WO2019188797A1 - Method for manufacturing mold having recessed seat pattern, and method for producing pattern sheet - Google Patents

Method for manufacturing mold having recessed seat pattern, and method for producing pattern sheet Download PDF

Info

Publication number
WO2019188797A1
WO2019188797A1 PCT/JP2019/012123 JP2019012123W WO2019188797A1 WO 2019188797 A1 WO2019188797 A1 WO 2019188797A1 JP 2019012123 W JP2019012123 W JP 2019012123W WO 2019188797 A1 WO2019188797 A1 WO 2019188797A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
pattern
electroforming
concave
resin
Prior art date
Application number
PCT/JP2019/012123
Other languages
French (fr)
Japanese (ja)
Inventor
聡 茶井
宇佐 利裕
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019188797A1 publication Critical patent/WO2019188797A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves

Definitions

  • the present invention relates to a method for producing a mold having a concave pedestal pattern and a method for producing a pattern sheet, and in particular, a method for producing a mold having a concave pedestal pattern used for producing a pattern sheet having needle-like convex portions and the concave pedestal.
  • the present invention relates to a method for producing a pattern sheet using a mold having a pattern.
  • Micro-Needle® Array has been known as a new dosage form that can administer drugs such as insulin, vaccine (Vaccines) and hGH (human Growth Hormone) into the skin without pain.
  • the microneedle array is an array of biodegradable microneedles (also referred to as needle-like convex portions, microneedles, or microneedles) containing a drug and arranged in an array. By affixing this microneedle array to the skin, each microneedle pierces the skin, the microneedle is absorbed in the skin, and the drug contained in each microneedle can be administered into the skin.
  • the microneedle array is also called a transdermal absorption sheet.
  • Patent Documents 1 and 2 describe a technique for producing a mold by injection molding in which an electroformed mold is sandwiched between a first mold and a second mold and a resin is filled in a cavity. According to Patent Documents 1 and 2, an accurate mold can be produced.
  • Patent Document 3 when forming a pattern sheet, a step is provided in order to prevent the resin solution constituting the pattern sheet from flowing out of the mold and flowing beyond a target location.
  • the type is described. By using a mold having a step, it is possible to prevent the liquid containing no drug from flowing out of the mold and flowing when a liquid containing no drug is applied to the mold surface.
  • Patent Document 3 does not disclose a configuration in which a mold configured to prevent liquid flow is manufactured by injection molding.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing a mold having a concave pedestal pattern and a method for producing a pattern sheet, which prevent the liquid from flowing.
  • one aspect of a method for producing a mold having a concave pedestal pattern includes a first convex pedestal shape having a concave portion on the back surface and a second convex needle pattern group on the first convex pedestal surface. Providing a support layer in a recess on the back surface of the first convex pedestal shape provided in the nesting mold, and a step of preparing a mold having the first mold and the second mold.
  • a mold having a concave pedestal pattern having a reinforcing step, a mold clamping step of clamping a nested die by a first die and a second die to form a cavity, and an injection step of filling the cavity with a mold resin This is a manufacturing method.
  • the support layer is provided in the concave portion on the back surface of the first convex pedestal shape provided in the nesting mold, it is possible to produce a mold having a concave pedestal pattern following the first convex pedestal shape. it can.
  • the support layer is preferably composed of at least one of a support resin, a metal, and a liquid. Thereby, a 1st convex base shape can be reinforced appropriately.
  • the support layer preferably includes at least one of a support resin and a metal, and has a smoothing step of polishing and smoothing at least one of the support resin and the metal. Thereby, a support layer can be provided appropriately.
  • Polishing preferably uses at least one of grinding, superfinishing, honing, blasting, ultrasonic processing, lapping, and polishing. Thereby, the back surface of a support layer can be smoothed appropriately.
  • the support layer preferably contains a fluid, and the first type preferably has a fluid flow path. Thereby, a support layer can be comprised with a fluid.
  • the mold resin is preferably either a thermosetting resin or a silicone resin. Thereby, a mold can be produced appropriately.
  • the mold resin in the cavity is cured by heating, and after the curing process, the first mold and the second mold are opened, and the cured mold resin is released from the nesting mold. A mold release step. Thereby, a mold can be produced appropriately.
  • the nesting mold is preferably either a plastic resin or a metal. Thereby, a mold can be produced appropriately.
  • the nesting die is an electroforming die and is preferably circular in plan view. Thereby, a nested mold
  • one aspect of a method for producing a pattern sheet includes a step of producing a mold having a concave pedestal pattern by a method for producing a mold having a concave pedestal pattern, and a polymer solution in the concave pedestal pattern of the mold. It is the manufacturing method of the pattern sheet
  • the pattern sheet can be manufactured appropriately.
  • the polymer solution contains a water-soluble material.
  • This embodiment can be applied to a polymer solution containing a water-soluble material.
  • a mold configured to prevent liquid flow can be produced by injection molding. Moreover, a pattern sheet can be manufactured with this mold.
  • the method for producing a mold having a concave pattern prepares a first convex pedestal shape having a recess on the back surface and a nested mold having a second convex needle pattern group on the surface of the first convex pedestal shape.
  • a step of preparing a mold having a first mold and a second mold, a reinforcing process of providing a support layer in a concave portion on the back surface of the first convex pedestal shape provided in the nested mold, and forming a cavity includes a mold clamping process in which the nested mold is clamped by the first mold and the second mold, and an injection process in which the cavity is filled with resin.
  • a mother mold 10 for preparing an electroforming mold that is a nested mold is prepared.
  • a concave pattern 14 is formed that is an inverted shape of an electroforming mold having a convex pattern to be produced.
  • the concave pattern 14 is a state in which a plurality of second concave portions 16 are arranged in an array in the first concave portion 15.
  • the 1st recessed part 15 and the 2nd recessed part 16 are produced according to the shape of the electroforming metal mold to produce.
  • the first recess 15 has a cylindrical shape having a certain diameter from the first surface 12 toward the second surface 18.
  • the second recess 16 has a tapered shape from the first surface 12 toward the second surface 18.
  • examples of the tapered shape include a cone shape, a combination of a column shape and a cone shape, and a combination of a frustum shape and a cone shape.
  • a plurality of concave patterns 14 are formed on the first surface 12 of the mother die 10.
  • the mother die 10 is fixed to the cathode 20 used for the electroforming process.
  • the cathode 20 includes at least a shaft 22 and a cathode plate 24.
  • the mother die 10 is fixed to the cathode plate 24 at a position where the second surface 18 of the mother die 10 and the cathode plate 24 face each other.
  • a conductive treatment is performed on the mother die 10.
  • a metal film for example, nickel
  • a conductive ring 26 is provided on the outer periphery of the mother die 10.
  • the shaft 22 and the cathode plate 24 are made of a conductive member.
  • electroforming treatment refers to a treatment method in which a metal is deposited on the surface of the mother die 10 by electroplating.
  • the mother die 10 attached to the cathode 20 is immersed in the electroforming liquid 32.
  • an electroforming apparatus 30 that performs an electroforming process on the mother die 10 includes an electroforming tank 34 that holds an electroforming liquid 32, and an electroforming liquid 32 ⁇ / b> A that overflows the electroforming tank 34.
  • a drain tank 36 to be received and a titanium case 40 filled with Ni pellets 38 are provided.
  • the cathode 20 with the mother die 10 attached is functioned as an electroforming apparatus 30 by immersing it in the electroforming liquid 32.
  • the electroforming liquid 32 for example, a liquid in which 400 to 800 g / L nickel sulfamate, 20 to 50 g / L boric acid, and a necessary additive such as a surfactant (for example, sodium lauryl sulfate) are mixed. Can be used.
  • the temperature of the electroforming liquid 32 is preferably 40 to 60 ° C.
  • a drain pipe 42 is connected to the drain tank 36, and a supply pipe 44 is connected to the electroforming tank 34.
  • the electroforming liquid 32 overflowed from the electroforming tank 34 to the drain tank 36 is recovered by the drain pipe 42, and the recovered electroforming liquid 32 is supplied from the supply pipe 44 to the electroforming tank 34.
  • the mother die 10 held by the cathode 20 is aligned at a position where the first surface 12 on which the concave pattern 14 is formed faces the titanium case 40 serving as the anode.
  • the cathode 20 is connected to the negative electrode, and the positive electrode is connected to the titanium case 40 serving as the anode.
  • a DC voltage is applied between the cathode 20 and the titanium case 40 while rotating the mother die 10 held by the cathode plate 24 around the shaft 22 at a rotation speed of 10 to 150 rpm.
  • the Ni pellets 38 are dissolved, and a metal film adheres to the concave pattern 14 of the mother die 10 attached to the cathode 20.
  • the electroforming mold 50 composed of a metal film is formed on the mother die 10
  • the cathode 20 to which the mother die 10 is attached is taken out from the electroforming tank 34 (not shown) as shown in FIG.
  • the electroforming mold 50 is peeled from the mother mold 10.
  • the electroforming mold 50 having the first surface 52 and the second surface 58 and having the flat portion 53 and the convex pattern 54 on the first surface 52 can be obtained.
  • the convex pattern 54 is an inverted shape of the concave pattern 14 of the mother die 10.
  • the electroforming mold 50 has a thickness of 150 ⁇ m.
  • FIG. 5 is a perspective view of the electroforming mold 50.
  • the convex pattern 54 is a state in which a plurality of second convex portions 56 that are convex needle pattern groups are arranged in an array on the first convex portion 55 that is a convex pedestal shape.
  • the first convex portion 55 has a cylindrical pedestal shape having a certain height.
  • the height of the 1st convex part 55 is the range of 0.2 mm or more and 2 mm or less, for example, Preferably, it is 0.3 mm or more and 1.5 mm or less.
  • a cylindrical concave portion 57 having a certain diameter is provided on the back surface side of the first convex portion 55.
  • the second convex portion 56 has a tapered shape protruding from the first surface 52 of the first convex portion 55.
  • examples of the tapered shape include a cone shape, a combination of a column shape and a cone shape, and a combination of a frustum shape and a cone shape.
  • a plurality of convex patterns 54 are formed on the first surface 52 of the electroforming mold 50.
  • the height of the 2nd convex part 56 is the range of 0.2 mm or more and 2 mm or less, for example, Preferably, they are 0.3 mm or more and 1.5 mm or less.
  • the height of the second convex portion 56 is the distance from the first convex portion 55 to the tip of the second convex portion 56.
  • the electroforming mold 50 is preferably circular in plan view.
  • the diameter of the electroforming mold 50 is preferably 200 to 300 mm.
  • the circular shape is not limited to a perfect circle and may be a substantially circular shape.
  • the metal electroformed mold 50 was produced as a nesting mold
  • the nesting mold may be fabricated from a plastic resin.
  • the electroforming mold 50 is transferred to produce a mold.
  • the area of the region where the plurality of convex patterns 54 is formed is smaller than the area of the electroforming mold 50.
  • the produced mold may exceed an appropriate size and include an excess part. This surplus portion may cause resin loss and may require additional processing such as cutting.
  • the electroforming mold 50 may be vacuum-sucked using an adsorption plate. During injection molding, it is required that the suction plate is not damaged.
  • a mold 70 including a first mold 72 and a second mold 74 is prepared.
  • a cavity 76 is formed in the mold 70 by clamping the first mold 72 and the second mold 74.
  • the cavity 76 means a space filled with resin.
  • the electroforming mold 50 is fixed to the first mold 72.
  • the side on which the electroforming mold 50 is fixed is constituted by a flat surface 78.
  • the first mold 72 includes a suction plate 80 on a flat surface 78 as a device for fixing the electroforming mold 50.
  • the first mold 72 includes a suction pipe 82 that communicates with the suction plate 80 in gas.
  • the suction pipe 82 is connected to a vacuum pump (not shown). By driving the vacuum pump, air can be sucked from the surface of the suction plate 80. By using the suction plate 80, the electroforming mold 50 can be easily fixed and replaced.
  • the suction plate 80 is made of, for example, a porous member.
  • a porous member a metal sintered compact, resin, a ceramic, etc. can be mentioned, for example.
  • the suction plate 80 is required not to be damaged from the viewpoint of strength.
  • the electroforming mold 50 is formed of a ferromagnetic material such as nickel, the electroforming mold 50 is held on the first mold 72 by the magnetic force of a magnet (not shown) provided on the first mold 72. Good.
  • a depression 84 (see FIG. 10) is formed on the cavity 76 side of the second mold 74.
  • a cavity 76 is formed by the flat surface 78 of the first mold 72 and the recess 84 of the second mold 74.
  • the second mold 74 is formed with a gate 86 communicating with the cavity 76.
  • the gate 86 serves as a resin injection port into the cavity 76 of the mold 70.
  • the gate 86 is in communication with an injection molding machine 88 that supplies resin to the mold 70.
  • the resin is filled into the cavity 76 from a direction substantially perpendicular to the longitudinal direction of the cavity 76, that is, a so-called longitudinal direction (injection process).
  • the first mold 72 and the second mold 74 are opened, and the electroforming mold 50 having the convex pattern 54 is placed on the first mold 72.
  • the support layer 120 is disposed in advance in the concave portion 57 on the back surface side of the first convex portion 55 of the electroforming mold 50 (reinforcing step). Details of the support layer 120 will be described later.
  • the fact that the electroforming mold 50 is sandwiched between the first mold 72 and the second mold 74 in a region other than the suction plate 80 substantially means that the first mold 72 and the second mold 74 are used in the region other than the suction plate 80.
  • the inner wall of the second mold 74 is located on the inner side of the outer edge 60 of the electroforming mold 50 as indicated by an arrow A in FIG. Is located.
  • the cavity 76 is smaller than the entire surface of the electroforming mold 50. As a result, the volume of the cavity 76 can be reduced, so that loss of resin can be avoided.
  • the first mold 72 and the second mold 74 do not sandwich the electroforming mold 50 in the region of the suction plate 80.
  • the inner side is a direction from the outer edge 60 of the electroforming mold 50 toward the center, and the outer side is a direction from the center of the electroforming mold 50 toward the outer edge 60. It is important to determine the position of the inner wall that defines the size of the cavity 76 (the inner wall that defines the width direction, not the height direction) so that the suction plate 80 is not damaged. As long as the suction plate 80 is not damaged, a part of the suction plate 80 can be clamped by the first mold 72 and the second mold 74.
  • the region excluding the end 62 of the electroforming mold 50 is clamped.
  • the electroforming mold 50 is manufactured by supplying a current from the conductive ring 26. Therefore, the end 62 of the electroforming mold 50 that contacts the conductive ring 26 may have different physical properties (for example, thickness or surface roughness) as compared with other portions of the electroforming mold 50. .
  • the electroforming mold 50 has end portions 62 having different physical properties
  • the electroforming mold 50 is stabilized by the first mold 72 and the second mold 74.
  • the end portion 62 of the electroforming mold 50 may be clamped by the first mold 72 and the second mold 74.
  • the end portion 62 of the electroforming mold 50 is an area inside the outer edge 60 of the electroforming mold 50, and is an area having a physical property different from other areas excluding the convex pattern 54 of the electroforming mold 50.
  • the physical properties are not limited to the thickness.
  • the produced electroformed mold 50 can be fixed inside the mold 70 without processing the end portion 62 of the electroformed mold 50, injection molding with high productivity is realized. It becomes possible. Further, since the electroforming mold 50 is vacuum-sucked by the suction plate 80 and is clamped between the first mold 72 and the second mold, the electroforming mold 50 can be stably fixed, so that an accurate injection molding is performed. Can be realized.
  • the resin R is supplied from the injection molding machine 88 to the cavity 76 through the gate 86.
  • the resin R is filled in the cavity 76 while passing between the convex patterns 54 of the electroforming mold 50.
  • the resin R it is preferable to use an acrylic or epoxy thermosetting resin or a silicone resin, and it is particularly preferable to use a silicone resin.
  • the resin R is then heated to cure the resin R (curing step).
  • the first mold 72 and the second mold 74 that have been clamped are opened.
  • the first mold 72 and the second mold 74 are moved so as to be relatively separated from each other.
  • the second mold 74 has a recess 84 for forming a cavity 76.
  • the cured resin R is a mold 100 in which a concave pattern 102 (see FIG. 14) before release is formed.
  • the mold 100 may be referred to.
  • the first mold 72 is separated from the second mold 74 and moved to the stage for releasing the mold 100 from the electroforming mold 50.
  • the mold 100 is exposed except for the surface in contact with the electroforming mold 50 fixed to the first mold 72. Become. Therefore, when the mold 100 is released from the electroforming mold 50, the mold 100 can be easily released using the exposed surface of the mold 100.
  • the periphery of the mold 100 is first separated from the electroforming mold 50.
  • the peripheral portion of the mold 100 only needs to include at least two opposing sides when the mold 100 is viewed in plan, and may include all four sides.
  • the peripheral edge means a region from the outer periphery of the mold 100 to the concave pattern 102.
  • the periphery of the mold 100 is gradually separated from the electroforming mold 50.
  • the mold 100 is made of a silicone resin
  • the mold 100 has an elastic force. Therefore, when the periphery of the mold 100 is gradually separated, the mold 100 is stretched (elastic deformation).
  • the mold 100 that has been elastically deformed tends to return to its original shape, and thus the mold 100 contracts.
  • the mold 100 is released from the electroforming mold 50 by utilizing the shrinking force of the mold 100. By utilizing the force that the mold 100 is trying to shrink as a releasing force, an excessive force is not applied between the mold 100 and the convex pattern 54 of the electroformed mold 50, thereby suppressing defective release. Is possible.
  • the concave pattern 102 is a state in which a plurality of concave portions 104 are arranged in an array on the concave pedestal pattern 105.
  • the convex pattern 54 is gradually damaged, so that it is necessary to replace the electroforming mold 50 with a new one when it is used about 1000 to 10,000 times.
  • the electroforming mold 50 can be replaced in a short time by stopping the driving of a vacuum pump (not shown) and reducing the suction force of the suction plate 80.
  • a circular electroformed mold 50 in a plan view is used in injection molding.
  • 15 and 16 are process diagrams showing a mold manufacturing method using another type of mold 70. As shown in FIG. 15, a recess 90 is formed in the first mold 72 of the mold 70. An electroforming mold 50 is installed on the bottom surface of the recess 90 and is vacuum-sucked to the first mold 72 via the suction plate 80.
  • the first mold 72 and the second mold 74 are clamped to form the cavity 76.
  • the electroforming mold 50 installed in the recess 90 of the first mold 72 is sandwiched between the first mold 72 and the second mold 74.
  • the inner wall of the second mold 74 is located inside the outer edge 60 of the electroforming mold 50 and outside the suction plate 80.
  • the end portion 62 of the electroforming mold 50 is also sandwiched between the first mold 72 and the second mold 74.
  • the resin R is supplied from the injection molding machine 88 to the cavity 76 through the gate 86.
  • the resin R is filled in the cavity 76 while passing between the convex patterns 54 of the electroforming mold 50.
  • the electroforming mold 50 that is a nested mold according to the present embodiment has a thickness of 150 ⁇ m. As described above, in the mold clamping process, the electroforming mold 50 is clamped by the first mold 72 and the second mold 74. Even when the end portion 62 of the electroforming mold 50 is warped and distribution is generated around the clamping portion, the electroforming die 50 is thin, so that the warping is corrected by a mold clamping pressure of several tens of tons. be able to. Thereby, a gap is not formed in the pinching portion, and the injected resin does not leak. Further, the warpage of the electroformed mold 50 inside the cavity can be corrected so as to follow the first mold 72 by the resin pressure at the time of injection (injection pressure).
  • the thickness of the electroforming mold 50 is thin, when the support layer 120 is not disposed in the concave portion 57 on the back surface side of the first convex portion 55 having the convex pedestal shape, the convex pedestal shape is changed by the injection pressure of the resin. There was a problem that the desired concave pedestal pattern 105 could not be obtained in the formed mold 100 due to buckling or destruction.
  • FIG. 17 is a diagram showing a cross-sectional shape of a nested convex pedestal shape before and after injection molding and a concave pedestal pattern shape of a mold produced without arranging a support layer on the back surface of the convex pedestal shape.
  • the horizontal axis represents the measurement position coordinates
  • the vertical axis represents the height of the convex pedestal shape and the depth ( ⁇ inversion) of the concave pedestal pattern shape.
  • the convex pedestal shape before injection molding is indicated by a thin solid line
  • the convex pedestal shape after injection molding is indicated by a thick solid line
  • the concave pedestal pattern shape ( ⁇ inversion) of the mold is indicated by a broken line.
  • the nested convex pedestal shape before injection molding is a portion of 1 mm to 13 mm in the measurement position coordinates shown in FIG. As shown in FIG. 17, the convex pedestal has a diameter of about 12 mm and a height of about 50 ⁇ m.
  • the concave pedestal pattern shape of the produced mold is a portion of 1 mm to 13 mm in the measurement position coordinates shown in FIG. As shown in FIG. 17, the height is about 0 ⁇ m in the portion of 3 to 11 mm in the measurement position coordinates. This is because the nested mold is pressed against the first mold surface by the injection pressure, and the nested convex pedestal shape is buckled.
  • the nested convex pedestal shape after injection molding is a portion of 1 mm to 13 mm in the measurement position coordinates shown in FIG. As shown in FIG. 17, the convex pedestal shape after the injection molding has a height of about 30 ⁇ m at a measurement position coordinate of 3 to 11 mm. This is because the plastic deformation was caused by the injection pressure.
  • the thickness of the nested mold is increased.
  • the plating time may be increased to increase the thickness.
  • the warp cannot be corrected in the mold clamping process, and a gap is generated in the clamping portion. Even if the pinching portion is a gap of about 10 ⁇ m, there is a problem that the resin leaks during the injection process. If the resin leaks, manual work increases, such as the need for cleaning for each injection molding, which increases costs such as labor costs and increases the tact time of the apparatus.
  • a thickness distribution occurs in the mold along the shape of the nested warp. Accordingly, there is a problem that a difference in thickness occurs in the in-plane patch. If the thickness differs for each patch, focus adjustment is required for each patch during inspection. Further, the nested needle-like convex portion may collide with the second mold and be damaged.
  • the thickness of electroforming may be increased and processed by grinding or the like.
  • the thickness of the electroforming mold is required to be about 750 ⁇ m, which increases the cost of the electroforming process.
  • the support layer 120 is disposed in the concave portion 57 on the back surface side of the first convex portion 55.
  • thermosetting resin is used as the support layer 120.
  • FIG. 18 is a diagram illustrating a process of creating the support layer 120.
  • a thermosetting resin 130 heat-resistant epoxy resin
  • An example of a supporting resin is poured and heated to be cured.
  • the thermosetting resin 130 is used here, a silicone resin may be used.
  • thermosetting resin 130 is polished by the polishing means 132, and the back surface 130A of the thermosetting resin 130 is smoothed (smoothing step).
  • the back surface 130A of the thermosetting resin 130 is smooth so as to be flush with the surface of the second surface 58 of the flat portion 53, which is a region where the convex pattern 54 is not formed on the first surface 52 of the electroforming mold 50. Turned into.
  • Polishing by the polishing means 132 is a grinding process in which a grindstone is pressed against the thermosetting resin 130 to remove the surface little by little, a superfinishing process by a superfinishing grindstone, a honing process in which a rotating motion and a reciprocating motion are imparted to a grindstone held on a horn, etc. Can be used.
  • the polishing member pressed against the thermosetting resin 130 is not limited to a grindstone, and polishing cloth such as sandpaper or water-resistant paper may be used.
  • an ultrasonic polishing process (ultrasonic process) using a polishing tool that vibrates ultrasonically, a lapping process that presses the surface of the polishing platen against an object to be polished, a polishing process that is performed using a polishing pad, or the like may be used.
  • the blast process which makes a granular material collide with a process target and provides an unevenness
  • FIG. 19 is a diagram showing the support layer 120 created in this way.
  • the back surface 120 ⁇ / b> A of the support layer 120 forms the same plane as the surface of the second surface 58 of the flat portion 53 of the electroforming mold 50.
  • FIG. 20 is a diagram showing a cross-sectional shape of a concave pedestal pattern shape of a mold manufactured using an electroforming mold 50 in which a support layer 120 of a thermosetting resin 130 is disposed in a concave portion 57.
  • the horizontal axis indicates the measurement position coordinates
  • the vertical axis indicates the depth ( ⁇ inversion) of the concave pedestal pattern shape.
  • the concave base pattern shape of the first mold is indicated by a broken line
  • the concave base pattern shape of the seventh mold is indicated by a dotted line.
  • die 50 is shown with the continuous line. Note that the second convex portion 56 is ignored.
  • the first convex portion 55 is a portion of 2.8 mm to 13.8 mm in the measurement position coordinates shown in FIG. As shown in FIG. 20, the first convex portion 55 has a diameter of about 11 mm and a height of about 55 ⁇ m.
  • the concave pedestal pattern shape of the produced mold is a portion of 2.8 mm to 13.8 mm in the measurement position coordinates shown in FIG. As shown in FIG. 20, both the first mold and the seventh mold have a height of about 58 ⁇ m at a measurement position coordinate of 2.8 to 13.8 mm.
  • the shape of the mold is changed as compared with the shape of the electroforming mold 50, it is presumed that it is caused by polishing pressure or curing shrinkage of the resin.
  • the back surface 130A of the cured thermosetting resin 130 is polished by the polishing means 132.
  • the smoothing step is not essential.
  • FIG. 21 is a view showing the support layer 120 using the metal plate 140.
  • the second convex portion 56 is omitted.
  • a recessed portion 57 (inner diameter: 11.7 mm, depth: 300 ⁇ m) on the back surface side of the first convex portion 55 ( ⁇ 12.0 mm, height: 300 ⁇ m) having a nested base shape has a height of 300 ⁇ m.
  • a cylindrical metal plate 140 was disposed with its central axis aligned with the central axis of the recess 57.
  • the back surface 140 ⁇ / b> A of the metal plate 140 (the back surface 120 ⁇ / b> A of the support layer 120) forms the same plane as the surface of the second surface 58 of the flat portion 53 of the electroforming mold 50.
  • the back surface 140A and the front surface 140B (the surface 120B of the support layer 120 and the surface in contact with the electroforming mold 50) of the metal plate 140 are polished (smoothing process).
  • the back surface 140A may be polished after being disposed in the concave portion 57, or may be polished in advance before being disposed.
  • the metal plate 140 is set to have a smaller diameter in consideration of the difference in thermal expansion between the electroforming mold 50 and the metal plate 140.
  • FIG. 22 shows a cross-section of a concave pedestal pattern shape of a mold made using a ⁇ 11.0 mm metal plate 140 and a mold made using a ⁇ 11.5 mm metal plate 140 as the support layer 120 shown in FIG. 21. It is a figure which shows a shape.
  • the horizontal axis indicates the measurement position coordinates
  • the vertical axis indicates the depth ( ⁇ inversion) of the concave pedestal pattern shape.
  • the concave pedestal pattern shape of the mold using the ⁇ 11.0 mm metal plate 140 is indicated by a solid line
  • the concave pedestal pattern shape of the mold using the ⁇ 11.5 mm metal plate 140 is indicated by a broken line.
  • the concave pedestal pattern shape of the mold produced using the ⁇ 11.0 mm metal plate 140 and the mold produced using the ⁇ 11.5 mm metal plate 140 is a portion of 3 mm to 14 mm in the measurement position coordinates shown in FIG. is there. As shown in FIG. 22, in any case, the concave pedestal pattern has a diameter of about 11 mm and a depth of about 300 ⁇ m.
  • the support layer 120 does not buckle in the radial direction even if a gap with the recess 57 is provided if the height is equal to the depth of the recess 57.
  • FIG. 23 is a diagram illustrating the first mold 72, the second mold 74, and the electroforming mold 50 according to the third embodiment, and here, a mold clamping process is illustrated.
  • the suction plate 80 is provided avoiding the position where the concave portion 57 on the back surface side of the first convex portion 55 of the electroforming mold 50 is disposed.
  • the electroforming mold 50 is vacuum-sucked to the suction plate 80.
  • the first mold 72 is a surface facing the second mold 74, and an opening 152 is provided at each position where the concave portion 57 on the back surface side of the first convex portion 55 of the electroforming mold 50 is disposed. It has been.
  • the plurality of openings 152 are respectively connected to flow paths 154 that communicate with the inside of the first mold 72.
  • FIG. 24 is a diagram showing a reinforcing step of providing the support layer 120 in the concave portion 57.
  • the fluid 160 is supplied to the flow path 154 from a fluid supply unit (not shown).
  • the fluid 160 that has passed through the flow path 154 is supplied from the opening 152 to the space of the recess 57 (supply process).
  • the support layer 120 made of the fluid 160 is provided in the concave portion 57.
  • the fluid 160 include liquids such as water and oil.
  • the cavity 76 is filled with resin (injection process).
  • the support layer 120 formed by the fluid 160 can prevent the first protrusion 55 from buckling.
  • a valve (not shown) provided between the fluid supply unit (not shown) and the flow path 154 may be closed. Thereby, the backflow of the fluid 160 by the injection pressure by an injection process can be prevented.
  • the reinforcing process may be performed before the mold clamping process.
  • the fluid 160 is supplied after the electroforming mold 50 is placed on the first mold 72, and then the clamping process is performed. You may perform a reinforcement process and a mold-clamping process simultaneously. Moreover, you may perform a reinforcement
  • the support layer 120 may be configured by combining at least two of resin, metal, and liquid.
  • the support layer 120 made of two kinds of materials may be provided in one recess 57, or the recess 57 provided with the metal support layer 120 and the recess 57 provided with the resin support layer 120 may be mixed.
  • FIG. 25 shows a state where the mold 100 is prepared.
  • the mold 100 is manufactured by the above-described mold manufacturing method.
  • a mold 100 shown in FIG. 25 has a plurality of concave patterns 102.
  • the concave pattern 102 is a state in which a plurality of concave portions 104 are arranged in an array.
  • FIG. 26 is a diagram showing a supply process of supplying the polymer solution 112 to the concave pattern 102 of the mold 100.
  • a material of the polymer solution 112 that forms the pattern sheet 110 it is preferable to use a water-soluble material.
  • a resin polymer material of the polymer solution 112 used for manufacturing the pattern sheet 110 it is preferable to use a biocompatible resin.
  • resins include glucose, maltose, pullulan, sodium chondroitin sulfate, sodium hyaluronate, saccharides such as hydroxyethyl starch, proteins such as gelatin, and biodegradable polymers such as polylactic acid and lactic acid / glycolic acid copolymers. It is preferable to use it.
  • the pattern sheet 110 When the pattern sheet 110 is released from the mold 100, the pattern sheet 110 can be released using a base material (not shown), so that the pattern sheet 110 can be suitably used.
  • concentration varies depending on the material, it is preferable to set the concentration so that 10 to 50% by mass of the resin polymer is contained in the polymer solution 112 not containing the drug.
  • the solvent used for the polymer solution 112 may be volatile even if it is other than warm water, and alcohol such as ethanol can be used. And in the polymer solution 112, it is possible to dissolve together the medicine to be supplied into the body according to the application.
  • the polymer concentration of the polymer solution 112 containing the drug is preferably 0 to 30% by mass.
  • a water-soluble polymer such as gelatin or the like
  • a water-soluble powder may be dissolved in water, and a drug may be added after the dissolution.
  • a water-soluble polymer powder may be put in and dissolved. If it is difficult to dissolve in water, it may be dissolved by heating.
  • the temperature can be appropriately selected depending on the kind of the polymer material, but it is preferable to heat at a temperature of about 20 to 40 ° C. as necessary.
  • the viscosity of the polymer solution 112 is preferably 200 mPa ⁇ s or less, more preferably 50 mPa ⁇ s or less, in the case of a solution containing a drug.
  • a solution not containing a drug it is preferably 2000 mPa ⁇ s or less, more preferably 500 mPa ⁇ s or less.
  • the polymer solution 112 can be easily injected into the concave pattern 102 of the mold 100.
  • the viscosity of the polymer solution 112 can be measured with a capillary tube viscometer, a falling ball viscometer, a rotary viscometer, or a vibration viscometer.
  • the drug contained in the polymer solution 112 is not limited as long as it has a function as a drug.
  • Examples of the method of injecting the polymer solution 112 into the mold 100 include application using a spin coater.
  • FIG. 27 is a diagram illustrating a drying process in which the polymer solution 112 is dried to form the polymer sheet 114.
  • the polymer solution 112 supplied to the mold 100 can be dried by blowing air.
  • the polymer sheet 114 means a state after the polymer solution 112 is subjected to a desired drying process.
  • the moisture content of the polymer sheet 114 is set as appropriate.
  • FIG. 28 is a diagram for explaining a polymer sheet releasing step in which the polymer sheet 114 is released from the mold 100 to obtain individual pattern sheets 110A, 110B, 110C, and 110D.
  • the pattern sheets 110A, 110B, 110C, and 110D have convex patterns 116A, 116B, 116C, and 116D on one surface, respectively.
  • the pattern sheet 110A, 110B, 110C, and 110D will be represented by the pattern sheet 110
  • the convex pattern 116A, 116B, 116C, and 116D will be represented by the convex pattern 116.
  • FIG. 29 is a perspective view of the pattern sheet 110.
  • the present invention is not limited to this.
  • the polymer solution 112 containing the drug is filled in the concave pattern 102 of the mold 100 and dried, and then the polymer solution 112 not containing the drug is filled in the concave pattern 102 of the mold 100 and dried to form two layers.
  • a structured polymer sheet 114 can be formed.
  • the mold 100 may be used only once for the first time and may be preferably disposable.
  • the pattern sheet 110 is used as a medicine, it is preferable to make it disposable in consideration of the safety of the manufactured pattern sheet 110 to the living body. Moreover, since it becomes unnecessary to wash
  • the convex pattern 116 of the pattern sheet 110 to be manufactured refers to a state in which a plurality of convex portions 118 are arranged in an array at a predetermined number and position.
  • the convex portion 118 means a tapered shape on the tip side, and includes a cone shape and a multistage cone shape.
  • the multi-stage cone shape means a cone shape having side surfaces with different angles from the bottom surface to the tip.
  • the height of the convex portion 118 is in the range of 0.2 mm to 2 mm, and preferably 0.3 mm to 1.5 mm.
  • the manufactured pattern sheet 110 having the convex pattern 116 is a replica of the electroformed mold 50 having the convex pattern 54.
  • the convex pattern 116 of the pattern sheet 110 to be manufactured can be made a desired shape.
  • FIG. 30 to 32 are process diagrams showing the procedure of a method for producing an electroforming mold using the mold 100.
  • FIG. 30 to 32 are process diagrams showing the procedure of a method for producing an electroforming mold using the mold 100.
  • FIG. 30 shows a state in which the mold 100 is prepared.
  • the mold 100 is manufactured by the above-described mold manufacturing method.
  • the mold 100 has a plurality of concave patterns 102.
  • the concave pattern 102 is a state in which a plurality of concave portions 104 are arranged in an array.
  • FIG. 31 is a process diagram showing an electroforming process in which a concave pattern 102 of the mold 100 is filled with metal by electroforming.
  • a conductive treatment is performed on the mold 100.
  • a metal for example, nickel
  • the mold 100 that has undergone the conductive treatment is held on the cathode.
  • a metal pellet is held in a metal case to serve as an anode.
  • the cathode for holding the mold 100 and the anode for holding the metal pellet are immersed in an electroforming solution and energized.
  • a metal body 200 is formed by embedding metal in the concave pattern 102 of the mold 100 by electroforming.
  • FIG. 32 is a process diagram showing a peeling process for peeling the metal body 200 from the mold 100.
  • the metal body 200 is peeled from the mold 100, and the electroformed mold 210 having the convex pattern 212 is produced. Peeling means that the metal body 200 and the mold 100 are separated.
  • the convex pattern 212 is an inverted shape of the concave pattern 102 of the mold 100.
  • the electroforming mold 210 is basically the same as the metal body 200 peeled from the mold 100.
  • the mold can be produced by injection molding by using the electroformed mold 210 thus produced as a nested mold instead of the electroformed mold 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dermatology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Provided are a method for manufacturing a mold having a recessed seat pattern to prevent the flow of a liquid, and a method for producing a pattern sheet. The method for manufacturing a mold having a recessed seat pattern has a step for preparing a nested mold having a first convex seat shape having a recess on the reverse surface and a second convex needle pattern group on the surface of the first convex seat shape, a step for preparing a mold having a first mold and a second mold, a reinforcement step for providing a support layer in the recess on the reverse surface of the first convex seat shape provided in the nested mold, a mold clamping step for clamping the nested mold by the first mold and the second mold to form a cavity, and an injection step for filling the cavity with a molding resin.

