WO2019188812A1 - Sealant for organic el display element - Google Patents

Sealant for organic el display element Download PDF

Info

Publication number
WO2019188812A1
WO2019188812A1 PCT/JP2019/012163 JP2019012163W WO2019188812A1 WO 2019188812 A1 WO2019188812 A1 WO 2019188812A1 JP 2019012163 W JP2019012163 W JP 2019012163W WO 2019188812 A1 WO2019188812 A1 WO 2019188812A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
substrate
display element
sealant
sealing agent
Prior art date
Application number
PCT/JP2019/012163
Other languages
French (fr)
Japanese (ja)
Inventor
山本 拓也
七里 徳重
千鶴 金
美香 笹野
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020207018790A priority Critical patent/KR20200136362A/en
Priority to CN201980015819.6A priority patent/CN111837456A/en
Priority to JP2019521509A priority patent/JP7474053B2/en
Publication of WO2019188812A1 publication Critical patent/WO2019188812A1/en
Priority to JP2023198365A priority patent/JP2024022608A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention relates to a sealing agent for organic EL display elements that is excellent in applicability to a substrate or an inorganic material film even when it is thinned.
  • organic electroluminescence (hereinafter, also referred to as “organic EL”) display element has a laminated structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and the organic light emitting material layer is formed from one electrode on the organic light emitting material layer.
  • organic EL organic electroluminescence
  • the organic EL display element performs self-emission, it has better visibility than a liquid crystal display element that requires a backlight, can be reduced in thickness, and can be driven by a DC low voltage. Has the advantage.
  • Patent Document 1 discloses a method of sealing an organic light emitting material layer and an electrode of an organic EL display element with a laminated film of a silicon nitride film and a resin film formed by a CVD method.
  • the resin film has a role of preventing pressure on the organic layer and the electrode due to internal stress of the silicon nitride film.
  • Patent Document 2 discloses a method of alternately depositing an inorganic material film and a resin film.
  • Patent Document 3 and Patent Document 4 Discloses a method of forming a resin film on an inorganic material film.
  • a method for forming a resin film there is a method in which a sealing agent is applied on a substrate using an inkjet method and then the sealing agent is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed.
  • a resin film can be uniformly formed at high speed.
  • the organic EL display element sealant since there is a need for flexibility in using an organic EL display element by making it curved or folded, it is also necessary for the organic EL display element sealant to correspond to the flexibility.
  • the sealing agent for organic EL display elements it is conceivable to make the sealing agent into a thin film, but the conventional sealing agent is applied when the film is made into a thin film by an inkjet method or the like.
  • An object of this invention is to provide the sealing agent for organic EL display elements which is excellent in the applicability
  • the present invention 1 is an organic EL display element sealant containing a curable resin and a polymerization initiator, and has a surface free energy of 70 mN / m to 80 mN / m and a SiO 2 substrate and a surface free energy of 50 mN.
  • 10 pL of the above organic EL display element sealant is dropped from a height of 0.5 mm from the substrate onto an SiN substrate of / m or more and 60 mN / m or less using an inkjet discharge device at 25 ° C. and a frequency of 20 kHz.
  • the sealant for organic EL display elements has a droplet diameter of 150 ⁇ m or more after 1 minute from dropping.
  • the present invention 2 is a sealant for an organic EL display element used for coating by an ink jet method, which contains a curable resin and a polymerization initiator, and has a surface free energy of 70 mN / m or more and 80 mN / m or less.
  • the above-mentioned encapsulant for organic EL display element is used for an SiO 2 substrate and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less using an inkjet discharge device under the conditions of 25 ° C. and frequency 20 kHz.
  • the present invention is described in detail below.
  • the sealing agent for organic EL display elements of this invention 1 and the sealing agent for organic EL display elements of this invention 2 it describes as "the sealing agent for organic EL display elements of this invention”. To do.
  • the inventors of the present invention have found that the cause of inferior applicability when an organic EL display element sealant is made thin is on an inorganic material film such as SiO 2 that is used for flexibility. It was thought that the sealant around the foreign matter was repelled starting from foreign matter such as SiN present in the substrate, or the sealant could not follow the unevenness of the substrate or the inorganic material film. Therefore, the present inventors set the diameter of the droplet after one minute when the sealant is dropped on the SiO 2 substrate and the SiN substrate each having a surface free energy in a specific range to a specific value or more. I examined that. As a result, it has been found that an encapsulant for an organic EL display element that is excellent in applicability to a substrate or an inorganic material film can be obtained even when the thickness is reduced, and the present invention has been completed.
  • the sealant for an organic EL display element of the present invention is an ink jet for an SiO 2 substrate having a surface free energy of 70 mN / m to 80 mN / m and a SiN substrate having a surface free energy of 50 mN / m to 60 mN / m.
  • the diameter of the droplet one minute after the dropping is 150 ⁇ m or more. Since all of the diameters of the liquid droplets after 1 minute from the above dropping are 150 ⁇ m or more, the sealing agent for organic EL display elements of the present invention has an effect of preventing repellence starting from a foreign substance, and a substrate or inorganic material. Excellent wettability to the material film.
  • the diameter of the droplets 1 minute after the dropping is preferably 160 ⁇ m or more, and more preferably 170 ⁇ m or more.
  • the “surface free energy” is measured from the contact angle between water and methylene iodide at 25 ° C. by an evaluation method based on the Owens-Wendy method, and specifically, a contact angle meter (KRUSS). It means a value measured using “MSA”).
  • the “droplet diameter” means 12 drops of liquid using an optical microscope (eg, “AZ-100” manufactured by Nikon Corporation) equipped with an objective lens (eg, “PlanApo0.5X”). Each of the drops is observed and means an average value of values measured using image processing software (for example, “WinROOF2015 Standard version”).
  • NanoPrinter500 made by a micro jet company
  • Examples of a method for setting the diameter of the droplets 1 minute after the dropping to 150 ⁇ m or more include, for example, a method in which the solubility parameter of the entire curable resin is in a range described later, and a resin having good wettability with respect to each substrate. The method etc. which adjust curable resin in combination are mentioned.
  • the preferable upper limit of the viscosity in 25 degreeC is 30 mPa * s.
  • the sealing agent for organic EL display elements of this invention becomes more excellent by inkjet applicability
  • the upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 20 mPa * s.
  • the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 5 mPa * s.
  • the “viscosity” means a value measured using an E-type viscometer under the conditions of 25 ° C. and 100 rpm.
  • the preferable upper limit of the viscosity in 25 degreeC is 30 mPa * s.
  • the viscosity is 30 mPa ⁇ s or less
  • the organic EL display element sealant of the second aspect of the present invention is more excellent in ink jet coatability.
  • the upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 20 mPa * s.
  • the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 5 mPa * s.
  • the sealing agent for organic EL display elements of this invention 1 is 25 mN / m or more and 38 mN / m or less of the surface tension of the whole sealing agent for organic EL display elements in 25 degreeC.
  • the organic EL display element sealant of the first aspect of the invention is more excellent in ink jet coating properties.
  • the more preferable lower limit of the surface tension of the whole sealing agent for organic EL display elements of the present invention is 26 mN / m
  • the more preferable upper limit is 37 mN / m
  • the still more preferable lower limit is 27 mN / m
  • the still more preferable upper limit is 35 mN / m.
  • the “surface tension” means a value measured by a dynamic wettability tester at 25 ° C.
  • the sealing agent for organic EL display elements of the present invention 2 has a surface tension of the whole sealing agent for organic EL display elements at 25 ° C. of 25 mN / m or more and 38 mN / m or less.
  • the organic EL display element sealant of the second aspect of the present invention is superior in ink jet coating properties.
  • the more preferable lower limit of the surface tension of the whole sealing agent for organic EL display elements of the present invention is 26 mN / m
  • the more preferable upper limit is 37 mN / m
  • the still more preferable lower limit is 27 mN / m
  • the still more preferable upper limit is 35 mN / m.
  • the sealing agent for organic EL display elements of this invention contains curable resin.
  • the sealing agent for organic EL display elements of the present invention has a solubility parameter (hereinafter also referred to as “SP value”) of the entire curable resin of 16.5 (J / cm 3 ) 1/2 or more and 19.5 (J / Cm 3 ) 1/2 or less is preferable.
  • SP value solubility parameter
  • the encapsulant for organic EL display elements of the present invention has an effect of preventing repellence starting from foreign matters, and wettability with respect to a substrate or an inorganic material film. It will be better.
  • the more preferable lower limit of the SP value of the entire curable resin is 17.0 (J / cm 3 ) 1/2
  • the more preferable upper limit is 19.2 (J / cm 3 ) 1/2
  • the more preferable lower limit is 17 0.7 (J / cm 3 ) 1/2
  • a more preferable upper limit is 19.0 (J / cm 3 ) 1/2
  • the “solubility parameter” is a value calculated by Fedors' estimation method.
  • the “solubility parameter of the entire curable resin” means the average value of the solubility parameter based on the weight fraction of each curable resin component used in the sealant for organic EL display elements.
  • the sealing agent for organic EL display elements of this invention contains 2 or more types of curable resin as said curable resin, and the difference of SP value between each curable resin is 5 (J / cm ⁇ 3 >) ⁇ 1/2 >. It is preferable that content with respect to all the curable resin of the curable resin used as the following is 95 weight% or more. That is, when calculating the sum of the contents of two or more curable resins so that there is no combination of curable resins in which the difference in SP value between the curable resins exceeds 5 (J / cm 3 ) 1/2 In addition, there is a combination of 95% by weight or more based on the total curable resin.
  • the sealing agent for organic EL display elements obtained by the content of the curable resin having a difference in SP value between each curable resin being 5 (J / cm 3 ) 1/2 or less is 95% by weight or more. However, it is excellent in the effect of preventing repelling starting from a foreign substance and the wettability with respect to the substrate and the inorganic material film.
  • the content of the curable resin in which the difference in SP value between the curable resins is 5 (J / cm 3 ) 1/2 or less is more preferably 98% by weight or more, and 99% by weight or more. Is more preferably 99.9% by weight or more, and particularly preferably 99.99% by weight or more.
  • the sealing agent for organic EL display elements of this invention contains 2 or more types of said curable resin as said curable resin, and the maximum difference of SP value between each curable resin is 5 (J / cm ⁇ 3 >) ⁇ 1 >. / 2 or less is preferable. That is, it is preferable that there is no combination of curable resins in which the difference in SP value exceeds 5 (J / cm 3 ) 1/2 .
  • the maximum difference in SP value between the curable resins is 5 (J / cm 3 ) 1 ⁇ 2 or less, the obtained sealing agent for organic EL display elements prevents repelling starting from foreign matters. The effect and the wettability with respect to the substrate and the inorganic material film are excellent.
  • the maximum difference in SP value between the curable resins is more preferably 4 (J / cm 3 ) 1/2 or less.
  • the SP value of the entire curable resin and the SP value of each curable resin component in the sealing agent for organic EL display elements of the present invention can be determined by purifying the sealing agent for organic EL display elements by chromatography or GC-
  • the structure and composition can be specified by performing composition analysis such as MS and LC-MS, and the SP value can be calculated.
  • the curable resin preferably contains a compound having a siloxane skeleton.
  • a compound having a siloxane skeleton By containing the compound having the siloxane skeleton, it becomes easy to adjust the surface tension of the obtained sealing agent for organic EL display elements, and the resulting coating film is more excellent in flatness.
  • Examples of the compound having a siloxane skeleton include an epoxy compound having a siloxane skeleton, an oxetane compound having a siloxane skeleton, and a (meth) acryl compound having a siloxane skeleton.
  • the compound represented by following formula (1) is preferable.
  • the above “(meth) acryl” means acryl or methacryl
  • the above “(meth) acryl compound” means a compound having a (meth) acryloyl group
  • the above “(meth) “Acryloyl” means acryloyl or methacryloyl.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms
  • X 1 and X 2 are each independently an alkyl group having 1 to 10 carbon atoms, or the following formula (2- 1), (2-2), (2-3) or a group represented by (2-4)
  • X 3 represents the following formulas (2-1), (2-2), (2 -3) or a group represented by (2-4).
  • m is an integer from 0 to 100
  • n is an integer from 0 to 100.
  • at least one of X 1 and X 2 is represented by the following formula (2-1), (2-2), (2-3), or (2-4) Represents a group.
  • R 2 represents a bond or an alkylene group having 1 to 6 carbon atoms
  • R 3 represents hydrogen or 1 carbon atom.
  • R 4 represents a bond or a methylene group
  • R 5 represents hydrogen or a methyl group.
  • the compound having a siloxane skeleton is used for organic EL display elements from the viewpoints of storage stability of the obtained sealing agent for organic EL display elements, adhesion to substrates and inorganic material films, and ejection stability when inkjet coating is performed. It is preferable that the polymer having a number average molecular weight of 100,000 or more is removed in advance before blending with the sealant. Specifically, the content ratio of the high molecular weight compound having a number average molecular weight of 100,000 or more is preferably 0.5% or less in the compound having the siloxane skeleton.
  • the number average molecular weight and the content ratio of the high molecular weight substance are values obtained by measuring in polystyrene using gel permeation chromatography (GPC) using tetrahydrofuran as a solvent. .
  • the content rate of the said high molecular weight body can also be measured by GPC.
  • Examples of the column used for measuring the number average molecular weight in terms of polystyrene by GPC and the content ratio of the high molecular weight substance include Shodex LF-804 (manufactured by Showa Denko KK). Further, the content ratio of the high molecular weight substance is calculated from the area ratio of the GPC.
  • Examples of the method for purifying the compound having a siloxane skeleton include a method for purification by distillation, a method for purification using a column, and the like.
  • the compounds having a siloxane skeleton may be used alone or in combination of two or more.
  • the content of the compound having a siloxane skeleton in the curable resin is preferably less than 40% by weight.
  • the content of the compound having a siloxane skeleton is less than 40% by weight, the obtained sealing agent for organic EL display elements has better wettability.
  • the upper limit with more preferable content of the compound which has the said siloxane skeleton is 35 weight%.
  • the minimum with preferable content of the compound which has the said siloxane skeleton in the said curable resin is 0.1 weight%.
  • the content of the compound having a siloxane skeleton is 0.1% by weight or more, it becomes easier to adjust the surface tension of the obtained sealing agent for organic EL display elements.
  • Examples of the curable resin other than the compound having a siloxane skeleton include, for example, an epoxy compound having no siloxane skeleton (hereinafter, also simply referred to as “epoxy compound”), and an oxetane compound having no siloxane skeleton (hereinafter, simply “ An oxetane compound), a vinyl ether compound having no siloxane skeleton (hereinafter also simply referred to as “vinyl ether compound”), a (meth) acryl compound having no siloxane skeleton (hereinafter simply referred to as “(meth) acryl compound”). And the like).
  • epoxy compounds examples include bisphenol A type epoxy compounds, bisphenol E type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol O type epoxy compounds, 2,2′-diallyl bisphenol A type epoxy compounds, Alicyclic epoxy compounds, hydrogenated bisphenol type epoxy compounds, propylene oxide added bisphenol A type epoxy compounds, resorcinol type epoxy compounds, biphenyl type epoxy compounds, sulfide type epoxy compounds, diphenyl ether type epoxy compounds, dicyclopentadiene type epoxy compounds, naphthalene Type epoxy compound, phenol novolac type epoxy compound, orthocresol novolac type epoxy compound, dicyclopentadiene novo Examples thereof include a rack type epoxy compound, a biphenyl novolac type epoxy compound, a naphthalenephenol novolak type epoxy compound, a glycidylamine type epoxy compound, an alkyl polyol type epoxy compound, a rubber-modified epoxy compound, and a glycidyl ester compound.
  • an alkyl polyol type epoxy compound is preferable, and neopentyl glycol diglycidyl ether is most preferable because it is difficult to volatilize and the obtained sealing agent for organic EL display elements is excellent in ink jet coating properties.
  • the said epoxy compound may be used independently and 2 or more types may be used in combination.
  • oxetane compound examples include 3- (allyloxy) oxetane, phenoxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3-((2 -Ethylhexyloxy) methyl) oxetane, 3-ethyl-3-((3- (triethoxysilyl) propoxy) methyl) oxetane, 3-ethyl-3 ((((3-ethyloxetane-3-yl) methoxy) methyl) And oxetane, phenol novolac oxetane, 1,4-bis (((3-ethyl-3-oxetanyl) methoxy) methyl) benzene, and the like.
  • 3-ethyl-3 (((3-ethyloxetane-3-yl) methoxy) methyl) oxetane is preferable because of excellent curability and low outgassing properties.
  • the said oxetane compound may be used independently and 2 or more types may be used in combination.
  • vinyl ether compound examples include benzyl vinyl ether, cyclohexane dimethanol monovinyl ether, dicyclopentadiene vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, dipropylene glycol. Examples thereof include divinyl ether and tripropylene glycol divinyl ether.
  • the said vinyl ether compound may be used independently and 2 or more types may be used in combination.
  • Examples of the (meth) acrylic compound include glycidyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dicyclopentenyl (meth) acrylate, and di Cyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, trimethylolpropane tri (meth) arylate, 1,12-dodecanediol di (meth) acrylate, lauryl (meth) acrylate Etc.
  • the said (meth) acryl compound may be used independently and 2 or more types may be used in combination.
  • the “(meth) acrylate” means acrylate or methacrylate.
  • the sealing agent for organic EL display elements of the present invention contains a polymerization initiator.
  • a polymerization initiator a photocationic polymerization initiator or a thermal cationic polymerization initiator is preferably used.
  • a radical photopolymerization initiator and a thermal radical polymerization initiator are also used suitably.
  • the photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be.
  • anion portion of the ionic photoacid-generating photocationic polymerization initiator examples include BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , (BX 4 ) ⁇ (where X is at least two or more fluorine atoms) Or a phenyl group substituted with a trifluoromethyl group).
