WO2019188646A1 - Hydroelectric turbine and hydroelectric generator - Google Patents

Hydroelectric turbine and hydroelectric generator Download PDF

Info

Publication number
WO2019188646A1
WO2019188646A1 PCT/JP2019/011660 JP2019011660W WO2019188646A1 WO 2019188646 A1 WO2019188646 A1 WO 2019188646A1 JP 2019011660 W JP2019011660 W JP 2019011660W WO 2019188646 A1 WO2019188646 A1 WO 2019188646A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
power generation
fluid
flow path
turbine blade
Prior art date
Application number
PCT/JP2019/011660
Other languages
French (fr)
Japanese (ja)
Inventor
政明 柴田
雅洋 尾崎
一彦 須賀
匡敬 上村
Original Assignee
株式会社エイワット
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイワット, 公立大学法人大阪府立大学 filed Critical 株式会社エイワット
Publication of WO2019188646A1 publication Critical patent/WO2019188646A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a turbine for hydroelectric power generation and a hydroelectric power generation apparatus.
  • hydroelectric power generation uses the energy when water falls, and in general, such hydroelectric power generation generally involves first damming the water flow and building a dam, constructing an artificial lake, Is generated by using the energy generated when the water falls from a high place to a low place due to gravity.
  • the dam for raising the water level could not be easily installed and removed because it was built by placing concrete in the mountainous area where the river flows and damming the river. Therefore, there is a demand for a small-scale hydroelectric generator that can be easily installed and removed.
  • hydroelectric generators apparatuses equipped with Francis turbines, Kaplan turbines, etc. are well known, but hydroelectric generators equipped with these Francis turbines, Kaplan turbines, etc. are sufficient to generate electricity with high efficiency. Therefore, there is a problem that it is difficult to generate power appropriately in a place where a sufficient head for power generation cannot be obtained.
  • an apparatus including a hydroelectric power generation turbine disclosed in Patent Document 1 has attracted attention.
  • the turbine for hydroelectric power generation disclosed in Patent Literature 1 has at least two conical turbine shaft portions that reduce in diameter from the upper side toward the lower side, and a corkscrew opening configuration that is disposed along the surface of the turbine shaft portion. It has the structure provided with one turbine blade.
  • the hydroelectric power generation turbine disclosed in Patent Document 1 can generate power even if it is installed in a place where a sufficient head cannot be obtained. However, higher efficiency and higher output are desired. It is rare.
  • the present invention has been made to solve such a problem, and is a hydroelectric power generation turbine capable of generating electric power with high efficiency and high output even when installed in a place where a sufficient head cannot be obtained. And a hydroelectric generator.
  • the above object of the present invention includes a turbine shaft portion that is reduced in diameter from above to below, and a plurality of turbine blades that are formed on the surface of the turbine shaft portion and extend spirally from above to below,
  • a fluid flow path is defined between adjacent turbine blades, and the fluid flow path is a flow path for introducing fluid toward the direction perpendicular to the axial direction of the turbine shaft portion at the upper end.
  • the inlet and the lower end have a fluid outlet for discharging fluid in the axial direction of the turbine shaft portion, and the height of each turbine blade from the surface of the turbine shaft portion is the flow direction of the fluid flow path.
  • the fluid flow path is achieved by a hydroelectric power generation turbine characterized in that the flow path area decreases along the flow direction.
  • the ratio between the turbine blade height HL from the turbine shaft surface at the flow path inlet and the turbine blade height HT from the turbine shaft surface at the flow path outlet. (HT / HL) is preferably 1.5 to 2.3.
  • the ratio (ST / SL) of the flow channel area SL of the fluid flow channel at the flow channel inlet to the flow channel area ST of the fluid flow channel at the flow channel outlet is 0.4 to 0.85. It is preferable to be in a numerical range.
  • the above object of the present invention is achieved by a hydroelectric power generation apparatus provided with the above-described hydroelectric power generation turbine.
  • FIG. 1 is a schematic configuration diagram of a hydroelectric generator according to the present invention. It is a schematic structure perspective view which shows the modification of the turbine for hydroelectric power generation shown in FIG.
  • 4 is a graph showing a relationship between a turbine blade height ratio (HT / HL) between a front edge LE and a rear edge TE of a turbine blade 3 and a turbine peripheral speed (m / s) at the maximum output.
  • 4 is a graph showing a relationship between a turbine blade height ratio (HT / HL) between a front edge LE and a rear edge TE of a turbine blade 3 and a turbine peripheral speed (m / s) at the highest efficiency.
  • FIG. 1 is a schematic configuration perspective view of a hydroelectric power generation turbine 1 according to the present invention
  • FIG. 2 is a schematic configuration side view thereof.
  • the turbine 1 for hydroelectric power generation according to the present invention is a mechanical element incorporated in a hydroelectric power generation apparatus 10 that generates power using energy when water falls. As shown in FIGS.
  • the hydroelectric power generation turbine 1 includes a turbine shaft portion 2 and a plurality of corkscrew-shaped turbine blades 3 provided on the surface of the turbine shaft portion 2.
  • the material for forming the hydroelectric power generation turbine 1 is not particularly limited as long as it is a metal material, but it is preferably formed from stainless steel or aluminum alloy from the viewpoint of strength and durability.
  • it does not specifically limit also about the manufacturing method of the turbine 1 for hydroelectric power generation For example, the method of welding and processing the turbine blade 3 with respect to the turbine shaft part 2 etc. can be mentioned.
  • the turbine shaft portion 2 has a form that decreases in diameter from the upper side to the lower side.
  • the outline of the turbine shaft portion 2 in the region 21 where the turbine blades 3 are provided is configured to form arcuate and parabolic curves in a cross-sectional view along the axis Z of the turbine shaft portion 2.
  • the corkscrew turbine blade 3 is formed on the surface of the turbine shaft portion 2 as described above, and is configured to extend spirally from above as shown in FIGS. 1 and 2. ing. In this embodiment, it is comprised so that the three spiral turbine blades 3 may be provided. That is, the turbine blade 3 is provided on the surface of the turbine shaft portion 2 in the form of a triple helix.
  • a fluid flow path is defined between the adjacent turbine blades 3.
  • the three fluid flow paths that are defined also form a spiral flow path 4. This fluid flow path has a flow path inlet for introducing a fluid at the upper end, and a fluid outlet for discharging the fluid in the axial direction of the turbine shaft portion 2 at the lower end.
  • Each turbine blade 3 has substantially the same configuration, but as shown in the front view of FIG. 4 (viewed from the direction of arrow A in FIG. 2), the leading edge LE of each of the three turbine blades 3 is , 120 [deg.] Away from the turbine shaft 2.
  • the front edge LE of each turbine blade 3 is located at the maximum diameter portion of the turbine shaft portion 2.
  • the trailing edge TE of each of the three turbine blades 3 is also disposed on the turbine shaft portion 2 at a distance of 120 °.
  • the trailing edge TE of each turbine blade 3 is located at the minimum diameter portion at the lower end of the turbine shaft portion 2. Further, water flows into the fluid flow path from the front edge region of the turbine blade 3, and water is discharged from the rear edge region of the turbine blade 3.
  • the total winding angle of each turbine blade 3 around the axis of the turbine shaft 2 is shown in the front view of FIG.
  • the total winding angle of each turbine blade 3 is defined as the power extending along the circumference from the leading edge LE to the trailing edge TE of each turbine blade 3, and the total winding angle is defined in FIG. 4 as to the turbine blade 3 (3a).
  • A1 and A2 for the turbine blade 3 (3b) and A3 for the turbine blade 3 (3c) are shown.
  • Examples of the total winding angles A1, A2, A3 of each turbine blade 3 include a range of 90 ° to 360 °.
  • a more preferable numerical range of the total winding angles A1, A2, A3 of each turbine blade 3 is a range of 120 ° to 270 °.
  • the total winding angles A1, A2, A3 of each turbine blade 3 are set to 180 °.
  • the front edge LE of the turbine blade 3 is formed to be parallel to the axis Z of the turbine shaft portion 2, and the rear edge TE of the turbine blade 3 is the same as that of the turbine shaft portion 2. It is formed so as to be perpendicular to the axis Z.
  • each of the spiral turbine blades 3 is configured to gradually transition from the vertical leading edge LE to the horizontal trailing edge TE when the turbine blade 3 is viewed from above to below. .
  • the fluid flows in a direction perpendicular to the axis Z (rotation axis) of the turbine shaft portion 2 with respect to the fluid flow path defined by each turbine blade 3.
  • Water can be introduced, and fluid (water) can be discharged in the direction of the axis (rotation axis) of the turbine shaft 2.
  • the turbine blade 3 has a spiral shape around the axis Z of the turbine shaft portion 2 from the front edge LE toward the rear edge TE.
  • Each turbine blade (3a, 3b, 3c) includes a convex side surface 31 and a concave side surface 32, respectively.
  • the convex side surface 31 of each turbine blade 3 is the high pressure side of the turbine blade 3
  • the concave side surface 32 of each turbine blade 3 is the low pressure side of the turbine blade 3. That is, during the operation (rotating) of the hydroelectric power generation turbine 1, it rotates around the axis Z in the direction of the directional arrow B shown in FIGS. 1 and 4 (in FIG. 4, it rotates counterclockwise). .
  • each turbine blade 3 from the surface of the turbine shaft portion 2 is configured to become higher along the flow direction of the fluid flow path. That is, the height of each turbine blade 3 from the surface of the turbine shaft portion 2 is configured such that the height gradually increases from the fluid channel inlet to the channel outlet.
  • the height of the turbine blade 3 means a dimension in a direction perpendicular to the surface of the turbine shaft portion 2.
  • the fluid flow path defined by the turbine blade 3 having the above configuration is configured such that the flow path area decreases along the flow direction as shown in the explanatory diagram of the fluid flow path area shown in FIG. Has been. That is, the channel area of the fluid channel is configured to gradually decrease from the channel inlet to the channel outlet. With such a configuration, the speed of water (fluid) flowing from the flow path inlet to the flow path outlet increases as it goes downstream in the flow direction.
  • the channel area of the fluid channel means the area of the channel in a plane perpendicular to the fluid flow direction.
  • the vertical axis represents the area of the fluid flow path
  • the horizontal axis represents the distance along the fluid flow direction
  • the hydroelectric power generation turbine 1 is configured such that the height of the turbine blade 3 from the surface of the turbine shaft portion 2 increases along the flow direction of the fluid flow path.
  • An extremely high pressure difference can be generated between the two.
  • the lift acting on each turbine blade 3 is increased, and the rotational speed of the hydroelectric power generation turbine 1 can be further increased, and electric power can be obtained with high efficiency and high output.
  • the turbine blade 3 height HL from the surface of the turbine shaft portion 2 at the flow path inlet and the flow path outlet. It is preferable that the ratio (HT / HL) with the turbine blade 3 height HT from the surface of the turbine shaft portion 2 is in a numerical range of 1.5 to 2.3. Further, it is more preferable to configure so as to be in a numerical range of 1.75 to 2.25.
  • the turbine blade 3 height HL corresponds to the height of the leading edge LE of the turbine blade 3
  • the turbine blade 3 height HT corresponds to the height of the trailing edge TE of the turbine blade 3. In this way, by configuring the ratio (HT / HL) to be in the numerical range of 1.5 to 2.3, it is possible to generate electric power with higher efficiency and higher output. Become.
  • the ratio (ST / SL) is preferably configured to be in the numerical range of 0.4 to 0.85. Further, it is more preferable that the numerical value range be 0.5 to 0.77. By setting the value of the ratio (ST / SL) so as to be in such a numerical range, it becomes possible to generate electric power with higher efficiency.
  • the configuration including three turbine blades 3 has been described.
  • the configuration is not particularly limited to such a configuration, and the turbine blade 3 is configured to include two turbine blades 3. Alternatively, four or more turbine blades 3 may be provided.
  • the hydroelectric generator 10 including the hydroelectric power generation turbine 1 having the above-described configuration.
  • the hydroelectric generator 10 includes an upper casing 6, a lower casing 7, a hydroelectric power generation turbine 1, and a generator 8.
  • the turbine 1 for hydroelectric power generation is provided with the above-mentioned structure, the detailed description regarding a structure is abbreviate
  • the upper casing 6 is a doughnut-shaped scroll having a central opening, and is configured to convert water (fluid) flowing in from a river into a swirling flow swirling in the horizontal direction and outflowing toward the central opening. Has been.
  • the lower casing 7 is disposed below the upper casing 6, and is connected to the first tubular portion 71 having an inner peripheral surface that gradually decreases in diameter from the upper portion toward the lower portion, and the first tubular portion 71. And a second cylindrical portion 72 having an inner peripheral surface that gradually increases in diameter from the upper side toward the lower side.