Description

凹状台座パターンを有するモールドの作製方法及びパターンシートの製造方法Method for producing mold having concave pedestal pattern and method for producing pattern sheet
 本発明は、凹状台座パターンを有するモールドの作製方法及びパターンシートの製造方法に係り、特に、針状凸部を有するパターンシートの製造に用いられる凹状台座パターンを有するモールドの作製方法及びこの凹状台座パターンを有するモールドを用いたパターンシートの製造方法に関する。 The present invention relates to a method for producing a mold having a concave pedestal pattern and a method for producing a pattern sheet, and in particular, a method for producing a mold having a concave pedestal pattern used for producing a pattern sheet having needle-like convex portions and the concave pedestal. The present invention relates to a method for producing a pattern sheet using a mold having a pattern.
 近年、痛みを伴わずにインシュリン(Insulin)及びワクチン(Vaccines)及びhGH(human Growth Hormone)などの薬剤を皮膚内に投与可能な新規剤型として、マイクロニードルアレイ(Micro-Needle Array)が知られている。マイクロニードルアレイは、薬剤を含み、生分解性のあるマイクロニードル(針状凸部、微細針、又は微小針ともいう)をアレイ状に配列したものである。このマイクロニードルアレイを皮膚に貼付することにより、各マイクロニードルが皮膚に突き刺さり、これらマイクロニードルが皮膚内で吸収され、各マイクロニードル中に含まれた薬剤を皮膚内に投与することができる。マイクロニードルアレイは経皮吸収シートとも呼ばれる。 In recent years, Micro-Needle® Array has been known as a new dosage form that can administer drugs such as insulin, vaccine (Vaccines) and hGH (human Growth Hormone) into the skin without pain. ing. The microneedle array is an array of biodegradable microneedles (also referred to as needle-like convex portions, microneedles, or microneedles) containing a drug and arranged in an array. By affixing this microneedle array to the skin, each microneedle pierces the skin, the microneedle is absorbed in the skin, and the drug contained in each microneedle can be administered into the skin. The microneedle array is also called a transdermal absorption sheet.
 マイクロニードルアレイのような微細なパターンを有する成形品を作製するため、微細なパターンを有する原版から樹脂製の反転形状のモールドを形成し、このモールドから成形品を作製することが行われている。このような微細なパターンを有する成形品の生産性を向上させることが求められており、種々の提案がなされている。 In order to produce a molded product having a fine pattern such as a microneedle array, a resin-inverted mold is formed from an original plate having a fine pattern, and a molded product is produced from this mold. . There is a demand for improving the productivity of molded products having such fine patterns, and various proposals have been made.
 例えば、特許文献1~2には、第1型と第2型とにより電鋳金型を挟圧し、キャビティに樹脂を充填する射出成形によってモールドを作製する技術が記載されている。特許文献1~2によれば、精度のよいモールドを作製することができる。 For example, Patent Documents 1 and 2 describe a technique for producing a mold by injection molding in which an electroformed mold is sandwiched between a first mold and a second mold and a resin is filled in a cavity. According to Patent Documents 1 and 2, an accurate mold can be produced.
特開2017-209155号公報JP 2017-209155 A 特開2017-202040号公報JP 2017-202040 A 特開2015-231476号公報Japanese Patent Laying-Open No. 2015-231476
 一方、特許文献3には、パターンシートを形成する際に、パターンシートを構成する樹脂溶液が、モールドの外に流れる、目的の場所を超えて流動することを防止するために、段差が設けられた型が記載されている。段差を有する型を用いることで、薬剤を含まない液をモールド表面に塗布した際に、薬剤を含まない液がモールドを外れて流動することを防止することができる。 On the other hand, in Patent Document 3, when forming a pattern sheet, a step is provided in order to prevent the resin solution constituting the pattern sheet from flowing out of the mold and flowing beyond a target location. The type is described. By using a mold having a step, it is possible to prevent the liquid containing no drug from flowing out of the mold and flowing when a liquid containing no drug is applied to the mold surface.
 しかしながら、特許文献3には、液の流動を防止する構成のモールドを射出成形によって作製する構成について開示されていない。 However, Patent Document 3 does not disclose a configuration in which a mold configured to prevent liquid flow is manufactured by injection molding.
 本発明はこのような事情に鑑みてなされたものであり、液の流動を防止する凹状台座パターンを有するモールドの作製方法及びパターンシートの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing a mold having a concave pedestal pattern and a method for producing a pattern sheet, which prevent the liquid from flowing.
 上記目的を達成するために凹状台座パターンを有するモールドの作製方法の一の態様は、裏面に凹部を有する第1凸状台座形状と第1凸状台座形状の表面に第2凸状針パターン群とを有する入れ子型とを準備する工程と、第1型と第2型とを有する型を準備する工程と、入れ子型に設けられた第1凸状台座形状の裏面の凹部に支持層を設ける補強工程と、キャビティを形成するため、第1型と第2型とにより入れ子型を挟圧する型締め工程と、キャビティにモールド用樹脂を充填する射出工程と、を有する凹状台座パターンを有するモールドの作製方法である。 In order to achieve the above object, one aspect of a method for producing a mold having a concave pedestal pattern includes a first convex pedestal shape having a concave portion on the back surface and a second convex needle pattern group on the first convex pedestal surface. Providing a support layer in a recess on the back surface of the first convex pedestal shape provided in the nesting mold, and a step of preparing a mold having the first mold and the second mold. A mold having a concave pedestal pattern having a reinforcing step, a mold clamping step of clamping a nested die by a first die and a second die to form a cavity, and an injection step of filling the cavity with a mold resin This is a manufacturing method.
 本態様によれば、入れ子型に設けられた第1凸状台座形状の裏面の凹部に支持層を設けたので、第1凸状台座形状に倣った凹状台座パターンを有するモールドを作製することができる。 According to this aspect, since the support layer is provided in the concave portion on the back surface of the first convex pedestal shape provided in the nesting mold, it is possible to produce a mold having a concave pedestal pattern following the first convex pedestal shape. it can.
 支持層は、支持用樹脂、金属、及び液体のうち少なくとも1つにより構成されることが好ましい。これにより、第1凸状台座形状を適切に補強することができる。 The support layer is preferably composed of at least one of a support resin, a metal, and a liquid. Thereby, a 1st convex base shape can be reinforced appropriately.
 支持層は支持用樹脂及び金属の少なくとも一方を含み、支持用樹脂及び金属の少なくとも一方を研磨して平滑化する平滑化工程を有することが好ましい。これにより、支持層を適切に設けることができる。 The support layer preferably includes at least one of a support resin and a metal, and has a smoothing step of polishing and smoothing at least one of the support resin and the metal. Thereby, a support layer can be provided appropriately.
 研磨は、研削加工、超仕上げ加工、ホーニング加工、ブラスト加工、超音波加工、ラッピング加工、及びポリシング加工のうち少なくとも1つを使用することが好ましい。これにより、支持層の裏面を適切に平滑化することができる。 Polishing preferably uses at least one of grinding, superfinishing, honing, blasting, ultrasonic processing, lapping, and polishing. Thereby, the back surface of a support layer can be smoothed appropriately.
 支持層は流体を含み、第1型は流体の流路を有することが好ましい。これにより、流体により支持層を構成することができる。 The support layer preferably contains a fluid, and the first type preferably has a fluid flow path. Thereby, a support layer can be comprised with a fluid.
 モールド用樹脂は、熱硬化性樹脂及びシリコーン樹脂のいずれかであることが好ましい。これにより、モールドを適切に作製することができる。 The mold resin is preferably either a thermosetting resin or a silicone resin. Thereby, a mold can be produced appropriately.
 射出工程の後、キャビティ内のモールド用樹脂を加熱することにより硬化させる硬化工程と、硬化工程の後に第1型と第2型とを開き、硬化されたモールド用樹脂を入れ子型から離型させる離型工程と、を有することが好ましい。これにより、モールドを適切に作製することができる。 After the injection process, the mold resin in the cavity is cured by heating, and after the curing process, the first mold and the second mold are opened, and the cured mold resin is released from the nesting mold. A mold release step. Thereby, a mold can be produced appropriately.
 入れ子型は、プラスチック樹脂及び金属のいずれかであることが好ましい。これにより、モールドを適切に作製することができる。 The nesting mold is preferably either a plastic resin or a metal. Thereby, a mold can be produced appropriately.
 入れ子型は電鋳金型であり、平面視において円形であることが好ましい。これにより、入れ子型を適切に作製することができる。 The nesting die is an electroforming die and is preferably circular in plan view. Thereby, a nested mold | type can be produced appropriately.
 上記目的を達成するためにパターンシートの製造方法の一の態様は、凹状台座パターンを有するモールドの作製方法により凹状台座パターンを有するモールドを作製する工程と、モールドの凹状台座パターンにポリマー溶解液を供給する供給工程と、ポリマー溶解液を乾燥させてポリマーシートとする乾燥工程と、ポリマーシートをモールドから離型するポリマーシート離型工程と、を含むパターンシートの製造方法である。 In order to achieve the above object, one aspect of a method for producing a pattern sheet includes a step of producing a mold having a concave pedestal pattern by a method for producing a mold having a concave pedestal pattern, and a polymer solution in the concave pedestal pattern of the mold. It is the manufacturing method of the pattern sheet | seat including the supply process to supply, the drying process which dries a polymer solution, and makes a polymer sheet, and the polymer sheet mold release process which releases a polymer sheet from a mold.
 本態様によれば、凹状台座パターンからポリマー溶解液が溢れることが無いので、パターンシートを適切に製造することができる。 According to this aspect, since the polymer solution does not overflow from the concave pedestal pattern, the pattern sheet can be manufactured appropriately.
 ポリマー溶解液が水溶性材料を含むことが好ましい。本態様は、水溶性材料を含むポリマー溶解液に適用することができる。 It is preferable that the polymer solution contains a water-soluble material. This embodiment can be applied to a polymer solution containing a water-soluble material.
 本発明によれば、液の流動を防止する構成のモールドを射出成形によって作製することができる。また、このモールドにより、パターンシートを製造することができる。 According to the present invention, a mold configured to prevent liquid flow can be produced by injection molding. Moreover, a pattern sheet can be manufactured with this mold.
電鋳金型の作製方法を示す工程図である。It is process drawing which shows the preparation methods of an electroforming metal mold | die. 電鋳金型の作製方法を示す工程図である。It is process drawing which shows the preparation methods of an electroforming metal mold | die. 電鋳金型の作製方法を示す工程図である。It is process drawing which shows the preparation methods of an electroforming metal mold | die. 電鋳金型の作製方法を示す工程図である。It is process drawing which shows the preparation methods of an electroforming metal mold | die. 電鋳金型の斜視図である。It is a perspective view of an electroforming mold. モールドの作製方法を示す工程図である。It is process drawing which shows the preparation methods of a mold. モールドの作製方法を示す工程図である。It is process drawing which shows the preparation methods of a mold. モールドの作製方法を示す工程図である。It is process drawing which shows the preparation methods of a mold. モールドの作製方法を示す工程図である。It is process drawing which shows the preparation methods of a mold. モールドの作製方法を示す工程図である。It is process drawing which shows the preparation methods of a mold. モールドの作製方法を示す工程図である。It is process drawing which shows the preparation methods of a mold. モールドの作製方法を示す工程図である。It is process drawing which shows the preparation methods of a mold. モールドの作製方法を示す工程図である。It is process drawing which shows the preparation methods of a mold. モールドの作製方法を示す工程図である。It is process drawing which shows the preparation methods of a mold. 別のモールドの作製方法を示す工程図である。It is process drawing which shows the production method of another mold. 別のモールドの作製方法を示す工程図である。It is process drawing which shows the production method of another mold. 入れ子型とモールドの断面形状を示す図である。It is a figure which shows the cross-sectional shape of a nest type | mold and a mold. 補強部材の作成工程を示す図である。It is a figure which shows the creation process of a reinforcement member. 補強部材を示す図である。It is a figure which shows a reinforcement member. モールドの凹状台座パターンの断面形状を示す図である。It is a figure which shows the cross-sectional shape of the concave base pattern of a mold. 金属板を用いた補強部材を示す図である。It is a figure which shows the reinforcement member using a metal plate. モールドの凸状台座形状の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the convex base shape of a mold. 型締め工程を示す図である。It is a figure which shows a mold clamping process. 補強工程を示す図である。It is a figure which shows a reinforcement process. パターンシートの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a pattern sheet. パターンシートの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a pattern sheet. パターンシートの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a pattern sheet. パターンシートの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a pattern sheet. パターンシートの斜視図である。It is a perspective view of a pattern sheet. モールドを用いた電鋳金型の作製方法の手順を示す工程図である。It is process drawing which shows the procedure of the manufacturing method of the electroforming metal mold | die which uses a mold. モールドを用いた電鋳金型の作製方法の手順を示す工程図である。It is process drawing which shows the procedure of the manufacturing method of the electroforming metal mold | die which uses a mold. モールドを用いた電鋳金型の作製方法の手順を示す工程図である。It is process drawing which shows the procedure of the manufacturing method of the electroforming metal mold | die which uses a mold.
 以下、添付図面にしたがって本発明の好ましい実施形態について説明する。本発明は以下の好ましい実施形態により説明される。本発明の範囲を逸脱すること無く、多くの手法により変更を行うことができ、本実施形態以外の他の実施形態を利用することができる。したがって、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The invention is illustrated by the following preferred embodiments. Changes can be made by many techniques without departing from the scope of the present invention, and other embodiments than the present embodiment can be utilized. Accordingly, all modifications within the scope of the present invention are included in the claims.
 ここで、図中、同一の記号で示される部分は、同様の機能を有する同様の要素である。また、本明細書中で、数値範囲を“ ~ ”を用いて表す場合は、“ ~ ”で示される上限、下限の数値も数値範囲に含むものとする。 Here, parts indicated by the same symbols in the figure are similar elements having similar functions. In addition, in this specification, when the numerical range is expressed using “˜”, the upper and lower numerical values indicated by “˜” are also included in the numerical range.
 <モールドの作製方法>
 本発明の実施形態について、図面を参照して説明する。本実施形態の凹状パターンを有するモールドの作製方法は、裏面に凹部を有する第1凸状台座形状と第1凸状台座形状の表面に第2凸状針パターン群とを有する入れ子型とを準備する工程と、第1型と第2型とを有する型を準備する工程と、入れ子型に設けられた第1凸状台座形状の裏面の凹部に支持層を設ける補強工程と、キャビティを形成するため、第1型と第2型とにより入れ子型を挟圧する型締め工程と、キャビティに樹脂を充填する射出工程と、を有する。
<Mold production method>
Embodiments of the present invention will be described with reference to the drawings. The method for producing a mold having a concave pattern according to this embodiment prepares a first convex pedestal shape having a recess on the back surface and a nested mold having a second convex needle pattern group on the surface of the first convex pedestal shape. A step of preparing a mold having a first mold and a second mold, a reinforcing process of providing a support layer in a concave portion on the back surface of the first convex pedestal shape provided in the nested mold, and forming a cavity For this reason, it includes a mold clamping process in which the nested mold is clamped by the first mold and the second mold, and an injection process in which the cavity is filled with resin.
 モールドの作製に用いられる入れ子型を準備する。入れ子型は、例えば、図1から図4に示される工程図に基づいて作成される。図1に示されるように、入れ子型である電鋳金型を作製するための母型10が準備される。母型10の第1面12には、作製したい凸状パターンを有する電鋳金型の反転形状である凹状パターン14が形成されている。凹状パターン14とは、第1凹部15に複数の第2凹部16がアレイ状に配列された状態である。第1凹部15及び第2凹部16は作製したい電鋳金型の形状に応じて作製される。本実施形態では、第1凹部15は、第1面12から第2面18に向けて一定の径を有する円筒形状を有している。また、第2凹部16は、第1面12から第2面18に向けて先細りの形状を有している。例えば、先細りの形状として、錐体形状、柱形状と錐体形状との組み合わせ、錐台形状と錐体形状との組み合わせ等を挙げることができる。本実施形態では母型10の第1面12に、複数の凹状パターン14が形成されている。 Prepare a nested mold to be used for mold production. The nested type is created based on, for example, the process diagrams shown in FIGS. As shown in FIG. 1, a mother mold 10 for preparing an electroforming mold that is a nested mold is prepared. On the first surface 12 of the mother die 10, a concave pattern 14 is formed that is an inverted shape of an electroforming mold having a convex pattern to be produced. The concave pattern 14 is a state in which a plurality of second concave portions 16 are arranged in an array in the first concave portion 15. The 1st recessed part 15 and the 2nd recessed part 16 are produced according to the shape of the electroforming metal mold to produce. In the present embodiment, the first recess 15 has a cylindrical shape having a certain diameter from the first surface 12 toward the second surface 18. Further, the second recess 16 has a tapered shape from the first surface 12 toward the second surface 18. For example, examples of the tapered shape include a cone shape, a combination of a column shape and a cone shape, and a combination of a frustum shape and a cone shape. In the present embodiment, a plurality of concave patterns 14 are formed on the first surface 12 of the mother die 10.