  • anion moiety examples include PF m (C n F 2n + 1 ) 6-m ⁇ (wherein, m is an integer of 0 or more and 5 or less, and n is an integer of 1 or more and 6 or less). Can be mentioned.
  • Examples of the ionic photoacid-generating photocationic polymerization initiator include aromatic sulfonium salts, aromatic iodonium salts, aromatic diazonium salts, aromatic ammonium salts having the above anion moiety, and (2,4-cyclohexane). And pentadien-1-yl) ((1-methylethyl) benzene) -Fe salt.
  • aromatic sulfonium salt examples include bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluoroantimonate, and bis (4- ( Diphenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (diphenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4- ( Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetraflu
  • aromatic iodonium salt examples include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexa Fluorophosphate, 4-methylphenyl-4- (1-methylethy
  • aromatic diazonium salt examples include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
  • aromatic ammonium salt examples include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl -2-Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl)
  • Examples include -2-cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate.
  • Examples of the (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe salt include (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene.
  • nonionic photoacid-generating photocationic polymerization initiator examples include nitrobenzyl ester, sulfonic acid derivative, phosphoric acid ester, phenol sulfonic acid ester, diazonaphthoquinone, N-hydroxyimide sulfonate, and the like.
  • Examples of commercially available photocationic polymerization initiators include, for example, a photocationic polymerization initiator manufactured by Midori Chemical Co., a photocationic polymerization initiator manufactured by Union Carbide, a photocationic polymerization initiator manufactured by ADEKA, Examples thereof include a photocationic polymerization initiator manufactured by 3M, a photocationic polymerization initiator manufactured by BASF, a photocationic polymerization initiator manufactured by Rhodia, and a photocationic polymerization initiator manufactured by San Apro. Examples of the photocationic polymerization initiator manufactured by Midori Chemical Co., Ltd. include DTS-200.
  • Examples of the cationic photopolymerization initiator manufactured by Union Carbide include UVI6990, UVI6974, and the like.
  • Examples of the photocation polymerization initiator manufactured by ADEKA include SP-150 and SP-170.
  • Examples of the cationic photopolymerization initiator manufactured by 3M include FC-508, FC-512, and the like.
  • Examples of the cationic photopolymerization initiator manufactured by BASF include IRGACURE261, IRGACURE290, and the like.
  • Examples of the photocationic polymerization initiator manufactured by Rhodia include PI 2074.
  • Examples of the cationic photopolymerization initiator manufactured by Sun Apro include CPI-100P, CPI-200K, CPI-210S, and the like.
  • the anion moiety is BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , or (BX 4 ) ⁇ (where X is substituted with at least two fluorine or trifluoromethyl groups
  • a sulfonium salt, a phosphonium salt, an ammonium salt, and the like are preferable.
  • sulfonium salt examples include triphenylsulfonium tetrafluoroborate and triphenylsulfonium hexafluoroantimonate.
  • Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
  • ammonium salt examples include dimethylphenyl (4-methoxybenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methoxybenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methoxybenzyl) ammonium tetrakis (pentafluorophenyl).
  • thermal cationic polymerization initiators examples include thermal cationic polymerization initiators manufactured by Sanshin Chemical Industry, thermal cationic polymerization initiators manufactured by King Industries, and the like.
  • thermal cationic polymerization initiator manufactured by Sanshin Chemical Industry Co., Ltd. examples include Sun-Aid SI-60, Sun-Aid SI-80, Sun-Aid SI-B3, Sun-Aid SI-B3A, and Sun-Aid SI-B4.
  • thermal cationic polymerization initiator manufactured by King Industries examples include CXC1612 and CXC1821.
  • photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone compounds, and the like.
  • the radical photopolymerization initiator by BASF As what is marketed among the said radical photopolymerization initiators, the radical photopolymerization initiator by BASF, the radical photopolymerization initiator by Tokyo Chemical Industry, etc. are mentioned, for example.
  • the radical photopolymerization initiator manufactured by BASF include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucyrin TPO.
  • the photo radical polymerization initiator manufactured by Tokyo Chemical Industry Co., Ltd. include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • the azo compound include 2,2′-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile, and the like.
  • the organic peroxide include benzoyl peroxide, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • thermal radical polymerization initiators examples include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, and V-501 (all of which are FUJIFILM Wako Pure Chemical Industries, Ltd.). Manufactured) and the like.
  • the content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the polymerization initiator is 0.01 parts by weight or more, the obtained sealing agent for organic EL display elements is more excellent in curability.
  • the content of the polymerization initiator is 10 parts by weight or less, the curing reaction of the obtained sealing agent for organic EL display elements does not become too fast, the workability is improved, and the cured product is more uniform. It can be.
  • the minimum with more preferable content of the said polymerization initiator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for organic EL display elements of the present invention may contain a sensitizer.
  • the sensitizer has a role of further improving the polymerization initiation efficiency of the polymerization initiator and further promoting the curing reaction of the sealing agent for organic EL display elements of the present invention.
  • Examples of the sensitizer include anthracene compounds, thioxanthone compounds, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, Examples include 4,4′-bis (dimethylamino) benzophenone and 4-benzoyl-4′-methyldiphenyl sulfide.
  • Examples of the anthracene compound include 9,10-dibutoxyanthracene.
  • Examples of the thioxanthone compound include 2,4-diethylthioxanthone.
  • the content of the sensitizer is preferably 0.01 parts by weight and preferably 3 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the sensitizer is 0.01 parts by weight or more, the sensitizing effect is more exhibited.
  • the content of the sensitizer is 3 parts by weight or less, light can be transmitted to a deep part without excessive absorption.
  • the minimum with more preferable content of the said sensitizer is 0.1 weight part, and a more preferable upper limit is 1 weight part.
  • the sealing agent for organic EL display elements of the present invention includes a silane coupling agent, a surface modifier, a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, an ultraviolet absorber, an antioxidant and the like as necessary.
  • An additive may be contained.
  • the maximum difference in SP value between each component contained in the curable resin and the additive is preferably 5 (J / cm 3 ) 1/2 or less.
  • the said silane coupling agent has a role which further improves the adhesiveness of the sealing agent for organic EL display elements of this invention, and a board
  • the silane coupling agent include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane coupling agents may be used independently and 2 or more types may be used together.
  • the content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the polymerizable compound. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness is suppressed while suppressing the excess silane coupling agent from bleeding out.
  • the minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
  • the said surface modifier has a role which further improves the flatness of the coating film of the sealing agent for organic EL display elements of this invention.
  • examples of the surface modifier include surfactants and leveling agents.
  • Examples of the surface modifier include silicone-based and fluorine-based ones.
  • Examples of commercially available surface modifiers include BYK-340, BYK-345 (both manufactured by Big Chemie Japan) and Surflon S-611 (manufactured by AGC Seimi Chemical).
  • the encapsulant for organic EL display elements of the present invention may contain a solvent for the purpose of adjusting the viscosity, but problems such as deterioration of the organic light emitting material layer and generation of outgas due to the remaining solvent. Therefore, the content of the solvent is preferably 0.05% by weight or less, and most preferably no solvent is contained.
  • the sealing agent for organic EL display elements of the present invention for example, using a mixer such as a homodisper, homomixer, universal mixer, planetary mixer, kneader, three rolls, And a method of mixing a polymerization initiator and an additive such as a silane coupling agent added if necessary.
  • a mixer such as a homodisper, homomixer, universal mixer, planetary mixer, kneader, three rolls, and a method of mixing a polymerization initiator and an additive such as a silane coupling agent added if necessary.
  • cured material of the sealing agent for organic EL display elements of this invention is 80%.
  • the total light transmittance is 80% or more, the obtained organic EL display element has superior optical characteristics.
  • a more preferable lower limit of the total light transmittance is 85%.
  • the total light transmittance can be measured using a spectrometer such as AUTOMATIC HAZE METER MODEL TC-III DPK (manufactured by Tokyo Denshoku).
  • cured material used for the measurement of the said light transmittance and the water vapor transmission rate and moisture content mentioned later can be obtained by irradiating 3000 mJ / cm ⁇ 2 > of ultraviolet rays with a wavelength of 365 nm using light sources, such as an LED lamp, for example. it can.
  • the transmittance at 400 nm after irradiating the cured product with ultraviolet rays for 100 hours is preferably 85% or more at an optical path length of 20 ⁇ m.
  • the transmittance after irradiating the ultraviolet rays for 100 hours is 85% or more, the transparency is high, the loss of light emission is small, and the color reproducibility is excellent.
  • a more preferable lower limit of the transmittance after irradiation with the ultraviolet rays for 100 hours is 90%, and a more preferable lower limit is 95%.
  • the light source for irradiating the ultraviolet rays a conventionally known light source such as a xenon lamp or a carbon arc lamp can be used.
  • the sealant for an organic EL display device of the present invention has a moisture permeability of 100 g / 100 ⁇ m when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours in accordance with JIS Z 0208.
  • m is preferably 2 or less.
  • the moisture content of the cured product is preferably less than 0.5% when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours.
  • the moisture content of the cured product is less than 0.5%, the effect of preventing the deterioration of the organic light emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability. It becomes.
  • a more preferable upper limit of the moisture content of the cured product is 0.3%.
  • the method for measuring the moisture content include a method of obtaining by a Karl Fischer method in accordance with JIS K 7251, and a method of obtaining a weight increment after water absorption in accordance with JIS K 7209-2.
  • an organic EL display element using the sealing agent for organic EL display elements of the present invention for example, a step of applying the sealing agent for organic EL display elements of the present invention to a substrate by an inkjet method, And a method of curing the applied sealing agent for organic EL display elements by light irradiation and / or heating.
  • the organic EL display element sealant of the present invention may be applied to the entire surface of the substrate, or on a part of the substrate. It may be applied.
  • the shape of the sealing portion of the sealing agent for organic EL display elements of the present invention formed by coating is not particularly limited as long as it is a shape that can protect the laminate having the organic light emitting material layer from the outside air. A shape that completely covers the body may be formed, a closed pattern may be formed in the peripheral portion of the laminate, or a pattern having a shape in which a partial opening is provided in the peripheral portion of the laminate. It may be formed.
  • the organic EL display sealant element of the present invention When curing the organic EL display element sealing agent of the present invention by light irradiation, the organic EL display sealant element of the present invention, 300 nm or more 400nm or less wavelength and 300 mJ / cm 2 or more 3000 mJ / cm 2 or less of It can be suitably cured by irradiating with an accumulated amount of light.
  • Examples of the light source used for the light irradiation include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, a sodium lamp, a halogen lamp, and a xenon.
  • a lamp, an LED lamp, a fluorescent lamp, sunlight, an electron beam irradiation apparatus, etc. are mentioned.
  • These light sources may be used independently and 2 or more types may be used together. These light sources are appropriately selected according to the absorption wavelength of the photocationic polymerization initiator or the photoradical polymerization initiator.
  • Examples of the light irradiation means to the organic EL display element sealant of the present invention include simultaneous irradiation of various light sources, sequential irradiation with a time difference, combined irradiation of simultaneous irradiation and sequential irradiation, and the like. Any irradiation means may be used.
  • the cured product obtained by the step of curing the organic EL display element sealing agent by light irradiation and / or heating may be further coated with an inorganic material film.
  • the inorganic material forming the inorganic material layer can be a conventionally known, for example, silicon nitride (SiN x or SiO X N Y), silicon oxide (SiO x), and the like.
  • the inorganic material film may be a single layer or may be a laminate of a plurality of types of layers. Moreover, you may coat
  • the method for producing the organic EL display element comprises a step of bonding a base material (hereinafter also referred to as “one base material”) coated with the organic EL display element sealing agent of the present invention and the other base material.
  • the substrate on which the sealing agent for organic EL display elements of the present invention is applied (hereinafter also referred to as “one substrate”) may be a substrate on which a laminate having an organic light emitting material layer is formed. A base material on which the laminate is not formed may be used.
  • the present invention is applied to the one substrate so that the laminate can be protected from the outside air when the other substrate is bonded. What is necessary is just to apply
  • the sealing agent portion having a closed pattern may be formed in a shape that fits in the shape.
  • the step of curing the organic EL display element sealant by light irradiation and / or heating may be performed before the step of bonding the one base material and the other base material, You may perform after the process of bonding a base material and said other base material.
  • the organic EL display of the present invention preferably has a pot life of 1 minute or longer after irradiation with light and / or heating until the curing reaction proceeds and adhesion becomes impossible. When the pot life is 1 minute or longer, higher adhesion strength can be obtained without excessive curing before the one base material and the other base material are bonded together.
  • a method of bonding the one base material and the other base material is not particularly limited, but it is preferable to bond them in a reduced-pressure atmosphere.
  • the preferable lower limit of the degree of vacuum in the reduced-pressure atmosphere is 0.01 kPa, and the preferable upper limit is 10 kPa.
  • the degree of vacuum in the reduced-pressure atmosphere is within this range, the one base material and the other base material are not spent for a long time to achieve a vacuum state due to the airtightness of the vacuum device and the ability of the vacuum pump. Bubbles in the sealing agent for organic EL display elements of the present invention when the material is bonded can be more efficiently removed.
  • the sealing agent for organic EL display elements which is excellent in the applicability
  • membrane can be provided.
  • SiO 2 was chemically deposited with an ICP-CVD apparatus (manufactured by Celbach) at a film thickness of 1000 nm to prepare a SiO 2 base plate.
  • the surface free energy after deposition was measured by an evaluation method using the Owens-Wendy method from the contact angle of water and methylene iodide using a contact angle meter (manufactured by KRUS, “MSA”), and it was 73.0 mN / m. there were.
  • KRUS methylene iodide
  • MSA contact angle meter
  • SiN was chemically deposited with an ICP-CVD apparatus (manufactured by Cellvac) at a film thickness of 1000 nm to prepare a SiN base plate.
  • the surface free energy after vapor deposition was measured from the contact angle of water and methylene iodide using a contact angle meter (manufactured by KRUSS, “MSA”) by an evaluation method according to the Owens-Wendy method, and was 58.0 mN / m. there were.
  • MSA contact angle meter
  • Examples 1 to 9, Comparative Examples 1 to 4 According to the blending ratios described in Tables 1 and 2, each material was uniformly stirred and mixed at a stirring speed of 300 rpm using a homodisper type stirring mixer (“Primix”, “Homodisper L type”). Sealants for organic EL display elements of Examples 1 to 9 and Comparative Examples 1 to 4 were prepared.
  • a homodisper type stirring mixer (“Primix”, “Homodisper L type”).
  • Sealants for organic EL display elements of Examples 1 to 9 and Comparative Examples 1 to 4 were prepared.
  • the compound having a siloxane skeleton in the table those purified in advance by distillation before mixing with other components were used.
  • As the oxetane compound having a siloxane skeleton in the table one obtained by the following method was used.
  • the SiO 2 substrate and the SiN substrate having the surface free energy of 58.0 mN / m obtained in the above-mentioned “(Preparation of SiN substrate)” were respectively discharged.
  • an inkjet discharge device NanoPrinter 500 (manufactured by Microjet Co., Ltd.) was used, and the sealant was discharged at 25 ° C., a droplet volume of 10 pL, a pitch of 800 ⁇ m, a drop from a height of 0.5 mm from the substrate, and a frequency of 20 kHz. It went on condition of.
  • the sealant droplet one minute after the landing was observed with an optical microscope (Nikon Corporation, “AZ-100”) equipped with an objective lens PlanApo0.5X, and measured using image processing software WinROOF2015 Standard version.
  • the average diameter of 12 droplets is shown in Tables 1 and 2.
  • Table 1 For each sealing agent for organic EL display elements obtained in Examples and Comparative Examples, the maximum difference between the SP value of the entire curable resin and the SP value between the curable resins calculated by the Fedors estimation method is shown in Table 1. It was shown in 2.
  • the surface was measured by a Wilhelmy method using a surface tension meter (“DY-300” manufactured by Kyowa Interface Science Co., Ltd.) at 25 ° C.
  • the sealing agent for organic EL display elements which is excellent in the applicability
  • membrane can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide a sealant for an organic EL display element that exhibits excellent coating properties with respect to a substrate or an inorganic material film even when formed into a thin film. The present invention provides a sealant for an organic EL display element that contains a curable resin and a polymerization initiator. When, with respect to an SiO2 substrate having a surface free energy of not less than 70 mN/m and not more than 80 mN/m and an SiN substrate having a surface free energy of not less than 50 mN/m and not more than 60 mN/m, 10 pL of the sealant for an organic EL display element is dropped from the height of 0.5 mm from the substrate using an inkjet ejection device under the condition of 25°C and a frequency of 20 kHz, the diameter of the droplet one minute after the dropping is not less than 150 μm in each case.

