of the aluminum sulfate double salt include aluminum sulfate alkali metal double salts such as sodium aluminum sulfate and potassium aluminum sulfate, and aluminum ammonium sulfate, but the present invention is not limited to such examples.
  • Examples of the organic acid aluminum salt include aluminum formate, aluminum acetate, and aluminum citrate, but the present invention is not limited to such examples. Of these substances dissociating into aluminum ions, aluminum halides, inorganic acid aluminum salts and organic acid aluminum salts are preferred from the viewpoint of sufficiently exerting an inhibitory effect on the activity of the TRP channel. More preferred are salts, even more preferred are aluminum chloride, potassium aluminum sulfate and aluminum ammonium sulfate, even more preferred are aluminum chloride and potassium aluminum sulfate, and even more preferred is aluminum chloride.
  • the present invention is a TRP channel activity inhibitor for suppressing the activity of the TRP channel, and contains a substance that dissociates into aluminum ions as an active ingredient for suppressing the activity of the TRP channel.
  • the present invention relates to a TRP channel activity inhibitor (hereinafter referred to as “activity inhibitor B”).
  • the activity inhibitor B of the present invention When the activity inhibitor B of the present invention is brought into contact with the TRP channel, the activity of the TRP channel is effectively inhibited by the contact between the aluminum ion dissociated from the substance dissociating into the aluminum ion and the TRP channel. . Therefore, since the activity inhibitor B of the present invention contains a substance that dissociates into aluminum ions, the activity of the TRP channel can be effectively suppressed.
  • the substance that dissociates into aluminum ions may be dissociated into aluminum ions when brought into contact with the TRP channel.
  • the substance dissociating into aluminum ions used in the activity inhibitor B of the present invention is the same as the substance dissociating into aluminum ions used in the production of the activity inhibitor A of the present invention.
  • aluminum halide, inorganic acid aluminum salt, and organic acid aluminum salt are preferable, and aluminum halide and aluminum sulfate double salt are preferable from the viewpoint of sufficiently exerting an inhibitory effect on the activity of TRP channel. More preferably, aluminum chloride, potassium aluminum sulfate and aluminum ammonium sulfate are more preferable, aluminum chloride and potassium aluminum sulfate are more preferable, and aluminum chloride is still more preferable.
  • the substance dissociated into aluminum ions may exist in a dissolved state in an aqueous solvent.
  • the aqueous solvent used for the activity inhibitor B of the present invention is the same as the aqueous solvent used for the activity inhibitor A described above.
  • the pH of the activity inhibitor B of the present invention varies depending on the type of substance that dissociates into aluminum ions and cannot be determined unconditionally. It is preferable to determine appropriately according to the above.
  • the pH of the activity inhibitor B of the present invention when the aqueous solvent is water is preferably the high pH or the low pH from the viewpoint of stably allowing aluminum ions to dissociate in water.
  • the pH of the activity inhibitor B of the present invention is preferably 7.5 or more from the viewpoint of stably presenting aluminum ions in a dissociated state in water. More preferably, it is 8 or more, more preferably 8.5 or more, and preferably 14 or less, more preferably 13 or less, from the viewpoint of stably presenting aluminum ions in a dissociated state in water.
  • the pH of the activity inhibitor B of the present invention is low, it is preferably 1 or more, more preferably 2 or more, and is dissociated in water from the viewpoint of stably presenting aluminum ions in a dissociated state in water. From the viewpoint of stably presenting aluminum ions, it is preferably 6.5 or less, more preferably 6 or less, and even more preferably 5 or less.
  • the amount of the substance dissociated into aluminum ions per 100 parts by mass of the activity inhibitor B of the present invention is preferably 0.01 parts by mass or more, more preferably from the viewpoint of sufficiently exerting the inhibitory effect on the activity of the TRP channel. It is 0.05 parts by mass or more, and is 100 parts by mass or less from the viewpoint of sufficiently exerting an inhibitory effect on the activity of the TRP channel.
  • the upper limit of the amount of the substance that dissociates into aluminum ions per 100 parts by mass of the activity inhibitor B of the present invention is the activity suppression of the present invention. From the viewpoint of improving the storage stability of the agent B, it is preferably 10 parts by mass or less, more preferably 1 part by mass or less.
  • the activity inhibitor B of the present invention may contain other components such as a pH adjuster and a surfactant within a range that does not hinder the purpose of the present invention.
  • the aluminum ion concentration of the activity inhibitor B of the present invention at the time of use is usually preferably 0.01 mM or more, more preferably 0.1 mM or more, from the viewpoint of sufficiently expressing the TRP channel activity inhibitory action. From the viewpoint of sufficiently expressing the activity suppressing action, it is preferably 10 mM or less, more preferably 5 mM or less.
  • the activity inhibitor B of the present invention can be produced, for example, by mixing a substance that dissociates into aluminum ions and an aqueous solvent.
  • the activity inhibitor B of the present invention contains other components such as a pH adjuster and a surfactant, for example, the activity inhibitor B is obtained by mixing a substance that dissociates into aluminum ions and other components. Can be manufactured.
  • TRP channel examples include TRPA1, TRPM8, TRPV1, TRPV3, and TRPV4, but the present invention is not limited to such examples.
  • TRPA1, TRPM8, TRPV1, TRPV3 and TRPV4 are preferable because the activity can be effectively suppressed.
  • TRPA1 examples include human TRPA1 (for example, GenBank accession number NM_007332) and the like, but the present invention is not limited to such examples.
  • the activity of TRPA1 includes, for example, chemical stimulation with allyl isothiocyanate, high pH stimulation under conditions of pH 10 to 12, cold stimulation at a temperature of around 17 ° C., and stimulation from the outside of cells by stimulation such as mechanical stimulation.
  • the ability to transport calcium ions; the ability to regulate the membrane potential by the stimulus, and the like are exemplified, but the present invention is not limited to such examples.
  • TRPA1 The ability of TRPA1 to transport calcium ions can be examined, for example, by measuring the inflow of calcium ions from the outside into the cell accompanying the binding of a TRPA1 agonist to TRPA1 possessed by a TRPA1 expressing cell.
  • the ability to regulate the membrane potential possessed by TRPA1 can be examined, for example, by measuring the amount of increase in current in the cells accompanying the binding of a TRPA1 agonist to TRPA1 possessed by a TRPA1-expressing cell.
  • the TRPA1 agonist include allyl isothiocyanate, cinnamaldehyde, and allicin, but the present invention is not limited to such examples.
  • unpleasant sensations or physiological events resulting from the activation of TRPA1 include pain such as inflammatory pain and neuropathic pain, excessive irritation, excessive cooling, etc. It is not limited only to such illustration.
  • TRPM8 examples include human TRPM8 (for example, GenBank accession number NM_024080), but the present invention is not limited only to such illustration.
  • Examples of the activity of TRPM8 include the ability to transport calcium ions from the outside to the inside of the cell by stimulation such as chemical stimulation by menthol and cold stimulation at a temperature of about 25 to 28 ° C. It is not limited to illustration only.
  • the ability of TRPM8 to transport calcium ions can be examined, for example, by measuring the inflow of calcium ions from the outside to the inside of the cell accompanying the binding of the TRPM8 agonist to TRPM8 possessed by TRPM8-expressing cells.
  • Examples of the TRPM8 agonist include menthol and icilin, but the present invention is not limited to such examples.
  • Examples of unpleasant sensations or physiological events resulting from the activation of TRPM8 include excessive cooling, but the present invention is not limited to such examples.
  • TRPV1 examples include human TRPV1 (eg, GenBank accession number NM — 080704), but the present invention is not limited to such examples.
  • the activity of TRPV1 includes, for example, chemical stimulation with capsaicin, low pH stimulation under conditions of pH 3 to 5.5, thermal stimulation at a temperature around 43 ° C., stimulation from pain, mechanical stimulation, etc.
  • Examples include the ability to transport calcium ions into cells, but the present invention is not limited to such examples.
  • the ability of TRPV1 to transport calcium ions can be examined, for example, by measuring the inflow amount of calcium ions from the outside to the inside of the cell accompanying the binding of a TRPV1 agonist to TRPV1 of a TRPV1-expressing cell.
  • TRPV1 agonists include capsaicin, camphor, and allicin, but the present invention is not limited to such examples.
  • Examples of unpleasant sensations or physiological events resulting from the activation of TRPV1 include excessive heat sensation, but the present invention is not limited to such examples.
  • TRPV3 examples include human TRPV3 (for example, GenBank accession number: NM_145068), but the present invention is not limited to such examples.
  • the activity of TRPV3 includes, for example, the ability to transport calcium ions from the outside to the inside of the cell by stimulation such as chemical stimulation by camphor, heat stimulation at a temperature of about 33 to 39 ° C. It is not limited only to such illustration.
  • the ability of TRPV3 to transport calcium ions can be examined, for example, by measuring the inflow amount of calcium ions from the outside to the inside of the cell accompanying the binding of a TRPV3 agonist to TRPV3 of a TRPV3-expressing cell.
  • TRPV3 agonists include camphor, eugenol, carvacrol, and the like, but the present invention is not limited to such examples.
  • Examples of unpleasant sensations or physiological events resulting from the activation of TRPV3 include excessive heat feeling and skin hyperkeratinization, but the present invention is not limited to such examples.
  • TRPV4 examples include human TRPV4 (eg, GenBank accession number: NM — 021625), but the present invention is not limited to such examples.
  • the activity of TRPV4 includes, for example, chemical stimulation with 4 ⁇ -phorbol-12,13-didecanoate, etc., thermal stimulation at a temperature around 27 to 34 ° C., hypoosmotic stimulation, mechanical stimulation, etc.
  • the ability of TRPV4 to transport calcium ions can be examined, for example, by measuring the inflow of calcium ions from the outside into the cells accompanying the binding of a TRPV4 agonist to TRPV4 possessed by a TRPV4-expressing cell.
  • TRPV4 agonist examples include 4 ⁇ -phorbol 12,13-didecanoate, but the present invention is not limited to such examples.
  • Examples of unpleasant sensations or physiological events resulting from the activation of TRPV4 include excessive thermal sensation and itchiness, but the present invention is not limited to such examples.
  • the TRP channel activity inhibiting action of the activity inhibitor A and the activity inhibitor B of the present invention is, for example, the intracellular calcium ion concentration of a TRP channel-expressing cell (hereinafter referred to as “TRP channel-expressing cell”), TRP channel expression. It can be evaluated by using the current in the cell as an index.
  • TRP channel-expressing cell a TRP channel-expressing cell
  • the TRP channel-expressing cell may be a cell expressing an endogenous TRP channel or a cell expressing an exogenous TRP channel.
  • the TRP channel-expressing cell may be a cell that expresses one type of TRP channel, or may be a cell that expresses two or more types of TRP channels.
  • Examples of cells that express an exogenous TRP channel include cells obtained by introducing a nucleic acid encoding an exogenous TRP channel into a host cell, but the present invention is limited to such examples only. is not.
  • evaluation method for the TRP channel activity inhibitory action include the following evaluation method 1, evaluation method 2, and the like, but the present invention is not limited to such examples.
  • ⁇ Evaluation method 1> (1A) contacting a TRP channel-expressing cell with the activity inhibitor A or activity inhibitor B of the present invention and an agonist of the TRP channel, and measuring the intracellular calcium ion concentration A of the TRP channel-expressing cell; (1B) contacting a TRP channel-expressing cell with a TRP channel agonist and measuring the intracellular calcium ion concentration B of the TRP channel-expressing cell; and (1C) intracellular calcium ion concentration A and intracellular calcium ion concentration.
  • a method comprising the step of comparing with B.
  • ⁇ Evaluation method 2> (2A) contacting a TRP channel-expressing cell with the activity inhibitor A or activity inhibitor B of the present invention and a TRP channel agonist, and measuring the current A in the TRP channel-expressing cell; (2B) A method comprising the steps of contacting a TRP channel-expressing cell with an agonist of a TRP channel, measuring a current B in the TRP channel-expressing cell, and (2C) comparing the current A and the current B.
  • Examples of the method for measuring the intracellular calcium ion concentration A and the intracellular calcium ion concentration B in Evaluation Method 1 include a method using a calcium indicator that binds to calcium ions, but the present invention is limited only to such examples. Is not to be done.
  • the intracellular calcium ion concentration is determined by introducing it into a TRP channel-expressing cell, binding the calcium indicator to the calcium ion in the TRP channel-expressing cell, and examining the amount of the calcium indicator bound to the calcium ion. Can be measured. Since the calcium indicator can measure the amount of calcium indicator bound to calcium ions with a simple operation, it must be a reagent that can detect changes before and after binding with calcium ions by changes in optical properties, etc. Is preferred.
  • changes in optical characteristics include changes in fluorescence intensity and changes in absorbance, but the present invention is not limited to such examples.
  • examples of the calcium indicator include a fluorescent calcium indicator whose fluorescence intensity changes before and after binding with calcium ions, but the present invention is not limited to such examples.
  • calcium indicators include 1- [6-amino-2- (5-carboxy-2-oxazolyl) -5-benzofuranyloxy] -2- (2-amino-5-methylphenoxy) ethane-N , N, N ′, N′-tetraacetic acid pentaacetoxymethyl ester (Fura 2-AM), 1- [2-amino-5- (2,7-dichloro-6-hydroxy-3-oxo-9-xanthenyl) Phenoxy] -2- (2-amino-5-methylphenoxy) ethane-N, N, N ′, N′-tetraacetic acid tetraacetoxymethyl ester (Fluo 3-AM), 1- [2-amino-5- ( 2,7-difluoro-6-acetoxymethoxy-3-oxo-9-xanthenyl) phenoxy] -2- (2-amino-5-methylphenoxy) ethane-N, N, N ′, N′-tetraacetic
  • the activity inhibitor A or the activity inhibitor B of the present invention has a TRP channel activity inhibitory action. it can.
  • the greater the difference between the intracellular calcium ion concentration A and the intracellular calcium ion concentration B the higher the activity inhibitor A or activity B of the present invention is evaluated to have a higher TRP channel activity inhibitory effect. Can do.
  • the measurement method of the current A and the current B in the evaluation method 2 includes, for example, a patch clamp method, but the present invention is not limited to such an example.
  • the activity inhibitor A or the activity inhibitor B of the present invention has a TRP channel activity inhibitory action. Moreover, it can be evaluated that the activity inhibitor A or activity inhibitor B of this invention has a high TRP channel activity inhibitory effect, so that the difference between the absolute value of the electric current A and the absolute value of the electric current B is large. .
  • the TRP channel activity inhibitor of the present invention can suppress the activity of TRP channels involved in the development of unpleasant sensations or physiological events. Therefore, the TRP channel activity inhibitor of the present invention is used for applications that suppress the expression of unpleasant sensations or physiological events resulting from activation of TRP channels, for example, applications that suppress stimulation caused by activation of TRPA1.
  • Stimulus suppressant a cooling sensation adjuster used for adjusting the cooling sensation caused by TRPM8 activation, a pain suppressor used for suppressing pain caused by TRPV1 activation, and TRPV3 activation It can be suitably used for a skin cell hyperkeratinization inhibitor used for the purpose of suppressing the resulting hyperkeratinization of skin cells, a stagnation inhibitor used for the purpose of suppressing the itch caused by activation of TRPV4, and the like.
  • the TRP channel activity suppression method of the present invention (hereinafter referred to as "activity suppression method") is an activity suppression method for suppressing the activity of a TRP channel, wherein aluminum ions and a TRP channel are brought into contact with each other. This is a method for inhibiting the activity of a TRP channel.
  • the medical practice may be excluded from the concept of the activity suppression method of this invention, and does not need to be excluded.
  • a medical practice refers to an action in which a doctor and a person who receives instructions from the doctor perform treatment on a human. According to the activity suppressing method of the present invention, since the aluminum ion and the TRP channel are brought into contact with each other, the activity of the TRP channel can be effectively suppressed.
  • the contact between the aluminum ion and the TRP channel can be performed by supplying the aluminum ion to a portion including the TRP channel.
  • the site containing the TRP channel include skin epidermis, airway epithelium, peripheral nerve, ocular mucosa, and the like, but the present invention is not limited to such examples.
  • aluminum ions and components that stably maintain the aluminum ions can be used in combination.
  • the component that stably maintains aluminum ions include an aqueous solvent, but the present invention is not limited to such examples.
  • Aluminum ions are usually brought into contact with the TRP channel in a state of being contained in the liquid.
  • the amount of aluminum ions contained in the liquid brought into contact with the TRP channel varies depending on the use of the method for suppressing activity of the present invention, the type of TRP channel to be applied, the type of site containing the TRP channel to be applied, etc. Therefore, it is preferable to determine appropriately according to the use of the activity suppression method of the present invention, the type of TRP channel to be applied, the type of site including the TRP channel to be applied, and the like.
  • the amount of aluminum ions in the liquid brought into contact with the TRP channel is usually from the viewpoint of sufficiently exhibiting the TRP channel activity suppression effect.
  • the concentration is preferably 0.01 mM or more, more preferably 0.1 mM or more, and preferably 10 mM or less, more preferably 5 mM or less, from the viewpoint of reducing the action on other tissues.
  • the contact time between the aluminum ion and the TRP channel differs depending on the use of the activity suppression method of the present invention, the type of TRP channel to be applied, etc., it cannot be determined unconditionally, so the use of the activity suppression method of the present invention It is preferable to determine appropriately according to the type of TRP channel to be applied.
  • the TRP channel activity suppression effect by the activity suppression method of the present invention can be evaluated by the same technique as the evaluation of the TRP channel activity suppression effect by the activity inhibitor.
  • the activity of the TRP channel that is related to the development of unpleasant sensations such as pain, excessive irritation, excessive cooling, excessive heat, and itching is effectively suppressed.
  • the activity suppression method of the present invention is performed using aluminum ions and the external preparation together. By doing so, it is possible to suppress the activity of the TRP channel and suppress the expression of unpleasant sensations due to the activation of the TRP channel.
  • the activity inhibitor of the present invention is used for suppressing an unpleasant sensation caused by activation of a TRP channel or an unpleasant physiological event, for example, an application for suppressing a stimulus caused by activation of TRPA1, TRPM8 Use for adjusting the cooling sensation caused by activation of TRPV1, use for suppressing pain caused by activation of TRPV1, use for suppressing hyperkeratinization of skin cells caused by activation of TRPV3, caused by activation of TRPV4 It is expected to be used for applications that suppress stagnation.
  • Preparation Example 1 (1) Preparation of TRPV1-expressing cells Human TRPV1 cDNA (cDNA corresponding to positions 276 to 2795 of the base sequence shown in GenBank accession number: NM — 080704) was obtained by using a vector for mammalian cells [trade name: pcDNA3. 1 (+)] to obtain a human TRPV1 expression vector. 1 ⁇ g of the obtained human TRPV1 expression vector was mixed with 6 ⁇ L of a gene introduction reagent [manufactured by Invitrogen, trade name: PLUS Reagent, catalog number: 11514-015] to obtain a mixture I.
  • a gene introduction reagent manufactured by Invitrogen, trade name: PLUS Reagent, catalog number: 11514-015
  • a cationic lipid for gene transfer [manufactured by Invitrogen, trade name: Lipofectamine (registered trademark), catalog number: 18324-012] and a serum-reducing medium [trade name: OPTI-MEM (manufactured by Invitrogen), registered (Trademark) I Reduced-Serum Medium (Cat. No. 11058021)] 200 ⁇ L was mixed to obtain a mixture II.
  • Preparation Example 1 (1) instead of using human TRPV1 cDNA, human TRPV3 cDNA [GenBank accession number: cDNA corresponding to positions 323 to 2695 of the nucleotide sequence shown in NM_145068] is used. Except that, TRPV3-expressing cells were obtained in the same manner as in Preparation Example 1 (1).
  • Preparation of TRPV4-expressing cells In Preparation Example 1 (1), instead of using human TRPV1 cDNA, human TRPV4 cDNA [GenBank accession number: cDNA corresponding to positions 90 to 2705 of the nucleotide sequence shown in NM — 021625] is used. Except that, TRPV4-expressing cells were obtained in the same manner as in Preparation Example 1 (1).
  • Example 1 Aluminum chloride was added to solvent A (composition: 140 mM NMDG-Cl, 1 mM magnesium chloride, 5 mM BAPTA and 10 mM HEPES buffer) so that the concentration was 5 mM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
  • Comparative Example 1 By adding hydrochloric acid to solvent A, the pH of solvent A was adjusted to 5 to obtain a sample for low pH stimulation.
  • Test example 1 The TRPV1-expressing cells obtained in Preparation Example 1 (1) were incubated in solvent A with shaking at 37 ° C. for 2 minutes to wash the TRPV1-expressing cells. Next, the TRPV1-expressing cells after washing were placed in a circulating constant temperature chamber containing solvent A. The tip of the electrode was brought into contact with the TRPV1-expressing cells in the circulation constant temperature chamber, and current recording software [Molecular Devices, product name: pCLAMP10] and current recording device [Molecular Devices, product name: Axopat 200B Amplifier] was used to measure the current in TRPV1-expressing cells over time when the voltage was fixed at ⁇ 60 mV.
  • current recording software Molecular Devices, product name: pCLAMP10
  • current recording device Molecular Devices, product name: Axopat 200B Amplifier
  • the low pH stimulation sample obtained in Comparative Example 1 was circulated in the circulation constant temperature chamber.
  • the test sample obtained in Example 1 was circulated in the circulation constant temperature chamber after 50 seconds had elapsed since the start of circulation of the low pH stimulation sample.
  • the sample for low pH stimulation obtained in Comparative Example 1 was circulated in the circulation constant temperature chamber for 30 seconds. Thereafter, measurement of the current change was terminated.
  • FIG. 1 shows the results of examining time-dependent changes in current in TRPV1-expressing cells in Test Example 1.
  • pH 5 indicates the duration of low pH stimulation
  • test sample indicates the circulation period of the test sample.
  • Example 2 Aluminum chloride and capsaicin were added to solvent A so that the concentration of aluminum chloride was 5 mM and the concentration of capsaicin was 100 nM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
  • Comparative Example 2 An agonist-containing sample was obtained by adding capsaicin to solvent A so that its concentration was 100 nM.
  • Test Example 2 In Test Example 1, instead of using the test sample obtained in Example 1, the test sample obtained in Example 2 was used, and in place of using the low pH stimulation sample obtained in Comparative Example 1, Except that the agonist-containing sample obtained in 2 was used, the same operation as in Test Example 1 was performed, and the current in the TRPV1-expressing cells was measured over time.
  • FIG. 2 shows the results of examining the temporal change of the current in the TRPV1-expressing cells in Test Example 2.
  • CAP represents the duration of stimulation with capsaicin
  • test sample represents the circulation period of the test sample.
  • Example 2 instead of using aluminum chloride, aluminum chloride was also used when an inorganic acid aluminum salt such as aluminum phosphate or potassium aluminum sulfate; or another substance dissociating into aluminum ions such as aluminum acetate was used. The same trend is seen. From these results, it can be seen that aluminum ions have an action of suppressing the activity of TRPV1.
  • an inorganic acid aluminum salt such as aluminum phosphate or potassium aluminum sulfate
  • aluminum ions such as aluminum acetate
  • Test example 3 (1) Preparation of sample Aluminum potassium sulfate and capsaicin with a concentration of 1 ⁇ M aluminum potassium sulfate [aluminum ion concentration: 1 ⁇ M (experiment number 1)], 10 ⁇ M [aluminum ion concentration: 10 ⁇ M (experiment number 2)], 100 ⁇ M [aluminum ion] Concentration: 100 ⁇ M (experiment number 3)], 200 ⁇ M [aluminum ion concentration: 200 ⁇ M (experiment number 4)], 500 ⁇ M [aluminum ion concentration: 500 ⁇ M (experiment number 5)], 1000 ⁇ M [aluminum ion concentration: 1000 ⁇ M (experiment number 6) ] 5000 ⁇ M ([aluminum ion concentration: 5000 ⁇ M (experiment number 7)] or 10000 ⁇ M [aluminum ion concentration: 10000 ⁇ M (experiment number 8)] and added to solvent A so
  • TRPV1-expressing cells obtained in Preparation Example 1 (1) contain 10 mass% FBS containing FURA 2-AM (manufactured by Invitrogen), a fluorescent calcium ion indicator, at a final concentration of 5 ⁇ M.
  • FURA 2-AM manufactured by Invitrogen
  • FURA 2-AM was introduced into TRPV1-expressing cells to obtain indicator-introduced cells.
  • the indicator-introduced cells were placed in a circulating constant temperature chamber of a fluorescence measuring apparatus with a circulating constant temperature chamber (trade name: ARGUS-50, manufactured by Hamamatsu Photonics Co., Ltd.), and then washed with solvent A.
  • the agonist-containing sample obtained in Comparative Example 2 was placed in a circulation constant temperature chamber. Thereafter, the fluorescence intensity 340 nm (fluorescence intensity A) in the presence of the agonist and the fluorescence intensity 380 nm (fluorescence intensity B) in the presence of the agonist were measured.
  • [ ⁇ fluorescence intensity ratio agonist ] [Fluorescence intensity A / fluorescence intensity B]-[fluorescence intensity C / fluorescence intensity D] (I) Accordingly, a ⁇ fluorescence intensity ratio agonist was calculated.
  • [ ⁇ fluorescence intensity specific activity inhibitor ] [Fluorescence intensity E / fluorescence intensity F]-[fluorescence intensity C / fluorescence intensity D] (II) Accordingly, the ⁇ fluorescence intensity specific activity inhibitor was calculated.
  • FIG. 3 shows the results of examining the relationship between the potassium aluminum sulfate concentration and the TRPV1 activity in Test Example 3.
  • the 50% inhibitory concentration of aluminum potassium sulfate for TRPV1 activity was calculated. As a result, it was found that the 50% inhibitory concentration of aluminum potassium sulfate for TRPV1 activity was 246 ⁇ M. From the above results, it was found that the 50% inhibitory concentration of aluminum ions for TRPV1 activity was 246 ⁇ M.
  • Example 3 Aluminum chloride and AITC were added to solvent A so that the concentration of aluminum chloride was 5 mM and the concentration of AITC was 20 ⁇ M to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
  • Comparative Example 3 An agonist-containing sample was obtained by adding AITC to solvent A so that its concentration was 20 ⁇ M.
  • Test example 4 The TRPA1-expressing cells obtained in Preparation Example 1 (2) were incubated in solvent A with shaking at 37 ° C. for 2 minutes to wash the TRPA1-expressing cells. The washed TRPA1-expressing cells were placed in a circulating constant temperature chamber containing solvent A. The tip of the electrode was brought into contact with the TRPA1-expressing cell in the circulation constant temperature chamber, and the current in the TRPA1-expressing cell when the voltage was fixed at ⁇ 60 mV was measured over time using current recording software and a current recording device. After 30 seconds from the start of measurement, the agonist-containing sample obtained in Comparative Example 3 was circulated in the circulation constant temperature chamber.
  • the test sample obtained in Example 3 was circulated in the circulation constant temperature chamber after 50 seconds had elapsed since the start of circulation of the agonist-containing sample obtained in Comparative Example 3. After 25 seconds from the start of circulation of the test sample obtained in Example 3, the agonist-containing sample obtained in Comparative Example 3 was circulated in the circulation constant temperature chamber. After 50 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 3, the solvent A was circulated in the circulation constant temperature chamber, and the measurement of the current change was completed.
  • FIG. 4 shows the results of examining time-dependent changes in current in TRPA1-expressing cells in Test Example 4.
  • AITC indicates the duration of stimulation by AITC
  • Test sample indicates the circulation period of the test sample.
  • Example 3 instead of using aluminum chloride, aluminum chloride was used when inorganic acid aluminum salts such as aluminum phosphate and potassium aluminum sulfate; and other substances that dissociate into aluminum ions such as aluminum acetate were used. The same trend is seen. From these results, it can be seen that aluminum ions have an action of suppressing the activity of TRPA1.
  • Example 4 Aluminum chloride and AITC were added to solvent A so that the concentration of aluminum chloride was 500 ⁇ M and the concentration of AITC was 20 ⁇ M to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 500 ⁇ M).
  • Example 5 Aluminum chloride and AITC were added to solvent A so that the concentration of aluminum chloride was 50 ⁇ M and the concentration of AITC was 20 ⁇ M to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 50 ⁇ M).
  • Test Example 5 The TRPA1-expressing cells obtained in Preparation Example 1 (2) were incubated in solvent A with shaking at 37 ° C. for 2 minutes to wash the TRPA1-expressing cells. Next, the TRPA1-expressing cells after washing were placed in a circulating constant temperature chamber containing solvent A. The tip of the electrode was brought into contact with the TRPA1-expressing cell in the circulation constant temperature chamber, and the current in the TRPA1-expressing cell when the voltage was fixed at ⁇ 60 mV was measured over time using current recording software and a current recording device. After 30 seconds from the start of measurement, the agonist-containing sample obtained in Comparative Example 3 was circulated in the circulation constant temperature chamber.
  • Example 3 After 50 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 3, 30 seconds for the test sample obtained in Example 5 and 30 for the test sample obtained in Example 4 in the circulation constant temperature chamber. The test sample obtained in Example 3 was circulated for 30 seconds. Thereafter, the agonist-containing sample obtained in Comparative Example 3 was circulated in a circulation constant temperature chamber. After 30 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 3, the solvent A was circulated in the circulation constant temperature chamber, and the measurement of the current change was completed.
  • [Inhibition rate] [(Change amount of current before and after circulation of agonist-containing sample) ⁇ (Change amount of current before and after circulation of test sample)] / [Change amount of current before and after circulation of sample containing agonist] (IV) Therefore, the inhibition rate was calculated.
  • Fig. 5 shows the results of examining the relationship between the aluminum chloride concentration and the inhibition rate in Test Example 5.
  • FIG. 5 shows that aluminum chloride suppresses the activity of TRPA1 in a concentration-dependent manner. From these results, it can be seen that aluminum ions dissociated from aluminum chloride suppress the activity of TRPA1 in a concentration-dependent manner.
  • Example 6 Aluminum chloride and menthol were added to solvent A so that the concentration of aluminum chloride was 5 mM and the concentration of menthol was 1 mM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
  • Test Example 6 The TRPM8-expressing cells obtained in Preparation Example 1 (3) were incubated in solvent A with shaking at 37 ° C. for 2 minutes to wash the TRPM8-expressing cells. Next, the TRPM8-expressing cells after washing were placed in a circulating constant temperature chamber containing solvent A. The tip of the electrode was brought into contact with the TRPM8-expressing cell in the circulating constant temperature chamber, and the current in the TRPM8-expressing cell when the voltage was fixed at ⁇ 60 mV was measured over time using current recording software and a current recording device. After a lapse of 20 seconds from the start of measurement, the low pH stimulation sample obtained in Comparative Example 1 was circulated in the circulation constant temperature chamber.
  • the agonist-containing sample obtained in Comparative Example 4 was circulated in the circulation constant temperature chamber. After 30 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 4, the test sample obtained in Example 6 was circulated in the circulation constant temperature chamber. After 30 seconds from the beginning of circulation of the test sample obtained in Example 6, the agonist-containing sample obtained in Comparative Example 4 was circulated in the circulation constant temperature chamber. After a lapse of 50 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 4, the low pH stimulation sample obtained in Comparative Example 1 was circulated in the circulation constant temperature chamber. After 60 seconds from the start of circulation of the low pH stimulation sample, the solvent A was circulated in the circulation constant temperature chamber, and the measurement of the current change was completed.
  • FIG. 6 shows the results of examining time-dependent changes in current in TRPM8-expressing cells in Test Example 6.
  • menthol indicates the duration of stimulation with menthol
  • pH 5 indicates the duration of low pH stimulation
  • test sample indicates the circulation period of the test sample.
  • Example 6 instead of using aluminum chloride, aluminum chloride was used when inorganic acid aluminum salts such as aluminum phosphate and potassium aluminum sulfate; and other substances dissociating into aluminum ions such as aluminum acetate were used. The same trend is seen. From these results, it can be seen that aluminum ions have an action of suppressing the activity of TRPM8.
  • Example 7 Aluminum chloride and camphor were added to solvent A so that the concentration of aluminum chloride was 5 mM and the concentration of camphor was 1 mM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
  • Comparative Example 5 A camphor was added to the solvent A so that the density
  • Test Example 7 The TRPV3-expressing cells obtained in Preparation Example 1 (4) are incubated for 60 minutes at room temperature in 10% FBS-containing DMEM containing FURA 2-AM (manufactured by Invitrogen), a fluorescent calcium ion indicator, at a final concentration of 5 ⁇ M.
  • FURA 2-AM was introduced into TRPV3-expressing cells to obtain indicator-introduced cells.
  • the indicator-introduced cells were washed by incubating the indicator-introduced cells in solvent A with shaking at 37 ° C. for 2 minutes.
  • the indicator-introduced cells after washing are placed in a circulating thermostat chamber of a fluorescence measuring apparatus with a circulating thermostat chamber (trade name: ARGUS-50, manufactured by Hamamatsu Photonics Co., Ltd.), and then the control (solvent A) is circulated and the fluorescence intensity is increased. Measurements at 340 nm and fluorescence intensity of 380 nm were started. After 50 seconds from the start of circulation of the control (solvent A), the agonist-containing sample obtained in Comparative Example 5 was circulated in the circulation constant temperature chamber. After 100 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 5, the test sample obtained in Example 7 was circulated in the circulation constant temperature chamber for 100 seconds.
  • FIG. 7 shows the results of examining the temporal change in the fluorescence intensity ratio in Test Example 7.
  • “camphor” indicates the duration of stimulation by camphor
  • “test sample” indicates the circulation period of the test sample.
  • FIG. 7 shows that the fluorescence intensity ratio increases with the start of stimulation by camphor contained in the agonist-containing sample, but decreases with the addition of the test sample. From these results, it can be seen that aluminum ions dissociated from aluminum chloride have an action of suppressing the activity of TRPV3 activated by stimulation with camphor.
  • Example 7 instead of using aluminum chloride, aluminum chloride was used when inorganic acid aluminum salts such as aluminum phosphate and potassium aluminum sulfate; and other substances that dissociate into aluminum ions such as aluminum acetate were used. The same trend is seen. From these results, it can be seen that aluminum ions have an action of suppressing the activity of TRPV3.
  • Example 8 Aluminum chloride and 4 ⁇ PDD were added to solvent A so that the concentration of aluminum chloride was 5 mM and the concentration of 4 ⁇ PDD was 10 ⁇ M to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
  • Comparative Example 6 An agonist-containing sample was obtained by adding 4 ⁇ PDD to solvent A so that its concentration was 10 ⁇ M.
  • Test Example 8 In Test Example 7, instead of using the TRPV3-expressing cells obtained in Preparation Example 1 (4), the TRPV4-expressing cells obtained in Preparation Example 1 (5) were used, and the agonist-containing sample obtained in Comparative Example 5 Test example, except that the agonist-containing sample obtained in Comparative Example 6 was used instead of the test sample and that the test sample obtained in Example 8 was used instead of the test sample obtained in Example 7 The same operation as in No. 7 was performed, and the change with time in the fluorescence intensity ratio was examined.
  • FIG. 8 shows the results of examining the temporal change in the fluorescence intensity ratio in Test Example 8.
  • 4 ⁇ PDD indicates the duration of stimulation by 4 ⁇ PDD
  • test sample indicates the circulation period of the test sample.
  • FIG. 8 shows that the fluorescence intensity ratio increases with the start of stimulation by 4 ⁇ PDD contained in the agonist-containing sample, but decreases with the addition of the test sample. From these results, it can be seen that aluminum ions dissociated from aluminum chloride have an action of suppressing the activity of TRPV4 activated by stimulation with 4 ⁇ PDD.
  • Example 8 instead of using aluminum chloride, aluminum chloride was used when inorganic acid aluminum salts such as aluminum phosphate and potassium aluminum sulfate; and other substances dissociating into aluminum ions such as aluminum acetate were used. The same trend is seen. From these results, it can be seen that aluminum ions have an action of suppressing the activity of TRPV4.
  • Comparative Example 7 Aluminum hydroxide gel (aluminum hydroxide content: 1.3% by mass) and capsaicin were added to solvent A so that the concentration of aluminum hydroxide gel was 5% by mass (diluted 20 times) and the concentration of capsaicin was 1 ⁇ M. A test sample was obtained.
  • Comparative Example 8 Capsaicin was added to solvent A so that its concentration was 1 ⁇ M to obtain a test sample.
  • Test Example 9 The TRPV1-expressing cells obtained in Preparation Example 1 (1) are incubated at room temperature for 60 minutes in 10% by mass FBS-containing DMEM containing FURA 2-AM (manufactured by Invitrogen), a fluorescent calcium ion indicator, at a final concentration of 5 ⁇ M.
  • FURA 2-AM was introduced into TRPV1-expressing cells to obtain indicator-introduced cells.
  • the indicator-introduced cells were washed by incubating the indicator-introduced cells in solvent A with shaking at 37 ° C. for 2 minutes.
  • the indicator-introduced cells after washing were placed in a circulation constant temperature chamber of a fluorescence measurement apparatus with a circulation constant temperature chamber.
  • the fluorescence intensity 340 nm (fluorescence intensity G) in the presence of the control and the fluorescence intensity 380 nm (fluorescence intensity H) in the presence of the control were obtained when 50 seconds passed from the start of the circulation of the solvent A (at the end of the circulation of the control).
  • the test sample obtained in Comparative Example 7 was circulated for 50 seconds.
  • fluorescence intensity 340 nm fluorescence intensity I
  • aluminum hydroxide in the presence of an aluminum hydroxide gel and an agonist
  • fluorescence intensity J fluorescence intensity of 380 nm
  • the control solvent A
  • the test sample obtained in Comparative Example 8 was circulated for 50 seconds in the circulation constant temperature chamber, and the fluorescence intensity 340 nm (fluorescence intensity K) in the presence of the agonist and the fluorescence in the presence of the agonist at the end of the circulation of the test sample.
  • An intensity of 380 nm fluorescence intensity L
  • [ ⁇ fluorescence intensity ratio agonist ] [Fluorescence intensity K / fluorescence intensity L]-[fluorescence intensity G / fluorescence intensity H] (VII) Accordingly, a ⁇ fluorescence intensity ratio agonist was calculated.
  • FIG. 9 shows the results of examining the relationship between the type of sample and the TRPV1 activity in Test Example 9.
  • lane 1 shows TRPV1 activity when the test sample obtained in Comparative Example 7 is used
  • lane 2 shows TRPV1 activity when the test sample obtained in Comparative Example 8 is used.
  • the TRPV1 activity when using a test sample (Comparative Example 7) containing an aluminum hydroxide gel and an agonist is TRPV1 when using a test sample containing an agonist (Comparative Example 8). It can be seen that it is higher than the activity. From these results, it can be seen that the aluminum hydroxide gel does not have a TRPV1 activity suppressing action but has a TRPV1 activity promoting action.
  • Comparative Example 9 Aluminum hydroxide gel (aluminum hydroxide content 1.3 mass%) and AITC were added to solvent A so that the concentration of aluminum hydroxide gel was 5 mass% (diluted 20 times) and the concentration of AITC was 20 ⁇ M. A test sample was obtained.
  • Comparative Example 10 A test sample was obtained by adding AITC to solvent A so that its concentration was 20 ⁇ M.
  • Test Example 10 In Test Example 9, instead of using the TRPV1-expressing cells obtained in Preparation Example 1 (1), the TRPA1-expressing cells obtained in Preparation Example 1 (2) were used, and the test sample obtained in Comparative Example 7 was used. Test Example 9 except that the test sample obtained in Comparative Example 9 was used instead of the test sample and that the test sample obtained in Comparative Example 10 was used instead of the test sample obtained in Comparative Example 8 The same operation was performed, and TRPA1 activity was calculated.
  • FIG. 10 shows the results of examining the relationship between the type of sample and the TRPA1 activity in Test Example 10.
  • lane 1 shows TRPA1 activity when the test sample obtained in Comparative Example 9 is used
  • lane 2 shows TRPA1 activity when the test sample obtained in Comparative Example 10 is used.
  • the TRPA1 activity when using a test sample (Comparative Example 9) containing an aluminum hydroxide gel and an agonist is TRPA1 when using a test sample containing an agonist (Comparative Example 10). It can be seen that it is higher than the activity. From these results, it can be seen that the aluminum hydroxide gel does not have a TRPA1 activity inhibitory action but has a TRPA1 activity promoting action.
  • Preparation Example 2 (1) Preparation of test sample A
  • the concentration of potassium aluminum sulfate is 1 ⁇ M [aluminum ion concentration: 1 ⁇ M (experiment number 9)], 10 ⁇ M [aluminum ion concentration: 10 ⁇ M (experiment number 10)], 100 ⁇ M [aluminum ion concentration: 100 ⁇ M].
  • the concentration of potassium aluminum sulfate and AITC is 1 ⁇ M [aluminum ion concentration: 1 ⁇ M (experiment number 9)], 10 ⁇ M [aluminum ion concentration: 10 ⁇ M (experiment number 10)], 100 ⁇ M [ Aluminum ion concentration: 100 ⁇ M (experiment number 11)], 200 ⁇ M [aluminum ion concentration: 200 ⁇ M (experiment number 12)], 500 ⁇ M [aluminum ion concentration: 500 ⁇ M (experiment number 13)], 1000 ⁇ M [aluminum ion concentration: 1000 ⁇ M (experiment number) 14)] 5000 ⁇ M ([aluminum ion concentration: 5000 ⁇ M (experiment number 15)] or 10000 ⁇ M [aluminum ion concentration: 10000 ⁇ M (experiment number 16)]) and the solvent A so that the concentration of AITC is 5 ⁇ M.
  • Preparation Example 3 AITC was added to Solvent A to a concentration of 5 ⁇ M to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 4 to obtain an agonist-containing sample.
  • Test Example 11 The TRPA1-expressing cells obtained in Preparation Example 1 (2) were incubated at room temperature for 60 minutes in DMEM containing 10 mass% FBS containing FURA 2-AM (manufactured by Invitrogen) at a final concentration of 5 ⁇ M. FURA 2-AM was introduced into the cells to obtain indicator-introduced cells. The indicator-introduced cells were washed by incubating the indicator-introduced cells in solvent A with shaking at 37 ° C. for 2 minutes. The indicator-introduced cells after washing were placed in a circulation constant temperature chamber of a fluorescence measurement apparatus with a circulation constant temperature chamber. Thereafter, the solvent A was circulated in the circulation constant temperature chamber, and the measurement of the fluorescence intensity 340 nm and the fluorescence intensity 380 nm was started.
  • the fluorescence intensity 340 nm (fluorescence intensity M) in the presence of the control and the fluorescence intensity 380 nm (fluorescence intensity N) in the presence of the control were obtained when 50 seconds passed from the start of the circulation of the solvent A (at the end of the circulation of the control). Thereafter, the test sample A of Experiment No. 9 was circulated for 50 seconds in a circulation constant temperature chamber. Next, the test sample B of Experiment No. 9 is circulated for 100 seconds in the circulation constant temperature chamber.
  • the fluorescence intensity 340 nm (fluorescence intensity O) in the presence of aluminum ions and agonist (AITC) and A fluorescence intensity of 380 nm (fluorescence intensity P) in the presence of aluminum ions and agonist (AITC) was obtained.
  • the control (solvent A) was circulated for 100 seconds in a circulation constant temperature chamber.
  • the agonist-containing sample obtained in Preparation Example 3 was circulated for 100 seconds in the circulation constant temperature chamber.
  • a fluorescence intensity of 380 nm (fluorescence intensity R) was obtained.
  • [ ⁇ fluorescence intensity specific activity inhibitor ] [Fluorescence intensity O / fluorescence intensity P]-[fluorescence intensity M / fluorescence intensity N] (IX) Accordingly, the ⁇ fluorescence intensity specific activity inhibitor was calculated.
  • [ ⁇ fluorescence intensity ratio agonist ] [Fluorescence intensity Q / fluorescence intensity R]-[fluorescence intensity M / fluorescence intensity N] (X) Accordingly, a ⁇ fluorescence intensity ratio agonist was calculated.
  • [Inhibition rate] [ ⁇ fluorescence intensity ratio agonist- ⁇ fluorescence intensity ratio activity inhibitor ] / [ ⁇ fluorescence intensity ratio agonist ] (XI) Accordingly, the inhibition rate of TRPA1 activity was calculated.
  • test sample A and test sample of experiment number 9 are used except that test sample A and test sample B of experiment number 10 to 16 are used instead of test sample A and test sample B of experiment number 9
  • test sample A and test sample B of experiment number 10 to 16 are used instead of test sample A and test sample B of experiment number 9
  • the same operation as when B was used was performed, and the inhibition rate of TRPA1 activity was calculated.
  • FIG. 11 shows the results of examining the relationship between the potassium aluminum sulfate concentration and the inhibition rate of TRPA1 activity in Test Example 11.
  • the 50% inhibitory concentration of potassium aluminum sulfate for TRPA1 activity was calculated. As a result, it was found that the 50% inhibitory concentration of potassium aluminum sulfate for TRPA1 activity was 103 ⁇ M. From the above results, it was found that the 50% inhibitory concentration of aluminum ions for TRPA1 activity was 103 ⁇ M.
  • Preparation Example 4 (1) Preparation of test sample C Potassium aluminum sulfate was added to solvent A so that the density
  • test sample D Potassium aluminum sulfate and capsaicin were added to solvent A so that the concentration of potassium aluminum sulfate was 1000 ⁇ M [aluminum ion concentration: 1000 ⁇ M] and the concentration of capsaicin was 100 nM to obtain a mixture.
  • concentration of potassium aluminum sulfate was 1000 ⁇ M [aluminum ion concentration: 1000 ⁇ M] and the concentration of capsaicin was 100 nM to obtain a mixture.
  • hydrochloric acid or sodium hydroxide By adding hydrochloric acid or sodium hydroxide to the obtained mixture, the pH of the mixture was adjusted to 4, 6 (experiment number 17), 6 (experiment number 18) or 7.4 (experiment number 19).
  • Sample C was obtained.
  • test sample E Potassium aluminum sulfate and AITC were added to solvent A so that the concentration of potassium aluminum sulfate was 1000 ⁇ M [aluminum ion concentration: 1000 ⁇ M] and the concentration of AITC was 5 ⁇ M to obtain a mixture.
  • concentration of potassium aluminum sulfate was 1000 ⁇ M [aluminum ion concentration: 1000 ⁇ M] and the concentration of AITC was 5 ⁇ M to obtain a mixture.
  • hydrochloric acid or sodium hydroxide By adding hydrochloric acid or sodium hydroxide to the obtained mixture, the pH of the mixture was adjusted to 4, 6 (experiment number 17), 6 (experiment number 18) or 7.4 (experiment number 19).
  • Sample D was obtained.
  • Preparation Example 5 Capsaicin was added to solvent A to a concentration of 100 nM to obtain a mixture. By adding hydrochloric acid or sodium hydroxide to the obtained mixture, the pH of the mixture is adjusted to 4, 6 (Experiment No. 17), 6 (Experiment No. 18) or 7.4 (Experiment No. 19) to be agonists. A containing sample was obtained.
  • Preparation Example 6 AITC was added to Solvent A to a concentration of 5 ⁇ M to obtain a mixture. By adding hydrochloric acid or sodium hydroxide to the obtained mixture, the pH of the mixture is adjusted to 4, 6 (Experiment No. 17), 6 (Experiment No. 18) or 7.4 (Experiment No. 19) to be agonists. A containing sample was obtained.
  • Test Example 12 Calculation of inhibition rate of TRPV1 activity
  • the TRPV1-expressing cells obtained in Preparation Example 1 (1) were mixed with FURA 2-AM (manufactured by Invitrogen) at a final concentration of 5 ⁇ M in 10% by mass FBS-containing DMEM at room temperature. By incubating for 60 minutes, FURA 2-AM was introduced into TRPV1-expressing cells to obtain indicator-introduced cells. The indicator-introduced cells were washed by incubating the indicator-introduced cells in solvent A with shaking at 37 ° C. for 2 minutes.
  • FURA 2-AM manufactured by Invitrogen
  • the indicator-introduced cells after washing were placed in a circulation constant temperature chamber of a fluorescence measurement apparatus with a circulation constant temperature chamber, and then the solvent A was circulated and measurement of fluorescence intensity 340 nm and fluorescence intensity 380 nm was started.
  • the fluorescence intensity 340 nm (fluorescence intensity M) in the presence of the control and the fluorescence intensity 380 nm (fluorescence intensity N) in the presence of the control were obtained when 50 seconds passed from the start of the circulation of the solvent A (at the end of the circulation of the control). Thereafter, the test sample C of Experiment No. 17 was circulated for 50 seconds in a circulation constant temperature chamber.
  • the test sample D of the experiment number 17 is circulated for 100 seconds in the circulation constant temperature chamber, and at the end of circulation of the test sample D, the fluorescence intensity 340 nm (fluorescence intensity O) in the presence of aluminum ions and agonist (capsaicin) and A fluorescence intensity of 380 nm (fluorescence intensity P) in the presence of aluminum ions and an agonist (capsaicin) was obtained.
  • the control (solvent A) was circulated for 100 seconds in a circulation constant temperature chamber. Thereafter, the agonist-containing sample of Experiment No.
  • Fluorescence intensities M to R were used to calculate the inhibition rate of TRPV1 activity according to formula (IX), formula (X) and formula (XI).
  • test sample C and test sample of experiment number 17 are used except that test sample C and test sample D of experiment numbers 18 to 19 are used instead of test sample C and test sample D of experiment number 17
  • test sample C and test sample D of experiment numbers 18 to 19 are used instead of test sample C and test sample D of experiment number 17
  • the same operation as when D was used was performed, and the inhibition rate of TRPV1 activity was calculated.
  • FIG. 12 shows the results of examining the relationship between the pH of the test sample and the inhibition rate of TRPV1 activity in Test Example 12.
  • Test Example 12 (1) instead of using the TRPV1-expressing cell obtained in Preparation Example 1 (1), the TRPA1-expressing cell obtained in Preparation Example 1 (2) was used.
  • the test sample E was used instead of the test sample D and the agonist-containing sample obtained in Preparation Example 6 was used instead of the agonist-containing sample obtained in Preparation Example 5.
  • the same operation as in Example 12 (1) was performed, and the inhibition rate of TRPA1 activity was calculated.
  • FIG. 12 shows the results of examining the relationship between the pH of the test sample and the inhibition rate of TRPA1 activity in Test Example 12.
  • the black bar shows the inhibition rate of TRPV1 activity
  • the white bar shows the inhibition rate of TRPA1 activity.
  • the activity inhibitor of the present invention contains aluminum ions, it results from the activation of an agent that suppresses or modulates the expression of unpleasant sensations or physiological events resulting from the activation of the TRP channel, for example, TRPA1.
  • Stimulation inhibitor used for the purpose of suppressing stimulation cooling sensation adjusting agent used for adjusting the sensation of cooling caused by activation of TRPM8, pain suppression used for the purpose of suppressing pain caused by activation of TRPV1 Agents, skin cell hyperkeratinization inhibitor used to suppress skin cell hyperkeratinization caused by TRPV3 activation, itching agent used for curbing caused by TRPV4 activation, etc. It is expected to be used for In addition, since the method for inhibiting activity of the present invention brings aluminum ions into contact with TRP channels, it suppresses or regulates the expression of unpleasant sensations or physiological events caused by activation of TRP channels, for example, activation of TRPA1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Birds (AREA)
  • Toxicology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)