 図2に示されるように、電鋳処理に用いられる陰極20に母型10が固定される。陰極20は、少なくともシャフト22と陰極板24とを備える。母型10の第2面18と陰極板24とが対向する位置で、母型10は陰極板24に固定される。 As shown in FIG. 2, the mother die 10 is fixed to the cathode 20 used for the electroforming process. The cathode 20 includes at least a shaft 22 and a cathode plate 24. The mother die 10 is fixed to the cathode plate 24 at a position where the second surface 18 of the mother die 10 and the cathode plate 24 face each other.
 母型10が樹脂材料で構成される場合、母型10に対して導電化処理が行われる。蒸着、又はスパッターリング等により金属膜(例えば、ニッケル)が、母型10の第1面12、及び凹状パターン14に製膜される。金属膜(不図示)に陰極板24からの電流を供給するため、母型10の外周部に導電リング26が設けられる。シャフト22と陰極板24とは導電部材で構成される。ここで、電鋳処理とは、電気めっき法により母型10の表面に金属を析出させる処理方法をいう。 When the mother die 10 is made of a resin material, a conductive treatment is performed on the mother die 10. A metal film (for example, nickel) is formed on the first surface 12 and the concave pattern 14 of the mother die 10 by vapor deposition or sputtering. In order to supply current from the cathode plate 24 to a metal film (not shown), a conductive ring 26 is provided on the outer periphery of the mother die 10. The shaft 22 and the cathode plate 24 are made of a conductive member. Here, electroforming treatment refers to a treatment method in which a metal is deposited on the surface of the mother die 10 by electroplating.
 図3に示されるように、陰極20に取り付けられた母型10が電鋳液32に浸漬される。図3に示されるように、母型10に対して電鋳処理を行う電鋳装置30は、電鋳液32を保持する電鋳槽34と、電鋳槽34をオーバーフローした電鋳液32Aを受け入れるドレーン槽36と、Niペレット38が充填されたチタンケース40と、を備える。母型10を取り付けた陰極20を電鋳液32に浸漬することにより電鋳装置30として機能する。電鋳液32として、例えば、400~800g/Lのスルファミン酸ニッケルと、20~50g/Lのホウ酸と、界面活性剤(例えばラウリル硫酸ナトリウム)等の必要な添加物とを、混合した液を使用することができる。電鋳液32の温度は40~60℃が好ましい。 As shown in FIG. 3, the mother die 10 attached to the cathode 20 is immersed in the electroforming liquid 32. As shown in FIG. 3, an electroforming apparatus 30 that performs an electroforming process on the mother die 10 includes an electroforming tank 34 that holds an electroforming liquid 32, and an electroforming liquid 32 </ b> A that overflows the electroforming tank 34. A drain tank 36 to be received and a titanium case 40 filled with Ni pellets 38 are provided. The cathode 20 with the mother die 10 attached is functioned as an electroforming apparatus 30 by immersing it in the electroforming liquid 32. As the electroforming liquid 32, for example, a liquid in which 400 to 800 g / L nickel sulfamate, 20 to 50 g / L boric acid, and a necessary additive such as a surfactant (for example, sodium lauryl sulfate) are mixed. Can be used. The temperature of the electroforming liquid 32 is preferably 40 to 60 ° C.
 ドレーン槽36に排水配管42が接続され、電鋳槽34に供給配管44が接続される。電鋳槽34からドレーン槽36にオーバーフローした電鋳液32は、排水配管42により回収され、回収された電鋳液32は、供給配管44から電鋳槽34に供給される。陰極20に保持された母型10は、凹状パターン14の形成されている第1面12が、陽極となるチタンケース40に対向する位置に位置合わせされる。 A drain pipe 42 is connected to the drain tank 36, and a supply pipe 44 is connected to the electroforming tank 34. The electroforming liquid 32 overflowed from the electroforming tank 34 to the drain tank 36 is recovered by the drain pipe 42, and the recovered electroforming liquid 32 is supplied from the supply pipe 44 to the electroforming tank 34. The mother die 10 held by the cathode 20 is aligned at a position where the first surface 12 on which the concave pattern 14 is formed faces the titanium case 40 serving as the anode.
 陰極20を負電極に接続し、陽極となるチタンケース40に正電極を接続する。陰極板24に保持される母型10を、シャフト22を中心に10~150rpmの回転速度で回転させながら、陰極20とチタンケース40との間に直流電圧が印加される。Niペレット38が溶解し、陰極20に取り付けられた母型10の凹状パターン14に金属膜が付着する。 The cathode 20 is connected to the negative electrode, and the positive electrode is connected to the titanium case 40 serving as the anode. A DC voltage is applied between the cathode 20 and the titanium case 40 while rotating the mother die 10 held by the cathode plate 24 around the shaft 22 at a rotation speed of 10 to 150 rpm. The Ni pellets 38 are dissolved, and a metal film adheres to the concave pattern 14 of the mother die 10 attached to the cathode 20.
 金属膜から構成される電鋳金型50が母型10に形成されると、図4に示されるように、母型10を取り付けた陰極20が電鋳槽34(不図示)から取り出される。次いで、電鋳金型50が母型10から剥離される。第1面52と第2面58とを有し、第1面52に平坦部53及び凸状パターン54を有する電鋳金型50を得ることができる。凸状パターン54は母型10の凹状パターン14の反転形状となる。ここでは、電鋳金型50は、150μmの厚みを有している。 When the electroforming mold 50 composed of a metal film is formed on the mother die 10, the cathode 20 to which the mother die 10 is attached is taken out from the electroforming tank 34 (not shown) as shown in FIG. Next, the electroforming mold 50 is peeled from the mother mold 10. The electroforming mold 50 having the first surface 52 and the second surface 58 and having the flat portion 53 and the convex pattern 54 on the first surface 52 can be obtained. The convex pattern 54 is an inverted shape of the concave pattern 14 of the mother die 10. Here, the electroforming mold 50 has a thickness of 150 μm.
 図5は電鋳金型50の斜視図である。図5に示されるように、凸状パターン54は、凸状台座形状である第1凸部55に凸状針パターン群である複数の第2凸部56がアレイ状に配列された状態である。本実施形態では、第1凸部55は一定の高さを有する円柱の台座形状である。第1凸部55の高さは、例えば、0.2mm以上2mm以下の範囲であり、好ましくは、0.3mm以上1.5mm以下である。第1凸部55の裏面側には、一定の径を有する円筒形状の凹部57が設けられている。 FIG. 5 is a perspective view of the electroforming mold 50. As shown in FIG. 5, the convex pattern 54 is a state in which a plurality of second convex portions 56 that are convex needle pattern groups are arranged in an array on the first convex portion 55 that is a convex pedestal shape. . In the present embodiment, the first convex portion 55 has a cylindrical pedestal shape having a certain height. The height of the 1st convex part 55 is the range of 0.2 mm or more and 2 mm or less, for example, Preferably, it is 0.3 mm or more and 1.5 mm or less. A cylindrical concave portion 57 having a certain diameter is provided on the back surface side of the first convex portion 55.
 第2凸部56は第1凸部55の第1面52から突出する先細りの形状を有している。例えば、先細りの形状として、錐体形状、柱形状と錐体形状との組み合わせ、錐台形状と錐体形状との組み合わせ等を挙げることができる。本実施形態では電鋳金型50の第1面52に、複数の凸状パターン54が形成されている。第2凸部56の高さは、例えば、0.2mm以上2mm以下の範囲であり、好ましくは、0.3mm以上1.5mm以下である。第2凸部56の高さは第1凸部55から第2凸部56の先端までの距離である。 The second convex portion 56 has a tapered shape protruding from the first surface 52 of the first convex portion 55. For example, examples of the tapered shape include a cone shape, a combination of a column shape and a cone shape, and a combination of a frustum shape and a cone shape. In the present embodiment, a plurality of convex patterns 54 are formed on the first surface 52 of the electroforming mold 50. The height of the 2nd convex part 56 is the range of 0.2 mm or more and 2 mm or less, for example, Preferably, they are 0.3 mm or more and 1.5 mm or less. The height of the second convex portion 56 is the distance from the first convex portion 55 to the tip of the second convex portion 56.
 電鋳処理において、母型10の第1面12の上に均一の厚さの金属膜を形成するためには、電鋳金型50が、平面視において円形であることが好ましい。電鋳金型50の直径は200~300mmであることが好ましい。円形とは、真円に限定されず、略円形であれば良い。 In the electroforming process, in order to form a metal film having a uniform thickness on the first surface 12 of the mother die 10, the electroforming mold 50 is preferably circular in plan view. The diameter of the electroforming mold 50 is preferably 200 to 300 mm. The circular shape is not limited to a perfect circle and may be a substantially circular shape.
 ここでは、入れ子型として金属製の電鋳金型50を作製したが、入れ子型はプラスチック樹脂で作製してもよい。 Here, although the metal electroformed mold 50 was produced as a nesting mold, the nesting mold may be fabricated from a plastic resin.
 後述するように、電鋳金型50を用いて射出成形することにより、電鋳金型50が転写されモールドが作製される。図5に示されるように、電鋳金型50の面積に対して、複数の凸状パターン54が形成される領域の面積は小さい。電鋳金型50の全面にモールドを作製すると、作製されるモールドが適正な大きさを超え、余剰部分を含む場合がある。この余剰部分は樹脂のロスを招き、またカット等の追加工を必要とする場合がある。 As will be described later, by performing injection molding using the electroforming mold 50, the electroforming mold 50 is transferred to produce a mold. As shown in FIG. 5, the area of the region where the plurality of convex patterns 54 is formed is smaller than the area of the electroforming mold 50. When a mold is produced on the entire surface of the electroforming mold 50, the produced mold may exceed an appropriate size and include an excess part. This surplus portion may cause resin loss and may require additional processing such as cutting.
 射出成形において、電鋳金型50の固定と交換とを容易にするため、吸着板を用いて電鋳金型50を真空吸着する場合がある。射出成形する際、吸着板が損傷を受けないことが求められる。 In injection molding, in order to facilitate fixing and replacement of the electroforming mold 50, the electroforming mold 50 may be vacuum-sucked using an adsorption plate. During injection molding, it is required that the suction plate is not damaged.
 射出成形によるモールドの作製方法について、図6から図16の工程図を参照して説明する。 A method for producing a mold by injection molding will be described with reference to the process diagrams of FIGS.
 図6に示されるように、第1型72と第2型74とを含む型70が準備される。第1型72と第2型74を型締めすることにより、型70の内部にキャビティ76が形成される。キャビティ76とは、樹脂が充填される空間を意味する。 As shown in FIG. 6, a mold 70 including a first mold 72 and a second mold 74 is prepared. A cavity 76 is formed in the mold 70 by clamping the first mold 72 and the second mold 74. The cavity 76 means a space filled with resin.
 第1型72に電鋳金型50が固定される。電鋳金型50を固定する側は平坦面78で構成される。第1型72は、電鋳金型50を固定する装置として、平坦面78に吸着板80を備えている。第1型72は、その内部に吸着板80と気体連通する吸引管82を備えている。吸引管82は不図示の真空ポンプと接続されている。真空ポンプを駆動することにより、吸着板80の表面から空気を吸引することができる。吸着板80を用いることにより、電鋳金型50の固定と交換とが容易となる。 The electroforming mold 50 is fixed to the first mold 72. The side on which the electroforming mold 50 is fixed is constituted by a flat surface 78. The first mold 72 includes a suction plate 80 on a flat surface 78 as a device for fixing the electroforming mold 50. The first mold 72 includes a suction pipe 82 that communicates with the suction plate 80 in gas. The suction pipe 82 is connected to a vacuum pump (not shown). By driving the vacuum pump, air can be sucked from the surface of the suction plate 80. By using the suction plate 80, the electroforming mold 50 can be easily fixed and replaced.
 吸着板80は、例えば、多孔質部材で構成される。多孔質部材として、例えば、金属焼結体、樹脂、及びセラミック等を挙げることができる。吸着板80は、強度の観点から、損傷を受けないことが求められる。 The suction plate 80 is made of, for example, a porous member. As a porous member, a metal sintered compact, resin, a ceramic, etc. can be mentioned, for example. The suction plate 80 is required not to be damaged from the viewpoint of strength.
 なお、電鋳金型50がニッケル等の強磁性体で形成されている場合は、第1型72に設けられた不図示の磁石の磁力により電鋳金型50を第1型72に保持してもよい。 If the electroforming mold 50 is formed of a ferromagnetic material such as nickel, the electroforming mold 50 is held on the first mold 72 by the magnetic force of a magnet (not shown) provided on the first mold 72. Good.
 第2型74のキャビティ76の側に窪み84(図10参照)が形成されている。本実施形態では、第1型72の平坦面78と第2型74の窪み84とによりキャビティ76が形成される。第1型72と第2型74とを上述の構成することにより、後述するように、モールドの離型が容易となる。 A depression 84 (see FIG. 10) is formed on the cavity 76 side of the second mold 74. In the present embodiment, a cavity 76 is formed by the flat surface 78 of the first mold 72 and the recess 84 of the second mold 74. By configuring the first mold 72 and the second mold 74 as described above, the mold can be easily released as described later.
 第2型74にはキャビティ76に連通するゲート86が形成されている。ゲート86が型70のキャビティ76への樹脂の注入口になる。ゲート86は、型70に樹脂を供給する射出成形機88と連通される。本実施形態では、キャビティ76の長手方向と略垂直な方向、いわゆる縦方向から、キャビティ76内に樹脂(モールド用樹脂)が充填される(射出工程)。 The second mold 74 is formed with a gate 86 communicating with the cavity 76. The gate 86 serves as a resin injection port into the cavity 76 of the mold 70. The gate 86 is in communication with an injection molding machine 88 that supplies resin to the mold 70. In the present embodiment, the resin (molding resin) is filled into the cavity 76 from a direction substantially perpendicular to the longitudinal direction of the cavity 76, that is, a so-called longitudinal direction (injection process).
 図7に示されるように、第1型72と第2型74とが型開きされ、凸状パターン54を有する電鋳金型50が第1型72に載置される。この電鋳金型50の第1凸部55の裏面側の凹部57には、支持層120が予め配置される(補強工程)。支持層120の詳細については後述する。吸引管82を介して真空ポンプにより空気を吸引することにより、電鋳金型50の第2面58及び支持層120が吸着板80に真空吸着される。 7, the first mold 72 and the second mold 74 are opened, and the electroforming mold 50 having the convex pattern 54 is placed on the first mold 72. The support layer 120 is disposed in advance in the concave portion 57 on the back surface side of the first convex portion 55 of the electroforming mold 50 (reinforcing step). Details of the support layer 120 will be described later. By sucking air with a vacuum pump through the suction pipe 82, the second surface 58 of the electroforming mold 50 and the support layer 120 are vacuum-sucked to the suction plate 80.
 図8に示されるように、型締め工程では、キャビティ76を形成するため、電鋳金型50の凸状パターン54以外の領域、かつ実質的に吸着板80以外の領域において、第1型72と第2型74とにより電鋳金型50が挟圧される。 As shown in FIG. 8, in the mold clamping process, in order to form the cavity 76, in the region other than the convex pattern 54 of the electroforming mold 50 and in the region other than the suction plate 80, The electroforming mold 50 is clamped by the second mold 74.
 実質的に吸着板80以外の領域で第1型72と第2型74とにより電鋳金型50を挟圧するとは、吸着板80以外の領域で第1型72と第2型74とにより電鋳金型50を挟圧する場合、及び吸着板80の一部を含む領域で第1型72と第2型74とにより電鋳金型50を挟圧する場合を含み、吸着板80が型締めにより損傷を受けないことを意味する。 The fact that the electroforming mold 50 is sandwiched between the first mold 72 and the second mold 74 in a region other than the suction plate 80 substantially means that the first mold 72 and the second mold 74 are used in the region other than the suction plate 80. This includes the case where the casting mold 50 is clamped and the case where the electroforming mold 50 is clamped by the first mold 72 and the second mold 74 in a region including a part of the suction plate 80, and the suction plate 80 is damaged by clamping. It means not receiving.
 電鋳金型50が第1型72と第2型74とにより挟圧されるので、図8の矢印Aに示されるように、第2型74の内壁は、電鋳金型50の外縁60より内側に位置している。平面視において、キャビティ76は電鋳金型50の全面より小さくなり、その結果、キャビティ76の容積を小さくできるので、樹脂のロスを回避することができる。 Since the electroforming mold 50 is sandwiched between the first mold 72 and the second mold 74, the inner wall of the second mold 74 is located on the inner side of the outer edge 60 of the electroforming mold 50 as indicated by an arrow A in FIG. Is located. In plan view, the cavity 76 is smaller than the entire surface of the electroforming mold 50. As a result, the volume of the cavity 76 can be reduced, so that loss of resin can be avoided.