Description

有機EL表示素子用封止剤Sealant for organic EL display element
本発明は、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤に関する。 The present invention relates to a sealing agent for organic EL display elements that is excellent in applicability to a substrate or an inorganic material film even when it is thinned.
有機エレクトロルミネッセンス(以下、「有機EL」ともいう)表示素子は、互いに対向する一対の電極間に有機発光材料層が挟持された積層体構造を有し、この有機発光材料層に一方の電極から電子が注入されるとともに他方の電極から正孔が注入されることにより有機発光材料層内で電子と正孔とが結合して発光する。このように有機EL表示素子は自己発光を行うことから、バックライトを必要とする液晶表示素子等と比較して視認性がよく、薄型化が可能であり、しかも直流低電圧駆動が可能であるという利点を有している。 An organic electroluminescence (hereinafter, also referred to as “organic EL”) display element has a laminated structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and the organic light emitting material layer is formed from one electrode on the organic light emitting material layer. When electrons are injected and holes are injected from the other electrode, the electrons and holes are combined in the organic light emitting material layer to emit light. Thus, since the organic EL display element performs self-emission, it has better visibility than a liquid crystal display element that requires a backlight, can be reduced in thickness, and can be driven by a DC low voltage. Has the advantage.
有機EL表示素子を構成する有機発光材料層や電極は、水分や酸素等により特性が劣化しやすいという問題がある。従って、実用的な有機EL表示素子を得るためには、有機発光材料層や電極を大気と遮断して長寿命化を図る必要がある。特許文献1には、有機EL表示素子の有機発光材料層と電極とを、CVD法により形成した窒化珪素膜と樹脂膜との積層膜により封止する方法が開示されている。ここで樹脂膜は、窒化珪素膜の内部応力による有機層や電極への圧迫を防止する役割を有する。 The organic light-emitting material layer and electrodes constituting the organic EL display element have a problem that the characteristics are easily deteriorated by moisture, oxygen, and the like. Therefore, in order to obtain a practical organic EL display element, it is necessary to extend the life by blocking the organic light emitting material layer and the electrode from the atmosphere. Patent Document 1 discloses a method of sealing an organic light emitting material layer and an electrode of an organic EL display element with a laminated film of a silicon nitride film and a resin film formed by a CVD method. Here, the resin film has a role of preventing pressure on the organic layer and the electrode due to internal stress of the silicon nitride film.
有機発光材料層内への水分の浸入を防止するための方法として、特許文献2には、無機材料膜と樹脂膜とを交互に蒸着する方法が開示されており、特許文献3や特許文献4には、無機材料膜上に樹脂膜を形成する方法が開示されている。 As a method for preventing moisture from entering into the organic light emitting material layer, Patent Document 2 discloses a method of alternately depositing an inorganic material film and a resin film. Patent Document 3 and Patent Document 4 Discloses a method of forming a resin film on an inorganic material film.
特開2000-223264号公報JP 2000-223264 A 特表2005-522891号公報JP 2005-522891 Gazette 特開2001-307873号公報JP 2001-307873 A 特開2008-149710号公報JP 2008-149710 A
樹脂膜を形成する方法として、インクジェット法を用いて基材上に封止剤を塗布した後、該封止剤を硬化させる方法がある。このようなインクジェット法による塗布方法を用いれば、高速かつ均一に樹脂膜を形成することができる。
一方、有機EL表示素子には、曲面化したり折りたたんだりして用いるフレキシブル化のニーズがあるため、有機EL表示素子用封止剤もフレキシブル化に対応させる必要がある。有機EL表示素子用封止剤をフレキシブル化に対応させる方法の1つとして、封止剤を薄膜化することが考えられるが、従来の封止剤は、インクジェット法等によって薄膜化する場合の塗布性に劣り、ピンホールが発生して得られる有機EL表示素子が信頼性に劣るものとなるという問題があった。
本発明は、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤を提供することを目的とする。
As a method for forming a resin film, there is a method in which a sealing agent is applied on a substrate using an inkjet method and then the sealing agent is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed.
On the other hand, since there is a need for flexibility in using an organic EL display element by making it curved or folded, it is also necessary for the organic EL display element sealant to correspond to the flexibility. As one method for adapting the sealing agent for organic EL display elements to make it flexible, it is conceivable to make the sealing agent into a thin film, but the conventional sealing agent is applied when the film is made into a thin film by an inkjet method or the like. There is a problem that the organic EL display element obtained by generating pinholes is inferior in reliability and inferior in reliability.
An object of this invention is to provide the sealing agent for organic EL display elements which is excellent in the applicability | paintability with respect to a board | substrate or an inorganic material film | membrane, even when it thins.
本発明1は、硬化性樹脂と重合開始剤とを含有する有機EL表示素子用封止剤であって、表面自由エネルギーが70mN/m以上80mN/m以下のSiO基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板に対して、インクジェット吐出装置を用いて、25℃、周波数20kHzの条件で上記有機EL表示素子用封止剤を基板から0.5mmの高さから10pL滴下した際、滴下から1分後の液滴の直径がいずれも150μm以上である有機EL表示素子用封止剤である。
また、本発明2は、インクジェット法による塗布に用いられる有機EL表示素子用封止剤であって、硬化性樹脂と重合開始剤とを含有し、表面自由エネルギーが70mN/m以上80mN/m以下のSiO基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板に対して、インクジェット吐出装置を用いて、25℃、周波数20kHzの条件で上記有機EL表示素子用封止剤を基板から0.5mmの高さから10pL滴下した際、滴下から1分後の液滴の直径がいずれも150μm以上である有機EL表示素子用封止剤である。
以下に本発明を詳述する。なお、本発明1の有機EL表示素子用封止剤と本発明2の有機EL表示素子用封止剤とに共通する事項については、「本発明の有機EL表示素子用封止剤」として記載する。
The present invention 1 is an organic EL display element sealant containing a curable resin and a polymerization initiator, and has a surface free energy of 70 mN / m to 80 mN / m and a SiO 2 substrate and a surface free energy of 50 mN. 10 pL of the above organic EL display element sealant is dropped from a height of 0.5 mm from the substrate onto an SiN substrate of / m or more and 60 mN / m or less using an inkjet discharge device at 25 ° C. and a frequency of 20 kHz. In this case, the sealant for organic EL display elements has a droplet diameter of 150 μm or more after 1 minute from dropping.
In addition, the present invention 2 is a sealant for an organic EL display element used for coating by an ink jet method, which contains a curable resin and a polymerization initiator, and has a surface free energy of 70 mN / m or more and 80 mN / m or less. The above-mentioned encapsulant for organic EL display element is used for an SiO 2 substrate and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less using an inkjet discharge device under the conditions of 25 ° C. and frequency 20 kHz. Is a sealant for an organic EL display element in which the diameter of each of the droplets after 1 minute from the dropping is 150 μm or more when 10 pL is dropped from a height of 0.5 mm.
The present invention is described in detail below. In addition, about the matter common to the sealing agent for organic EL display elements of this invention 1 and the sealing agent for organic EL display elements of this invention 2, it describes as "the sealing agent for organic EL display elements of this invention". To do.
本発明者らは、有機EL表示素子用封止剤を薄膜化しようとした場合に塗布性に劣るものとなる原因が、フレキシブル化に対応して用いられているSiO等の無機材料膜上に存在するSiN等の異物を起点として該異物周辺の封止剤にはじきが生じたり、基板や無機材料膜の凹凸に封止剤が追従できていなかったりすることにあると考えた。そこで本発明者らは、表面自由エネルギーがそれぞれ特定の範囲であるSiO基板及びSiN基板に対して封止剤を滴下した際の1分後の液滴の直径をいずれも特定値以上とすることを検討した。その結果、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤を得ることができることを見出し、本発明を完成させるに至った。 The inventors of the present invention have found that the cause of inferior applicability when an organic EL display element sealant is made thin is on an inorganic material film such as SiO 2 that is used for flexibility. It was thought that the sealant around the foreign matter was repelled starting from foreign matter such as SiN present in the substrate, or the sealant could not follow the unevenness of the substrate or the inorganic material film. Therefore, the present inventors set the diameter of the droplet after one minute when the sealant is dropped on the SiO 2 substrate and the SiN substrate each having a surface free energy in a specific range to a specific value or more. I examined that. As a result, it has been found that an encapsulant for an organic EL display element that is excellent in applicability to a substrate or an inorganic material film can be obtained even when the thickness is reduced, and the present invention has been completed.
本発明の有機EL表示素子用封止剤は、表面自由エネルギーが70mN/m以上80mN/m以下のSiO基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板に対して、インクジェット吐出装置を用いて、上述した条件で滴下した際、滴下から1分後の液滴の直径がいずれも150μm以上である。上記滴下から1分後の液滴の直径がいずれも150μm以上であることにより、本発明の有機EL表示素子用封止剤は、異物を起点とするはじきを防止する効果、及び、基板や無機材料膜に対する濡れ性に優れるものとなる。上記滴下から1分後の液滴の直径はいずれも160μm以上であることが好ましく、170μm以上であることがより好ましい。
なお、本明細書において上記「表面自由エネルギー」は、25℃における水とヨウ化メチレンの接触角から、Owens-Wendy方式による評価方法で測定したものであり、具体的には接触角計(KRUSS社製、「MSA」)を用いて測定された値を意味する。
また、本明細書において上記「液滴の直径」は、対物レンズ(例えば、「PlanApo0.5X」)を搭載した光学顕微鏡(例えば、ニコン社製、「AZ-100」)にて12滴の液滴をそれぞれ観察し、画像処理ソフト(例えば、「WinROOF2015Standard版」)を用いて測定される値の平均値を意味する。上記インクジェット吐出装置としては、例えば、NanoPrinter500(マイクロジェット社製)等が挙げられる。
The sealant for an organic EL display element of the present invention is an ink jet for an SiO 2 substrate having a surface free energy of 70 mN / m to 80 mN / m and a SiN substrate having a surface free energy of 50 mN / m to 60 mN / m. When the droplet is dropped using the discharge device under the above-described conditions, the diameter of the droplet one minute after the dropping is 150 μm or more. Since all of the diameters of the liquid droplets after 1 minute from the above dropping are 150 μm or more, the sealing agent for organic EL display elements of the present invention has an effect of preventing repellence starting from a foreign substance, and a substrate or inorganic material. Excellent wettability to the material film. The diameter of the droplets 1 minute after the dropping is preferably 160 μm or more, and more preferably 170 μm or more.
In the present specification, the “surface free energy” is measured from the contact angle between water and methylene iodide at 25 ° C. by an evaluation method based on the Owens-Wendy method, and specifically, a contact angle meter (KRUSS). It means a value measured using “MSA”).
In addition, in the present specification, the “droplet diameter” means 12 drops of liquid using an optical microscope (eg, “AZ-100” manufactured by Nikon Corporation) equipped with an objective lens (eg, “PlanApo0.5X”). Each of the drops is observed and means an average value of values measured using image processing software (for example, “WinROOF2015 Standard version”). As said inkjet discharge apparatus, NanoPrinter500 (made by a micro jet company) etc. are mentioned, for example.
上記滴下から1分後の液滴の直径をいずれも150μm以上とする方法としては、例えば、硬化性樹脂全体の溶解度パラメータを後述する範囲とする方法、各基板に対して濡れ性の良い樹脂を組み合わせて硬化性樹脂を調整する方法等が挙げられる。 Examples of a method for setting the diameter of the droplets 1 minute after the dropping to 150 μm or more include, for example, a method in which the solubility parameter of the entire curable resin is in a range described later, and a resin having good wettability with respect to each substrate. The method etc. which adjust curable resin in combination are mentioned.
本発明1の有機EL表示素子用封止剤は、25℃における粘度の好ましい上限が30mPa・sである。上記粘度が30mPa・s以下であることにより、本発明1の有機EL表示素子用封止剤は、インクジェット塗布性により優れるものとなる。本発明1の有機EL表示素子用封止剤の粘度のより好ましい上限は20mPa・sである。
また、本発明1の有機EL表示素子用封止剤の粘度の好ましい下限は5mPa・sである。
なお、本明細書において上記「粘度」は、E型粘度計を用いて、25℃、100rpmの条件で測定される値を意味する。
As for the sealing agent for organic EL display elements of this invention 1, the preferable upper limit of the viscosity in 25 degreeC is 30 mPa * s. By the said viscosity being 30 mPa * s or less, the sealing agent for organic EL display elements of this invention becomes more excellent by inkjet applicability | paintability. The upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 20 mPa * s.
Moreover, the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 5 mPa * s.
In the present specification, the “viscosity” means a value measured using an E-type viscometer under the conditions of 25 ° C. and 100 rpm.
本発明2の有機EL表示素子用封止剤は、25℃における粘度の好ましい上限が30mPa・sである。上記粘度が30mPa・s以下であることにより、本発明2の有機EL表示素子用封止剤は、インクジェット塗布性により優れるものとなる。本発明2の有機EL表示素子用封止剤の粘度のより好ましい上限は20mPa・sである。
また、本発明2の有機EL表示素子用封止剤の粘度の好ましい下限は5mPa・sである。
As for the sealing agent for organic EL display elements of this invention 2, the preferable upper limit of the viscosity in 25 degreeC is 30 mPa * s. When the viscosity is 30 mPa · s or less, the organic EL display element sealant of the second aspect of the present invention is more excellent in ink jet coatability. The upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 20 mPa * s.
Moreover, the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 5 mPa * s.
本発明1の有機EL表示素子用封止剤は、25℃における有機EL表示素子用封止剤全体の表面張力が25mN/m以上38mN/m以下であることが好ましい。上記表面張力がこの範囲であることにより、本発明1の有機EL表示素子用封止剤は、インクジェット塗布性により優れるものとなる。本発明の有機EL表示素子用封止剤全体の表面張力のより好ましい下限は26mN/m、より好ましい上限は37mN/m、更に好ましい下限は27mN/m、更に好ましい上限は35mN/mである。
なお、本明細書において上記「表面張力」は、25℃において動的濡れ性試験機により測定される値を意味する。
It is preferable that the sealing agent for organic EL display elements of this invention 1 is 25 mN / m or more and 38 mN / m or less of the surface tension of the whole sealing agent for organic EL display elements in 25 degreeC. When the surface tension is within this range, the organic EL display element sealant of the first aspect of the invention is more excellent in ink jet coating properties. The more preferable lower limit of the surface tension of the whole sealing agent for organic EL display elements of the present invention is 26 mN / m, the more preferable upper limit is 37 mN / m, the still more preferable lower limit is 27 mN / m, and the still more preferable upper limit is 35 mN / m.
In the present specification, the “surface tension” means a value measured by a dynamic wettability tester at 25 ° C.
本発明2の有機EL表示素子用封止剤は、25℃における有機EL表示素子用封止剤全体の表面張力が25mN/m以上38mN/m以下であることが好ましい。上記表面張力がこの範囲であることにより、本発明2の有機EL表示素子用封止剤は、インクジェット塗布性により優れるものとなる。本発明の有機EL表示素子用封止剤全体の表面張力のより好ましい下限は26mN/m、より好ましい上限は37mN/m、更に好ましい下限は27mN/m、更に好ましい上限は35mN/mである。 It is preferable that the sealing agent for organic EL display elements of the present invention 2 has a surface tension of the whole sealing agent for organic EL display elements at 25 ° C. of 25 mN / m or more and 38 mN / m or less. When the surface tension is within this range, the organic EL display element sealant of the second aspect of the present invention is superior in ink jet coating properties. The more preferable lower limit of the surface tension of the whole sealing agent for organic EL display elements of the present invention is 26 mN / m, the more preferable upper limit is 37 mN / m, the still more preferable lower limit is 27 mN / m, and the still more preferable upper limit is 35 mN / m.
本発明の有機EL表示素子用封止剤は、硬化性樹脂を含有する。
本発明の有機EL表示素子用封止剤は、上記硬化性樹脂全体の溶解度パラメータ(以下、「SP値」ともいう)が16.5(J/cm1/2以上19.5(J/cm1/2以下であることが好ましい。上記硬化性樹脂全体のSP値がこの範囲であることにより、本発明の有機EL表示素子用封止剤は、異物を起点とするはじきを防止する効果、及び、基板や無機材料膜に対する濡れ性により優れるものとなる。上記硬化性樹脂全体のSP値のより好ましい下限は17.0(J/cm1/2、より好ましい上限は19.2(J/cm1/2であり、更に好ましい下限は17.7(J/cm1/2、更に好ましい上限は19.0(J/cm1/2である。
なお、本明細書において上記「溶解度パラメータ」は、Fedorsの推算法により算出される値である。また、上記「硬化性樹脂全体の溶解度パラメータ」は、有機EL表示素子用封止剤に用いる各硬化性樹脂構成成分の重量分率による溶解度パラメータの平均値を意味する。
The sealing agent for organic EL display elements of this invention contains curable resin.
The sealing agent for organic EL display elements of the present invention has a solubility parameter (hereinafter also referred to as “SP value”) of the entire curable resin of 16.5 (J / cm 3 ) 1/2 or more and 19.5 (J / Cm 3 ) 1/2 or less is preferable. When the SP value of the entire curable resin is in this range, the encapsulant for organic EL display elements of the present invention has an effect of preventing repellence starting from foreign matters, and wettability with respect to a substrate or an inorganic material film. It will be better. The more preferable lower limit of the SP value of the entire curable resin is 17.0 (J / cm 3 ) 1/2 , the more preferable upper limit is 19.2 (J / cm 3 ) 1/2 , and the more preferable lower limit is 17 0.7 (J / cm 3 ) 1/2 and a more preferable upper limit is 19.0 (J / cm 3 ) 1/2 .
In the present specification, the “solubility parameter” is a value calculated by Fedors' estimation method. The “solubility parameter of the entire curable resin” means the average value of the solubility parameter based on the weight fraction of each curable resin component used in the sealant for organic EL display elements.
本発明の有機EL表示素子用封止剤は、上記硬化性樹脂として2種以上の硬化性樹脂を含有し、各硬化性樹脂間のSP値の差が5(J/cm1/2以下となる硬化性樹脂の全硬化性樹脂に対する含有量が95重量%以上であることが好ましい。即ち、各硬化性樹脂間におけるSP値の差が5(J/cm1/2を超える硬化性樹脂の組み合わせが存在しないように2以上の硬化性樹脂について含有量の和を求めた際に、全硬化性樹脂に対して95重量%以上となる組み合わせが存在する。各硬化性樹脂間のSP値の差が5(J/cm1/2以下となる硬化性樹脂の含有量が95重量%以上であることにより、得られる有機EL表示素子用封止剤が、異物を起点とするはじきを防止する効果、及び、基板や無機材料膜に対する濡れ性により優れるものとなる。各硬化性樹脂間のSP値の差が5(J/cm1/2以下となる硬化性樹脂の含有量は、98重量%以上であることがより好ましく、99重量%以上であることが更に好ましく、99.9重量%以上であることが更により好ましく、99.99重量%以上であることが特に好ましい。
本発明の有機EL表示素子用封止剤は、上記硬化性樹脂として2種以上の上記硬化性樹脂を含有し、各硬化性樹脂間のSP値の最大差が5(J/cm1/2以下であることが好ましい。即ち、SP値の差が5(J/cm1/2を超える硬化性樹脂の組み合わせが存在しないことが好ましい。上記各硬化性樹脂間のSP値の最大差が5(J/cm1/2以下であることにより、得られる有機EL表示素子用封止剤が、異物を起点とするはじきを防止する効果、及び、基板や無機材料膜に対する濡れ性により優れるものとなる。上記各硬化性樹脂間のSP値の最大差は4(J/cm1/2以下であることがより好ましい。
The sealing agent for organic EL display elements of this invention contains 2 or more types of curable resin as said curable resin, and the difference of SP value between each curable resin is 5 (J / cm < 3 >) <1/2 >. It is preferable that content with respect to all the curable resin of the curable resin used as the following is 95 weight% or more. That is, when calculating the sum of the contents of two or more curable resins so that there is no combination of curable resins in which the difference in SP value between the curable resins exceeds 5 (J / cm 3 ) 1/2 In addition, there is a combination of 95% by weight or more based on the total curable resin. The sealing agent for organic EL display elements obtained by the content of the curable resin having a difference in SP value between each curable resin being 5 (J / cm 3 ) 1/2 or less is 95% by weight or more. However, it is excellent in the effect of preventing repelling starting from a foreign substance and the wettability with respect to the substrate and the inorganic material film. The content of the curable resin in which the difference in SP value between the curable resins is 5 (J / cm 3 ) 1/2 or less is more preferably 98% by weight or more, and 99% by weight or more. Is more preferably 99.9% by weight or more, and particularly preferably 99.99% by weight or more.