Abstract

Provided is a TRP channel activity inhibitor capable of effectively inhibiting the activity of TRP channels, wherein the TRP channel activity inhibitor is characterized by containing aluminum ions as an active ingredient for inhibiting the activity of TRP channels.

Description

TRPチャネル活性抑制剤TRP channel activity inhibitor
 本発明は、TRPチャネル活性抑制剤に関する。さらに詳しくは、TRPチャネル活性抑制剤およびTRPチャネルの活性抑制方法に関する。 The present invention relates to a TRP channel activity inhibitor. More specifically, the present invention relates to a TRP channel activity inhibitor and a TRP channel activity suppression method.
 皮膚外用剤は、皮膚に適用され、皮膚に有用な効果を与える外用剤である。しかし、皮膚外用剤は、使用者の皮膚の状態などによっては、使用者に不快な感覚または不快な生理学的事象を引き起こさせることがある。しかし、近年、使用者の安全意識の高まりから、不快な感覚または不快な生理学的事象を使用者に引き起こさせないか、または引き起こさせにくく、しかも有用な効果を十分に発現する物質および方法が待ち望まれている。 The external preparation for skin is an external preparation that is applied to the skin and has a useful effect on the skin. However, the topical skin preparation may cause an unpleasant sensation or an unpleasant physiological event depending on the skin condition of the user. However, in recent years, due to an increase in safety awareness of users, substances and methods that cause or do not cause unpleasant sensations or unpleasant physiological events to the user and that sufficiently express useful effects are awaited. It is.
 ところで、TRPチャネルは、外界から受ける種々の刺激を受容する感覚受容などに関与する一過性受容体電位チャネルである。TRPチャネルの1つであるTRPA1は、例えば、アルカリ剤などによる不快な感覚の発現に関与することが、本発明者らによって見出されている(例えば、特許文献1参照)。 Incidentally, the TRP channel is a transient receptor potential channel involved in sensory reception for receiving various stimuli received from the outside world. It has been found by the present inventors that TRPA1, which is one of the TRP channels, is involved in the expression of unpleasant sensations due to, for example, an alkaline agent (see, for example, Patent Document 1).
特開2012-62304号公報JP 2012-62304 A
 本発明は、前記従来技術に鑑みてなされたものであり、TRPチャネルの活性を効果的に抑制するTRPチャネル活性抑制剤およびTRPチャネルの活性抑制方法を提供することを目的とする。 The present invention has been made in view of the above prior art, and an object thereof is to provide a TRP channel activity inhibitor and a TRP channel activity suppression method that effectively suppress the activity of a TRP channel.
 本発明は、
(1)TRPチャネルの活性を抑制するためのTRPチャネル活性抑制剤であって、前記TRPチャネルの活性を抑制するための有効成分としてアルミニウムイオンを含有していることを特徴とするTRPチャネル活性抑制剤、
(2)TRPチャネルの活性を抑制するためのTRPチャネル活性抑制剤であって、前記TRPチャネルの活性を抑制するための有効成分としてアルミニウムイオンに解離する物質が配合されていることを特徴とするTRPチャネル活性抑制剤、および
(3)TRPチャネルの活性を抑制する活性抑制方法であって、アルミニウムイオンとTRPチャネルとを接触させることを特徴とするTRPチャネルの活性抑制方法
に関する。
The present invention
(1) A TRP channel activity inhibitor for suppressing the activity of a TRP channel, which contains aluminum ions as an active ingredient for suppressing the activity of the TRP channel. Agent,
(2) A TRP channel activity inhibitor for suppressing the activity of the TRP channel, wherein a substance capable of dissociating into aluminum ions is blended as an active ingredient for suppressing the activity of the TRP channel. The present invention relates to a TRP channel activity inhibitor, and (3) an activity suppression method for suppressing the activity of a TRP channel, which comprises contacting an aluminum ion with a TRP channel.
 本発明のTRPチャネル活性抑制剤およびTRPチャネルの活性抑制方法は、TRPチャネルの活性を効果的に抑制するという優れた効果を奏する。 The TRP channel activity inhibitor and the TRP channel activity suppression method of the present invention have an excellent effect of effectively suppressing the activity of the TRP channel.
試験例1において、TRPV1発現細胞内の電流の経時的変化を調べた結果を示すグラフである。In Test Example 1, it is a graph showing the results of examining time-dependent changes in current in TRPV1-expressing cells. 試験例2において、TRPV1発現細胞内の電流の経時的変化を調べた結果を示すグラフである。In Experiment 2, it is a graph which shows the result of having investigated the time-dependent change of the electric current in a TRPV1 expression cell. 試験例3において、硫酸アルミニウムカリウム濃度とTRPV1活性との関係を調べた結果を示すグラフである。In Experiment 3, it is a graph which shows the result of having investigated the relationship between aluminum potassium sulfate concentration and TRPV1 activity. 試験例4において、TRPA1発現細胞内の電流の経時的変化を調べた結果を示すグラフである。In Test Example 4, it is a graph showing the results of examining time-dependent changes in current in TRPA1-expressing cells. 試験例5において、塩化アルミニウム濃度と抑制率との関係を調べた結果を示すグラフである。In Experiment 5, it is a graph which shows the result of having investigated the relationship between an aluminum chloride density | concentration and a suppression rate. 試験例6において、TRPM8発現細胞内の電流の経時的変化を調べた結果を示すグラフである。In Experiment 6, it is a graph which shows the result of having investigated the time-dependent change of the electric current in TRPM8 expression cell. 試験例7において、蛍光強度比の経時的変化を調べた結果を示すグラフである。In Test Example 7, it is a graph showing the results of examining the change over time of the fluorescence intensity ratio. 試験例8において、蛍光強度比の経時的変化を調べた結果を示すグラフである。In Test Example 8, it is a graph showing the results of examining the change over time of the fluorescence intensity ratio. 試験例9において、試料の種類とTRPV1活性との関係を調べた結果を示すグラフである。In Experiment 9, it is a graph which shows the result of having investigated the relationship between the kind of sample, and TRPV1 activity. 試験例10において、試料の種類とTRPA1活性との関係を調べた結果を示すグラフである。In Experiment 10, it is a graph which shows the result of having investigated the relationship between the kind of sample, and TRPA1 activity. 試験例11において、硫酸アルミニウムカリウム濃度と抑制率との関係を調べた結果を示すグラフである。In Experiment 11, it is a graph which shows the result of having investigated the relationship between aluminum potassium sulfate concentration and the inhibition rate. 試験例12において、被験試料のpHと抑制率との関係を調べた結果を示すグラフである。In Experiment 12, it is a graph which shows the result of having investigated the relationship between pH of a test sample, and a suppression rate.
1.TRPチャネル活性抑制剤
 本発明は、1つの側面では、TRPチャネルの活性を抑制するためのTRPチャネル活性抑制剤であって、TRPチャネルの活性を抑制するための有効成分としてアルミニウムイオンを含有していることを特徴とするTRPチャネル活性抑制剤(以下、「活性抑制剤A」という)に関する。
1. TRP channel activity inhibitor In one aspect, the present invention is a TRP channel activity inhibitor for suppressing the activity of a TRP channel, and contains aluminum ions as an active ingredient for suppressing the activity of a TRP channel. The present invention relates to a TRP channel activity inhibitor (hereinafter referred to as “activity inhibitor A”).
 アルミニウムイオンは、アゴニストによるTRPチャネルの活性を抑制する。したがって、本発明の活性抑制剤Aは、アルミニウムイオンを有効成分として含有しているので、本発明の活性抑制剤AとTRPチャネルとを接触させることにより、TRPチャネルの活性を効果的に抑制することができる。 Aluminum ions suppress the activity of TRP channels by agonists. Therefore, since the activity inhibitor A of the present invention contains aluminum ions as an active ingredient, the activity of the TRP channel is effectively suppressed by bringing the activity inhibitor A of the present invention into contact with the TRP channel. be able to.
 本発明の活性抑制剤Aでは、アルミニウムイオンは、例えば、水系溶媒中で解離した状態で存在していてもよい。水系溶媒としては、例えば、水、クエン酸緩衝液、リン酸緩衝液などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。水系溶媒が水である場合、本発明の活性抑制剤AのpHは、水中で解離した状態でアルミニウムイオンを安定に存在させる観点から、好ましくは7.5~14(以下、「高pH」という)または1~6.5(以下、「低pH」という)である。本発明の活性抑制剤AのpHが高pHである場合、本発明の活性抑制剤AのpHは、水中で解離した状態でアルミニウムイオンを安定に存在させる観点から、好ましくは7.5以上、より好ましくは8以上、さらに好ましくは8.5以上であり、水中で解離した状態でアルミニウムイオンを安定に存在させる観点から、好ましくは14以下、より好ましくは13以下である。本発明の活性抑制剤AのpHが低pHである場合、水中で解離した状態でアルミニウムイオンを安定に存在させる観点から、好ましくは1以上、より好ましくは2以上であり、水中で解離した状態でアルミニウムイオンを安定に存在させる観点から、好ましくは6.5以下、より好ましくは6以下、さらに好ましくは5以下である。 In the activity inhibitor A of the present invention, aluminum ions may be present in a dissociated state in an aqueous solvent, for example. Examples of the aqueous solvent include water, citrate buffer, and phosphate buffer, but the present invention is not limited to such examples. When the aqueous solvent is water, the pH of the activity inhibitor A of the present invention is preferably 7.5 to 14 (hereinafter referred to as “high pH”) from the viewpoint of stably presenting aluminum ions in a dissociated state in water. ) Or 1 to 6.5 (hereinafter referred to as “low pH”). When the pH of the activity inhibitor A of the present invention is high, the pH of the activity inhibitor A of the present invention is preferably 7.5 or more from the viewpoint of stably presenting aluminum ions in a dissociated state in water. More preferably, it is 8 or more, more preferably 8.5 or more, and preferably 14 or less, more preferably 13 or less, from the viewpoint of stably presenting aluminum ions in a dissociated state in water. When the pH of the activity inhibitor A of the present invention is low, it is preferably 1 or more, more preferably 2 or more, and is dissociated in water from the viewpoint of stably presenting aluminum ions in a dissociated state in water. From the viewpoint of stably presenting aluminum ions, it is preferably 6.5 or less, more preferably 6 or less, and even more preferably 5 or less.
 本発明の活性抑制剤Aにおけるアルミニウムイオン濃度は、適用対象のTRPチャネルの種類、本発明の活性抑制剤Aの用途などによって異なるので一概には決定することができないことから、適用対象のTRPチャネルの種類、本発明の活性抑制剤Aの用途などに応じて適宜決定することが好ましい。本発明の活性抑制剤Aにおけるアルミニウムイオン濃度は、通常、TRPチャネルの活性に対する抑制効果を十分に発揮させる観点から、好ましくは10μM以上、より好ましくは100μM以上であり、本発明の活性抑制剤Aの保存安定性を向上させる観点から、好ましくは20mM以下、より好ましくは10mM以下である。本明細書において、アルミニウムイオン濃度は、金属指示薬〔(株)同仁化学研究所製、商品名:Cu-PAN〕を用いて測定された値である。 Since the aluminum ion concentration in the activity inhibitor A of the present invention varies depending on the type of TRP channel to be applied, the use of the activity inhibitor A of the present invention, and the like, it cannot be determined unconditionally. It is preferable to determine appropriately depending on the type of the agent and the use of the activity inhibitor A of the present invention. The concentration of aluminum ions in the activity inhibitor A of the present invention is usually preferably 10 μM or more, more preferably 100 μM or more from the viewpoint of sufficiently exerting the inhibitory effect on the activity of the TRP channel, and the activity inhibitor A of the present invention. From the viewpoint of improving the storage stability, it is preferably 20 mM or less, more preferably 10 mM or less. In this specification, the aluminum ion concentration is a value measured using a metal indicator (trade name: Cu-PAN, manufactured by Dojindo Laboratories).
 本発明の活性抑制剤Aは、本発明の目的が妨げられない範囲内で、例えば、pH調整剤、界面活性剤などの他の成分を含有していてもよい。 The activity inhibitor A of the present invention may contain other components such as a pH adjuster and a surfactant within a range that does not hinder the object of the present invention.
 本発明の活性抑制剤Aは、例えば、アルミニウムイオンに解離する物質と水系溶媒とを混合することによって製造することができる。本発明の活性抑制剤AがpH調整剤、界面活性剤などの他の成分を含有する場合、当該活性抑制剤Aは、例えば、アルミニウムイオンに解離する物質と他の成分とを混合することによって製造することができる。 The activity inhibitor A of the present invention can be produced, for example, by mixing a substance that dissociates into aluminum ions and an aqueous solvent. When the activity inhibitor A of the present invention contains other components such as a pH adjuster and a surfactant, the activity inhibitor A is obtained by, for example, mixing a substance that dissociates into aluminum ions and other components. Can be manufactured.
 アルミニウムイオンに解離する物質としては、例えば、ハロゲン化アルミニウム、無機酸アルミニウム塩、有機酸アルミニウム塩などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。ハロゲン化アルミニウムとしては、例えば、塩化アルミニウムなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。無機酸アルミニウム塩は、無機酸アルミニウム単塩であってもよく、無機酸アルミニウム複塩であってもよい。無機酸アルミニウム単塩としては、例えば、リン酸アルミニウムなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。無機酸アルミニウム複塩としては、例えば、硫酸アルミニウム複塩などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。硫酸アルミニウム複塩としては、例えば、硫酸アルミニウムナトリウム、硫酸アルミニウムカリウムなどの硫酸アルミニウムアルカリ金属複塩、硫酸アルミニウムアンモニウムなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。有機酸アルミニウム塩としては、例えば、ギ酸アルミニウム、酢酸アルミニウム、クエン酸アルミニウムなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのアルミニウムイオンに解離する物質のなかでは、TRPチャネルの活性に対する抑制効果を十分に発揮させる観点から、ハロゲン化アルミニウム、無機酸アルミニウム塩および有機酸アルミニウム塩が好ましく、ハロゲン化アルミニウムおよび硫酸アルミニウム複塩がより好ましく、塩化アルミニウム、硫酸アルミニウムカリウムおよび硫酸アルミニウムアンモニウムがより一層好ましく、塩化アルミニウムおよび硫酸アルミニウムカリウムがさらに好ましく、塩化アルミニウムがさらに一層好ましい。 Examples of the substance dissociating into aluminum ions include aluminum halides, inorganic acid aluminum salts, and organic acid aluminum salts, but the present invention is not limited to such examples. Examples of the aluminum halide include aluminum chloride, but the present invention is not limited to such examples. The inorganic acid aluminum salt may be an inorganic acid aluminum single salt or an inorganic acid aluminum double salt. As an inorganic acid aluminum single salt, although aluminum phosphate etc. are mentioned, for example, this invention is not limited only to this illustration. Examples of inorganic acid aluminum double salts include aluminum sulfate double salts, but the present invention is not limited to such examples. Examples of the aluminum sulfate double salt include aluminum sulfate alkali metal double salts such as sodium aluminum sulfate and potassium aluminum sulfate, and aluminum ammonium sulfate, but the present invention is not limited to such examples. Examples of the organic acid aluminum salt include aluminum formate, aluminum acetate, and aluminum citrate, but the present invention is not limited to such examples. Of these substances dissociating into aluminum ions, aluminum halides, inorganic acid aluminum salts and organic acid aluminum salts are preferred from the viewpoint of sufficiently exerting an inhibitory effect on the activity of the TRP channel. More preferred are salts, even more preferred are aluminum chloride, potassium aluminum sulfate and aluminum ammonium sulfate, even more preferred are aluminum chloride and potassium aluminum sulfate, and even more preferred is aluminum chloride.
 本発明は、他の側面では、TRPチャネルの活性を抑制するためのTRPチャネル活性抑制剤であって、TRPチャネルの活性を抑制するための有効成分としてアルミニウムイオンに解離する物質が配合されていることを特徴とするTRPチャネル活性抑制剤(以下、「活性抑制剤B」という)に関する。 In another aspect, the present invention is a TRP channel activity inhibitor for suppressing the activity of the TRP channel, and contains a substance that dissociates into aluminum ions as an active ingredient for suppressing the activity of the TRP channel. The present invention relates to a TRP channel activity inhibitor (hereinafter referred to as “activity inhibitor B”).
 本発明の活性抑制剤BとTRPチャネルとを接触させたとき、アルミニウムイオンに解離する物質から解離されたアルミニウムイオンとTRPチャネルとが接触することにより、TRPチャネルの活性が効果的に抑制される。したがって、本発明の活性抑制剤Bは、アルミニウムイオンに解離する物質が配合されているので、TRPチャネルの活性を効果的に抑制することができる。 When the activity inhibitor B of the present invention is brought into contact with the TRP channel, the activity of the TRP channel is effectively inhibited by the contact between the aluminum ion dissociated from the substance dissociating into the aluminum ion and the TRP channel. . Therefore, since the activity inhibitor B of the present invention contains a substance that dissociates into aluminum ions, the activity of the TRP channel can be effectively suppressed.
 アルミニウムイオンに解離する物質は、TRPチャネルと接触させる際に、アルミニウムイオンに解離していればよい。本発明の活性抑制剤Bに用いられるアルミニウムイオンに解離する物質は、本発明の活性抑制剤Aの製造に用いられるアルミニウムイオンに解離する物質と同様である。アルミニウムイオンに解離する物質のなかでは、TRPチャネルの活性に対する抑制効果を十分に発揮させる観点から、ハロゲン化アルミニウム、無機酸アルミニウム塩および有機酸アルミニウム塩が好ましく、ハロゲン化アルミニウムおよび硫酸アルミニウム複塩がより好ましく、塩化アルミニウム、硫酸アルミニウムカリウムおよび硫酸アルミニウムアンモニウムがより一層好ましく、塩化アルミニウムおよび硫酸アルミニウムカリウムがさらに好ましく、塩化アルミニウムがさらに一層好ましい。 The substance that dissociates into aluminum ions may be dissociated into aluminum ions when brought into contact with the TRP channel. The substance dissociating into aluminum ions used in the activity inhibitor B of the present invention is the same as the substance dissociating into aluminum ions used in the production of the activity inhibitor A of the present invention. Among the substances dissociating into aluminum ions, aluminum halide, inorganic acid aluminum salt, and organic acid aluminum salt are preferable, and aluminum halide and aluminum sulfate double salt are preferable from the viewpoint of sufficiently exerting an inhibitory effect on the activity of TRP channel. More preferably, aluminum chloride, potassium aluminum sulfate and aluminum ammonium sulfate are more preferable, aluminum chloride and potassium aluminum sulfate are more preferable, and aluminum chloride is still more preferable.
 本発明の活性抑制剤Bでは、アルミニウムイオンに解離する物質は、水系溶媒中に溶解した状態で存在していてもよい。本発明の活性抑制剤Bに用いられる水系溶媒は、前述の活性抑制剤Aに用いられる水系溶媒と同様である。水系溶媒が水である場合、本発明の活性抑制剤BのpHは、アルミニウムイオンに解離する物質の種類などによって異なるので一概には決定することができないことから、アルミニウムイオンに解離する物質の種類などに応じて適宜決定することが好ましい。水系溶媒が水であるときの本発明の活性抑制剤BのpHは、水中で解離した状態でアルミニウムイオンを安定に存在させる観点から、好ましくは前記高pHまたは前記低pHである。本発明の活性抑制剤BのpHが高pHである場合、本発明の活性抑制剤BのpHは、水中で解離した状態でアルミニウムイオンを安定に存在させる観点から、好ましくは7.5以上、より好ましくは8以上、さらに好ましくは8.5以上であり、水中で解離した状態でアルミニウムイオンを安定に存在させる観点から、好ましくは14以下、より好ましくは13以下である。本発明の活性抑制剤BのpHが低pHである場合、水中で解離した状態でアルミニウムイオンを安定に存在させる観点から、好ましくは1以上、より好ましくは2以上であり、水中で解離した状態でアルミニウムイオンを安定に存在させる観点から、好ましくは6.5以下、より好ましくは6以下、さらに好ましくは5以下である。 In the activity inhibitor B of the present invention, the substance dissociated into aluminum ions may exist in a dissolved state in an aqueous solvent. The aqueous solvent used for the activity inhibitor B of the present invention is the same as the aqueous solvent used for the activity inhibitor A described above. When the aqueous solvent is water, the pH of the activity inhibitor B of the present invention varies depending on the type of substance that dissociates into aluminum ions and cannot be determined unconditionally. It is preferable to determine appropriately according to the above. The pH of the activity inhibitor B of the present invention when the aqueous solvent is water is preferably the high pH or the low pH from the viewpoint of stably allowing aluminum ions to dissociate in water. When the pH of the activity inhibitor B of the present invention is high, the pH of the activity inhibitor B of the present invention is preferably 7.5 or more from the viewpoint of stably presenting aluminum ions in a dissociated state in water. More preferably, it is 8 or more, more preferably 8.5 or more, and preferably 14 or less, more preferably 13 or less, from the viewpoint of stably presenting aluminum ions in a dissociated state in water. When the pH of the activity inhibitor B of the present invention is low, it is preferably 1 or more, more preferably 2 or more, and is dissociated in water from the viewpoint of stably presenting aluminum ions in a dissociated state in water. From the viewpoint of stably presenting aluminum ions, it is preferably 6.5 or less, more preferably 6 or less, and even more preferably 5 or less.
 本発明の活性抑制剤Bにおけるアルミニウムイオンに解離する物質の濃度は、アルミニウムイオンに解離する物質の種類、適用対象のTRPチャネルの種類などによって異なるので一概には決定することができないことから、アルミニウムイオンに解離する物質の種類、適用対象のTRPチャネルの種類などに応じて適宜決定することが好ましい。本発明の活性抑制剤B100質量部あたりのアルミニウムイオンに解離する物質の量は、通常、TRPチャネルの活性に対する抑制効果を十分に発揮させる観点から、好ましくは0.01質量部以上、より好ましくは0.05質量部以上であり、TRPチャネルの活性に対する抑制効果を十分に発揮させる観点から、100質量部以下である。本発明の活性抑制剤がアルミニウムイオンに解離する物質以外の成分を含有する場合、本発明の活性抑制剤B100質量部あたりのアルミニウムイオンに解離する物質の量の上限値は、本発明の活性抑制剤Bの保存安定性を向上させる観点から、好ましくは10質量部以下、より好ましく1質量部以下である。 Since the concentration of the substance dissociating into aluminum ions in the activity inhibitor B of the present invention varies depending on the type of substance dissociating into aluminum ions, the type of TRP channel to be applied, etc., it cannot be determined unconditionally. It is preferable to determine appropriately depending on the type of substance dissociated into ions, the type of TRP channel to be applied, and the like. The amount of the substance dissociated into aluminum ions per 100 parts by mass of the activity inhibitor B of the present invention is preferably 0.01 parts by mass or more, more preferably from the viewpoint of sufficiently exerting the inhibitory effect on the activity of the TRP channel. It is 0.05 parts by mass or more, and is 100 parts by mass or less from the viewpoint of sufficiently exerting an inhibitory effect on the activity of the TRP channel. When the activity inhibitor of the present invention contains components other than the substance that dissociates into aluminum ions, the upper limit of the amount of the substance that dissociates into aluminum ions per 100 parts by mass of the activity inhibitor B of the present invention is the activity suppression of the present invention. From the viewpoint of improving the storage stability of the agent B, it is preferably 10 parts by mass or less, more preferably 1 part by mass or less.
 本発明の活性抑制剤Bは、本発明の目的が妨げられない範囲内で、例えば、pH調整剤、界面活性剤などの他の成分を含有していてもよい。 The activity inhibitor B of the present invention may contain other components such as a pH adjuster and a surfactant within a range that does not hinder the purpose of the present invention.
 使用時における本発明の活性抑制剤Bのアルミニウムイオン濃度は、通常、TRPチャネル活性抑制作用を十分に発現させる観点から、好ましくは0.01mM以上、より好ましくは0.1mM以上であり、TRPチャネル活性抑制作用を十分に発現させる観点から、好ましくは10mM以下、より好ましくは5mM以下である。 The aluminum ion concentration of the activity inhibitor B of the present invention at the time of use is usually preferably 0.01 mM or more, more preferably 0.1 mM or more, from the viewpoint of sufficiently expressing the TRP channel activity inhibitory action. From the viewpoint of sufficiently expressing the activity suppressing action, it is preferably 10 mM or less, more preferably 5 mM or less.
 本発明の活性抑制剤Bは、例えば、アルミニウムイオンに解離する物質と水系溶媒とを混合することによって製造することができる。本発明の活性抑制剤BがpH調整剤、界面活性剤などの他の成分を含有する場合、例えば、当該活性抑制剤Bは、アルミニウムイオンに解離する物質と他の成分とを混合することによって製造することができる。 The activity inhibitor B of the present invention can be produced, for example, by mixing a substance that dissociates into aluminum ions and an aqueous solvent. When the activity inhibitor B of the present invention contains other components such as a pH adjuster and a surfactant, for example, the activity inhibitor B is obtained by mixing a substance that dissociates into aluminum ions and other components. Can be manufactured.
 TRPチャネルとしては、例えば、TRPA1、TRPM8、TRPV1、TRPV3、TRPV4などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのTRPチャネルのなかでは、効果的に活性を抑制することができることから、TRPA1、TRPM8、TRPV1、TRPV3およびTRPV4が好ましい。 Examples of the TRP channel include TRPA1, TRPM8, TRPV1, TRPV3, and TRPV4, but the present invention is not limited to such examples. Among these TRP channels, TRPA1, TRPM8, TRPV1, TRPV3 and TRPV4 are preferable because the activity can be effectively suppressed.