 本実施形態では、第1型72と第2型74とは吸着板80の領域において、電鋳金型50を挟圧していない。図8の矢印Bに示されるように、第2型74の内壁は吸着板80より外側に位置しているので、吸着板80が損傷を受けることを回避することが可能となる。内側とは電鋳金型50の外縁60から中心に向かう方向であり、外側とは電鋳金型50の中心から外縁60に向かう方向である。吸着板80が損傷を受けないように、キャビティ76の大きさを画定する内壁(高さ方向ではなく幅方向を画定する内壁)の位置を決定することが重要となる。吸着板80が損傷を受けない限りにおいて、吸着板80の一部の領域を第1型72と第2型74とにより挟圧することが可能である。 In the present embodiment, the first mold 72 and the second mold 74 do not sandwich the electroforming mold 50 in the region of the suction plate 80. As indicated by the arrow B in FIG. 8, since the inner wall of the second mold 74 is located outside the suction plate 80, it is possible to avoid the suction plate 80 from being damaged. The inner side is a direction from the outer edge 60 of the electroforming mold 50 toward the center, and the outer side is a direction from the center of the electroforming mold 50 toward the outer edge 60. It is important to determine the position of the inner wall that defines the size of the cavity 76 (the inner wall that defines the width direction, not the height direction) so that the suction plate 80 is not damaged. As long as the suction plate 80 is not damaged, a part of the suction plate 80 can be clamped by the first mold 72 and the second mold 74.
 本実施形態では、電鋳金型50の端部62を除く領域を挟圧している。電鋳金型50は、図4に示されるように、導電リング26から電流を供給することにより作製される。そのため、導電リング26と接触する電鋳金型50の端部62が、電鋳金型50の他の部分に比較して、物理的性状(例えば、厚さ、又は表面粗さ)が異なる場合がある。 In this embodiment, the region excluding the end 62 of the electroforming mold 50 is clamped. As shown in FIG. 4, the electroforming mold 50 is manufactured by supplying a current from the conductive ring 26. Therefore, the end 62 of the electroforming mold 50 that contacts the conductive ring 26 may have different physical properties (for example, thickness or surface roughness) as compared with other portions of the electroforming mold 50. .
 電鋳金型50が物理的性状の異なる端部62を有している場合、電鋳金型50を用いて射出成形する際、第1型72と第2型74とにより電鋳金型50を安定して固定できない等、作製される成形品の精度に懸念される場合がある。したがって、本実施形態のように、端部62を挟圧しないことが好ましい。 When the electroforming mold 50 has end portions 62 having different physical properties, when the electroforming mold 50 is used for injection molding, the electroforming mold 50 is stabilized by the first mold 72 and the second mold 74. In some cases, there is a concern about the accuracy of a molded product to be manufactured. Therefore, it is preferable not to pinch the end 62 as in the present embodiment.
 但し、作製される成形品の精度に問題が生じない場合、電鋳金型50の端部62を第1型72と第2型74とにより挟圧しても良い。電鋳金型50の端部62は、電鋳金型50の外縁60から内側の領域であって、電鋳金型50の凸状パターン54を除く他の領域と物理的性状が異なる領域である。なお、物理的性状は厚さに限定されない。 However, when there is no problem in the accuracy of the molded product to be produced, the end portion 62 of the electroforming mold 50 may be clamped by the first mold 72 and the second mold 74. The end portion 62 of the electroforming mold 50 is an area inside the outer edge 60 of the electroforming mold 50, and is an area having a physical property different from other areas excluding the convex pattern 54 of the electroforming mold 50. The physical properties are not limited to the thickness.
 本実施形態によれば、電鋳金型50の端部62を加工することなく、作製された電鋳金型50を型70の内部に固定することができるので、生産性の高い射出成形を実現することが可能となる。また、電鋳金型50を、吸着板80により真空吸着し、第1型72と第2型とにより挟圧するので、電鋳金型50を安定して固定することができるので、精度の良い射出成形を実現することが可能となる。 According to the present embodiment, since the produced electroformed mold 50 can be fixed inside the mold 70 without processing the end portion 62 of the electroformed mold 50, injection molding with high productivity is realized. It becomes possible. Further, since the electroforming mold 50 is vacuum-sucked by the suction plate 80 and is clamped between the first mold 72 and the second mold, the electroforming mold 50 can be stably fixed, so that an accurate injection molding is performed. Can be realized.
 図9に示されるように、樹脂Rが射出成形機88からゲート86を介してキャビティ76に供給される。樹脂Rは電鋳金型50の凸状パターン54の間を通過しながら、キャビティ76内に充填される。樹脂Rとしては、アクリル系、エポキシ系等の熱硬化性樹脂、又はシリコーン樹脂を用いることが好ましく、特に、シリコーン樹脂を用いることが好ましい。樹脂Rが型70のキャビティ76に充填されると、次いで、樹脂Rが加熱され、樹脂Rが硬化される(硬化工程)。 As shown in FIG. 9, the resin R is supplied from the injection molding machine 88 to the cavity 76 through the gate 86. The resin R is filled in the cavity 76 while passing between the convex patterns 54 of the electroforming mold 50. As the resin R, it is preferable to use an acrylic or epoxy thermosetting resin or a silicone resin, and it is particularly preferable to use a silicone resin. When the resin R is filled in the cavity 76 of the mold 70, the resin R is then heated to cure the resin R (curing step).
 図10に示されるように、電鋳金型50から硬化された樹脂Rを離型するため、型締めされていた第1型72と第2型74とが型開きされる。型開きでは、第1型72と第2型74とが相対的に離間するように移動される。図10に示されるように、第2型74は、キャビティ76を形成するための窪み84を有している。硬化された樹脂Rは、離型前の凹状パターン102(図14参照)が形成されたモールド100である。以下、モールド100と称する場合がある。 As shown in FIG. 10, in order to release the cured resin R from the electroforming mold 50, the first mold 72 and the second mold 74 that have been clamped are opened. In the mold opening, the first mold 72 and the second mold 74 are moved so as to be relatively separated from each other. As shown in FIG. 10, the second mold 74 has a recess 84 for forming a cavity 76. The cured resin R is a mold 100 in which a concave pattern 102 (see FIG. 14) before release is formed. Hereinafter, the mold 100 may be referred to.
 図11に示されるように、第1型72は、第2型74とは分離され、電鋳金型50からモールド100を離型するためのステージへと移動される。本実施形態では、窪み84を有する第2型74がモールド100から分離されるので、モールド100は、第1型72に固定された電鋳金型50と接触する面を除き、露出されることになる。したがって、電鋳金型50からモールド100を離型する際、モールド100の露出面を利用して容易に離型することが可能である。 As shown in FIG. 11, the first mold 72 is separated from the second mold 74 and moved to the stage for releasing the mold 100 from the electroforming mold 50. In the present embodiment, since the second mold 74 having the depression 84 is separated from the mold 100, the mold 100 is exposed except for the surface in contact with the electroforming mold 50 fixed to the first mold 72. Become. Therefore, when the mold 100 is released from the electroforming mold 50, the mold 100 can be easily released using the exposed surface of the mold 100.
 図12に示されるように、モールド100の周縁部を電鋳金型50から最初に離間させる。モールド100の周縁部は、モールド100を平面視した際の対向する2辺を少なくとも含んでいれば良く、また、4辺の全てを含んでいても良い。周縁部とは、モールド100の外周から凹状パターン102までの領域を意味する。 As shown in FIG. 12, the periphery of the mold 100 is first separated from the electroforming mold 50. The peripheral portion of the mold 100 only needs to include at least two opposing sides when the mold 100 is viewed in plan, and may include all four sides. The peripheral edge means a region from the outer periphery of the mold 100 to the concave pattern 102.
 図13に示されるように、モールド100の周縁部を徐々に電鋳金型50から離間させる。モールド100がシリコーン樹脂により作製される場合、モールド100は弾性力を有するので、モールド100の周縁部を徐々に離間させると、モールド100が伸ばされた状態(弾性変形)となる。モールド100の周縁部を更に電鋳金型50から離間させると、弾性変形していたモールド100は元の形状に戻ろうとするため、モールド100は縮む。モールド100の縮む力を利用することにより、モールド100が電鋳金型50から離型される。モールド100が縮もうとする力を離型する力として利用することにより、モールド100と電鋳金型50の凸状パターン54との間に無理な力が加わらないので、離型不良を抑制することが可能となる。 As shown in FIG. 13, the periphery of the mold 100 is gradually separated from the electroforming mold 50. When the mold 100 is made of a silicone resin, the mold 100 has an elastic force. Therefore, when the periphery of the mold 100 is gradually separated, the mold 100 is stretched (elastic deformation). When the peripheral portion of the mold 100 is further separated from the electroforming mold 50, the mold 100 that has been elastically deformed tends to return to its original shape, and thus the mold 100 contracts. The mold 100 is released from the electroforming mold 50 by utilizing the shrinking force of the mold 100. By utilizing the force that the mold 100 is trying to shrink as a releasing force, an excessive force is not applied between the mold 100 and the convex pattern 54 of the electroformed mold 50, thereby suppressing defective release. Is possible.
 図14に示されるように、最終的には、モールド100と電鋳金型50の凸状パターン54とは完全に離型され、凹状パターン102を有するモールド100が作製される(離型工程)。凹状パターン102とは、凹状台座パターン105に複数の凹部104がアレイ状に配列された状態である。 As shown in FIG. 14, finally, the mold 100 and the convex pattern 54 of the electroforming mold 50 are completely released, and the mold 100 having the concave pattern 102 is produced (mold release step). The concave pattern 102 is a state in which a plurality of concave portions 104 are arranged in an array on the concave pedestal pattern 105.
 モールド100の周縁部を電鋳金型50から離間させる方法として、凹状パターン102の形成される面と反対の露出面であって、モールド100の周縁部を吸引手段で吸引し、周縁部を吸引しながら吸引手段を電鋳金型50から離間させる方法を挙げることができる。 As a method of separating the peripheral edge of the mold 100 from the electroforming mold 50, it is an exposed surface opposite to the surface on which the concave pattern 102 is formed, and the peripheral edge of the mold 100 is sucked by a suction means, and the peripheral edge is sucked. A method of separating the suction means from the electroforming mold 50 can be given.
 電鋳金型50からモールド100を繰り返して作製する場合、凸状パターン54が徐々に傷むことから、1000回から10000回程度使用すると、新たな電鋳金型50に交換する必要がある。本実施形態では、不図示の真空ポンプの駆動を停止し、吸着板80の吸着力を低減することにより、電鋳金型50を短時間に交換することができる。 When the mold 100 is repeatedly produced from the electroforming mold 50, the convex pattern 54 is gradually damaged, so that it is necessary to replace the electroforming mold 50 with a new one when it is used about 1000 to 10,000 times. In the present embodiment, the electroforming mold 50 can be replaced in a short time by stopping the driving of a vacuum pump (not shown) and reducing the suction force of the suction plate 80.
 本実施形態では、端部62を加工していないため、平面視において円形の電鋳金型50が射出成形において用いられる。 In the present embodiment, since the end 62 is not processed, a circular electroformed mold 50 in a plan view is used in injection molding.
 図15及び図16は、別の形態の型70を用いたモールドの作製方法を示す工程図である。図15に示されるように、型70の第1型72には、窪み90が形成されている。この窪み90の底面に電鋳金型50が設置され、吸着板80を介して第1型72に真空吸着される。 15 and 16 are process diagrams showing a mold manufacturing method using another type of mold 70. As shown in FIG. 15, a recess 90 is formed in the first mold 72 of the mold 70. An electroforming mold 50 is installed on the bottom surface of the recess 90 and is vacuum-sucked to the first mold 72 via the suction plate 80.
 図16に示されるように、キャビティ76を形成するため第1型72と第2型74とが型締めされる。第1型72の窪み90に設置された電鋳金型50が第1型72と第2型74とにより挟圧される。第2型74の内壁は、電鋳金型50の外縁60より内側で、吸着板80より外側に位置している。なお、本実施形態では、電鋳金型50の端部62も第1型72と第2型74とにより挟圧される。 As shown in FIG. 16, the first mold 72 and the second mold 74 are clamped to form the cavity 76. The electroforming mold 50 installed in the recess 90 of the first mold 72 is sandwiched between the first mold 72 and the second mold 74. The inner wall of the second mold 74 is located inside the outer edge 60 of the electroforming mold 50 and outside the suction plate 80. In the present embodiment, the end portion 62 of the electroforming mold 50 is also sandwiched between the first mold 72 and the second mold 74.
 図16に示されるように、樹脂Rが射出成形機88からゲート86を介してキャビティ76に供給される。樹脂Rは電鋳金型50の凸状パターン54の間を通過しながら、キャビティ76内に充填される。 As shown in FIG. 16, the resin R is supplied from the injection molding machine 88 to the cavity 76 through the gate 86. The resin R is filled in the cavity 76 while passing between the convex patterns 54 of the electroforming mold 50.
 <支持層について>
 本実施形態に係る入れ子型である電鋳金型50は、厚みが150μmである。前述のように、型締め工程において、電鋳金型50は第1型72と第2型74とにより挟圧される。電鋳金型50の端部62に反りがあり、挟圧部の当たりに分布が発生した場合であっても、電鋳金型50は厚みが薄いため、数10tonの型締圧により反りを矯正させることができる。これにより、挟圧部に隙間ができず、射出した樹脂が漏れない。また、射出時の樹脂圧(射出圧力)により、キャビティ内部の電鋳金型50の反りも第1型72に倣うように矯正することができる。
<About support layer>
The electroforming mold 50 that is a nested mold according to the present embodiment has a thickness of 150 μm. As described above, in the mold clamping process, the electroforming mold 50 is clamped by the first mold 72 and the second mold 74. Even when the end portion 62 of the electroforming mold 50 is warped and distribution is generated around the clamping portion, the electroforming die 50 is thin, so that the warping is corrected by a mold clamping pressure of several tens of tons. be able to. Thereby, a gap is not formed in the pinching portion, and the injected resin does not leak. Further, the warpage of the electroformed mold 50 inside the cavity can be corrected so as to follow the first mold 72 by the resin pressure at the time of injection (injection pressure).
 しかしながら、電鋳金型50の厚みが薄いため、凸状台座形状である第1凸部55の裏面側の凹部57に支持層120を配置しない場合には、樹脂の射出圧力によって凸状台座形状が座屈、又は破壊されてしまい、形成したモールド100に所望の凹状台座パターン105が得られないという問題点があった。 However, since the thickness of the electroforming mold 50 is thin, when the support layer 120 is not disposed in the concave portion 57 on the back surface side of the first convex portion 55 having the convex pedestal shape, the convex pedestal shape is changed by the injection pressure of the resin. There was a problem that the desired concave pedestal pattern 105 could not be obtained in the formed mold 100 due to buckling or destruction.
 図17は、射出成形前後の入れ子型の凸状台座形状と、凸状台座形状の裏面に支持層を配置せずに作製したモールドの凹状台座パターン形状との断面形状を示す図である。図17において、横軸は測定位置座標を示しており、縦軸は凸状台座形状の高さ及び凹状台座パターン形状の深さ(±反転)を示している。図17では、射出成形前の凸状台座形状を細い実線で、射出成形後の凸状台座形状を太い実線で、モールドの凹状台座パターン形状(±反転)を破線で示している。 FIG. 17 is a diagram showing a cross-sectional shape of a nested convex pedestal shape before and after injection molding and a concave pedestal pattern shape of a mold produced without arranging a support layer on the back surface of the convex pedestal shape. In FIG. 17, the horizontal axis represents the measurement position coordinates, and the vertical axis represents the height of the convex pedestal shape and the depth (± inversion) of the concave pedestal pattern shape. In FIG. 17, the convex pedestal shape before injection molding is indicated by a thin solid line, the convex pedestal shape after injection molding is indicated by a thick solid line, and the concave pedestal pattern shape (± inversion) of the mold is indicated by a broken line.
 射出成形前の入れ子型の凸状台座形状は、図17に示す測定位置座標で1mm~13mmの部分である。図17に示すように、凸状台座形状は径が約12mm、高さが約50μmである。 The nested convex pedestal shape before injection molding is a portion of 1 mm to 13 mm in the measurement position coordinates shown in FIG. As shown in FIG. 17, the convex pedestal has a diameter of about 12 mm and a height of about 50 μm.
 作製されたモールドの凹状台座パターン形状は、図17に示す測定位置座標で1mm~13mmの部分である。図17に示すように、測定位置座標で3~11mmの部分で高さが約0μmとなっている。これは、射出圧力により、入れ子型が第1型面に押しつけられ、入れ子型の凸状台座形状が座屈したためである。 The concave pedestal pattern shape of the produced mold is a portion of 1 mm to 13 mm in the measurement position coordinates shown in FIG. As shown in FIG. 17, the height is about 0 μm in the portion of 3 to 11 mm in the measurement position coordinates. This is because the nested mold is pressed against the first mold surface by the injection pressure, and the nested convex pedestal shape is buckled.
 また、射出成形後の入れ子型の凸状台座形状は、図17に示す測定位置座標で1mm~13mmの部分である。図17に示すように、射出成形後の凸状台座形状は、測定位置座標で3~11mmの部分で高さが約30μmとなっている。これは、射出圧力により塑性変形したためである。 Further, the nested convex pedestal shape after injection molding is a portion of 1 mm to 13 mm in the measurement position coordinates shown in FIG. As shown in FIG. 17, the convex pedestal shape after the injection molding has a height of about 30 μm at a measurement position coordinate of 3 to 11 mm. This is because the plastic deformation was caused by the injection pressure.
 このような座屈の発生を回避するために、入れ子型の厚みを厚くして作製することが考えられる。例えば、電鋳金型であれば、メッキ時間を長くして厚みを増せばよい。 In order to avoid the occurrence of such buckling, it can be considered that the thickness of the nested mold is increased. For example, in the case of an electroforming mold, the plating time may be increased to increase the thickness.