The sealing agent for organic EL display elements of this invention contains 2 or more types of said curable resin as said curable resin, and the maximum difference of SP value between each curable resin is 5 (J / cm < 3 >) < 1 >. / 2 or less is preferable. That is, it is preferable that there is no combination of curable resins in which the difference in SP value exceeds 5 (J / cm 3 ) 1/2 . When the maximum difference in SP value between the curable resins is 5 (J / cm 3 ) ½ or less, the obtained sealing agent for organic EL display elements prevents repelling starting from foreign matters. The effect and the wettability with respect to the substrate and the inorganic material film are excellent. The maximum difference in SP value between the curable resins is more preferably 4 (J / cm 3 ) 1/2 or less.
本発明の有機EL表示素子用封止剤における硬化性樹脂全体のSP値及び各硬化性樹脂成分のSP値は、有機EL表示素子用封止剤をクロマトグラフで精製すること、又は、GC-MS、LC-MS等の組成分析を行うことにより構造及び組成を特定し、SP値を計算して求めることができる。 The SP value of the entire curable resin and the SP value of each curable resin component in the sealing agent for organic EL display elements of the present invention can be determined by purifying the sealing agent for organic EL display elements by chromatography or GC- The structure and composition can be specified by performing composition analysis such as MS and LC-MS, and the SP value can be calculated.
上記硬化性樹脂は、シロキサン骨格を有する化合物を含有することが好ましい。上記シロキサン骨格を有する化合物を含有することにより、得られる有機EL表示素子用封止剤の表面張力を調整することが容易となり、得られる塗膜が平坦性により優れるものとなる。 The curable resin preferably contains a compound having a siloxane skeleton. By containing the compound having the siloxane skeleton, it becomes easy to adjust the surface tension of the obtained sealing agent for organic EL display elements, and the resulting coating film is more excellent in flatness.
上記シロキサン骨格を有する化合物としては、例えば、シロキサン骨格を有するエポキシ化合物、シロキサン骨格を有するオキセタン化合物、シロキサン骨格を有する(メタ)アクリル化合物等が挙げられる。なかでも、下記式(1)で表される化合物が好ましい。
なお、本明細書において、上記「(メタ)アクリル」は、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」は、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」は、アクリロイル又はメタクリロイルを意味する。
Examples of the compound having a siloxane skeleton include an epoxy compound having a siloxane skeleton, an oxetane compound having a siloxane skeleton, and a (meth) acryl compound having a siloxane skeleton. Especially, the compound represented by following formula (1) is preferable.
In the present specification, the above “(meth) acryl” means acryl or methacryl, the above “(meth) acryl compound” means a compound having a (meth) acryloyl group, and the above “(meth) “Acryloyl” means acryloyl or methacryloyl.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
式(1)中、Rは、炭素数1以上10以下のアルキル基を表し、X、Xは、それぞれ独立に、炭素数1以上10以下のアルキル基、又は、下記式(2-1)、(2-2)、(2-3)、若しくは、(2-4)で表される基を表し、Xは、下記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される基を表す。mは、0以上100以下の整数であり、nは、0以上100以下の整数である。ただし、nが0の場合、X及びXのうち少なくとも一方は、下記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される基を表す。 In Formula (1), R 1 represents an alkyl group having 1 to 10 carbon atoms, and X 1 and X 2 are each independently an alkyl group having 1 to 10 carbon atoms, or the following formula (2- 1), (2-2), (2-3) or a group represented by (2-4), and X 3 represents the following formulas (2-1), (2-2), (2 -3) or a group represented by (2-4). m is an integer from 0 to 100, and n is an integer from 0 to 100. However, when n is 0, at least one of X 1 and X 2 is represented by the following formula (2-1), (2-2), (2-3), or (2-4) Represents a group.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(2-1)~(2-4)中、Rは、結合手又は炭素数1以上6以下のアルキレン基を表し、式(2-3)中、Rは、水素又は炭素数1以上6以下のアルキル基を表し、Rは、結合手又はメチレン基を表し、式(2-4)中、Rは、水素又はメチル基を表す。 In formulas (2-1) to (2-4), R 2 represents a bond or an alkylene group having 1 to 6 carbon atoms, and in formula (2-3), R 3 represents hydrogen or 1 carbon atom. Represents an alkyl group of 6 or less, R 4 represents a bond or a methylene group, and in formula (2-4), R 5 represents hydrogen or a methyl group.
上記シロキサン骨格を有する化合物は、得られる有機EL表示素子用封止剤の保存安定性、基板や無機材料膜に対する密着性、インクジェット塗布する場合の吐出安定性等の観点から、有機EL表示素子用封止剤に配合する前に予め精製して数平均分子量10万以上の高分子量体を除去したものであることが好ましい。
具体的には、上記シロキサン骨格を有する化合物は、数平均分子量10万以上の高分子量体の含有割合が0.5%以下であることが好ましい。
なお、本明細書において、上記数平均分子量、及び、上記高分子量体の含有割合は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。また、上記高分子量体の含有割合もGPCによって測定することができる。GPCによってポリスチレン換算による数平均分子量、及び、上記高分子量体の含有割合を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。また、高分子量体の含有割合については、上記GPCの面積比から算出される。
The compound having a siloxane skeleton is used for organic EL display elements from the viewpoints of storage stability of the obtained sealing agent for organic EL display elements, adhesion to substrates and inorganic material films, and ejection stability when inkjet coating is performed. It is preferable that the polymer having a number average molecular weight of 100,000 or more is removed in advance before blending with the sealant.
Specifically, the content ratio of the high molecular weight compound having a number average molecular weight of 100,000 or more is preferably 0.5% or less in the compound having the siloxane skeleton.
In the present specification, the number average molecular weight and the content ratio of the high molecular weight substance are values obtained by measuring in polystyrene using gel permeation chromatography (GPC) using tetrahydrofuran as a solvent. . Moreover, the content rate of the said high molecular weight body can also be measured by GPC. Examples of the column used for measuring the number average molecular weight in terms of polystyrene by GPC and the content ratio of the high molecular weight substance include Shodex LF-804 (manufactured by Showa Denko KK). Further, the content ratio of the high molecular weight substance is calculated from the area ratio of the GPC.
上記シロキサン骨格を有する化合物を精製する方法としては、例えば、蒸留して精製する方法、カラムを用いて精製する方法等が挙げられる。 Examples of the method for purifying the compound having a siloxane skeleton include a method for purification by distillation, a method for purification using a column, and the like.
上記シロキサン骨格を有する化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 The compounds having a siloxane skeleton may be used alone or in combination of two or more.
上記硬化性樹脂中における上記シロキサン骨格を有する化合物の含有量は、40重量%未満であることが好ましい。上記シロキサン骨格を有する化合物の含有量が40重量%未満であることにより、得られる有機EL表示素子用封止剤が濡れ広がり性により優れるものとなる。上記シロキサン骨格を有する化合物の含有量のより好ましい上限は35重量%である。
また、上記硬化性樹脂中における上記シロキサン骨格を有する化合物の含有量の好ましい下限は0.1重量%である。上記シロキサン骨格を有する化合物の含有量が0.1重量%以上であることにより、得られる有機EL表示素子用封止剤の表面張力を調整することがより容易となる。
The content of the compound having a siloxane skeleton in the curable resin is preferably less than 40% by weight. When the content of the compound having a siloxane skeleton is less than 40% by weight, the obtained sealing agent for organic EL display elements has better wettability. The upper limit with more preferable content of the compound which has the said siloxane skeleton is 35 weight%.
Moreover, the minimum with preferable content of the compound which has the said siloxane skeleton in the said curable resin is 0.1 weight%. When the content of the compound having a siloxane skeleton is 0.1% by weight or more, it becomes easier to adjust the surface tension of the obtained sealing agent for organic EL display elements.
上記シロキサン骨格を有する化合物以外の上記硬化性樹脂としては、例えば、シロキサン骨格を有さないエポキシ化合物(以下、単に「エポキシ化合物」ともいう)、シロキサン骨格を有さないオキセタン化合物(以下、単に「オキセタン化合物」ともいう)、シロキサン骨格を有さないビニルエーテル化合物(以下、単に「ビニルエーテル化合物」ともいう)、シロキサン骨格を有さない(メタ)アクリル化合物(以下、単に「(メタ)アクリル化合物」ともいう)等が挙げられる。 Examples of the curable resin other than the compound having a siloxane skeleton include, for example, an epoxy compound having no siloxane skeleton (hereinafter, also simply referred to as “epoxy compound”), and an oxetane compound having no siloxane skeleton (hereinafter, simply “ An oxetane compound), a vinyl ether compound having no siloxane skeleton (hereinafter also simply referred to as “vinyl ether compound”), a (meth) acryl compound having no siloxane skeleton (hereinafter simply referred to as “(meth) acryl compound”). And the like).
上記エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノールO型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、脂環式エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。なかでも、揮発し難く、得られる有機EL表示素子用封止剤がインクジェット塗布性により優れるものとなること等から、アルキルポリオール型エポキシ化合物が好ましく、ネオペンチルグリコールジグリシジルエーテルが最も好ましい。
上記エポキシ化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the epoxy compounds include bisphenol A type epoxy compounds, bisphenol E type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol O type epoxy compounds, 2,2′-diallyl bisphenol A type epoxy compounds, Alicyclic epoxy compounds, hydrogenated bisphenol type epoxy compounds, propylene oxide added bisphenol A type epoxy compounds, resorcinol type epoxy compounds, biphenyl type epoxy compounds, sulfide type epoxy compounds, diphenyl ether type epoxy compounds, dicyclopentadiene type epoxy compounds, naphthalene Type epoxy compound, phenol novolac type epoxy compound, orthocresol novolac type epoxy compound, dicyclopentadiene novo Examples thereof include a rack type epoxy compound, a biphenyl novolac type epoxy compound, a naphthalenephenol novolak type epoxy compound, a glycidylamine type epoxy compound, an alkyl polyol type epoxy compound, a rubber-modified epoxy compound, and a glycidyl ester compound. Among these, an alkyl polyol type epoxy compound is preferable, and neopentyl glycol diglycidyl ether is most preferable because it is difficult to volatilize and the obtained sealing agent for organic EL display elements is excellent in ink jet coating properties.
The said epoxy compound may be used independently and 2 or more types may be used in combination.
上記オキセタン化合物としては、例えば、3-(アリルオキシ)オキセタン、フェノキシメチルオキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-((2-エチルヘキシルオキシ)メチル)オキセタン、3-エチル-3-((3-(トリエトキシシリル)プロポキシ)メチル)オキセタン、3-エチル-3(((3-エチルオキセタン-3-イル)メトキシ)メチル)オキセタン、フェノールノボラックオキセタン、1,4-ビス(((3-エチル-3-オキセタニル)メトキシ)メチル)ベンゼン等が挙げられる。なかでも、硬化性及び低アウトガス性に優れることから、3-エチル-3(((3-エチルオキセタン-3-イル)メトキシ)メチル)オキセタンが好ましい。
上記オキセタン化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the oxetane compound include 3- (allyloxy) oxetane, phenoxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3-((2 -Ethylhexyloxy) methyl) oxetane, 3-ethyl-3-((3- (triethoxysilyl) propoxy) methyl) oxetane, 3-ethyl-3 ((((3-ethyloxetane-3-yl) methoxy) methyl) And oxetane, phenol novolac oxetane, 1,4-bis (((3-ethyl-3-oxetanyl) methoxy) methyl) benzene, and the like. Among these, 3-ethyl-3 (((3-ethyloxetane-3-yl) methoxy) methyl) oxetane is preferable because of excellent curability and low outgassing properties.
The said oxetane compound may be used independently and 2 or more types may be used in combination.
上記ビニルエーテル化合物としては、例えば、ベンジルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、ジシクロペンタジエンビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、トリプロピレングリコールジビニルエーテル等が挙げられる。
上記ビニルエーテル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the vinyl ether compound include benzyl vinyl ether, cyclohexane dimethanol monovinyl ether, dicyclopentadiene vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, dipropylene glycol. Examples thereof include divinyl ether and tripropylene glycol divinyl ether.
The said vinyl ether compound may be used independently and 2 or more types may be used in combination.
上記(メタ)アクリル化合物としては、例えば、グリシジル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アリレート、1,12-ドデカンジオールジ(メタ)アクリレート、ラウリル(メタ)アクリレート等が挙げられる。
上記(メタ)アクリル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
Examples of the (meth) acrylic compound include glycidyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dicyclopentenyl (meth) acrylate, and di Cyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, trimethylolpropane tri (meth) arylate, 1,12-dodecanediol di (meth) acrylate, lauryl (meth) acrylate Etc.
The said (meth) acryl compound may be used independently and 2 or more types may be used in combination.
In the present specification, the “(meth) acrylate” means acrylate or methacrylate.
本発明の有機EL表示素子用封止剤は、重合開始剤を含有する。
上記重合開始剤としては、光カチオン重合開始剤や熱カチオン重合開始剤が好適に用いられる。また、上記硬化性樹脂の種類に応じて、光ラジカル重合開始剤、熱ラジカル重合開始剤も好適に用いられる。
The sealing agent for organic EL display elements of the present invention contains a polymerization initiator.
As the polymerization initiator, a photocationic polymerization initiator or a thermal cationic polymerization initiator is preferably used. Moreover, according to the kind of said curable resin, a radical photopolymerization initiator and a thermal radical polymerization initiator are also used suitably.
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生型であってもよいし、非イオン性光酸発生型であってもよい。 The photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be.
上記イオン性光酸発生型の光カチオン重合開始剤のアニオン部分としては、例えば、BF 、PF 、SbF 、(BX(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)等が挙げられる。また、上記アニオン部分としては、PF(C2n+16-m (但し、式中、mは0以上5以下の整数であり、nは1以上6以下の整数である)等も挙げられる。
上記イオン性光酸発生型の光カチオン重合開始剤としては、例えば、上記アニオン部分を有する、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ジアゾニウム塩、芳香族アンモニウム塩、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩等が挙げられる。
Examples of the anion portion of the ionic photoacid-generating photocationic polymerization initiator include BF 4 , PF 6 , SbF 6 , (BX 4 ) (where X is at least two or more fluorine atoms) Or a phenyl group substituted with a trifluoromethyl group). Examples of the anion moiety include PF m (C n F 2n + 1 ) 6-m (wherein, m is an integer of 0 or more and 5 or less, and n is an integer of 1 or more and 6 or less). Can be mentioned.
Examples of the ionic photoacid-generating photocationic polymerization initiator include aromatic sulfonium salts, aromatic iodonium salts, aromatic diazonium salts, aromatic ammonium salts having the above anion moiety, and (2,4-cyclohexane). And pentadien-1-yl) ((1-methylethyl) benzene) -Fe salt.
上記芳香族スルホニウム塩としては、例えば、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、トリス(4-(4-アセチルフェニル)チオフェニル)スルホニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the aromatic sulfonium salt include bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluoroantimonate, and bis (4- ( Diphenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (diphenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4- ( Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetrafluoroborate, diphenyl-4- (phenylthio) Phenylsulfonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrafluoroborate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, bis (4- (di ( 4- (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide bishexafluoroantimonate, Bis (4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (di ( - (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, tris (4- (4-acetylphenyl) thiophenyl) sulfonium tetrakis (pentafluorophenyl) borate, and the like.
上記芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the aromatic iodonium salt include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexa Fluorophosphate, 4-methylphenyl-4- (1-methylethyl) Such as phenyl iodonium hexafluoroantimonate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrafluoroborate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrakis (pentafluorophenyl) borate Can be mentioned.
上記芳香族ジアゾニウム塩としては、例えば、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、フェニルジアゾニウムテトラフルオロボレート、フェニルジアゾニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the aromatic diazonium salt include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
上記芳香族アンモニウム塩としては、例えば、1-ベンジル-2-シアノピリジニウムヘキサフルオロホスフェート、1-ベンジル-2-シアノピリジニウムヘキサフルオロアンチモネート、1-ベンジル-2-シアノピリジニウムテトラフルオロボレート、1-ベンジル-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロホスフェート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロアンチモネート、1-(ナフチルメチル)-2-シアノピリジニウムテトラフルオロボレート、1-(ナフチルメチル)-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the aromatic ammonium salt include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl -2-Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl) Examples include -2-cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate.
上記(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩としては、例えば、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロホスフェート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラフルオロボレート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe salt include (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene. ) -Fe (II) hexafluorophosphate, (2,4-cyclopentadiene-1-yl) ((1-methylethyl) benzene) -Fe (II) hexafluoroantimonate, (2,4-cyclopentadiene-1 -Yl) ((1-methylethyl) benzene) -Fe (II) tetrafluoroborate, (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe (II) tetrakis (penta Fluorophenyl) borate and the like.
上記非イオン性光酸発生型の光カチオン重合開始剤としては、例えば、ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N-ヒドロキシイミドスルホネート等が挙げられる。 Examples of the nonionic photoacid-generating photocationic polymerization initiator include nitrobenzyl ester, sulfonic acid derivative, phosphoric acid ester, phenol sulfonic acid ester, diazonaphthoquinone, N-hydroxyimide sulfonate, and the like.
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、みどり化学社製の光カチオン重合開始剤、ユニオンカーバイド社製の光カチオン重合開始剤、ADEKA社製の光カチオン重合開始剤、3M社製の光カチオン重合開始剤、BASF社製の光カチオン重合開始剤、ローディア社製の光カチオン重合開始剤、サンアプロ社製の光カチオン重合開始剤等が挙げられる。
上記みどり化学社製の光カチオン重合開始剤としては、例えば、DTS-200等が挙げられる。
上記ユニオンカーバイド社製の光カチオン重合開始剤としては、例えば、UVI6990、UVI6974等が挙げられる。
上記ADEKA社製の光カチオン重合開始剤としては、例えば、SP-150、SP-170等が挙げられる。
上記3M社製の光カチオン重合開始剤としては、例えば、FC-508、FC-512等が挙げられる。
上記BASF社製の光カチオン重合開始剤としては、例えば、IRGACURE261、IRGACURE290等が挙げられる。
上記ローディア社製の光カチオン重合開始剤としては、例えば、PI2074等が挙げられる。
上記サンアプロ社製の光カチオン重合開始剤としては、例えば、CPI-100P、CPI-200K、CPI-210S等が挙げられる。
Examples of commercially available photocationic polymerization initiators include, for example, a photocationic polymerization initiator manufactured by Midori Chemical Co., a photocationic polymerization initiator manufactured by Union Carbide, a photocationic polymerization initiator manufactured by ADEKA, Examples thereof include a photocationic polymerization initiator manufactured by 3M, a photocationic polymerization initiator manufactured by BASF, a photocationic polymerization initiator manufactured by Rhodia, and a photocationic polymerization initiator manufactured by San Apro.
Examples of the photocationic polymerization initiator manufactured by Midori Chemical Co., Ltd. include DTS-200.
Examples of the cationic photopolymerization initiator manufactured by Union Carbide include UVI6990, UVI6974, and the like.
Examples of the photocation polymerization initiator manufactured by ADEKA include SP-150 and SP-170.
Examples of the cationic photopolymerization initiator manufactured by 3M include FC-508, FC-512, and the like.
Examples of the cationic photopolymerization initiator manufactured by BASF include IRGACURE261, IRGACURE290, and the like.
Examples of the photocationic polymerization initiator manufactured by Rhodia include PI 2074.
Examples of the cationic photopolymerization initiator manufactured by Sun Apro include CPI-100P, CPI-200K, CPI-210S, and the like.
上記熱カチオン重合開始剤としては、アニオン部分がBF 、PF 、SbF 、又は、(BX(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)で構成される、スルホニウム塩、ホスホニウム塩、アンモニウム塩等が挙げられる。なかでも、スルホニウム塩、アンモニウム塩が好ましい。 As the thermal cationic polymerization initiator, the anion moiety is BF 4 , PF 6 , SbF 6 , or (BX 4 ) (where X is substituted with at least two fluorine or trifluoromethyl groups A sulfonium salt, a phosphonium salt, an ammonium salt, and the like. Of these, sulfonium salts and ammonium salts are preferable.
上記スルホニウム塩としては、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート等が挙げられる。 Examples of the sulfonium salt include triphenylsulfonium tetrafluoroborate and triphenylsulfonium hexafluoroantimonate.
上記ホスホニウム塩としては、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、テトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。 Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
上記アンモニウム塩としては、例えば、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メトキシベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロテトラキス(ペンタフルオロフェニル)ボレート、メチルフェニルジベンジルアンモニウムヘキサフルオロホスフェート、メチルフェニルジベンジルアンモニウムヘキサフルオロアンチモネート、メチルフェニルジベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、フェニルトリベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(3,4-ジメチルベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチル-N-ベンジルアニリニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルアニリニウムテトラフルオロボレート、N,N-ジメチル-N-ベンジルピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルピリジニウムトリフルオロメタンスルホン酸等が挙げられる。 Examples of the ammonium salt include dimethylphenyl (4-methoxybenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methoxybenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methoxybenzyl) ammonium tetrakis (pentafluorophenyl). Borate, dimethylphenyl (4-methylbenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methylbenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methylbenzyl) ammonium hexafluorotetrakis (pentafluorophenyl) borate, methylphenyl Dibenzylammonium hexafluorophosphate, methylphenyldibenzylammonium Safluoroantimonate, methylphenyldibenzylammonium tetrakis (pentafluorophenyl) borate, phenyltribenzylammonium tetrakis (pentafluorophenyl) borate, dimethylphenyl (3,4-dimethylbenzyl) ammonium tetrakis (pentafluorophenyl) borate, N , N-dimethyl-N-benzylanilinium hexafluoroantimonate, N, N-diethyl-N-benzylanilinium tetrafluoroborate, N, N-dimethyl-N-benzylpyridinium hexafluoroantimonate, N, N-diethyl -N-benzylpyridinium trifluoromethanesulfonic acid and the like.
上記熱カチオン重合開始剤のうち市販されているものとしては、例えば、三新化学工業社製の熱カチオン重合開始剤、King Industries社製の熱カチオン重合開始剤等が挙げられる。
上記三新化学工業社製の熱カチオン重合開始剤としては、例えば、サンエイドSI-60、サンエイドSI-80、サンエイドSI-B3、サンエイドSI-B3A、サンエイドSI-B4等が挙げられる。
上記King Industries社製の熱カチオン重合開始剤としては、例えば、CXC1612、CXC1821等が挙げられる。
Examples of commercially available thermal cationic polymerization initiators include thermal cationic polymerization initiators manufactured by Sanshin Chemical Industry, thermal cationic polymerization initiators manufactured by King Industries, and the like.
Examples of the thermal cationic polymerization initiator manufactured by Sanshin Chemical Industry Co., Ltd. include Sun-Aid SI-60, Sun-Aid SI-80, Sun-Aid SI-B3, Sun-Aid SI-B3A, and Sun-Aid SI-B4.
Examples of the thermal cationic polymerization initiator manufactured by King Industries include CXC1612 and CXC1821.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン系化合物等が挙げられる。 Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone compounds, and the like.
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、BASF社製の光ラジカル重合開始剤、東京化成工業社製の光ラジカル重合開始剤等が挙げられる。
上記BASF社製の光ラジカル重合開始剤としては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO等が挙げられる。
上記東京化成工業社製の光ラジカル重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。
As what is marketed among the said radical photopolymerization initiators, the radical photopolymerization initiator by BASF, the radical photopolymerization initiator by Tokyo Chemical Industry, etc. are mentioned, for example.
Examples of the radical photopolymerization initiator manufactured by BASF include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucyrin TPO.
Examples of the photo radical polymerization initiator manufactured by Tokyo Chemical Industry Co., Ltd. include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。
上記アゾ化合物としては、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル等が挙げられる。
上記有機過酸化物としては、例えば、過酸化ベンゾイル、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。
As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
Examples of the azo compound include 2,2′-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile, and the like.
Examples of the organic peroxide include benzoyl peroxide, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記熱ラジカル重合開始剤のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。 Examples of commercially available thermal radical polymerization initiators include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, and V-501 (all of which are FUJIFILM Wako Pure Chemical Industries, Ltd.). Manufactured) and the like.
上記重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記重合開始剤の含有量が0.01重量部以上であることにより、得られる有機EL表示素子用封止剤が硬化性により優れるものとなる。上記重合開始剤の含有量が10重量部以下であることにより、得られる有機EL表示素子用封止剤の硬化反応が速くなりすぎず、作業性により優れるものとなり、硬化物をより均一なものとすることができる。上記重合開始剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は5重量部である。 The content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the polymerization initiator is 0.01 parts by weight or more, the obtained sealing agent for organic EL display elements is more excellent in curability. When the content of the polymerization initiator is 10 parts by weight or less, the curing reaction of the obtained sealing agent for organic EL display elements does not become too fast, the workability is improved, and the cured product is more uniform. It can be. The minimum with more preferable content of the said polymerization initiator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
本発明の有機EL表示素子用封止剤は、増感剤を含有してもよい。上記増感剤は、上記重合開始剤の重合開始効率をより向上させて、本発明の有機EL表示素子用封止剤の硬化反応をより促進させる役割を有する。 The sealing agent for organic EL display elements of the present invention may contain a sensitizer. The sensitizer has a role of further improving the polymerization initiation efficiency of the polymerization initiator and further promoting the curing reaction of the sealing agent for organic EL display elements of the present invention.
上記増感剤としては、例えば、アントラセン化合物や、チオキサントン化合物や、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等が挙げられる。
上記アントラセン化合物としては、例えば、9,10-ジブトキシアントラセン等が挙げられる。
上記チオキサントン化合物としては、例えば、2,4-ジエチルチオキサントン等が挙げられる。
Examples of the sensitizer include anthracene compounds, thioxanthone compounds, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, Examples include 4,4′-bis (dimethylamino) benzophenone and 4-benzoyl-4′-methyldiphenyl sulfide.
Examples of the anthracene compound include 9,10-dibutoxyanthracene.
Examples of the thioxanthone compound include 2,4-diethylthioxanthone.
上記増感剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が3重量部である。上記増感剤の含有量が0.01重量部以上であることにより、増感効果がより発揮される。上記増感剤の含有量が3重量部以下であることにより、吸収が大きくなり過ぎずに深部まで光を伝えることができる。上記増感剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は1重量部である。 The content of the sensitizer is preferably 0.01 parts by weight and preferably 3 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the sensitizer is 0.01 parts by weight or more, the sensitizing effect is more exhibited. When the content of the sensitizer is 3 parts by weight or less, light can be transmitted to a deep part without excessive absorption. The minimum with more preferable content of the said sensitizer is 0.1 weight part, and a more preferable upper limit is 1 weight part.
本発明の有機EL表示素子用封止剤は、必要に応じて、シランカップリング剤、表面改質剤、補強剤、軟化剤、可塑剤、粘度調整剤、紫外線吸収剤、酸化防止剤等の添加剤を含有してもよい。
上記添加剤を含有する場合、得られる有機EL表示素子用封止剤の異物を起点とするはじき防止性、及び、基板や無機材料膜の凹凸への追従性により優れるものとする観点から、上記硬化性樹脂に含まれる各成分と該添加剤とのSP値の最大差は、5(J/cm1/2以下であることが好ましい。
The sealing agent for organic EL display elements of the present invention includes a silane coupling agent, a surface modifier, a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, an ultraviolet absorber, an antioxidant and the like as necessary. An additive may be contained.
In the case of containing the additive, from the viewpoint of being excellent in repellency prevention starting from the foreign matter of the sealing agent for organic EL display element obtained, and in conformity to irregularities of the substrate and the inorganic material film, The maximum difference in SP value between each component contained in the curable resin and the additive is preferably 5 (J / cm 3 ) 1/2 or less.
上記シランカップリング剤は、本発明の有機EL表示素子用封止剤と基板や無機材料膜との密着性を更に向上させる役割を有する。
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤は単独で用いられてもよいし、2種以上が併用されてもよい。
The said silane coupling agent has a role which further improves the adhesiveness of the sealing agent for organic EL display elements of this invention, and a board | substrate or an inorganic material film.
Examples of the silane coupling agent include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane coupling agents may be used independently and 2 or more types may be used together.
上記シランカップリング剤の含有量は、上記重合性化合物100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、余剰のシランカップリング剤がブリードアウトすることを抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。 The content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the polymerizable compound. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness is suppressed while suppressing the excess silane coupling agent from bleeding out. The minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
上記表面改質剤は、本発明の有機EL表示素子用封止剤の塗膜の平坦性を更に向上させる役割を有する。
上記表面改質剤としては、例えば、界面活性剤やレベリング剤等が挙げられる。
The said surface modifier has a role which further improves the flatness of the coating film of the sealing agent for organic EL display elements of this invention.
Examples of the surface modifier include surfactants and leveling agents.
上記表面改質剤としては、例えば、シリコーン系やフッ素系等のものが挙げられる。
上記表面改質剤のうち市販されているものとしては、例えば、BYK-340、BYK-345(いずれもビックケミー・ジャパン社製)、サーフロンS-611(AGCセイミケミカル社製)等が挙げられる。
Examples of the surface modifier include silicone-based and fluorine-based ones.
Examples of commercially available surface modifiers include BYK-340, BYK-345 (both manufactured by Big Chemie Japan) and Surflon S-611 (manufactured by AGC Seimi Chemical).
本発明の有機EL表示素子用封止剤は、粘度調整等を目的として溶剤を含有してもよいが、残存した溶剤により、有機発光材料層が劣化したりアウトガスが発生したりする等の問題が生じるおそれがあるため、溶剤の含有量が0.05重量%以下であることが好ましく、溶剤を含有しないことが最も好ましい。 The encapsulant for organic EL display elements of the present invention may contain a solvent for the purpose of adjusting the viscosity, but problems such as deterioration of the organic light emitting material layer and generation of outgas due to the remaining solvent. Therefore, the content of the solvent is preferably 0.05% by weight or less, and most preferably no solvent is contained.
本発明の有機EL表示素子用封止剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、重合開始剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the sealing agent for organic EL display elements of the present invention, for example, using a mixer such as a homodisper, homomixer, universal mixer, planetary mixer, kneader, three rolls, And a method of mixing a polymerization initiator and an additive such as a silane coupling agent added if necessary.
本発明の有機EL表示素子用封止剤の硬化物の波長380nm以上800nm以下における光の全光線透過率の好ましい下限は80%である。上記全光線透過率が80%以上であることにより、得られる有機EL表示素子が光学特性により優れるものとなる。上記全光線透過率のより好ましい下限は85%である。
上記全光線透過率は、例えば、AUTOMATIC HAZE METER MODEL TC-III DPK(東京電色社製)等の分光計を用いて測定することができる。また、上記光線透過率、並びに、後述する透湿度及び含水率の測定に用いる硬化物は、例えば、LEDランプ等の光源を用いて波長365nmの紫外線を3000mJ/cm照射することにより得ることができる。
The preferable minimum of the total light transmittance of the light in the wavelength of 380 nm or more and 800 nm or less of the hardened | cured material of the sealing agent for organic EL display elements of this invention is 80%. When the total light transmittance is 80% or more, the obtained organic EL display element has superior optical characteristics. A more preferable lower limit of the total light transmittance is 85%.
The total light transmittance can be measured using a spectrometer such as AUTOMATIC HAZE METER MODEL TC-III DPK (manufactured by Tokyo Denshoku). Moreover, the hardened | cured material used for the measurement of the said light transmittance and the water vapor transmission rate and moisture content mentioned later can be obtained by irradiating 3000 mJ / cm < 2 > of ultraviolet rays with a wavelength of 365 nm using light sources, such as an LED lamp, for example. it can.
本発明の有機EL表示素子用封止剤は、硬化物に紫外線を100時間照射した後の400nmにおける透過率が20μmの光路長にて85%以上であることが好ましい。上記紫外線を100時間照射した後の透過率が85%以上であることにより、透明性が高く、発光の損失が小さくなり、かつ、色再現性により優れるものとなる。上記紫外線を100時間照射した後の透過率のより好ましい下限は90%、更に好ましい下限は95%である。
上記紫外線を照射する光源としては、例えば、キセノンランプ、カーボンアークランプ等、従来公知の光源を用いることができる。
In the sealing agent for organic EL display elements of the present invention, the transmittance at 400 nm after irradiating the cured product with ultraviolet rays for 100 hours is preferably 85% or more at an optical path length of 20 μm. When the transmittance after irradiating the ultraviolet rays for 100 hours is 85% or more, the transparency is high, the loss of light emission is small, and the color reproducibility is excellent. A more preferable lower limit of the transmittance after irradiation with the ultraviolet rays for 100 hours is 90%, and a more preferable lower limit is 95%.
As the light source for irradiating the ultraviolet rays, a conventionally known light source such as a xenon lamp or a carbon arc lamp can be used.
本発明の有機EL表示素子用封止剤は、JIS Z 0208に準拠して、硬化物を85℃、85%RHの環境下に24時間暴露して測定した100μm厚での透湿度が100g/m以下であることが好ましい。上記透湿度が100g/m以下であることにより、硬化物中の水分による有機発光材料層の劣化を防止する効果により優れるものとなり、得られる有機EL表示素子が信頼性により優れるものとなる。 The sealant for an organic EL display device of the present invention has a moisture permeability of 100 g / 100 μm when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours in accordance with JIS Z 0208. m is preferably 2 or less. When the moisture permeability is 100 g / m 2 or less, the effect of preventing deterioration of the organic light-emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability.
本発明の有機EL表示素子用封止剤は、硬化物を85℃、85%RHの環境下に24時間暴露したときに、硬化物の含水率が0.5%未満であることが好ましい。上記硬化物の含水率が0.5%未満であることにより、硬化物中の水分による有機発光材料層の劣化を防止する効果により優れるものとなり、得られる有機EL表示素子が信頼性により優れるものとなる。上記硬化物の含水率のより好ましい上限は0.3%である。
上記含水率の測定方法としては、例えば、JIS K 7251に準拠してカールフィッシャー法により求める方法や、JIS K 7209-2に準拠して吸水後の重量増分を求める等の方法が挙げられる。
In the encapsulant for organic EL display elements of the present invention, the moisture content of the cured product is preferably less than 0.5% when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours. When the moisture content of the cured product is less than 0.5%, the effect of preventing the deterioration of the organic light emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability. It becomes. A more preferable upper limit of the moisture content of the cured product is 0.3%.
Examples of the method for measuring the moisture content include a method of obtaining by a Karl Fischer method in accordance with JIS K 7251, and a method of obtaining a weight increment after water absorption in accordance with JIS K 7209-2.
本発明の有機EL表示素子用封止剤を用いて有機EL表示素子を製造する方法としては、例えば、インクジェット法により、本発明の有機EL表示素子用封止剤を基材に塗布する工程と、塗布した有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程とを有する方法等が挙げられる。 As a method for producing an organic EL display element using the sealing agent for organic EL display elements of the present invention, for example, a step of applying the sealing agent for organic EL display elements of the present invention to a substrate by an inkjet method, And a method of curing the applied sealing agent for organic EL display elements by light irradiation and / or heating.
本発明の有機EL表示素子用封止剤を基材に塗布する工程において、本発明の有機EL表示素子用封止剤は、基材の全面に塗布してもよく、基材の一部に塗布してもよい。塗布により形成される本発明の有機EL表示素子用封止剤の封止部の形状としては、有機発光材料層を有する積層体を外気から保護しうる形状であれば特に限定されず、該積層体を完全に被覆する形状であってもよいし、該積層体の周辺部に閉じたパターンを形成してもよいし、該積層体の周辺部に一部開口部を設けた形状のパターンを形成してもよい。 In the step of applying the organic EL display element sealant of the present invention to the substrate, the organic EL display element sealant of the present invention may be applied to the entire surface of the substrate, or on a part of the substrate. It may be applied. The shape of the sealing portion of the sealing agent for organic EL display elements of the present invention formed by coating is not particularly limited as long as it is a shape that can protect the laminate having the organic light emitting material layer from the outside air. A shape that completely covers the body may be formed, a closed pattern may be formed in the peripheral portion of the laminate, or a pattern having a shape in which a partial opening is provided in the peripheral portion of the laminate. It may be formed.
本発明の有機EL表示素子用封止剤を光照射により硬化させる場合、本発明の有機EL表示素子用封止剤は、300nm以上400nm以下の波長及び300mJ/cm以上3000mJ/cm以下の積算光量の光を照射することによって好適に硬化させることができる。 When curing the organic EL display element sealing agent of the present invention by light irradiation, the organic EL display sealant element of the present invention, 300 nm or more 400nm or less wavelength and 300 mJ / cm 2 or more 3000 mJ / cm 2 or less of It can be suitably cured by irradiating with an accumulated amount of light.
上記光照射に用いる光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、エキシマレーザ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、ナトリウムランプ、ハロゲンランプ、キセノンランプ、LEDランプ、蛍光灯、太陽光、電子線照射装置等が挙げられる。これらの光源は、単独で用いられてもよく、2種以上が併用されてもよい。
これらの光源は、上記光カチオン重合開始剤や上記光ラジカル重合開始剤の吸収波長に合わせて適宜選択される。
Examples of the light source used for the light irradiation include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, a sodium lamp, a halogen lamp, and a xenon. A lamp, an LED lamp, a fluorescent lamp, sunlight, an electron beam irradiation apparatus, etc. are mentioned. These light sources may be used independently and 2 or more types may be used together.
These light sources are appropriately selected according to the absorption wavelength of the photocationic polymerization initiator or the photoradical polymerization initiator.
本発明の有機EL表示素子用封止剤への光の照射手段としては、例えば、各種光源の同時照射、時間差をおいての逐次照射、同時照射と逐次照射との組み合わせ照射等が挙げられ、いずれの照射手段を用いてもよい。 Examples of the light irradiation means to the organic EL display element sealant of the present invention include simultaneous irradiation of various light sources, sequential irradiation with a time difference, combined irradiation of simultaneous irradiation and sequential irradiation, and the like. Any irradiation means may be used.
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程により得られる硬化物は、更に無機材料膜で被覆されていてもよい。
上記無機材料膜を構成する無機材料としては、従来公知のものを用いることができ、例えば、窒化珪素(SiN又はSiO)や酸化珪素(SiO)等が挙げられる。上記無機材料膜は、1層からなるものであってもよく、複数種の層を積層したものであってもよい。また、上記無機材料膜と本発明の有機EL表示素子用封止剤からなる樹脂膜とを、交互に繰り返して上記積層体を被覆してもよい。
The cured product obtained by the step of curing the organic EL display element sealing agent by light irradiation and / or heating may be further coated with an inorganic material film.
As the inorganic material forming the inorganic material layer can be a conventionally known, for example, silicon nitride (SiN x or SiO X N Y), silicon oxide (SiO x), and the like. The inorganic material film may be a single layer or may be a laminate of a plurality of types of layers. Moreover, you may coat | cover the said laminated body by repeating alternately the said inorganic material film | membrane and the resin film which consists of the sealing agent for organic EL display elements of this invention.
上記有機EL表示素子を製造する方法は、本発明の有機EL表示素子用封止剤を塗布した基材(以下、「一方の基材」ともいう)と他方の基材とを貼り合わせる工程を有していてもよい。
本発明の有機EL表示素子用封止剤を塗布する基材(以下、「一方の基材」ともいう)は、有機発光材料層を有する積層体の形成されている基材であってもよく、該積層体の形成されていない基材であってもよい。
上記一方の基材が上記積層体の形成されていない基材である場合、上記他方の基材を貼り合わせた際に、上記積層体を外気から保護できるように上記一方の基材に本発明の有機EL表示素子用封止剤を塗布すればよい。即ち、他方の基材を貼り合わせた際に上記積層体の位置となる場所に全面的に塗布するか、又は、他方の基材を貼り合わせた際に上記積層体の位置となる場所が完全に収まる形状に、閉じたパターンの封止剤部を形成してもよい。
The method for producing the organic EL display element comprises a step of bonding a base material (hereinafter also referred to as “one base material”) coated with the organic EL display element sealing agent of the present invention and the other base material. You may have.
The substrate on which the sealing agent for organic EL display elements of the present invention is applied (hereinafter also referred to as “one substrate”) may be a substrate on which a laminate having an organic light emitting material layer is formed. A base material on which the laminate is not formed may be used.
When the one substrate is a substrate on which the laminate is not formed, the present invention is applied to the one substrate so that the laminate can be protected from the outside air when the other substrate is bonded. What is necessary is just to apply | coat the sealing agent for organic EL display elements. That is, apply the entire surface to the location of the laminate when the other substrate is bonded, or the location of the laminate is complete when the other substrate is bonded. The sealing agent portion having a closed pattern may be formed in a shape that fits in the shape.
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程は、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なってもよいし、上記一方の基材と上記他方の基材とを貼り合わせる工程の後に行なってもよい。
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程を、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なう場合、本発明の有機EL表示素子用封止剤は、光照射及び/又は加熱してから硬化反応が進行して接着ができなくなるまでの可使時間が1分以上であることが好ましい。上記可使時間が1分以上であることにより、上記一方の基材と上記他方の基材とを貼り合わせる前に硬化が進行し過ぎることなく、より高い接着強度を得ることができる。
The step of curing the organic EL display element sealant by light irradiation and / or heating may be performed before the step of bonding the one base material and the other base material, You may perform after the process of bonding a base material and said other base material.
When the step of curing the organic EL display element sealant by light irradiation and / or heating is performed before the step of bonding the one base material and the other base material, the organic EL display of the present invention. The device sealant preferably has a pot life of 1 minute or longer after irradiation with light and / or heating until the curing reaction proceeds and adhesion becomes impossible. When the pot life is 1 minute or longer, higher adhesion strength can be obtained without excessive curing before the one base material and the other base material are bonded together.
上記一方の基材と上記他方の基材とを貼り合わせる工程において、上記一方の基材と上記他方の基材とを貼り合わせる方法は特に限定されないが、減圧雰囲気下で貼り合わせることが好ましい。
上記減圧雰囲気下の真空度の好ましい下限は0.01kPa、好ましい上限は10kPaである。上記減圧雰囲気下の真空度がこの範囲であることにより、真空装置の気密性や真空ポンプの能力から真空状態を達成するのに長時間を費やすことなく、上記一方の基材と上記他方の基材とを貼り合わせる際の本発明の有機EL表示素子用封止剤中の気泡をより効率的に除去することができる。
In the step of bonding the one base material and the other base material, a method of bonding the one base material and the other base material is not particularly limited, but it is preferable to bond them in a reduced-pressure atmosphere.
The preferable lower limit of the degree of vacuum in the reduced-pressure atmosphere is 0.01 kPa, and the preferable upper limit is 10 kPa. When the degree of vacuum in the reduced-pressure atmosphere is within this range, the one base material and the other base material are not spent for a long time to achieve a vacuum state due to the airtightness of the vacuum device and the ability of the vacuum pump. Bubbles in the sealing agent for organic EL display elements of the present invention when the material is bonded can be more efficiently removed.
本発明によれば、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where it thins, the sealing agent for organic EL display elements which is excellent in the applicability | paintability with respect to a board | substrate or an inorganic material film | membrane can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(SiO基板の作製)
無アルカリガラス上に、ICP-CVD装置(セルバック社製)にてSiOを1000nmの膜厚にて化学蒸着を行ってSiO基版を作製した。蒸着後の表面自由エネルギーを、接触角計(KRUSS社製、「MSA」)を用いて水とヨウ化メチレンの接触角から、Owens-Wendy方式による評価方法で測定したところ73.0mN/mであった。更に、XPS装置(アルバックファイ社製)にて、このSiO膜中の原子比率を測定したところ、Si原子が31.3%に対して、O原子が63.2%であった。
(Production of SiO 2 substrate)
On the alkali-free glass, SiO 2 was chemically deposited with an ICP-CVD apparatus (manufactured by Celbach) at a film thickness of 1000 nm to prepare a SiO 2 base plate. The surface free energy after deposition was measured by an evaluation method using the Owens-Wendy method from the contact angle of water and methylene iodide using a contact angle meter (manufactured by KRUS, “MSA”), and it was 73.0 mN / m. there were. Furthermore, when the atomic ratio in the SiO 2 film was measured with an XPS apparatus (manufactured by ULVAC-PHI), the Si atom was 31.3% and the O atom was 63.2%.
(SiN基板の作製)
無アルカリガラス上に、ICP-CVD装置(セルバック社製)にてSiNを1000nmの膜厚にて化学蒸着を行ってSiN基版を作製した。蒸着後の表面自由エネルギーを、接触角計(KRUSS社製、「MSA」)を用いて水とヨウ化メチレンの接触角から、Owens-Wendy方式による評価方法で測定したところ58.0mN/mであった。更に、XPS装置(アルバックファイ社製)にて、このSiN膜中の原子比率を測定したところ、Si原子が44.8%に対して、N原子が48.0%であった。
(Production of SiN substrate)
On an alkali-free glass, SiN was chemically deposited with an ICP-CVD apparatus (manufactured by Cellvac) at a film thickness of 1000 nm to prepare a SiN base plate. The surface free energy after vapor deposition was measured from the contact angle of water and methylene iodide using a contact angle meter (manufactured by KRUSS, “MSA”) by an evaluation method according to the Owens-Wendy method, and was 58.0 mN / m. there were. Further, when the atomic ratio in the SiN film was measured with an XPS apparatus (manufactured by ULVAC-PHI), N atoms were 48.0% with respect to 44.8% Si atoms.
(実施例1~9、比較例1~4)
表1、2に記載された配合比に従い、各材料を、ホモディスパー型撹拌混合機(プライミクス社製、「ホモディスパーL型」)を用い、撹拌速度300rpmで均一に撹拌混合することにより、実施例1~9、比較例1~4の各有機EL表示素子用封止剤を作製した。表中におけるシロキサン骨格を有する化合物としては、いずれも他の成分と混合する前に予め蒸留により精製したものを用いた。
表中のシロキサン骨格を有するオキセタン化合物としては、以下の方法で得られたものを用いた。即ち、1,1,3,3-テトラメチルジシロキサン0.1molと、アリルオキシオキセタン(四日市合成社製、「AL-OX」)0.2molと、白金(0)-1,3-ジビニル‐1,1,3,3-テトラメチルジシロキサン錯体溶液(シグマ・アルドリッチ社製)100ppmとを混合し、80℃で5時間加熱した。NMRで反応の終了を確認し、得られた溶液を蒸留により精製することで、シロキサン骨格を有するオキセタン化合物として高純度のオキセタン変性ジシロキサン化合物を得た。H-NMR、GPC、及び、FT-IR分析により、得られたオキセタン変性ジシロキサン化合物は、下記式(3)で表される化合物であることを確認した。
実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を用いて、上記「(SiO基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO基板及び上記「(SiN基板の作製)」で得られた表面自由エネルギーが58.0mN/mのSiN基板にそれぞれ吐出した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用い、封止剤の吐出は、25℃、液滴量10pL、800μmピッチ、基板から0.5mmの高さからの滴下、及び、周波数20kHzの条件で行った。着弾から1分後の封止剤の液滴について、対物レンズPlanApo0.5Xを搭載した光学顕微鏡(ニコン社製、「AZ-100」)にて観察し、画像処理ソフトWinROOF2015Standard版を用いて測定した液滴の12滴の平均直径を表1、2に示した。
実施例及び比較例で得られた各有機EL表示素子用封止剤について、Fedorsの推算法により算出した硬化性樹脂全体のSP値及び各硬化性樹脂間のSP値の最大差を表1、2に示した。
また、実施例及び比較例で得られた各有機EL表示素子用封止剤について、25℃において表面張力計(協和界面科学社製、「DY-300」)を用いてWilhelmy法により測定した表面張力を表1、2に示した。
更に、実施例及び比較例で得られた各有機EL表示素子用封止剤について、E型粘度計(東機産業社製、「VISCOMETER TV-22」)を用いて、25℃、100rpmの条件において測定した粘度を表1、2に示した。
(Examples 1 to 9, Comparative Examples 1 to 4)
According to the blending ratios described in Tables 1 and 2, each material was uniformly stirred and mixed at a stirring speed of 300 rpm using a homodisper type stirring mixer (“Primix”, “Homodisper L type”). Sealants for organic EL display elements of Examples 1 to 9 and Comparative Examples 1 to 4 were prepared. As the compound having a siloxane skeleton in the table, those purified in advance by distillation before mixing with other components were used.
As the oxetane compound having a siloxane skeleton in the table, one obtained by the following method was used. That is, 0.1 mol of 1,1,3,3-tetramethyldisiloxane, 0.2 mol of allyloxyoxetane (manufactured by Yokkaichi Synthesis Co., Ltd., “AL-OX”), platinum (0) -1,3-divinyl- 100 ppm of 1,1,3,3-tetramethyldisiloxane complex solution (manufactured by Sigma-Aldrich) was mixed and heated at 80 ° C. for 5 hours. The completion of the reaction was confirmed by NMR, and the resulting solution was purified by distillation to obtain a high-purity oxetane-modified disiloxane compound as an oxetane compound having a siloxane skeleton. It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the obtained oxetane-modified disiloxane compound was a compound represented by the following formula (3).
Each of the organic EL display element sealants obtained in the examples and comparative examples is 73.0 mN / m in surface free energy obtained in the above-mentioned “(Preparation of SiO 2 substrate)” using an inkjet discharge device. The SiO 2 substrate and the SiN substrate having the surface free energy of 58.0 mN / m obtained in the above-mentioned “(Preparation of SiN substrate)” were respectively discharged. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet Co., Ltd.) was used, and the sealant was discharged at 25 ° C., a droplet volume of 10 pL, a pitch of 800 μm, a drop from a height of 0.5 mm from the substrate, and a frequency of 20 kHz. It went on condition of. The sealant droplet one minute after the landing was observed with an optical microscope (Nikon Corporation, “AZ-100”) equipped with an objective lens PlanApo0.5X, and measured using image processing software WinROOF2015 Standard version. The average diameter of 12 droplets is shown in Tables 1 and 2.
For each sealing agent for organic EL display elements obtained in Examples and Comparative Examples, the maximum difference between the SP value of the entire curable resin and the SP value between the curable resins calculated by the Fedors estimation method is shown in Table 1. It was shown in 2.
In addition, for each organic EL display element sealant obtained in the examples and comparative examples, the surface was measured by a Wilhelmy method using a surface tension meter (“DY-300” manufactured by Kyowa Interface Science Co., Ltd.) at 25 ° C. The tension is shown in Tables 1 and 2.
Furthermore, about each sealing agent for organic electroluminescent display elements obtained by the Example and the comparative example, conditions of 25 degreeC and 100 rpm were used for E type | mold viscosity meter (the Toki Sangyo company make, "VISCOMETER TV-22"). The viscosities measured in are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
<評価>
実施例及び比較例で得られた各有機EL表示素子用封止剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluation was performed about each sealing agent for organic EL display elements obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(1)濡れ広がり性
上記「(SiO基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO基板に実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter500」)を用いて、10pLの液滴量にて、48μmピッチで8cm×8cm大の面積になるように塗布した。塗布から3分後の基板上の封止剤を目視にて観察し、濡れ広がらずに筋状となった未塗布部分の数を確認した。筋状の未塗布部分の数が0本であった場合を「◎」、1本以上2本未満であった場合を「○」、2本以上5本未満であった場合を「△」、5本以上であった場合を「×」として濡れ広がり性を評価した。
(1) Wetting and spreading property Each of the organic EL display element seals obtained in Examples and Comparative Examples was obtained on the SiO 2 substrate having a surface free energy of 73.0 mN / m obtained in the above-mentioned “(Preparation of SiO 2 substrate)”. The stopper was applied using an inkjet discharge device (“NanoPrinter500” manufactured by MicroJet Co., Ltd.) with a droplet amount of 10 pL so as to have an area of 8 cm × 8 cm with a pitch of 48 μm. The sealing agent on the substrate 3 minutes after application was visually observed, and the number of uncoated parts that became streaks without spreading out was confirmed. “◎” when the number of streaky uncoated portions is 0, “◯” when 1 or more and less than 2, and “△” when 2 or more and less than 5. The case where there were 5 or more was evaluated as “×” and the wet spreading property was evaluated.
(2)異物カバー性
上記「(SiO基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO基板上に、窒化珪素粒子(宇部興産社製、「SN-E10」)及びシリカ粒子(日本触媒社製、「シーホスター」)を散布機により散布した。得られたSiO基板に実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter500」)を用いて、10pLの液滴量にて、48μmピッチで8cm×8cm大の面積になるように塗布した。塗布から3分後に照度1000mW/cmの395nmUVLEDで、積算光量が1000mJ/cmとなるように照射し、散布した窒化珪素粒子やシリカ粒子を異物と想定し、任意に抽出した異物10個当りのピンホールの数を確認した。異物10個当りのピンホールの数が0個であった場合を「◎」、1個以上2個未満であった場合を「○」、2個以上3個未満であった場合を「△」、3個以上であった場合を「×」として異物カバー性を評価した。なお、濡れ広がり不良により評価できなかったものについては「-」とした。
(2) foreign matter cover of the "(Production of SiO 2 substrate)" obtained in the surface free energy SiO 2 substrate of 73.0mN / m, the silicon nitride particles (manufactured by Ube Industries, Ltd., "SN-E10" ) And silica particles (manufactured by Nippon Shokubai Co., Ltd., “Seahoster”) were dispersed using a spreader. Each of the sealing agents for organic EL display elements obtained in Examples and Comparative Examples was applied to the obtained SiO 2 substrate in a droplet amount of 10 pL using an inkjet discharge device (“NanoPrinter500” manufactured by Microjet Co., Ltd.). Then, it was applied so as to have an area of 8 cm × 8 cm at a pitch of 48 μm. Three minutes after application, irradiating with a 395 nm UV LED with an illuminance of 1000 mW / cm 2 so that the integrated light quantity becomes 1000 mJ / cm 2 , and assuming the dispersed silicon nitride particles and silica particles as foreign matters, per 10 extracted foreign matters The number of pinholes was confirmed. “◎” when the number of pinholes per 10 foreign objects is 0, “◯” when 1 or more and less than 2, and “△” when 2 or more and less than 3 The case of 3 or more was evaluated as “x”, and the foreign matter covering property was evaluated. In addition, “−” was given for those that could not be evaluated due to poor wetting and spreading.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
本発明によれば、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where it thins, the sealing agent for organic EL display elements which is excellent in the applicability | paintability with respect to a board | substrate or an inorganic material film | membrane can be provided.

Claims (4)

  1. 硬化性樹脂と重合開始剤とを含有する有機EL表示素子用封止剤であって、
    表面自由エネルギーが70mN/m以上80mN/m以下のSiO基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板に対して、インクジェット吐出装置を用いて、25℃、周波数20kHzの条件で前記有機EL表示素子用封止剤を基板から0.5mmの高さから10pL滴下した際、滴下から1分後の液滴の直径がいずれも150μm以上である
    ことを特徴とする有機EL表示素子用封止剤。
    An organic EL display element sealant containing a curable resin and a polymerization initiator,
    For an SiO 2 substrate having a surface free energy of 70 mN / m or more and 80 mN / m or less and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less, using an inkjet discharge device, conditions of 25 ° C. and a frequency of 20 kHz And when the organic EL display element sealant is dropped from the substrate at a height of 0.5 mm by 10 pL, the diameter of the liquid droplets 1 minute after the dropping is 150 μm or more. Device sealant.
  2. 25℃における表面張力が25mN/m以上38mN/m以下であり、かつ、
    25℃における粘度が5mPa・s以上30mPa・s以下である請求項1記載の有機EL表示素子用封止剤。
    The surface tension at 25 ° C. is 25 mN / m or more and 38 mN / m or less, and
    The encapsulant for organic EL display elements according to claim 1, which has a viscosity at 25 ° C. of 5 mPa · s to 30 mPa · s.
  3. インクジェット法による塗布に用いられる有機EL表示素子用封止剤であって、
    硬化性樹脂と重合開始剤とを含有し、
    表面自由エネルギーが70mN/m以上80mN/m以下のSiO基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板に対して、インクジェット吐出装置を用いて、25℃、周波数20kHzの条件で前記有機EL表示素子用封止剤を基板から0.5mmの高さから10pL滴下した際、滴下から1分後の液滴の直径がいずれも150μm以上である
    ことを特徴とする有機EL表示素子用封止剤。
    An organic EL display element sealing agent used for coating by an inkjet method,
    Containing a curable resin and a polymerization initiator,
    For an SiO 2 substrate having a surface free energy of 70 mN / m or more and 80 mN / m or less and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less, using an inkjet discharge device, conditions of 25 ° C. and a frequency of 20 kHz And when the organic EL display element sealant is dropped from the substrate at a height of 0.5 mm by 10 pL, the diameter of the liquid droplets 1 minute after the dropping is 150 μm or more. Device sealant.
  4. 硬化性樹脂全体の溶解度パラメータが16.5(J/cm1/2以上19.5(J/cm1/2以下である請求項1、2又は3記載の有機EL表示素子用封止剤。 4. The organic EL display element according to claim 1, wherein the solubility parameter of the entire curable resin is 16.5 (J / cm 3 ) 1/2 or more and 19.5 (J / cm 3 ) 1/2 or less. Sealant.
PCT/JP2019/012163 2018-03-30 2019-03-22 Sealant for organic el display element WO2019188812A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207018790A KR20200136362A (en) 2018-03-30 2019-03-22 Sealant for organic EL display devices
CN201980015819.6A CN111837456A (en) 2018-03-30 2019-03-22 Sealing agent for organic EL display element
JP2019521509A JP7474053B2 (en) 2018-03-30 2019-03-22 Sealant for organic EL display devices
JP2023198365A JP2024022608A (en) 2018-03-30 2023-11-22 Encapsulant for organic el display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-069117 2018-03-30
JP2018069117 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019188812A1 true WO2019188812A1 (en) 2019-10-03

Family

ID=68061840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012163 WO2019188812A1 (en) 2018-03-30 2019-03-22 Sealant for organic el display element

Country Status (5)

Country Link
JP (2) JP7474053B2 (en)
KR (1) KR20200136362A (en)
CN (1) CN111837456A (en)
TW (1) TWI835784B (en)
WO (1) WO2019188812A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129792A1 (en) * 2018-12-18 2020-06-25 積水化学工業株式会社 Curable resin composition, cured product and organic el display element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902816B1 (en) * 1999-04-06 2005-06-07 Rhodia Chimie Silicone composition used in the production of antifriction varnishes, method for the application of said varnishes to a support and support thus treated
WO2016014690A1 (en) * 2014-07-25 2016-01-28 Kateeva, Inc. Organic thin film ink compositions and methods
WO2016167347A1 (en) * 2015-04-17 2016-10-20 積水化学工業株式会社 Sealant for electronic device, and method for manufacturing electronic device
JP2017523549A (en) * 2014-04-23 2017-08-17 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Composition for sealing organic light emitting element and organic light emitting element display device manufactured using the same
JP2017228414A (en) * 2016-06-22 2017-12-28 積水化学工業株式会社 Sealant for organic electroluminescent display element
WO2018074510A1 (en) * 2016-10-19 2018-04-26 積水化学工業株式会社 Organic el display element sealing agent
JP2019001995A (en) * 2017-06-13 2019-01-10 パナソニックIpマネジメント株式会社 Ultraviolet-curable resin composition, method of manufacturing organic el light-emitting device, and organic el light-emitting device
WO2019082996A1 (en) * 2017-10-26 2019-05-02 デンカ株式会社 Sealing agent for organic electroluminescent display elements

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817081B2 (en) 1999-01-29 2006-08-30 パイオニア株式会社 Manufacturing method of organic EL element
JP2001307873A (en) 2000-04-21 2001-11-02 Toppan Printing Co Ltd Organic electroluminescence display element and its manufacturing method
US8808457B2 (en) 2002-04-15 2014-08-19 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
JP2008153211A (en) 2006-11-22 2008-07-03 Fujifilm Corp Barrier performance film substrate and its manufacturing method
JP4898850B2 (en) * 2009-01-22 2012-03-21 住友化学株式会社 INK JET INK FOR ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
WO2011104997A1 (en) * 2010-02-23 2011-09-01 Jsr株式会社 Organic el element, organic el display device, organic el lighting device, and curable composition for sealing agent
JP5757522B2 (en) * 2011-07-22 2015-07-29 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
KR101511476B1 (en) * 2014-02-28 2015-04-10 스미또모 가가꾸 가부시키가이샤 Photosensitive resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902816B1 (en) * 1999-04-06 2005-06-07 Rhodia Chimie Silicone composition used in the production of antifriction varnishes, method for the application of said varnishes to a support and support thus treated
JP2017523549A (en) * 2014-04-23 2017-08-17 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Composition for sealing organic light emitting element and organic light emitting element display device manufactured using the same
WO2016014690A1 (en) * 2014-07-25 2016-01-28 Kateeva, Inc. Organic thin film ink compositions and methods
WO2016167347A1 (en) * 2015-04-17 2016-10-20 積水化学工業株式会社 Sealant for electronic device, and method for manufacturing electronic device
JP2017228414A (en) * 2016-06-22 2017-12-28 積水化学工業株式会社 Sealant for organic electroluminescent display element
WO2018074510A1 (en) * 2016-10-19 2018-04-26 積水化学工業株式会社 Organic el display element sealing agent
JP2019001995A (en) * 2017-06-13 2019-01-10 パナソニックIpマネジメント株式会社 Ultraviolet-curable resin composition, method of manufacturing organic el light-emitting device, and organic el light-emitting device
WO2019082996A1 (en) * 2017-10-26 2019-05-02 デンカ株式会社 Sealing agent for organic electroluminescent display elements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129792A1 (en) * 2018-12-18 2020-06-25 積水化学工業株式会社 Curable resin composition, cured product and organic el display element
JPWO2020129792A1 (en) * 2018-12-18 2021-10-28 積水化学工業株式会社 Curable resin composition, cured product, and organic EL display element
JP7457644B2 (en) 2018-12-18 2024-03-28 積水化学工業株式会社 Curable resin composition, cured product, and organic EL display element

Also Published As

Publication number Publication date
CN111837456A (en) 2020-10-27
JP2024022608A (en) 2024-02-16
JP7474053B2 (en) 2024-04-24
KR20200136362A (en) 2020-12-07
JPWO2019188812A1 (en) 2021-02-12
TWI835784B (en) 2024-03-21
TW201942315A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
JP6200591B2 (en) Sealant for electronic device for inkjet coating and method for producing electronic device
JP6997062B2 (en) A method for manufacturing a sealant for an organic EL display element and a sealant for an organic EL display element.
JP6404494B2 (en) Sealant for organic EL display element
JP7457686B2 (en) Encapsulant for organic EL display elements
JP2022027778A (en) Organic el display element sealing agent
JP2024022608A (en) Encapsulant for organic el display element
WO2018230388A1 (en) Sealant for organic el display elements
JP7397666B2 (en) Encapsulant for organic EL display elements
JP7474052B2 (en) Sealant for organic EL display devices
WO2019198470A1 (en) Sealant for organic electroluminescent display element
JP2019012698A (en) Sealing agent for organic EL display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521509

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776743

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776743

Country of ref document: EP

Kind code of ref document: A1