 TRPA1としては、例えば、ヒトTRPA1(例えば、GenBankアクセッション番号NM_007332など)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPA1の活性としては、例えば、アリルイソチオシアネートなどによる化学刺激、pH10~12の条件下での高pH刺激、17℃前後の温度での冷刺激、機械刺激などの刺激による細胞外から細胞内へのカルシウムイオンの輸送能;当該刺激による膜電位の調節能などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPA1が有するカルシウムイオンの輸送能は、例えば、TRPA1発現細胞が有するTRPA1へのTRPA1アゴニストの結合に伴う細胞外から細胞内へのカルシウムイオンの流入量を測定することによって調べることができる。TRPA1が有する膜電位の調節能は、例えば、TRPA1発現細胞が有するTRPA1へのTRPA1アゴニストの結合に伴う細胞内における電流の増加量などを測定することによって調べることができる。TRPA1アゴニストとしては、例えば、アリルイソチオシアナート、シンナムアルデヒド、アリシンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPA1の活性化に起因する不快な感覚または生理学的事象としては、例えば、炎症性疼痛、神経因性疼痛などの痛み、過度の刺激感、過度の冷感などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of TRPA1 include human TRPA1 (for example, GenBank accession number NM_007332) and the like, but the present invention is not limited to such examples. The activity of TRPA1 includes, for example, chemical stimulation with allyl isothiocyanate, high pH stimulation under conditions of pH 10 to 12, cold stimulation at a temperature of around 17 ° C., and stimulation from the outside of cells by stimulation such as mechanical stimulation. The ability to transport calcium ions; the ability to regulate the membrane potential by the stimulus, and the like are exemplified, but the present invention is not limited to such examples. The ability of TRPA1 to transport calcium ions can be examined, for example, by measuring the inflow of calcium ions from the outside into the cell accompanying the binding of a TRPA1 agonist to TRPA1 possessed by a TRPA1 expressing cell. The ability to regulate the membrane potential possessed by TRPA1 can be examined, for example, by measuring the amount of increase in current in the cells accompanying the binding of a TRPA1 agonist to TRPA1 possessed by a TRPA1-expressing cell. Examples of the TRPA1 agonist include allyl isothiocyanate, cinnamaldehyde, and allicin, but the present invention is not limited to such examples. Examples of unpleasant sensations or physiological events resulting from the activation of TRPA1 include pain such as inflammatory pain and neuropathic pain, excessive irritation, excessive cooling, etc. It is not limited only to such illustration.
 TRPM8としては、例えば、ヒトTRPM8(例えば、GenBankアクセッション番号NM_024080など)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPM8の活性としては、メントールなどによる化学刺激、25~28℃前後の温度での冷刺激などの刺激による細胞外から細胞内へのカルシウムイオンの輸送能などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPM8が有するカルシウムイオンの輸送能は、例えば、TRPM8発現細胞が有するTRPM8へのTRPM8アゴニストの結合に伴う細胞外から細胞内へのカルシウムイオンの流入量を測定することによって調べることができる。TRPM8アゴニストとしては、例えば、メントール、イシリンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPM8の活性化に起因する不快な感覚または生理学的事象としては、例えば、過度の冷感などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of TRPM8 include human TRPM8 (for example, GenBank accession number NM_024080), but the present invention is not limited only to such illustration. Examples of the activity of TRPM8 include the ability to transport calcium ions from the outside to the inside of the cell by stimulation such as chemical stimulation by menthol and cold stimulation at a temperature of about 25 to 28 ° C. It is not limited to illustration only. The ability of TRPM8 to transport calcium ions can be examined, for example, by measuring the inflow of calcium ions from the outside to the inside of the cell accompanying the binding of the TRPM8 agonist to TRPM8 possessed by TRPM8-expressing cells. Examples of the TRPM8 agonist include menthol and icilin, but the present invention is not limited to such examples. Examples of unpleasant sensations or physiological events resulting from the activation of TRPM8 include excessive cooling, but the present invention is not limited to such examples.
 TRPV1としては、例えば、ヒトTRPV1(例えば、GenBankアクセッション番号NM_080704など)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPV1の活性としては、例えば、カプサイシンなどによる化学刺激、pH3~5.5の条件下での低pH刺激、43℃前後の温度での熱刺激、痛み刺激、機械刺激などの刺激による細胞外から細胞内へのカルシウムイオンの輸送能などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPV1が有するカルシウムイオンの輸送能は、例えば、TRPV1発現細胞が有するTRPV1へのTRPV1アゴニストの結合に伴う細胞外から細胞内へのカルシウムイオンの流入量を測定することによって調べることができる。TRPV1アゴニストとしては、例えば、カプサイシン、カンファー、アリシンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPV1の活性化に起因する不快な感覚または生理学的事象としては、例えば、過度の熱感などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of TRPV1 include human TRPV1 (eg, GenBank accession number NM — 080704), but the present invention is not limited to such examples. The activity of TRPV1 includes, for example, chemical stimulation with capsaicin, low pH stimulation under conditions of pH 3 to 5.5, thermal stimulation at a temperature around 43 ° C., stimulation from pain, mechanical stimulation, etc. Examples include the ability to transport calcium ions into cells, but the present invention is not limited to such examples. The ability of TRPV1 to transport calcium ions can be examined, for example, by measuring the inflow amount of calcium ions from the outside to the inside of the cell accompanying the binding of a TRPV1 agonist to TRPV1 of a TRPV1-expressing cell. Examples of TRPV1 agonists include capsaicin, camphor, and allicin, but the present invention is not limited to such examples. Examples of unpleasant sensations or physiological events resulting from the activation of TRPV1 include excessive heat sensation, but the present invention is not limited to such examples.
 TRPV3としては、例えば、ヒトTRPV3(例えば、GenBankアクセッション番号:NM_145068など)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPV3の活性としては、例えば、カンファーなどによる化学刺激、33~39℃前後の温度での熱刺激などの刺激による細胞外から細胞内へのカルシウムイオン輸送能などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPV3が有するカルシウムイオンの輸送能は、例えば、TRPV3発現細胞が有するTRPV3へのTRPV3アゴニストの結合に伴う細胞外から細胞内へのカルシウムイオンの流入量を測定することによって調べることができる。TRPV3アゴニストとしては、例えば、カンファー、オイゲノール、カルバクロールなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPV3の活性化に起因する不快な感覚または生理学的事象としては、例えば、過度の熱感、皮膚の過角化などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of TRPV3 include human TRPV3 (for example, GenBank accession number: NM_145068), but the present invention is not limited to such examples. The activity of TRPV3 includes, for example, the ability to transport calcium ions from the outside to the inside of the cell by stimulation such as chemical stimulation by camphor, heat stimulation at a temperature of about 33 to 39 ° C. It is not limited only to such illustration. The ability of TRPV3 to transport calcium ions can be examined, for example, by measuring the inflow amount of calcium ions from the outside to the inside of the cell accompanying the binding of a TRPV3 agonist to TRPV3 of a TRPV3-expressing cell. Examples of TRPV3 agonists include camphor, eugenol, carvacrol, and the like, but the present invention is not limited to such examples. Examples of unpleasant sensations or physiological events resulting from the activation of TRPV3 include excessive heat feeling and skin hyperkeratinization, but the present invention is not limited to such examples.
 TRPV4としては、例えば、ヒトTRPV4(例えば、GenBankアクセッション番号:NM_021625など)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPV4の活性としては、例えば、4α-ホルボール-12,13-ジデカノエートなどによる化学刺激、27~34℃前後の温度での熱刺激、低浸透圧刺激、機械刺激などの刺激による細胞外から細胞内へのカルシウムイオン輸送能などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPV4が有するカルシウムイオンの輸送能は、例えば、TRPV4発現細胞が有するTRPV4へのTRPV4アゴニストの結合に伴う細胞外から細胞内へのカルシウムイオンの流入量を測定することによって調べることができる。TRPV4アゴニストとしては、例えば、4α-ホルボール 12,13-ジデカノエートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。TRPV4の活性化に起因する不快な感覚または生理学的事象としては、例えば、過度の熱感、痒み感覚などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of TRPV4 include human TRPV4 (eg, GenBank accession number: NM — 021625), but the present invention is not limited to such examples. The activity of TRPV4 includes, for example, chemical stimulation with 4α-phorbol-12,13-didecanoate, etc., thermal stimulation at a temperature around 27 to 34 ° C., hypoosmotic stimulation, mechanical stimulation, etc. However, the present invention is not limited to such examples. The ability of TRPV4 to transport calcium ions can be examined, for example, by measuring the inflow of calcium ions from the outside into the cells accompanying the binding of a TRPV4 agonist to TRPV4 possessed by a TRPV4-expressing cell. Examples of the TRPV4 agonist include 4α-phorbol 12,13-didecanoate, but the present invention is not limited to such examples. Examples of unpleasant sensations or physiological events resulting from the activation of TRPV4 include excessive thermal sensation and itchiness, but the present invention is not limited to such examples.
 本発明の活性抑制剤Aおよび活性抑制剤Bが有するTRPチャネル活性抑制作用は、例えば、TRPチャネルを発現する細胞(以下、「TRPチャネル発現細胞」という)の細胞内カルシウムイオン濃度、TRPチャネル発現細胞内における電流などを指標として用いることによって評価することができる。 The TRP channel activity inhibiting action of the activity inhibitor A and the activity inhibitor B of the present invention is, for example, the intracellular calcium ion concentration of a TRP channel-expressing cell (hereinafter referred to as “TRP channel-expressing cell”), TRP channel expression. It can be evaluated by using the current in the cell as an index.
 TRPチャネル発現細胞は、内因性TRPチャネルを発現する細胞であってもよく、外因性TRPチャネルを発現する細胞であってもよい。TRPチャネル発現細胞は、1種類のTRPチャネルを発現する細胞であってもよく、2種類以上のTRPチャネルを発現する細胞であってもよい。外因性TRPチャネルを発現する細胞としては、例えば、外因性TRPチャネルをコードする核酸を宿主細胞に導入することによって得られる細胞などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 The TRP channel-expressing cell may be a cell expressing an endogenous TRP channel or a cell expressing an exogenous TRP channel. The TRP channel-expressing cell may be a cell that expresses one type of TRP channel, or may be a cell that expresses two or more types of TRP channels. Examples of cells that express an exogenous TRP channel include cells obtained by introducing a nucleic acid encoding an exogenous TRP channel into a host cell, but the present invention is limited to such examples only. is not.
 TRPチャネル活性抑制作用の評価方法の具体例としては、以下の評価法1、評価法2などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Specific examples of the evaluation method for the TRP channel activity inhibitory action include the following evaluation method 1, evaluation method 2, and the like, but the present invention is not limited to such examples.
<評価法1>
(1A)TRPチャネル発現細胞と本発明の活性抑制剤Aまたは活性抑制剤BとTRPチャネルのアゴニストとを接触させ、当該TRPチャネル発現細胞の細胞内カルシウムイオン濃度Aを測定するステップ、
(1B)TRPチャネル発現細胞とTRPチャネルのアゴニストとを接触させ、当該TRPチャネル発現細胞の細胞内カルシウムイオン濃度Bを測定するステップ、および
(1C)細胞内カルシウムイオン濃度Aと細胞内カルシウムイオン濃度Bとを比較するステップを含む方法。
<Evaluation method 1>
(1A) contacting a TRP channel-expressing cell with the activity inhibitor A or activity inhibitor B of the present invention and an agonist of the TRP channel, and measuring the intracellular calcium ion concentration A of the TRP channel-expressing cell;
(1B) contacting a TRP channel-expressing cell with a TRP channel agonist and measuring the intracellular calcium ion concentration B of the TRP channel-expressing cell; and (1C) intracellular calcium ion concentration A and intracellular calcium ion concentration. A method comprising the step of comparing with B.
<評価法2>
(2A)TRPチャネル発現細胞と本発明の活性抑制剤Aまたは活性抑制剤BとTRPチャネルのアゴニストとを接触させ、当該TRPチャネル発現細胞内における電流Aを測定するステップ、
(2B)TRPチャネル発現細胞とTRPチャネルのアゴニストとを接触させ、当該TRPチャネル発現細胞内における電流Bを測定するステップ、および
(2C)電流Aと電流Bとを比較するステップ
を含む方法。
<Evaluation method 2>
(2A) contacting a TRP channel-expressing cell with the activity inhibitor A or activity inhibitor B of the present invention and a TRP channel agonist, and measuring the current A in the TRP channel-expressing cell;
(2B) A method comprising the steps of contacting a TRP channel-expressing cell with an agonist of a TRP channel, measuring a current B in the TRP channel-expressing cell, and (2C) comparing the current A and the current B.
 評価法1における細胞内カルシウムイオン濃度Aおよび細胞内カルシウムイオン濃度Bの測定方法としては、例えば、カルシウムイオンに結合するカルシウム指示薬を用いる方法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。カルシウム指示薬を用いる方法では、TRPチャネル発現細胞に導入して当該TRPチャネル発現細胞内のカルシウムイオンにカルシウム指示薬を結合させ、カルシウムイオンと結合したカルシウム指示薬の量を調べることによって細胞内カルシウムイオン濃度を測定することができる。カルシウム指示薬は、カルシウムイオンと結合したカルシウム指示薬の量を簡便な操作で測定することができることから、カルシウムイオンとの結合前後の変化を光学的特性の変化などによって検出することができる試薬であることが好ましい。光学的特性の変化としては、例えば、蛍光強度の変化、吸光度の変化などが挙げられるが、本発明は、かかる例示のみに限定されるものでない。カルシウム指示薬としては、例えば、カルシウムイオンとの結合前後に蛍光強度が変化する蛍光カルシウム指示薬などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。カルシウム指示薬の具体例としては、1-[6-アミノ-2-(5-カルボキシ-2-オキサゾリル)-5-ベンゾフラニルオキシ]-2-(2-アミノ-5-メチルフェノキシ)エタン-N,N,N’,N’-四酢酸ペンタアセトキシメチルエステル(Fura 2-AM)、1-[2-アミノ-5-(2,7-ジクロロ-6-ヒドロキシ-3-オキソ-9-キサンテニル)フェノキシ]-2-(2-アミノ-5-メチルフェノキシ)エタン-N,N,N’,N’-四酢酸テトラアセトキシメチルエステル(Fluo 3-AM)、1-[2-アミノ-5-(2,7-ジフルオロ-6-アセトキシメトキシ-3-オキソ-9-キサンテニル)フェノキシ]-2-(2-アミノ-5-メチルフェノキシ)エタン-N,N,N’,N’-四酢酸テトラアセトキシメチルエステル(Fluo 4-AM)などの蛍光カルシウム指示薬などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of the method for measuring the intracellular calcium ion concentration A and the intracellular calcium ion concentration B in Evaluation Method 1 include a method using a calcium indicator that binds to calcium ions, but the present invention is limited only to such examples. Is not to be done. In the method using a calcium indicator, the intracellular calcium ion concentration is determined by introducing it into a TRP channel-expressing cell, binding the calcium indicator to the calcium ion in the TRP channel-expressing cell, and examining the amount of the calcium indicator bound to the calcium ion. Can be measured. Since the calcium indicator can measure the amount of calcium indicator bound to calcium ions with a simple operation, it must be a reagent that can detect changes before and after binding with calcium ions by changes in optical properties, etc. Is preferred. Examples of changes in optical characteristics include changes in fluorescence intensity and changes in absorbance, but the present invention is not limited to such examples. Examples of the calcium indicator include a fluorescent calcium indicator whose fluorescence intensity changes before and after binding with calcium ions, but the present invention is not limited to such examples. Specific examples of calcium indicators include 1- [6-amino-2- (5-carboxy-2-oxazolyl) -5-benzofuranyloxy] -2- (2-amino-5-methylphenoxy) ethane-N , N, N ′, N′-tetraacetic acid pentaacetoxymethyl ester (Fura 2-AM), 1- [2-amino-5- (2,7-dichloro-6-hydroxy-3-oxo-9-xanthenyl) Phenoxy] -2- (2-amino-5-methylphenoxy) ethane-N, N, N ′, N′-tetraacetic acid tetraacetoxymethyl ester (Fluo 3-AM), 1- [2-amino-5- ( 2,7-difluoro-6-acetoxymethoxy-3-oxo-9-xanthenyl) phenoxy] -2- (2-amino-5-methylphenoxy) ethane-N, N, N ′, N′-tetraacetic acid Although fluorescent calcium indicator, such as tiger acetoxymethyl ester (Fluo 4-AM) and the like, and the present invention is not limited only to those exemplified.
 評価法1では、細胞内カルシウムイオン濃度Bと比べて細胞内カルシウムイオン濃度Aが低い場合、本発明の活性抑制剤Aまたは活性抑制剤Bは、TRPチャネル活性抑制作用を有すると評価することができる。また、細胞内カルシウムイオン濃度Aと細胞内カルシウムイオン濃度Bとの間の差が大きいほど、本発明の活性抑制剤Aまたは活性抑制剤Bは、高いTRPチャネル活性抑制作用を有すると評価することができる。 In the evaluation method 1, when the intracellular calcium ion concentration A is lower than the intracellular calcium ion concentration B, it can be evaluated that the activity inhibitor A or the activity inhibitor B of the present invention has a TRP channel activity inhibitory action. it can. In addition, the greater the difference between the intracellular calcium ion concentration A and the intracellular calcium ion concentration B, the higher the activity inhibitor A or activity B of the present invention is evaluated to have a higher TRP channel activity inhibitory effect. Can do.
 評価法2における電流Aおよび電流Bの測定方法としては、例えば、パッチクランプ法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 The measurement method of the current A and the current B in the evaluation method 2 includes, for example, a patch clamp method, but the present invention is not limited to such an example.
 評価法2では、電流Bの絶対値と比べて電流Aの絶対値が小さい場合、本発明の活性抑制剤Aまたは活性抑制剤Bは、TRPチャネル活性抑制作用を有すると評価することができる。また、電流Aの絶対値と電流Bの絶対値との間の差が大きいほど、本発明の活性抑制剤Aまたは活性抑制剤Bは、高いTRPチャネル活性抑制作用を有すると評価することができる。 In the evaluation method 2, when the absolute value of the current A is smaller than the absolute value of the current B, it can be evaluated that the activity inhibitor A or the activity inhibitor B of the present invention has a TRP channel activity inhibitory action. Moreover, it can be evaluated that the activity inhibitor A or activity inhibitor B of this invention has a high TRP channel activity inhibitory effect, so that the difference between the absolute value of the electric current A and the absolute value of the electric current B is large. .
 以上説明したように、本発明のTRPチャネル活性抑制剤は、不快な感覚または生理学的事象の発現に関与するTRPチャネルの活性を抑制することができる。したがって、本発明のTRPチャネル活性抑制剤は、TRPチャネルの活性化に起因する不快な感覚または生理学的事象の発現を抑制する用途、例えば、TRPA1の活性化に起因する刺激を抑制する用途に用いられる刺激抑制剤、TRPM8の活性化に起因する冷感を調整する用途に用いられる冷感調整剤、TRPV1の活性化に起因する痛みを抑制する用途に用いられる痛み抑制剤、TRPV3の活性化に起因する皮膚細胞の過角化を抑制する用途に用いられる皮膚細胞の過角化抑制剤、TRPV4の活性化に起因する痒みを抑制する用途に用いられる痒み抑制剤などに好適に用いることができる。 As described above, the TRP channel activity inhibitor of the present invention can suppress the activity of TRP channels involved in the development of unpleasant sensations or physiological events. Therefore, the TRP channel activity inhibitor of the present invention is used for applications that suppress the expression of unpleasant sensations or physiological events resulting from activation of TRP channels, for example, applications that suppress stimulation caused by activation of TRPA1. Stimulus suppressant, a cooling sensation adjuster used for adjusting the cooling sensation caused by TRPM8 activation, a pain suppressor used for suppressing pain caused by TRPV1 activation, and TRPV3 activation It can be suitably used for a skin cell hyperkeratinization inhibitor used for the purpose of suppressing the resulting hyperkeratinization of skin cells, a stagnation inhibitor used for the purpose of suppressing the itch caused by activation of TRPV4, and the like. .
2.TRPチャネルの活性抑制方法
 本発明のTRPチャネルの活性抑制方法(以下、「活性抑制方法」という)は、TRPチャネルの活性を抑制する活性抑制方法であって、アルミニウムイオンとTRPチャネルとを接触させることを特徴とするTRPチャネルの活性抑制方法である。なお、医療行為は、本発明の活性抑制方法の概念から除かれていてもよく、除かれていなくてもよい。本明細書において、医療行為は、医師および医師の指示を受けた者がヒトに対して治療を実施する行為をいう。本発明の活性抑制方法によれば、アルミニウムイオンとTRPチャネルとを接触させるので、TRPチャネルの活性を効果的に抑制することができる。
2. TRP channel activity suppression method The TRP channel activity suppression method of the present invention (hereinafter referred to as "activity suppression method") is an activity suppression method for suppressing the activity of a TRP channel, wherein aluminum ions and a TRP channel are brought into contact with each other. This is a method for inhibiting the activity of a TRP channel. In addition, the medical practice may be excluded from the concept of the activity suppression method of this invention, and does not need to be excluded. In this specification, a medical practice refers to an action in which a doctor and a person who receives instructions from the doctor perform treatment on a human. According to the activity suppressing method of the present invention, since the aluminum ion and the TRP channel are brought into contact with each other, the activity of the TRP channel can be effectively suppressed.
 アルミニウムイオンとTRPチャネルとの接触は、TRPチャネルを含む部位にアルミニウムイオンを供給することによって行なうことができる。TRPチャネルを含む部位としては、例えば、皮膚表皮、気道上皮、末梢神経、眼粘膜などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 The contact between the aluminum ion and the TRP channel can be performed by supplying the aluminum ion to a portion including the TRP channel. Examples of the site containing the TRP channel include skin epidermis, airway epithelium, peripheral nerve, ocular mucosa, and the like, but the present invention is not limited to such examples.
 アルミニウムイオンとTRPチャネルとの接触の際には、アルミニウムイオンと、アルミニウムイオンを安定に維持する成分などとを併用することができる。アルミニウムイオンを安定に維持する成分としては、例えば、水系溶媒などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。また、アルミニウムイオンとTRPチャネルとの接触の際には、本発明の活性抑制剤を用いてもよい。 In the contact between aluminum ions and the TRP channel, aluminum ions and components that stably maintain the aluminum ions can be used in combination. Examples of the component that stably maintains aluminum ions include an aqueous solvent, but the present invention is not limited to such examples. Moreover, you may use the activity inhibitor of this invention in the case of a contact with an aluminum ion and a TRP channel.
 アルミニウムイオンは、通常、液体に含まれる状態でTRPチャネルと接触させる。TRPチャネルに接触させる液体に含まれるアルミニウムイオンの量は、本発明の活性抑制方法の用途、適用対象のTRPチャネルの種類、適用対象のTRPチャネルを含む部位の種類などによって異なるので一概には決定することができないことから、本発明の活性抑制方法の用途、適用対象のTRPチャネルの種類、適用対象のTRPチャネルを含む部位の種類などに応じて適宜決定することが好ましい。TRPチャネルと接触させる液体におけるアルミニウムイオンの量は、例えば、本発明の活性抑制方法の適用対象が末梢神経に含まれるTRPチャネルである場合、通常、TRPチャネル活性抑制作用を十分に発現させる観点から、好ましくは0.01mM以上、より好ましくは0.1mM以上であり、他の組織への作用を低減させる観点から、好ましくは10mM以下、より好ましくは5mM以下である。 Aluminum ions are usually brought into contact with the TRP channel in a state of being contained in the liquid. The amount of aluminum ions contained in the liquid brought into contact with the TRP channel varies depending on the use of the method for suppressing activity of the present invention, the type of TRP channel to be applied, the type of site containing the TRP channel to be applied, etc. Therefore, it is preferable to determine appropriately according to the use of the activity suppression method of the present invention, the type of TRP channel to be applied, the type of site including the TRP channel to be applied, and the like. For example, when the application target of the activity suppression method of the present invention is a TRP channel contained in a peripheral nerve, the amount of aluminum ions in the liquid brought into contact with the TRP channel is usually from the viewpoint of sufficiently exhibiting the TRP channel activity suppression effect. The concentration is preferably 0.01 mM or more, more preferably 0.1 mM or more, and preferably 10 mM or less, more preferably 5 mM or less, from the viewpoint of reducing the action on other tissues.
 アルミニウムイオンとTRPチャネルとの接触時間は、本発明の活性抑制方法の用途、適用対象のTRPチャネルの種類などによって異なるので一概には決定することができないことから、本発明の活性抑制方法の用途、適用対象のTRPチャネルの種類などに応じて適宜決定することが好ましい。 Since the contact time between the aluminum ion and the TRP channel differs depending on the use of the activity suppression method of the present invention, the type of TRP channel to be applied, etc., it cannot be determined unconditionally, so the use of the activity suppression method of the present invention It is preferable to determine appropriately according to the type of TRP channel to be applied.
 本発明の活性抑制方法によるTRPチャネル活性抑制効果は、前記活性抑制剤によるTRPチャネル活性抑制作用の評価と同様の手法によって評価することができる。 The TRP channel activity suppression effect by the activity suppression method of the present invention can be evaluated by the same technique as the evaluation of the TRP channel activity suppression effect by the activity inhibitor.
 本発明の活性抑制方法によれば、痛み、過度の刺激感、過度の冷感、過度の熱感、痒みなどの不快な感覚の発現などとの関連性があるTRPチャネルの活性を効果的に抑制することができる。したがって、例えば、TRPチャネルの活性化に起因する不快な感覚を与える可能性がある成分を含む外用剤を使用するときに、アルミニウムイオンと当該外用剤とを併用して本発明の活性抑制方法を行なうことにより、TRPチャネルの活性を抑制し、TRPチャネルの活性化に起因する不快な感覚の発現を抑制することができる。 According to the activity suppression method of the present invention, the activity of the TRP channel that is related to the development of unpleasant sensations such as pain, excessive irritation, excessive cooling, excessive heat, and itching is effectively suppressed. Can be suppressed. Therefore, for example, when using an external preparation containing a component that may give an unpleasant sensation due to activation of the TRP channel, the activity suppression method of the present invention is performed using aluminum ions and the external preparation together. By doing so, it is possible to suppress the activity of the TRP channel and suppress the expression of unpleasant sensations due to the activation of the TRP channel.
 以上説明したように、本発明の活性抑制方法によれば、アルミニウムイオンとTRPチャネルとを接触させるので、TRPチャネルの活性を効果的に抑制することができる。したがって、本発明の活性抑制剤は、TRPチャネルの活性化に起因する不快な感覚または不快な生理学的事象の発現を抑制する用途、例えば、TRPA1の活性化に起因する刺激を抑制する用途、TRPM8の活性化に起因する冷感を調整する用途、TRPV1の活性化に起因する痛みを抑制する用途、TRPV3の活性化に起因する皮膚細胞の過角化を抑制する用途、TRPV4の活性化に起因する痒みを抑制する用途などに用いられることが期待される。 As described above, according to the activity suppressing method of the present invention, since the aluminum ion and the TRP channel are brought into contact with each other, the activity of the TRP channel can be effectively suppressed. Therefore, the activity inhibitor of the present invention is used for suppressing an unpleasant sensation caused by activation of a TRP channel or an unpleasant physiological event, for example, an application for suppressing a stimulus caused by activation of TRPA1, TRPM8 Use for adjusting the cooling sensation caused by activation of TRPV1, use for suppressing pain caused by activation of TRPV1, use for suppressing hyperkeratinization of skin cells caused by activation of TRPV3, caused by activation of TRPV4 It is expected to be used for applications that suppress stagnation.
 以下に実施例により本発明をさらに詳しく説明するが、本発明は、かかる実施例のみに限定されるものではない。以下において、各略語の意味は、以下のとおりである。
<略語の説明>
 DMEM:ダルベッコ改変イーグル培地
 FBS:ウシ胎児血清
 NMDG-Cl:N-メチル-D-グルカミン塩化物
 BAPTA:1,2-ビス(o-アミノフェノキシド)エタン-N,N,N’,N’-テトラ酢酸
 HEPES:2-[4-(2-ヒドロキシエチル)ピペラジン-1-イル]エタンスルホン酸
 AITC:アリルイソチオシアネート
 4αPDD:4α-ホルボール-12,13-ジデカノエート
 蛍光強度340nm:励起波長340nmにおける蛍光強度
 蛍光強度380nm:励起波長380nmにおける蛍光強度
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to such examples. In the following, the meaning of each abbreviation is as follows.
<Explanation of abbreviations>
DMEM: Dulbecco's modified Eagle medium FBS: fetal bovine serum NMDG-Cl: N-methyl-D-glucamine chloride BAPTA: 1,2-bis (o-aminophenoxide) ethane-N, N, N ′, N′-tetra Acetic acid HEPES: 2- [4- (2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid AITC: Allyl isothiocyanate 4αPDD: 4α-phorbol-12,13-didecanoate Fluorescence intensity 340 nm : Fluorescence intensity at excitation wavelength 340 nm Fluorescence Intensity 380 nm : fluorescence intensity at excitation wavelength 380 nm
調製例1
(1)TRPV1発現細胞の調製
 ヒトTRPV1 cDNA(GenBankアクセッション番号:NM_080704に示される塩基配列の276~2795位に対応するcDNA)を、哺乳動物細胞用ベクター〔インビトロジェン社製、商品名:pcDNA3.1(+)〕のクローニングサイトに挿入し、ヒトTRPV1発現ベクターを得た。得られたヒトTRPV1発現ベクター1μgと、遺伝子導入用試薬〔インビトロジェン社製、商品名:PLUS Reagent(プラスリージェント)、カタログ番号:11514-015〕6μLとを混合し、混合物Iを得た。また、遺伝子導入用カチオン性脂質〔インビトロジェン社製、商品名:リポフェクタミン(登録商標)、カタログ番号:18324-012〕4μLと、血清使用量低減培地〔インビトロジェン社製、商品名:OPTI-MEM(登録商標)I Reduced-Serum Medium(カタログ番号:11058021)〕200μLとを混合し、混合物IIを得た。
Preparation Example 1
(1) Preparation of TRPV1-expressing cells Human TRPV1 cDNA (cDNA corresponding to positions 276 to 2795 of the base sequence shown in GenBank accession number: NM — 080704) was obtained by using a vector for mammalian cells [trade name: pcDNA3. 1 (+)] to obtain a human TRPV1 expression vector. 1 μg of the obtained human TRPV1 expression vector was mixed with 6 μL of a gene introduction reagent [manufactured by Invitrogen, trade name: PLUS Reagent, catalog number: 11514-015] to obtain a mixture I. In addition, 4 μL of a cationic lipid for gene transfer [manufactured by Invitrogen, trade name: Lipofectamine (registered trademark), catalog number: 18324-012] and a serum-reducing medium [trade name: OPTI-MEM (manufactured by Invitrogen), registered (Trademark) I Reduced-Serum Medium (Cat. No. 11058021)] 200 μL was mixed to obtain a mixture II.
 5体積%二酸化炭素雰囲気中、37℃に維持された直径35mmのシャーレ上の10質量%FBS含有DMEM中において、5×10個のHEK293細胞を70%のコンフルエンシーになるまで培養した。得られた細胞培養物に、前記混合物Iと混合物IIとを添加することにより、HEK293細胞にヒトTRPV1発現ベクターを導入し、TRPV1発現細胞を得た。 In 10% FBS-containing DMEM on a 35 mm diameter petri dish maintained at 37 ° C. in a 5% by volume carbon dioxide atmosphere, 5 × 10 5 HEK293 cells were cultured to 70% confluency. By adding the mixture I and the mixture II to the obtained cell culture, a human TRPV1 expression vector was introduced into HEK293 cells to obtain TRPV1-expressing cells.
(2)TRPA1発現細胞の調製
 調製例1(1)において、ヒトTRPV1 cDNAを用いる代わりにヒトTRPA1 cDNA〔GenBankアクセッション番号:NM_007332に示される塩基配列の63~3888位に対応するcDNA〕を用いたことを除き、調製例1(1)と同様の操作を行ない、TRPA1発現細胞を得た。
(2) Preparation of TRPA1-expressing cells In Preparation Example 1 (1), instead of using human TRPV1 cDNA, human TRPA1 cDNA [GenBank accession number: cDNA corresponding to positions 63 to 3888 of the nucleotide sequence shown in NM_007332] is used. Except that, TRPA1-expressing cells were obtained in the same manner as in Preparation Example 1 (1).
(3)TRPM8発現細胞の調製
 調製例1(1)において、ヒトTRPV1 cDNAを用いる代わりにヒトTRPM8 cDNA〔GenBankアクセッション番号:NM_024080に示される塩基配列の41~3355位に対応するcDNA〕を用いたことを除き、調製例1(1)と同様の操作を行ない、TRPM8発現細胞を得た。
(3) Preparation of TRPM8-expressing cells In Preparation Example 1 (1), instead of using human TRPV1 cDNA, human TRPM8 cDNA [GenBank accession number: cDNA corresponding to positions 41 to 3355 of the nucleotide sequence shown in NM_024080] is used. Except for the above, the same operation as in Preparation Example 1 (1) was performed to obtain TRPM8-expressing cells.
(4)TRPV3発現細胞の調製
 調製例1(1)において、ヒトTRPV1 cDNAを用いる代わりにヒトTRPV3 cDNA〔GenBankアクセッション番号:NM_145068に示される塩基配列の323~2695位に対応するcDNA〕を用いたことを除き、調製例1(1)と同様の操作を行ない、TRPV3発現細胞を得た。
(4) Preparation of TRPV3-expressing cells In Preparation Example 1 (1), instead of using human TRPV1 cDNA, human TRPV3 cDNA [GenBank accession number: cDNA corresponding to positions 323 to 2695 of the nucleotide sequence shown in NM_145068] is used. Except that, TRPV3-expressing cells were obtained in the same manner as in Preparation Example 1 (1).
(5)TRPV4発現細胞の調製
 調製例1(1)において、ヒトTRPV1 cDNAを用いる代わりにヒトTRPV4 cDNA〔GenBankアクセッション番号:NM_021625に示される塩基配列の90~2705位に対応するcDNA〕を用いたことを除き、調製例1(1)と同様の操作を行ない、TRPV4発現細胞を得た。
(5) Preparation of TRPV4-expressing cells In Preparation Example 1 (1), instead of using human TRPV1 cDNA, human TRPV4 cDNA [GenBank accession number: cDNA corresponding to positions 90 to 2705 of the nucleotide sequence shown in NM — 021625] is used. Except that, TRPV4-expressing cells were obtained in the same manner as in Preparation Example 1 (1).
実施例1
 塩化アルミニウムをその濃度が5mMとなるように溶媒A〔組成:140mM NMDG-Cl、1mM塩化マグネシウム、5mM BAPTAおよび10mM HEPES緩衝液〕に添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを5に調整して被験試料を得た。得られた被験試料中にはアルミニウムイオンが解離した状態で存在していた(アルミニウムイオン濃度:5mM)。
Example 1
Aluminum chloride was added to solvent A (composition: 140 mM NMDG-Cl, 1 mM magnesium chloride, 5 mM BAPTA and 10 mM HEPES buffer) so that the concentration was 5 mM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
比較例1
 溶媒Aに塩酸を添加することにより、溶媒AのpHを5に調整して低pH刺激用試料を得た。
Comparative Example 1
By adding hydrochloric acid to solvent A, the pH of solvent A was adjusted to 5 to obtain a sample for low pH stimulation.
試験例1
 調製例1(1)で得られたTRPV1発現細胞を溶媒A中、37℃で2分間振盪させながらインキュベーションすることにより、TRPV1発現細胞を洗浄した。つぎに、洗浄後のTRPV1発現細胞を溶媒Aが入った循環定温チャンバーに入れた。循環定温チャンバー中のTRPV1発現細胞に電極の先端を接触させ、電流記録ソフトウェア〔モルキュラーデバイス社製、商品名:pCLAMP10〕と電流記録装置〔モルキュラーデバイス社製、商品名:Axopatch 200B Amplifier〕とを用い、電圧を-60mVに固定したときのTRPV1発現細胞内の電流を経時的に測定した。測定開始時から30秒間経過後に、循環定温チャンバー内において、比較例1で得られた低pH刺激用試料を循環させた。低pH刺激用試料の循環開始時から50秒間経過後に、循環定温チャンバー内において、実施例1で得られた被験試料を循環させた。実施例1で得られた被験試料の循環開始時から30秒間経過後に、循環定温チャンバー内において、比較例1で得られた低pH刺激用試料を30秒間循環させた。その後、電流変化の測定を終了した。
Test example 1
The TRPV1-expressing cells obtained in Preparation Example 1 (1) were incubated in solvent A with shaking at 37 ° C. for 2 minutes to wash the TRPV1-expressing cells. Next, the TRPV1-expressing cells after washing were placed in a circulating constant temperature chamber containing solvent A. The tip of the electrode was brought into contact with the TRPV1-expressing cells in the circulation constant temperature chamber, and current recording software [Molecular Devices, product name: pCLAMP10] and current recording device [Molecular Devices, product name: Axopat 200B Amplifier] Was used to measure the current in TRPV1-expressing cells over time when the voltage was fixed at −60 mV. After 30 seconds from the start of measurement, the low pH stimulation sample obtained in Comparative Example 1 was circulated in the circulation constant temperature chamber. The test sample obtained in Example 1 was circulated in the circulation constant temperature chamber after 50 seconds had elapsed since the start of circulation of the low pH stimulation sample. After 30 seconds from the start of circulation of the test sample obtained in Example 1, the sample for low pH stimulation obtained in Comparative Example 1 was circulated in the circulation constant temperature chamber for 30 seconds. Thereafter, measurement of the current change was terminated.
 試験例1において、TRPV1発現細胞内の電流の経時的変化を調べた結果を図1に示す。図中、「pH5」は低pH刺激の継続期間、「被験試料」は被験試料の循環期間を示す。 FIG. 1 shows the results of examining time-dependent changes in current in TRPV1-expressing cells in Test Example 1. In the figure, “pH 5” indicates the duration of low pH stimulation, and “test sample” indicates the circulation period of the test sample.
 図1に示された結果から、TRPV1発現細胞内の電流の絶対値は、低pH刺激によって増加するが、被験試料の添加によって減少することがわかる。これらの結果から、塩化アルミニウムから解離したアルミニウムイオンは、低pH刺激によって活性化されたTRPV1の活性を抑制する作用を有することがわかる。 1 shows that the absolute value of the current in the TRPV1-expressing cells increases with low pH stimulation but decreases with the addition of the test sample. From these results, it can be seen that aluminum ions dissociated from aluminum chloride have an action of suppressing the activity of TRPV1 activated by low pH stimulation.
実施例2
 塩化アルミニウムおよびカプサイシンを塩化アルミニウムの濃度が5mMおよびカプサイシンの濃度が100nMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを5に調整して被験試料を得た。得られた被験試料中にはアルミニウムイオンが解離した状態で存在していた(アルミニウムイオン濃度:5mM)。
Example 2
Aluminum chloride and capsaicin were added to solvent A so that the concentration of aluminum chloride was 5 mM and the concentration of capsaicin was 100 nM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
比較例2
 カプサイシンをその濃度が100nMとなるように溶媒Aに添加してアゴニスト含有試料を得た。
Comparative Example 2
An agonist-containing sample was obtained by adding capsaicin to solvent A so that its concentration was 100 nM.
試験例2
 試験例1において、実施例1で得られた被験試料を用いる代わりに実施例2で得られた被験試料を用いたことおよび比較例1で得られた低pH刺激用試料を用いる代わりに比較例2で得られたアゴニスト含有試料を用いたことを除き、試験例1と同様の操作を行ない、TRPV1発現細胞内の電流を経時的に測定した。
Test example 2
In Test Example 1, instead of using the test sample obtained in Example 1, the test sample obtained in Example 2 was used, and in place of using the low pH stimulation sample obtained in Comparative Example 1, Except that the agonist-containing sample obtained in 2 was used, the same operation as in Test Example 1 was performed, and the current in the TRPV1-expressing cells was measured over time.
 試験例2において、TRPV1発現細胞内の電流の経時的変化を調べた結果を図2に示す。図中、「CAP」はカプサイシンによる刺激の継続期間、「被験試料」は被験試料の循環期間を示す。 FIG. 2 shows the results of examining the temporal change of the current in the TRPV1-expressing cells in Test Example 2. In the figure, “CAP” represents the duration of stimulation with capsaicin, and “test sample” represents the circulation period of the test sample.
 図2に示された結果から、TRPV1発現細胞内の電流の絶対値は、アゴニスト含有試料に含まれるカプサイシンによる刺激によって増加するが、被験試料の添加によって減少することがわかる。これらの結果から、塩化アルミニウムから解離したアルミニウムイオンは、カプサイシンによる刺激によって活性化されたTRPV1の活性を抑制する作用を有することがわかる。 The results shown in FIG. 2 indicate that the absolute value of the current in the TRPV1-expressing cells increases with stimulation with capsaicin contained in the agonist-containing sample, but decreases with the addition of the test sample. From these results, it can be seen that aluminum ions dissociated from aluminum chloride have an action of suppressing the activity of TRPV1 activated by stimulation with capsaicin.
 なお、実施例2において、塩化アルミニウムを用いる代わりにリン酸アルミニウム、硫酸アルミニウムカリウムなどの無機酸アルミニウム塩;酢酸アルミニウムなどのアルミニウムイオンに解離する他の物質を用いたときも、塩化アルミニウムを用いたときと同様の傾向が見られる。これらの結果から、アルミニウムイオンは、TRPV1の活性を抑制する作用を有することがわかる。 In Example 2, instead of using aluminum chloride, aluminum chloride was also used when an inorganic acid aluminum salt such as aluminum phosphate or potassium aluminum sulfate; or another substance dissociating into aluminum ions such as aluminum acetate was used. The same trend is seen. From these results, it can be seen that aluminum ions have an action of suppressing the activity of TRPV1.
試験例3
(1)試料の調製
 硫酸アルミニウムカリウムおよびカプサイシンを硫酸アルミニウムカリウムの濃度が1μM〔アルミニウムイオン濃度:1μM(実験番号1)〕、10μM〔アルミニウムイオン濃度:10μM(実験番号2)〕、100μM〔アルミニウムイオン濃度:100μM(実験番号3)〕、200μM〔アルミニウムイオン濃度:200μM(実験番号4)〕、500μM〔アルミニウムイオン濃度:500μM(実験番号5)〕、1000μM〔アルミニウムイオン濃度:1000μM(実験番号6)〕、5000μM(〔アルミニウムイオン濃度:5000μM(実験番号7)〕または10000μM〔アルミニウムイオン濃度:10000μM(実験番号8)〕およびカプサイシンの濃度が100nMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを5に調整して被験試料を得た。
Test example 3
(1) Preparation of sample Aluminum potassium sulfate and capsaicin with a concentration of 1 μM aluminum potassium sulfate [aluminum ion concentration: 1 μM (experiment number 1)], 10 μM [aluminum ion concentration: 10 μM (experiment number 2)], 100 μM [aluminum ion] Concentration: 100 μM (experiment number 3)], 200 μM [aluminum ion concentration: 200 μM (experiment number 4)], 500 μM [aluminum ion concentration: 500 μM (experiment number 5)], 1000 μM [aluminum ion concentration: 1000 μM (experiment number 6) ] 5000 μM ([aluminum ion concentration: 5000 μM (experiment number 7)] or 10000 μM [aluminum ion concentration: 10000 μM (experiment number 8)] and added to solvent A so that the concentration of capsaicin is 100 nM. To obtain a compound. By addition of hydrochloric acid to the resulting mixture, to obtain a test sample to adjust the pH of the mixture to 5.
(2)蛍光強度比アゴニストの算出
 調製例1(1)で得られたTRPV1発現細胞を、蛍光カルシウムイオン指示薬であるFURA 2-AM(インビトロジェン社製)を最終濃度5μMで含む10質量%FBS含有DMEM中、室温で60分間インキュベーションすることにより、TRPV1発現細胞にFURA 2-AMを導入し、指示薬導入細胞を得た。指示薬導入細胞を循環定温チャンバー付蛍光測定装置〔浜松ホトニクス(株)製、商品名:ARGUS-50〕の循環定温チャンバーに入れた後、溶媒Aで洗浄した。つぎに、循環定温チャンバーに比較例2で得られたアゴニスト含有試料を入れた。その後、アゴニスト存在下での蛍光強度340nm(蛍光強度A)とアゴニスト存在下での蛍光強度380nm(蛍光強度B)とを測定した。
(2) Calculation of fluorescence intensity ratio agonist The TRPV1-expressing cells obtained in Preparation Example 1 (1) contain 10 mass% FBS containing FURA 2-AM (manufactured by Invitrogen), a fluorescent calcium ion indicator, at a final concentration of 5 μM. By incubating in DMEM at room temperature for 60 minutes, FURA 2-AM was introduced into TRPV1-expressing cells to obtain indicator-introduced cells. The indicator-introduced cells were placed in a circulating constant temperature chamber of a fluorescence measuring apparatus with a circulating constant temperature chamber (trade name: ARGUS-50, manufactured by Hamamatsu Photonics Co., Ltd.), and then washed with solvent A. Next, the agonist-containing sample obtained in Comparative Example 2 was placed in a circulation constant temperature chamber. Thereafter, the fluorescence intensity 340 nm (fluorescence intensity A) in the presence of the agonist and the fluorescence intensity 380 nm (fluorescence intensity B) in the presence of the agonist were measured.
 また、前記において、比較例2で得られたアゴニスト含有試料を用いる代わりに対照(溶媒A)を用いたことを除き、前記と同様の操作を行ない、対照存在下での蛍光強度340nm(蛍光強度C)と対照存在下での蛍光強度380nm(蛍光強度D)とを測定した。 In addition, the same operation as described above was performed except that the control (solvent A) was used instead of the agonist-containing sample obtained in Comparative Example 2, and the fluorescence intensity in the presence of the control was 340 nm (fluorescence intensity). C) and fluorescence intensity 380 nm (fluorescence intensity D) in the presence of a control were measured.
 蛍光強度A~Dを用い、式(I):
[Δ蛍光強度比アゴニスト
=[蛍光強度A/蛍光強度B]-[蛍光強度C/蛍光強度D]   (I)
にしたがい、Δ蛍光強度比アゴニストを算出した。
Using fluorescence intensities A to D, the formula (I):
[Δ fluorescence intensity ratio agonist ]
= [Fluorescence intensity A / fluorescence intensity B]-[fluorescence intensity C / fluorescence intensity D] (I)
Accordingly, a Δfluorescence intensity ratio agonist was calculated.
 また、比較例2で得られたアゴニスト含有試料を用いる代わりに実験番号1~8の各被験試料を用いたことを除き、比較例2で得られたアゴニスト含有試料を用いたときと同様の操作を行ない、アルミニウムイオンおよびアゴニストの存在下での蛍光強度340nm(蛍光強度E)とアルミニウムイオンおよびアゴニストの存在下での蛍光強度380nmにおける(蛍光強度F)とを測定した。 Further, the same operation as that when using the agonist-containing sample obtained in Comparative Example 2 except that each test sample of Experiment Nos. 1 to 8 was used instead of using the agonist-containing sample obtained in Comparative Example 2. The fluorescence intensity 340 nm (fluorescence intensity E) in the presence of aluminum ions and agonist and the fluorescence intensity 380 nm (fluorescence intensity F) in the presence of aluminum ions and agonist were measured.
 蛍光強度C~Fを用い、式(II):
[Δ蛍光強度比活性抑制剤
=[蛍光強度E/蛍光強度F]-[蛍光強度C/蛍光強度D]  (II)
にしたがい、Δ蛍光強度比活性抑制剤を算出した。
Using the fluorescence intensities C to F, the formula (II):
[Δ fluorescence intensity specific activity inhibitor ]
= [Fluorescence intensity E / fluorescence intensity F]-[fluorescence intensity C / fluorescence intensity D] (II)
Accordingly, the Δ fluorescence intensity specific activity inhibitor was calculated.
 算出されたΔ蛍光強度比アゴニストとΔ蛍光強度比活性抑制剤とを用い、式(III):
[TRPV1活性]
=[Δ蛍光強度比活性抑制剤/Δ蛍光強度比アゴニスト]        (III)
Using the calculated Δ fluorescence intensity ratio agonist and Δ fluorescence intensity ratio activity inhibitor , the formula (III):
[TRPV1 activity]
= [Δ fluorescence intensity ratio activity inhibitor / Δ fluorescence intensity ratio agonist ] (III)
にしたがい、TRPV1活性を算出した。 Accordingly, TRPV1 activity was calculated.
 試験例3において、硫酸アルミニウムカリウム濃度とTRPV1活性との関係を調べた結果を図3に示す。 FIG. 3 shows the results of examining the relationship between the potassium aluminum sulfate concentration and the TRPV1 activity in Test Example 3.
 図3に示された結果を用い、TRPV1活性に対する硫酸アルミニウムカリウムの50%阻害濃度を算出した。その結果、TRPV1活性に対する硫酸アルミニウムカリウムの50%阻害濃度は、246μMであることがわかった。以上の結果から、TRPV1活性に対するアルミニウムイオンの50%阻害濃度は、246μMであることがわかった。 Using the results shown in FIG. 3, the 50% inhibitory concentration of aluminum potassium sulfate for TRPV1 activity was calculated. As a result, it was found that the 50% inhibitory concentration of aluminum potassium sulfate for TRPV1 activity was 246 μM. From the above results, it was found that the 50% inhibitory concentration of aluminum ions for TRPV1 activity was 246 μM.
実施例3
 塩化アルミニウムおよびAITCを塩化アルミニウムの濃度が5mMおよびAITCの濃度が20μMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを5に調整して被験試料を得た。得られた被験試料中にはアルミニウムイオンが解離した状態で存在していた(アルミニウムイオン濃度:5mM)。
Example 3
Aluminum chloride and AITC were added to solvent A so that the concentration of aluminum chloride was 5 mM and the concentration of AITC was 20 μM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
比較例3
 AITCをその濃度が20μMとなるように溶媒Aに添加してアゴニスト含有試料を得た。
Comparative Example 3
An agonist-containing sample was obtained by adding AITC to solvent A so that its concentration was 20 μM.
試験例4
 調製例1(2)で得られたTRPA1発現細胞を溶媒A中、37℃で2分間振盪させながらインキュベーションすることにより、TRPA1発現細胞を洗浄した。洗浄後のTRPA1発現細胞を溶媒Aが入った循環定温チャンバーに入れた。循環定温チャンバー中のTRPA1発現細胞に電極の先端を接触させ、電流記録ソフトウェアと電流記録装置とを用い、電圧を-60mVに固定したときのTRPA1発現細胞内の電流を経時的に測定した。測定開始時から30秒間経過後に、循環定温チャンバー内において、比較例3で得られたアゴニスト含有試料を循環させた。比較例3で得られたアゴニスト含有試料の循環開始時から50秒間経過後に、循環定温チャンバー内において、実施例3で得られた被験試料を循環させた。実施例3で得られた被験試料の循環開始時から25秒間経過後に、循環定温チャンバー内において、比較例3で得られたアゴニスト含有試料を循環させた。比較例3で得られたアゴニスト含有試料の循環開始時から50秒間経過後に、循環定温チャンバー内において、溶媒Aを循環させ、電流変化の測定を終了した。
Test example 4
The TRPA1-expressing cells obtained in Preparation Example 1 (2) were incubated in solvent A with shaking at 37 ° C. for 2 minutes to wash the TRPA1-expressing cells. The washed TRPA1-expressing cells were placed in a circulating constant temperature chamber containing solvent A. The tip of the electrode was brought into contact with the TRPA1-expressing cell in the circulation constant temperature chamber, and the current in the TRPA1-expressing cell when the voltage was fixed at −60 mV was measured over time using current recording software and a current recording device. After 30 seconds from the start of measurement, the agonist-containing sample obtained in Comparative Example 3 was circulated in the circulation constant temperature chamber. The test sample obtained in Example 3 was circulated in the circulation constant temperature chamber after 50 seconds had elapsed since the start of circulation of the agonist-containing sample obtained in Comparative Example 3. After 25 seconds from the start of circulation of the test sample obtained in Example 3, the agonist-containing sample obtained in Comparative Example 3 was circulated in the circulation constant temperature chamber. After 50 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 3, the solvent A was circulated in the circulation constant temperature chamber, and the measurement of the current change was completed.
 試験例4において、TRPA1発現細胞内の電流の経時的変化を調べた結果を図4に示す。図中、「AITC」はAITCによる刺激の継続期間、「被験試料」は被験試料の循環期間を示す。 FIG. 4 shows the results of examining time-dependent changes in current in TRPA1-expressing cells in Test Example 4. In the figure, “AITC” indicates the duration of stimulation by AITC, and “Test sample” indicates the circulation period of the test sample.
 図4に示された結果から、TRPA1発現細胞内の電流の絶対値は、アゴニスト含有試料に含まれるAITCによる刺激によって増加するが、被験試料の添加によって減少することがわかる。これらの結果から、塩化アルミニウムから解離したアルミニウムイオンは、AITCによる刺激によって活性化されたTRPA1の活性を抑制する作用を有することがわかる。 From the results shown in FIG. 4, it can be seen that the absolute value of the current in the TRPA1-expressing cells increases with stimulation by AITC contained in the agonist-containing sample, but decreases with the addition of the test sample. From these results, it can be seen that aluminum ions dissociated from aluminum chloride have an action of suppressing the activity of TRPA1 activated by stimulation with AITC.
 なお、実施例3において、塩化アルミニウムを用いる代わりにリン酸アルミニウム、硫酸アルミニウムカリウムなどの無機酸アルミニウム塩;酢酸アルミニウムなどのアルミニウムイオンに解離する他の物質を用いたときも、塩化アルミニウムを用いたときと同様の傾向が見られる。これらの結果から、アルミニウムイオンは、TRPA1の活性を抑制する作用を有することがわかる。 In Example 3, instead of using aluminum chloride, aluminum chloride was used when inorganic acid aluminum salts such as aluminum phosphate and potassium aluminum sulfate; and other substances that dissociate into aluminum ions such as aluminum acetate were used. The same trend is seen. From these results, it can be seen that aluminum ions have an action of suppressing the activity of TRPA1.
実施例4
 塩化アルミニウムおよびAITCを塩化アルミニウムの濃度が500μMおよびAITCの濃度が20μMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを5に調整して被験試料を得た。得られた被験試料中にはアルミニウムイオンが解離した状態で存在していた(アルミニウムイオン濃度:500μM)。
Example 4
Aluminum chloride and AITC were added to solvent A so that the concentration of aluminum chloride was 500 μM and the concentration of AITC was 20 μM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 500 μM).
実施例5
 塩化アルミニウムおよびAITCを塩化アルミニウムの濃度が50μMおよびAITCの濃度が20μMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを5に調整して被験試料を得た。得られた被験試料中にはアルミニウムイオンが解離した状態で存在していた(アルミニウムイオン濃度:50μM)。
Example 5
Aluminum chloride and AITC were added to solvent A so that the concentration of aluminum chloride was 50 μM and the concentration of AITC was 20 μM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 50 μM).
試験例5
 調製例1(2)で得られたTRPA1発現細胞を溶媒A中、37℃で2分間振盪させながらインキュベーションすることにより、TRPA1発現細胞を洗浄した。つぎに、洗浄後のTRPA1発現細胞を溶媒Aが入った循環定温チャンバーに入れた。循環定温チャンバー中のTRPA1発現細胞に電極の先端を接触させ、電流記録ソフトウェアと電流記録装置とを用い、電圧を-60mVに固定したときのTRPA1発現細胞内の電流を経時的に測定した。測定開始時から30秒間経過後に、循環定温チャンバー内において、比較例3で得られたアゴニスト含有試料を循環させた。比較例3で得られたアゴニスト含有試料の循環開始時から50秒間経過後に、循環定温チャンバー内において、実施例5で得られた被験試料を30秒間、実施例4で得られた被験試料を30秒間、実施例3で得られた被験試料を30秒間循環させた。その後、循環定温チャンバー内において、比較例3で得られたアゴニスト含有試料を循環させた。比較例3で得られたアゴニスト含有試料の循環開始時から30秒間経過後に、循環定温チャンバー内において、溶媒Aを循環させ、電流変化の測定を終了した。式(IV):
[抑制率]
=[(アゴニスト含有試料の循環前後の電流の変化量)-(被験試料の循環前後の電流の変化量)]/[アゴニスト含有試料の循環前後の電流の変化量]   (IV)
にしたがい、抑制率を算出した。
Test Example 5
The TRPA1-expressing cells obtained in Preparation Example 1 (2) were incubated in solvent A with shaking at 37 ° C. for 2 minutes to wash the TRPA1-expressing cells. Next, the TRPA1-expressing cells after washing were placed in a circulating constant temperature chamber containing solvent A. The tip of the electrode was brought into contact with the TRPA1-expressing cell in the circulation constant temperature chamber, and the current in the TRPA1-expressing cell when the voltage was fixed at −60 mV was measured over time using current recording software and a current recording device. After 30 seconds from the start of measurement, the agonist-containing sample obtained in Comparative Example 3 was circulated in the circulation constant temperature chamber. After 50 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 3, 30 seconds for the test sample obtained in Example 5 and 30 for the test sample obtained in Example 4 in the circulation constant temperature chamber. The test sample obtained in Example 3 was circulated for 30 seconds. Thereafter, the agonist-containing sample obtained in Comparative Example 3 was circulated in a circulation constant temperature chamber. After 30 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 3, the solvent A was circulated in the circulation constant temperature chamber, and the measurement of the current change was completed. Formula (IV):
[Inhibition rate]
= [(Change amount of current before and after circulation of agonist-containing sample) − (Change amount of current before and after circulation of test sample)] / [Change amount of current before and after circulation of sample containing agonist] (IV)
Therefore, the inhibition rate was calculated.
 試験例5において、塩化アルミニウム濃度と抑制率との関係を調べた結果を図5に示す。 Fig. 5 shows the results of examining the relationship between the aluminum chloride concentration and the inhibition rate in Test Example 5.
 図5に示された結果から、塩化アルミニウムは、濃度依存的にTRPA1の活性を抑制することがわかる。これらの結果から、塩化アルミニウムから解離したアルミニウムイオンは、濃度依存的にTRPA1の活性を抑制することがわかる。 FIG. 5 shows that aluminum chloride suppresses the activity of TRPA1 in a concentration-dependent manner. From these results, it can be seen that aluminum ions dissociated from aluminum chloride suppress the activity of TRPA1 in a concentration-dependent manner.
実施例6
 塩化アルミニウムおよびメントールを塩化アルミニウムの濃度が5mMおよびメントールの濃度が1mMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを5に調整して被験試料を得た。得られた被験試料中にはアルミニウムイオンが解離した状態で存在していた(アルミニウムイオン濃度:5mM)。
Example 6
Aluminum chloride and menthol were added to solvent A so that the concentration of aluminum chloride was 5 mM and the concentration of menthol was 1 mM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
比較例4
 メントールをその濃度が1mMとなるように溶媒Aに添加してアゴニスト含有試料を得た。
Comparative Example 4
Menthol was added to solvent A so that its concentration was 1 mM to obtain an agonist-containing sample.
試験例6
 調製例1(3)で得られたTRPM8発現細胞を溶媒A中、37℃で2分間振盪させながらインキュベーションすることにより、TRPM8発現細胞を洗浄した。つぎに、洗浄後のTRPM8発現細胞を溶媒Aが入った循環定温チャンバーに入れた。循環定温チャンバー中のTRPM8発現細胞に電極の先端を接触させ、電流記録ソフトウェアと電流記録装置とを用い、電圧を-60mVに固定したときのTRPM8発現細胞内の電流を経時的に測定した。測定開始時から20秒間経過後に、循環定温チャンバー内において、比較例1で得られた低pH刺激用試料を循環させた。低pH刺激用試料の循環開始時から15秒間経過後に、循環定温チャンバー内において、比較例4で得られたアゴニスト含有試料を循環させた。比較例4で得られたアゴニスト含有試料の循環開始時から30秒間経過後に、循環定温チャンバー内において、実施例6で得られた被験試料を循環させた。実施例6で得られた被験試料の循環開始時から30秒間経過後に、循環定温チャンバー内において、比較例4で得られたアゴニスト含有試料を循環させた。比較例4で得られたアゴニスト含有試料の循環開始時から50秒間経過後に、循環定温チャンバー内において、比較例1で得られた低pH刺激用試料を循環させた。低pH刺激用試料の循環開始時から60秒間経過後に、循環定温チャンバー内において、溶媒Aを循環させ、電流変化の測定を終了した。
Test Example 6
The TRPM8-expressing cells obtained in Preparation Example 1 (3) were incubated in solvent A with shaking at 37 ° C. for 2 minutes to wash the TRPM8-expressing cells. Next, the TRPM8-expressing cells after washing were placed in a circulating constant temperature chamber containing solvent A. The tip of the electrode was brought into contact with the TRPM8-expressing cell in the circulating constant temperature chamber, and the current in the TRPM8-expressing cell when the voltage was fixed at −60 mV was measured over time using current recording software and a current recording device. After a lapse of 20 seconds from the start of measurement, the low pH stimulation sample obtained in Comparative Example 1 was circulated in the circulation constant temperature chamber. After 15 seconds from the start of circulation of the low pH stimulation sample, the agonist-containing sample obtained in Comparative Example 4 was circulated in the circulation constant temperature chamber. After 30 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 4, the test sample obtained in Example 6 was circulated in the circulation constant temperature chamber. After 30 seconds from the beginning of circulation of the test sample obtained in Example 6, the agonist-containing sample obtained in Comparative Example 4 was circulated in the circulation constant temperature chamber. After a lapse of 50 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 4, the low pH stimulation sample obtained in Comparative Example 1 was circulated in the circulation constant temperature chamber. After 60 seconds from the start of circulation of the low pH stimulation sample, the solvent A was circulated in the circulation constant temperature chamber, and the measurement of the current change was completed.
 試験例6において、TRPM8発現細胞内の電流の経時的変化を調べた結果を図6に示す。図中、「メントール」はメントールによる刺激の継続期間、「pH5」は低pH刺激の継続期間、「被験試料」は被験試料の循環期間を示す。 FIG. 6 shows the results of examining time-dependent changes in current in TRPM8-expressing cells in Test Example 6. In the figure, “menthol” indicates the duration of stimulation with menthol, “pH 5” indicates the duration of low pH stimulation, and “test sample” indicates the circulation period of the test sample.
 図6に示された結果から、TRPM8発現細胞内の電流の絶対値は、アゴニスト含有試料に含まれるメントールによる刺激によって増加するが、低pH刺激によって減少し、被験試料の添加によってさらに減少することがわかる。これらの結果から、塩化アルミニウムから解離したアルミニウムイオンは、メントールによる刺激によって活性化されたTRPM8の活性を抑制する作用を有することがわかる。 From the results shown in FIG. 6, the absolute value of the current in TRPM8-expressing cells increases by stimulation with menthol contained in the agonist-containing sample, but decreases by low pH stimulation and further decreases by addition of the test sample. I understand. From these results, it can be seen that aluminum ions dissociated from aluminum chloride have an action of suppressing the activity of TRPM8 activated by stimulation with menthol.
 なお、実施例6において、塩化アルミニウムを用いる代わりにリン酸アルミニウム、硫酸アルミニウムカリウムなどの無機酸アルミニウム塩;酢酸アルミニウムなどのアルミニウムイオンに解離する他の物質を用いたときも、塩化アルミニウムを用いたときと同様の傾向が見られる。これらの結果から、アルミニウムイオンは、TRPM8の活性を抑制する作用を有することがわかる。 In Example 6, instead of using aluminum chloride, aluminum chloride was used when inorganic acid aluminum salts such as aluminum phosphate and potassium aluminum sulfate; and other substances dissociating into aluminum ions such as aluminum acetate were used. The same trend is seen. From these results, it can be seen that aluminum ions have an action of suppressing the activity of TRPM8.
実施例7
 塩化アルミニウムおよびカンファーを塩化アルミニウムの濃度が5mMおよびカンファーの濃度が1mMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを5に調整して被験試料を得た。得られた被験試料中にはアルミニウムイオンが解離した状態で存在していた(アルミニウムイオン濃度:5mM)。
Example 7
Aluminum chloride and camphor were added to solvent A so that the concentration of aluminum chloride was 5 mM and the concentration of camphor was 1 mM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
比較例5
 カンファーをその濃度が1mMとなるように溶媒Aに添加してアゴニスト含有試料を得た。
Comparative Example 5
A camphor was added to the solvent A so that the density | concentration might be set to 1 mM, and the agonist containing sample was obtained.
試験例7
 調製例1(4)で得られたTRPV3発現細胞を、蛍光カルシウムイオン指示薬であるFURA 2-AM(インビトロジェン社製)を最終濃度5μMで含む10質量%FBS含有DMEM中、室温で60分間インキュベーションすることにより、TRPV3発現細胞にFURA 2-AMを導入し、指示薬導入細胞を得た。指示薬導入細胞を溶媒A中、37℃で2分間振盪させながらインキュベーションすることにより、指示薬導入細胞を洗浄した。洗浄後の指示薬導入細胞を循環定温チャンバー付蛍光測定装置〔浜松ホトニクス(株)製、商品名:ARGUS-50〕の循環定温チャンバーに入れた後、対照(溶媒A)を循環させるとともに、蛍光強度340nmおよび蛍光強度380nmの測定を開始した。対照(溶媒A)の循環開始時から50秒間経過後に、循環定温チャンバー内において、比較例5で得られたアゴニスト含有試料を循環させた。比較例5で得られたアゴニスト含有試料の循環開始時から100秒間経過後に、循環定温チャンバー内において、実施例7で得られた被験試料を100秒間循環させた。
Test Example 7
The TRPV3-expressing cells obtained in Preparation Example 1 (4) are incubated for 60 minutes at room temperature in 10% FBS-containing DMEM containing FURA 2-AM (manufactured by Invitrogen), a fluorescent calcium ion indicator, at a final concentration of 5 μM. Thus, FURA 2-AM was introduced into TRPV3-expressing cells to obtain indicator-introduced cells. The indicator-introduced cells were washed by incubating the indicator-introduced cells in solvent A with shaking at 37 ° C. for 2 minutes. The indicator-introduced cells after washing are placed in a circulating thermostat chamber of a fluorescence measuring apparatus with a circulating thermostat chamber (trade name: ARGUS-50, manufactured by Hamamatsu Photonics Co., Ltd.), and then the control (solvent A) is circulated and the fluorescence intensity is increased. Measurements at 340 nm and fluorescence intensity of 380 nm were started. After 50 seconds from the start of circulation of the control (solvent A), the agonist-containing sample obtained in Comparative Example 5 was circulated in the circulation constant temperature chamber. After 100 seconds from the start of circulation of the agonist-containing sample obtained in Comparative Example 5, the test sample obtained in Example 7 was circulated in the circulation constant temperature chamber for 100 seconds.
 蛍光強度340nmおよび蛍光強度380nmを用い、式(V):
[蛍光強度比]
=[蛍光強度340nm/蛍光強度380nm]               (V)
にしたがい、蛍光強度比を算出した。
Using a fluorescence intensity of 340 nm and a fluorescence intensity of 380 nm , the formula (V):
[Fluorescence intensity ratio]
= [Fluorescence intensity 340nm / fluorescence intensity 380nm ] (V)
Accordingly, the fluorescence intensity ratio was calculated.
 試験例7において、蛍光強度比の経時的変化を調べた結果を図7に示す。図中、「カンファー」はカンファーによる刺激の継続期間、「被験試料」は被験試料の循環期間を示す。 FIG. 7 shows the results of examining the temporal change in the fluorescence intensity ratio in Test Example 7. In the figure, “camphor” indicates the duration of stimulation by camphor, and “test sample” indicates the circulation period of the test sample.
 図7に示された結果から、蛍光強度比は、アゴニスト含有試料に含まれるカンファーによる刺激の開始によって増加するが、被験試料の添加によって減少することがわかる。これらの結果から、塩化アルミニウムから解離したアルミニウムイオンは、カンファーによる刺激によって活性化されたTRPV3の活性を抑制する作用を有することがわかる。 FIG. 7 shows that the fluorescence intensity ratio increases with the start of stimulation by camphor contained in the agonist-containing sample, but decreases with the addition of the test sample. From these results, it can be seen that aluminum ions dissociated from aluminum chloride have an action of suppressing the activity of TRPV3 activated by stimulation with camphor.
 なお、実施例7において、塩化アルミニウムを用いる代わりにリン酸アルミニウム、硫酸アルミニウムカリウムなどの無機酸アルミニウム塩;酢酸アルミニウムなどのアルミニウムイオンに解離する他の物質を用いたときも、塩化アルミニウムを用いたときと同様の傾向が見られる。これらの結果から、アルミニウムイオンは、TRPV3の活性を抑制する作用を有することがわかる。 In Example 7, instead of using aluminum chloride, aluminum chloride was used when inorganic acid aluminum salts such as aluminum phosphate and potassium aluminum sulfate; and other substances that dissociate into aluminum ions such as aluminum acetate were used. The same trend is seen. From these results, it can be seen that aluminum ions have an action of suppressing the activity of TRPV3.
実施例8
 塩化アルミニウムおよび4αPDDを塩化アルミニウムの濃度が5mMおよび4αPDDの濃度が10μMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを5に調整して被験試料を得た。得られた被験試料中にはアルミニウムイオンが解離した状態で存在していた(アルミニウムイオン濃度:5mM)。
Example 8
Aluminum chloride and 4αPDD were added to solvent A so that the concentration of aluminum chloride was 5 mM and the concentration of 4αPDD was 10 μM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 5 to obtain a test sample. In the obtained test sample, aluminum ions were present in a dissociated state (aluminum ion concentration: 5 mM).
比較例6
 4αPDDをその濃度が10μMとなるように溶媒Aに添加してアゴニスト含有試料を得た。
Comparative Example 6
An agonist-containing sample was obtained by adding 4αPDD to solvent A so that its concentration was 10 μM.
試験例8
 試験例7において、調製例1(4)で得られたTRPV3発現細胞を用いる代わりに調製例1(5)で得られたTRPV4発現細胞を用いたこと、比較例5で得られたアゴニスト含有試料を用いる代わりに比較例6で得られたアゴニスト含有試料を用いたことおよび実施例7で得られた被験試料を用いる代わりに実施例8で得られた被験試料を用いたことを除き、試験例7と同様の操作を行ない、蛍光強度比の経時的変化を調べた。
Test Example 8
In Test Example 7, instead of using the TRPV3-expressing cells obtained in Preparation Example 1 (4), the TRPV4-expressing cells obtained in Preparation Example 1 (5) were used, and the agonist-containing sample obtained in Comparative Example 5 Test example, except that the agonist-containing sample obtained in Comparative Example 6 was used instead of the test sample and that the test sample obtained in Example 8 was used instead of the test sample obtained in Example 7 The same operation as in No. 7 was performed, and the change with time in the fluorescence intensity ratio was examined.
 試験例8において、蛍光強度比の経時的変化を調べた結果を図8に示す。図中、「4αPDD」は4αPDDによる刺激の継続期間、「被験試料」は被験試料の循環期間を示す。 FIG. 8 shows the results of examining the temporal change in the fluorescence intensity ratio in Test Example 8. In the figure, “4αPDD” indicates the duration of stimulation by 4αPDD, and “test sample” indicates the circulation period of the test sample.
 図8に示された結果から、蛍光強度比は、アゴニスト含有試料に含まれる4αPDDによる刺激の開始によって増加するが、被験試料の添加によって減少することがわかる。これらの結果から、塩化アルミニウムから解離したアルミニウムイオンは、4αPDDによる刺激によって活性化されたTRPV4の活性を抑制する作用を有することがわかる。 FIG. 8 shows that the fluorescence intensity ratio increases with the start of stimulation by 4αPDD contained in the agonist-containing sample, but decreases with the addition of the test sample. From these results, it can be seen that aluminum ions dissociated from aluminum chloride have an action of suppressing the activity of TRPV4 activated by stimulation with 4αPDD.
 なお、実施例8において、塩化アルミニウムを用いる代わりにリン酸アルミニウム、硫酸アルミニウムカリウムなどの無機酸アルミニウム塩;酢酸アルミニウムなどのアルミニウムイオンに解離する他の物質を用いたときも、塩化アルミニウムを用いたときと同様の傾向が見られる。これらの結果から、アルミニウムイオンは、TRPV4の活性を抑制する作用を有することがわかる。 In Example 8, instead of using aluminum chloride, aluminum chloride was used when inorganic acid aluminum salts such as aluminum phosphate and potassium aluminum sulfate; and other substances dissociating into aluminum ions such as aluminum acetate were used. The same trend is seen. From these results, it can be seen that aluminum ions have an action of suppressing the activity of TRPV4.
比較例7
 水酸化アルミニウムゲル(水酸化アルミニウムの含有率1.3質量%)およびカプサイシンを水酸化アルミニウムゲルの濃度が5質量%(20倍希釈)およびカプサイシンの濃度が1μMとなるように溶媒Aに添加して被験試料を得た。
Comparative Example 7
Aluminum hydroxide gel (aluminum hydroxide content: 1.3% by mass) and capsaicin were added to solvent A so that the concentration of aluminum hydroxide gel was 5% by mass (diluted 20 times) and the concentration of capsaicin was 1 μM. A test sample was obtained.
比較例8
 カプサイシンをその濃度が1μMとなるように溶媒Aに添加して被験試料を得た。
Comparative Example 8
Capsaicin was added to solvent A so that its concentration was 1 μM to obtain a test sample.
試験例9
 調製例1(1)で得られたTRPV1発現細胞を、蛍光カルシウムイオン指示薬であるFURA 2-AM(インビトロジェン社製)を最終濃度5μMで含む10質量%FBS含有DMEM中、室温で60分間インキュベーションすることにより、TRPV1発現細胞にFURA 2-AMを導入し、指示薬導入細胞を得た。指示薬導入細胞を溶媒A中、37℃で2分間振盪させながらインキュベーションすることにより、指示薬導入細胞を洗浄した。洗浄後の指示薬導入細胞を循環定温チャンバー付蛍光測定装置の循環定温チャンバーに入れた。その後、溶媒Aを循環させるとともに、蛍光強度340nmおよび蛍光強度380nmの測定を開始した。溶媒Aの循環開始時から50秒間経過時(対照の循環終了時)に対照存在下での蛍光強度340nm(蛍光強度G)および対照存在下での蛍光強度380nm(蛍光強度H)を取得した。循環定温チャンバー内において、比較例7で得られた被験試料を50秒間循環させ、当該被験試料の循環終了時に水酸化アルミニウムゲルおよびアゴニスト存在下での蛍光強度340nm(蛍光強度I)および水酸化アルミニウムゲルおよびアゴニスト存在下での蛍光強度380nm(蛍光強度J)を取得した。つぎに、循環定温チャンバー内において、対照(溶媒A)を100秒間循環させた。その後、循環定温チャンバー内において、比較例8で得られた被験試料を50秒間循環させ、当該被験試料の循環終了時にアゴニスト存在下での蛍光強度340nm(蛍光強度K)およびアゴニスト存在下での蛍光強度380nm(蛍光強度L)を取得した。
Test Example 9
The TRPV1-expressing cells obtained in Preparation Example 1 (1) are incubated at room temperature for 60 minutes in 10% by mass FBS-containing DMEM containing FURA 2-AM (manufactured by Invitrogen), a fluorescent calcium ion indicator, at a final concentration of 5 μM. Thus, FURA 2-AM was introduced into TRPV1-expressing cells to obtain indicator-introduced cells. The indicator-introduced cells were washed by incubating the indicator-introduced cells in solvent A with shaking at 37 ° C. for 2 minutes. The indicator-introduced cells after washing were placed in a circulation constant temperature chamber of a fluorescence measurement apparatus with a circulation constant temperature chamber. Thereafter, the solvent A was circulated and measurement of fluorescence intensity 340 nm and fluorescence intensity 380 nm was started. The fluorescence intensity 340 nm (fluorescence intensity G) in the presence of the control and the fluorescence intensity 380 nm (fluorescence intensity H) in the presence of the control were obtained when 50 seconds passed from the start of the circulation of the solvent A (at the end of the circulation of the control). In the circulation constant temperature chamber, the test sample obtained in Comparative Example 7 was circulated for 50 seconds. At the end of circulation of the test sample, fluorescence intensity 340 nm (fluorescence intensity I) and aluminum hydroxide in the presence of an aluminum hydroxide gel and an agonist A fluorescence intensity of 380 nm (fluorescence intensity J) in the presence of gel and agonist was obtained. Next, the control (solvent A) was circulated for 100 seconds in a circulation constant temperature chamber. Thereafter, the test sample obtained in Comparative Example 8 was circulated for 50 seconds in the circulation constant temperature chamber, and the fluorescence intensity 340 nm (fluorescence intensity K) in the presence of the agonist and the fluorescence in the presence of the agonist at the end of the circulation of the test sample. An intensity of 380 nm (fluorescence intensity L) was obtained.
 蛍光強度G,H、IおよびJを用い、式(VI):
[Δ蛍光強度比水酸化アルミニウムゲル
=[蛍光強度I/蛍光強度J]-[蛍光強度G/蛍光強度H]  (VI)
にしたがい、Δ蛍光強度比水酸化アルミニウムゲルを算出した。
Using fluorescence intensities G, H, I and J, formula (VI):
[Delta fluorescence intensity ratio aluminum hydroxide gel ]
= [Fluorescence intensity I / fluorescence intensity J]-[fluorescence intensity G / fluorescence intensity H] (VI)
Accordingly, Δ fluorescence intensity ratio aluminum hydroxide gel was calculated.
 蛍光強度G、H、KおよびJを用い、式(VII):
[Δ蛍光強度比アゴニスト
=[蛍光強度K/蛍光強度L]-[蛍光強度G/蛍光強度H] (VII)
にしたがい、Δ蛍光強度比アゴニストを算出した。
Using fluorescence intensities G, H, K and J, formula (VII):
[Δ fluorescence intensity ratio agonist ]
= [Fluorescence intensity K / fluorescence intensity L]-[fluorescence intensity G / fluorescence intensity H] (VII)
Accordingly, a Δfluorescence intensity ratio agonist was calculated.
 算出されたΔ蛍光強度比水酸化アルミニウムゲルとΔ蛍光強度比アゴニストとを用い、式(VIII):
[TRPV1活性またはTRPA1活性]
=[Δ蛍光強度比水酸化アルミニウムゲル/Δ蛍光強度比アゴニスト]   (VIII)
にしたがい、TRPV1活性を算出した。
Using the calculated Δ fluorescence intensity ratio aluminum hydroxide gel and Δ fluorescence intensity ratio agonist , the formula (VIII):
[TRPV1 activity or TRPA1 activity]
= [Δ fluorescence intensity ratio aluminum hydroxide gel / Δ fluorescence intensity ratio agonist ] (VIII)
Accordingly, TRPV1 activity was calculated.
 試験例9において、試料の種類とTRPV1活性との関係を調べた結果を図9に示す。図中、レーン1は比較例7で得られた被験試料を用いたときのTRPV1活性、レーン2は比較例8で得られた被験試料を用いたときのTRPV1活性を示す。 FIG. 9 shows the results of examining the relationship between the type of sample and the TRPV1 activity in Test Example 9. In the figure, lane 1 shows TRPV1 activity when the test sample obtained in Comparative Example 7 is used, and lane 2 shows TRPV1 activity when the test sample obtained in Comparative Example 8 is used.
 図9に示された結果から、水酸化アルミニウムゲルとアゴニストとを含む被験試料(比較例7)を用いたときのTRPV1活性は、アゴニストを含む被験試料(比較例8)を用いたときのTRPV1活性と比べて高いことがわかる。これらの結果から、水酸化アルミニウムゲルは、TRPV1活性抑制作用を有しておらず、TRPV1活性促進作用を有していることがわかる。 From the results shown in FIG. 9, the TRPV1 activity when using a test sample (Comparative Example 7) containing an aluminum hydroxide gel and an agonist is TRPV1 when using a test sample containing an agonist (Comparative Example 8). It can be seen that it is higher than the activity. From these results, it can be seen that the aluminum hydroxide gel does not have a TRPV1 activity suppressing action but has a TRPV1 activity promoting action.
比較例9
 水酸化アルミニウムゲル(水酸化アルミニウムの含有率1.3質量%)およびAITCを水酸化アルミニウムゲルの濃度が5質量%(20倍希釈)およびAITCの濃度が20μMとなるように溶媒Aに添加して被験試料を得た。
Comparative Example 9
Aluminum hydroxide gel (aluminum hydroxide content 1.3 mass%) and AITC were added to solvent A so that the concentration of aluminum hydroxide gel was 5 mass% (diluted 20 times) and the concentration of AITC was 20 μM. A test sample was obtained.
比較例10
 AITCをその濃度が20μMとなるように溶媒Aに添加して被験試料を得た。
Comparative Example 10
A test sample was obtained by adding AITC to solvent A so that its concentration was 20 μM.
試験例10
 試験例9において、調製例1(1)で得られたTRPV1発現細胞を用いる代わりに調製例1(2)で得られたTRPA1発現細胞を用いたこと、比較例7で得られた被験試料を用いる代わりに比較例9で得られた被験試料を用いたことおよび比較例8で得られた被験試料を用いる代わりに比較例10で得られた被験試料を用いたことを除き、試験例9と同様の操作を行ない、TRPA1活性を算出した。
Test Example 10
In Test Example 9, instead of using the TRPV1-expressing cells obtained in Preparation Example 1 (1), the TRPA1-expressing cells obtained in Preparation Example 1 (2) were used, and the test sample obtained in Comparative Example 7 was used. Test Example 9 except that the test sample obtained in Comparative Example 9 was used instead of the test sample and that the test sample obtained in Comparative Example 10 was used instead of the test sample obtained in Comparative Example 8 The same operation was performed, and TRPA1 activity was calculated.
 試験例10において、試料の種類とTRPA1活性との関係を調べた結果を図10に示す。図中、レーン1は比較例9で得られた被験試料を用いたときのTRPA1活性、レーン2は比較例10で得られた被験試料を用いたときのTRPA1活性を示す。 FIG. 10 shows the results of examining the relationship between the type of sample and the TRPA1 activity in Test Example 10. In the figure, lane 1 shows TRPA1 activity when the test sample obtained in Comparative Example 9 is used, and lane 2 shows TRPA1 activity when the test sample obtained in Comparative Example 10 is used.
 図10に示された結果から、水酸化アルミニウムゲルとアゴニストとを含む被験試料(比較例9)を用いたときのTRPA1活性は、アゴニストを含む被験試料(比較例10)を用いたときのTRPA1活性と比べて高いことがわかる。これらの結果から、水酸化アルミニウムゲルは、TRPA1活性抑制作用を有しておらず、TRPA1活性促進作用を有していることがわかる。 From the results shown in FIG. 10, the TRPA1 activity when using a test sample (Comparative Example 9) containing an aluminum hydroxide gel and an agonist is TRPA1 when using a test sample containing an agonist (Comparative Example 10). It can be seen that it is higher than the activity. From these results, it can be seen that the aluminum hydroxide gel does not have a TRPA1 activity inhibitory action but has a TRPA1 activity promoting action.
調製例2
(1)被験試料Aの調製
 硫酸アルミニウムカリウムをその濃度が1μM〔アルミニウムイオン濃度:1μM(実験番号9)〕、10μM〔アルミニウムイオン濃度:10μM(実験番号10)〕、100μM〔アルミニウムイオン濃度:100μM(実験番号11)〕、200μM〔アルミニウムイオン濃度:200μM(実験番号12)〕、500μM〔アルミニウムイオン濃度:500μM(実験番号13)〕、1000μM〔アルミニウムイオン濃度:1000μM(実験番号14)〕、5000μM(〔アルミニウムイオン濃度:5000μM(実験番号15)〕または10000μM〔アルミニウムイオン濃度:10000μM(実験番号16)〕となるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを4に調整して被験試料Aを得た。
Preparation Example 2
(1) Preparation of test sample A The concentration of potassium aluminum sulfate is 1 μM [aluminum ion concentration: 1 μM (experiment number 9)], 10 μM [aluminum ion concentration: 10 μM (experiment number 10)], 100 μM [aluminum ion concentration: 100 μM]. (Experiment number 11)], 200 μM [aluminum ion concentration: 200 μM (experiment number 12)], 500 μM [aluminum ion concentration: 500 μM (experiment number 13)], 1000 μM [aluminum ion concentration: 1000 μM (experiment number 14)], 5000 μM ([Aluminum ion concentration: 5000 μM (experiment number 15)] or 10000 μM [aluminum ion concentration: 10000 μM (experiment number 16)]) was added to solvent A to obtain a mixture, and hydrochloric acid was added to the resulting mixture. By doing To obtain a test sample A by adjusting the pH of the mixture to 4.
(2)被験試料Bの調製
 硫酸アルミニウムカリウムおよびAITCを硫酸アルミニウムカリウムの濃度が1μM〔アルミニウムイオン濃度:1μM(実験番号9)〕、10μM〔アルミニウムイオン濃度:10μM(実験番号10)〕、100μM〔アルミニウムイオン濃度:100μM(実験番号11)〕、200μM〔アルミニウムイオン濃度:200μM(実験番号12)〕、500μM〔アルミニウムイオン濃度:500μM(実験番号13)〕、1000μM〔アルミニウムイオン濃度:1000μM(実験番号14)〕、5000μM(〔アルミニウムイオン濃度:5000μM(実験番号15)〕または10000μM〔アルミニウムイオン濃度:10000μM(実験番号16)〕およびAITCの濃度が5μMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを4に調整して被験試料Bを得た。
(2) Preparation of test sample B The concentration of potassium aluminum sulfate and AITC is 1 μM [aluminum ion concentration: 1 μM (experiment number 9)], 10 μM [aluminum ion concentration: 10 μM (experiment number 10)], 100 μM [ Aluminum ion concentration: 100 μM (experiment number 11)], 200 μM [aluminum ion concentration: 200 μM (experiment number 12)], 500 μM [aluminum ion concentration: 500 μM (experiment number 13)], 1000 μM [aluminum ion concentration: 1000 μM (experiment number) 14)] 5000 μM ([aluminum ion concentration: 5000 μM (experiment number 15)] or 10000 μM [aluminum ion concentration: 10000 μM (experiment number 16)]) and the solvent A so that the concentration of AITC is 5 μM. To obtain a pressure to the mixture. By the addition of hydrochloric acid to the resulting mixture, to obtain a test sample B to adjust the pH of the mixture to 4.
調製例3
 AITCをその濃度が5μMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸を添加することにより、当該混合物のpHを4に調整してアゴニスト含有試料を得た。
Preparation Example 3
AITC was added to Solvent A to a concentration of 5 μM to obtain a mixture. By adding hydrochloric acid to the obtained mixture, the pH of the mixture was adjusted to 4 to obtain an agonist-containing sample.
試験例11
 調製例1(2)で得られたTRPA1発現細胞を、FURA 2-AM(インビトロジェン社製)を最終濃度5μMで含む10質量%FBS含有DMEM中、室温で60分間インキュベーションすることにより、TRPA1発現細胞にFURA 2-AMを導入し、指示薬導入細胞を得た。指示薬導入細胞を溶媒A中、37℃で2分間振盪させながらインキュベーションすることにより、指示薬導入細胞を洗浄した。洗浄後の指示薬導入細胞を循環定温チャンバー付蛍光測定装置の循環定温チャンバーに入れた。その後、循環定温チャンバー内において、溶媒Aを循環させるとともに、蛍光強度340nmおよび蛍光強度380nmの測定を開始した。
Test Example 11
The TRPA1-expressing cells obtained in Preparation Example 1 (2) were incubated at room temperature for 60 minutes in DMEM containing 10 mass% FBS containing FURA 2-AM (manufactured by Invitrogen) at a final concentration of 5 μM. FURA 2-AM was introduced into the cells to obtain indicator-introduced cells. The indicator-introduced cells were washed by incubating the indicator-introduced cells in solvent A with shaking at 37 ° C. for 2 minutes. The indicator-introduced cells after washing were placed in a circulation constant temperature chamber of a fluorescence measurement apparatus with a circulation constant temperature chamber. Thereafter, the solvent A was circulated in the circulation constant temperature chamber, and the measurement of the fluorescence intensity 340 nm and the fluorescence intensity 380 nm was started.
 溶媒Aの循環開始時から50秒間経過時(対照の循環終了時)に対照存在下での蛍光強度340nm(蛍光強度M)および対照存在下での蛍光強度380nm(蛍光強度N)を取得した。その後、循環定温チャンバー内において、実験番号9の被験試料Aを50秒間循環させた。つぎに、循環定温チャンバー内において、実験番号9の被験試料Bを100秒間循環させ、当該被験試料Bの循環終了時にアルミニウムイオンおよびアゴニスト(AITC)存在下での蛍光強度340nm(蛍光強度O)およびアルミニウムイオンおよびアゴニスト(AITC)存在下での蛍光強度380nm(蛍光強度P)を取得した。つぎに、循環定温チャンバー内において、対照(溶媒A)を100秒間循環させた。その後、循環定温チャンバー内において、調製例3で得られたアゴニスト含有試料を100秒間循環させ、当該アゴニスト含有試料の循環終了時にアゴニスト存在下での蛍光強度340nm(蛍光強度Q)およびアゴニスト存在下での蛍光強度380nm(蛍光強度R)を取得した。 The fluorescence intensity 340 nm (fluorescence intensity M) in the presence of the control and the fluorescence intensity 380 nm (fluorescence intensity N) in the presence of the control were obtained when 50 seconds passed from the start of the circulation of the solvent A (at the end of the circulation of the control). Thereafter, the test sample A of Experiment No. 9 was circulated for 50 seconds in a circulation constant temperature chamber. Next, the test sample B of Experiment No. 9 is circulated for 100 seconds in the circulation constant temperature chamber. At the end of circulation of the test sample B, the fluorescence intensity 340 nm (fluorescence intensity O) in the presence of aluminum ions and agonist (AITC) and A fluorescence intensity of 380 nm (fluorescence intensity P) in the presence of aluminum ions and agonist (AITC) was obtained. Next, the control (solvent A) was circulated for 100 seconds in a circulation constant temperature chamber. Thereafter, the agonist-containing sample obtained in Preparation Example 3 was circulated for 100 seconds in the circulation constant temperature chamber. At the end of circulation of the agonist-containing sample, the fluorescence intensity 340 nm (fluorescence intensity Q) in the presence of the agonist and the presence of the agonist. A fluorescence intensity of 380 nm (fluorescence intensity R) was obtained.
 蛍光強度M、N、OおよびPを用い、式(IX):
[Δ蛍光強度比活性抑制剤
=[蛍光強度O/蛍光強度P]-[蛍光強度M/蛍光強度N]
                             (IX)
にしたがい、Δ蛍光強度比活性抑制剤を算出した。
Using fluorescence intensities M, N, O and P, the formula (IX):
[Δ fluorescence intensity specific activity inhibitor ]
= [Fluorescence intensity O / fluorescence intensity P]-[fluorescence intensity M / fluorescence intensity N]
(IX)
Accordingly, the Δ fluorescence intensity specific activity inhibitor was calculated.
 蛍光強度M、N、QおよびRを用い、式(X):
[Δ蛍光強度比アゴニスト
=[蛍光強度Q/蛍光強度R]-[蛍光強度M/蛍光強度N]
                             (X)
にしたがい、Δ蛍光強度比アゴニストを算出した。
Using fluorescence intensity M, N, Q and R, the formula (X):
[Δ fluorescence intensity ratio agonist ]
= [Fluorescence intensity Q / fluorescence intensity R]-[fluorescence intensity M / fluorescence intensity N]
(X)
Accordingly, a Δfluorescence intensity ratio agonist was calculated.
 算出されたΔ蛍光強度比活性抑制剤とΔ蛍光強度比アゴニストとを用い、式(XI):
[抑制率]
=[Δ蛍光強度比アゴニスト-Δ蛍光強度比活性抑制剤]/[Δ蛍光強度比アゴニスト
                             (XI)
にしたがい、TRPA1活性の抑制率を算出した。
Using the calculated Δ fluorescence intensity ratio activity inhibitor and Δ fluorescence intensity ratio agonist , the formula (XI):
[Inhibition rate]
= [Δ fluorescence intensity ratio agonist- Δ fluorescence intensity ratio activity inhibitor ] / [Δ fluorescence intensity ratio agonist ]
(XI)
Accordingly, the inhibition rate of TRPA1 activity was calculated.
 また、前記において、実験番号9の被験試料Aおよび被験試料Bを用いる代わりに実験番号10~16の被験試料Aおよび被験試料Bを用いたことを除き、実験番号9の被験試料Aおよび被験試料Bを用いたときと同様の操作を行ない、TRPA1活性の抑制率を算出した。 Further, in the above, test sample A and test sample of experiment number 9 are used except that test sample A and test sample B of experiment number 10 to 16 are used instead of test sample A and test sample B of experiment number 9 The same operation as when B was used was performed, and the inhibition rate of TRPA1 activity was calculated.
 試験例11において、硫酸アルミニウムカリウム濃度とTRPA1活性の抑制率との関係を調べた結果を図11に示す。 FIG. 11 shows the results of examining the relationship between the potassium aluminum sulfate concentration and the inhibition rate of TRPA1 activity in Test Example 11.
 図11に示された結果を用い、TRPA1活性に対する硫酸アルミニウムカリウムの50%阻害濃度を算出した。その結果、TRPA1活性に対する硫酸アルミニウムカリウムの50%阻害濃度は、103μMであることがわかった。以上の結果から、TRPA1活性に対するアルミニウムイオンの50%阻害濃度は、103μMであることがわかった。 Using the results shown in FIG. 11, the 50% inhibitory concentration of potassium aluminum sulfate for TRPA1 activity was calculated. As a result, it was found that the 50% inhibitory concentration of potassium aluminum sulfate for TRPA1 activity was 103 μM. From the above results, it was found that the 50% inhibitory concentration of aluminum ions for TRPA1 activity was 103 μM.
調製例4
(1)被験試料Cの調製
 硫酸アルミニウムカリウムをその濃度が1000μM〔アルミニウムイオン濃度:1000μM〕となるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸または水酸化ナトリウムを添加することにより、当該混合物のpHを4、6(実験番号17)、6(実験番号18)または7.4(実験番号19)に調整して被験試料Cを得た。
Preparation Example 4
(1) Preparation of test sample C Potassium aluminum sulfate was added to solvent A so that the density | concentration might be set to 1000 micromol [aluminum ion concentration: 1000 micromol], and the mixture was obtained. By adding hydrochloric acid or sodium hydroxide to the obtained mixture, the pH of the mixture was adjusted to 4, 6 (experiment number 17), 6 (experiment number 18) or 7.4 (experiment number 19). Sample C was obtained.
(2)被験試料Dの調製
 硫酸アルミニウムカリウムとカプサイシンを硫酸アルミニウムカリウムの濃度が1000μM〔アルミニウムイオン濃度:1000μM〕およびカプサイシンの濃度が100nMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸または水酸化ナトリウムを添加することにより、当該混合物のpHを4、6(実験番号17)、6(実験番号18)または7.4(実験番号19)に調整して被験試料Cを得た。
(2) Preparation of test sample D Potassium aluminum sulfate and capsaicin were added to solvent A so that the concentration of potassium aluminum sulfate was 1000 μM [aluminum ion concentration: 1000 μM] and the concentration of capsaicin was 100 nM to obtain a mixture. By adding hydrochloric acid or sodium hydroxide to the obtained mixture, the pH of the mixture was adjusted to 4, 6 (experiment number 17), 6 (experiment number 18) or 7.4 (experiment number 19). Sample C was obtained.
(3)被験試料Eの調製
 硫酸アルミニウムカリウムとAITCを硫酸アルミニウムカリウムの濃度が1000μM〔アルミニウムイオン濃度:1000μM〕およびAITCの濃度が5μMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸または水酸化ナトリウムを添加することにより、当該混合物のpHを4、6(実験番号17)、6(実験番号18)または7.4(実験番号19)に調整して被験試料Dを得た。
(3) Preparation of test sample E Potassium aluminum sulfate and AITC were added to solvent A so that the concentration of potassium aluminum sulfate was 1000 μM [aluminum ion concentration: 1000 μM] and the concentration of AITC was 5 μM to obtain a mixture. By adding hydrochloric acid or sodium hydroxide to the obtained mixture, the pH of the mixture was adjusted to 4, 6 (experiment number 17), 6 (experiment number 18) or 7.4 (experiment number 19). Sample D was obtained.
調製例5
 カプサイシンをその濃度が100nMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸または水酸化ナトリウムを添加することにより、当該混合物のpHを4、6(実験番号17)、6(実験番号18)または7.4(実験番号19)に調整してアゴニスト含有試料を得た。
Preparation Example 5
Capsaicin was added to solvent A to a concentration of 100 nM to obtain a mixture. By adding hydrochloric acid or sodium hydroxide to the obtained mixture, the pH of the mixture is adjusted to 4, 6 (Experiment No. 17), 6 (Experiment No. 18) or 7.4 (Experiment No. 19) to be agonists. A containing sample was obtained.
調製例6
 AITCをその濃度が5μMとなるように溶媒Aに添加して混合物を得た。得られた混合物に塩酸または水酸化ナトリウムを添加することにより、当該混合物のpHを4、6(実験番号17)、6(実験番号18)または7.4(実験番号19)に調整してアゴニスト含有試料を得た。
Preparation Example 6
AITC was added to Solvent A to a concentration of 5 μM to obtain a mixture. By adding hydrochloric acid or sodium hydroxide to the obtained mixture, the pH of the mixture is adjusted to 4, 6 (Experiment No. 17), 6 (Experiment No. 18) or 7.4 (Experiment No. 19) to be agonists. A containing sample was obtained.
試験例12
(1)TRPV1活性の抑制率の算出
 調製例1(1)で得られたTRPV1発現細胞を、FURA 2-AM(インビトロジェン社製)を最終濃度5μMで含む10質量%FBS含有DMEM中、室温で60分間インキュベーションすることにより、TRPV1発現細胞にFURA 2-AMを導入し、指示薬導入細胞を得た。指示薬導入細胞を溶媒A中、37℃で2分間振盪させながらインキュベーションすることにより、指示薬導入細胞を洗浄した。洗浄後の指示薬導入細胞を循環定温チャンバー付蛍光測定装置の循環定温チャンバーに入れた後、溶媒Aを循環させるとともに、蛍光強度340nmおよび蛍光強度380nmの測定を開始した。
Test Example 12
(1) Calculation of inhibition rate of TRPV1 activity The TRPV1-expressing cells obtained in Preparation Example 1 (1) were mixed with FURA 2-AM (manufactured by Invitrogen) at a final concentration of 5 μM in 10% by mass FBS-containing DMEM at room temperature. By incubating for 60 minutes, FURA 2-AM was introduced into TRPV1-expressing cells to obtain indicator-introduced cells. The indicator-introduced cells were washed by incubating the indicator-introduced cells in solvent A with shaking at 37 ° C. for 2 minutes. The indicator-introduced cells after washing were placed in a circulation constant temperature chamber of a fluorescence measurement apparatus with a circulation constant temperature chamber, and then the solvent A was circulated and measurement of fluorescence intensity 340 nm and fluorescence intensity 380 nm was started.
 溶媒Aの循環開始時から50秒間経過時(対照の循環終了時)に対照存在下での蛍光強度340nm(蛍光強度M)および対照存在下での蛍光強度380nm(蛍光強度N)を取得した。その後、循環定温チャンバー内において、実験番号17の被験試料Cを50秒間循環させた。つぎに、循環定温チャンバー内において、実験番号17の被験試料Dを100秒間循環させ、当該被験試料Dの循環終了時にアルミニウムイオンおよびアゴニスト(カプサイシン)存在下での蛍光強度340nm(蛍光強度O)およびアルミニウムイオンおよびアゴニスト(カプサイシン)存在下での蛍光強度380nm(蛍光強度P)を取得した。つぎに、循環定温チャンバー内において、対照(溶媒A)を100秒間循環させた。その後、循環定温チャンバー内において、調製例5で得られた実験番号17のアゴニスト含有試料を100秒間循環させ、当該アゴニスト含有試料の循環終了時にアゴニスト存在下での蛍光強度340nm(蛍光強度Q)およびアゴニスト存在下での蛍光強度380nm(蛍光強度R)を取得した。 The fluorescence intensity 340 nm (fluorescence intensity M) in the presence of the control and the fluorescence intensity 380 nm (fluorescence intensity N) in the presence of the control were obtained when 50 seconds passed from the start of the circulation of the solvent A (at the end of the circulation of the control). Thereafter, the test sample C of Experiment No. 17 was circulated for 50 seconds in a circulation constant temperature chamber. Next, the test sample D of the experiment number 17 is circulated for 100 seconds in the circulation constant temperature chamber, and at the end of circulation of the test sample D, the fluorescence intensity 340 nm (fluorescence intensity O) in the presence of aluminum ions and agonist (capsaicin) and A fluorescence intensity of 380 nm (fluorescence intensity P) in the presence of aluminum ions and an agonist (capsaicin) was obtained. Next, the control (solvent A) was circulated for 100 seconds in a circulation constant temperature chamber. Thereafter, the agonist-containing sample of Experiment No. 17 obtained in Preparation Example 5 was circulated for 100 seconds in the circulation constant temperature chamber, and the fluorescence intensity 340 nm (fluorescence intensity Q) in the presence of the agonist at the end of circulation of the agonist-containing sample and A fluorescence intensity of 380 nm (fluorescence intensity R) in the presence of an agonist was obtained.
 蛍光強度M~Rを用い、式(IX)、式(X)および式(XI)にしたがい、TRPV1活性の抑制率を算出した。 Fluorescence intensities M to R were used to calculate the inhibition rate of TRPV1 activity according to formula (IX), formula (X) and formula (XI).
 また、前記において、実験番号17の被験試料Cおよび被験試料Dを用いる代わりに実験番号18~19の被験試料Cおよび被験試料Dを用いたことを除き、実験番号17の被験試料Cおよび被験試料Dを用いたときと同様の操作を行ない、TRPV1活性の抑制率を算出した。 Also, in the above, test sample C and test sample of experiment number 17 are used except that test sample C and test sample D of experiment numbers 18 to 19 are used instead of test sample C and test sample D of experiment number 17 The same operation as when D was used was performed, and the inhibition rate of TRPV1 activity was calculated.
 試験例12において、被験試料のpHとTRPV1活性の抑制率との関係を調べた結果を図12に示す。 FIG. 12 shows the results of examining the relationship between the pH of the test sample and the inhibition rate of TRPV1 activity in Test Example 12.
(2)TRPA1活性の抑制率の算出
 試験例12(1)において、調製例1(1)で得られたTRPV1発現細胞を用いる代わりに調製例1(2)で得られたTRPA1発現細胞を用いたこと、被験試料Dを用いる代わりに被験試料Eを用いたことおよび調製例5で得られたアゴニスト含有試料を用いる代わりに調製例6で得られたアゴニスト含有試料を用いたことを除き、試験例12(1)と同様の操作を行ない、TRPA1活性の抑制率を算出した。
(2) Calculation of inhibition rate of TRPA1 activity In Test Example 12 (1), instead of using the TRPV1-expressing cell obtained in Preparation Example 1 (1), the TRPA1-expressing cell obtained in Preparation Example 1 (2) was used. The test sample E was used instead of the test sample D and the agonist-containing sample obtained in Preparation Example 6 was used instead of the agonist-containing sample obtained in Preparation Example 5. The same operation as in Example 12 (1) was performed, and the inhibition rate of TRPA1 activity was calculated.
 試験例12において、被験試料のpHとTRPA1活性の抑制率との関係を調べた結果を図12に示す。図中、黒色バーはTRPV1活性の抑制率、白色バーはTRPA1活性の抑制率を示す。 FIG. 12 shows the results of examining the relationship between the pH of the test sample and the inhibition rate of TRPA1 activity in Test Example 12. In the figure, the black bar shows the inhibition rate of TRPV1 activity, and the white bar shows the inhibition rate of TRPA1 activity.
 図12に示された結果から、TRPV1活性の抑制率およびTRPA1活性の抑制率は、pHが4、6および7.4の順に高いことがわかる。これらの結果から、アルミニウムイオンに解離する物質として硫酸アルミニウムカリウムを用いた場合、活性抑制剤のpHを1~6.5、好ましくは4~6に調整することにより、TRPV1活性およびTRPA1活性の抑制率を向上させることができることがわかる。 From the results shown in FIG. 12, it can be seen that the inhibition rate of TRPV1 activity and the inhibition rate of TRPA1 activity are higher in the order of pH 4, 6 and 7.4. From these results, when potassium aluminum sulfate is used as a substance that dissociates into aluminum ions, it is possible to suppress TRPV1 activity and TRPA1 activity by adjusting the pH of the activity inhibitor to 1 to 6.5, preferably 4 to 6. It can be seen that the rate can be improved.
 以上説明したように、アルミニウムイオンは、TRPA1、TRPV1、TRPM8、TRPV3、TRPV4などのTRPチャネルの活性を抑制することがわかる。したがって、本発明の活性抑制剤は、アルミニウムイオンを含有するので、TRPチャネルの活性化に起因する不快な感覚または生理学的事象の発現を抑制または調整する薬剤、例えば、TRPA1の活性化に起因する刺激を抑制する用途に用いられる刺激抑制剤、TRPM8の活性化に起因する冷感を調整する用途に用いられる冷感調整剤、TRPV1の活性化に起因する痛みを抑制する用途に用いられる痛み抑制剤、TRPV3の活性化に起因する皮膚細胞の過角化を抑制する用途に用いられる皮膚細胞の過角化抑制剤、TRPV4の活性化に起因する痒みを抑制する用途に用いられる痒み抑制剤などの用途に用いられることが期待される。また、本発明の活性抑制方法は、アルミニウムイオンとTRPチャネルとを接触させるので、TRPチャネルの活性化に起因する不快な感覚または生理学的事象の発現の抑制または調整、例えば、TRPA1の活性化に起因する刺激の抑制、TRPM8の活性化に起因する冷感の調整、TRPV1の活性化に起因する痛みの抑制、TRPV3の活性化に起因する皮膚細胞の過角化の抑制、TRPV4の活性化に起因する痒みの抑制などに用いられることが期待される。

 
As described above, it can be seen that aluminum ions suppress the activity of TRP channels such as TRPA1, TRPV1, TRPM8, TRPV3, and TRPV4. Therefore, since the activity inhibitor of the present invention contains aluminum ions, it results from the activation of an agent that suppresses or modulates the expression of unpleasant sensations or physiological events resulting from the activation of the TRP channel, for example, TRPA1. Stimulation inhibitor used for the purpose of suppressing stimulation, cooling sensation adjusting agent used for adjusting the sensation of cooling caused by activation of TRPM8, pain suppression used for the purpose of suppressing pain caused by activation of TRPV1 Agents, skin cell hyperkeratinization inhibitor used to suppress skin cell hyperkeratinization caused by TRPV3 activation, itching agent used for curbing caused by TRPV4 activation, etc. It is expected to be used for In addition, since the method for inhibiting activity of the present invention brings aluminum ions into contact with TRP channels, it suppresses or regulates the expression of unpleasant sensations or physiological events caused by activation of TRP channels, for example, activation of TRPA1. Suppression caused by stimulation, adjustment of cooling sensation caused by activation of TRPM8, inhibition of pain caused by activation of TRPV1, suppression of hyperkeratinization of skin cells caused by activation of TRPV3, activation of TRPV4 It is expected to be used for suppressing the itch caused.

Claims (3)

  1.  TRPチャネルの活性を抑制するためのTRPチャネル活性抑制剤であって、前記TRPチャネルの活性を抑制するための有効成分としてアルミニウムイオンを含有していることを特徴とするTRPチャネル活性抑制剤。 A TRP channel activity inhibitor for suppressing the activity of a TRP channel, comprising an aluminum ion as an active ingredient for suppressing the activity of the TRP channel.
  2.  TRPチャネルの活性を抑制するためのTRPチャネル活性抑制剤であって、前記TRPチャネルの活性を抑制するための有効成分としてアルミニウムイオンに解離する物質が配合されていることを特徴とするTRPチャネル活性抑制剤。 A TRP channel activity inhibitor for suppressing the activity of a TRP channel, which comprises a substance that dissociates into aluminum ions as an active ingredient for suppressing the activity of the TRP channel. Inhibitor.
  3.  TRPチャネルの活性を抑制する活性抑制方法であって、アルミニウムイオンとTRPチャネルとを接触させることを特徴とするTRPチャネルの活性抑制方法。 An activity suppression method for suppressing the activity of a TRP channel, which comprises contacting an aluminum ion with a TRP channel.
PCT/JP2019/013230 2018-03-29 2019-03-27 Trp channel activity inhibitor WO2019189380A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020509202A JPWO2019189380A1 (en) 2018-03-29 2019-03-27 TRP channel activity inhibitor
CN201980007133.2A CN111542327A (en) 2018-03-29 2019-03-27 Inhibitors of TRP channel activity
KR1020207018268A KR20200093001A (en) 2018-03-29 2019-03-27 TRP channel activity inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018064969 2018-03-29
JP2018-064969 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019189380A1 true WO2019189380A1 (en) 2019-10-03

Family

ID=68062016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013230 WO2019189380A1 (en) 2018-03-29 2019-03-27 Trp channel activity inhibitor

Country Status (4)

Country Link
JP (1) JPWO2019189380A1 (en)
KR (1) KR20200093001A (en)
CN (1) CN111542327A (en)
WO (1) WO2019189380A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253925A (en) * 1985-09-02 1987-03-09 Toyoji Ishimoto Composition of non-irritant remedy for dermatic mycosis and production thereof
JPH11502504A (en) * 1994-12-21 1999-03-02 コスメダーム・テクノロジーズ Formulations and methods for reducing skin irritation
JP2008079528A (en) * 2006-09-27 2008-04-10 Mandom Corp Method of screening substance for suppressing irritation due to parabens
JP2011140471A (en) * 2010-01-08 2011-07-21 Mandom Corp Activity inhibitor and activity-inhibiting method for trpa1, and skin care preparation for external use
JP2012062304A (en) * 2010-08-20 2012-03-29 Mandom Corp Activity inhibitor for trpa1, method for inhibiting activity of trpa1, and external preparation
JP2016011283A (en) * 2014-06-27 2016-01-21 株式会社ライラック研究所 Functional skin lotion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253925A (en) * 1985-09-02 1987-03-09 Toyoji Ishimoto Composition of non-irritant remedy for dermatic mycosis and production thereof
JPH11502504A (en) * 1994-12-21 1999-03-02 コスメダーム・テクノロジーズ Formulations and methods for reducing skin irritation
JP2008079528A (en) * 2006-09-27 2008-04-10 Mandom Corp Method of screening substance for suppressing irritation due to parabens
JP2011140471A (en) * 2010-01-08 2011-07-21 Mandom Corp Activity inhibitor and activity-inhibiting method for trpa1, and skin care preparation for external use
JP2012062304A (en) * 2010-08-20 2012-03-29 Mandom Corp Activity inhibitor for trpa1, method for inhibiting activity of trpa1, and external preparation
JP2016011283A (en) * 2014-06-27 2016-01-21 株式会社ライラック研究所 Functional skin lotion

Also Published As

Publication number Publication date
KR20200093001A (en) 2020-08-04
JPWO2019189380A1 (en) 2020-12-03
CN111542327A (en) 2020-08-14

Similar Documents

Publication Publication Date Title
Agusti et al. NF-κB activation and iNOS upregulation in skeletal muscle of patients with COPD and low body weight
Glasgow et al. Memantine and ketamine differentially alter NMDA receptor desensitization
Gomora et al. Block of cloned human T-type calcium channels by succinimide antiepileptic drugs
Leo et al. Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors
Konig et al. Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation
Mitchell et al. RGS5 expression is a quantitative measure of pericyte coverage of blood vessels
Kim et al. PPARβ/δ selectively induces differentiation and inhibits cell proliferation
JP4917858B2 (en) Screening method for substances that suppress irritation of parabens
Moult et al. Leptin reverses long‐term potentiation at hippocampal CA1 synapses
Lv et al. DCPIB, an inhibitor of volume-regulated anion channels, distinctly modulates K2P channels
Flannery et al. A TRPM4-dependent current in murine renal primary cilia
Melanaphy et al. Ion channel mechanisms of rat tail artery contraction-relaxation by menthol involving, respectively, TRPM8 activation and L-type Ca2+ channel inhibition
WO2019189380A1 (en) Trp channel activity inhibitor
JP5669421B2 (en) Evaluation method of alcohol stimulation inhibitor
Damann et al. In vitro characterization of the thermoneutral transient receptor potential vanilloid-1 (TRPV1) inhibitor GRTE16523
JP7197298B2 (en) Method for evaluating and/or selecting methyl mercaptan odor inhibitor
Samasilp et al. Syndapin 3 modulates fusion pore expansion in mouse neuroendocrine chromaffin cells
JP5528126B2 (en) TRPA1 activity inhibitor, activity inhibition method, and external preparation for skin
JP2009225733A (en) Method for evaluation of trpa1 activator
Zhang et al. KCNQ2/3 openers show differential selectivity and site of action across multiple KCNQ channels
IL140032A (en) New use of a pyridazinone derivative
Wu et al. Effects of ibandronate sodium, a nitrogen-containing bisphosphonate, on intermediate-conductance calcium-activated potassium channels in osteoclast precursor cells (RAW 264.7)
JP2013117474A (en) Evaluation method, screening method, antipruritic substance and antipruritic remedy
JP6508969B2 (en) Evaluation method of test substance
De Aro et al. Biochemical and morphological alterations in the Achilles tendon of mdx mice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509202

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207018268

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774253

Country of ref document: EP

Kind code of ref document: A1