  • the 2nd cylindrical part 72 comprises what is called a diffuser.
  • the hydroelectric power generation turbine 1 is rotatably disposed inside the central opening of the upper casing 6 and the first cylindrical portion 71 of the lower casing 7, and rotates by the action of water guided from the upper casing 6.
  • the water flow formed as a swirl flow swirling in the horizontal direction in the upper casing 6 flows into the fluid inlet of the fluid flow path along a plane perpendicular to the rotation axis of the hydroelectric power generation turbine 1.
  • a turbine 1 for hydroelectric power generation is arranged.
  • first cylindrical portion 71 that gradually decreases in diameter from the upper side toward the lower side in the lower casing 7 forms a slight gap with the end edge of the turbine blade 3 in the standing direction of the turbine 1 for hydroelectric power generation. It is configured to form. This gap is preferably configured to be as small as possible.
  • the second cylindrical portion 72 is a tubular portion that guides water (fluid) that has passed through the fluid flow path in the hydroelectric power generation turbine 1 to the outside.
  • This 2nd cylindrical part 72 (diffuser) is comprised so that a diameter may be gradually expanded as it follows the flow direction of a fluid (it goes to the downward direction from upper direction).
  • the boundary portion between the first tubular portion 71 and the second tubular portion 72 is set to substantially coincide with the lower end region of the turbine blade 3, and the second tubular portion 72 (diffuser).
  • the inner peripheral surface of the lower casing 7 and the inner peripheral surface of the first cylindrical portion 71 whose diameter decreases from the upper side to the lower side in the lower casing 7 are configured to be smoothly connected.
  • the second cylindrical portion 72 (diffuser) is configured as a straight straight pipe, but the flow direction of water discharged from the hydroelectric turbine 1 is, for example, In order to change in the horizontal direction, you may comprise as what is called a vent pipe type.
  • the generator 8 is a generator 8 having a conventionally known configuration, and is disposed above the upper casing 6.
  • the generator 8 includes a rotor and coils disposed on the outer periphery of the rotor, and magnets having different polarities are alternately attached to the rotor surface.
  • the rotor in the generator 8 is connected to the hydroelectric power generation turbine 1 through the transmission shaft 9, and the hydroelectric power generation turbine is caused by the fluid action when the water guided to the upper casing 6 passes through the hydroelectric power generation turbine 1. 1 is rotated, the rotation is transmitted to the rotor by the transmission shaft 9, and electric power is generated in the coil by the rotation of the rotor.
  • the electric power generated by the generator 8 is supplied to the outside through a wiring or the like (not shown).
  • the ratio to the area ST (ST / SL) is preferably configured to be in a numerical range of 0.4 to 0.85.
  • the ratio (DT / DL) to the flow path area DT at the lower end (exit portion of the second cylindrical portion 72) is preferably in the relationship of the inverse ratio of ST / SL, 1.17 to 2.5.
  • the flow path length of the fluid flow path of the turbine 1 for hydroelectric power generation (corresponding to the length from the front edge LE to the rear edge TE of the turbine blade 3) and the upper end of the second cylindrical portion 72 (diffuser) It is preferable that the length to the lower end is substantially the same.
  • the ratio (ST / SL) of the flow path area SL at the flow path inlet of the fluid flow path to the flow path area ST at the flow path outlet, and the flow at the upper end of the second cylindrical portion 72 (diffuser)
  • the value of the ratio (DT / DL) between the road area DL and the flow path area DT at the lower end of the diffuser it is possible to configure the hydroelectric generator 10 that can obtain higher efficiency and output. It becomes.
  • a projecting body 22 extending in the vertical direction is provided at the lower end of the turbine shaft portion 2 of the hydroelectric power generation turbine 1. May be.
  • the protrusion 22 is configured to enter the entrance area of the second cylindrical portion 72 (diffuser).
  • the rectifying effect of water discharged from the hydroelectric power generation turbine 1 and guided to the second cylindrical portion 72 (diffuser) can be enhanced, and the second cylindrical portion 72 (diffuser) ) Is expected to improve the static pressure recovery performance.
  • the flow-path area DL in the upper end of the above-mentioned 2nd cylindrical part 72 (diffuser) is calculated excluding the protrusion 22.
  • the inventor of the present invention manufactured and tested the actual hydroelectric generator 10 shown in FIG. 6 in order to confirm the performance of the hydroelectric power generation turbine 1 according to the present invention. Will be described.
  • samples 1-A, 1-B, and 2-8 were prepared as the hydroelectric turbine 1 to be used for the test.
  • Each sample has a triple helix structure having three turbine blades 3 as shown in FIG.
  • the dimensions of the turbine blade height HL corresponding to the height of the leading edge LE of the turbine blade 3 and the turbine blade height HT corresponding to the height of the trailing edge TE in each sample are described in Table 1 below. ing.
  • the thing of the same shape was used as the turbine shaft part 2 in each sample.
  • the turbine shaft portion 2 is configured such that the diameter of the maximum diameter portion where the leading edge LE of the turbine blade 3 is disposed is 200 mm, and the diameter of the minimum diameter portion where the trailing edge TE of the turbine blade 3 is disposed is 20 mm.
  • the contour of the turbine shaft portion 2 in the region 21 where the turbine blades 3 are provided is configured to be arcuate in a cross-sectional view along the axis Z of the turbine shaft portion 2.
  • the hydroelectric power generation turbines 1 according to the samples 1-A, 1-B, 2 to 8 are respectively incorporated in a hydroelectric power generation apparatus 10 as shown in FIG. 6, and torque (Nm) and power generation output (W) at various rotational speeds are incorporated.
  • the flow rate (m 3 / h) and the like were measured.
  • the gap dimension between the edge of the turbine blade 3 in the standing direction side of each sample and the first cylindrical portion 71 is 0.4 mm for sample 1-A, 0.6 mm for sample 1-B, Samples 2 to 8 are 0.5 mm.
  • Tables 2 to 9 below show the test results of the hydroelectric power generation turbine 1 according to Samples 1-A, 1-B, and 2 to 8, respectively.
  • the torque (Nm) and the rotational speed (r / min) were measured using a digital torque meter (electromagnetic gear phase difference type torque detector) (model SS-101) manufactured by Ono Sokki Co., Ltd. Measurement was performed using a model number TS-2700) and an electromagnetic rotation detector (model number MP-981).
  • the flow rate (m 3 / h) was measured using an electromagnetic flow meter (model number AXF150G-PNAL1S-BJ11) and an electromagnetic flow meter converter (model number AXFA14G-D1-01 / EU) manufactured by Yokogawa Electric Corporation. .
  • the power generation output is Formula: Torque (Nm) ⁇ 2 ⁇ circularity ⁇ rotational speed (r / min) / 60 Calculated by The theoretical hydropower is Formula: Flow rate (m 3 / s) ⁇ 1000 ⁇ gravity acceleration ⁇ effective head (m) Calculated by The gravitational acceleration is calculated as 9.81 m / s 2 . Moreover, the effective head is 5.2 m in the test concerning all the samples.
  • the power generation efficiency (%) is Formula: Power generation output (W) / theoretical output (W) x 100 Calculated by
  • Table 11 shows the power generation efficiency (%) at the maximum output (W) and the output (W) at the maximum power generation efficiency (%) regarding the measurement results of the above samples.
  • the gap dimensions between the end of the turbine blade 3 on the standing direction side and the first cylindrical portion 71 are 0.4 mm and 0.6 mm, respectively. Different from other samples 2 to 8 (samples 2 to 8 are 0.5 mm). Therefore, in Table 11 below, the arithmetic average of the test results in Sample 1-A and Sample 1-B is described as the measurement result of Sample 1 in Table 11. Specifically, for sample 1-A, the maximum power generation output is 919.4 (W), and the power generation efficiency at this time is 69.62 (%). The maximum power generation output is 904.95 (W), and the power generation efficiency at this time is 70.10 (%).
  • the highest power generation efficiency is 70.89 (%), and the power generation output at this time is 899.00 (W)
  • the highest power generation efficiency is Since the efficiency is 71.02 (%) and the power generation output at this time is 849.32 (W)
  • Table 11 also shows the ratio of the turbine blade height ratio (HT / HL) between the leading edge and the trailing edge, and the flow area at the flow path inlet for the fluid flow path defined by the turbine blade 3.
  • the value of the ratio of the channel area ST at the SL and the channel outlet (ST / SL) is also shown.
  • the relationship between the turbine blade height ratio (HT / HL) between the leading edge LE and the trailing edge TE of the turbine blade 3 and the maximum power generation efficiency (%) is shown in FIG.
  • the relationship between the turbine blade height ratio (HT / HL) between the leading edge LE and the trailing edge TE of the turbine blade 3 and the maximum output (W) is shown in FIG.
  • the curve indicated by the solid line in FIGS. 8 and 9 corresponds to an approximate curve obtained by approximating the plot data with a cubic polynomial.
  • the ratio of the turbine blade height between the leading edge LE and the trailing edge TE of the turbine blade 3 (HT / HL) is often set to a numerical range of about 1.5 to 2.3. It is considered preferable from the viewpoint of obtaining power generation efficiency and power generation output. In particular, it can be seen that when the value of HT / HL is in the numerical range of 1.75 to 2.25, the power generation efficiency is 80% or more, which is more preferable.
  • the relationship between the ratio (ST / SL) of the flow path area SL at the flow path inlet and the flow path area ST at the flow path outlet and the maximum output (W) As shown in FIG.
  • the curve indicated by the solid line in FIGS. 10 and 11 corresponds to an approximate curve obtained by approximating the plot data with a cubic polynomial.
  • the ratio (ST / SL) of the channel area SL at the channel inlet and the channel area ST at the channel outlet (ST / SL) is often in the numerical range of about 0.4 to 0.85. It is considered preferable from the viewpoint of obtaining power generation efficiency and power generation output. In particular, it can be seen that when the ST / SL value is in the numerical range of 0.5 to 0.77, the power generation efficiency is 80% or more, which is more preferable.
  • the inventor of the present invention also rotates the rotational speed (r / min) of the hydroelectric power generation turbine 1 according to Sample 1-A, Sample 2-B, and Samples 2-8. ) was also measured, so in Table 12 below, for each sample, the rotational speed (r / min) at the maximum output (W), the peripheral speed (m / s) of the hydroelectric turbine 1 and the maximum power generation The rotational speed (r / min) at the time of efficiency (%) and the peripheral speed (m / s) of the turbine 1 for hydroelectric power generation are shown.
  • the gap dimension between the edge of the turbine blade 3 on the standing direction side and the first cylindrical portion 71 is 0.4 mm, 0 mm, respectively. .6 mm, which is different from other samples 2 to 8 (samples 2 to 8 are 0.5 mm). Therefore, in Table 12 below, the arithmetic average of the test results in Sample 1-A and Sample 1-B is described as the measurement result of Sample 1 in Table 12. Specifically, for sample 1-A, the maximum power generation output is 919.4 (W), and the rotation speed at this time is 934 (r / min), and for sample 1-B, The maximum power generation output is 904.95 (W), and the rotation speed at this time is 982 (r / min).
  • the highest power generation efficiency is 70.89 (%), and the rotation speed at this time is 1022 (r / min).
  • the peripheral speed of the turbine blade 3 increases qualitatively as the turbine blade height ratio (HT / HL) between the leading edge LE and the trailing edge TE of the turbine blade 3 increases. I can see it going.
  • the turbine blade height ratio (HT / HL) when the turbine blade height ratio (HT / HL) is 1.5 or more, the turbine blade height ratio (HT / HL) is 1. It can be seen that a peripheral speed increase of 5% or more can be achieved.
  • the turbine blade height ratio (HT / HL) is 1.75 or more
  • the turbine blade height ratio (HT / HL) is 1. It can be seen that a peripheral speed increase of 5% or more can be achieved.
  • the turbine blade height ratio (HT / HL) when the turbine blade height ratio (HT / HL) is 1.5 or more, more preferably 1.75 or more, the hydroelectric power generation turbine 1 rotates at an extremely fast peripheral speed. It can be seen that high power generation output and power generation efficiency can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Provided are a hydroelectric turbine and a hydroelectric generator that are capable of generating power at high efficiency and high output even when installed at sites where sufficient head cannot be ensured. Specifically provided is a hydroelectric turbine characterized by being equipped with a turbine shaft that decreases in diameter from top to bottom and a plurality of turbine blades that are formed on the surface of the turbine shaft and extend from top to bottom in a spiral shape, and in that: fluid channels are defined by mutually adjacent turbine blades; the fluid channels have, at the top end, a channel inlet for guiding in a fluid in a perpendicular direction to the axial direction of the turbine shaft, and have, at the bottom end, a fluid outlet for discharging the fluid in the axial direction of the turbine shaft; the height of each turbine blade from the surface of the turbine shaft increases along the flow direction of the fluid channel; and the area of each fluid channel decreases along the flow direction of the fluid channel.

Description

水力発電用タービン及び水力発電装置Turbine for hydroelectric power generation and hydroelectric power generation device
 本発明は、水力発電用タービン及び水力発電装置に関する。 The present invention relates to a turbine for hydroelectric power generation and a hydroelectric power generation apparatus.
 従来から、発電方法として、原子力発電、火力発電、地熱発電、風力発電、太陽熱発電、水力発電などが知られている。この中で、水力発電は、水が落下する際のエネルギーを利用するものであり、このような水力発電では、一般的に、まず、水流を堰き止めてダムを築き、人工湖を造って水位を上昇させ、重力によって水が高い所から低い所に落ちる際に生じるエネルギーを利用して、発電装置を駆動させることで発電する。 Conventionally, nuclear power generation, thermal power generation, geothermal power generation, wind power generation, solar thermal power generation, hydroelectric power generation, and the like are known as power generation methods. Among them, hydroelectric power generation uses the energy when water falls, and in general, such hydroelectric power generation generally involves first damming the water flow and building a dam, constructing an artificial lake, Is generated by using the energy generated when the water falls from a high place to a low place due to gravity.
  しかし、水位を上昇させるためのダムは、河川が流れる山間部にコンクリートを打設して、河川を堰き止めることで築かれているため、容易に設置および撤去することができなかった。そこで、容易に設置および撤去することができる小規模な水力発電装置が求められている。 However, the dam for raising the water level could not be easily installed and removed because it was built by placing concrete in the mountainous area where the river flows and damming the river. Therefore, there is a demand for a small-scale hydroelectric generator that can be easily installed and removed.
 一方、水力発電装置としては、フランシスタービンやカプランタービン等を備える装置が良く知られているが、これらフランシスタービンやカプランタービン等を備える水力発電装置は、高効率で発電させるためには、十分な落差を生じさせる必要があり、このため、発電するために十分な落差が得られない場所においては、適切に発電をすることが困難であるという問題がある。 On the other hand, as hydroelectric generators, apparatuses equipped with Francis turbines, Kaplan turbines, etc. are well known, but hydroelectric generators equipped with these Francis turbines, Kaplan turbines, etc. are sufficient to generate electricity with high efficiency. Therefore, there is a problem that it is difficult to generate power appropriately in a place where a sufficient head for power generation cannot be obtained.
 このような問題を解決できる可能性を有する水力発電装置として、特許文献1に開示されている水力発電用タービンを備える装置が注目されている。この特許文献1に開示の水力発電用タービンは、上方から下方に向けて縮径する円錐状のタービン軸部と、当該タービン軸部の表面に沿って配置されるコルク栓抜き構成を有する少なくとも2枚のタービン羽根を備える構成を有している。 As a hydroelectric power generation apparatus having the possibility of solving such a problem, an apparatus including a hydroelectric power generation turbine disclosed in Patent Document 1 has attracted attention. The turbine for hydroelectric power generation disclosed in Patent Literature 1 has at least two conical turbine shaft portions that reduce in diameter from the upper side toward the lower side, and a corkscrew opening configuration that is disposed along the surface of the turbine shaft portion. It has the structure provided with one turbine blade.
特表2002-516624号公報JP-T-2002-516624
 上記特許文献1に開示の水力発電用タービンは、十分な落差が得られない場所に設置されたとしても発電することが可能なものではあるが、より一層の高効率化、高出力化が望まれている。 The hydroelectric power generation turbine disclosed in Patent Document 1 can generate power even if it is installed in a place where a sufficient head cannot be obtained. However, higher efficiency and higher output are desired. It is rare.
 本発明は、このような問題を解決するためになされたものであって、十分な落差が得られない場所に設置されたとしても高効率かつ高出力で発電することが可能な水力発電用タービン及び水力発電装置を提供すること目的とする。 The present invention has been made to solve such a problem, and is a hydroelectric power generation turbine capable of generating electric power with high efficiency and high output even when installed in a place where a sufficient head cannot be obtained. And a hydroelectric generator.
 本発明の上記目的は、上方から下方に向けて縮径するタービン軸部と、前記タービン軸部の表面に形成され上方から下方に向けて螺旋状にのびる複数のタービン羽根とを備えており、互いに隣接するタービン羽根同士の間で流体流路が画成されており、前記流体流路は、上端において、前記タービン軸部の軸方向に対して垂直な方向に向けて流体を導き入れる流路入口、及び、下端において、流体を前記タービン軸部の軸方向に排出させる流体出口を有しており、前記各タービン羽根の前記タービン軸部表面からの高さは、前記流体流路の流れ方向に沿うに従い高くなり、前記流体流路は、その流れ方向に沿うに従い、流路面積が減少することを特徴とする水力発電用タービンにより達成される。 The above object of the present invention includes a turbine shaft portion that is reduced in diameter from above to below, and a plurality of turbine blades that are formed on the surface of the turbine shaft portion and extend spirally from above to below, A fluid flow path is defined between adjacent turbine blades, and the fluid flow path is a flow path for introducing fluid toward the direction perpendicular to the axial direction of the turbine shaft portion at the upper end. The inlet and the lower end have a fluid outlet for discharging fluid in the axial direction of the turbine shaft portion, and the height of each turbine blade from the surface of the turbine shaft portion is the flow direction of the fluid flow path. The fluid flow path is achieved by a hydroelectric power generation turbine characterized in that the flow path area decreases along the flow direction.
 また、上記水力発電用タービンにおいて、前記流路入口における前記タービン軸部表面からの前記タービン羽根高さHLと、前記流路出口における前記タービン軸部表面からの前記タービン羽根高さHTとの比(HT/HL)は、1.5~2.3であることが好ましい。 In the turbine for hydroelectric power generation, the ratio between the turbine blade height HL from the turbine shaft surface at the flow path inlet and the turbine blade height HT from the turbine shaft surface at the flow path outlet. (HT / HL) is preferably 1.5 to 2.3.
 また、前記流路入口における前記流体流路の流路面積SLと、前記流路出口における前記流体流路の流路面積STとの比(ST/SL)が、0.4~0.85の数値範囲となることが好ましい。 Further, the ratio (ST / SL) of the flow channel area SL of the fluid flow channel at the flow channel inlet to the flow channel area ST of the fluid flow channel at the flow channel outlet is 0.4 to 0.85. It is preferable to be in a numerical range.
 また、本発明の上記目的は、上述の水力発電用タービンを備えた水力発電装置により達成される。 Also, the above object of the present invention is achieved by a hydroelectric power generation apparatus provided with the above-described hydroelectric power generation turbine.
 本発明によれば、十分な落差が得られない場所に設置されたとしても高効率かつ高出力で発電することが可能な水力発電用タービン及び水力発電装置を提供することができる。 According to the present invention, it is possible to provide a hydroelectric power generation turbine and a hydroelectric power generation device that can generate power with high efficiency and high output even when installed in a place where a sufficient head cannot be obtained.
本発明に係る水力発電用タービンの概略構成斜視図である。It is a schematic structure perspective view of the turbine for hydroelectric power generation concerning the present invention. 本発明に係る水力発電用タービンの概略構成側面図である。It is a schematic structure side view of the turbine for hydroelectric power generation concerning the present invention. 本発明に係る水力発電用タービンが備えるタービン軸部の概略構成断面図である。It is a schematic structure sectional view of the turbine axis part with which the turbine for hydroelectric power generation concerning the present invention is provided. 本発明に係る水力発電用タービンの概略構成正面図である。It is a schematic structure front view of the turbine for hydroelectric power generation concerning the present invention. 本発明に係る水力発電用タービンにおける流体流路に関し、流体流路面積の説明図である。It is explanatory drawing of the fluid flow-path area regarding the fluid flow-path in the turbine for hydroelectric power generation concerning this invention. 本発明に係る水力発電装置の概略構成図である。1 is a schematic configuration diagram of a hydroelectric generator according to the present invention. 図1に示す水力発電用タービンの変形例を示す概略構成斜視図である。It is a schematic structure perspective view which shows the modification of the turbine for hydroelectric power generation shown in FIG. タービン羽根3の前縁LEと後縁TEとのタービン羽根高さの比(HT/HL)と、最高発電効率(%)との関係を示すグラフである。It is a graph which shows the relationship between the ratio (HT / HL) of turbine blade height of the front edge LE of the turbine blade 3, and the rear edge TE, and the maximum power generation efficiency (%). タービン羽根3の前縁LEと後縁TEとのタービン羽根高さの比(HT/HL)と、最高出力(W)との関係を示すグラフである。It is a graph which shows the relationship between ratio (HT / HL) of the turbine blade height of the front edge LE of the turbine blade 3, and the rear edge TE, and the maximum output (W). 流路入口における流路面積SL及び流路出口における流路面積STの比(ST/SL)と、最高発電効率(%)との関係を示すグラフである。It is a graph which shows the relationship between ratio (ST / SL) of flow path area SL in a flow path inlet, and flow path area ST in a flow path exit, and maximum power generation efficiency (%). 流路入口における流路面積SL及び流路出口における流路面積STの比(ST/SL)と、最高出力(W)との関係を示すグラフである。It is a graph which shows the relationship between ratio (ST / SL) of channel area SL in a channel inlet, and channel area ST in a channel outlet, and maximum output (W). タービン羽根3の前縁LEと後縁TEとのタービン羽根高さの比(HT/HL)と、最大出力時におけるタービン周速(m/s)との関係を示すグラフである。4 is a graph showing a relationship between a turbine blade height ratio (HT / HL) between a front edge LE and a rear edge TE of a turbine blade 3 and a turbine peripheral speed (m / s) at the maximum output. タービン羽根3の前縁LEと後縁TEとのタービン羽根高さの比(HT/HL)と、最高効率時におけるタービン周速(m/s)との関係を示すグラフである。4 is a graph showing a relationship between a turbine blade height ratio (HT / HL) between a front edge LE and a rear edge TE of a turbine blade 3 and a turbine peripheral speed (m / s) at the highest efficiency.
 以下、本発明に係る水力発電用タービン1及び水力発電装置10について、添付図面を参照して説明する。なお、各図は、構成の理解を容易ならしめるために部分的に拡大・縮小している。まず、水力発電用タービン1について説明する。図1は、本発明に係る水力発電用タービン1の概略構成斜視図であり、図2は、その概略構成側面図である。本発明に係る水力発電用タービン1は、水が落下する際のエネルギーを利用して発電を行う水力発電装置10に組み込まれる機械要素である。この水力発電用タービン1は、図1や図2に示すように、タービン軸部2と、該タービン軸部2の表面に設けられる複数のコルク栓抜き形のタービン羽根3とを備えている。なお、水力発電用タービン1を形成する材料としては金属材料であれば特に限定されないが、強度や耐久性の観点からステンレスやアルミニウム合金から形成されることが好ましい。また、水力発電用タービン1の製造方法についても特に限定されないが、例えば、削り出しによる一体加工や、タービン軸部2に対してタービン羽根3を溶接して加工する手法等を挙げることができる。 Hereinafter, a hydroelectric power generation turbine 1 and a hydroelectric power generation apparatus 10 according to the present invention will be described with reference to the accompanying drawings. Each figure is partially enlarged or reduced in order to facilitate understanding of the configuration. First, the hydroelectric power generation turbine 1 will be described. FIG. 1 is a schematic configuration perspective view of a hydroelectric power generation turbine 1 according to the present invention, and FIG. 2 is a schematic configuration side view thereof. The turbine 1 for hydroelectric power generation according to the present invention is a mechanical element incorporated in a hydroelectric power generation apparatus 10 that generates power using energy when water falls. As shown in FIGS. 1 and 2, the hydroelectric power generation turbine 1 includes a turbine shaft portion 2 and a plurality of corkscrew-shaped turbine blades 3 provided on the surface of the turbine shaft portion 2. The material for forming the hydroelectric power generation turbine 1 is not particularly limited as long as it is a metal material, but it is preferably formed from stainless steel or aluminum alloy from the viewpoint of strength and durability. Moreover, although it does not specifically limit also about the manufacturing method of the turbine 1 for hydroelectric power generation, For example, the method of welding and processing the turbine blade 3 with respect to the turbine shaft part 2 etc. can be mentioned.
 タービン軸部2は、図3の概略構成断面図に示すように、上方から下方に向けて縮径する形態を有している。タービン羽根3が設けられる領域21のタービン軸部2の輪郭は、タービン軸部2の軸線Zに沿う断面視において、円弧状及び放物線状の曲線を形成するように構成されている。 As shown in the schematic cross-sectional view of FIG. 3, the turbine shaft portion 2 has a form that decreases in diameter from the upper side to the lower side. The outline of the turbine shaft portion 2 in the region 21 where the turbine blades 3 are provided is configured to form arcuate and parabolic curves in a cross-sectional view along the axis Z of the turbine shaft portion 2.
 コルク栓抜き形のタービン羽根3は、上述のようにタービン軸部2の表面に形成されており、図1及び図2に示すように、上方から下方に向けて螺旋状に延びるように構成されている。本実施形態においては、3つの螺旋状のタービン羽根3を備えるように構成されている。つまりタービン羽根3は三重螺旋の形態でタービン軸部2の表面に設けられている。また、互いに隣接するタービン羽根3同士の間で流体流路が画成されている。画成される3つの流体流路もそれぞれ螺旋状の流路4を構成している。この流体流路は、上端において流体を導き入れる流路入口を備え、また、下端において流体をタービン軸部2の軸方向に排出させる流体出口を有している。 The corkscrew turbine blade 3 is formed on the surface of the turbine shaft portion 2 as described above, and is configured to extend spirally from above as shown in FIGS. 1 and 2. ing. In this embodiment, it is comprised so that the three spiral turbine blades 3 may be provided. That is, the turbine blade 3 is provided on the surface of the turbine shaft portion 2 in the form of a triple helix. A fluid flow path is defined between the adjacent turbine blades 3. The three fluid flow paths that are defined also form a spiral flow path 4. This fluid flow path has a flow path inlet for introducing a fluid at the upper end, and a fluid outlet for discharging the fluid in the axial direction of the turbine shaft portion 2 at the lower end.
 各タービン羽根3は、実質上同一構成であるが、図4の正面図の(図2の矢視A方向から見た図)に示すように、3つそれぞれのタービン羽根3の前縁LEは、120°離れてタービン軸部2に配置されている。なお、各タービン羽根3の前縁LEは、タービン軸部2の最大直径部に位置している。また、3つそれぞれのタービン羽根3の後縁TEも同様に120°離れてタービン軸部2に配置されている。なお、各タービン羽根3の後縁TEは、タービン軸部2の下方端における最小直径部に位置している。また、タービン羽根3の前縁領域から水が流体流路に流入し、タービン羽根3の後縁領域から水が排出される。 Each turbine blade 3 has substantially the same configuration, but as shown in the front view of FIG. 4 (viewed from the direction of arrow A in FIG. 2), the leading edge LE of each of the three turbine blades 3 is , 120 [deg.] Away from the turbine shaft 2. The front edge LE of each turbine blade 3 is located at the maximum diameter portion of the turbine shaft portion 2. Similarly, the trailing edge TE of each of the three turbine blades 3 is also disposed on the turbine shaft portion 2 at a distance of 120 °. The trailing edge TE of each turbine blade 3 is located at the minimum diameter portion at the lower end of the turbine shaft portion 2. Further, water flows into the fluid flow path from the front edge region of the turbine blade 3, and water is discharged from the rear edge region of the turbine blade 3.
 タービン軸部2の軸線周りの各タービン羽根3の全巻き角は、図4の正面図に示されている。各タービン羽根3の全巻き角は、各タービン羽根3の前縁LEから後縁TEへ円周に沿って伸びる度数として定義され、全巻き角は、図4において、タービン羽根3(3a)に対してA1、及び、タービン羽根3(3b)に対してA2、タービン羽根3(3c)に対してA3として示されている。各タービン羽根3の全巻き角A1,A2,A3としては、例えば、90°~360°の範囲を挙げることができる。また、各タービン羽根3の全巻き角A1,A2,A3のより好ましい数値範囲としては、120°~270°の範囲を挙げることができる。本実施形態においては、各タービン羽根3の全巻き角A1,A2,A3を180°に設定している。 The total winding angle of each turbine blade 3 around the axis of the turbine shaft 2 is shown in the front view of FIG. The total winding angle of each turbine blade 3 is defined as the power extending along the circumference from the leading edge LE to the trailing edge TE of each turbine blade 3, and the total winding angle is defined in FIG. 4 as to the turbine blade 3 (3a). On the other hand, A1 and A2 for the turbine blade 3 (3b) and A3 for the turbine blade 3 (3c) are shown. Examples of the total winding angles A1, A2, A3 of each turbine blade 3 include a range of 90 ° to 360 °. Further, a more preferable numerical range of the total winding angles A1, A2, A3 of each turbine blade 3 is a range of 120 ° to 270 °. In the present embodiment, the total winding angles A1, A2, A3 of each turbine blade 3 are set to 180 °.
 また、図2に示すように、タービン羽根3の前縁LEは、タービン軸部2の軸線Zと平行となるように形成されており、タービン羽根3の後縁TEは、タービン軸部2の軸線Zに対して垂直となるように形成されている。換言すると、螺旋状の各タービン羽根3は、上方から下方に沿って該タービン羽根3を見た場合に、垂直な前縁LEから水平な後縁TEに徐々に遷移するように構成されている。タービン羽根3がこのような形態を有することにより、各タービン羽根3により画成される流体流路に対して、タービン軸部2の軸線Z(回転軸)に対して垂直な方向に向けて流体(水)を導き入れることができ、また、タービン軸部2の軸線(回転軸線)の方向に流体(水)を排出させることができる。 Further, as shown in FIG. 2, the front edge LE of the turbine blade 3 is formed to be parallel to the axis Z of the turbine shaft portion 2, and the rear edge TE of the turbine blade 3 is the same as that of the turbine shaft portion 2. It is formed so as to be perpendicular to the axis Z. In other words, each of the spiral turbine blades 3 is configured to gradually transition from the vertical leading edge LE to the horizontal trailing edge TE when the turbine blade 3 is viewed from above to below. . When the turbine blade 3 has such a configuration, the fluid flows in a direction perpendicular to the axis Z (rotation axis) of the turbine shaft portion 2 with respect to the fluid flow path defined by each turbine blade 3. (Water) can be introduced, and fluid (water) can be discharged in the direction of the axis (rotation axis) of the turbine shaft 2.
 また、図1に示されているように、タービン羽根3は、タービン軸部2の軸線Zの周りに前縁LEから後縁TEに向けて螺旋状となる形態を有していることから、各タービン羽根(3a,3b,3c)は、各々、凸形の側面31、及び、凹形の側面32をそれぞれ備えている。ここで、各タービン羽根3の凸形の側面31は、タービン羽根3の高圧側となり、各タービン羽根3の凹形の側面32は、タービン羽根3の低圧側となる。つまり、水力発電用タービン1の動作中(回転中)は、図1及び図4に示された方向矢印Bの方向に軸線Zの周りを回転する(図4においては反時計回りに回転する)。 Further, as shown in FIG. 1, the turbine blade 3 has a spiral shape around the axis Z of the turbine shaft portion 2 from the front edge LE toward the rear edge TE. Each turbine blade (3a, 3b, 3c) includes a convex side surface 31 and a concave side surface 32, respectively. Here, the convex side surface 31 of each turbine blade 3 is the high pressure side of the turbine blade 3, and the concave side surface 32 of each turbine blade 3 is the low pressure side of the turbine blade 3. That is, during the operation (rotating) of the hydroelectric power generation turbine 1, it rotates around the axis Z in the direction of the directional arrow B shown in FIGS. 1 and 4 (in FIG. 4, it rotates counterclockwise). .
 また、本発明においては、各タービン羽根3のタービン軸部2表面からの高さは、流体流路の流れ方向に沿うに従い高くなるように構成されている。つまり、各タービン羽根3のタービン軸部2表面からの高さは、流体流路の流路入口から流路出口に向かうに従い、徐々にその高さが高くなるように構成されている。なお、タービン羽根3の高さは、タービン軸部2の表面に対して垂直な方向の寸法を意味する。 Further, in the present invention, the height of each turbine blade 3 from the surface of the turbine shaft portion 2 is configured to become higher along the flow direction of the fluid flow path. That is, the height of each turbine blade 3 from the surface of the turbine shaft portion 2 is configured such that the height gradually increases from the fluid channel inlet to the channel outlet. The height of the turbine blade 3 means a dimension in a direction perpendicular to the surface of the turbine shaft portion 2.
 また、上記構成のタービン羽根3により画成される流体流路は、図5に示す流体流路面積の説明図に示すように、その流れ方向に沿うに従い、流路面積が減少するように構成されている。つまり、流体流路の流路面積は、流路入口から流路出口に向かうに従い、徐々に減少するように構成されている。このような構成により、流路入口から流路出口に向けて流れる水(流体)の速度は、流れ方向下流側に向かうに従い上昇していくこととなる。ここで、流体流路の流路面積とは、流体の流れ方向に対して垂直な平面における流路の面積を意味する。なお、図5は、縦軸に流体流路の面積を採り、横軸に流体の流れ方向に沿う距離を採り、流体の流れ方向に沿って見た場合の流体流路の流路面積の変化を示したグラフである。 Further, the fluid flow path defined by the turbine blade 3 having the above configuration is configured such that the flow path area decreases along the flow direction as shown in the explanatory diagram of the fluid flow path area shown in FIG. Has been. That is, the channel area of the fluid channel is configured to gradually decrease from the channel inlet to the channel outlet. With such a configuration, the speed of water (fluid) flowing from the flow path inlet to the flow path outlet increases as it goes downstream in the flow direction. Here, the channel area of the fluid channel means the area of the channel in a plane perpendicular to the fluid flow direction. In FIG. 5, the vertical axis represents the area of the fluid flow path, the horizontal axis represents the distance along the fluid flow direction, and the change in the flow area of the fluid flow path when viewed along the fluid flow direction. It is the graph which showed.
 本発明に係る水力発電用タービン1は、上述のように、タービン羽根3のタービン軸部2の表面からの高さが、流体流路の流れ方向に沿うに従い高くなるように構成しているため、特に、流体(水)の流速が上昇する流体流路の下流側において、各タービン羽根3の凸形の側面31(高圧側)と、各タービン羽根3の凹形の側面32(低圧側)との間で、極めて高い圧力差を生じさせることが可能となる。この結果、各タービン羽根3に作用する揚力が増加して、水力発電用タービン1の回転速度をより一層早めることが可能となり、高効率かつ高出力で電力を得ることが可能となる。 As described above, the hydroelectric power generation turbine 1 according to the present invention is configured such that the height of the turbine blade 3 from the surface of the turbine shaft portion 2 increases along the flow direction of the fluid flow path. In particular, on the downstream side of the fluid flow path where the flow rate of the fluid (water) increases, the convex side surface 31 (high pressure side) of each turbine blade 3 and the concave side surface 32 (low pressure side) of each turbine blade 3. An extremely high pressure difference can be generated between the two. As a result, the lift acting on each turbine blade 3 is increased, and the rotational speed of the hydroelectric power generation turbine 1 can be further increased, and electric power can be obtained with high efficiency and high output.
 ここで、図2を参照して、各タービン羽根3のタービン軸部2の表面からの高さに関して、流路入口におけるタービン軸部2表面からのタービン羽根3高さHLと、流路出口におけるタービン軸部2表面からのタービン羽根3高さHTとの比(HT/HL)が、1.5~2.3の数値範囲となるように構成することが好ましい。また、1.75~2.25の数値範囲となるように構成することがより好ましい。なお、タービン羽根3高さHLは、タービン羽根3の前縁LEの高さに対応し、タービン羽根3高さHTは、タービン羽根3の後縁TEの高さに対応する。このように、比(HT/HL)の値が、1.5~2.3の数値範囲となるように構成することにより、より一層、高効率かつ高出力で電力を発生させることが可能となる。 Here, with reference to FIG. 2, regarding the height from the surface of the turbine shaft portion 2 of each turbine blade 3, the turbine blade 3 height HL from the surface of the turbine shaft portion 2 at the flow path inlet and the flow path outlet. It is preferable that the ratio (HT / HL) with the turbine blade 3 height HT from the surface of the turbine shaft portion 2 is in a numerical range of 1.5 to 2.3. Further, it is more preferable to configure so as to be in a numerical range of 1.75 to 2.25. The turbine blade 3 height HL corresponds to the height of the leading edge LE of the turbine blade 3, and the turbine blade 3 height HT corresponds to the height of the trailing edge TE of the turbine blade 3. In this way, by configuring the ratio (HT / HL) to be in the numerical range of 1.5 to 2.3, it is possible to generate electric power with higher efficiency and higher output. Become.
 また、タービン羽根3により画成される流体流路に関し、図5に示す流体流路面積の説明図に示す流路入口における流路面積SLと、流路出口における流路面積STとに関し、両者の比(ST/SL)は、0.4~0.85の数値範囲となるように構成することが好ましい。また、0.5~0.77の数値範囲となるように構成することがより好ましい。このような数値範囲となるように、比(ST/SL)の値を設定することにより、更に高効率で電力を発生させることが可能となる。 Further, regarding the fluid flow path defined by the turbine blade 3, both the flow path area SL at the flow path inlet and the flow path area ST at the flow path outlet shown in the explanatory diagram of the fluid flow path area shown in FIG. The ratio (ST / SL) is preferably configured to be in the numerical range of 0.4 to 0.85. Further, it is more preferable that the numerical value range be 0.5 to 0.77. By setting the value of the ratio (ST / SL) so as to be in such a numerical range, it becomes possible to generate electric power with higher efficiency.
 本発明に係る水力発電用タービン1に関し、上記においては、タービン羽根3を3枚備える構成について説明したが、このような構成に特に限定されず、2枚のタービン羽根3を備えるように構成してもよく、或いは、4枚以上のタービン羽根3を備えるように構成してもよい。 Regarding the hydroelectric power generation turbine 1 according to the present invention, in the above description, the configuration including three turbine blades 3 has been described. However, the configuration is not particularly limited to such a configuration, and the turbine blade 3 is configured to include two turbine blades 3. Alternatively, four or more turbine blades 3 may be provided.
 次に、上記構成の水力発電用タービン1を備える水力発電装置10について説明する。この水力発電装置10は、図6の概略構成図に示すように、上部ケーシング6と、下部ケーシング7と、水力発電用タービン1と、発電機8とを備えている。なお、水力発電用タービン1は、上述の構造を備えるものであるため、以下において構造に関する詳細な記載は省略する。 Next, a description will be given of the hydroelectric generator 10 including the hydroelectric power generation turbine 1 having the above-described configuration. As shown in the schematic configuration diagram of FIG. 6, the hydroelectric generator 10 includes an upper casing 6, a lower casing 7, a hydroelectric power generation turbine 1, and a generator 8. In addition, since the turbine 1 for hydroelectric power generation is provided with the above-mentioned structure, the detailed description regarding a structure is abbreviate | omitted below.
 上部ケーシング6は、中央開口部を有するドーナツ型に形成されるスクロールであり、河川から流入する水(流体)を水平方向に旋回する旋回流に変換して中央開口部側に流出させるように構成されている。 The upper casing 6 is a doughnut-shaped scroll having a central opening, and is configured to convert water (fluid) flowing in from a river into a swirling flow swirling in the horizontal direction and outflowing toward the central opening. Has been.
 下部ケーシング7は、上部ケーシング6の下方に配置されており、上方から下方に向かうに従い徐々に縮径する内周面を有する第1筒状部71と、当該第1筒状部71に連接し、上方から下方に向かうに従い徐々に拡径する内周面を有する第2筒状部72とを備えている。なお、第2筒状部72は、いわゆるディフューザーを構成するものである。 The lower casing 7 is disposed below the upper casing 6, and is connected to the first tubular portion 71 having an inner peripheral surface that gradually decreases in diameter from the upper portion toward the lower portion, and the first tubular portion 71. And a second cylindrical portion 72 having an inner peripheral surface that gradually increases in diameter from the upper side toward the lower side. In addition, the 2nd cylindrical part 72 comprises what is called a diffuser.
 水力発電用タービン1は、上部ケーシング6の中央開口部及び下部ケーシング7の第1筒状部71の内側に回転可能に配置され、上部ケーシング6から導かれた水の作用により回転する。なお、上部ケーシング6において水平方向に旋回する旋回流として形成される水の流れが、水力発電用タービン1の回転軸線に対して垂直な面に沿って流体流路の流体入口に流入するように水力発電用タービン1は配置されている。 The hydroelectric power generation turbine 1 is rotatably disposed inside the central opening of the upper casing 6 and the first cylindrical portion 71 of the lower casing 7, and rotates by the action of water guided from the upper casing 6. The water flow formed as a swirl flow swirling in the horizontal direction in the upper casing 6 flows into the fluid inlet of the fluid flow path along a plane perpendicular to the rotation axis of the hydroelectric power generation turbine 1. A turbine 1 for hydroelectric power generation is arranged.
 また、下部ケーシング7における上方から下方に向かうに従い徐々に縮径する第1筒状部71は、水力発電用タービン1におけるタービン羽根3の立設方向側の端縁との間で僅かな隙間を形成するように構成されている。この隙間はできるだけ小さくなるように構成されることが好ましい。 Further, the first cylindrical portion 71 that gradually decreases in diameter from the upper side toward the lower side in the lower casing 7 forms a slight gap with the end edge of the turbine blade 3 in the standing direction of the turbine 1 for hydroelectric power generation. It is configured to form. This gap is preferably configured to be as small as possible.
 第2筒状部72(ディフューザー)は、水力発電用タービン1における流体流路を通過した水(流体)を外部に導く管状部分である。この第2筒状部72(ディフューザー)は、流体の流れ方向に沿うに従い(上方から下方に向かうに従い)徐々に拡径するように構成されている。なお、第1筒状部71と第2筒状部72との境界部分は、タービン羽根3の下端部領域に略一致するように設定されている、また、第2筒状部72(ディフューザー)の内周面と、上記下部ケーシング7における上方から下方に向けて縮径する第1筒状部71の内周面とは、滑らかに接続するように構成されている。また、水力発電用タービン1の回転軸線上に管状の第2筒状部72(ディフューザー)の中心線が重なるようにして配置される。このような形態を有することにより、水力発電用タービン1から排出された水が有する動的流体圧力の一部分を静圧力として回復して、発電効率を向上させると共に、放出される流体の速度を低下させることが可能となる。なお、図6における構成では、第2筒状部72(ディフューザー)の形態として、ストレートな直管型として構成しているが、水力発電用タービン1から排出された水の流れ方向を、例えば、水平方向に転換するために、いわゆるベント管型として構成してもよい。 The second cylindrical portion 72 (diffuser) is a tubular portion that guides water (fluid) that has passed through the fluid flow path in the hydroelectric power generation turbine 1 to the outside. This 2nd cylindrical part 72 (diffuser) is comprised so that a diameter may be gradually expanded as it follows the flow direction of a fluid (it goes to the downward direction from upper direction). Note that the boundary portion between the first tubular portion 71 and the second tubular portion 72 is set to substantially coincide with the lower end region of the turbine blade 3, and the second tubular portion 72 (diffuser). The inner peripheral surface of the lower casing 7 and the inner peripheral surface of the first cylindrical portion 71 whose diameter decreases from the upper side to the lower side in the lower casing 7 are configured to be smoothly connected. Moreover, it arrange | positions so that the centerline of the tubular 2nd cylindrical part 72 (diffuser) may overlap on the rotating shaft line of the turbine 1 for hydroelectric power generation. By having such a configuration, a part of the dynamic fluid pressure of the water discharged from the hydroelectric power generation turbine 1 is recovered as a static pressure, thereby improving the power generation efficiency and reducing the speed of the discharged fluid. It becomes possible to make it. In the configuration in FIG. 6, the second cylindrical portion 72 (diffuser) is configured as a straight straight pipe, but the flow direction of water discharged from the hydroelectric turbine 1 is, for example, In order to change in the horizontal direction, you may comprise as what is called a vent pipe type.
 発電機8は、従来から知られている構成の発電機8であり、上部ケーシング6の上方に配置されている。この発電機8は、ロータとロータの外周に配置されたコイルとを備えており、ロータ表面には、極性の異なる磁石が交互に取り付けられている。発電機8におけるロータは、伝達軸9を介して水力発電用タービン1に接続されており、上部ケーシング6に導かれた水が水力発電用タービン1を通過する際の流体作用により水力発電用タービン1が回転し、該回転が伝達軸9によりロータに伝達され、当該ロータの回転によってコイルに電力が発生するように構成されている。なお、発電機8により発生した電力は、図示しない配線等を介して外部に供給される。 The generator 8 is a generator 8 having a conventionally known configuration, and is disposed above the upper casing 6. The generator 8 includes a rotor and coils disposed on the outer periphery of the rotor, and magnets having different polarities are alternately attached to the rotor surface. The rotor in the generator 8 is connected to the hydroelectric power generation turbine 1 through the transmission shaft 9, and the hydroelectric power generation turbine is caused by the fluid action when the water guided to the upper casing 6 passes through the hydroelectric power generation turbine 1. 1 is rotated, the rotation is transmitted to the rotor by the transmission shaft 9, and electric power is generated in the coil by the rotation of the rotor. In addition, the electric power generated by the generator 8 is supplied to the outside through a wiring or the like (not shown).
 ここで、本発明における水力発電装置10においては、水力発電用タービン1の構造に関し、タービン羽根3により画成される流体流路の流路入口における流路面積SLと、流路出口における流路面積STとの比(ST/SL)は、0.4~0.85の数値範囲となるように構成されることが好ましい。また、第2筒状部72(ディフューザー)の上方端(第1筒状部71と第2筒状部72との境界部分)における流路面積DLと、第2筒状部72(ディフューザー)の下方端(第2筒状部72の出口部分)における流路面積DTとの比(DT/DL)は、上記ST/SLの逆比の関係となることが好ましく、1.17~2.5の数値範囲となるように構成されることが好ましい。また、水力発電用タービン1の流体流路の流路長さ(タービン羽根3の前縁LEから後縁TEにかけての長さに対応)と、第2筒状部72(ディフューザー)の上方端から下方端までの長さとは略同一の長さとなるように構成することが好ましい。 Here, in the hydroelectric generator 10 according to the present invention, regarding the structure of the turbine 1 for hydroelectric power generation, the channel area SL at the channel inlet of the fluid channel defined by the turbine blades 3 and the channel at the channel outlet. The ratio to the area ST (ST / SL) is preferably configured to be in a numerical range of 0.4 to 0.85. Further, the flow area DL at the upper end of the second cylindrical portion 72 (diffuser) (the boundary portion between the first cylindrical portion 71 and the second cylindrical portion 72), and the second cylindrical portion 72 (diffuser). The ratio (DT / DL) to the flow path area DT at the lower end (exit portion of the second cylindrical portion 72) is preferably in the relationship of the inverse ratio of ST / SL, 1.17 to 2.5. It is preferable to be configured to be in the numerical range of Further, the flow path length of the fluid flow path of the turbine 1 for hydroelectric power generation (corresponding to the length from the front edge LE to the rear edge TE of the turbine blade 3) and the upper end of the second cylindrical portion 72 (diffuser) It is preferable that the length to the lower end is substantially the same.
 このように流体流路の流路入口における流路面積SLと、流路出口における流路面積STとの比(ST/SL)、及び、第2筒状部72(ディフューザー)の上方端における流路面積DLと、ディフューザーの下方端における流路面積DTとの比(DT/DL)の値を設定することにより、より高い効率と出力を得ることができる水力発電装置10を構成することが可能となる。 Thus, the ratio (ST / SL) of the flow path area SL at the flow path inlet of the fluid flow path to the flow path area ST at the flow path outlet, and the flow at the upper end of the second cylindrical portion 72 (diffuser) By setting the value of the ratio (DT / DL) between the road area DL and the flow path area DT at the lower end of the diffuser, it is possible to configure the hydroelectric generator 10 that can obtain higher efficiency and output. It becomes.
 ここで、本実施形態に係る水力発電装置10においては、図7に示すように、水力発電用タービン1のタービン軸部2の下方端に、上下方向に伸びる突起体22を設けるように構成してもよい。この突起体22は、第2筒状部72(ディフューザー)の入り口エリアに進入するように構成されている。このような突起体22を備えることにより、水力発電用タービン1から排出され、第2筒状部72(ディフューザー)に導かれる水の整流効果を高めることができ、第2筒状部72(ディフューザー)による静圧回復性能を向上させることが期待される。なお、突起体22を備えるように構成する場合、上述の第2筒状部72(ディフューザー)の上方端における流路面積DLは、突起体22を除外して算出される。 Here, in the hydroelectric generator 10 according to the present embodiment, as shown in FIG. 7, a projecting body 22 extending in the vertical direction is provided at the lower end of the turbine shaft portion 2 of the hydroelectric power generation turbine 1. May be. The protrusion 22 is configured to enter the entrance area of the second cylindrical portion 72 (diffuser). By providing such a protrusion 22, the rectifying effect of water discharged from the hydroelectric power generation turbine 1 and guided to the second cylindrical portion 72 (diffuser) can be enhanced, and the second cylindrical portion 72 (diffuser) ) Is expected to improve the static pressure recovery performance. In addition, when comprised so that the protrusion 22 may be provided, the flow-path area DL in the upper end of the above-mentioned 2nd cylindrical part 72 (diffuser) is calculated excluding the protrusion 22. FIG.
 本発明の発明者は、本発明に係る水力発電用タービン1の性能を確認するために、図6に記載の水力発電装置10の実機を製作して試験を行ったので、以下、その試験内容について説明する。 The inventor of the present invention manufactured and tested the actual hydroelectric generator 10 shown in FIG. 6 in order to confirm the performance of the hydroelectric power generation turbine 1 according to the present invention. Will be described.
 まず、試験に供する水力発電用タービン1として、サンプル1-A,1-B、2~8の合計9つのサンプルを準備した。各サンプルとも、図1に示すように3枚のタービン羽根3を有する三重螺旋構造を備えている。また、各サンプルにおけるタービン羽根3の前縁LEの高さに対応するタービン羽根高さHL、後縁TEの高さに対応するタービン羽根高さHTの寸法については、下記表1中に記載している。なお、各サンプルともタービン軸部2としては同一形状のものを使用した。このタービン軸部2は、タービン羽根3の前縁LEが配置される最大直径部の直径が200mm、タービン羽根3の後縁TEが配置される最小直径部の直径が20mmとなるように構成されており、タービン羽根3が設けられる領域21のタービン軸部2の輪郭は、タービン軸部2の軸線Zに沿う断面視において、円弧状となるように構成されている。 First, a total of nine samples, samples 1-A, 1-B, and 2-8, were prepared as the hydroelectric turbine 1 to be used for the test. Each sample has a triple helix structure having three turbine blades 3 as shown in FIG. The dimensions of the turbine blade height HL corresponding to the height of the leading edge LE of the turbine blade 3 and the turbine blade height HT corresponding to the height of the trailing edge TE in each sample are described in Table 1 below. ing. In addition, the thing of the same shape was used as the turbine shaft part 2 in each sample. The turbine shaft portion 2 is configured such that the diameter of the maximum diameter portion where the leading edge LE of the turbine blade 3 is disposed is 200 mm, and the diameter of the minimum diameter portion where the trailing edge TE of the turbine blade 3 is disposed is 20 mm. The contour of the turbine shaft portion 2 in the region 21 where the turbine blades 3 are provided is configured to be arcuate in a cross-sectional view along the axis Z of the turbine shaft portion 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記サンプル1-A,1-B、2~8に係る水力発電用タービン1を図6に示すような水力発電装置10にそれぞれ組み込み、種々の回転数におけるトルク(Nm)、発電出力(W)、流量(m/h)等を計測した。なお、各サンプルに係るタービン羽根3の立設方向側の端縁と第1筒状部71との間の隙間寸法は、サンプル1-Aが0.4mm、サンプル1-Bが0.6mm、サンプル2~サンプル8が0.5mmである。 The hydroelectric power generation turbines 1 according to the samples 1-A, 1-B, 2 to 8 are respectively incorporated in a hydroelectric power generation apparatus 10 as shown in FIG. 6, and torque (Nm) and power generation output (W) at various rotational speeds are incorporated. The flow rate (m 3 / h) and the like were measured. The gap dimension between the edge of the turbine blade 3 in the standing direction side of each sample and the first cylindrical portion 71 is 0.4 mm for sample 1-A, 0.6 mm for sample 1-B, Samples 2 to 8 are 0.5 mm.
 下記表2から表9に、それぞれ、上記サンプル1-A,1-B、2~8に係る水力発電用タービン1の試験結果を示す。 Tables 2 to 9 below show the test results of the hydroelectric power generation turbine 1 according to Samples 1-A, 1-B, and 2 to 8, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 ここで、トルク(Nm)及び回転数(r/min)は、株式会社小野測器製のディジタルトルクメータ(電磁歯車位相差方式トルク検出器)(型番 SS-101)、ディジタルトルク演算表示機(型番 TS-2700)及び電磁式回転検出器(型番 MP-981)を用いて計測した。また、流量(m/h)は、横河電機株式会社製の電磁流量計(型番 AXF150G-PNAL1S-BJ11)及び電磁流量計変換器(型番 AXFA14G-D1-01/EU)を用いて計測した。 Here, the torque (Nm) and the rotational speed (r / min) were measured using a digital torque meter (electromagnetic gear phase difference type torque detector) (model SS-101) manufactured by Ono Sokki Co., Ltd. Measurement was performed using a model number TS-2700) and an electromagnetic rotation detector (model number MP-981). The flow rate (m 3 / h) was measured using an electromagnetic flow meter (model number AXF150G-PNAL1S-BJ11) and an electromagnetic flow meter converter (model number AXFA14G-D1-01 / EU) manufactured by Yokogawa Electric Corporation. .
 また、発電出力は、
数式:トルク(Nm)×2×円周率×回転数(r/min)/60
により算出し、
理論水力は、
数式:流量(m/s)×1000×重力加速度×有効落差(m)
により算出した。なお、重力加速度は、9.81m/sとして算出している。また、有効落差は、全てのサンプルに係る試験において5.2mである。
The power generation output is
Formula: Torque (Nm) × 2 × circularity × rotational speed (r / min) / 60
Calculated by
The theoretical hydropower is
Formula: Flow rate (m 3 / s) × 1000 × gravity acceleration × effective head (m)
Calculated by The gravitational acceleration is calculated as 9.81 m / s 2 . Moreover, the effective head is 5.2 m in the test concerning all the samples.
 また、発電効率(%)は、
数式:発電出力(W)/理論出力(W)×100
により算出した。
The power generation efficiency (%) is
Formula: Power generation output (W) / theoretical output (W) x 100
Calculated by
 上記各サンプルの計測結果に関して、最大出力(W)時の発電効率(%)、及び、最高発電効率(%)時の出力(W)を抜き出したものを下記表11に示す。 Table 11 below shows the power generation efficiency (%) at the maximum output (W) and the output (W) at the maximum power generation efficiency (%) regarding the measurement results of the above samples.
 なお、サンプル1-A及びサンプル1-Bに関しては、タービン羽根3の立設方向側の端縁と第1筒状部71との間の隙間寸法がそれぞれ0.4mm、0.6mmであり、他のサンプル2~8とは異なる(サンプル2~8は、0.5mm)。そこで、下記表11においては、サンプル1-A及びサンプル1-Bにおける試験結果の算術平均を表11中のサンプル1の計測結果として記載している。具体的には、サンプル1-Aに関しては、最大の発電出力は、919.4(W)であり、このときの発電効率は、69.62(%)であり、サンプル1-Bに関しては、最大の発電出力は、904.95(W)であり、このときの発電効率は、70.10(%)であることから、表11におけるサンプル1の最大出力時における出力を(919.4(W)+904.95(W))÷2=912(W)として記載している。同様に、発電出力については、(69.62(%)+70.10(%))÷2=69.9≒70(%)として記載している。 For Sample 1-A and Sample 1-B, the gap dimensions between the end of the turbine blade 3 on the standing direction side and the first cylindrical portion 71 are 0.4 mm and 0.6 mm, respectively. Different from other samples 2 to 8 (samples 2 to 8 are 0.5 mm). Therefore, in Table 11 below, the arithmetic average of the test results in Sample 1-A and Sample 1-B is described as the measurement result of Sample 1 in Table 11. Specifically, for sample 1-A, the maximum power generation output is 919.4 (W), and the power generation efficiency at this time is 69.62 (%). The maximum power generation output is 904.95 (W), and the power generation efficiency at this time is 70.10 (%). Therefore, the output at the time of the maximum output of Sample 1 in Table 11 is (919.4 ( W) +904.95 (W)) ÷ 2 = 912 (W). Similarly, the power generation output is described as (69.62 (%) + 70.10 (%)) ÷ 2 = 69.9≈70 (%).
 また、サンプル1-Aに関しては、最高の発電効率は、70.89(%)であり、このときの発電出力は、899.00(W)であり、サンプル1-Bに関しては、最高の発電効率は、71.02(%)であり、このときの発電出力は、849.32(W)であることから、表11におけるサンプル1の最高効率時における出力を(899.00+849.32(W))÷2=874(W)として記載している。同様に、発電出力については、(70.89(%)+71.02(%))÷2=71(%)として記載している。 For sample 1-A, the highest power generation efficiency is 70.89 (%), and the power generation output at this time is 899.00 (W), and for sample 1-B, the highest power generation efficiency is Since the efficiency is 71.02 (%) and the power generation output at this time is 849.32 (W), the output at the maximum efficiency of Sample 1 in Table 11 is (899.00 + 849.32 (W )) ÷ 2 = 874 (W). Similarly, the power generation output is described as (70.89 (%) + 71.02 (%)) ÷ 2 = 71 (%).
 また、表11には、前縁と後縁とのタービン羽根高さの比(HT/HL)の値、及び、タービン羽根3により画成される流体流路について、流路入口における流路面積SL及び流路出口における流路面積STの比(ST/SL)の値も併せて記載している。 Table 11 also shows the ratio of the turbine blade height ratio (HT / HL) between the leading edge and the trailing edge, and the flow area at the flow path inlet for the fluid flow path defined by the turbine blade 3. The value of the ratio of the channel area ST at the SL and the channel outlet (ST / SL) is also shown.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 また、各サンプルに関し、タービン羽根3の前縁LEと後縁TEとのタービン羽根高さの比(HT/HL)と、最高発電効率(%)との関係を図8に示す。また、各サンプルに関し、タービン羽根3の前縁LEと後縁TEとのタービン羽根高さの比(HT/HL)と、最高出力(W)との関係を図9に示す。ここで、図8及び図9において実線で示している曲線は、プロットデータを三次多項式にて近似した近似曲線に相当する。 Also, for each sample, the relationship between the turbine blade height ratio (HT / HL) between the leading edge LE and the trailing edge TE of the turbine blade 3 and the maximum power generation efficiency (%) is shown in FIG. For each sample, the relationship between the turbine blade height ratio (HT / HL) between the leading edge LE and the trailing edge TE of the turbine blade 3 and the maximum output (W) is shown in FIG. Here, the curve indicated by the solid line in FIGS. 8 and 9 corresponds to an approximate curve obtained by approximating the plot data with a cubic polynomial.
 上記図8及び図9から、タービン羽根3の前縁LEと後縁TEとのタービン羽根高さの比(HT/HL)として、1.5~2.3程度の数値範囲とすることが高い発電効率や発電出力を得るという観点から好ましいと考えられる。また、特に、HT/HLの値が、1.75~2.25の数値範囲とすることにより、発電効率が80%以上となり、より好ましいことが分かる。 8 and 9, the ratio of the turbine blade height between the leading edge LE and the trailing edge TE of the turbine blade 3 (HT / HL) is often set to a numerical range of about 1.5 to 2.3. It is considered preferable from the viewpoint of obtaining power generation efficiency and power generation output. In particular, it can be seen that when the value of HT / HL is in the numerical range of 1.75 to 2.25, the power generation efficiency is 80% or more, which is more preferable.
 また、各サンプルに関し、タービン羽根3により画成される流体流路について、流路入口における流路面積SL及び流路出口における流路面積STの比(ST/SL)と、最高発電効率(%)との関係を図10に示す。また、タービン羽根3により画成される流体流路について、流路入口における流路面積SL及び流路出口における流路面積STの比(ST/SL)と、最高出力(W)との関係を図11に示す。ここで、図10及び図11において実線で示している曲線は、プロットデータを三次多項式にて近似した近似曲線に相当する。 In addition, for each sample, with respect to the fluid flow path defined by the turbine blade 3, the ratio (ST / SL) of the flow path area SL at the flow path inlet and the flow path area ST at the flow path outlet, and the maximum power generation efficiency (%) 10). For the fluid flow path defined by the turbine blade 3, the relationship between the ratio (ST / SL) of the flow path area SL at the flow path inlet and the flow path area ST at the flow path outlet and the maximum output (W) As shown in FIG. Here, the curve indicated by the solid line in FIGS. 10 and 11 corresponds to an approximate curve obtained by approximating the plot data with a cubic polynomial.
 上記図10及び図11から、流路入口における流路面積SL及び流路出口における流路面積STの比(ST/SL)として、0.4~0.85程度の数値範囲とすることが高い発電効率や発電出力を得るという観点から好ましいと考えられる。また、特に、ST/SLの値が、0.5~0.77の数値範囲とすることにより、発電効率が80%以上となり、より好ましいことが分かる。 From FIG. 10 and FIG. 11, the ratio (ST / SL) of the channel area SL at the channel inlet and the channel area ST at the channel outlet (ST / SL) is often in the numerical range of about 0.4 to 0.85. It is considered preferable from the viewpoint of obtaining power generation efficiency and power generation output. In particular, it can be seen that when the ST / SL value is in the numerical range of 0.5 to 0.77, the power generation efficiency is 80% or more, which is more preferable.
 また、本発明の発明者は、上述の発電出力(W)の計測に併せて、サンプル1-A、サンプル2-B、サンプル2~8に係る水力発電用タービン1の回転数(r/min)の計測も行ったので、下記表12において、各サンプルに関して、最大出力(W)時の回転数(r/min)及び水力発電用タービン1の周速(m/s)、並びに、最高発電効率(%)時の回転数(r/min)及び水力発電用タービン1の周速(m/s)を示す。ここで、周速については、   
数式:回転数(r/min)/60×タービン羽根3の最大径(m)×円周率(π)   
により算出した。なお、タービン羽根3の最大径は、タービン羽根3の前縁LEが配置される最大直径部の直径に相当するため、0.2m(200mm)を代入して、上述の周速を算出している。
In addition to the measurement of the power generation output (W) described above, the inventor of the present invention also rotates the rotational speed (r / min) of the hydroelectric power generation turbine 1 according to Sample 1-A, Sample 2-B, and Samples 2-8. ) Was also measured, so in Table 12 below, for each sample, the rotational speed (r / min) at the maximum output (W), the peripheral speed (m / s) of the hydroelectric turbine 1 and the maximum power generation The rotational speed (r / min) at the time of efficiency (%) and the peripheral speed (m / s) of the turbine 1 for hydroelectric power generation are shown. Here, about the peripheral speed,
Formula: Number of rotations (r / min) / 60 × maximum diameter (m) of turbine blade 3 × circumferential ratio (π)
Calculated by Since the maximum diameter of the turbine blade 3 corresponds to the diameter of the maximum diameter portion where the leading edge LE of the turbine blade 3 is disposed, 0.2 m (200 mm) is substituted and the above peripheral speed is calculated. Yes.
 ここで、上記のようにサンプル1-A及びサンプル1-Bに関しては、タービン羽根3の立設方向側の端縁と第1筒状部71との間の隙間寸法がそれぞれ0.4mm、0.6mmであり、他のサンプル2~8とは異なる(サンプル2~8は、0.5mm)。そこで、下記表12においては、サンプル1-A及びサンプル1-Bにおける試験結果の算術平均を表12中のサンプル1の計測結果として記載している。具体的には、サンプル1-Aに関しては、最大の発電出力は、919.4(W)であり、このときの回転数は、934(r/min)であり、サンプル1-Bに関しては、最大の発電出力は、904.95(W)であり、このときの回転数は、982(r/min)であることから、表12におけるサンプル1の最大出力時における出力を(919.4(W)+904.95(W))÷2=912(W)として記載している。同様に、回転数については、(934(r/min)+982(r/min))÷2=958(r/min)として記載している。 Here, as described above, with respect to Sample 1-A and Sample 1-B, the gap dimension between the edge of the turbine blade 3 on the standing direction side and the first cylindrical portion 71 is 0.4 mm, 0 mm, respectively. .6 mm, which is different from other samples 2 to 8 (samples 2 to 8 are 0.5 mm). Therefore, in Table 12 below, the arithmetic average of the test results in Sample 1-A and Sample 1-B is described as the measurement result of Sample 1 in Table 12. Specifically, for sample 1-A, the maximum power generation output is 919.4 (W), and the rotation speed at this time is 934 (r / min), and for sample 1-B, The maximum power generation output is 904.95 (W), and the rotation speed at this time is 982 (r / min). Therefore, the output at the maximum output of sample 1 in Table 12 is (919.4 ( W) +904.95 (W)) ÷ 2 = 912 (W). Similarly, the rotation speed is described as (934 (r / min) +982 (r / min)) / 2 = 958 (r / min).
 また、サンプル1-Aに関しては、最高の発電効率は、70.89(%)であり、このときの回転数は、1022(r/min)であり、サンプル1-Bに関しては、最高の発電効率は、71.02(%)であり、このときの回転数は、1096(r/min)であることから、表12におけるサンプル1の最高効率時における出力を(899.00+849.32(W))÷2=874(W)として記載している。同様に、発電出力については、(1022(r/min)+1096(r/min))÷2=1059(r/min)として記載している。 For sample 1-A, the highest power generation efficiency is 70.89 (%), and the rotation speed at this time is 1022 (r / min). For sample 1-B, the highest power generation efficiency is The efficiency is 71.02 (%), and the rotation speed at this time is 1096 (r / min). Therefore, the output at the maximum efficiency of Sample 1 in Table 12 is (899.00 + 849.32 (W )) ÷ 2 = 874 (W). Similarly, the power generation output is described as (1022 (r / min) +1096 (r / min)) / 2 = 21059 (r / min).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 また、各サンプルに関し、タービン羽根3の前縁LEと後縁TEとのタービン羽根高さの比(HT/HL)と、最大出力(W)時のタービン周速(m/s)との関係を図12に示す。また、各サンプルに関し、タービン羽根3の前縁LEと後縁TEとのタービン羽根高さの比(HT/HL)と、最高発電効率(%)時のタービン周速(m/s)との関係を図13に示す。ここで、図12及び図13において実線で示している曲線は、プロットデータを三次多項式にて近似した近似曲線に相当する。 For each sample, the relationship between the turbine blade height ratio (HT / HL) between the leading edge LE and the trailing edge TE of the turbine blade 3 and the turbine peripheral speed (m / s) at the maximum output (W). Is shown in FIG. For each sample, the turbine blade height ratio (HT / HL) between the leading edge LE and the trailing edge TE of the turbine blade 3 and the turbine peripheral speed (m / s) at the maximum power generation efficiency (%). The relationship is shown in FIG. Here, the curve indicated by the solid line in FIGS. 12 and 13 corresponds to an approximate curve obtained by approximating the plot data with a cubic polynomial.
 上記図12及び図13から、タービン羽根3の前縁LEと後縁TEとのタービン羽根高さの比(HT/HL)が増加するに従い、定性的にタービン羽根3の周速が上昇していくことが分かる。特に、最大出力時においては、図12から、タービン羽根高さの比(HT/HL)が1.5以上の場合には、タービン羽根高さの比(HT/HL)が1の場合に比べて5%以上の周速上昇が達成できていることが分かる。また、最高効率時においては、図13から、タービン羽根高さの比(HT/HL)が1.75以上の場合には、タービン羽根高さの比(HT/HL)が1の場合に比べて5%以上の周速上昇が達成できていることが分かる。このように、タービン羽根高さの比(HT/HL)が1.5以上の場合、より好ましくは1.75以上の場合に、極めて早い周速で水力発電用タービン1は回転することとなり、高い発電出力及び発電効率を得ることが可能になっていることが分かる。 12 and 13, the peripheral speed of the turbine blade 3 increases qualitatively as the turbine blade height ratio (HT / HL) between the leading edge LE and the trailing edge TE of the turbine blade 3 increases. I can see it going. In particular, at the maximum output, it can be seen from FIG. 12 that when the turbine blade height ratio (HT / HL) is 1.5 or more, the turbine blade height ratio (HT / HL) is 1. It can be seen that a peripheral speed increase of 5% or more can be achieved. In addition, at the maximum efficiency, it can be seen from FIG. 13 that when the turbine blade height ratio (HT / HL) is 1.75 or more, the turbine blade height ratio (HT / HL) is 1. It can be seen that a peripheral speed increase of 5% or more can be achieved. As described above, when the turbine blade height ratio (HT / HL) is 1.5 or more, more preferably 1.75 or more, the hydroelectric power generation turbine 1 rotates at an extremely fast peripheral speed. It can be seen that high power generation output and power generation efficiency can be obtained.
1 水力発電用タービン
2 タービン軸部
3 タービン羽根
6 上部ケーシング
7 下部ケーシング
71 第1筒状部
72 第2筒状部(ディフューザー)
8 発電機
10 水力発電装置
LE タービン羽根の前縁
TE タービン羽根の後縁
DESCRIPTION OF SYMBOLS 1 Turbine for hydroelectric power generation 2 Turbine axial part 3 Turbine blade 6 Upper casing 7 Lower casing 71 1st cylindrical part 72 2nd cylindrical part (diffuser)
8 Generator 10 Hydroelectric generator LE Turbine blade leading edge TE Turbine blade trailing edge

Claims (4)

  1.  上方から下方に向けて縮径するタービン軸部と、
     前記タービン軸部の表面に形成され上方から下方に向けて螺旋状にのびる複数のタービン羽根とを備えており、
     互いに隣接するタービン羽根同士の間で流体流路が画成されており、
     前記流体流路は、上端において、前記タービン軸部の軸方向に対して垂直な方向に向けて流体を導き入れる流路入口、及び、下端において、流体を前記タービン軸部の軸方向に排出させる流体出口を有しており、
     前記各タービン羽根の前記タービン軸部表面からの高さは、前記流体流路の流れ方向に沿うに従い高くなり、
     前記流体流路は、その流れ方向に沿うに従い、流路面積が減少することを特徴とする水力発電用タービン。
    A turbine shaft portion that decreases in diameter from above to below;
    A plurality of turbine blades that are formed on the surface of the turbine shaft portion and extend spirally from above to below,
    A fluid flow path is defined between adjacent turbine blades,
    The fluid flow path has a flow path inlet for introducing the fluid in a direction perpendicular to the axial direction of the turbine shaft portion at the upper end, and a fluid discharged in the axial direction of the turbine shaft portion at the lower end. A fluid outlet,
    The height of each turbine blade from the surface of the turbine shaft portion becomes higher along the flow direction of the fluid flow path,
    The hydroelectric power generation turbine according to claim 1, wherein the fluid flow path has a flow path area that decreases along the flow direction.
  2.  前記流路入口における前記タービン軸部表面からの前記タービン羽根高さHLと、前記流路出口における前記タービン軸部表面からの前記タービン羽根高さHTとの比(HT/HL)は、1.5~2.3であることを特徴とする請求項1に記載の水力発電用タービン。 The ratio (HT / HL) of the turbine blade height HL from the turbine shaft surface at the flow path inlet to the turbine blade height HT from the turbine shaft surface at the flow path outlet is 1. The turbine for hydroelectric power generation according to claim 1, wherein the turbine is 5 to 2.3.
  3.  前記流路入口における前記流体流路の流路面積SLと、前記流路出口における前記流体流路の流路面積STとの比(ST/SL)は、0.4~0.85であることを特徴とする請求項1又は2に記載の水力発電用タービン。 The ratio (ST / SL) of the channel area SL of the fluid channel at the channel inlet to the channel area ST of the fluid channel at the channel outlet is 0.4 to 0.85. The turbine for hydroelectric power generation according to claim 1 or 2.
  4.  請求項1から請求項3に記載のいずれかの水力発電用タービンを備えた水力発電装置。 A hydroelectric generator comprising the hydroelectric power generation turbine according to any one of claims 1 to 3.
PCT/JP2019/011660 2018-03-29 2019-03-20 Hydroelectric turbine and hydroelectric generator WO2019188646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-064399 2018-03-29
JP2018064399A JP6598264B2 (en) 2018-03-29 2018-03-29 Turbine for hydroelectric power generation and hydroelectric power generation device

Publications (1)

Publication Number Publication Date
WO2019188646A1 true WO2019188646A1 (en) 2019-10-03

Family

ID=68059960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011660 WO2019188646A1 (en) 2018-03-29 2019-03-20 Hydroelectric turbine and hydroelectric generator

Country Status (2)

Country Link
JP (1) JP6598264B2 (en)
WO (1) WO2019188646A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052663A (en) * 2009-09-04 2011-03-17 Mitsubishi Heavy Ind Ltd Runner and fluid machine
JP2016037875A (en) * 2014-08-06 2016-03-22 東京電力株式会社 Fluid machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL184075B (en) * 1978-06-30 1988-11-01 Hva Water Contractors B V METHOD FOR OPERATING A ROTARY PIVOT ROTATOR AND ROTOR INTENDED FOR CARRYING OUT SUCH A METHOD
US5997242A (en) * 1996-12-02 1999-12-07 Alden Research Laboratory, Inc. Hydraulic turbine
JP5649187B2 (en) * 2009-06-12 2015-01-07 富山県 Hydroelectric generator
GB2487404A (en) * 2011-01-20 2012-07-25 Sea Lix As Rotor for extracting energy from bidirectional fluid flows
JP5851876B2 (en) * 2012-02-14 2016-02-03 三菱重工業株式会社 Turbine runner and turbine
NL2008948C2 (en) * 2012-06-06 2013-12-09 G A M Manshanden Man B V SHIP SCREW.
JP6028244B2 (en) * 2012-12-13 2016-11-16 株式会社永島製作所 Water turbine device and hydroelectric power generation device
JP6556486B2 (en) * 2015-04-22 2019-08-07 株式会社東芝 Runner and hydraulic machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052663A (en) * 2009-09-04 2011-03-17 Mitsubishi Heavy Ind Ltd Runner and fluid machine
JP2016037875A (en) * 2014-08-06 2016-03-22 東京電力株式会社 Fluid machine

Also Published As

Publication number Publication date
JP6598264B2 (en) 2019-10-30
JP2019173690A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP6038809B2 (en) Rotor device
EP2136072B1 (en) Hydraulic power generating apparatus
JP4211896B2 (en) Hydro turbine
JP4736003B2 (en) Fluid machine, windmill, and internal flow speed increasing method of fluid machine using unsteady flow
KR101560179B1 (en) Wheel for hydraulic machine, a hydraulic machine including such a wheel, and an energy conversion installation equipped with such a hydraulic machine
JP5785181B2 (en) Turbine
JP5400887B2 (en) Turbine and rotor for turbine
AU2010266201A1 (en) Shrouded wind turbine with rim generator and Halbach array
JP4163062B2 (en) Splitter runner and hydraulic machine
KR101786451B1 (en) Propeller screw turbine and turbine having the same power generator
JP2009257094A (en) Runner vane of axial flow hydraulic machine
WO2019188646A1 (en) Hydroelectric turbine and hydroelectric generator
MX2008000419A (en) Turbine for a hydroelectric power station.
WO2011140411A1 (en) Fluid turbine with ejector shroud
EP3029316B1 (en) Wind power generation tower
KR101615599B1 (en) Complex Electric Generator using Tornado
JP2008175169A (en) Francis turbine
KR102075020B1 (en) Water turbine and small hydropower generation apparatus
JP6054189B2 (en) Axial turbine generator
JP6935658B2 (en) How to manufacture a fluid machine
JP7114138B1 (en) POWER GENERATION DEVICE USING CYLINDRICAL TURBINE AND MANUFACTURING METHOD
JP2008121691A (en) deltadeltaSPLITTER RUNNER AND HYDRAULIC MACHINE
JP2021179183A (en) Runner cone and hydraulic machine
JP7180057B2 (en) Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator
JP6449372B2 (en) Design method of water flow control plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776211

Country of ref document: EP

Kind code of ref document: A1