 しかしながら、入れ子型の全体を厚くしてしまうと、型締め工程で反りを矯正できず、挟圧部に隙間が生じてしまう。挟圧部は、10μm程度の隙間であっても、射出工程時に樹脂が漏れるという問題がある。樹脂が漏れると、射出成形毎に清掃が必要になる等、手動での作業が増え、人件費などのコストアップ、及び装置タクトダウンによりコストアップを招いてしまう。 However, if the entire nested mold is made thick, the warp cannot be corrected in the mold clamping process, and a gap is generated in the clamping portion. Even if the pinching portion is a gap of about 10 μm, there is a problem that the resin leaks during the injection process. If the resin leaks, manual work increases, such as the need for cleaning for each injection molding, which increases costs such as labor costs and increases the tact time of the apparatus.
 また、入れ子型の反りの形状に沿ってモールドに厚み分布が発生してしまう。これにより、面内パッチで厚みに差が発生するという問題がある。パッチ毎で厚みが異なると、検査時にパッチ毎でピント調整が必要となる。また、入れ子型の針状凸部が第2型に衝突し、破損する可能性がある。 Also, a thickness distribution occurs in the mold along the shape of the nested warp. Accordingly, there is a problem that a difference in thickness occurs in the in-plane patch. If the thickness differs for each patch, focus adjustment is required for each patch during inspection. Further, the nested needle-like convex portion may collide with the second mold and be damaged.
 入れ子型の厚みを厚くすることなく、凸状台座形状の座屈を防止するためには、入れ子型の凸状台座形状の裏面の空間を設けないことが考えられる。電鋳金型の場合であれば、電鋳の厚みを大きくし、研削等で加工すればよい。 In order to prevent the convex pedestal from buckling without increasing the thickness of the nesting mold, it is conceivable not to provide a space for the back surface of the nested convex pedestal. In the case of an electroforming mold, the thickness of electroforming may be increased and processed by grinding or the like.
 しかしながら、電鋳の厚みを大きくすると、電鋳処理時間が増加する。凸状台座形状の高さが500μm程度必要であるとすると、電鋳金型の厚みは750μm程度必要となり、電鋳処理のコストアップを招いてしまう。 However, increasing the electroforming thickness increases the electroforming time. If the height of the convex pedestal shape is required to be about 500 μm, the thickness of the electroforming mold is required to be about 750 μm, which increases the cost of the electroforming process.
 また、入れ子型に厚み分布があると、型締時に挟圧部に隙間が発生する。これを防止するためには、高精度な加工精度が必要となり、コストアップを招いてしまう。 Also, if there is a thickness distribution in the nested mold, a gap will be generated in the clamping part during mold clamping. In order to prevent this, high processing accuracy is required, resulting in an increase in cost.
 このような事情を鑑みて、本実施形態では、第1凸部55の裏面側の凹部57に、支持層120を配置した。 In view of such circumstances, in this embodiment, the support layer 120 is disposed in the concave portion 57 on the back surface side of the first convex portion 55.
 <第1実施形態>
 第1実施形態では、支持層120として熱硬化性樹脂を用いた。
<First Embodiment>
In the first embodiment, a thermosetting resin is used as the support layer 120.
 図18は、支持層120の作成工程を示す図である。図18のS1に示すように、電鋳金型50の台座形状である第1凸部55(φ12.0mm、高さ50μm)の裏面側の凹部57に、熱硬化性樹脂130(耐熱性エポキシ樹脂、支持用樹脂の一例)を流し込み、加熱して硬化させる。ここでは、熱硬化性樹脂130を用いているが、シリコーン樹脂を用いてもよい。 FIG. 18 is a diagram illustrating a process of creating the support layer 120. As shown in S1 of FIG. 18, a thermosetting resin 130 (heat-resistant epoxy resin) is formed in the recess 57 on the back surface side of the first protrusion 55 (φ12.0 mm, height 50 μm) which is a base shape of the electroforming mold 50. An example of a supporting resin is poured and heated to be cured. Although the thermosetting resin 130 is used here, a silicone resin may be used.
 続いて、図18のS2に示すように、硬化した熱硬化性樹脂130を研磨手段132により研磨し、熱硬化性樹脂130の裏面130Aを平滑化する(平滑化工程)。熱硬化性樹脂130の裏面130Aは、電鋳金型50の第1面52に凸状パターン54が形成されていない領域である平坦部53の第2面58の表面と同一平面となるように平滑化した。 Subsequently, as shown in S2 of FIG. 18, the cured thermosetting resin 130 is polished by the polishing means 132, and the back surface 130A of the thermosetting resin 130 is smoothed (smoothing step). The back surface 130A of the thermosetting resin 130 is smooth so as to be flush with the surface of the second surface 58 of the flat portion 53, which is a region where the convex pattern 54 is not formed on the first surface 52 of the electroforming mold 50. Turned into.
 研磨手段132による研磨は、熱硬化性樹脂130に砥石を押し当て表面を少しずつ除去する研削加工、超仕上げ砥石による超仕上げ加工、ホーンに保持した砥石に回転運動と往復運動を与えるホーニング加工等を用いることができる。熱硬化性樹脂130に押し当てる研磨部材は砥石に限定されず、サンドペーパー、耐水ペーパー等の研磨布紙を用いてもよい。 Polishing by the polishing means 132 is a grinding process in which a grindstone is pressed against the thermosetting resin 130 to remove the surface little by little, a superfinishing process by a superfinishing grindstone, a honing process in which a rotating motion and a reciprocating motion are imparted to a grindstone held on a horn, etc. Can be used. The polishing member pressed against the thermosetting resin 130 is not limited to a grindstone, and polishing cloth such as sandpaper or water-resistant paper may be used.
 また、超音波振動する研磨工具を用いる超音波研磨加工(超音波加工)、研磨定盤の表面を研磨対象物に押し当てるラッピング加工、研磨パッドを用いて行うポリシング加工等であってもよい。さらに、加工対象に対して粒状体を衝突させ、表面に凹凸を付与するブラスト加工であってもよい。ここでいうブラスト加工は、ショットブラスト、ショットピーニング、サンドブラスト等を含む。ここでは、ポリシング加工を用いた。 Also, an ultrasonic polishing process (ultrasonic process) using a polishing tool that vibrates ultrasonically, a lapping process that presses the surface of the polishing platen against an object to be polished, a polishing process that is performed using a polishing pad, or the like may be used. Furthermore, the blast process which makes a granular material collide with a process target and provides an unevenness | corrugation on the surface may be sufficient. Blasting here includes shot blasting, shot peening, sand blasting, and the like. Here, polishing was used.
 図19は、このように作成した支持層120を示す図である。支持層120の裏面120Aは、電鋳金型50の平坦部53の第2面58の表面と同一平面を形成している。 FIG. 19 is a diagram showing the support layer 120 created in this way. The back surface 120 </ b> A of the support layer 120 forms the same plane as the surface of the second surface 58 of the flat portion 53 of the electroforming mold 50.
 図20は、凹部57に熱硬化性樹脂130の支持層120を配置した電鋳金型50を用いて作製したモールドの凹状台座パターン形状の断面形状を示す図である。図20において、横軸は測定位置座標を示しており、縦軸は凹状台座パターン形状の深さ(±反転)を示している。ここでは、1枚目のモールドの凹状台座パターン形状を破線で、7枚目のモールドの凹状台座パターン形状を点線で示している。また、電鋳金型50の第1凸部55の形状を実線で示している。なお、第2凸部56については無視している。 FIG. 20 is a diagram showing a cross-sectional shape of a concave pedestal pattern shape of a mold manufactured using an electroforming mold 50 in which a support layer 120 of a thermosetting resin 130 is disposed in a concave portion 57. In FIG. 20, the horizontal axis indicates the measurement position coordinates, and the vertical axis indicates the depth (± inversion) of the concave pedestal pattern shape. Here, the concave base pattern shape of the first mold is indicated by a broken line, and the concave base pattern shape of the seventh mold is indicated by a dotted line. Moreover, the shape of the 1st convex part 55 of the electroforming metal mold | die 50 is shown with the continuous line. Note that the second convex portion 56 is ignored.
 第1凸部55は、図20に示す測定位置座標で2.8mm~13.8mmの部分である。図20に示すように、第1凸部55は径が約11mm、高さが約55μmである。 The first convex portion 55 is a portion of 2.8 mm to 13.8 mm in the measurement position coordinates shown in FIG. As shown in FIG. 20, the first convex portion 55 has a diameter of about 11 mm and a height of about 55 μm.
 作製されたモールドの凹状台座パターン形状は、図20に示す測定位置座標で2.8mm~13.8mmの部分である。図20に示すように、1枚目のモールドも7枚目のモールドも、測定位置座標で2.8~13.8mmの部分で高さが約58μmとなっている。モールドの形状は電鋳金型50の形状と比較して変化しているが、研磨押圧、又は樹脂の硬化収縮等が原因と推測される。 The concave pedestal pattern shape of the produced mold is a portion of 2.8 mm to 13.8 mm in the measurement position coordinates shown in FIG. As shown in FIG. 20, both the first mold and the seventh mold have a height of about 58 μm at a measurement position coordinate of 2.8 to 13.8 mm. Although the shape of the mold is changed as compared with the shape of the electroforming mold 50, it is presumed that it is caused by polishing pressure or curing shrinkage of the resin.
 本実施形態では、硬化した熱硬化性樹脂130の裏面130Aを研磨手段132により研磨したが、硬化した時点で裏面130Aが十分平滑化されていれば、平滑化工程は必須ではない。 In this embodiment, the back surface 130A of the cured thermosetting resin 130 is polished by the polishing means 132. However, if the back surface 130A is sufficiently smoothed at the time of curing, the smoothing step is not essential.
 <第2実施形態>
 第2実施形態では、支持層120として金属板140を用いる。図21は、金属板140を用いた支持層120を示す図である。図21では、第2凸部56については省略している。
Second Embodiment
In the second embodiment, a metal plate 140 is used as the support layer 120. FIG. 21 is a view showing the support layer 120 using the metal plate 140. In FIG. 21, the second convex portion 56 is omitted.
 図21に示すように、入れ子型の台座形状である第1凸部55(φ12.0mm、高さ300μm)の裏面側の凹部57(内径11.7mm、深さ300μm)に、高さ300μmの円柱形状の金属板140を、中心軸を凹部57の中心軸に合わせて配置した。金属板140の裏面140A(支持層120の裏面120A)は、電鋳金型50の平坦部53の第2面58の表面と同一平面を形成している。 As shown in FIG. 21, a recessed portion 57 (inner diameter: 11.7 mm, depth: 300 μm) on the back surface side of the first convex portion 55 (φ12.0 mm, height: 300 μm) having a nested base shape has a height of 300 μm. A cylindrical metal plate 140 was disposed with its central axis aligned with the central axis of the recess 57. The back surface 140 </ b> A of the metal plate 140 (the back surface 120 </ b> A of the support layer 120) forms the same plane as the surface of the second surface 58 of the flat portion 53 of the electroforming mold 50.
 金属板140は、裏面140A及び表面140B(支持層120の表面120B、電鋳金型50に接する面)が研磨されている(平滑化工程)。なお、裏面140Aの研磨は凹部57に配置してから行ってもよいし、配置する前に予め研磨しておいてもよい。 The back surface 140A and the front surface 140B (the surface 120B of the support layer 120 and the surface in contact with the electroforming mold 50) of the metal plate 140 are polished (smoothing process). The back surface 140A may be polished after being disposed in the concave portion 57, or may be polished in advance before being disposed.
 なお、金属板140は、電鋳金型50と金属板140との熱膨張の差を考慮して径を小さめに設定している。 The metal plate 140 is set to have a smaller diameter in consideration of the difference in thermal expansion between the electroforming mold 50 and the metal plate 140.
 図22は、図21に示す支持層120として、φ11.0mmの金属板140を用いて作製したモールドと、φ11.5mmの金属板140を用いて作製したモールドとの、凹状台座パターン形状の断面形状を示す図である。図22において、横軸は測定位置座標を示しており、縦軸は凹状台座パターン形状の深さ(±反転)を示している。ここでは、φ11.0mmの金属板140を用いたモールドの凹状台座パターン形状を実線で、φ11.5mmの金属板140を用いたモールドの凹状台座パターン形状を破線で示している。 FIG. 22 shows a cross-section of a concave pedestal pattern shape of a mold made using a φ11.0 mm metal plate 140 and a mold made using a φ11.5 mm metal plate 140 as the support layer 120 shown in FIG. 21. It is a figure which shows a shape. In FIG. 22, the horizontal axis indicates the measurement position coordinates, and the vertical axis indicates the depth (± inversion) of the concave pedestal pattern shape. Here, the concave pedestal pattern shape of the mold using the φ11.0 mm metal plate 140 is indicated by a solid line, and the concave pedestal pattern shape of the mold using the φ11.5 mm metal plate 140 is indicated by a broken line.
 φ11.0mmの金属板140を用いて作製したモールドも、φ11.5mmの金属板140を用いて作製したモールドも、凹状台座パターン形状は、図22に示す測定位置座標で3mm~14mmの部分である。図22に示すように、いずれの場合も凹状台座パターン形状は径が約11mm、深さが約300μmである。 The concave pedestal pattern shape of the mold produced using the φ11.0 mm metal plate 140 and the mold produced using the φ11.5 mm metal plate 140 is a portion of 3 mm to 14 mm in the measurement position coordinates shown in FIG. is there. As shown in FIG. 22, in any case, the concave pedestal pattern has a diameter of about 11 mm and a depth of about 300 μm.
 このように、支持層120は、高さが凹部57の深さと同等であれば、径方向は凹部57との隙間を設けても座屈しないことがわかった。 Thus, it was found that the support layer 120 does not buckle in the radial direction even if a gap with the recess 57 is provided if the height is equal to the depth of the recess 57.
 <第3実施形態>
 支持層120として、流体を用いることも可能である。図23は、第3実施形態に係る第1型72、第2型74、及び電鋳金型50を示す図であり、ここでは型締め工程を示している。
<Third Embodiment>
A fluid may be used as the support layer 120. FIG. 23 is a diagram illustrating the first mold 72, the second mold 74, and the electroforming mold 50 according to the third embodiment, and here, a mold clamping process is illustrated.
 図23に示すように、吸着板80は、電鋳金型50の第1凸部55の裏面側の凹部57が配置される位置を避けて設けられている。電鋳金型50は、吸着板80に真空吸着される。 As shown in FIG. 23, the suction plate 80 is provided avoiding the position where the concave portion 57 on the back surface side of the first convex portion 55 of the electroforming mold 50 is disposed. The electroforming mold 50 is vacuum-sucked to the suction plate 80.
 また、第1型72は、第2型74と対向する面であって、電鋳金型50の第1凸部55の裏面側の凹部57が配置されるそれぞれの位置に、開口部152が設けられている。複数の開口部152は、第1型72の内部を連通する流路154にそれぞれ接続されている。 The first mold 72 is a surface facing the second mold 74, and an opening 152 is provided at each position where the concave portion 57 on the back surface side of the first convex portion 55 of the electroforming mold 50 is disposed. It has been. The plurality of openings 152 are respectively connected to flow paths 154 that communicate with the inside of the first mold 72.
 図24は、凹部57に支持層120を設ける補強工程を示す図である。図24に示すように、型締め後に、不図示の流体供給部から流路154に流体160が供給される。流路154を通過した流体160は、開口部152から凹部57の空間に供給される(供給工程)。流体160で凹部57を満たすと、凹部57に流体160による支持層120が設けられる。流体160としては、例えば水、油等の液体を挙げることができる。 FIG. 24 is a diagram showing a reinforcing step of providing the support layer 120 in the concave portion 57. As shown in FIG. 24, after the mold clamping, the fluid 160 is supplied to the flow path 154 from a fluid supply unit (not shown). The fluid 160 that has passed through the flow path 154 is supplied from the opening 152 to the space of the recess 57 (supply process). When the concave portion 57 is filled with the fluid 160, the support layer 120 made of the fluid 160 is provided in the concave portion 57. Examples of the fluid 160 include liquids such as water and oil.
 その後、キャビティ76内に樹脂を充填する(射出工程)。流体160によって形成された支持層120により、第1凸部55の座屈を防止することができる。 Thereafter, the cavity 76 is filled with resin (injection process). The support layer 120 formed by the fluid 160 can prevent the first protrusion 55 from buckling.
 流体160で凹部57を満たした後、不図示の流体供給部と流路154との間に設けられた不図示のバルブを閉じてもよい。これにより、射出工程による射出圧力による流体160の逆流を防止することができる。 After filling the recess 57 with the fluid 160, a valve (not shown) provided between the fluid supply unit (not shown) and the flow path 154 may be closed. Thereby, the backflow of the fluid 160 by the injection pressure by an injection process can be prevented.
 ここでは型締め工程、補強工程、射出工程の順序で行う場合について説明したが、補強工程は、型締め工程よりも前に行ってもよい。この場合は、電鋳金型50を第1型72に載置してから流体160を供給し、その後型締め工程を行う。補強工程と型締め工程とを同時に行ってもよい。また、補強工程と射出工程とを同時に行ってもよい。 Although the case where the mold clamping process, the reinforcing process, and the injection process are performed in this order has been described here, the reinforcing process may be performed before the mold clamping process. In this case, the fluid 160 is supplied after the electroforming mold 50 is placed on the first mold 72, and then the clamping process is performed. You may perform a reinforcement process and a mold-clamping process simultaneously. Moreover, you may perform a reinforcement | strengthening process and an injection process simultaneously.
 また、支持層120は、樹脂、金属、及び液体のうち少なくとも2つを組み合わせて構成してもよい。1つの凹部57に2種類の材料からなる支持層120を設けてもよいし、金属の支持層120を設けた凹部57と樹脂の支持層120を設けた凹部57とが混在してもよい。 Further, the support layer 120 may be configured by combining at least two of resin, metal, and liquid. The support layer 120 made of two kinds of materials may be provided in one recess 57, or the recess 57 provided with the metal support layer 120 and the recess 57 provided with the resin support layer 120 may be mixed.
 <パターンシートの製造方法>
 次に、上記の作製方法で作製されたモールド100を用いて、パターンシートを製造する方法について説明する。図25から図28は、パターンシート110を製造する工程図である。
<Pattern sheet manufacturing method>
Next, a method for producing a pattern sheet using the mold 100 produced by the above production method will be described. 25 to 28 are process diagrams for manufacturing the pattern sheet 110.
 〔ポリマー溶解液供給工程〕
 図25は、モールド100を準備した状態を示している。モールド100は、上述のモールドの作製方法により製造される。図25に示されるモールド100は、複数の凹状パターン102を有している。凹状パターン102は、複数の凹部104がアレイ状に配列された状態である。
[Polymer solution supply process]
FIG. 25 shows a state where the mold 100 is prepared. The mold 100 is manufactured by the above-described mold manufacturing method. A mold 100 shown in FIG. 25 has a plurality of concave patterns 102. The concave pattern 102 is a state in which a plurality of concave portions 104 are arranged in an array.
 図26は、モールド100の凹状パターン102にポリマー溶解液112を供給する供給工程を示す図である。 FIG. 26 is a diagram showing a supply process of supplying the polymer solution 112 to the concave pattern 102 of the mold 100.
 パターンシート110を形成するポリマー溶解液112の材料としては、水溶性材料を用いることが好ましい。パターンシート110の製造に用いられるポリマー溶解液112の樹脂ポリマーの素材としては、生体適合性のある樹脂を用いることが好ましい。このような樹脂としては、グルコース、マルトース、プルラン、コンドロイチン硫酸ナトリウム、ヒアルロン酸ナトリウム、ヒドロキシエチルデンプンなどの糖類、ゼラチンなどのタンパク質、ポリ乳酸、乳酸・グリコール酸共重合体などの生分解性ポリマーを使用することが好ましい。パターンシート110をモールド100から離型する際、基材(不図示)を用いてパターンシート110を離型することができるので、好適に利用することができる。濃度は材料によっても異なるが、薬剤を含まないポリマー溶解液112の中に樹脂ポリマーが10~50質量%含まれる濃度とすることが好ましい。また、ポリマー溶解液112に用いる溶媒は、温水以外であっても揮発性を有するものであればよく、エタノール等のアルコールなどを用いることができる。そして、ポリマー溶解液112の中には、用途に応じて体内に供給するための薬剤を共に溶解させることが可能である。薬剤を含むポリマー溶解液112のポリマー濃度(薬剤自体がポリマーである場合は薬剤を除いたポリマーの濃度)としては、0~30質量%含まれることが好ましい。 As a material of the polymer solution 112 that forms the pattern sheet 110, it is preferable to use a water-soluble material. As a resin polymer material of the polymer solution 112 used for manufacturing the pattern sheet 110, it is preferable to use a biocompatible resin. Such resins include glucose, maltose, pullulan, sodium chondroitin sulfate, sodium hyaluronate, saccharides such as hydroxyethyl starch, proteins such as gelatin, and biodegradable polymers such as polylactic acid and lactic acid / glycolic acid copolymers. It is preferable to use it. When the pattern sheet 110 is released from the mold 100, the pattern sheet 110 can be released using a base material (not shown), so that the pattern sheet 110 can be suitably used. Although the concentration varies depending on the material, it is preferable to set the concentration so that 10 to 50% by mass of the resin polymer is contained in the polymer solution 112 not containing the drug. Moreover, the solvent used for the polymer solution 112 may be volatile even if it is other than warm water, and alcohol such as ethanol can be used. And in the polymer solution 112, it is possible to dissolve together the medicine to be supplied into the body according to the application. The polymer concentration of the polymer solution 112 containing the drug (when the drug itself is a polymer, the concentration of the polymer excluding the drug) is preferably 0 to 30% by mass.
 ポリマー溶解液112の調製方法としては、水溶性の高分子(ゼラチンなど)を用いる場合は、水溶性粉体を水に溶解し、溶解後に薬剤を添加してもよいし、薬剤が溶解した液体に水溶性高分子の粉体を入れて溶かしてもよい。水に溶解しにくい場合、加温して溶解してもよい。温度は高分子材料の種類により、適宜選択可能であるが、必要に応じて、約20~40℃の温度で加温することが好ましい。ポリマー溶解液112の粘度は、薬剤を含む溶解液では200mPa・s以下であることが好ましく、より好ましくは50mPa・s以下とすることが好ましい。薬剤を含まない溶解液では2000mPa・s以下であることが好ましく、より好ましくは500mPa・s以下とすることが好ましい。ポリマー溶解液112の粘度を適切に調整することにより、モールド100の凹状パターン102に容易にポリマー溶解液112を注入することができる。例えば、ポリマー溶解液112の粘度は、細管式粘度計、落球式粘度計、回転式粘度計、又は振動式粘度計で測定することができる。 As a method for preparing the polymer solution 112, when a water-soluble polymer (gelatin or the like) is used, a water-soluble powder may be dissolved in water, and a drug may be added after the dissolution. Alternatively, a water-soluble polymer powder may be put in and dissolved. If it is difficult to dissolve in water, it may be dissolved by heating. The temperature can be appropriately selected depending on the kind of the polymer material, but it is preferable to heat at a temperature of about 20 to 40 ° C. as necessary. The viscosity of the polymer solution 112 is preferably 200 mPa · s or less, more preferably 50 mPa · s or less, in the case of a solution containing a drug. In a solution not containing a drug, it is preferably 2000 mPa · s or less, more preferably 500 mPa · s or less. By appropriately adjusting the viscosity of the polymer solution 112, the polymer solution 112 can be easily injected into the concave pattern 102 of the mold 100. For example, the viscosity of the polymer solution 112 can be measured with a capillary tube viscometer, a falling ball viscometer, a rotary viscometer, or a vibration viscometer.
 ポリマー溶解液112に含有させる薬剤は、薬剤としての機能を有するものであれば限定されない。特に、ペプチド、タンパク質、核酸、多糖類、ワクチン、水溶性低分子化合物に属する医薬化合物、又は化粧品成分から選択することが好ましい。 The drug contained in the polymer solution 112 is not limited as long as it has a function as a drug. In particular, it is preferable to select from peptides, proteins, nucleic acids, polysaccharides, vaccines, pharmaceutical compounds belonging to water-soluble low molecular weight compounds, or cosmetic ingredients.
 ポリマー溶解液112をモールド100に注入する方法としては、例えば、スピンコーターを用いた塗布を挙げることができる。 Examples of the method of injecting the polymer solution 112 into the mold 100 include application using a spin coater.
 モールド100の凹状パターン102の凹部先端に、貫通孔を形成することが好ましい。凹状パターン102の凹部内のエアーを貫通孔から逃がすことができる。したがって、ポリマー溶解液112をモールド100の凹部に入りやすくすることができる。また、この工程は、減圧状態で行うことが好ましい。 It is preferable to form a through hole at the tip of the concave portion of the concave pattern 102 of the mold 100. Air in the concave portion of the concave pattern 102 can escape from the through hole. Therefore, the polymer solution 112 can easily enter the recess of the mold 100. Further, this step is preferably performed in a reduced pressure state.
 〔乾燥工程〕
 図27は、ポリマー溶解液112を乾燥させてポリマーシート114とする乾燥工程を示す図である。例えば、モールド100に供給されたポリマー溶解液112に風を吹き付けることにより乾燥させることができる。ポリマーシート114とは、ポリマー溶解液112に所望の乾燥処理を施した後の状態を意味する。ポリマーシート114の水分量等は適宜設定される。なお、乾燥により、ポリマーの水分量が低くなりすぎると剥離しにくくなるため、弾力性を維持している状態の水分量を残存させておくことが好ましい。
[Drying process]
FIG. 27 is a diagram illustrating a drying process in which the polymer solution 112 is dried to form the polymer sheet 114. For example, the polymer solution 112 supplied to the mold 100 can be dried by blowing air. The polymer sheet 114 means a state after the polymer solution 112 is subjected to a desired drying process. The moisture content of the polymer sheet 114 is set as appropriate. In addition, since it will become difficult to peel when the water content of a polymer becomes too low by drying, it is preferable to leave the water content in the state of maintaining elasticity.
 〔ポリマーシート離型工程〕
 図28は、ポリマーシート114をモールド100から離型し、個別のパターンシート110A、110B、110C、110Dとするポリマーシート離型工程を説明する図である。パターンシート110A、110B、110C、110Dには、それぞれ一方面に凸状パターン116A、116B、116C、116Dを有している。以下において、パターンシート110A、110B、110C、110Dを代表してパターンシート110、凸状パターン116A、116B、116C、116Dを代表して凸状パターン116と表記する。図29は、パターンシート110の斜視図である。
[Polymer sheet release process]
FIG. 28 is a diagram for explaining a polymer sheet releasing step in which the polymer sheet 114 is released from the mold 100 to obtain individual pattern sheets 110A, 110B, 110C, and 110D. The pattern sheets 110A, 110B, 110C, and 110D have convex patterns 116A, 116B, 116C, and 116D on one surface, respectively. Hereinafter, the pattern sheet 110A, 110B, 110C, and 110D will be represented by the pattern sheet 110, and the convex pattern 116A, 116B, 116C, and 116D will be represented by the convex pattern 116. FIG. 29 is a perspective view of the pattern sheet 110.
 なお、本実施形態では、ポリマー溶解液112をモールド100の凹状パターン102に充填し、乾燥することによりポリマーシート114を形成する場合を説明したが、これに限定されない。 In the present embodiment, the case where the polymer sheet 114 is formed by filling the polymer dissolution solution 112 into the concave pattern 102 of the mold 100 and drying is described. However, the present invention is not limited to this.
 例えば、薬剤を含むポリマー溶解液112をモールド100の凹状パターン102に充填して乾燥し、その後、薬剤を含まないポリマー溶解液112をモールド100の凹状パターン102に充填し、乾燥することにより二層構造のポリマーシート114を形成することができる。 For example, the polymer solution 112 containing the drug is filled in the concave pattern 102 of the mold 100 and dried, and then the polymer solution 112 not containing the drug is filled in the concave pattern 102 of the mold 100 and dried to form two layers. A structured polymer sheet 114 can be formed.
 また、モールド100の使用は、初回の1回限りの使用とし、使い捨てとすることが好ましい場合がある。パターンシート110が、医薬品として用いられる場合、製造されるパターンシート110の生体への安全性を考慮して、使い捨てとすることが好ましい。また、使い捨てとすることで、モールド100を洗浄する必要がなくなるので、洗浄によるコストを下げることができる。特に、パターンシート110が、医薬品として用いられる場合には、高い洗浄性が求められるため、洗浄コストが高くなる。 In addition, the mold 100 may be used only once for the first time and may be preferably disposable. When the pattern sheet 110 is used as a medicine, it is preferable to make it disposable in consideration of the safety of the manufactured pattern sheet 110 to the living body. Moreover, since it becomes unnecessary to wash | clean the mold 100 by making it disposable, the cost by washing | cleaning can be reduced. In particular, when the pattern sheet 110 is used as a medicine, a high cleaning performance is required, so that the cleaning cost increases.
 製造されるパターンシート110の凸状パターン116とは、複数の凸部118が、定められた数、及び位置にアレイ状に配列されている状態をいう。凸部118とは、先端側に先細りの形状を意味し、錐体形状、及び多段の錐体形状を含む。多段の錐体形状は、底面から先端に向けて角度の異なる側面を有する錐体形状を意味する。 The convex pattern 116 of the pattern sheet 110 to be manufactured refers to a state in which a plurality of convex portions 118 are arranged in an array at a predetermined number and position. The convex portion 118 means a tapered shape on the tip side, and includes a cone shape and a multistage cone shape. The multi-stage cone shape means a cone shape having side surfaces with different angles from the bottom surface to the tip.
 凸部118の高さは、0.2mm以上2mm以下の範囲であり、好ましくは、0.3mm以上1.5mm以下である。 The height of the convex portion 118 is in the range of 0.2 mm to 2 mm, and preferably 0.3 mm to 1.5 mm.
 製造される凸状パターン116を有するパターンシート110は、凸状パターン54を有する電鋳金型50の複製である。電鋳金型50の凸状パターン54の形状、及び配置を所望の形状とすることにより、製造されるパターンシート110の凸状パターン116を所望の形状とすることができる。 The manufactured pattern sheet 110 having the convex pattern 116 is a replica of the electroformed mold 50 having the convex pattern 54. By making the shape and arrangement of the convex pattern 54 of the electroforming mold 50 a desired shape, the convex pattern 116 of the pattern sheet 110 to be manufactured can be made a desired shape.
 <凸状パターンを有する電鋳金型の作製方法>
 次に、モールド100を用いて電鋳金型を作製する方法について説明する。図30~図32はモールド100を用いた電鋳金型の作製方法の手順を示す工程図である。
<Method for producing electroformed mold having convex pattern>
Next, a method for producing an electroforming mold using the mold 100 will be described. 30 to 32 are process diagrams showing the procedure of a method for producing an electroforming mold using the mold 100. FIG.
 図30は、モールド100を準備した状態を示している。モールド100は、上述のモールドの作製方法により製造される。モールド100は、複数の凹状パターン102を有している。凹状パターン102は、複数の凹部104がアレイ状に配列された状態である。 FIG. 30 shows a state in which the mold 100 is prepared. The mold 100 is manufactured by the above-described mold manufacturing method. The mold 100 has a plurality of concave patterns 102. The concave pattern 102 is a state in which a plurality of concave portions 104 are arranged in an array.
 図31は、モールド100の凹状パターン102に、電鋳処理により金属を埋める電鋳工程を示す工程図である。電鋳工程においては、まず、モールド100に対して導電化処理を行う。モールド100に、金属(例えば、ニッケル)をスパッターリングし、モールド100の表面、及び凹状パターン102に金属を付着させる。 FIG. 31 is a process diagram showing an electroforming process in which a concave pattern 102 of the mold 100 is filled with metal by electroforming. In the electroforming process, first, a conductive treatment is performed on the mold 100. A metal (for example, nickel) is sputtered on the mold 100 to adhere the metal to the surface of the mold 100 and the concave pattern 102.
 次いで、導電化処理を経たモールド100を陰極に保持する。金属ペレットを金属製のケースに保持し陽極とする。モールド100を保持する陰極と金属ペレットを保持する陽極とを電鋳液中に浸漬し、通電する。電鋳処理法により、モールド100の凹状パターン102に金属を埋め込み、金属体200が形成される。 Next, the mold 100 that has undergone the conductive treatment is held on the cathode. A metal pellet is held in a metal case to serve as an anode. The cathode for holding the mold 100 and the anode for holding the metal pellet are immersed in an electroforming solution and energized. A metal body 200 is formed by embedding metal in the concave pattern 102 of the mold 100 by electroforming.
 図32は、モールド100から金属体200を剥離する剥離工程を示す工程図である。図32に示すように、金属体200がモールド100から剥離されて、凸状パターン212を有する電鋳金型210が作製される。剥離とは金属体200とモールド100とが分離されることを意味する。凸状パターン212はモールド100の凹状パターン102の反転形状となる。ここで、電鋳金型210は、モールド100から剥離された金属体200と基本的には同じである。 FIG. 32 is a process diagram showing a peeling process for peeling the metal body 200 from the mold 100. As shown in FIG. 32, the metal body 200 is peeled from the mold 100, and the electroformed mold 210 having the convex pattern 212 is produced. Peeling means that the metal body 200 and the mold 100 are separated. The convex pattern 212 is an inverted shape of the concave pattern 102 of the mold 100. Here, the electroforming mold 210 is basically the same as the metal body 200 peeled from the mold 100.
 このように作製した電鋳金型210を、電鋳金型50に代えて入れ子型として使用することで、射出成形によってモールドを作製することができる。 The mold can be produced by injection molding by using the electroformed mold 210 thus produced as a nested mold instead of the electroformed mold 50.
 <その他>
 本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。
<Others>
The technical scope of the present invention is not limited to the scope described in the above embodiment. The configurations and the like in the embodiments can be appropriately combined between the embodiments without departing from the gist of the present invention.
10 母型
12 第1面
14 凹状パターン
15 第1凹部
16 第2凹部
18 第2面
20 陰極
22 シャフト
24 陰極板
26 導電リング
30 電鋳装置
32 電鋳液
32A 電鋳液
34 電鋳槽
36 ドレーン槽
38 Niペレット
40 チタンケース
42 排水配管
44 供給配管
50 電鋳金型
52 第1面
53 平坦部
54 凸状パターン
55 第1凸部
56 第2凸部
57 凹部
58 第2面
60 外縁
62 端部
70 型
72 第1型
74 第2型
76 キャビティ
78 平坦面
80 吸着板
82 吸引管
84 窪み
86 ゲート
88 射出成形機
90 窪み
100 モールド
102 凹状パターン
104 凹部
105 凹状台座パターン
110 パターンシート
112 ポリマー溶解液
114 ポリマーシート
116 凸状パターン
118 凸部
120 支持層
120A 裏面
120B 表面
130 熱硬化性樹脂
130A 裏面
132 研磨手段
140 金属板
140A 裏面
140B 表面
152 開口部
154 流路
200 金属体
210 電鋳金型
212 凸状パターン
DESCRIPTION OF SYMBOLS 10 Master mold 12 1st surface 14 Recessed pattern 15 1st recessed part 16 2nd recessed part 18 2nd surface 20 Cathode 22 Shaft 24 Cathode plate 26 Conductive ring 30 Electroforming apparatus 32 Electroforming liquid 32A Electroforming liquid 34 Electroforming tank 36 Drain Tank 38 Ni pellet 40 Titanium case 42 Drain piping 44 Supply piping 50 Electroforming mold 52 First surface 53 Flat portion 54 Convex pattern 55 First convex portion 56 Second convex portion 57 Concave portion 58 Second surface 60 Outer edge 62 End portion 70 Mold 72 First mold 74 Second mold 76 Cavity 78 Flat surface 80 Suction plate 82 Suction tube 84 Depression 86 Gate 88 Injection molding machine 90 Depression 100 Mold 102 Concave pattern 104 Concave pattern 105 Concave base pattern 110 Pattern sheet 112 Polymer solution 114 Polymer Sheet 116 Convex pattern 118 Convex portion 120 Support layer 120A Back surface 120B Front surface 1 30 Thermosetting resin 130A Back surface 132 Polishing means 140 Metal plate 140A Back surface 140B Front surface 152 Opening 154 Channel 200 Metal body 210 Electroformed mold 212 Convex pattern

Claims (11)

  1.  裏面に凹部を有する第1凸状台座形状と前記第1凸状台座形状の表面に第2凸状針パターン群とを有する入れ子型とを準備する工程と、
     第1型と第2型とを有する型を準備する工程と、
     前記入れ子型に設けられた前記第1凸状台座形状の裏面の前記凹部に支持層を設ける補強工程と、
     キャビティを形成するため、前記第1型と前記第2型とにより前記入れ子型を挟圧する型締め工程と、
     前記キャビティにモールド用樹脂を充填する射出工程と、
     を有する凹状台座パターンを有するモールドの作製方法。
    Preparing a first convex pedestal shape having a recess on the back surface and a nested mold having a second convex needle pattern group on the surface of the first convex pedestal shape;
    Preparing a mold having a first mold and a second mold;
    A reinforcing step of providing a support layer in the concave portion on the back surface of the first convex pedestal shape provided in the nested mold;
    A mold clamping step in which the nested mold is clamped by the first mold and the second mold to form a cavity;
    An injection step of filling the cavity with resin for molding;
    A method for producing a mold having a concave pedestal pattern.
  2.  前記支持層は、支持用樹脂、金属、及び流体のうち少なくとも1つにより構成される請求項1に記載の凹状台座パターンを有するモールドの作製方法。 The method for producing a mold having a concave pedestal pattern according to claim 1, wherein the support layer is made of at least one of a support resin, a metal, and a fluid.
  3.  前記支持層は前記支持用樹脂及び前記金属の少なくとも一方を含み、
     前記支持用樹脂及び前記金属の少なくとも一方を研磨して平滑化する平滑化工程を有する請求項2に記載の凹状台座パターンを有するモールドの作製方法。
    The support layer includes at least one of the support resin and the metal,
    The method for producing a mold having a concave pedestal pattern according to claim 2, further comprising a smoothing step of polishing and smoothing at least one of the supporting resin and the metal.
  4.  前記研磨は、研削加工、超仕上げ加工、ホーニング加工、ブラスト加工、超音波加工、ラッピング加工、及びポリシング加工のうち少なくとも1つを使用する請求項3に記載の凹状台座パターンを有するモールドの作製方法。 The method for producing a mold having a concave pedestal pattern according to claim 3, wherein the polishing uses at least one of grinding, superfinishing, honing, blasting, ultrasonic processing, lapping, and polishing. .
  5.  前記支持層は前記流体を含み、
     前記第1型は前記流体の流路を有する請求項2に記載の凹状台座パターンを有するモールドの作製方法。
    The support layer includes the fluid;
    The method for producing a mold having a concave pedestal pattern according to claim 2, wherein the first mold has a flow path for the fluid.
  6.  前記モールド用樹脂は、熱硬化性樹脂及びシリコーン樹脂のいずれかである請求項1から5のいずれか1項に記載の凹状台座パターンを有するモールドの作製方法。 The method for producing a mold having a concave pedestal pattern according to any one of claims 1 to 5, wherein the molding resin is one of a thermosetting resin and a silicone resin.
  7.  前記射出工程の後、前記キャビティ内の前記モールド用樹脂を加熱することにより硬化させる硬化工程と、
     前記硬化工程の後に前記第1型と前記第2型とを開き、硬化された前記モールド用樹脂を前記入れ子型から離型させる離型工程と、
     を有する請求項1から6のいずれか1項に記載の凹状台座パターンを有するモールドの作製方法。
    After the injection step, a curing step for curing by heating the mold resin in the cavity,
    A mold release step of opening the first mold and the second mold after the curing step and releasing the cured mold resin from the insert mold;
    The manufacturing method of the mold which has a concave base pattern of any one of Claim 1 to 6 which has these.
  8.  前記入れ子型は、プラスチック樹脂及び金属のいずれかである請求項1から7のいずれか1項に記載の凹状台座パターンを有するモールドの作製方法。 The method for producing a mold having a concave pedestal pattern according to any one of claims 1 to 7, wherein the nesting die is one of plastic resin and metal.
  9.  前記入れ子型は電鋳金型であり、平面視において円形である請求項1から8のいずれか1項に記載の凹状台座パターンを有するモールドの作製方法。 The method for producing a mold having a concave pedestal pattern according to any one of claims 1 to 8, wherein the nesting die is an electroforming die and is circular in a plan view.
  10.  請求項1から9のいずれか1項に記載の凹状台座パターンを有するモールドの作製方法により凹状台座パターンを有するモールドを作製する工程と、
     前記モールドの前記凹状台座パターンにポリマー溶解液を供給する供給工程と、
     前記ポリマー溶解液を乾燥させてポリマーシートとする乾燥工程と、
     前記ポリマーシートを前記モールドから離型するポリマーシート離型工程と、
     を含むパターンシートの製造方法。
    A step of producing a mold having a concave pedestal pattern by a method for producing a mold having a concave pedestal pattern according to any one of claims 1 to 9,
    Supplying a polymer solution to the concave pedestal pattern of the mold; and
    A drying step of drying the polymer solution to form a polymer sheet;
    A polymer sheet releasing step of releasing the polymer sheet from the mold;
    The manufacturing method of the pattern sheet containing this.
  11.  前記ポリマー溶解液が水溶性材料を含む請求項10に記載のパターンシートの製造方法。 The method for producing a pattern sheet according to claim 10, wherein the polymer solution contains a water-soluble material.
PCT/JP2019/012123 2018-03-27 2019-03-22 Method for manufacturing mold having recessed seat pattern, and method for producing pattern sheet WO2019188797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018060599 2018-03-27
JP2018-060599 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019188797A1 true WO2019188797A1 (en) 2019-10-03

Family

ID=68061907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012123 WO2019188797A1 (en) 2018-03-27 2019-03-22 Method for manufacturing mold having recessed seat pattern, and method for producing pattern sheet

Country Status (1)

Country Link
WO (1) WO2019188797A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114683463A (en) * 2022-03-28 2022-07-01 业成科技(成都)有限公司 Optical waveguide jig and preparation method of optical waveguide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123181A (en) * 1995-10-31 1997-05-13 Matsushita Electric Ind Co Ltd Method for decorating surface of resin product and resin product
JP2003014938A (en) * 2001-04-12 2003-01-15 Mitsubishi Engineering Plastics Corp Light transmission plate composed of transparent resin, method for molding the same, bushing, metallic mold assembling body and surface light source device
JP2017209155A (en) * 2016-05-23 2017-11-30 富士フイルム株式会社 Method of fabricating mold having recessed pattern and method of manufacturing patterned sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123181A (en) * 1995-10-31 1997-05-13 Matsushita Electric Ind Co Ltd Method for decorating surface of resin product and resin product
JP2003014938A (en) * 2001-04-12 2003-01-15 Mitsubishi Engineering Plastics Corp Light transmission plate composed of transparent resin, method for molding the same, bushing, metallic mold assembling body and surface light source device
JP2017209155A (en) * 2016-05-23 2017-11-30 富士フイルム株式会社 Method of fabricating mold having recessed pattern and method of manufacturing patterned sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114683463A (en) * 2022-03-28 2022-07-01 业成科技(成都)有限公司 Optical waveguide jig and preparation method of optical waveguide

Similar Documents

Publication Publication Date Title
US11534943B2 (en) Production method of mold having recessed pattern in recessed step portion, and manufacturing method of pattern sheet
CN112388873B (en) Method for manufacturing mold with concave pattern and method for manufacturing pattern sheet
KR102074603B1 (en) Manufacturing method of mold, manufacturing method of pattern sheet, manufacturing method of electroforming mold, and manufacturing method of mold using electroforming mold
JP6499598B2 (en) Method for producing transdermal absorption sheet
WO2019188797A1 (en) Method for manufacturing mold having recessed seat pattern, and method for producing pattern sheet
JP2017209155A (en) Method of fabricating mold having recessed pattern and method of manufacturing patterned sheet
JP6911196B2 (en) Method of manufacturing a mold having a concave pedestal pattern and a method of manufacturing a pattern sheet
JP6533189B2 (en) Method of manufacturing mold for pattern array sheet, and method of manufacturing microneedle array
WO2019225288A1 (en) Method for manufacturing mold having recessed pattern in recessed step part, and method for producing pattern sheet
JP2017148429A (en) Method of manufacturing mold having through-holes and method of manufacturing pattern sheet having salient pattern
WO2017061310A1 (en) Percutaneous absorption sheet production method
JP2018042677A (en) Concave pattern mold and manufacturing method of pattern sheet
JP6560154B2 (en) Mold manufacturing method and pattern sheet manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP