WO2019189374A1 - Power transmission module, power transmission device, and wireless power transfer system - Google Patents

Power transmission module, power transmission device, and wireless power transfer system Download PDF

Info

Publication number
WO2019189374A1
WO2019189374A1 PCT/JP2019/013221 JP2019013221W WO2019189374A1 WO 2019189374 A1 WO2019189374 A1 WO 2019189374A1 JP 2019013221 W JP2019013221 W JP 2019013221W WO 2019189374 A1 WO2019189374 A1 WO 2019189374A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
electrode group
circuit
energy
Prior art date
Application number
PCT/JP2019/013221
Other languages
French (fr)
Japanese (ja)
Inventor
菅野 浩
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980021169.6A priority Critical patent/CN111937271A/en
Publication of WO2019189374A1 publication Critical patent/WO2019189374A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling

Definitions

  • the present disclosure relates to a power transmission module, a power transmission device, and a wireless power transmission system.
  • Wireless power transmission techniques include a magnetic field coupling method and an electric field coupling method.
  • a wireless power transmission system using a magnetic field coupling method AC power is transmitted from a power transmission coil to a power reception coil in a contactless manner with the power transmission coil and the power reception coil facing each other.
  • Patent Document 1 discloses an example of a magnetic field coupling type wireless power transmission system.
  • Patent Document 2 discloses an example of a wireless power transmission system using such an electric field coupling method.
  • This disclosure provides a technique for suppressing a reduction in transmission efficiency when power is transmitted simultaneously from one power transmission device to two or more power reception devices in a wireless power transmission system using an electric field coupling method.
  • the power transmission module is used in a power transmission device in a wireless power transmission system capable of wirelessly transmitting energy from a power transmission electrode group to two or more power reception electrode groups via an electric field.
  • the power transmission module includes a power transmission electrode group including two or more power transmission electrodes, a first power conversion circuit that outputs a first AC voltage, and a first matching circuit connected between the power transmission electrode group. And a second matching circuit connected between the first power conversion circuit or the second power conversion circuit that outputs a second AC voltage and the power transmission electrode group.
  • the first and second matching circuits supply in-phase AC energy to the power transmission electrode group.
  • the comprehensive or specific aspect of the present disclosure can be realized by an apparatus, a system, a method, an integrated circuit, a computer program, or a recording medium.
  • the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • FIG. 1 is a diagram schematically illustrating an example of a wireless power transmission system using an electric field coupling method.
  • FIG. 2 is a diagram illustrating a schematic configuration of the wireless power transmission system illustrated in FIG. 1.
  • FIG. 3 is a diagram schematically illustrating another example of the wireless power transmission system using the electric field coupling method.
  • 4 is a diagram showing a schematic configuration of the wireless power transmission system shown in FIG.
  • FIG. 5 is a diagram illustrating a situation in which two mobile objects are simultaneously receiving power from the power transmission electrode group.
  • FIG. 6 is a diagram for explaining a problem that occurs when two moving bodies simultaneously receive power from the power transmission electrode group.
  • FIG. 7A is a schematic diagram of a wireless power transfer system in an exemplary embodiment of the present disclosure.
  • FIG. 7A is a schematic diagram of a wireless power transfer system in an exemplary embodiment of the present disclosure.
  • FIG. 7B is a schematic diagram of a wireless power transmission system according to another exemplary embodiment of the present disclosure.
  • FIG. 8A is a diagram illustrating a first configuration example of the matching circuit.
  • FIG. 8B is a diagram illustrating a second configuration example of the matching circuit.
  • FIG. 8C is a diagram illustrating a third configuration example of the matching circuit.
  • FIG. 8D is a diagram illustrating a fourth configuration example of the matching circuit.
  • FIG. 8E is a diagram illustrating a fifth configuration example of the matching circuit.
  • FIG. 8F is a diagram illustrating a sixth configuration example of the matching circuit.
  • FIG. 8G is a diagram illustrating a seventh configuration example of the matching circuit.
  • FIG. 8H is a diagram illustrating an eighth configuration example of the matching circuit.
  • FIG. 8A is a diagram illustrating a first configuration example of the matching circuit.
  • FIG. 8B is a diagram illustrating a second configuration example of the matching circuit.
  • FIG. 8C is
  • FIG. 8I is a diagram illustrating a ninth configuration example of the matching circuit.
  • FIG. 9 is a diagram schematically illustrating a configuration example of two inductors in the matching circuit.
  • FIG. 10A is a diagram illustrating a configuration example of a wireless power transmission system.
  • FIG. 10B is a diagram illustrating another configuration example of the power transmission device.
  • FIG. 11 is a diagram schematically illustrating a configuration example of an inverter circuit.
  • FIG. 12 is a diagram schematically illustrating a configuration example of the rectifier circuit.
  • FIG. 13A is a diagram illustrating a modification of the wireless power transmission system.
  • FIG. 13B is a diagram illustrating another modification of the wireless power transmission system.
  • FIG. 14A is a diagram illustrating still another modification of the wireless power transmission system.
  • FIG. 14B is a diagram illustrating still another modification of the wireless power transmission system.
  • FIG. 1 is a diagram schematically showing an example of a wireless power transmission system using an electric field coupling method.
  • Electric field coupling method refers to electric field coupling (also referred to as “capacitive coupling”) between a power transmission electrode group including a plurality of power transmission electrodes and a power reception electrode group including a plurality of power reception electrodes.
  • a transmission method in which power is transmitted wirelessly For simplicity, an example will be described in which each of the power transmission electrode group and the power reception electrode group is configured by a pair of two electrodes.
  • the wireless power transmission system shown in FIG. 1 is a system that wirelessly transmits power to a moving body 10 that is an automated guided vehicle (AGV).
  • the mobile body 10 can be used for conveying articles in a factory or a warehouse, for example.
  • a pair of flat power transmission electrodes 120 a and 120 b are arranged on the floor 30.
  • the moving body 10 includes a pair of power receiving electrodes facing the pair of power transmitting electrodes 120a and 120b during power transmission.
  • the moving body 10 receives the AC power transmitted from the pair of power transmission electrodes 120a and 120b by the pair of power reception electrodes.
  • the received electric power is supplied to a load such as a motor, a secondary battery, or a capacitor for electric storage provided in the moving body 10. Thereby, driving or charging of the moving body 10 is performed.
  • FIG. 1 shows XYZ coordinates indicating X, Y, and Z directions orthogonal to each other.
  • illustrated XYZ coordinates are used.
  • the direction in which each power transmission electrode extends is defined as the Y direction
  • the direction perpendicular to the surface of each power transmission electrode is defined as the Z direction
  • the direction perpendicular to the Y direction and the Z direction that is, the width direction of the power transmission electrode is defined as the X direction.
  • FIG. 2 is a diagram showing a schematic configuration of the wireless power transmission system shown in FIG.
  • the wireless power transmission system includes a power transmission device 100 and a moving body 10.
  • the power transmission device 100 includes a power transmission electrode group 120, a matching circuit 180, and an inverter circuit 110.
  • the power transmission electrode group 120 includes a pair of power transmission electrodes 120a and 120b.
  • the inverter circuit 110 converts the DC power output from the power source 310 into AC power and outputs the AC power.
  • the power source 310 may be an AC power source. In that case, instead of the inverter circuit 110, the input AC power is converted into, for example, another AC power having a different frequency or voltage and output.
  • Matching circuit 180 is connected between inverter circuit 110 and power transmission electrode group 120.
  • the matching circuit 180 improves the degree of impedance matching between the inverter circuit 110 and the power transmission electrode group 120.
  • a filter circuit for removing noise components may be inserted.
  • the moving body 10 includes a power receiving device 200 and a load 330.
  • the power receiving device 200 includes a power receiving electrode group 220, a matching circuit 280, a rectifier circuit 210, and a DC / DC converter 270.
  • the power receiving electrode group 220 includes a pair of power receiving electrodes 220a and 220b.
  • the rectifier circuit 210 converts AC power received by the pair of power receiving electrodes 220 into DC power and outputs the DC power.
  • the DC / DC converter 270 converts the DC power output from the rectifier circuit 210 into DC power having a voltage required by the load 330 and supplies the DC power to the load 330.
  • another type of conversion circuit such as an AC conversion circuit may be provided.
  • a matching circuit 280 that reduces impedance mismatch is connected between the power receiving electrode group 220 and the rectifier circuit 210.
  • a filter circuit for removing noise components may be inserted.
  • the load 330 is a device that consumes or stores electric power, such as a motor, a capacitor for power storage, or a secondary battery.
  • the load 330 is charged or driven by electric power transmitted by electric field coupling between the power transmission electrode group 120 and the power reception electrode group 220.
  • each of the power transmission electrodes 120a and 120b is disposed substantially parallel to the floor surface 30, but may be disposed so as to intersect the floor surface 30.
  • each power transmission electrode 120 a, 120 b can be arranged substantially perpendicular to the floor surface 30.
  • each of the power receiving electrodes 220a and 220b in the moving body 10 may be disposed so as to intersect the floor surface.
  • the arrangement of the power receiving electrodes 220a and 220b is determined to be an arrangement facing the power transmitting electrodes 120a and 120b.
  • Each of the power transmitting electrodes 120a and 120b and the power receiving electrodes 220a and 220b may be divided into two or more parts. For example, you may employ
  • FIG. 3 is a perspective view showing an example of a wireless power transmission system in which each of the power transmitting electrodes 120a and 120b and the power receiving electrodes 220a and 220b is divided into two parts.
  • FIG. 4 is a diagram schematically showing a circuit configuration in this example.
  • the power transmission device 100 includes two first power transmission electrodes 120a and two second power transmission electrodes 120b.
  • the power receiving apparatus 200 includes two first power receiving electrodes 220a and two second power receiving electrodes 220b.
  • the two first power receiving electrodes 220a are opposed to the two first power transmitting electrodes 120a, respectively, and the two second power receiving electrodes 220b are respectively opposed to the two second power transmitting electrodes 120b.
  • the matching circuit 180 includes two terminals that output AC power. One terminal is connected to the two first power transmission electrodes 120a, and the other terminal is connected to the two second power transmission electrodes 120b. During power transmission, the matching circuit 180 applies the first voltage to the two first power transmission electrodes 120a, and the second voltage having the opposite phase to the first voltage to the two second power transmission electrodes 120b. Apply voltage. Thereby, electric power is wirelessly transmitted by capacitive coupling between the power transmission electrode group 120 including four power transmission electrodes and the power reception electrode group 220 including four power reception electrodes. According to such a configuration, it is possible to obtain an effect of suppressing a leakage electric field on the boundary between any two adjacent power transmission electrodes. Thus, in each of the power transmission device 100 and the power reception device 200, the number of powers to be transmitted or received is not limited to two.
  • each electrode may be divided into a plurality of parts as illustrated in FIGS. 3 and 4. In either case, the electrodes to which the first voltage is applied at a certain moment and the electrodes to which the second voltage having the opposite phase to the first voltage are alternately arranged are arranged.
  • the “reverse phase” is defined not only when the phase difference is 180 degrees but also including the case where the phase difference is in the range of 90 degrees to 270 degrees.
  • a plurality of power transmission electrodes included in the power transmission device 100 are collectively referred to as “power transmission electrode group 120”, and a plurality of power reception electrodes included in the power reception device 200 are collectively referred to as “power reception electrode group 220”.
  • the power transmission device 100 is designed so that power can be efficiently transmitted to one moving body 10. Values such as inductance and capacitance of each circuit element in the matching circuit 180 are optimized so that power can be transmitted from the power transmission apparatus 100 to one mobile body 10 with high efficiency.
  • a shielding member for suppressing electric field leakage may be disposed in the vicinity of the power transmission electrode group 120.
  • the power transmission electrode group 120 in the power transmission device 100 has a dimension longer than the dimension in the moving direction of the moving body 10.
  • the power transmission electrode group 120 may have a size that is approximately twice to 100 times the size of the moving body 10 in the moving direction.
  • FIG. 5 shows a situation where two mobile bodies 10A and 10B are about to receive power from the pair of power transmission electrodes 120a and 120b at the same time.
  • FIG. 6 schematically shows the configuration of the system at this time.
  • TX indicates a component of the power transmission device 100
  • RX indicates a component of the power reception device 200.
  • a situation is considered in which the second moving body 10B is approaching the power transmission electrode group 120 in a state where the power receiving electrode group 220 of the first moving body 10A faces the power transmission electrode group 120.
  • the power transmission device 100 is designed in advance so as to increase the transmission efficiency when energy is transmitted to the first moving body 10A via the coupling capacitance between the power transmission electrode group 120 and the power reception electrode group 220.
  • the matching circuit 180 on the power transmission side includes a resonance circuit optimized for energy transmission with a predetermined impedance.
  • the matching circuit 280 on the power receiving side includes a resonance circuit optimized for energy transmission with a predetermined impedance in advance.
  • the matching circuit 280 in the second moving body 10B also needs to have a resonance circuit optimized for energy transmission with the predetermined impedance.
  • a high transmission efficiency is obtained in a one-to-one relationship between the individual mobile bodies 10A and 10B and the power transmission device 100 under a condition that basically maintains a constant impedance. It is possible to achieve good transmission with
  • the power receiving electrode group 220 of the second moving body 10B faces the power transmitting electrode group 120 and, for example, the same power supply as that of the first moving body 10A is requested, the power supplied from the power transmitting apparatus 100 is 2 Double.
  • the inter-electrode voltage difference Vtx of the power transmission electrode group 120 increases by ⁇ 2.
  • an impedance mismatch clearly occurs between the matching circuit 180 of the power transmission device 100 and the matching circuit 280 of each of the mobile bodies 10A and 10B.
  • the efficiency of power transmission to each mobile unit 10A, 10B is greatly reduced. The decrease in power transmission efficiency leads to serious heat generation on the moving body side.
  • the voltage difference Vtx between the electrodes fluctuates, the behavior of the leakage electric field particularly around the power transmission electrode changes.
  • a leakage countermeasure shielding method designed for the condition of transmitting power to one mobile body may not sufficiently suppress electromagnetic leakage to the surrounding space.
  • Vtx approaches or exceeds the threshold that can maintain insulation. In that case, reliability problems such as shortening of the life of the apparatus may be caused.
  • the inventors of the present invention have found the above-mentioned problems and have conceived the configuration of each embodiment described below in order to solve the above problems.
  • the power transmission module is used in a power transmission device in a wireless power transmission system capable of wirelessly transmitting energy from a power transmission electrode group to two or more power reception electrode groups via an electric field.
  • the power transmission module includes a power transmission electrode group including two or more power transmission electrodes, a first matching circuit, and a second matching circuit.
  • the first matching circuit is connected between a first power conversion circuit that outputs a first AC voltage and the power transmission electrode group.
  • the second matching circuit is connected between the first power conversion circuit or the second power conversion circuit that outputs a second AC voltage and the power transmission electrode group.
  • the first and second matching circuits supply in-phase AC energy to the power transmission electrode group.
  • the transmission efficiency decreases when three or more power receiving electrode groups face the power transmitting electrode group. However, even in that case, the efficiency is improved as compared with the case where the second matching circuit is not provided.
  • in-phase AC energy does not mean AC energy whose phases are exactly the same. In the present disclosure, if the phase difference between the two is less than 45 degrees, it is interpreted as “the same phase”.
  • the power transmission device may or may not include the first power conversion circuit. Similarly, the power transmission device may or may not include the second power conversion circuit. When the power transmission device includes the second power conversion circuit, the second matching circuit is connected to the second power conversion circuit. When the power transmission device does not include the second power conversion circuit, the second matching circuit is connected to the first power conversion circuit.
  • Each of the first and second power conversion circuits may be an inverter circuit as described above, for example.
  • each power conversion circuit converts DC energy (also referred to as “DC power”) into AC energy (also referred to as “AC power”) and outputs the converted energy.
  • Each power conversion circuit may be an AC conversion circuit that converts AC power into other AC power having a different frequency and / or voltage. In the case of using an AC power supply, such an AC conversion circuit can be used.
  • a power transmission device is configured to turn on / off a connection between the power transmission module, the first power conversion circuit, and the first power conversion circuit and the second matching circuit.
  • the second matching circuit is connected to the first power conversion circuit via the switch.
  • the control circuit instructs the switch to turn off the connection between the first power conversion circuit and the second matching circuit. Send.
  • the control circuit instructs the switch to turn on the connection between the first power conversion circuit and the second matching circuit. Send.
  • the second matching circuit is used only when two or more power receiving electrode groups are opposed to the power transmitting electrode group, and a decrease in transmission efficiency can be suppressed.
  • a power transmission device controls the power transmission module, the first power conversion circuit, the second power conversion circuit, and the first and second power conversion circuits, and And a control circuit that outputs AC energy having the same phase from the first and second matching circuits.
  • the second matching circuit is connected to the second power conversion circuit.
  • two sets of the power conversion circuit and the matching circuit are provided, and AC energy having the same phase is supplied from the first and second matching circuits to the power transmission electrode group.
  • the control circuit drives only the first power conversion circuit and stops the operation of the second power conversion circuit when one power reception electrode group faces the power transmission electrode group.
  • the control circuit drives both the first and second power conversion circuits when two or more power receiving electrode groups face the power transmitting electrode group.
  • the second power conversion circuit is stopped when one power receiving electrode group faces the power transmitting electrode group, and the second power conversion circuit when two or more power receiving electrode groups face the power transmitting electrode group. Is driven. That is, whether or not the second power conversion circuit is used is determined according to the number of power receiving electrode groups that receive power (that is, the number of power receiving devices or moving bodies). Thereby, the fall of the transmission efficiency in case two or more receiving electrode groups oppose a power transmission electrode group can be suppressed.
  • the control circuit monitors at least one of voltage, current, and power in the first matching circuit, and the number of power receiving electrode groups facing the power transmitting electrode group based on at least one value of voltage, current, and power May be detected. Or the said control circuit may grasp
  • the control circuit monitors at least one of voltage, current, and power output from each of the first and second matching circuits, and based on at least one value of the voltage, current, and power
  • the phases of the AC energy output from the first and second matching circuits may be matched. For example, when the phase difference of the voltage or current output from each of the first and second matching circuits is larger than a predetermined value, the control circuit is in at least one of the first and second power conversion circuits. The phase difference may be reduced by adjusting the timing of the switching control.
  • a power transmission device is a power transmission device in a wireless power transmission system capable of transmitting energy wirelessly from a power transmission electrode group to two or more power reception electrode groups via an electric field.
  • the power transmission device includes a power transmission electrode group including two or more power transmission electrodes, N (N is an integer of 2 or more) AC output circuits that supply AC energy to the power transmission electrode group, and the N AC outputs.
  • a control circuit for controlling the circuit. When the control circuit transmits energy from the power transmitting electrode group to n power receiving electrode groups simultaneously (n is an integer of 1 to N), n AC output circuits among the N AC output circuits In addition, a command to supply AC energy having the same phase to the power transmission electrode group is sent.
  • the control circuit transmits energy from the power transmitting electrode group to n power receiving electrode groups (n is an integer of 1 to N) at the same time, of the N AC output circuits.
  • a command for supplying AC energy having the same phase to the power transmission electrode group is sent to n AC output circuits.
  • AC output circuit widely means a circuit that outputs AC energy.
  • the “AC output circuit” is a concept that includes both the above-described “matching circuit” and “combination of a power conversion circuit and a matching circuit”.
  • the control circuit may control the N AC output circuits to supply energy of the same intensity to all of the n power receiving electrode groups that receive the energy simultaneously from the power transmitting electrode group, Different strengths of energy may be supplied.
  • the power transmission device may further include another power transmission electrode group including two or more power transmission electrodes.
  • the N AC output circuits supply AC energy to the other power transmission electrode group, and the control circuit receives n power (n is an integer from 1 to N) simultaneously from the other power transmission electrode group.
  • n power n is an integer from 1 to N
  • a command for supplying AC energy having the same phase to the other power transmission electrode group may be sent to n AC output circuits among the N AC output circuits.
  • the power transmission device may further include a second power transmission electrode group including two or more power transmission electrodes and a third power transmission electrode group including two or more power transmission electrodes.
  • a first AC output circuit of the N AC output circuits may supply AC energy to the second power transmission electrode group.
  • a second AC output circuit of the N AC output circuits may supply AC energy to the third power transmission electrode group.
  • the control circuit instructs the first AC output circuit to supply the AC energy to the second power transmission electrode group when transmitting the energy from the second power transmission electrode group to one power reception electrode group.
  • a command to supply the AC energy to the third power transmission electrode group is sent to the second AC output circuit. May be.
  • the power transmission module can be manufactured or sold independently of other components of the power transmission device. That is, the power transmission module can be manufactured or sold independently of, for example, the first power conversion circuit, the second conversion circuit, the switch, the control circuit, or the communication circuit.
  • a wireless power transmission system includes the power transmission device according to any one of the above-described aspects and at least one power reception device including a power reception electrode group that wirelessly receives power from the power transmission electrode group.
  • power transmission can be performed between the power transmission electrode group and the power reception electrode group via air or another dielectric.
  • the power receiving device can be mounted on a moving body, for example.
  • the wireless power transmission system may be referred to as a “mobile system”.
  • the “moving body” in the present disclosure is not limited to a vehicle such as the above-described automatic guided vehicle, but means any movable object driven by electric power.
  • the moving body includes, for example, an electric vehicle including an electric motor and one or more wheels.
  • Such a vehicle can be, for example, the aforementioned automated guided vehicle (AGV), electric vehicle (EV), electric cart, and electric wheelchair.
  • AAV automated guided vehicle
  • EV electric vehicle
  • the “moving body” in the present disclosure includes a movable object having no wheels.
  • unmanned aircraft unmanned aerial vehicle: UAV, so-called drone
  • UAV unmanned aerial vehicle
  • multicopters manned electric aircrafts
  • elevators are also included in the “mobile body”.
  • FIG. 7A is a diagram illustrating a configuration of a wireless power transmission system in an exemplary embodiment of the present disclosure.
  • This wireless power transmission system includes a power source 310, a power transmission device 100, a first moving body 10A, and a second moving body 10B.
  • the power transmission device 100 includes a power transmission module 50, a switch 190, and an inverter circuit 110.
  • the power transmission module 50 includes a first matching circuit 180A, a second matching circuit 180B, and a power transmission electrode group 120.
  • a switch (SW) 190 is disposed between the inverter circuit 110 and the second matching circuit 180B.
  • the switch 190 switches on (connected) / off (non-connected) the connection between the inverter circuit 110 and the second matching circuit 180B.
  • the first matching circuit 180A and the second matching circuit 180B have the same configuration.
  • Matching circuits 180 ⁇ / b> A and 180 ⁇ / b> B supply AC power having the same phase to power transmission electrode group 120.
  • Each of the moving bodies 10A and 10B in the present embodiment has the same configuration.
  • Each moving body includes a power receiving electrode group 220, a matching circuit 280, a rectifier circuit 210, a DC / DC converter 270, and a load 330.
  • the switch 190 may be a semiconductor switch such as a MOSFET or an IGBT.
  • the switch 190 is controlled by a control circuit (not shown).
  • the switch 190 in a state where only the power receiving electrode group 220 of the first moving body 10A faces the power transmitting electrode group 120, the switch 190 is set to OFF. At this time, AC energy output from the inverter circuit 110 is supplied to the matching circuit 180A, but not supplied to the matching circuit 180B. For this reason, AC energy is supplied to the power transmission electrode group 120 only from the matching circuit 180A.
  • the switch 190 in a state where the power receiving electrode group 220 of both the first moving body 10A and the second moving body 10B is opposed to the power transmitting electrode group 120, the switch 190 is set to ON. At this time, the AC energy output from the inverter circuit 110 is supplied not only to the matching circuit 180A but also to the matching circuit 180B. Thereby, AC energy is supplied to the power transmission electrode group 120 from both the matching circuits 180A and 180B.
  • the voltage difference Vtx between the power transmission electrodes hardly changes between when the power is supplied only to the moving body 10A and when the power is supplied to both of the moving bodies 10A and 10B.
  • the transmitted power is approximately doubled, but Vtx is substantially constant, and the current flowing through each power transmission electrode is approximately doubled. This brings about an effect equivalent to that the area of each power transmission electrode is doubled.
  • the pressure resistance performance required for the power transmission device 100 does not become serious, and the strength of the leakage electric field to the periphery of the power transmission device 100 does not increase. Further, even when power is supplied to the two mobile bodies 10A and 10B, impedance matching is realized, so that a reduction in transmission efficiency can be suppressed.
  • FIG. 7B is a diagram illustrating another configuration example of the present embodiment.
  • the power transmission device 100 further includes a second inverter circuit 110B having the same configuration and performance as the first inverter circuit 110A.
  • the power transmission module 50 has the same configuration as the example shown in FIG. 7A.
  • the second matching circuit 180B is connected to the second inverter circuit 110B.
  • the switch 190 is connected between the power supply 310 and the second inverter circuit 110B.
  • a control circuit (not shown) turns off the switch 190 and drives only the first inverter circuit 110A when supplying power to only one moving body.
  • the control circuit turns on the switch 190 and simultaneously drives the inverter circuits 110A and 110B.
  • control is performed so that AC power having the same phase is output from the matching circuits 180A and 180B. Thereby, the same effect as the example shown to FIG. 7A can be acquired.
  • FIG. 7B requires two inverter circuits, but the performance required for each inverter circuit can be kept low.
  • the configuration of FIG. 7A requires a high-performance inverter circuit 110, but in the configuration of FIG. 7B, a cheaper inverter circuit 110 can be used.
  • the switch 190 is not limited to the illustrated position, and may be disposed at other positions.
  • the switch 190 may be disposed at any position as long as the second matching circuit 180B can be disconnected from the power transmission path. In the configuration of FIG. 7B, the switch 190 can be omitted because the operation of the inverter circuit 110B is controlled by the control circuit.
  • each matching circuit 180A, 180B, 280 will be described.
  • the matching circuit 280 in the moving body may employ a configuration in which the input side (left side in the figure) and the output side (right side in the figure) are inverted in each of the following configuration examples.
  • FIG. 8A is a diagram illustrating a first example of a matching circuit.
  • the matching circuit in this example includes a first inductor Lt1, a second inductor Lt2, and a capacitor Ct1.
  • the first inductor Lt1 is connected as a series circuit element between the power transmission electrode 120a and the first terminal 60a of the power conversion circuit 110.
  • the second inductor Lt2 is connected as a series circuit element between the power transmission electrode 120b and the second terminal 60b of the power conversion circuit 110.
  • Capacitor Ct1 is connected as a parallel circuit element between the wiring between power transmission electrode 120a and inductor Lt1 and the wiring between power transmission electrode 120b and inductor Lt2.
  • the first inductor Lt1 and the second inductor Lt2 are magnetically coupled.
  • the coupling coefficient k of these inductors can be set to a value satisfying, for example, ⁇ 1 ⁇ k ⁇ 0.
  • the first inductor Lt1 and the second inductor Lt2 can function as a common mode choke filter. In that case, the frequency used for power transmission and the common mode noise in the lower harmonic band can be reduced.
  • a resonator constituted by the first inductor Lt1, the second inductor Lt2, and the first capacitor Ct1 may be referred to as a “common mode choke resonator”.
  • FIG. 8B is a diagram illustrating a second example of the matching circuit.
  • This matching circuit further includes a second capacitor Ct2, a third capacitor Ct3, and a third inductor Lt3 in addition to the configuration shown in FIG. 8A.
  • the second capacitor Ct2 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a.
  • the third capacitor Ct3 is connected as a series circuit element between the second inductor Lt2 and the second terminal 60b.
  • the third inductor Lt3 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the second capacitor Ct2 and the wiring between the second inductor Lt2 and the third capacitor Ct3. Is done.
  • This configuration can be said to be a configuration in which a high-pass filter having a symmetric circuit configuration is added to the preceding stage of the configuration of the matching circuit shown in FIG. 8A. According to such a configuration, transmission efficiency can be further improved.
  • FIG. 8C is a diagram illustrating a third example of the matching circuit.
  • This matching circuit further includes a second capacitor Ct2 and a third inductor Lt3 in addition to the configuration shown in FIG. 8A.
  • the second capacitor Ct2 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a.
  • the third inductor Lt3 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the second capacitor Ct2 and the wiring between the second inductor Lt2 and the second terminal 60b. Is done.
  • This configuration can be said to be a configuration in which a high-pass filter having an asymmetric circuit configuration is added to the preceding stage of the configuration of the matching circuit shown in FIG. 8A.
  • the positive / negative symmetry of the circuit is reduced, but the number of elements can be reduced. Even with such a configuration, the transmission efficiency can be further improved.
  • FIG. 8D is a diagram illustrating a fourth example of the matching circuit.
  • This matching circuit further includes a third inductor Lt3 and a second capacitor Ct2 in addition to the configuration shown in FIG. 8A.
  • the third inductor Lt3 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a.
  • the second capacitor Ct2 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the third inductor Lt3 and the wiring between the second inductor Lt2 and the second terminal 60b. Is done.
  • This configuration can be said to be a configuration in which a low-pass filter having an asymmetric circuit configuration is added to the preceding stage of the configuration of the matching circuit shown in FIG. 8A. Even with such a configuration, the transmission efficiency can be further improved.
  • FIG. 8E is a diagram showing a fifth example of the matching circuit.
  • This matching circuit includes a third inductor Lt3, a fourth inductor Lt4, and a second capacitor Ct2 in addition to the configuration shown in FIG. 8A.
  • the third inductor Lt3 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a.
  • the fourth inductor Lt4 is connected as a series circuit element between the second inductor Lt2 and the second terminal 60b.
  • the second capacitor Ct2 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the third inductor Lt3 and the wiring between the second inductor Lt2 and the fourth inductor Lt4. Is done.
  • the third inductor Lt3 and the fourth inductor Lt4 can also be designed to be coupled with a negative coupling coefficient, for example.
  • This configuration can be said to be a configuration in which a low-pass filter having a symmetric circuit configuration is added to the preceding stage of the configuration of the matching circuit shown in FIG. 8A. Even with such a configuration, the transmission efficiency can be further improved.
  • 8E can also be regarded as a configuration in which the common mode choke resonator shown in FIG. 8A is connected in multiple stages. The number of connected common mode choke resonators is not limited to two and may be three or more.
  • FIG. 8F is a diagram illustrating a sixth modification of the matching circuit.
  • This matching circuit further includes a third inductor Lt3 in addition to the configuration shown in FIG. 8A.
  • the third inductor Lt3 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a.
  • this configuration also improves the transmission efficiency. be able to.
  • FIG. 8G is a diagram illustrating a seventh modification of the matching circuit.
  • the matching circuit further includes a series resonance circuit 130s connected to the power conversion circuit 110 and a parallel resonance circuit 140p that is magnetically coupled to the series resonance circuit 130s.
  • the parallel resonant circuit 140p is connected to the first inductor Lt1 and the second inductor Lt2. According to such a configuration, it is possible to further increase the transformation ratio and realize good characteristics.
  • FIG. 8H is a diagram illustrating an eighth modification of the matching circuit.
  • This matching circuit includes a series resonance circuit 130s connected to the terminals 60a and 60b of the power conversion circuit 110, and a parallel resonance circuit 140p connected to the electrodes 120a and 120b.
  • Series resonant circuit 130s includes an inductor L1 and a capacitor C1 connected in series.
  • the parallel resonant circuit includes an inductor L2 and a capacitor Ct1 connected in parallel.
  • the series resonant circuit 130s and the parallel resonant circuit 140p are magnetically coupled and function as a booster circuit. Even if it is such a structure, the effect of this embodiment can be acquired.
  • FIG. 8I is a diagram showing a ninth modification of the matching circuit.
  • This matching circuit includes a parallel resonant circuit 130p connected to terminals 60a and 60b of power conversion circuit 110, and a parallel resonant circuit 140p connected to electrodes 120a and 120b.
  • Parallel resonant circuit 130p includes an inductor L1 and a capacitor C1 connected in parallel.
  • Parallel resonant circuit 140p includes an inductor L2 and a capacitor Ct1 connected in parallel.
  • the parallel resonant circuit 130p and the parallel resonant circuit 140p are magnetically coupled to exhibit a boost function resulting from the turns ratio of the inductor L1 and the inductor L2, and realize impedance matching between the power supply circuit and the power transmission electrode. Even if it is such a structure, the effect of this embodiment can be acquired.
  • the matching circuit in each of the above examples may include other circuit elements, such as a circuit network that performs a filter function.
  • the element expressed as one inductor or one capacitor may be a plurality of inductors or a collection of a plurality of capacitors.
  • the inductors Lt1 and Lt2 can also function as a common mode choke filter that couples with a predetermined coupling coefficient.
  • the inductance values of these inductors Lt1 and Lt2 can be set to substantially equal values.
  • FIG. 9 is a diagram schematically showing a configuration example of the two inductors Lt1 and Lt2.
  • two inductors Lt1 and Lt2 are wound around a core 410 that is a ring-shaped or toroidal magnetic body.
  • the core 410 may be, for example, a soft magnetic ferrite core.
  • the inductors Lt1 and Lt2 are arranged in a direction to realize a negative coupling coefficient via the core 410. Specifically, when the coupling coefficient of the inductors Lt1 and Lt2 is k, ⁇ 1 ⁇ k ⁇ 0. The closer the coupling coefficient k is to -1, the better the transmission efficiency characteristics can be obtained from the viewpoint of transmission efficiency.
  • the coupling coefficient can be measured by, for example, a method defined in JISC5321.
  • in-phase current is input to the inductors Lt1 and Lt2 from the left input / output terminal of FIG. 9, no in-phase current is output to the right output terminal of FIG.
  • JISC5321 When in-phase current is input to the inductors Lt1 and Lt2 from the left input / output terminal of FIG. 9, no in-phase current is output to the right output terminal of FIG.
  • the capacitor Ct1 shown in FIGS. 8A to 8G can be designed to resonate with the leakage inductances of the inductors Lt1 and Lt2.
  • the resonance frequency of the common mode choke resonance circuit configured by the inductors Lt1 and Lt2 and the capacitor Ct1 can be designed to be equal to the frequency f1 of the AC power output from the power conversion circuit 110.
  • This resonance frequency may be set to a value in the range of about 50 to 150% of the transmission frequency f1, for example.
  • the frequency f1 of the power transmission can be set to, for example, 50 Hz to 300 GHz, 20 kHz to 10 GHz in one example, 20 kHz to 20 MHz in another example, and 80 kHz to 14 MHz in another example.
  • FIG. 10A is a diagram showing an example of a more detailed configuration of the wireless power transmission system shown in FIG. 7A.
  • the power transmission device 100 in this example includes a control circuit 150 that controls the inverter circuit 110 and the switch 190.
  • the control circuit 150 may be an integrated circuit including a microprocessor and a memory, for example.
  • the control circuit 150 may include a measuring instrument that measures at least one of the current, voltage, and voltage in the circuit in each matching circuit 180A, 180B.
  • the control circuit 150 may include a communication circuit that communicates with an external device.
  • the matching circuits 180A and 180B in this example have the configuration shown in FIG. 8B.
  • the matching circuit 280 in the mobile power receiving apparatus 200 has the configuration shown in FIG. 8D.
  • FIG. 10A shows only one moving body, and illustration of the configuration of the other moving bodies is omitted.
  • the control circuit 150 sends a command to the switch 190 to turn off the connection between the inverter circuit 110 and the second matching circuit 180B.
  • the two power receiving electrode groups 220 face the power transmitting electrode group 120
  • a command to turn on the connection between the inverter circuit 110 and the second matching circuit 180B is sent to the switch 190.
  • the control circuit 150 monitors, for example, at least one of voltage, current, and power in the first matching circuit 180A, and receives power that faces the power transmission electrode group 120 based on at least one value of the measured voltage, current, and power. The number of electrode groups 220 can be detected.
  • the peak value or effective value of the voltage output from the matching circuit 180A can be compared with a threshold value, and the approach of another moving body can be detected based on the comparison result.
  • the control circuit 150 may detect the approach of another moving body by communicating with another moving body or a central control device that controls the operation of each moving body.
  • FIG. 10B is a diagram illustrating an example of a more detailed configuration of the power transmission device 100 in the wireless power transmission system illustrated in FIG. 7B.
  • the power transmission device 100 in this example includes a first inverter circuit 110A, a second inverter circuit 110B, and a control circuit 150 that controls the switch 190.
  • the control circuit 150 in this example controls the first inverter circuit 110A and the second inverter circuit 110B to output AC energy having the same phase from the first matching circuit 180A and the second matching circuit 180B.
  • the control circuit 150 drives only the first inverter circuit 110A, turns off the switch 190, and stops the operation of the second inverter circuit 110B.
  • the control circuit 150 drives both the first inverter circuit 110A and the second inverter circuit 110B.
  • the control circuit 150 can detect the power receiving electrode group 220 (that is, the number of moving bodies) facing the power transmitting electrode group 120 based on at least one value of voltage, current, and power in the first matching circuit 180A, for example. it can.
  • the control circuit 150 performs feedback control for controlling the first and second power conversion circuits based on at least one value of voltage, current, and power output from each of the matching circuits 180A and 180B. Even if the phases of the voltages output from the inverter circuits 110A and 110B match, the phases of the voltages output from the matching circuits 180A and 180B may be shifted depending on the configuration of the matching circuits 180A and 180B. Therefore, for example, the control circuit 150 monitors the voltage output from each of the matching circuits 180A and 180B, and controls the inverter circuits 110A and 111B so as to compensate for the deviation when the deviation occurs. Thereby, the phases of the AC energy output from the matching circuits 180A and 180B can be matched.
  • FIG. 11 is a diagram schematically illustrating a configuration example of the inverter circuit 110 in the power transmission device 100.
  • the power source 310 is a DC power source.
  • the inverter circuit 110 is a full bridge type inverter circuit including four switching elements. Each switching element may be constituted by a transistor such as an IGBT or a MOSFET.
  • the control circuit 150 includes a gate driver that outputs a control signal for controlling the conduction (on) and non-conduction (off) states of each switching element, and a processor that causes the gate driver to output a control signal.
  • the processor can be, for example, a CPU in a microcontroller unit (MCU).
  • MCU microcontroller unit
  • a half-bridge inverter circuit another oscillation circuit such as class E, or a switching amplifier may be used.
  • the control circuit 150 may include elements such as a modulation / demodulation circuit for communication and various sensors for measuring voltage or current.
  • a modulation / demodulation circuit for communication and various sensors for measuring voltage or current.
  • data can be transmitted to the power receiving device while being superimposed on AC power.
  • the power source 310 is an AC power source, instead of the inverter circuit 110, a circuit that converts input AC power into AC power for power transmission having a different frequency or voltage is used.
  • FIG. 12 is a diagram schematically illustrating a configuration example of the rectifier circuit 210 in the power receiving device 200.
  • the rectifier circuit 210 is a full-wave rectifier circuit including a diode bridge and a smoothing capacitor, but may have other circuit configurations.
  • the mobile body 10 may include various circuits such as a constant voltage / constant current control circuit and a communication modulation / demodulation circuit.
  • the rectifier circuit 210 converts the received AC energy into DC energy that can be used by the load 330.
  • Various sensors for measuring voltage, current, and the like may be provided. When the energy used by the load 330 is AC energy, an AC converter circuit is used instead of the rectifier circuit 210.
  • the DC / DC converter 270 converts the DC power output from the rectifier circuit 210 into other DC power required by the load 330.
  • the DC / DC converter 270 is controlled by a power reception control circuit (not shown).
  • the power reception control circuit controls the output power of the DC / DC converter 270 to be constant.
  • the power reception control circuit can be realized by a circuit including a processor and a memory, such as a microcontroller unit (MCU).
  • the power source 310 is, for example, a commercial power source, a primary battery, a secondary battery, a solar cell, a fuel cell, a USB (Universal Serial Bus) power source, a high-capacity capacitor (for example, an electric double layer capacitor), a voltage conversion connected to the commercial power source It may be any power source such as a vessel.
  • the power source 310 may be a DC power source or an AC power source.
  • each power transmission electrode, and each power reception electrode is not particularly limited, but may be set to the following size, for example.
  • Each length (size in the Y direction shown in FIG. 1) of the power transmission electrode can be set within a range of 50 cm to 20 m, for example.
  • variety (size of the X direction shown in FIG. 1) of a power transmission electrode can be set in the range of 0.5 cm to 1 m, for example.
  • Each size in the advancing direction and the lateral direction of the casing of the moving body 10 can be set within a range of 20 cm to 5 m, for example.
  • Each length (that is, the size in the traveling direction) of the power receiving electrode may be set within a range of 5 cm to 2 m, for example.
  • Each width (that is, the size in the lateral direction) of the power receiving electrode can be set within a range of 2 cm to 2 m, for example.
  • the gap between the power transmitting electrode pair and the gap between the power receiving electrode pair can be set within a range of 1 mm to 40 cm, for example.
  • the distance between the power transmitting electrodes 120a and 120b and the power receiving electrodes 220a and 220b can be, for example, about 5 mm to 30 mm. However, it is not limited to these numerical ranges.
  • the load 330 may include, for example, an electric motor for driving, a capacitor for storing electricity, or a secondary battery.
  • the load 330 is driven or charged by DC power output from the DC / DC converter 270.
  • the electric motor can be any motor such as a direct current motor, a permanent magnet synchronous motor, an induction motor, a stepping motor, a reluctance motor.
  • the motor rotates the wheels of the moving body 10 via a shaft, gears, and the like to move the moving body 10.
  • the driving device in the moving body may include various circuits such as a rectifier circuit, an inverter circuit, a DC / DC converter, a control circuit that controls the inverter and the DC / DC converter.
  • the power conversion circuit 210 may include a converter circuit that directly converts the frequency of received energy (that is, AC power) into a frequency for driving the motor in order to drive the AC motor.
  • the capacitor for power storage can be a high-capacity and low-resistance capacitor such as an electric double layer capacitor or a lithium ion capacitor.
  • a capacitor such as a capacitor, it is possible to charge more rapidly than when a secondary battery is used.
  • a secondary battery such as a lithium ion battery may be used. In this case, the time required for charging increases, but more energy can be stored.
  • the moving body 10 moves by driving a motor with electric power stored in a capacitor for storage or a secondary battery.
  • the moving body 10 moves, the storage amount of the storage capacitor or the secondary battery decreases. For this reason, recharging is required to continue the movement. Therefore, when the amount of charge falls below a predetermined threshold during movement, the moving body 10 moves to the vicinity of the power transmission device 100 and performs charging. This movement may be performed under the control of a central control device (not shown), or may be performed by the mobile body 10 autonomously judging.
  • the power transmission device 100 can be installed at a plurality of locations in the factory.
  • Each inductor in each matching circuit can be, for example, a litz wire made of a material such as copper or aluminum, or a wound coil using a twisted wire.
  • a planar coil or a laminated coil formed on the circuit board may be used.
  • any type of capacitor having, for example, a chip shape or a lead shape can be used. It is also possible to cause the capacitance between two wirings via air to function as each capacitor.
  • Table 1 shows the results of analysis performed to verify the effects of the present embodiment.
  • the transmission efficiency when power was simultaneously supplied to two moving bodies was compared.
  • the efficiency decreases to about half.
  • the charging efficiency in each mobile body hardly decreases.
  • Vtx between the power transmission electrodes was analyzed. As a result, according to this example, there was almost no difference in the peak value of Vtx between when power was supplied to one mobile body and when power was simultaneously supplied to two mobile bodies. Specifically, Vtx in the case where only one moving body is charged was 11.2 kV. On the other hand, Vtx when the two moving bodies were charged simultaneously was 10.8 kV. Since the voltage difference between the power transmission electrodes hardly increased, it can be said that the electric field leakage intensity around the power transmission electrodes did not change without depending on the change in the number of mobile bodies to be charged.
  • 7A, 7B, 10A, and 10B include two matching circuits 180A and 180B, but may include more matching circuits.
  • the same number of matching circuits are arranged according to the number of mobile bodies 10 that are fed simultaneously. In the configurations shown in FIGS. 7B and 10B, the same number of AC conversion circuits such as inverter circuits are further arranged.
  • the power transmission device may include N (N is an integer of 2 or more) AC output circuits that supply AC energy to the power transmission electrode group, and a control circuit that controls the N AC output circuits. .
  • the control circuit transmits energy from the power transmitting electrode group to n (n is an integer of 1 to N) power receiving electrode groups at the same time, the control circuit transmits the energy to n AC output circuits of the N AC output circuits. Sends a command to supply phase AC energy to the transmission electrode group.
  • Such control can suppress a decrease in efficiency, an increase in voltage difference between power transmission electrodes, and an increase in leakage electric field, regardless of the number of moving bodies that supply power simultaneously.
  • the control circuit can control N AC output circuits to supply energy of the same intensity to all n moving bodies that are simultaneously fed from the power transmission electrode group.
  • the power transmission device 100 includes one power transmission electrode group 120, but the power transmission device 100 may include a plurality of power transmission electrode groups.
  • FIG. 13A is a diagram schematically illustrating an example of a wireless power transmission system in which the power transmission device 100 includes a plurality of power transmission electrode groups.
  • the power transmission device in this example includes two power transmission electrode groups 120A and 120B and two AC output circuits 170A and 170B.
  • Each AC output circuit includes the matching circuit in the above-described embodiment.
  • Each AC output circuit may include both the matching circuit and the inverter circuit in the above-described embodiment.
  • the two power transmission electrode groups 120A and 120B extend in the same direction and are arranged in a straight line.
  • Each of AC output circuits 170A and 170B supplies AC power to both power transmission electrode groups 120A and 120B.
  • each of the power transmission electrode groups 120A and 120B control is performed so that the phase of AC power supplied from AC output circuit 170A matches the phase of AC power supplied from AC output circuit 170B.
  • each of the power transmission electrode groups 120A and 120B can transmit power to two moving bodies at a high efficiency at the same time.
  • the length of the chargeable region can be extended by a factor of two.
  • power can be transmitted with high efficiency to a plurality of moving bodies that are moving or working. Despite such advantages, it is possible to appropriately reduce the cost for arranging the power supply circuit unit.
  • the number of AC output circuits may be increased according to the number of moving bodies that can be fed simultaneously from each power transmission electrode group.
  • the power transmission device may include N AC output circuits, where N is an integer equal to or greater than 2.
  • the N AC output circuits supply AC energy to each of the two power transmission electrode groups 120A and 120B shown in FIG. 13A.
  • the control circuit transmits energy from the power transmission electrode group 120A or 120B to n power receiving electrode groups simultaneously (n is an integer of 1 to N), n AC output circuits among the N AC output circuits.
  • control is performed so that AC energy having the same phase is supplied to the power transmission electrode group.
  • FIG. 13B is a diagram schematically illustrating another example of the wireless power transmission system in which the power transmission device 100 includes a plurality of power transmission electrode groups.
  • the power transmission device 100 includes a first power transmission electrode group 120A, a second power transmission electrode group 120B, a third power transmission electrode group 120C, a first AC output circuit 170A, and a second AC output. Circuit 170B.
  • Each power transmission electrode group has a flat plate-like structure extending in the same direction.
  • the second power transmission electrode group 120B, the first power transmission electrode group 120A, and the third power transmission electrode group 120C are arranged on a straight line in this order.
  • the first AC output circuit 170A supplies AC energy to the first power transmission electrode group 120A and the second power transmission electrode group 120B.
  • the second AC output circuit 170B supplies AC energy to the first power transmission electrode group 120A and the third power transmission electrode group 120C.
  • the control circuit transmits the AC energy to the first AC output circuit 170A and the second power transmitting electrode group 120B. Instruct to supply.
  • the control circuit supplies the second AC output circuit 170B with AC energy to the third power transmission electrode group 120C. Instruct.
  • power can be supplied to two mobile bodies from the first power transmission electrode group 120A at the same time, and power can be supplied to one mobile body from each of the second power transmission electrode group 120B and the third power transmission electrode group 120C.
  • the length of the chargeable region can be extended by a factor of three compared to the case where only the first power transmission electrode group 120A is arranged.
  • a larger number of AC output circuits may be connected to each power transmission electrode group. According to such a configuration, it is possible to supply power to a larger number of moving bodies simultaneously.
  • power can be transmitted with high efficiency to a moving body that is moving or working. Despite such advantages, it is possible to appropriately reduce the cost for arranging the power supply circuit unit.
  • each electrode group in the above embodiment has a structure extending in parallel in the same direction, but such a structure may not be used depending on the application.
  • each electrode may have a rectangular shape such as a square. As long as such a plurality of rectangular electrodes are arranged in one direction, the technique of the present disclosure can be applied. Further, it is not an essential requirement that the surfaces of all the electrodes are on the same plane. Furthermore, the surface of each electrode does not need to have a completely planar shape, and may have, for example, a curved shape or a shape including unevenness. Such a surface is also referred to as a “planar surface” if it is generally planar.
  • the power transmission electrode group 120 is laid on the ground, but the power transmission electrode group 120 may be laid on a side surface such as a wall or an upper surface such as a ceiling.
  • the arrangement and orientation of the power receiving electrode group 220 of the moving body 10 are determined according to the location and orientation where the power transmitting electrode group 120 is laid.
  • FIG. 14A shows an example in which the power transmission electrode group 120 is laid on a side surface such as a wall.
  • the power receiving electrode group 220 is disposed on the side of the moving body 10.
  • FIG. 14B shows an example in which the power transmission electrode group 120 is laid on the ceiling.
  • the power receiving electrode group 220 is disposed on the top plate of the moving body 10.
  • the wireless power transmission system can be used as a system for transporting articles in a factory as described above.
  • the moving body 10 has a loading platform on which articles are loaded, and functions as a carriage that autonomously moves in the factory and conveys the articles to a necessary place.
  • the wireless power transmission system and the moving body in the present disclosure are not limited to such applications, and can be used for various other applications.
  • the moving body is not limited to AGV, but may be other industrial machines, service robots, electric vehicles, forklifts, multicopters (drone), elevators, and the like.
  • the wireless power transmission system is not limited to being used in a factory, and can be used in, for example, stores, hospitals, homes, roads, runways, and other places.
  • the technology of the present disclosure can be used for any device driven by electric power.
  • a moving body such as an electric vehicle (EV), an automatic guided vehicle (AGV) used in a factory, a forklift, an unmanned aerial vehicle (UAV), or an elevator.
  • EV electric vehicle
  • AAV automatic guided vehicle
  • UAV unmanned aerial vehicle

Abstract

This power transmission module is used for a power transmission device in a wireless power transfer system that can simultaneously transfer energy to two or more power reception electrode groups from a power transmission electrode group wirelessly via an electric field. The power transmission module is provided with: the power transmission electrode group that includes two or more power transmission electrodes; a first matching circuit connected between a first power conversion circuit that outputs a first AC voltage and the power transmission electrode group; and a second matching circuit connected between the power transmission electrode group and the first power conversion circuit or a second power conversion circuit that outputs a second AC voltage. The first and second matching circuits supply AC energies of the same phase to the power transmission electrode group.

Description

送電モジュール、送電装置、および無線電力伝送システムPower transmission module, power transmission device, and wireless power transmission system
 本開示は、送電モジュール、送電装置、および無線電力伝送システムに関する。 The present disclosure relates to a power transmission module, a power transmission device, and a wireless power transmission system.
 近年、携帯電話機および電気自動車などの移動性を伴う機器に、無線すなわち非接触で電力を伝送する無線電力伝送技術の開発が進められている。無線電力伝送技術には、磁界結合方式および電界結合方式などの方式がある。磁界結合方式による無線電力伝送システムでは、送電コイルと受電コイルとが対向した状態で、送電コイルから受電コイルに非接触で交流電力が伝送される。特許文献1は、磁界結合方式の無線電力伝送システムの一例を開示している。他方、電界結合方式による無線電力伝送システムでは、一対の送電電極と一対の受電電極とが対向した状態で、一対の送電電極から一対の受電電極に無線で交流電力が伝送される。特許文献2は、そのような電界結合方式による無線電力伝送システムの一例を開示している。 In recent years, development of wireless power transmission technology for transmitting power wirelessly, that is, in a contactless manner, to mobile devices such as mobile phones and electric vehicles has been promoted. Wireless power transmission techniques include a magnetic field coupling method and an electric field coupling method. In a wireless power transmission system using a magnetic field coupling method, AC power is transmitted from a power transmission coil to a power reception coil in a contactless manner with the power transmission coil and the power reception coil facing each other. Patent Document 1 discloses an example of a magnetic field coupling type wireless power transmission system. On the other hand, in a wireless power transmission system using an electric field coupling method, AC power is wirelessly transmitted from a pair of power transmission electrodes to a pair of power reception electrodes in a state where the pair of power transmission electrodes and the pair of power reception electrodes face each other. Patent Document 2 discloses an example of a wireless power transmission system using such an electric field coupling method.
特開2017-147848号公報JP 2017-147848 A 特開2010-193692号公報JP 2010-193692 A
 本開示は、電界結合方式による無線電力伝送システムにおいて、1つの送電装置から2つ以上の受電装置に同時に送電したときの伝送効率の低下を抑制する技術を提供する。 This disclosure provides a technique for suppressing a reduction in transmission efficiency when power is transmitted simultaneously from one power transmission device to two or more power reception devices in a wireless power transmission system using an electric field coupling method.
 本開示の一態様に係る送電モジュールは、送電電極群から同時に2つ以上の受電電極群に電界を介して無線でエネルギーを伝送することが可能な無線電力伝送システムにおける送電装置において用いられる。前記送電モジュールは、2つ以上の送電電極を含む送電電極群と、第1の交流電圧を出力する第1の電力変換回路と前記送電電極群との間に接続される第1の整合回路と、前記第1の電力変換回路または第2の交流電圧を出力する第2の電力変換回路と前記送電電極群との間に接続される第2の整合回路と、を備える。前記第1および第2の整合回路は、同位相の交流エネルギーを前記送電電極群に供給する。 The power transmission module according to an aspect of the present disclosure is used in a power transmission device in a wireless power transmission system capable of wirelessly transmitting energy from a power transmission electrode group to two or more power reception electrode groups via an electric field. The power transmission module includes a power transmission electrode group including two or more power transmission electrodes, a first power conversion circuit that outputs a first AC voltage, and a first matching circuit connected between the power transmission electrode group. And a second matching circuit connected between the first power conversion circuit or the second power conversion circuit that outputs a second AC voltage and the power transmission electrode group. The first and second matching circuits supply in-phase AC energy to the power transmission electrode group.
 本開示の包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラム、または、記録媒体で実現され得る。あるいは、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 The comprehensive or specific aspect of the present disclosure can be realized by an apparatus, a system, a method, an integrated circuit, a computer program, or a recording medium. Alternatively, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 本開示の技術によれば、電界結合方式による無線電力伝送システムにおいて、1つの送電装置から2つ以上の受電装置に同時に送電したときの伝送効率の低下を抑制することができる。 According to the technique of the present disclosure, in a wireless power transmission system using an electric field coupling method, it is possible to suppress a decrease in transmission efficiency when power is transmitted simultaneously from one power transmission device to two or more power reception devices.
図1は、電界結合方式による無線電力伝送システムの一例を模式的に示す図である。FIG. 1 is a diagram schematically illustrating an example of a wireless power transmission system using an electric field coupling method. 図2は、図1に示す無線電力伝送システムの概略的な構成を示す図である。FIG. 2 is a diagram illustrating a schematic configuration of the wireless power transmission system illustrated in FIG. 1. 図3は、電界結合方式による無線電力伝送システムの他の例を模式的に示す図である。FIG. 3 is a diagram schematically illustrating another example of the wireless power transmission system using the electric field coupling method. 図4は、図3に示す無線電力伝送システムの概略的な構成を示す図である。4 is a diagram showing a schematic configuration of the wireless power transmission system shown in FIG. 図5は、2台の移動体が同時に送電電極群から電力を受けようとしている状況を示す図である。FIG. 5 is a diagram illustrating a situation in which two mobile objects are simultaneously receiving power from the power transmission electrode group. 図6は、2台の移動体が同時に送電電極群から電力を受ける場合に生じる課題を説明するための図である。FIG. 6 is a diagram for explaining a problem that occurs when two moving bodies simultaneously receive power from the power transmission electrode group. 図7Aは、本開示の例示的な実施形態における無線電力伝送システムの概略図である。FIG. 7A is a schematic diagram of a wireless power transfer system in an exemplary embodiment of the present disclosure. 図7Bは、本開示の例示的な他の実施形態における無線電力伝送システムの概略図である。FIG. 7B is a schematic diagram of a wireless power transmission system according to another exemplary embodiment of the present disclosure. 図8Aは、整合回路の第1の構成例を示す図である。FIG. 8A is a diagram illustrating a first configuration example of the matching circuit. 図8Bは、整合回路の第2の構成例を示す図である。FIG. 8B is a diagram illustrating a second configuration example of the matching circuit. 図8Cは、整合回路の第3の構成例を示す図である。FIG. 8C is a diagram illustrating a third configuration example of the matching circuit. 図8Dは、整合回路の第4の構成例を示す図である。FIG. 8D is a diagram illustrating a fourth configuration example of the matching circuit. 図8Eは、整合回路の第5の構成例を示す図である。FIG. 8E is a diagram illustrating a fifth configuration example of the matching circuit. 図8Fは、整合回路の第6の構成例を示す図である。FIG. 8F is a diagram illustrating a sixth configuration example of the matching circuit. 図8Gは、整合回路の第7の構成例を示す図である。FIG. 8G is a diagram illustrating a seventh configuration example of the matching circuit. 図8Hは、整合回路の第8の構成例を示す図である。FIG. 8H is a diagram illustrating an eighth configuration example of the matching circuit. 図8Iは、整合回路の第9の構成例を示す図である。FIG. 8I is a diagram illustrating a ninth configuration example of the matching circuit. 図9は、整合回路における2つのインダクタの構成例を模式的に示す図である。FIG. 9 is a diagram schematically illustrating a configuration example of two inductors in the matching circuit. 図10Aは、無線電力伝送システムの構成例を示す図である。FIG. 10A is a diagram illustrating a configuration example of a wireless power transmission system. 図10Bは、送電装置の他の構成例を示す図である。FIG. 10B is a diagram illustrating another configuration example of the power transmission device. 図11は、インバータ回路の構成例を模式的に示す図である。FIG. 11 is a diagram schematically illustrating a configuration example of an inverter circuit. 図12は、整流回路の構成例を模式的に示す図である。FIG. 12 is a diagram schematically illustrating a configuration example of the rectifier circuit. 図13Aは、無線電力伝送システムの変形例を示す図である。FIG. 13A is a diagram illustrating a modification of the wireless power transmission system. 図13Bは、無線電力伝送システムの他の変形例を示す図である。FIG. 13B is a diagram illustrating another modification of the wireless power transmission system. 図14Aは、無線電力伝送システムのさらに他の変形例を示す図である。FIG. 14A is a diagram illustrating still another modification of the wireless power transmission system. 図14Bは、無線電力伝送システムのさらに他の変形例を示す図である。FIG. 14B is a diagram illustrating still another modification of the wireless power transmission system.
 (本開示の基礎となった知見)
 本開示の実施形態を説明する前に、本開示の基礎となった知見を説明する。
(Knowledge that became the basis of this disclosure)
Prior to describing the embodiments of the present disclosure, the knowledge underlying the present disclosure will be described.
 図1は、電界結合方式による無線電力伝送システムの一例を模式的に示す図である。「電界結合方式」とは、複数の送電電極を含む送電電極群と複数の受電電極を含む受電電極群との間の電界結合(「容量結合」とも称する)により、送電電極群から受電電極群に無線で電力が伝送される伝送方式をいう。簡単のため、送電電極群および受電電極群の各々が、2つの電極の対によって構成される場合の例を説明する。 FIG. 1 is a diagram schematically showing an example of a wireless power transmission system using an electric field coupling method. “Electric field coupling method” refers to electric field coupling (also referred to as “capacitive coupling”) between a power transmission electrode group including a plurality of power transmission electrodes and a power reception electrode group including a plurality of power reception electrodes. A transmission method in which power is transmitted wirelessly. For simplicity, an example will be described in which each of the power transmission electrode group and the power reception electrode group is configured by a pair of two electrodes.
 図1に示す無線電力伝送システムは、無人搬送車(AGV)である移動体10に無線で電力を伝送するシステムである。移動体10は、例えば工場または倉庫において物品の搬送に用いられ得る。このシステムでは、床面30に平板状の一対の送電電極120a、120bが配置されている。移動体10は、電力伝送時に一対の送電電極120a、120bに対向する一対の受電電極を備える。移動体10は、一対の送電電極120a、120bから伝送された交流電力を、一対の受電電極によって受け取る。受け取られた電力は、移動体10が備えるモータ、二次電池、または蓄電用のキャパシタなどの負荷に供給される。これにより、移動体10の駆動または充電が行われる。 The wireless power transmission system shown in FIG. 1 is a system that wirelessly transmits power to a moving body 10 that is an automated guided vehicle (AGV). The mobile body 10 can be used for conveying articles in a factory or a warehouse, for example. In this system, a pair of flat power transmission electrodes 120 a and 120 b are arranged on the floor 30. The moving body 10 includes a pair of power receiving electrodes facing the pair of power transmitting electrodes 120a and 120b during power transmission. The moving body 10 receives the AC power transmitted from the pair of power transmission electrodes 120a and 120b by the pair of power reception electrodes. The received electric power is supplied to a load such as a motor, a secondary battery, or a capacitor for electric storage provided in the moving body 10. Thereby, driving or charging of the moving body 10 is performed.
 図1には、互いに直交するX、Y、Z方向を示すXYZ座標が示されている。以下の説明では、図示されているXYZ座標を用いる。各送電電極が延びる方向をY方向、各送電電極の表面に垂直な方向をZ方向、Y方向およびZ方向に垂直な方向、すなわち送電電極の幅方向をX方向とする。なお、本願の図面に示される構造物の向きは、説明のわかりやすさを考慮して設定されており、本開示の実施形態が現実に実施されるときの向きをなんら制限するものではない。また、図面に示されている構造物の全体または一部分の形状および大きさも、現実の形状および大きさを制限するものではない。 FIG. 1 shows XYZ coordinates indicating X, Y, and Z directions orthogonal to each other. In the following description, illustrated XYZ coordinates are used. The direction in which each power transmission electrode extends is defined as the Y direction, the direction perpendicular to the surface of each power transmission electrode is defined as the Z direction, and the direction perpendicular to the Y direction and the Z direction, that is, the width direction of the power transmission electrode is defined as the X direction. Note that the orientation of the structure shown in the drawings of the present application is set in consideration of the ease of explanation, and does not limit the orientation when the embodiment of the present disclosure is actually implemented. Further, the shape and size of the whole or a part of the structure shown in the drawings do not limit the actual shape and size.
 図2は、図1に示す無線電力伝送システムの概略的な構成を示す図である。この無線電力伝送システムは、送電装置100と、移動体10とを備える。 FIG. 2 is a diagram showing a schematic configuration of the wireless power transmission system shown in FIG. The wireless power transmission system includes a power transmission device 100 and a moving body 10.
 送電装置100は、送電電極群120と、整合回路180と、インバータ回路110とを備える。送電電極群120は、一対の送電電極120a、120bを含む。インバータ回路110は、電源310から出力された直流電力を交流電力に変換して出力する。電源310は交流電源であってもよい。その場合、インバータ回路110に代えて、入力された交流電力を、例えば異なる周波数または電圧を有する他の交流電力に変換して出力する。整合回路180は、インバータ回路110と送電電極群120との間に接続される。整合回路180は、インバータ回路110と送電電極群120との間のインピーダンスの整合度を向上させる。ノイズ成分を除去するためのフィルタ回路が挿入されてもよい。 The power transmission device 100 includes a power transmission electrode group 120, a matching circuit 180, and an inverter circuit 110. The power transmission electrode group 120 includes a pair of power transmission electrodes 120a and 120b. The inverter circuit 110 converts the DC power output from the power source 310 into AC power and outputs the AC power. The power source 310 may be an AC power source. In that case, instead of the inverter circuit 110, the input AC power is converted into, for example, another AC power having a different frequency or voltage and output. Matching circuit 180 is connected between inverter circuit 110 and power transmission electrode group 120. The matching circuit 180 improves the degree of impedance matching between the inverter circuit 110 and the power transmission electrode group 120. A filter circuit for removing noise components may be inserted.
 移動体10は、受電装置200と、負荷330とを備える。受電装置200は、受電電極群220と、整合回路280と、整流回路210と、DC/DCコンバータ270とを備える。受電電極群220は、一対の受電電極220a、220bを含む。整流回路210は、一対の受電電極220が受け取った交流電力を直流電力に変換して出力する。DC/DCコンバータ270は、整流回路210が出力した直流電力を負荷330が要求する電圧の直流電力に変換して負荷330に供給する。整流回路210およびDC/DCコンバータ270に代えて、交流変換回路などの他の種類の変換回路が設けられることもある。受電電極群220と整流回路210との間に、インピーダンスの不整合を低減する整合回路280が接続される。ノイズ成分を除去するためのフィルタ回路が挿入されてもよい。 The moving body 10 includes a power receiving device 200 and a load 330. The power receiving device 200 includes a power receiving electrode group 220, a matching circuit 280, a rectifier circuit 210, and a DC / DC converter 270. The power receiving electrode group 220 includes a pair of power receiving electrodes 220a and 220b. The rectifier circuit 210 converts AC power received by the pair of power receiving electrodes 220 into DC power and outputs the DC power. The DC / DC converter 270 converts the DC power output from the rectifier circuit 210 into DC power having a voltage required by the load 330 and supplies the DC power to the load 330. Instead of the rectifier circuit 210 and the DC / DC converter 270, another type of conversion circuit such as an AC conversion circuit may be provided. A matching circuit 280 that reduces impedance mismatch is connected between the power receiving electrode group 220 and the rectifier circuit 210. A filter circuit for removing noise components may be inserted.
 負荷330は、例えばモータ、蓄電用のキャパシタ、または二次電池などの、電力を消費または蓄積する機器である。負荷330は、送電電極群120と受電電極群220との間の電界結合によって伝送された電力によって充電または駆動される。 The load 330 is a device that consumes or stores electric power, such as a motor, a capacitor for power storage, or a secondary battery. The load 330 is charged or driven by electric power transmitted by electric field coupling between the power transmission electrode group 120 and the power reception electrode group 220.
 この例において、各送電電極120a、120bは、床面30にほぼ平行に配置されるが、床面30に交差して配置されていてもよい。例えば、壁に配置される場合には、各送電電極120a、120bは、床面30にほぼ垂直に配置され得る。移動体10における各受電電極220a、220bも同様に、床面に交差して配置されていてもよい。受電電極220a、220bの配置は、送電電極120a、120bに対向する配置に決定される。 In this example, each of the power transmission electrodes 120a and 120b is disposed substantially parallel to the floor surface 30, but may be disposed so as to intersect the floor surface 30. For example, when arranged on a wall, each power transmission electrode 120 a, 120 b can be arranged substantially perpendicular to the floor surface 30. Similarly, each of the power receiving electrodes 220a and 220b in the moving body 10 may be disposed so as to intersect the floor surface. The arrangement of the power receiving electrodes 220a and 220b is determined to be an arrangement facing the power transmitting electrodes 120a and 120b.
 送電電極120a、120bおよび受電電極220a、220bの各々は、2つ以上の部分に分割されていてもよい。例えば、図3および図4に示すような構成を採用してもよい。 Each of the power transmitting electrodes 120a and 120b and the power receiving electrodes 220a and 220b may be divided into two or more parts. For example, you may employ | adopt a structure as shown in FIG. 3 and FIG.
 図3は、送電電極120a、120bおよび受電電極220a、220bの各々が2つの部分に分割された無線電力伝送システムの例を示す斜視図である。図4は、この例における回路構成を模式的に示す図である。この例では、送電装置100は、2つの第1の送電電極120aと、2つの第2の送電電極120bとを備える。受電装置200も同様に、2つの第1の受電電極220aと、2つの第2の受電電極220bとを備える。電力伝送時には、2つの第1の受電電極220aは、2つの第1の送電電極120aにそれぞれ対向し、2つの第2の受電電極220bは、2つの第2の送電電極120bにそれぞれ対向する。整合回路180は、交流電力を出力する2つの端子を備える。一方の端子は、2つの第1の送電電極120aに接続され、他方の端子は、2つの第2の送電電極120bに接続される。電力伝送の際、整合回路180は、2つの第1の送電電極120aに第1の電圧を印加し、2つの第2の送電電極120bに、第1の電圧とは逆の位相の第2の電圧を印加する。これにより、4つの送電電極を含む送電電極群120と4つの受電電極を含む受電電極群220との間の容量結合によって電力が無線で伝送される。このような構成によれば、隣り合う任意の2つの送電電極の境界上の漏洩電界を抑制する効果を得ることができる。このように、送電装置100および受電装置200の各々において、送電または受電を行う電力の数は2個に限定されない。 FIG. 3 is a perspective view showing an example of a wireless power transmission system in which each of the power transmitting electrodes 120a and 120b and the power receiving electrodes 220a and 220b is divided into two parts. FIG. 4 is a diagram schematically showing a circuit configuration in this example. In this example, the power transmission device 100 includes two first power transmission electrodes 120a and two second power transmission electrodes 120b. Similarly, the power receiving apparatus 200 includes two first power receiving electrodes 220a and two second power receiving electrodes 220b. During power transmission, the two first power receiving electrodes 220a are opposed to the two first power transmitting electrodes 120a, respectively, and the two second power receiving electrodes 220b are respectively opposed to the two second power transmitting electrodes 120b. The matching circuit 180 includes two terminals that output AC power. One terminal is connected to the two first power transmission electrodes 120a, and the other terminal is connected to the two second power transmission electrodes 120b. During power transmission, the matching circuit 180 applies the first voltage to the two first power transmission electrodes 120a, and the second voltage having the opposite phase to the first voltage to the two second power transmission electrodes 120b. Apply voltage. Thereby, electric power is wirelessly transmitted by capacitive coupling between the power transmission electrode group 120 including four power transmission electrodes and the power reception electrode group 220 including four power reception electrodes. According to such a configuration, it is possible to obtain an effect of suppressing a leakage electric field on the boundary between any two adjacent power transmission electrodes. Thus, in each of the power transmission device 100 and the power reception device 200, the number of powers to be transmitted or received is not limited to two.
 以下の実施形態では、図1および図2に示すように、送電装置100が2つの送電電極120a、120bを備え、受電装置200が2つの受電電極220a、220bを備えた構成を主に説明する。本開示の実施形態において、各電極は、図3および図4に例示するように、複数の部分に分割されていてもよい。いずれの場合も、ある瞬間に第1の電圧が印加される電極と、第1の電圧とは逆の位相の第2の電圧が印加される電極とが交互に並ぶように配置される。ここで「逆の位相」とは、位相差が180度である場合に限らず、位相差が90度から270度の範囲内である場合を含むものと定義する。本明細書において、送電装置100が備える複数の送電電極を、まとめて「送電電極群120」と称し、受電装置200が備える複数の受電電極を、まとめて「受電電極群220」と称する。 In the following embodiment, as illustrated in FIGS. 1 and 2, a configuration in which the power transmission device 100 includes two power transmission electrodes 120a and 120b and the power reception device 200 includes two power reception electrodes 220a and 220b will be mainly described. . In the embodiment of the present disclosure, each electrode may be divided into a plurality of parts as illustrated in FIGS. 3 and 4. In either case, the electrodes to which the first voltage is applied at a certain moment and the electrodes to which the second voltage having the opposite phase to the first voltage are alternately arranged are arranged. Here, the “reverse phase” is defined not only when the phase difference is 180 degrees but also including the case where the phase difference is in the range of 90 degrees to 270 degrees. In this specification, a plurality of power transmission electrodes included in the power transmission device 100 are collectively referred to as “power transmission electrode group 120”, and a plurality of power reception electrodes included in the power reception device 200 are collectively referred to as “power reception electrode group 220”.
 以上のような無線電力伝送システムにおいて、送電装置100は、1台の移動体10に効率よく電力を伝送できるように設計される。整合回路180内の各回路素子のインダクタンスおよびキャパシタンスなどの値は、送電装置100から1台の移動体10に高い効率で電力を伝送できるように最適化される。また、送電電極群120の近傍には、電界の漏洩を抑制するための遮蔽部材が配置され得る。 In the wireless power transmission system as described above, the power transmission device 100 is designed so that power can be efficiently transmitted to one moving body 10. Values such as inductance and capacitance of each circuit element in the matching circuit 180 are optimized so that power can be transmitted from the power transmission apparatus 100 to one mobile body 10 with high efficiency. In addition, a shielding member for suppressing electric field leakage may be disposed in the vicinity of the power transmission electrode group 120.
 他方、送電装置100における送電電極群120は、移動体10の移動方向における寸法よりも長い寸法を有する。例えば、送電電極群120は、移動体10の移動方向における寸法の2倍から100倍程度の寸法を有し得る。そのような長い送電電極群120を用いることにより、移動体10が移動しながら充電することが可能である。そのような長い送電電極群120が敷設されることを考慮すると、送電電極群120から同時に2台以上の移動体10に給電できれば、システムの利便性を大きく向上させることができる。 On the other hand, the power transmission electrode group 120 in the power transmission device 100 has a dimension longer than the dimension in the moving direction of the moving body 10. For example, the power transmission electrode group 120 may have a size that is approximately twice to 100 times the size of the moving body 10 in the moving direction. By using such a long power transmission electrode group 120, the mobile body 10 can be charged while moving. Considering that such a long power transmission electrode group 120 is laid, if power can be supplied from the power transmission electrode group 120 to two or more moving bodies 10 simultaneously, the convenience of the system can be greatly improved.
 しかしながら、送電電極群120から同時に2台以上の移動体10に送電しようとすると、インピーダンスの不整合が生じ、伝送効率が大幅に低下する。このため、そのようなシステムは従来実現できなかった。 However, if power is transmitted from the power transmission electrode group 120 to two or more moving bodies 10 at the same time, impedance mismatch occurs, and transmission efficiency is greatly reduced. For this reason, such a system could not be realized conventionally.
 図5は、2台の移動体10A、10Bが同時に一対の送電電極120a、120bから受電しようとしている状況を示している。図6は、このときのシステムの構成を模式的に示している。図6において、「TX」は送電装置100の構成要素であることを示し、「RX」は受電装置200の構成要素であることを示す。 FIG. 5 shows a situation where two mobile bodies 10A and 10B are about to receive power from the pair of power transmission electrodes 120a and 120b at the same time. FIG. 6 schematically shows the configuration of the system at this time. In FIG. 6, “TX” indicates a component of the power transmission device 100, and “RX” indicates a component of the power reception device 200.
 図6に示すように、第1の移動体10Aの受電電極群220が送電電極群120に対向している状態で、第2の移動体10Bが送電電極群120に近づいている状況を考える。 As shown in FIG. 6, a situation is considered in which the second moving body 10B is approaching the power transmission electrode group 120 in a state where the power receiving electrode group 220 of the first moving body 10A faces the power transmission electrode group 120.
 送電装置100は、送電電極群120と受電電極群220との間の結合容量を介し、第1の移動体10Aにエネルギーを伝送する際の伝送効率を高めるように予め設計されている。すなわち、所定のインピーダンスのエネルギー伝送に対して最適化された共振回路を送電側の整合回路180が予め備えている。第1の移動体10Aについても、所定のインピーダンスのエネルギー伝送に対して最適化された共振回路を、受電側の整合回路280が予め備えている。 The power transmission device 100 is designed in advance so as to increase the transmission efficiency when energy is transmitted to the first moving body 10A via the coupling capacitance between the power transmission electrode group 120 and the power reception electrode group 220. In other words, the matching circuit 180 on the power transmission side includes a resonance circuit optimized for energy transmission with a predetermined impedance. Also for the first moving body 10A, the matching circuit 280 on the power receiving side includes a resonance circuit optimized for energy transmission with a predetermined impedance in advance.
 送電装置100が、第2の移動体10Bに対しても同様に高効率なエネルギー伝送を実現するためには、第1の移動体10Aに対する場合と同様の条件を、第2の移動体10Bにおいても実現しておく必要がある。すなわち、第2の移動体10B内の整合回路280も、上記所定のインピーダンスのエネルギー伝送に対し最適化された共振回路を持つ必要が出てくる。共振回路を整合回路内に有する無線電力伝送システムでは、基本的に一定のインピーダンスを維持した条件では、個々の移動体10A、10Bと送電装置100との1対1の関係においては、高い伝送効率を伴う良好な伝送が実現できる。 In order for the power transmission device 100 to achieve high-efficiency energy transmission to the second moving body 10B as well, the same conditions as those for the first moving body 10A are set in the second moving body 10B. Must also be realized. That is, the matching circuit 280 in the second moving body 10B also needs to have a resonance circuit optimized for energy transmission with the predetermined impedance. In a wireless power transmission system having a resonance circuit in a matching circuit, a high transmission efficiency is obtained in a one-to-one relationship between the individual mobile bodies 10A and 10B and the power transmission device 100 under a condition that basically maintains a constant impedance. It is possible to achieve good transmission with
 しかし、第2の移動体10Bの受電電極群220が送電電極群120に対向し、例えば第1の移動体10Aと同様の電力供給を要求したとすると、送電装置100から供給される電力は2倍になる。その結果、送電電極群120の電極間電圧差Vtxは√2倍に増加することになる。すると、送電装置100の整合回路180と、各移動体10A、10Bの整合回路280との間で明らかにインピーダンスの不整合が発生することになる。その結果、各移動体10A、10Bへの電力伝送の効率が大きく低下する。電力伝送効率の低下は、移動体側での発熱の深刻化を招く。 However, if the power receiving electrode group 220 of the second moving body 10B faces the power transmitting electrode group 120 and, for example, the same power supply as that of the first moving body 10A is requested, the power supplied from the power transmitting apparatus 100 is 2 Double. As a result, the inter-electrode voltage difference Vtx of the power transmission electrode group 120 increases by √2. Then, an impedance mismatch clearly occurs between the matching circuit 180 of the power transmission device 100 and the matching circuit 280 of each of the mobile bodies 10A and 10B. As a result, the efficiency of power transmission to each mobile unit 10A, 10B is greatly reduced. The decrease in power transmission efficiency leads to serious heat generation on the moving body side.
 さらに、電極間電圧差Vtxが変動すれば、特に送電電極周辺での漏洩電界の挙動が変化する。特に、電極間電圧差Vtxの増加により、1台の移動体に電力を伝送する条件のために設計された漏洩対策用の遮蔽手法では、周辺空間への電磁漏洩を十分に抑制できないこともある。また、送電電極群120の電極間電圧差Vtxが高くなると、Vtxが絶縁性を維持できる閾値に近づいたり、閾値を超過したりすることになる。その場合、装置の短寿命化などの信頼性の問題を招くことがあり得る。 Furthermore, if the voltage difference Vtx between the electrodes fluctuates, the behavior of the leakage electric field particularly around the power transmission electrode changes. In particular, due to an increase in the inter-electrode voltage difference Vtx, a leakage countermeasure shielding method designed for the condition of transmitting power to one mobile body may not sufficiently suppress electromagnetic leakage to the surrounding space. . Further, when the inter-electrode voltage difference Vtx of the power transmission electrode group 120 becomes high, Vtx approaches or exceeds the threshold that can maintain insulation. In that case, reliability problems such as shortening of the life of the apparatus may be caused.
 このように、1台の送電装置100から2台以上の移動体10が同時に電力の供給を受けようとすると、インピーダンスの不整合が生じる。その結果、伝送効率の著しい低下、発熱の増大、送電電極群120の周辺の電界漏洩の抑制レベルの低下、送電電極群120の電極間電圧差の増大などの好ましくない状況の少なくともいずれかを招きかねない。 As described above, when two or more moving bodies 10 simultaneously receive power from one power transmission device 100, impedance mismatch occurs. As a result, at least one of an unfavorable situation such as a significant decrease in transmission efficiency, an increase in heat generation, a decrease in the level of suppression of electric field leakage around the transmission electrode group 120, or an increase in the voltage difference between the electrodes of the transmission electrode group 120 is caused. It might be.
 本発明者らは、上記の課題を見出し、上記課題を解決するために、以下に説明する各実施形態の構成に想到した。 The inventors of the present invention have found the above-mentioned problems and have conceived the configuration of each embodiment described below in order to solve the above problems.
 本開示の一態様に係る送電モジュールは、送電電極群から同時に2つ以上の受電電極群に電界を介して無線でエネルギーを伝送することが可能な無線電力伝送システムにおける送電装置において用いられる。前記送電モジュールは、2つ以上の送電電極を含む送電電極群と、第1の整合回路と、第2の整合回路と、を備える。前記第1の整合回路は、第1の交流電圧を出力する第1の電力変換回路と前記送電電極群との間に接続される。前記第2の整合回路は、前記第1の電力変換回路または第2の交流電圧を出力する第2の電力変換回路と前記送電電極群との間に接続される。前記第1および第2の整合回路は、同位相の交流エネルギーを前記送電電極群に供給する。 The power transmission module according to an aspect of the present disclosure is used in a power transmission device in a wireless power transmission system capable of wirelessly transmitting energy from a power transmission electrode group to two or more power reception electrode groups via an electric field. The power transmission module includes a power transmission electrode group including two or more power transmission electrodes, a first matching circuit, and a second matching circuit. The first matching circuit is connected between a first power conversion circuit that outputs a first AC voltage and the power transmission electrode group. The second matching circuit is connected between the first power conversion circuit or the second power conversion circuit that outputs a second AC voltage and the power transmission electrode group. The first and second matching circuits supply in-phase AC energy to the power transmission electrode group.
 このような送電モジュールを送電装置が備えることにより、送電電極群に2つ以上の受電電極群が対向する場合における電力伝送の効率の低下を抑制することができる。 By providing such a power transmission module in the power transmission device, it is possible to suppress a reduction in power transmission efficiency when two or more power receiving electrode groups are opposed to the power transmitting electrode group.
 なお、整合回路の数が2つの場合、送電電極群に3つ以上の受電電極群が対向する場合は伝送効率が低下する。しかし、その場合でも第2の整合回路がない場合と比較すれば効率は改善する。 When the number of matching circuits is two, the transmission efficiency decreases when three or more power receiving electrode groups face the power transmitting electrode group. However, even in that case, the efficiency is improved as compared with the case where the second matching circuit is not provided.
 ここで「同位相の交流エネルギー」とは、位相が厳密に一致する交流エネルギーを意味しない。本開示においては、両者の位相差が45度未満に収まっていれば、「同位相」であると解釈する。 ”Here,“ in-phase AC energy ”does not mean AC energy whose phases are exactly the same. In the present disclosure, if the phase difference between the two is less than 45 degrees, it is interpreted as “the same phase”.
 前記送電装置は、前記第1の電力変換回路を備えていてもよいし、備えていなくてもよい。同様に、前記送電装置は、前記第2の電力変換回路を備えていてもよいし、備えていていなくてもよい。前記送電装置が前記第2の電力変換回路を備える場合、前記第2の整合回路は前記第2の電力変換回路に接続される。前記送電装置が前記第2の電力変換回路を備えない場合、前記第2の整合回路は前記第1の電力変換回路に接続される。 The power transmission device may or may not include the first power conversion circuit. Similarly, the power transmission device may or may not include the second power conversion circuit. When the power transmission device includes the second power conversion circuit, the second matching circuit is connected to the second power conversion circuit. When the power transmission device does not include the second power conversion circuit, the second matching circuit is connected to the first power conversion circuit.
 第1および第2の電力変換回路の各々は、例えば前述のようなインバータ回路であり得る。その場合、各電力変換回路は、直流エネルギー(「直流電力」とも称する)を交流エネルギー(「交流電力」とも称する)に変換して出力する。各電力変換回路は、交流電力を周波数および/または電圧の異なる他の交流電力に変換する交流変換回路であってもよい。交流電源を用いる場合は、そのような交流変換回路が用いられ得る。 Each of the first and second power conversion circuits may be an inverter circuit as described above, for example. In this case, each power conversion circuit converts DC energy (also referred to as “DC power”) into AC energy (also referred to as “AC power”) and outputs the converted energy. Each power conversion circuit may be an AC conversion circuit that converts AC power into other AC power having a different frequency and / or voltage. In the case of using an AC power supply, such an AC conversion circuit can be used.
 本開示の他の態様に係る送電装置は、前記送電モジュールと、前記第1の電力変換回路と、前記第1の電力変換回路と前記第2の整合回路との間の接続のオン/オフを切替えるスイッチと、前記スイッチを制御する制御回路とを備える。この場合、前記第2の整合回路は、前記スイッチを介して前記第1の電力変換回路に接続される。 A power transmission device according to another aspect of the present disclosure is configured to turn on / off a connection between the power transmission module, the first power conversion circuit, and the first power conversion circuit and the second matching circuit. A switch for switching, and a control circuit for controlling the switch. In this case, the second matching circuit is connected to the first power conversion circuit via the switch.
 このような構成により、送電電極群に対向する受電電極群の数(すなわち受電装置または移動体の数)に応じて、第2の整合回路から送電電極群への交流エネルギーの供給の有無を切り替えることができる。 With such a configuration, whether or not AC energy is supplied from the second matching circuit to the power transmission electrode group is switched according to the number of power reception electrode groups (that is, the number of power reception devices or moving bodies) facing the power transmission electrode group. be able to.
 例えば、前記送電電極群に1つの受電電極群が対向する場合には、前記制御回路は、前記スイッチに、前記第1の電力変換回路と前記第2の整合回路との接続をオフにする指令を送る。前記送電電極群に2つ以上の受電電極群が対向する場合には、前記制御回路は、前記スイッチに、前記第1の電力変換回路と前記第2の整合回路との接続をオンにする指令を送る。 For example, when one power receiving electrode group faces the power transmitting electrode group, the control circuit instructs the switch to turn off the connection between the first power conversion circuit and the second matching circuit. Send. When two or more power receiving electrode groups face the power transmitting electrode group, the control circuit instructs the switch to turn on the connection between the first power conversion circuit and the second matching circuit. Send.
 これにより、送電電極群に2つ以上の受電電極群が対向する場合にのみ第2の整合回路が使用され、伝送効率の低下を抑制できる。 Thereby, the second matching circuit is used only when two or more power receiving electrode groups are opposed to the power transmitting electrode group, and a decrease in transmission efficiency can be suppressed.
 本開示の他の態様に係る送電装置は、前記送電モジュールと、前記第1の電力変換回路と、前記第2の電力変換回路と、前記第1および第2の電力変換回路を制御して前記第1および第2の整合回路から同位相の交流エネルギーを出力させる制御回路と、を備える。この場合、前記第2の整合回路は、前記第2の電力変換回路に接続される。 A power transmission device according to another aspect of the present disclosure controls the power transmission module, the first power conversion circuit, the second power conversion circuit, and the first and second power conversion circuits, and And a control circuit that outputs AC energy having the same phase from the first and second matching circuits. In this case, the second matching circuit is connected to the second power conversion circuit.
 上記態様によれば、電力変換回路と整合回路の組が2組設けられ、前記第1および第2の整合回路から同位相の交流エネルギーが送電電極群に供給される。これにより、送電電極群に2つ以上の受電電極群が対向する場合における伝送効率の低下を抑制できる。 According to the above aspect, two sets of the power conversion circuit and the matching circuit are provided, and AC energy having the same phase is supplied from the first and second matching circuits to the power transmission electrode group. Thereby, the fall of the transmission efficiency in the case where two or more power receiving electrode groups oppose the power transmitting electrode group can be suppressed.
 前記制御回路は、前記送電電極群に1つの受電電極群が対向する場合には、前記第1の電力変換回路のみを駆動し、前記第2の電力変換回路の動作を停止させる。前記制御回路は、前記送電電極群に2つ以上の受電電極群が対向する場合には、前記第1および第2の電力変換回路の両方を駆動する。 The control circuit drives only the first power conversion circuit and stops the operation of the second power conversion circuit when one power reception electrode group faces the power transmission electrode group. The control circuit drives both the first and second power conversion circuits when two or more power receiving electrode groups face the power transmitting electrode group.
 上記態様では、送電電極群に1つの受電電極群が対向する状態では第2の電力変換回路が停止され、送電電極群に2つ以上の受電電極群が対向する状態では第2の電力変換回路が駆動される。すなわち、受電する受電電極群の数(すなわち受電装置または移動体の数)に応じて、第2の電力変換回路が使用されるか否かが決定される。これにより、2つ以上の受電電極群が送電電極群に対向する場合における伝送効率の低下を抑制することができる。また、2つ以上の受電電極群が送電電極群に対向する場合における、発熱の増加、送電電極周辺の電界漏洩の抑制レベルの劣化、および送電電極内の電極間電圧差の増大の少なくともいずれかを抑制することもできる。 In the above aspect, the second power conversion circuit is stopped when one power receiving electrode group faces the power transmitting electrode group, and the second power conversion circuit when two or more power receiving electrode groups face the power transmitting electrode group. Is driven. That is, whether or not the second power conversion circuit is used is determined according to the number of power receiving electrode groups that receive power (that is, the number of power receiving devices or moving bodies). Thereby, the fall of the transmission efficiency in case two or more receiving electrode groups oppose a power transmission electrode group can be suppressed. In addition, when two or more power receiving electrode groups face the power transmitting electrode group, at least one of an increase in heat generation, a deterioration in the suppression level of electric field leakage around the power transmitting electrode, and an increase in the voltage difference between the electrodes in the power transmitting electrode Can also be suppressed.
 前記制御回路は、前記第1の整合回路における電圧、電流、電力の少なくとも1つをモニターし、電圧、電流、電力の少なくとも1つの値に基づいて前記送電電極群に対向する受電電極群の数を検知してもよい。あるいは、前記制御回路は、前記受電電極群を備えた受電装置または移動体との間の通信によって受電状態にあるか否かを把握してもよい。 The control circuit monitors at least one of voltage, current, and power in the first matching circuit, and the number of power receiving electrode groups facing the power transmitting electrode group based on at least one value of voltage, current, and power May be detected. Or the said control circuit may grasp | ascertain whether it is in a receiving state by communication between the receiving device provided with the said receiving electrode group, or a mobile body.
 前記制御回路は、前記第1および第2の整合回路の各々から出力される電圧、電流、電力の少なくとも1つをモニターし、前記電圧、電流、電力の少なくとも1つの値に基づいて前記第1および第2の電力変換回路を制御することにより、前記第1および第2の整合回路から出力される交流エネルギーの位相を一致させてもよい。例えば、前記制御回路は、前記第1および第2の整合回路の各々から出力される電圧または電流の位相差が所定値よりも大きい場合、前記第1および第2の電力変換回路の少なくとも一方におけるスイッチング制御のタイミングを調整して、位相差を低減してもよい。 The control circuit monitors at least one of voltage, current, and power output from each of the first and second matching circuits, and based on at least one value of the voltage, current, and power By controlling the second power conversion circuit and the second power conversion circuit, the phases of the AC energy output from the first and second matching circuits may be matched. For example, when the phase difference of the voltage or current output from each of the first and second matching circuits is larger than a predetermined value, the control circuit is in at least one of the first and second power conversion circuits. The phase difference may be reduced by adjusting the timing of the switching control.
 本開示の他の態様に係る送電装置は、送電電極群から同時に2つ以上の受電電極群に電界を介して無線でエネルギーを伝送することが可能な無線電力伝送システムにおける送電装置である。前記送電装置は、2つ以上の送電電極を含む送電電極群と、前記送電電極群に交流エネルギーを供給するN個(Nは2以上の整数)の交流出力回路と、前記N個の交流出力回路を制御する制御回路とを備える。前記制御回路は、前記送電電極群から同時にn個(nは1以上N以下の整数)の受電電極群にエネルギーを伝送するとき、前記N個の交流出力回路のうちのn個の交流出力回路に、同位相の交流エネルギーを前記送電電極群に供給する指令を送る。 A power transmission device according to another aspect of the present disclosure is a power transmission device in a wireless power transmission system capable of transmitting energy wirelessly from a power transmission electrode group to two or more power reception electrode groups via an electric field. The power transmission device includes a power transmission electrode group including two or more power transmission electrodes, N (N is an integer of 2 or more) AC output circuits that supply AC energy to the power transmission electrode group, and the N AC outputs. And a control circuit for controlling the circuit. When the control circuit transmits energy from the power transmitting electrode group to n power receiving electrode groups simultaneously (n is an integer of 1 to N), n AC output circuits among the N AC output circuits In addition, a command to supply AC energy having the same phase to the power transmission electrode group is sent.
 上記態様によれば、前記制御回路は、前記送電電極群から同時にn個(nは1以上N以下の整数)の受電電極群にエネルギーを伝送するとき、前記N個の交流出力回路のうちのn個の交流出力回路に、同位相の交流エネルギーを前記送電電極群に供給する指令を送る。これにより、同時に送電する必要のある受電電極群の数に応じて必要な数の交流出力回路のみがアクティブになり、伝送効率の低下を抑制できる。 According to the above aspect, when the control circuit transmits energy from the power transmitting electrode group to n power receiving electrode groups (n is an integer of 1 to N) at the same time, of the N AC output circuits. A command for supplying AC energy having the same phase to the power transmission electrode group is sent to n AC output circuits. As a result, only the required number of AC output circuits are activated according to the number of power receiving electrode groups that need to transmit power simultaneously, and a decrease in transmission efficiency can be suppressed.
 本明細書において、「交流出力回路」は、交流エネルギーを出力する回路を広く意味する。「交流出力回路」は、前述の「整合回路」および「電力変換回路と整合回路との組み合わせ」の両方を含む概念である。 In this specification, “AC output circuit” widely means a circuit that outputs AC energy. The “AC output circuit” is a concept that includes both the above-described “matching circuit” and “combination of a power conversion circuit and a matching circuit”.
 前記制御回路は、前記N個の交流出力回路を制御して、前記送電電極群から同時に前記エネルギーを受ける前記n個の受電電極群の全てに、同強度のエネルギーを供給してもよいし、異なる強度のエネルギーを供給してもよい。 The control circuit may control the N AC output circuits to supply energy of the same intensity to all of the n power receiving electrode groups that receive the energy simultaneously from the power transmitting electrode group, Different strengths of energy may be supplied.
 前記送電装置は、2つ以上の送電電極を含む他の送電電極群をさらに備えていてもよい。前記N個の交流出力回路は、前記他の送電電極群にも交流エネルギーを供給し、前記制御回路は、前記他の送電電極群から同時にn個(nは1以上N以下の整数)の受電電極群に前記エネルギーを伝送するとき、前記N個の交流出力回路のうちのn個の交流出力回路に、同位相の交流エネルギーを前記他の送電電極群に供給する指令を送ってもよい。 The power transmission device may further include another power transmission electrode group including two or more power transmission electrodes. The N AC output circuits supply AC energy to the other power transmission electrode group, and the control circuit receives n power (n is an integer from 1 to N) simultaneously from the other power transmission electrode group. When transmitting the energy to the electrode group, a command for supplying AC energy having the same phase to the other power transmission electrode group may be sent to n AC output circuits among the N AC output circuits.
 前記送電装置は、2つ以上の送電電極を含む第2の送電電極群と、2つ以上の送電電極を含む第3の送電電極群と、をさらに備えていてもよい。前記N個の交流出力回路のうちの第1の交流出力回路は、前記第2の送電電極群にも交流エネルギーを供給してもよい。N個の交流出力回路のうちの第2の交流出力回路は、前記第3の送電電極群にも交流エネルギーを供給してもよい。前記制御回路は、第2の送電電極群から1つの受電電極群に前記エネルギーを伝送するとき、前記第1の交流出力回路に、前記交流エネルギーを前記第2の送電電極群に供給する指令を送り、第3の送電電極群から他の1つの受電電極群に前記エネルギーを伝送するとき、前記第2の交流出力回路に、前記交流エネルギーを前記第3の送電電極群に供給する指令を送ってもよい。 The power transmission device may further include a second power transmission electrode group including two or more power transmission electrodes and a third power transmission electrode group including two or more power transmission electrodes. A first AC output circuit of the N AC output circuits may supply AC energy to the second power transmission electrode group. A second AC output circuit of the N AC output circuits may supply AC energy to the third power transmission electrode group. The control circuit instructs the first AC output circuit to supply the AC energy to the second power transmission electrode group when transmitting the energy from the second power transmission electrode group to one power reception electrode group. When the energy is transmitted from the third power transmission electrode group to the other power reception electrode group, a command to supply the AC energy to the third power transmission electrode group is sent to the second AC output circuit. May be.
 上記の各態様において、送電モジュールは、送電装置の他の構成要素とは独立して製造または販売され得る。すなわち、送電モジュールは、例えば第1の電力変換回路、第2の変換回路、スイッチ、制御回路、または通信回路とは独立して製造または販売され得る。 In each of the above aspects, the power transmission module can be manufactured or sold independently of other components of the power transmission device. That is, the power transmission module can be manufactured or sold independently of, for example, the first power conversion circuit, the second conversion circuit, the switch, the control circuit, or the communication circuit.
 本開示の他の態様に係る無線電力伝送システムは、前述のいずれかの態様における送電装置と、前記送電電極群から無線で電力を受け取る受電電極群を備える少なくとも1つの受電装置と、を備える。送電電極群と、受電電極群との間で、例えば空気または他の誘電体を介した電力伝送が行われ得る。 A wireless power transmission system according to another aspect of the present disclosure includes the power transmission device according to any one of the above-described aspects and at least one power reception device including a power reception electrode group that wirelessly receives power from the power transmission electrode group. For example, power transmission can be performed between the power transmission electrode group and the power reception electrode group via air or another dielectric.
 受電装置は、例えば移動体に搭載され得る。受電装置が移動体である場合、無線電力伝送システムを「移動体システム」と称することがある。本開示における「移動体」は、前述の無人搬送車のような車両に限定されず、電力によって駆動される任意の可動物体を意味する。移動体には、例えば、電気モータおよび1以上の車輪を備える電動車両が含まれる。そのような車両は、例えば、前述の無人搬送車(Automated Guided Vehicle:AGV)、電気自動車(EV)、電動カート、電動車椅子であり得る。本開示における「移動体」には、車輪を有しない可動物体も含まれる。例えば、二足歩行ロボット、マルチコプターなどの無人航空機(Unmanned Aerial Vehicle:UAV、所謂ドローン)、有人の電動航空機、およびエレベータも、「移動体」に含まれる。 The power receiving device can be mounted on a moving body, for example. When the power receiving apparatus is a mobile object, the wireless power transmission system may be referred to as a “mobile system”. The “moving body” in the present disclosure is not limited to a vehicle such as the above-described automatic guided vehicle, but means any movable object driven by electric power. The moving body includes, for example, an electric vehicle including an electric motor and one or more wheels. Such a vehicle can be, for example, the aforementioned automated guided vehicle (AGV), electric vehicle (EV), electric cart, and electric wheelchair. The “moving body” in the present disclosure includes a movable object having no wheels. For example, unmanned aircraft (unmanned aerial vehicle: UAV, so-called drone) such as bipedal walking robots and multicopters, manned electric aircrafts, and elevators are also included in the “mobile body”.
 以下、本開示の実施形態をより詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似の構成要素については、同じ参照符号を付している。 Hereinafter, embodiments of the present disclosure will be described in more detail. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. In addition, the inventors provide the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and these are intended to limit the subject matter described in the claims. is not. In the following description, the same or similar components are denoted by the same reference numerals.
 (実施形態)
 図7Aは、本開示の例示的な実施形態における無線電力伝送システムの構成を示す図である。この無線電力伝送システムは、電源310と、送電装置100と、第1の移動体10Aと、第2の移動体10Bとを備える。
(Embodiment)
FIG. 7A is a diagram illustrating a configuration of a wireless power transmission system in an exemplary embodiment of the present disclosure. This wireless power transmission system includes a power source 310, a power transmission device 100, a first moving body 10A, and a second moving body 10B.
 送電装置100は、送電モジュール50と、スイッチ190と、インバータ回路110とを備える。送電モジュール50は、第1の整合回路180Aと、第2の整合回路180Bと、送電電極群120とを備える。インバータ回路110と第2の整合回路180Bとの間にスイッチ(SW)190が配置されている。スイッチ190は、インバータ回路110と第2の整合回路180Bとの間の接続のオン(接続)/オフ(非接続)を切り替える。第1の整合回路180Aおよび第2の整合回路180Bは、同一の構成を有する。整合回路180A、180Bは、同位相の交流電力を送電電極群120に供給する。 The power transmission device 100 includes a power transmission module 50, a switch 190, and an inverter circuit 110. The power transmission module 50 includes a first matching circuit 180A, a second matching circuit 180B, and a power transmission electrode group 120. A switch (SW) 190 is disposed between the inverter circuit 110 and the second matching circuit 180B. The switch 190 switches on (connected) / off (non-connected) the connection between the inverter circuit 110 and the second matching circuit 180B. The first matching circuit 180A and the second matching circuit 180B have the same configuration. Matching circuits 180 </ b> A and 180 </ b> B supply AC power having the same phase to power transmission electrode group 120.
 本実施形態における移動体10A、10Bの各々は、同一の構成を有する。各移動体は、受電電極群220と、整合回路280と、整流回路210と、DC/DCコンバータ270と、負荷330とを備える。 Each of the moving bodies 10A and 10B in the present embodiment has the same configuration. Each moving body includes a power receiving electrode group 220, a matching circuit 280, a rectifier circuit 210, a DC / DC converter 270, and a load 330.
 スイッチ190は、例えばMOSFETまたはIGBTなどの半導体スイッチであり得る。スイッチ190は、不図示の制御回路によって制御される。 The switch 190 may be a semiconductor switch such as a MOSFET or an IGBT. The switch 190 is controlled by a control circuit (not shown).
 本実施形態では、送電電極群120に第1の移動体10Aの受電電極群220のみが対向している状態では、スイッチ190はオフに設定される。このとき、インバータ回路110から出力される交流エネルギーは、整合回路180Aには供給されるが、整合回路180Bには供給されない。このため、送電電極群120には、整合回路180Aのみから交流エネルギーが供給される。これに対し、送電電極群120に第1の移動体10Aおよび第2の移動体10Bの両方の受電電極群220が対向している状態では、スイッチ190はオンに設定される。このとき、インバータ回路110から出力される交流エネルギーは、整合回路180Aだけでなく整合回路180Bにも供給される。これにより、送電電極群120には、整合回路180A、180Bの両方から交流エネルギーが供給される。 In this embodiment, in a state where only the power receiving electrode group 220 of the first moving body 10A faces the power transmitting electrode group 120, the switch 190 is set to OFF. At this time, AC energy output from the inverter circuit 110 is supplied to the matching circuit 180A, but not supplied to the matching circuit 180B. For this reason, AC energy is supplied to the power transmission electrode group 120 only from the matching circuit 180A. On the other hand, in a state where the power receiving electrode group 220 of both the first moving body 10A and the second moving body 10B is opposed to the power transmitting electrode group 120, the switch 190 is set to ON. At this time, the AC energy output from the inverter circuit 110 is supplied not only to the matching circuit 180A but also to the matching circuit 180B. Thereby, AC energy is supplied to the power transmission electrode group 120 from both the matching circuits 180A and 180B.
 本実施形態では、送電電極間の電圧差Vtxは、移動体10Aのみに給電している場合と、移動体10A、10Bの両方に給電している場合とで、殆ど変化しない。送電される電力は約2倍になるが、Vtxはほぼ一定で、各送電電極を流れる電流が約2倍になる。これは、各送電電極の面積が2倍になったことと同等の効果をもたらす。図6に示す構成とは異なり、送電装置100に要求される耐圧性能が深刻化することもないし、送電装置100の周辺への漏洩電界の強度が増加することもない。また、2台の移動体10A、10Bに給電している場合でもインピーダンス整合が実現するため、伝送効率の低下を抑えることができる。結果として、移動体10A、10Bが2台同時に充電されている場合に生じる各移動体内での発熱は、移動体10Aのみ、または移動体10Bのみが単体で充電されている場合と比較して増加しない。移動体10A、10Bに搭載される受電装置に要求される電気性能、言い替えれば受電装置内の各素子に要求される電気性能に関しても、単体充電仕様の場合と比較して、高い性能を必要としない。 In this embodiment, the voltage difference Vtx between the power transmission electrodes hardly changes between when the power is supplied only to the moving body 10A and when the power is supplied to both of the moving bodies 10A and 10B. The transmitted power is approximately doubled, but Vtx is substantially constant, and the current flowing through each power transmission electrode is approximately doubled. This brings about an effect equivalent to that the area of each power transmission electrode is doubled. Unlike the configuration illustrated in FIG. 6, the pressure resistance performance required for the power transmission device 100 does not become serious, and the strength of the leakage electric field to the periphery of the power transmission device 100 does not increase. Further, even when power is supplied to the two mobile bodies 10A and 10B, impedance matching is realized, so that a reduction in transmission efficiency can be suppressed. As a result, the heat generation in each mobile body that occurs when two mobile bodies 10A and 10B are simultaneously charged increases compared to the case where only the mobile body 10A or only the mobile body 10B is charged alone. do not do. Regarding the electrical performance required for the power receiving device mounted on the mobile bodies 10A and 10B, in other words, the electrical performance required for each element in the power receiving device, higher performance is required compared to the case of the single charge specification. do not do.
 図7Bは、本実施形態の他の構成例を示す図である。この例では、送電装置100は、第1のインバータ回路110Aと同じ構成および性能を有する第2のインバータ回路110Bをさらに備えている。送電モジュール50は、図7Aに示す例と同様の構成を備える。ただし、第2の整合回路180Bは、第2のインバータ回路110Bに接続される。スイッチ190は、電源310と第2のインバータ回路110Bとの間に接続されている。不図示の制御回路は、1台の移動体のみに給電する場合にはスイッチ190をオフにし、第1のインバータ回路110Aのみを駆動する。他方、2台の移動体に同時に給電する場合には、制御回路はスイッチ190をオンにし、インバータ回路110A、110Bを同時に駆動する。この際、整合回路180A、180Bから同位相の交流電力が出力されるように制御される。これにより、図7Aに示す例と同様の効果を得ることができる。 FIG. 7B is a diagram illustrating another configuration example of the present embodiment. In this example, the power transmission device 100 further includes a second inverter circuit 110B having the same configuration and performance as the first inverter circuit 110A. The power transmission module 50 has the same configuration as the example shown in FIG. 7A. However, the second matching circuit 180B is connected to the second inverter circuit 110B. The switch 190 is connected between the power supply 310 and the second inverter circuit 110B. A control circuit (not shown) turns off the switch 190 and drives only the first inverter circuit 110A when supplying power to only one moving body. On the other hand, when supplying power to the two moving bodies simultaneously, the control circuit turns on the switch 190 and simultaneously drives the inverter circuits 110A and 110B. At this time, control is performed so that AC power having the same phase is output from the matching circuits 180A and 180B. Thereby, the same effect as the example shown to FIG. 7A can be acquired.
 図7Bの構成では、2台のインバータ回路が必要であるが、個々のインバータ回路に要求される性能を低く抑えることができる。特に、高い周波数および高い電圧を扱う場合には、図7Aの構成では高性能なインバータ回路110が必要であるが、図7Bの構成では、より安価なインバータ回路110を用いることが可能である。 7B requires two inverter circuits, but the performance required for each inverter circuit can be kept low. In particular, when handling a high frequency and a high voltage, the configuration of FIG. 7A requires a high-performance inverter circuit 110, but in the configuration of FIG. 7B, a cheaper inverter circuit 110 can be used.
 図7Aおよび図7Bの構成において、スイッチ190は、図示される位置に限らず、他の位置に配置されていてもよい。スイッチ190は、第2の整合回路180Bを、電力の伝送経路から切断し得る位置であればどの位置に配置されていてもよい。図7Bの構成においては、インバータ回路110Bの動作のオン/オフが制御回路によって制御されるため、スイッチ190を省略することも可能である。 7A and 7B, the switch 190 is not limited to the illustrated position, and may be disposed at other positions. The switch 190 may be disposed at any position as long as the second matching circuit 180B can be disconnected from the power transmission path. In the configuration of FIG. 7B, the switch 190 can be omitted because the operation of the inverter circuit 110B is controlled by the control circuit.
 次に、各整合回路180A、180B、280の構成の例を説明する。 Next, an example of the configuration of each matching circuit 180A, 180B, 280 will be described.
 図8Aから図8Iは、各整合回路の構成例を示す図である。ここでは、整合回路が送電装置100に設けられているものとして説明する。簡単のため、送電電極群120が2個の送電電極120a、120bを含む場合の例を説明する。以下、インバータ回路110を「電力変換回路110」とも称する。移動体における整合回路280には、以下の各構成例において入力側(図の左側)と出力側(図の右側)とを反転させた構成を採用することができる。 8A to 8I are diagrams showing configuration examples of the matching circuits. Here, description will be made assuming that the matching circuit is provided in the power transmission device 100. For simplicity, an example in which the power transmission electrode group 120 includes two power transmission electrodes 120a and 120b will be described. Hereinafter, the inverter circuit 110 is also referred to as a “power conversion circuit 110”. The matching circuit 280 in the moving body may employ a configuration in which the input side (left side in the figure) and the output side (right side in the figure) are inverted in each of the following configuration examples.
 図8Aは、整合回路の第1の例を示す図である。この例における整合回路は、第1のインダクタLt1と、第2のインダクタLt2と、キャパシタCt1とを備える。第1のインダクタLt1は、送電電極120aと、電力変換回路110の第1の端子60aとの間に直列回路素子として接続される。第2のインダクタLt2は、送電電極120bと、電力変換回路110の第2の端子60bとの間に直列回路素子として接続される。キャパシタCt1は、送電電極120aとインダクタLt1との間の配線と、送電電極120bとインダクタLt2との間の配線との間に並列回路素子として接続される。 FIG. 8A is a diagram illustrating a first example of a matching circuit. The matching circuit in this example includes a first inductor Lt1, a second inductor Lt2, and a capacitor Ct1. The first inductor Lt1 is connected as a series circuit element between the power transmission electrode 120a and the first terminal 60a of the power conversion circuit 110. The second inductor Lt2 is connected as a series circuit element between the power transmission electrode 120b and the second terminal 60b of the power conversion circuit 110. Capacitor Ct1 is connected as a parallel circuit element between the wiring between power transmission electrode 120a and inductor Lt1 and the wiring between power transmission electrode 120b and inductor Lt2.
 第1のインダクタLt1と第2のインダクタLt2とは磁気的に結合する。これらのインダクタの結合係数kは、例えば-1<k<0を満足する値に設定され得る。第1のインダクタLt1および第2のインダクタLt2は、コモンモードチョークフィルタとしての機能を果たすことが可能である。その場合、電力伝送に用いられる周波数、および低次の高調波帯域でのコモンモードノイズを低減することができる。そのような構成では、第1のインダクタLt1、第2のインダクタLt2、および第1のキャパシタCt1とによって構成される共振器を「コモンモードチョーク共振器」と称することがある。 The first inductor Lt1 and the second inductor Lt2 are magnetically coupled. The coupling coefficient k of these inductors can be set to a value satisfying, for example, −1 <k <0. The first inductor Lt1 and the second inductor Lt2 can function as a common mode choke filter. In that case, the frequency used for power transmission and the common mode noise in the lower harmonic band can be reduced. In such a configuration, a resonator constituted by the first inductor Lt1, the second inductor Lt2, and the first capacitor Ct1 may be referred to as a “common mode choke resonator”.
 図8Bは、整合回路の第2の例を示す図である。この整合回路は、図8Aに示す構成に加えて、第2のキャパシタCt2と、第3のキャパシタCt3と、第3のインダクタLt3とをさらに備える。第2のキャパシタCt2は、第1のインダクタLt1と第1の端子60aとの間に直列回路素子として接続される。第3のキャパシタCt3は、第2のインダクタLt2と第2の端子60bとの間に直列回路素子として接続される。第3のインダクタLt3は、第1のインダクタLt1と第2のキャパシタCt2との間の配線と、第2のインダクタLt2と第3のキャパシタCt3との間の配線との間に並列回路素子として接続される。この構成は、図8Aに示す整合回路の構成の前段に、対称的な回路構成を有するハイパスフィルタが追加された構成であると言える。このような構成によれば、伝送効率をさらに向上させることができる。 FIG. 8B is a diagram illustrating a second example of the matching circuit. This matching circuit further includes a second capacitor Ct2, a third capacitor Ct3, and a third inductor Lt3 in addition to the configuration shown in FIG. 8A. The second capacitor Ct2 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a. The third capacitor Ct3 is connected as a series circuit element between the second inductor Lt2 and the second terminal 60b. The third inductor Lt3 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the second capacitor Ct2 and the wiring between the second inductor Lt2 and the third capacitor Ct3. Is done. This configuration can be said to be a configuration in which a high-pass filter having a symmetric circuit configuration is added to the preceding stage of the configuration of the matching circuit shown in FIG. 8A. According to such a configuration, transmission efficiency can be further improved.
 図8Cは、整合回路の第3の例を示す図である。この整合回路は、図8Aに示す構成に加えて、第2のキャパシタCt2と、第3のインダクタLt3とをさらに備える。第2のキャパシタCt2は、第1のインダクタLt1と第1の端子60aとの間に直列回路素子として接続される。第3のインダクタLt3は、第1のインダクタLt1と第2のキャパシタCt2との間の配線と、第2のインダクタLt2と第2の端子60bとの間の配線との間に並列回路素子として接続される。この構成は、図8Aに示す整合回路の構成の前段に、非対称な回路構成を有するハイパスフィルタが追加された構成であると言える。図8Bの構成と比較して、回路の正負対称性は低下するが素子数を削減することが可能である。このような構成によっても伝送効率をさらに向上させることができる。 FIG. 8C is a diagram illustrating a third example of the matching circuit. This matching circuit further includes a second capacitor Ct2 and a third inductor Lt3 in addition to the configuration shown in FIG. 8A. The second capacitor Ct2 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a. The third inductor Lt3 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the second capacitor Ct2 and the wiring between the second inductor Lt2 and the second terminal 60b. Is done. This configuration can be said to be a configuration in which a high-pass filter having an asymmetric circuit configuration is added to the preceding stage of the configuration of the matching circuit shown in FIG. 8A. Compared with the configuration of FIG. 8B, the positive / negative symmetry of the circuit is reduced, but the number of elements can be reduced. Even with such a configuration, the transmission efficiency can be further improved.
 図8Dは、整合回路の第4の例を示す図である。この整合回路は、図8Aに示す構成に加えて、第3のインダクタLt3と、第2のキャパシタCt2とをさらに備える。第3のインダクタLt3は、第1のインダクタLt1と第1の端子60aとの間に直列回路素子として接続される。第2のキャパシタCt2は、第1のインダクタLt1と第3のインダクタLt3との間の配線と、第2のインダクタLt2と第2の端子60bとの間の配線との間に並列回路素子として接続される。この構成は、図8Aに示す整合回路の構成の前段に、非対称な回路構成を有するローパスフィルタが追加された構成であると言える。このような構成によっても伝送効率をさらに向上させることができる。 FIG. 8D is a diagram illustrating a fourth example of the matching circuit. This matching circuit further includes a third inductor Lt3 and a second capacitor Ct2 in addition to the configuration shown in FIG. 8A. The third inductor Lt3 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a. The second capacitor Ct2 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the third inductor Lt3 and the wiring between the second inductor Lt2 and the second terminal 60b. Is done. This configuration can be said to be a configuration in which a low-pass filter having an asymmetric circuit configuration is added to the preceding stage of the configuration of the matching circuit shown in FIG. 8A. Even with such a configuration, the transmission efficiency can be further improved.
 図8Eは、整合回路の第5の例を示す図である。この整合回路は、図8Aに示す構成に加えて、第3のインダクタLt3と、第4のインダクタLt4と、第2のキャパシタCt2とを備える。第3のインダクタLt3は、第1のインダクタLt1と第1の端子60aとの間に直列回路素子として接続される。第4のインダクタLt4は、第2のインダクタLt2と第2の端子60bとの間に直列回路素子として接続される。第2のキャパシタCt2は、第1のインダクタLt1と第3のインダクタLt3との間の配線と、第2のインダクタLt2と第4のインダクタLt4との間の配線との間に並列回路素子として接続される。第3のインダクタLt3と、第4のインダクタLt4は、例えば負の結合係数で結合するようにも設計され得る。この構成は、図8Aに示す整合回路の構成の前段に、対称的な回路構成を有するローパスフィルタが追加された構成であると言える。このような構成によっても伝送効率をさらに向上させることができる。なお、図8Eの構成は、図8Aに示すコモンモードチョーク共振器が多段接続された構成であるとも見做せる。接続されるコモンモードチョーク共振器の段数は2に限らず、3以上であってもよい。 FIG. 8E is a diagram showing a fifth example of the matching circuit. This matching circuit includes a third inductor Lt3, a fourth inductor Lt4, and a second capacitor Ct2 in addition to the configuration shown in FIG. 8A. The third inductor Lt3 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a. The fourth inductor Lt4 is connected as a series circuit element between the second inductor Lt2 and the second terminal 60b. The second capacitor Ct2 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the third inductor Lt3 and the wiring between the second inductor Lt2 and the fourth inductor Lt4. Is done. The third inductor Lt3 and the fourth inductor Lt4 can also be designed to be coupled with a negative coupling coefficient, for example. This configuration can be said to be a configuration in which a low-pass filter having a symmetric circuit configuration is added to the preceding stage of the configuration of the matching circuit shown in FIG. 8A. Even with such a configuration, the transmission efficiency can be further improved. 8E can also be regarded as a configuration in which the common mode choke resonator shown in FIG. 8A is connected in multiple stages. The number of connected common mode choke resonators is not limited to two and may be three or more.
 図8Fは、整合回路の第6の変形例を示す図である。この整合回路は、図8Aに示す構成に加えて、第3のインダクタLt3をさらに備える。第3のインダクタLt3は、第1のインダクタLt1と第1の端子60aとの間に直列回路素子として接続される。第1のインダクタLt1と第2のインダクタLt2との間の結合に加え、例えば第2のインダクタLt2と結合しないインダクタが整合のために必要となる場合、このような構成によっても伝送効率を向上させることができる。 FIG. 8F is a diagram illustrating a sixth modification of the matching circuit. This matching circuit further includes a third inductor Lt3 in addition to the configuration shown in FIG. 8A. The third inductor Lt3 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a. In addition to the coupling between the first inductor Lt1 and the second inductor Lt2, for example, when an inductor that is not coupled to the second inductor Lt2 is required for matching, this configuration also improves the transmission efficiency. be able to.
 図8Gは、整合回路の第7の変形例を示す図である。この整合回路は、図8Aに示す構成に加えて、電力変換回路110に接続される直列共振回路130sと、直列共振回路130sに磁気的に結合する並列共振回路140pとをさらに備える。並列共振回路140pは、第1のインダクタLt1および第2のインダクタLt2に接続されている。このような構成によれば、変圧比をさらに高め、良好な特性を実現することができる。 FIG. 8G is a diagram illustrating a seventh modification of the matching circuit. In addition to the configuration shown in FIG. 8A, the matching circuit further includes a series resonance circuit 130s connected to the power conversion circuit 110 and a parallel resonance circuit 140p that is magnetically coupled to the series resonance circuit 130s. The parallel resonant circuit 140p is connected to the first inductor Lt1 and the second inductor Lt2. According to such a configuration, it is possible to further increase the transformation ratio and realize good characteristics.
 図8Hは、整合回路の第8の変形例を示す図である。この整合回路は、電力変換回路110の端子60aおよび端子60bに接続される直列共振回路130sと、電極120a、120bに接続される並列共振回路140pとを備える。直列共振回路130sは、直列に接続されたインダクタL1およびキャパシタC1を含む。並列共振回路は、並列に接続されたインダクタL2およびキャパシタCt1を含む。直列共振回路130sおよび並列共振回路140pは、磁気的に結合し、昇圧回路として機能する。このような構造であっても、本実施形態の効果を得ることができる。 FIG. 8H is a diagram illustrating an eighth modification of the matching circuit. This matching circuit includes a series resonance circuit 130s connected to the terminals 60a and 60b of the power conversion circuit 110, and a parallel resonance circuit 140p connected to the electrodes 120a and 120b. Series resonant circuit 130s includes an inductor L1 and a capacitor C1 connected in series. The parallel resonant circuit includes an inductor L2 and a capacitor Ct1 connected in parallel. The series resonant circuit 130s and the parallel resonant circuit 140p are magnetically coupled and function as a booster circuit. Even if it is such a structure, the effect of this embodiment can be acquired.
 図8Iは、整合回路の第9の変形例を示す図である。この整合回路は、電力変換回路110の端子60aおよび端子60bに接続される並列共振回路130pと、電極120a、120bに接続される並列共振回路140pとを備える。並列共振回路130pは、並列に接続されたインダクタL1およびキャパシタC1を含む。並列共振回路140pは、並列に接続されたインダクタL2およびキャパシタCt1を含む。並列共振回路130pおよび並列共振回路140pは、磁気的に結合し、インダクタL1とインダクタL2の巻き数比に起因する昇圧機能を発現すると共に、電源回路と送電電極間のインピーダンス整合を実現する。このような構造であっても、本実施形態の効果を得ることができる。 FIG. 8I is a diagram showing a ninth modification of the matching circuit. This matching circuit includes a parallel resonant circuit 130p connected to terminals 60a and 60b of power conversion circuit 110, and a parallel resonant circuit 140p connected to electrodes 120a and 120b. Parallel resonant circuit 130p includes an inductor L1 and a capacitor C1 connected in parallel. Parallel resonant circuit 140p includes an inductor L2 and a capacitor Ct1 connected in parallel. The parallel resonant circuit 130p and the parallel resonant circuit 140p are magnetically coupled to exhibit a boost function resulting from the turns ratio of the inductor L1 and the inductor L2, and realize impedance matching between the power supply circuit and the power transmission electrode. Even if it is such a structure, the effect of this embodiment can be acquired.
 以上の各例における整合回路は、図示されている回路素子以外にも、他の回路素子、例えばフィルタ機能を果たす回路網などを含んでいてもよい。また、各図において、1つのインダクタまたは1つのキャパシタとして表現された素子は、複数のインダクタまたは複数のキャパシタの集合体であってもよい。 In addition to the circuit elements shown in the drawings, the matching circuit in each of the above examples may include other circuit elements, such as a circuit network that performs a filter function. In each figure, the element expressed as one inductor or one capacitor may be a plurality of inductors or a collection of a plurality of capacitors.
 次に、図8Aから図8Gに示すインダクタLt1、Lt2の構成をより具体的に説明する。インダクタLt1、Lt2は、所定の結合係数で結合するコモンモードチョークフィルタとしても機能し得る。これらのインダクタLt1、Lt2のインダクタンス値は、ほぼ等しい値に設定され得る。 Next, the configuration of the inductors Lt1 and Lt2 shown in FIGS. 8A to 8G will be described more specifically. The inductors Lt1 and Lt2 can also function as a common mode choke filter that couples with a predetermined coupling coefficient. The inductance values of these inductors Lt1 and Lt2 can be set to substantially equal values.
 図9は、2つのインダクタLt1、Lt2の構成例を模式的に示す図である。この例では、2つのインダクタLt1、Lt2が、リング状またはトロイダル状の磁性体であるコア410の周囲に巻回されている。コア410は、例えば軟磁性のフェライトコアであり得る。インダクタLt1、Lt2は、コア410を介して負の結合係数を実現する向きに配置されている。具体的には、インダクタLt1、Lt2の結合係数をkとすると、-1<k<0である。結合係数kが-1に近いほど、伝送効率の観点からは良好な伝送効率特性が得られる。結合係数は、例えばJISC5321に規定された方法で測定できる。インダクタLt1、Lt2に図9の左側の入出力端子から同相の電流が入力された場合、図9の右側の出力端子には同相の電流が出力されない。このような構成により、回路前段で発生し得るコモンモードノイズが後段に伝達される確率を抑圧できる。 FIG. 9 is a diagram schematically showing a configuration example of the two inductors Lt1 and Lt2. In this example, two inductors Lt1 and Lt2 are wound around a core 410 that is a ring-shaped or toroidal magnetic body. The core 410 may be, for example, a soft magnetic ferrite core. The inductors Lt1 and Lt2 are arranged in a direction to realize a negative coupling coefficient via the core 410. Specifically, when the coupling coefficient of the inductors Lt1 and Lt2 is k, −1 <k <0. The closer the coupling coefficient k is to -1, the better the transmission efficiency characteristics can be obtained from the viewpoint of transmission efficiency. The coupling coefficient can be measured by, for example, a method defined in JISC5321. When in-phase current is input to the inductors Lt1 and Lt2 from the left input / output terminal of FIG. 9, no in-phase current is output to the right output terminal of FIG. With such a configuration, it is possible to suppress the probability that common mode noise that may occur in the previous stage of the circuit is transmitted to the subsequent stage.
 図8Aから図8Gに示すキャパシタCt1は、インダクタLt1、Lt2の漏れインダクタンスとの間で共振するように設計され得る。インダクタLt1、Lt2およびキャパシタCt1によって構成されるコモンモードチョーク共振回路の共振周波数は、電力変換回路110が出力する交流電力の周波数f1に等しい値に設計され得る。この共振周波数は、例えば、伝送周波数f1の50~150%程度の範囲内の値に設定されていてもよい。電力伝送の周波数f1は、例えば50Hz~300GHz、ある例では20kHz~10GHz、他の例では20kHz~20MHz、さらに他の例では80kHz~14MHzに設定され得る。 The capacitor Ct1 shown in FIGS. 8A to 8G can be designed to resonate with the leakage inductances of the inductors Lt1 and Lt2. The resonance frequency of the common mode choke resonance circuit configured by the inductors Lt1 and Lt2 and the capacitor Ct1 can be designed to be equal to the frequency f1 of the AC power output from the power conversion circuit 110. This resonance frequency may be set to a value in the range of about 50 to 150% of the transmission frequency f1, for example. The frequency f1 of the power transmission can be set to, for example, 50 Hz to 300 GHz, 20 kHz to 10 GHz in one example, 20 kHz to 20 MHz in another example, and 80 kHz to 14 MHz in another example.
 次に、本実施形態における無線電力伝送システムのより詳細な構成の例を説明する。 Next, an example of a more detailed configuration of the wireless power transmission system in the present embodiment will be described.
 図10Aは、図7Aに示す無線電力伝送システムのより詳細な構成の例を示す図である。この例における送電装置100は、インバータ回路110およびスイッチ190を制御する制御回路150を備える。制御回路150は、例えばマイクロプロセッサとメモリとを備える集積回路であり得る。制御回路150は、各整合回路180A、180Bにおける回路内の電流、電圧、および電圧の少なくとも1つを測定する測定器を含んでいてもよい。制御回路150は、外部の装置と通信をする通信回路を含んでいてもよい。この例における整合回路180A、180Bは、図8Bに示す構成を有する。移動体の受電装置200における整合回路280は、図8Dに示す構成を有する。なお、図10Aには、1台の移動体のみを示し、他の移動体の構成の図示は省略されている。 FIG. 10A is a diagram showing an example of a more detailed configuration of the wireless power transmission system shown in FIG. 7A. The power transmission device 100 in this example includes a control circuit 150 that controls the inverter circuit 110 and the switch 190. The control circuit 150 may be an integrated circuit including a microprocessor and a memory, for example. The control circuit 150 may include a measuring instrument that measures at least one of the current, voltage, and voltage in the circuit in each matching circuit 180A, 180B. The control circuit 150 may include a communication circuit that communicates with an external device. The matching circuits 180A and 180B in this example have the configuration shown in FIG. 8B. The matching circuit 280 in the mobile power receiving apparatus 200 has the configuration shown in FIG. 8D. FIG. 10A shows only one moving body, and illustration of the configuration of the other moving bodies is omitted.
 制御回路150は、送電電極群120に1つの受電電極群220が対向する場合には、スイッチ190に、インバータ回路110と第2の整合回路180Bとの接続をオフにする指令を送る。他方、送電電極群120に2つの受電電極群220が対向する場合には、スイッチ190に、インバータ回路110と第2の整合回路180Bとの接続をオンにする指令を送る。制御回路150は、例えば第1の整合回路180Aにおける電圧、電流、電力の少なくとも1つをモニターし、測定した電圧、電流、電力の少なくとも1つの値に基づいて、送電電極群120に対向する受電電極群220の数を検知することができる。例えば、整合回路180Aから出力される電圧のピーク値または実効値と閾値とを比較し、その比較結果に基づいて、他の移動体の接近を検知することができる。制御回路150は、他にも、他の移動体または各移動体の運行を制御する中央制御装置と通信を行って他の移動体の接近を検知してもよい。 When one power receiving electrode group 220 faces the power transmitting electrode group 120, the control circuit 150 sends a command to the switch 190 to turn off the connection between the inverter circuit 110 and the second matching circuit 180B. On the other hand, when the two power receiving electrode groups 220 face the power transmitting electrode group 120, a command to turn on the connection between the inverter circuit 110 and the second matching circuit 180B is sent to the switch 190. The control circuit 150 monitors, for example, at least one of voltage, current, and power in the first matching circuit 180A, and receives power that faces the power transmission electrode group 120 based on at least one value of the measured voltage, current, and power. The number of electrode groups 220 can be detected. For example, the peak value or effective value of the voltage output from the matching circuit 180A can be compared with a threshold value, and the approach of another moving body can be detected based on the comparison result. In addition, the control circuit 150 may detect the approach of another moving body by communicating with another moving body or a central control device that controls the operation of each moving body.
 図10Bは、図7Bに示す無線電力伝送システムにおける送電装置100のより詳細な構成の例を示す図である。この例における送電装置100は、第1のインバータ回路110A、第2のインバータ回路110B、およびスイッチ190を制御する制御回路150を備える。この例における制御回路150は、第1のインバータ回路110Aおよび第2のインバータ回路110Bを制御して、第1の整合回路180Aおよび第2の整合回路180Bから、同位相の交流エネルギーを出力させる。制御回路150は、送電電極群120に1つの受電電極群220が対向する場合には、第1のインバータ回路110Aのみを駆動し、スイッチ190をオフにし、第2のインバータ回路110Bの動作を停止させる。他方、送電電極群120に2つ以上の受電電極群220が対向する場合には、制御回路150は、第1のインバータ回路110Aおよび第2のインバータ回路110Bの両方を駆動する。制御回路150は、例えば第1の整合回路180Aにおける電圧、電流、電力の少なくとも1つの値に基づいて、送電電極群120に対向する受電電極群220(すなわち移動体の数)を検知することができる。 FIG. 10B is a diagram illustrating an example of a more detailed configuration of the power transmission device 100 in the wireless power transmission system illustrated in FIG. 7B. The power transmission device 100 in this example includes a first inverter circuit 110A, a second inverter circuit 110B, and a control circuit 150 that controls the switch 190. The control circuit 150 in this example controls the first inverter circuit 110A and the second inverter circuit 110B to output AC energy having the same phase from the first matching circuit 180A and the second matching circuit 180B. When one power receiving electrode group 220 faces the power transmitting electrode group 120, the control circuit 150 drives only the first inverter circuit 110A, turns off the switch 190, and stops the operation of the second inverter circuit 110B. Let On the other hand, when two or more power receiving electrode groups 220 face the power transmitting electrode group 120, the control circuit 150 drives both the first inverter circuit 110A and the second inverter circuit 110B. The control circuit 150 can detect the power receiving electrode group 220 (that is, the number of moving bodies) facing the power transmitting electrode group 120 based on at least one value of voltage, current, and power in the first matching circuit 180A, for example. it can.
 制御回路150は、整合回路180Aおよび180Bの各々から出力される電圧、電流、電力の少なくとも1つの値に基づいて前記第1および第2の電力変換回路を制御するフィードバック制御を行う。インバータ回路110A、110Bから出力される電圧の位相が一致していたとしても、整合回路180A、180Bの構成によっては、整合回路180A、180Bから出力される電圧の位相にずれが生じる場合がある。そこで、制御回路150は、例えば整合回路180Aおよび180Bの各々から出力される電圧をモニターし、ずれが生じていた場合には、そのずれを補償するように、インバータ回路110A、111Bを制御する。これにより、整合回路180A、180Bから出力される交流エネルギーの位相を一致させることができる。 The control circuit 150 performs feedback control for controlling the first and second power conversion circuits based on at least one value of voltage, current, and power output from each of the matching circuits 180A and 180B. Even if the phases of the voltages output from the inverter circuits 110A and 110B match, the phases of the voltages output from the matching circuits 180A and 180B may be shifted depending on the configuration of the matching circuits 180A and 180B. Therefore, for example, the control circuit 150 monitors the voltage output from each of the matching circuits 180A and 180B, and controls the inverter circuits 110A and 111B so as to compensate for the deviation when the deviation occurs. Thereby, the phases of the AC energy output from the matching circuits 180A and 180B can be matched.
 図11は、送電装置100におけるインバータ回路110の構成例を模式的に示す図である。この例では、電源310は直流電源である。インバータ回路110は、4つのスイッチング素子を含むフルブリッジ型のインバータ回路である。各スイッチング素子は、例えばIGBTまたはMOSFET等のトランジスタによって構成され得る。制御回路150は、各スイッチング素子の導通(オン)および非導通(オフ)の状態を制御する制御信号を出力するゲートドライバと、ゲートドライバに制御信号を出力させるプロセッサとを有する。プロセッサは、例えばマイクロコントローラユニット(MCU)におけるCPUであり得る。図11に示すフルブリッジ型のインバータ回路の代わりに、ハーフブリッジ型のインバータ回路、E級などの他の発振回路、またはスイッチング増幅器を用いてもよい。 FIG. 11 is a diagram schematically illustrating a configuration example of the inverter circuit 110 in the power transmission device 100. In this example, the power source 310 is a DC power source. The inverter circuit 110 is a full bridge type inverter circuit including four switching elements. Each switching element may be constituted by a transistor such as an IGBT or a MOSFET. The control circuit 150 includes a gate driver that outputs a control signal for controlling the conduction (on) and non-conduction (off) states of each switching element, and a processor that causes the gate driver to output a control signal. The processor can be, for example, a CPU in a microcontroller unit (MCU). Instead of the full-bridge inverter circuit shown in FIG. 11, a half-bridge inverter circuit, another oscillation circuit such as class E, or a switching amplifier may be used.
 制御回路150は、通信用の変復調回路、および電圧または電流などを測定する各種のセンサなどの要素を備え得る。制御回路150が通信用の変復調回路を有する場合、交流電力に重畳してデータを受電装置に送信することができる。 The control circuit 150 may include elements such as a modulation / demodulation circuit for communication and various sensors for measuring voltage or current. In the case where the control circuit 150 includes a communication modulation / demodulation circuit, data can be transmitted to the power receiving device while being superimposed on AC power.
 電源310が交流電源の場合は、インバータ回路110に代えて、入力された交流電力を、周波数または電圧の異なる電力伝送用の交流電力に変換する回路が用いられる。 When the power source 310 is an AC power source, instead of the inverter circuit 110, a circuit that converts input AC power into AC power for power transmission having a different frequency or voltage is used.
 図12は、受電装置200における整流回路210の構成例を模式的に示す図である。この例では、整流回路210は、ダイオードブリッジと平滑コンデンサとを含む全波整流回路であるが、他の回路構成を有していてもよい。移動体10は、他にも、定電圧・定電流制御回路、通信用の変復調回路などの各種の回路を含んでいてもよい。整流回路210は、受け取った交流エネルギーを負荷330が利用可能な直流エネルギーに変換する。電圧・電流などを測定する各種センサが設けられていてもよい。負荷330が利用するエネルギーが交流エネルギーである場合は、整流回路210に代えて、交流変換回路が用いられる。 FIG. 12 is a diagram schematically illustrating a configuration example of the rectifier circuit 210 in the power receiving device 200. In this example, the rectifier circuit 210 is a full-wave rectifier circuit including a diode bridge and a smoothing capacitor, but may have other circuit configurations. In addition, the mobile body 10 may include various circuits such as a constant voltage / constant current control circuit and a communication modulation / demodulation circuit. The rectifier circuit 210 converts the received AC energy into DC energy that can be used by the load 330. Various sensors for measuring voltage, current, and the like may be provided. When the energy used by the load 330 is AC energy, an AC converter circuit is used instead of the rectifier circuit 210.
 DC/DCコンバータ270は、整流回路210から出力された直流電力を、負荷330が要求する他の直流電力に変換する。DC/DCコンバータ270は、不図示の受電制御回路によって制御される。受電制御回路は、例えば、DC/DCコンバータ270の出力電力を一定にするように制御する。受電制御回路は、例えばマイクロコントローラユニット(MCU)などの、プロセッサとメモリとを含む回路によって実現され得る。 The DC / DC converter 270 converts the DC power output from the rectifier circuit 210 into other DC power required by the load 330. The DC / DC converter 270 is controlled by a power reception control circuit (not shown). For example, the power reception control circuit controls the output power of the DC / DC converter 270 to be constant. The power reception control circuit can be realized by a circuit including a processor and a memory, such as a microcontroller unit (MCU).
 電源310は、例えば、商用電源、一次電池、二次電池、太陽電池、燃料電池、USB(Universal Serial Bus)電源、高容量のキャパシタ(例えば電気二重層キャパシタ)、商用電源に接続された電圧変換器などの任意の電源であってよい。電源310は直流電源であっても交流電源であってもよい。 The power source 310 is, for example, a commercial power source, a primary battery, a secondary battery, a solar cell, a fuel cell, a USB (Universal Serial Bus) power source, a high-capacity capacitor (for example, an electric double layer capacitor), a voltage conversion connected to the commercial power source It may be any power source such as a vessel. The power source 310 may be a DC power source or an AC power source.
 移動体10の筐体、各送電電極、および各受電電極のそれぞれのサイズは、特に限定されないが、例えば以下のサイズに設定され得る。送電電極のそれぞれの長さ(図1に示すY方向のサイズ)は、例えば50cmから20mの範囲内に設定され得る。送電電極のそれぞれの幅(図1に示すX方向のサイズ)は、例えば0.5cmから1mの範囲内に設定され得る。移動体10の筐体の進行方向および横方向におけるそれぞれのサイズは、例えば、20cmから5mの範囲内に設定され得る。受電電極のそれぞれの長さ(すなわち、進行方向におけるサイズ)は、例えば5cmから2mの範囲内に設定され得る。受電電極のそれぞれの幅(すなわち、横方向におけるサイズ)は、例えば2cmから2mの範囲内に設定され得る。送電電極対の間のギャップ、および受電電極対の間のギャップは、例えば1mmから40cmの範囲内に設定され得る。送電電極120a、120bと受電電極220a、220bとの間の距離は、例えば5mmから30mm程度であり得る。但し、これらの数値範囲に限定されない。 The size of the casing of the moving body 10, each power transmission electrode, and each power reception electrode is not particularly limited, but may be set to the following size, for example. Each length (size in the Y direction shown in FIG. 1) of the power transmission electrode can be set within a range of 50 cm to 20 m, for example. Each width | variety (size of the X direction shown in FIG. 1) of a power transmission electrode can be set in the range of 0.5 cm to 1 m, for example. Each size in the advancing direction and the lateral direction of the casing of the moving body 10 can be set within a range of 20 cm to 5 m, for example. Each length (that is, the size in the traveling direction) of the power receiving electrode may be set within a range of 5 cm to 2 m, for example. Each width (that is, the size in the lateral direction) of the power receiving electrode can be set within a range of 2 cm to 2 m, for example. The gap between the power transmitting electrode pair and the gap between the power receiving electrode pair can be set within a range of 1 mm to 40 cm, for example. The distance between the power transmitting electrodes 120a and 120b and the power receiving electrodes 220a and 220b can be, for example, about 5 mm to 30 mm. However, it is not limited to these numerical ranges.
 負荷330は、例えば駆動用の電気モータ、および蓄電用のキャパシタまたは二次電池を含み得る。負荷330は、DC/DCコンバータ270から出力された直流電力によって駆動または充電される。 The load 330 may include, for example, an electric motor for driving, a capacitor for storing electricity, or a secondary battery. The load 330 is driven or charged by DC power output from the DC / DC converter 270.
 電気モータは、直流モータ、永久磁石同期モータ、誘導モータ、ステッピングモータ、リラクタンスモータなどの、任意のモータであり得る。モータは、シャフトおよびギア等を介して移動体10の車輪を回転させ、移動体10を移動させる。モータの種類に応じて、移動体における駆動装置は、整流回路、インバータ回路、DC/DCコンバータ、インバータおよびDC/DCコンバータを制御する制御回路などの、各種の回路を含み得る。電力変換回路210は、交流モータを駆動するために、受電したエネルギー(すなわち交流電力)の周波数を、モータを駆動するための周波数に直接変換するコンバータ回路を含んでいてもよい。 The electric motor can be any motor such as a direct current motor, a permanent magnet synchronous motor, an induction motor, a stepping motor, a reluctance motor. The motor rotates the wheels of the moving body 10 via a shaft, gears, and the like to move the moving body 10. Depending on the type of motor, the driving device in the moving body may include various circuits such as a rectifier circuit, an inverter circuit, a DC / DC converter, a control circuit that controls the inverter and the DC / DC converter. The power conversion circuit 210 may include a converter circuit that directly converts the frequency of received energy (that is, AC power) into a frequency for driving the motor in order to drive the AC motor.
 蓄電用のキャパシタは、例えば電気二重層キャパシタまたはリチウムイオンキャパシタなどの、高容量かつ低抵抗のキャパシタであり得る。このようなキャパシタを蓄電器として用いることにより、二次電池を用いた場合よりも、急速な充電が可能である。キャパシタに代えて、リチウムイオン電池等の二次電池を用いてもよい。その場合、充電に要する時間は増加するが、より多くのエネルギーを蓄えることができる。移動体10は、蓄電用のキャパシタまたは二次電池に蓄えられた電力によってモータを駆動して移動する。 The capacitor for power storage can be a high-capacity and low-resistance capacitor such as an electric double layer capacitor or a lithium ion capacitor. By using such a capacitor as a capacitor, it is possible to charge more rapidly than when a secondary battery is used. Instead of the capacitor, a secondary battery such as a lithium ion battery may be used. In this case, the time required for charging increases, but more energy can be stored. The moving body 10 moves by driving a motor with electric power stored in a capacitor for storage or a secondary battery.
 移動体10が移動すると、蓄電用のキャパシタまたは二次電池の蓄電量が低下する。このため、移動を継続するためには、再充電が必要になる。そこで、移動体10は、移動中に充電量が所定の閾値を下回ると、送電装置100の近傍まで移動し、充電を行う。この移動は、不図示の中央制御装置による制御の元で行われてもよいし、移動体10が自律的に判断して行ってもよい。送電装置100は、工場内の複数の箇所に設置され得る。 When the moving body 10 moves, the storage amount of the storage capacitor or the secondary battery decreases. For this reason, recharging is required to continue the movement. Therefore, when the amount of charge falls below a predetermined threshold during movement, the moving body 10 moves to the vicinity of the power transmission device 100 and performs charging. This movement may be performed under the control of a central control device (not shown), or may be performed by the mobile body 10 autonomously judging. The power transmission device 100 can be installed at a plurality of locations in the factory.
 各整合回路における各インダクタは、例えば、銅またはアルミニウムなどの材料で構成されたリッツ線、もしくはツイスト線などを用いた巻き線コイルであり得る。回路基板上に形成された平面コイルまたは積層コイルを用いてもよい。各キャパシタには、例えばチップ形状またはリード形状を有するあらゆるタイプのキャパシタを利用できる。空気を介した2配線間の容量を各キャパシタとして機能させることも可能である。 Each inductor in each matching circuit can be, for example, a litz wire made of a material such as copper or aluminum, or a wound coil using a twisted wire. A planar coil or a laminated coil formed on the circuit board may be used. For each capacitor, any type of capacitor having, for example, a chip shape or a lead shape can be used. It is also possible to cause the capacitance between two wirings via air to function as each capacitor.
 次に、本実施形態の効果を説明する。 Next, the effect of this embodiment will be described.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、本実施形態による効果を検証するために行った解析の結果を示している。図6に示す構成を有する比較例と、図7Bに示す構成を有する実施例のそれぞれについて、2台の移動体に同時に給電した場合の伝送効率を比較した。表1に示すように、比較例では、同時に充電を行う移動体の台数が1台から2台に増加すると、効率が約半分に低下する。これに対し、実施例では、同時に充電を行う移動体の台数が1台から2台に増加しても、各移動体での充電効率は殆ど低下しない。 Table 1 shows the results of analysis performed to verify the effects of the present embodiment. For each of the comparative example having the configuration shown in FIG. 6 and the example having the configuration shown in FIG. 7B, the transmission efficiency when power was simultaneously supplied to two moving bodies was compared. As shown in Table 1, in the comparative example, when the number of moving bodies that are charged simultaneously increases from one to two, the efficiency decreases to about half. On the other hand, in the embodiment, even if the number of mobile bodies that perform charging at the same time increases from one to two, the charging efficiency in each mobile body hardly decreases.
 また、送電電極間の電圧差Vtxについても解析した。その結果、本実施例によれば、1台の移動体に給電しているときと2台の移動体に同時に給電しているときとで、Vtxのピーク値に殆ど差が見られなかった。具体的には、1台の移動体のみを充電している場合のVtxは11.2kVであった。他方、二台の移動体を同時に充電した場合のVtxは10.8kVであった。送電電極間の電圧差が殆ど増加しなかったことから、充電する移動体の台数の変化に依存せず、送電電極周辺の電界漏洩強度が変化しなかったといえる。 Also, the voltage difference Vtx between the power transmission electrodes was analyzed. As a result, according to this example, there was almost no difference in the peak value of Vtx between when power was supplied to one mobile body and when power was simultaneously supplied to two mobile bodies. Specifically, Vtx in the case where only one moving body is charged was 11.2 kV. On the other hand, Vtx when the two moving bodies were charged simultaneously was 10.8 kV. Since the voltage difference between the power transmission electrodes hardly increased, it can be said that the electric field leakage intensity around the power transmission electrodes did not change without depending on the change in the number of mobile bodies to be charged.
 以上の結果から、本実施例によれば、送電電極を共用しながら2台の移動体に同時に給電する場合でも、伝送効率を高く維持することができる。さらに、送電電極間の電圧差の増加を防止し、周辺に漏洩する電界強度を悪化させることなくシステムを運用することができる。この効果は、図7Bに示す構成に限らず、図7Aに示す構成を採用した場合でも同様に得ることができる。 From the above results, according to the present embodiment, it is possible to maintain high transmission efficiency even when power is simultaneously supplied to two moving bodies while sharing the power transmission electrode. Furthermore, an increase in the voltage difference between the power transmission electrodes can be prevented, and the system can be operated without deteriorating the electric field strength leaking to the periphery. This effect is not limited to the configuration shown in FIG. 7B but can be obtained in the same manner even when the configuration shown in FIG. 7A is adopted.
 次に、本実施形態の変形例を説明する。 Next, a modification of this embodiment will be described.
 図7A、7B、10A、10Bに示す送電装置100は、2つの整合回路180A、180Bを備えているが、さらに多くの整合回路を備えていてもよい。同時に給電する移動体10の数に応じて、同数の整合回路が配置される。図7Bおよび図10Bに示す構成においては、さらに同数のインバータ回路などの交流変換回路が配置される。 7A, 7B, 10A, and 10B include two matching circuits 180A and 180B, but may include more matching circuits. The same number of matching circuits are arranged according to the number of mobile bodies 10 that are fed simultaneously. In the configurations shown in FIGS. 7B and 10B, the same number of AC conversion circuits such as inverter circuits are further arranged.
 前述のように、送電装置は、送電電極群に交流エネルギーを供給するN個(Nは2以上の整数)の交流出力回路と、当該N個の交流出力回路を制御する制御回路とを備え得る。制御回路は、送電電極群から同時にn個(nは1以上N以下の整数)の受電電極群にエネルギーを伝送するとき、N個の交流出力回路のうちのn個の交流出力回路に、同位相の交流エネルギーを送電電極群に供給する指令を送る。このような制御により、同時に給電する移動体の数によらず、効率の低下、送電電極間電圧差の増加、および漏洩電界の増加を抑制することができる。制御回路は、N個の交流出力回路を制御して、送電電極群から同時に給電されるn個の移動体の全てに、同強度のエネルギーを供給することができる。 As described above, the power transmission device may include N (N is an integer of 2 or more) AC output circuits that supply AC energy to the power transmission electrode group, and a control circuit that controls the N AC output circuits. . When the control circuit transmits energy from the power transmitting electrode group to n (n is an integer of 1 to N) power receiving electrode groups at the same time, the control circuit transmits the energy to n AC output circuits of the N AC output circuits. Sends a command to supply phase AC energy to the transmission electrode group. Such control can suppress a decrease in efficiency, an increase in voltage difference between power transmission electrodes, and an increase in leakage electric field, regardless of the number of moving bodies that supply power simultaneously. The control circuit can control N AC output circuits to supply energy of the same intensity to all n moving bodies that are simultaneously fed from the power transmission electrode group.
 以上の実施形態では、送電装置100は1つの送電電極群120を備えるが、送電装置100は複数の送電電極群を備えていてもよい。 In the above embodiment, the power transmission device 100 includes one power transmission electrode group 120, but the power transmission device 100 may include a plurality of power transmission electrode groups.
 図13Aは、送電装置100が複数の送電電極群を備える無線電力伝送システムの例を模式的に示す図である。この例における送電装置は、2つの送電電極群120A、120Bと、2つの交流出力回路170A、170Bを備えている。各交流出力回路は、前述の実施形態における整合回路を含む。各交流出力回路は、前述の実施形態における整合回路とインバータ回路の両方を含んでいてもよい。この例では、2つの送電電極群120A、120Bは、同一の方向に延び、一直線上に配置されている。交流出力回路170A、170Bの各々は、送電電極群120A、120Bの両方に交流電力を供給する。送電電極群120A、120Bの各々において、交流出力回路170Aから供給される交流電力の位相と、交流出力回路170Bから供される交流電力の位相とが一致するように制御される。このような構成により、各送電電極群120A、120Bは、同時に2台の移動体に高い効率で電力を伝送することができる。また、充電可能な領域の長さを2倍に延長することができる。敷設された2つの送電電極群120A、120Bが規定する充電領域のいずれにおいても、移動中または作業中の複数の移動体に高い効率で電力を伝送することができる。そのような利点があるにも関わらず、電源回路部を配置するための費用を適切に抑制することができる。 FIG. 13A is a diagram schematically illustrating an example of a wireless power transmission system in which the power transmission device 100 includes a plurality of power transmission electrode groups. The power transmission device in this example includes two power transmission electrode groups 120A and 120B and two AC output circuits 170A and 170B. Each AC output circuit includes the matching circuit in the above-described embodiment. Each AC output circuit may include both the matching circuit and the inverter circuit in the above-described embodiment. In this example, the two power transmission electrode groups 120A and 120B extend in the same direction and are arranged in a straight line. Each of AC output circuits 170A and 170B supplies AC power to both power transmission electrode groups 120A and 120B. In each of power transmission electrode groups 120A and 120B, control is performed so that the phase of AC power supplied from AC output circuit 170A matches the phase of AC power supplied from AC output circuit 170B. With such a configuration, each of the power transmission electrode groups 120A and 120B can transmit power to two moving bodies at a high efficiency at the same time. In addition, the length of the chargeable region can be extended by a factor of two. In any of the charging regions defined by the two power transmission electrode groups 120A and 120B laid, power can be transmitted with high efficiency to a plurality of moving bodies that are moving or working. Despite such advantages, it is possible to appropriately reduce the cost for arranging the power supply circuit unit.
 図13Aの構成において、各送電電極群から同時に給電可能な移動体の数に応じて、交流出力回路の数を増加させてもよい。Nを2以上の整数として、送電装置は、N個の交流出力回路を備え得る。その場合、N個の交流出力回路は、図13Aに示す2つの送電電極群120A、120Bの各々に交流エネルギーを供給する。制御回路は、送電電極群120Aまたは120Bから同時にn個(nは1以上N以下の整数)の受電電極群にエネルギーを伝送するとき、N個の交流出力回路のうちのn個の交流出力回路に、同位相の交流エネルギーが当該送電電極群に供給されるように制御する。 In the configuration of FIG. 13A, the number of AC output circuits may be increased according to the number of moving bodies that can be fed simultaneously from each power transmission electrode group. The power transmission device may include N AC output circuits, where N is an integer equal to or greater than 2. In that case, the N AC output circuits supply AC energy to each of the two power transmission electrode groups 120A and 120B shown in FIG. 13A. When the control circuit transmits energy from the power transmission electrode group 120A or 120B to n power receiving electrode groups simultaneously (n is an integer of 1 to N), n AC output circuits among the N AC output circuits. In addition, control is performed so that AC energy having the same phase is supplied to the power transmission electrode group.
 図13Bは、送電装置100が複数の送電電極群を備える無線電力伝送システムの他の例を模式的に示す図である。この例では、送電装置100は、第1の送電電極群120Aと、第2の送電電極群120Bと、第3の送電電極群120Cと、第1の交流出力回路170Aと、第2の交流出力回路170Bとを備える。各送電電極群は同一の方向に延びた平板状の構造を有する。この例では、第2の送電電極群120B、第1の送電電極群120A、および第3の送電電極群120Cが、この順に、一直線上に配置されている。第1の交流出力回路170Aは、第1の送電電極群120Aと第2の送電電極群120Bに交流エネルギーを供給する。第2の交流出力回路170Bは、第1の送電電極群120Aと第3の送電電極群120Cに交流エネルギーを供給する。この場合、制御回路は、第2の送電電極群120Bから1つの移動体における受電電極群にエネルギーを伝送するとき、第1の交流出力回路170Aに、交流エネルギーを第2の送電電極群120Bに供給するよう指示する。制御回路は、第3の送電電極群120Cから他の移動体における受電電極群にエネルギーを伝送するとき、第2の交流出力回路170Bに、交流エネルギーを第3の送電電極群120Cに供給するよう指示する。 FIG. 13B is a diagram schematically illustrating another example of the wireless power transmission system in which the power transmission device 100 includes a plurality of power transmission electrode groups. In this example, the power transmission device 100 includes a first power transmission electrode group 120A, a second power transmission electrode group 120B, a third power transmission electrode group 120C, a first AC output circuit 170A, and a second AC output. Circuit 170B. Each power transmission electrode group has a flat plate-like structure extending in the same direction. In this example, the second power transmission electrode group 120B, the first power transmission electrode group 120A, and the third power transmission electrode group 120C are arranged on a straight line in this order. The first AC output circuit 170A supplies AC energy to the first power transmission electrode group 120A and the second power transmission electrode group 120B. The second AC output circuit 170B supplies AC energy to the first power transmission electrode group 120A and the third power transmission electrode group 120C. In this case, when the control circuit transmits energy from the second power transmitting electrode group 120B to the power receiving electrode group in one moving body, the control circuit transmits the AC energy to the first AC output circuit 170A and the second power transmitting electrode group 120B. Instruct to supply. When transmitting energy from the third power transmission electrode group 120C to the power reception electrode group in another moving body, the control circuit supplies the second AC output circuit 170B with AC energy to the third power transmission electrode group 120C. Instruct.
 この例では、第1の送電電極群120Aから同時に2台の移動体に給電でき、かつ、第2の送電電極群120Bおよび第3の送電電極群120Cの各々から1台の移動体に給電できる。充電可能な領域の長さは、第1の送電電極群120Aのみが配置されている場合に比べて3倍に延長できる。図13Bの構成において、さらに多数の交流出力回路を各送電電極群に接続してもよい。そのような構成によれば、さらに多数の移動体に同時に給電することができる。敷設された3つの送電電極群が規定する充電領域のいずれにおいても、移動中または作業中の移動体に高い効率で電力を伝送することができる。そのような利点があるにも関わらず、電源回路部を配置するための費用を適切に抑制することができる。 In this example, power can be supplied to two mobile bodies from the first power transmission electrode group 120A at the same time, and power can be supplied to one mobile body from each of the second power transmission electrode group 120B and the third power transmission electrode group 120C. . The length of the chargeable region can be extended by a factor of three compared to the case where only the first power transmission electrode group 120A is arranged. In the configuration of FIG. 13B, a larger number of AC output circuits may be connected to each power transmission electrode group. According to such a configuration, it is possible to supply power to a larger number of moving bodies simultaneously. In any of the charging regions defined by the three power transmission electrode groups laid, power can be transmitted with high efficiency to a moving body that is moving or working. Despite such advantages, it is possible to appropriately reduce the cost for arranging the power supply circuit unit.
 以上の実施形態における各電極群は、同一の方向に平行に延びた構造を有しているが、用途によってはそのような構造でなくてもよい。例えば、各電極が、正方形などの矩形形状を有していてもよい。そのような矩形形状の複数の電極が一方向に並ぶ形態であれば、本開示の技術を適用できる。また、全ての電極の表面が同一平面上にあることは必須の要件ではない。さらに、各電極の表面は、完全に平面的な形状を有している必要はなく、例えば湾曲した形状または凹凸を含む形状を有していてもよい。そのような表面も、概略的に平面的であれば、「平面状の表面」と称する。 Each electrode group in the above embodiment has a structure extending in parallel in the same direction, but such a structure may not be used depending on the application. For example, each electrode may have a rectangular shape such as a square. As long as such a plurality of rectangular electrodes are arranged in one direction, the technique of the present disclosure can be applied. Further, it is not an essential requirement that the surfaces of all the electrodes are on the same plane. Furthermore, the surface of each electrode does not need to have a completely planar shape, and may have, for example, a curved shape or a shape including unevenness. Such a surface is also referred to as a “planar surface” if it is generally planar.
 以上の実施形態では、送電電極群120は、地面に敷設されているが、送電電極群120は、壁などの側面、または天井などの上面に敷設されていてもよい。送電電極群120が敷設される場所および向きに応じて、移動体10の受電電極群220の配置および向きが決定される。 In the above embodiment, the power transmission electrode group 120 is laid on the ground, but the power transmission electrode group 120 may be laid on a side surface such as a wall or an upper surface such as a ceiling. The arrangement and orientation of the power receiving electrode group 220 of the moving body 10 are determined according to the location and orientation where the power transmitting electrode group 120 is laid.
 図14Aは、送電電極群120が壁などの側面に敷設された例を示している。この例では、受電電極群220は、移動体10の側方に配置される。図14Bは、送電電極群120が天井に敷設された例を示している。この例では、受電電極群220は、移動体10の天板に配置される。これらの例のように、送電電極群120および受電電極群220の配置には様々なバリエーションがある。 FIG. 14A shows an example in which the power transmission electrode group 120 is laid on a side surface such as a wall. In this example, the power receiving electrode group 220 is disposed on the side of the moving body 10. FIG. 14B shows an example in which the power transmission electrode group 120 is laid on the ceiling. In this example, the power receiving electrode group 220 is disposed on the top plate of the moving body 10. As in these examples, there are various variations in the arrangement of the power transmission electrode group 120 and the power reception electrode group 220.
 本開示の実施形態における無線電力伝送システムは、前述のように、工場内における物品の搬送用のシステムとして利用され得る。移動体10は、物品を積載する荷台を有し、工場内を自律的に移動して物品を必要な場所に搬送する台車として機能する。しかし、本開示における無線電力伝送システムおよび移動体は、このような用途に限らず、他の様々な用途に利用され得る。例えば、移動体は、AGVに限らず、他の産業機械、サービスロボット、電気自動車、フォークリフト、マルチコプター(ドローン)、エレベータ等であってもよい。無線電力伝送システムは、工場内に限らず、例えば、店舗、病院、家庭、道路、滑走路その他のあらゆる場所で利用され得る。 The wireless power transmission system according to the embodiment of the present disclosure can be used as a system for transporting articles in a factory as described above. The moving body 10 has a loading platform on which articles are loaded, and functions as a carriage that autonomously moves in the factory and conveys the articles to a necessary place. However, the wireless power transmission system and the moving body in the present disclosure are not limited to such applications, and can be used for various other applications. For example, the moving body is not limited to AGV, but may be other industrial machines, service robots, electric vehicles, forklifts, multicopters (drone), elevators, and the like. The wireless power transmission system is not limited to being used in a factory, and can be used in, for example, stores, hospitals, homes, roads, runways, and other places.
 本開示の技術は、電力によって駆動される任意の機器に利用できる。例えば、電気自動車(EV)、工場で用いられる無人搬送車(AGV)、フォークリフト、無人航空機(UAV)、またはエレベータなどの移動体に利用され得る。 The technology of the present disclosure can be used for any device driven by electric power. For example, it can be used for a moving body such as an electric vehicle (EV), an automatic guided vehicle (AGV) used in a factory, a forklift, an unmanned aerial vehicle (UAV), or an elevator.
10  移動体
30  床面
100 送電装置
110 インバータ回路
120 送電電極群
150 制御回路
170 交流出力回路
180 整合回路
190 スイッチ
200 受電装置
210 整流回路
220 受電電極群
270 DC/DCコンバータ
280 整合回路
310 電源
330 負荷
 
DESCRIPTION OF SYMBOLS 10 Mobile body 30 Floor surface 100 Power transmission apparatus 110 Inverter circuit 120 Power transmission electrode group 150 Control circuit 170 AC output circuit 180 Matching circuit 190 Switch 200 Power receiving apparatus 210 Rectifier circuit 220 Power receiving electrode group 270 DC / DC converter 280 Matching circuit 310 Power supply 330 Load

Claims (13)

  1.  送電電極群から同時に2つ以上の受電電極群に電界を介して無線でエネルギーを伝送することが可能な無線電力伝送システムにおける送電装置において用いられる送電モジュールであって、
     2つ以上の送電電極を含む送電電極群と、
     第1の交流電圧を出力する第1の電力変換回路と前記送電電極群との間に接続される第1の整合回路と、
     前記第1の電力変換回路または第2の交流電圧を出力する第2の電力変換回路と前記送電電極群との間に接続される第2の整合回路と、
    を備え、
     前記第1および第2の整合回路は、同位相の交流エネルギーを前記送電電極群に供給する、
    送電モジュール。
    A power transmission module used in a power transmission device in a wireless power transmission system capable of wirelessly transmitting energy via electric field from a power transmission electrode group to two or more power reception electrode groups,
    A group of power transmission electrodes including two or more power transmission electrodes;
    A first matching circuit connected between a first power conversion circuit that outputs a first AC voltage and the power transmission electrode group;
    A second matching circuit connected between the first power conversion circuit or the second power conversion circuit that outputs a second AC voltage and the power transmission electrode group;
    With
    The first and second matching circuits supply AC energy having the same phase to the power transmission electrode group.
    Power transmission module.
  2.  請求項1に記載の送電モジュールであって、前記第2の整合回路が前記第1の電力変換回路に接続される送電モジュールと、
     前記第1の電力変換回路と、
     前記第1の電力変換回路と前記第2の整合回路との間の接続のオン/オフを切替えるスイッチと、
     前記スイッチを制御する制御回路と、
    を備える送電装置。
    The power transmission module according to claim 1, wherein the second matching circuit is connected to the first power conversion circuit;
    The first power conversion circuit;
    A switch for switching on / off a connection between the first power conversion circuit and the second matching circuit;
    A control circuit for controlling the switch;
    A power transmission device comprising:
  3.  前記制御回路は、
     前記送電電極群に1つの受電電極群が対向する場合には、前記スイッチに、前記第1の電力変換回路と前記第2の整合回路との接続をオフにする指令を送り、
     前記送電電極群に2つ以上の受電電極群が対向する場合には、前記スイッチに、前記第1の電力変換回路と前記第2の整合回路との接続をオンにする指令を送る、
    請求項2に記載の送電装置。
    The control circuit includes:
    When one power receiving electrode group faces the power transmitting electrode group, a command to turn off the connection between the first power conversion circuit and the second matching circuit is sent to the switch,
    When two or more power receiving electrode groups face the power transmitting electrode group, a command to turn on the connection between the first power conversion circuit and the second matching circuit is sent to the switch.
    The power transmission device according to claim 2.
  4.  前記制御回路は、前記第1の整合回路における電圧、電流、電力の少なくとも1つをモニターし、電圧、電流、電力の少なくとも1つの値に基づいて、前記送電電極群に対向する受電電極群の数を検知する、請求項3に記載の送電装置。 The control circuit monitors at least one of voltage, current, and power in the first matching circuit, and based on at least one value of voltage, current, and power, a power receiving electrode group facing the power transmitting electrode group The power transmission device according to claim 3, wherein the number is detected.
  5.  請求項1に記載の送電モジュールであって、前記第2の整合回路が前記第2の電力変換回路に接続される送電モジュールと、
     前記第1の電力変換回路と、
     前記第2の電力変換回路と、
     前記第1および第2の電力変換回路を制御して、前記第1および第2の整合回路から、同位相の交流エネルギーを出力させる制御回路と、
    を備える送電装置。
    The power transmission module according to claim 1, wherein the second matching circuit is connected to the second power conversion circuit;
    The first power conversion circuit;
    The second power conversion circuit;
    A control circuit that controls the first and second power conversion circuits so as to output in-phase AC energy from the first and second matching circuits;
    A power transmission device comprising:
  6.  前記制御回路は、
     前記送電電極群に1つの受電電極群が対向する場合には、前記第1の電力変換回路のみを駆動し、前記第2の電力変換回路の動作を停止させ、
     前記送電電極群に2つ以上の受電電極群が対向する場合には、前記第1および第2の電力変換回路の両方を駆動する、
    請求項2に記載の送電装置。
    The control circuit includes:
    When one power receiving electrode group is opposed to the power transmitting electrode group, only the first power conversion circuit is driven, the operation of the second power conversion circuit is stopped,
    When two or more power receiving electrode groups are opposed to the power transmitting electrode group, both the first and second power conversion circuits are driven.
    The power transmission device according to claim 2.
  7.  前記制御回路は、前記第1の整合回路における電圧、電流、電力の少なくとも1つをモニターし、電圧、電流、電力の少なくとも1つの値に基づいて、前記送電電極群に対向する受電電極群の数を検知する、請求項6に記載の送電装置。 The control circuit monitors at least one of voltage, current, and power in the first matching circuit, and based on at least one value of voltage, current, and power, a power receiving electrode group facing the power transmitting electrode group The power transmission device according to claim 6, wherein the number is detected.
  8.  前記制御回路は、前記第1および第2の整合回路の各々から出力される電圧、電流、電力の少なくとも1つをモニターし、前記電圧、電流、電力の少なくとも1つの値に基づいて前記第1および第2の電力変換回路を制御することにより、前記第1および第2の整合回路から出力される交流エネルギーの位相を一致させる、請求項5に記載の送電装置。 The control circuit monitors at least one of voltage, current, and power output from each of the first and second matching circuits, and based on at least one value of the voltage, current, and power The power transmission device according to claim 5, wherein the phases of the AC energy output from the first and second matching circuits are matched by controlling the second power conversion circuit and the second power conversion circuit.
  9.  送電電極群から同時に2つ以上の受電電極群に電界を介して無線でエネルギーを伝送することが可能な無線電力伝送システムにおける送電装置であって、
     2つ以上の送電電極を含む送電電極群と、
     前記送電電極群に交流エネルギーを供給するN個(Nは2以上の整数)の交流出力回路と、
     前記N個の交流出力回路を制御する制御回路であって、前記送電電極群から同時にn個(nは1以上N以下の整数)の受電電極群にエネルギーを伝送するとき、前記N個の交流出力回路のうちのn個の交流出力回路に、同位相の交流エネルギーを前記送電電極群に供給する指令を送る制御回路と、
    を備える送電装置。
    A power transmission device in a wireless power transmission system capable of transmitting energy wirelessly via an electric field from a power transmission electrode group to two or more power reception electrode groups,
    A group of power transmission electrodes including two or more power transmission electrodes;
    N (N is an integer of 2 or more) AC output circuits for supplying AC energy to the power transmission electrode group;
    A control circuit for controlling the N AC output circuits, wherein when transmitting energy from the power transmitting electrode group to n (n is an integer of 1 to N) power receiving electrode groups, the N AC current circuits are transmitted. A control circuit for sending a command to supply alternating current energy of the same phase to the power transmission electrode group to n AC output circuits of the output circuit;
    A power transmission device comprising:
  10.  前記制御回路は、前記N個の交流出力回路を制御して、前記送電電極群から同時に前記エネルギーを受ける前記n個の受電電極群の全てに、同強度のエネルギーを供給する、請求項9に記載の送電装置。 The control circuit controls the N AC output circuits to supply energy of the same intensity to all of the n power receiving electrode groups that receive the energy simultaneously from the power transmitting electrode group. The power transmission device described.
  11.  2つ以上の送電電極を含む他の送電電極群をさらに備え、
     前記N個の交流出力回路は、前記他の送電電極群にも交流エネルギーを供給し、
     前記制御回路は、前記他の送電電極群から同時にn個(nは1以上N以下の整数)の受電電極群にエネルギーを伝送するとき、前記N個の交流出力回路のうちのn個の交流出力回路に、同位相の交流エネルギーを前記他の送電電極群に供給する指令を送る、請求項9または10に記載の送電装置。
    And further comprising another power transmission electrode group including two or more power transmission electrodes,
    The N AC output circuits supply AC energy to the other power transmission electrode groups,
    When the control circuit transmits energy from the other power transmitting electrode groups to n power receiving electrode groups simultaneously (n is an integer of 1 or more and N or less), n ACs among the N AC output circuits are transmitted. The power transmission device according to claim 9 or 10, wherein a command for supplying AC energy having the same phase to the other power transmission electrode group is sent to an output circuit.
  12.  2つ以上の送電電極を含む第2の送電電極群と、
     2つ以上の送電電極を含む第3の送電電極群と、
    をさらに備え、
     前記N個の交流出力回路のうちの第1の交流出力回路は、前記第2の送電電極群にも交流エネルギーを供給し、
    前記N個の交流出力回路のうちの第2の交流出力回路は、前記第3の送電電極群にも交流エネルギーを供給し、
     前記制御回路は、
     第2の送電電極群から1つの受電電極群にエネルギーを伝送するとき、前記第1の交流出力回路に、前記交流エネルギーを前記第2の送電電極群に供給する指令を送り、
     第3の送電電極群から他の1つの受電電極群にエネルギーを伝送するとき、前記第2の交流出力回路に、前記交流エネルギーを前記第3の送電電極群に供給する指令を送る、
    請求項10または11に記載の送電装置。
    A second group of power transmission electrodes including two or more power transmission electrodes;
    A third power transmission electrode group including two or more power transmission electrodes;
    Further comprising
    A first AC output circuit among the N AC output circuits supplies AC energy to the second power transmission electrode group,
    A second AC output circuit of the N AC output circuits supplies AC energy to the third power transmission electrode group,
    The control circuit includes:
    When transmitting energy from the second power transmission electrode group to one power reception electrode group, a command to supply the AC energy to the second power transmission electrode group is sent to the first AC output circuit,
    When transmitting energy from the third power transmission electrode group to one other power reception electrode group, a command to supply the AC energy to the third power transmission electrode group is sent to the second AC output circuit.
    The power transmission device according to claim 10 or 11.
  13.  請求項2から12のいずれかに記載の送電装置と、
     前記送電電極群から無線で電力を受け取る受電電極群を備える少なくとも1つの受電装置と、
     を備える無線電力伝送システム。
    A power transmission device according to any one of claims 2 to 12,
    At least one power receiving device including a power receiving electrode group that receives power wirelessly from the power transmitting electrode group;
    A wireless power transmission system comprising:
PCT/JP2019/013221 2018-03-29 2019-03-27 Power transmission module, power transmission device, and wireless power transfer system WO2019189374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980021169.6A CN111937271A (en) 2018-03-29 2019-03-27 Power transmission module, power transmission device, and wireless power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-064040 2018-03-29
JP2018064040 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019189374A1 true WO2019189374A1 (en) 2019-10-03

Family

ID=68062075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013221 WO2019189374A1 (en) 2018-03-29 2019-03-27 Power transmission module, power transmission device, and wireless power transfer system

Country Status (2)

Country Link
CN (1) CN111937271A (en)
WO (1) WO2019189374A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303790A (en) * 1997-04-25 1998-11-13 Hitachi Ltd Data carrier system
JP2004203178A (en) * 2002-12-25 2004-07-22 Murata Mach Ltd Power supply plant, and method for connecting constant current power supply unit in power supply plant
JP2012085404A (en) * 2010-10-08 2012-04-26 Murata Mfg Co Ltd Power transmission system and electronic shelf label system
WO2016204250A1 (en) * 2015-06-17 2016-12-22 株式会社ExH Electric power supply system
JP2017139893A (en) * 2016-02-04 2017-08-10 パナソニックIpマネジメント株式会社 Radio power transmission system and power transmission device
WO2017179203A1 (en) * 2016-04-15 2017-10-19 三菱電機エンジニアリング株式会社 Resonant power source device and resonant power transmission system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412367B2 (en) * 2007-08-21 2010-02-10 株式会社デンソー Ultrasonic sensor
JP5118666B2 (en) * 2009-06-17 2013-01-16 アルプス電気株式会社 TOUCH PAD INPUT DEVICE WITH ANTENNA AND ELECTRONIC DEVICE HAVING THE DEVICE
JP4856288B1 (en) * 2010-08-10 2012-01-18 パイオニア株式会社 Impedance matching device and control method
JP5672898B2 (en) * 2010-09-27 2015-02-18 株式会社村田製作所 Power transmission system
EP2745420A2 (en) * 2011-08-16 2014-06-25 Koninklijke Philips N.V. A conductive layer of a large surface for distribution of power using capacitive power transfer
JP5276755B1 (en) * 2011-09-22 2013-08-28 Necトーキン株式会社 Power transmission device, power receiving device, non-contact power transmission system, and control method of transmitted power in non-contact power transmission system
KR20160067217A (en) * 2013-12-02 2016-06-13 후지쯔 가부시끼가이샤 Power reception apparatus, power transmission apparatus, and wireless power supply system
EP3161934B1 (en) * 2014-06-26 2019-09-18 Eggtronic Engineering S.r.l. A method and an apparatus for transferring electrical power
WO2016208402A1 (en) * 2015-06-26 2016-12-29 株式会社村田製作所 Power transmitting device, power receiving device, and power transmission system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303790A (en) * 1997-04-25 1998-11-13 Hitachi Ltd Data carrier system
JP2004203178A (en) * 2002-12-25 2004-07-22 Murata Mach Ltd Power supply plant, and method for connecting constant current power supply unit in power supply plant
JP2012085404A (en) * 2010-10-08 2012-04-26 Murata Mfg Co Ltd Power transmission system and electronic shelf label system
WO2016204250A1 (en) * 2015-06-17 2016-12-22 株式会社ExH Electric power supply system
JP2017139893A (en) * 2016-02-04 2017-08-10 パナソニックIpマネジメント株式会社 Radio power transmission system and power transmission device
WO2017179203A1 (en) * 2016-04-15 2017-10-19 三菱電機エンジニアリング株式会社 Resonant power source device and resonant power transmission system

Also Published As

Publication number Publication date
CN111937271A (en) 2020-11-13

Similar Documents

Publication Publication Date Title
KR102655303B1 (en) Non-contact power transmission system
JP6986712B2 (en) Mobile and wireless power transfer systems
US9793719B2 (en) Non-contact power supply apparatus
Al-Saadi et al. Capacitive Power Transfer for Wireless Batteries Charging.
US11159048B2 (en) Wireless power transmission system, power transmitting device, and power receiving device with circuit to apply a trigger signal
WO2017056343A1 (en) Wireless power transmission system and power transmission device
EP3419144B1 (en) Wireless power transmission system, power transmitting device, and power receiving device
WO2019189578A1 (en) Electrode unit, power transmission device, power reception device, and wireless power transfer system
JP2019176621A (en) Electrode unit, power transmission device, power reception device, and wireless power transmission system
JP7304530B2 (en) Power transmitting module, power receiving module, power transmitting device, power receiving device, and wireless power transmission system
WO2020203689A1 (en) Electricity transmitting device, and wireless electric power transmission system
US20220140637A1 (en) Wireless power transmission system, power transmitting device, power receiving device, and movable unit
WO2019189374A1 (en) Power transmission module, power transmission device, and wireless power transfer system
JP6817604B2 (en) Transmission equipment and wireless power transmission system
JP2019176697A (en) Electrode unit, power transmitting device, power receiving device, and wireless power transmission system
WO2020241677A1 (en) Power transmission device and wireless power transfer system
WO2020196785A1 (en) Power receiving device, moving body, wireless power transmission system, and moving body system
WO2022075092A1 (en) Wireless power transmission system, power transmission device, and moving body
WO2021192623A1 (en) Power reception device, power transmission device, and wireless power transmission system
JP7203332B2 (en) Power transmitting device, power receiving device, and wireless power transmission system
WO2021235523A1 (en) Power reception device, power transmission device, and wireless power transmission system
WO2020203690A1 (en) Power receiving device, mobile object, and wireless power transmission system
JP2022012250A (en) Power reception device, power transmission device and wireless power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP