JP7180057B2 - Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator - Google Patents

Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator Download PDF

Info

Publication number
JP7180057B2
JP7180057B2 JP2018138429A JP2018138429A JP7180057B2 JP 7180057 B2 JP7180057 B2 JP 7180057B2 JP 2018138429 A JP2018138429 A JP 2018138429A JP 2018138429 A JP2018138429 A JP 2018138429A JP 7180057 B2 JP7180057 B2 JP 7180057B2
Authority
JP
Japan
Prior art keywords
magnus
edge
power generator
type thrust
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018138429A
Other languages
Japanese (ja)
Other versions
JP2020016167A (en
Inventor
敦史 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Challenergy Inc
Original Assignee
Challenergy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Challenergy Inc filed Critical Challenergy Inc
Priority to JP2018138429A priority Critical patent/JP7180057B2/en
Publication of JP2020016167A publication Critical patent/JP2020016167A/en
Application granted granted Critical
Publication of JP7180057B2 publication Critical patent/JP7180057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Description

本発明は、流体中で回転する略円筒形状の円筒翼が発生するマグナス力を用いたマグナス式推力発生装置、前記マグナス式推力発生装置を用いた風力回転装置、水力回転装置、潮力回転装置、ならびに前記マグナス式推力発生装置を用いた風力発電機、水力発電機、潮力発電機などの流体機械に関する。 The present invention provides a Magnus-type thrust generating device using Magnus force generated by a substantially cylindrical blade that rotates in a fluid, a wind power rotating device, a water power rotating device, and a tidal power rotating device using the Magnus-type thrust generating device. , and fluid machinery such as wind power generators, hydraulic power generators, and tidal power generators using the Magnus type thrust generator.

従来から、流体中で回転する円筒翼が発生するマグナス力を利用する装置が存在する(特許文献1)。特許文献1に示した推力発生装置は、円筒翼に発生するマグナス力によって効率的に回転力を得るための部材を円筒翼の進行方向の背面側に設けたものである。 Conventionally, there is a device that utilizes the Magnus force generated by a cylindrical blade rotating in a fluid (Patent Document 1). The thrust generator disclosed in Patent Document 1 has a member for efficiently obtaining a rotational force from the Magnus force generated in the cylindrical blade provided on the back side of the cylindrical blade in the traveling direction.

特許第6175594号公報Japanese Patent No. 6175594

本発明は、整流板を用いた円筒翼に発生するマグナス力によって効率的に回転力を得ることが可能なマグナス式推力発生装置、前記マグナス式推力発生装置を用いた風力回転装置、水力回転装置、潮力回転装置、ならびに前記マグナス式推力発生装置を用いた風力発電機、水力発電機、潮力発電機を提供することを目的とする。 The present invention provides a Magnus-type thrust generator capable of efficiently obtaining rotational force from the Magnus force generated in a cylindrical blade using straightening vanes, a wind-power rotating apparatus using the Magnus-type thrust generating apparatus, and a hydraulic rotating apparatus. , a tidal power rotating device, and a wind power generator, a hydraulic power generator, and a tidal power generator using the Magnus type thrust generator.

本発明の一実施形態に係るマグナス式推力発生装置は、
支持筺体と、
前記支持筺体に対して第1の回転軸を中心として回転可能な支持部と、
前記支持部に対して前記第1の回転軸を中心とする円周上の第2の回転軸を中心として各々を軸支され、前記第1の回転軸を中心として公転可能であって、前記第1の回転軸に対して平行な第2の回転軸を中心として自転可能な複数の円筒翼と、
前記支持部に支持され、前記円筒翼に対して進行方向とは反対側に配置された整流板と、
を備え、
前記第1の回転軸及び前記第2の回転軸に垂直な平面上において、前記整流板の後端縁の少なくとも一部は、以下の条件(1)及び条件(2)を満たす領域に存在する
ことを特徴とする。
0.45D ≦ L ≦ 0.65D (1)
20° ≦ θ ≦ 60° (2)
ただし、
Dは円筒翼の公転軌跡の外端円の直径、
Lは本体中心から後端縁までの距離、
θは本体中心と円筒翼中心を結ぶ線と本体中心と後端縁を結ぶ線の角度、
である。
A Magnus-type thrust generator according to an embodiment of the present invention includes:
a support housing;
a support rotatable about a first rotation axis with respect to the support housing;
each pivotally supported about a second rotating shaft on a circumference centered on the first rotating shaft with respect to the supporting portion and capable of revolving about the first rotating shaft; a plurality of cylindrical blades rotatable around a second rotation axis parallel to the first rotation axis;
a rectifying plate supported by the support portion and disposed on the side opposite to the traveling direction with respect to the cylindrical blade;
with
On a plane perpendicular to the first rotation axis and the second rotation axis, at least a part of the rear edge of the current plate exists in a region that satisfies the following conditions (1) and (2). It is characterized by
0.45D≦L≦0.65D (1)
20° ≤ θ ≤ 60° (2)
however,
D is the diameter of the outer end circle of the revolution trajectory of the cylindrical blade,
L is the distance from the center of the body to the rear edge,
θ is the angle between the line connecting the center of the main body and the center of the cylindrical blade and the line connecting the center of the main body and the rear edge,
is.

また、本発明の一実施形態に係るマグナス式推力発生装置は、
前記整流板の後端縁の少なくとも一部は、以下の条件(1’)及び条件(2’)を満たす領域に存在する。
0.5D ≦ L ≦ 0.55D (1’)
30° ≦ θ ≦ 40° (2’)
Further, the Magnus-type thrust generator according to one embodiment of the present invention is
At least part of the trailing edge of the rectifying plate exists in a region that satisfies the following conditions (1') and (2').
0.5D ≤ L ≤ 0.55D (1')
30° ≤ θ ≤ 40° (2')

また、本発明の一実施形態に係るマグナス式推力発生装置は、
前記第1の回転軸及び前記第2の回転軸に垂直な平面上において、
前記整流板の第1縁は、前記円筒翼の公転軌跡の外端円上に位置し、
前記第1縁と前記後端縁を含む第1平面は、前記円筒翼の公転軌跡の外端円の前記第1縁での接線に含まれる。
Further, the Magnus-type thrust generator according to one embodiment of the present invention is
On a plane perpendicular to the first rotation axis and the second rotation axis,
a first edge of the rectifying plate is positioned on an outer end circle of a revolution trajectory of the cylindrical blade;
A first plane including the first edge and the trailing edge is included in a tangent line at the first edge of the outer end circle of the orbit of the cylindrical blade.

また、本発明の一実施形態に係るマグナス式推力発生装置は、
前記第1縁と前記後端縁を結ぶ前記整流板の第1表面は、前記第1平面に含まれる。
Further, the Magnus-type thrust generator according to one embodiment of the present invention is
A first surface of the current plate connecting the first edge and the trailing edge is included in the first plane.

また、本発明の一実施形態に係るマグナス式推力発生装置は、
前記整流板の第2縁は、前記第2の回転軸と前記後端縁を結ぶ線上に位置し、
前記第2縁と前記後端縁を含む第2平面は、前記第2の回転軸と前記後端縁を結ぶ線に含まれる。
Further, the Magnus-type thrust generator according to one embodiment of the present invention is
a second edge of the rectifying plate is positioned on a line connecting the second rotating shaft and the trailing edge;
A second plane including the second edge and the trailing edge is included in a line connecting the second axis of rotation and the trailing edge.

また、本発明の一実施形態に係るマグナス式推力発生装置は、
前記第2縁と前記後端縁を結ぶ前記整流板の第2表面は、前記第2平面に含まれる。
Further, the Magnus-type thrust generator according to one embodiment of the present invention is
A second surface of the current plate connecting the second edge and the trailing edge is included in the second plane.

また、本発明の一実施形態に係る風力回転装置、水力回転装置または潮力回転装置は、前記マグナス式推力発生装置を用いる。 A wind power rotating device, a hydraulic power rotating device, or a tidal power rotating device according to an embodiment of the present invention uses the Magnus-type thrust generator.

また、本発明の一実施形態に係る風力発電機、水力発電機または潮力発電機は、前記マグナス式推力発生装置を用いる。 A wind power generator, a hydraulic power generator, or a tidal power generator according to an embodiment of the present invention uses the Magnus-type thrust generator.

本発明の一実施形態に係るマグナス式推力発生装置は、整流板の後端縁の位置が的確に配置され、回転部を円滑に回転させることができる。すなわち、円筒翼に発生するマグナス力による回転力によって回転部を効率的に回転させることができる。 In the Magnus-type thrust generator according to one embodiment of the present invention, the position of the rear edge of the rectifying plate is accurately arranged, and the rotating part can be rotated smoothly. That is, the rotating portion can be efficiently rotated by the rotating force due to the Magnus force generated in the cylindrical blades.

本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機を示す斜視図である。1 is a perspective view showing a vertical axis Magnus wind power generator according to a first embodiment of the present invention; FIG. 本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機の概略構成を示す概略正面図である。1 is a schematic front view showing a schematic configuration of a vertical axis Magnus wind power generator according to a first embodiment of the present invention; FIG. 本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機の概略構成を示す概略平面図である。1 is a schematic plan view showing a schematic configuration of a vertical axis Magnus wind power generator according to a first embodiment of the present invention; FIG. 本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機の断面の一部を示す。1 shows a part of a cross section of a vertical axis type Magnus wind power generator according to a first embodiment of the present invention; 本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機の翼端板を示す。1 shows a wing end plate of a vertical axis Magnus wind power generator according to a first embodiment of the present invention; 本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機の整流板の配置を示す。FIG. 2 shows the arrangement of straightening vanes in the vertical axis Magnus wind power generator according to the first embodiment of the present invention. FIG. 本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機の円筒翼の直径d=D/4を満たす整流板の後端の配置に対する出力係数を示す。Fig. 10 shows output coefficients with respect to arrangement of rear ends of straightening vanes satisfying diameter d = D/4 of cylindrical blades of the vertical axis type Magnus wind power generator according to the first embodiment of the present invention. 本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機の円筒翼の直径d=D/6を満たす整流板の後端の配置に対する出力係数を示す。Fig. 10 shows the power coefficient for the arrangement of the rear end of the rectifying plate satisfying the diameter d = D/6 of the cylindrical blade of the vertical axis type Magnus wind power generator according to the first embodiment of the present invention. 本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機の円筒翼の直径d=D/8を満たす整流板の後端の配置に対する出力係数を示す。Fig. 10 shows output coefficients with respect to arrangement of rear ends of straightening vanes satisfying diameter d = D/8 of cylindrical blades of the vertical axis type Magnus wind power generator according to the first embodiment of the present invention. 本発明の第2の実施形態に係る垂直軸型マグナス式風力発電機の整流板の形状を示す。FIG. 10 shows the shape of a rectifying plate of a vertical axis Magnus wind power generator according to a second embodiment of the present invention; FIG. 本発明の第3の実施形態に係る垂直軸型マグナス式風力発電機の整流板の形状を示す。FIG. 10 shows the shape of a rectifying plate of a vertical axis type Magnus wind power generator according to a third embodiment of the present invention; FIG. 本発明の第4の実施形態に係る垂直軸型マグナス式風力発電機の整流板の形状を示す。FIG. 10 shows the shape of a rectifying plate of a vertical axis type Magnus wind power generator according to a fourth embodiment of the present invention; FIG.

以下に本発明の具体的な実施の形態を示す。実施の形態はあくまで一例であり、この例に限定されるものではない。なお、以下の実施形態では、マグナス式推力発生装置の適用例の1つとして、マグナス式推力発生装置を用いた垂直軸型マグナス式風力発電機1について説明する。 Specific embodiments of the present invention are shown below. The embodiment is merely an example, and is not limited to this example. In the following embodiments, as one application example of the Magnus-type thrust generator, a vertical axis Magnus-type wind power generator 1 using the Magnus-type thrust generator will be described.

図1は、本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機1を示す斜視図である。図2は、本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機1の概略構成を示す概略正面図である。図3は、本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機1の概略構成を示す概略平面図である。 FIG. 1 is a perspective view showing a vertical axis Magnus wind power generator 1 according to a first embodiment of the present invention. FIG. 2 is a schematic front view showing a schematic configuration of the vertical axis Magnus wind power generator 1 according to the first embodiment of the present invention. FIG. 3 is a schematic plan view showing a schematic configuration of the vertical axis Magnus wind power generator 1 according to the first embodiment of the present invention.

垂直軸型マグナス式風力発電機1は、設置面Sに対して設置される支持筐体10と、支持筐体10の内部に配置される発電機11及び増速機12と、増速機12を介して発電機11に連結されるとともに、設置面Sに対して垂直な第1の回転軸O1を有する回転部13と、第1の回転軸O1に対して平行な第2の回転軸O2を中心として自転可能な3つの円筒翼2と、回転部13に固定されることで第1の回転軸O1を中心として回転可能であって、第1の回転軸O1を中心とする円周C上に3つの円筒翼2の各々を軸支する支持部3と、を備える。 The vertical axis type Magnus wind power generator 1 includes a support housing 10 installed on an installation surface S, a power generator 11 and a gearbox 12 arranged inside the support housing 10, and a gearbox 12. and a rotating portion 13 having a first rotating shaft O1 perpendicular to the installation surface S, and a second rotating shaft O2 parallel to the first rotating shaft O1. Three cylindrical blades 2 that can rotate around the center, and a circumference C around the first rotation axis O1 that can rotate around the first rotation axis O1 by being fixed to the rotating part 13 and a support portion 3 that pivotally supports each of the three cylindrical blades 2 thereon.

支持筐体10は、第1の回転軸O1と同軸状に配置される円筒状の筐体である。支持筐体10は、支持筐体10の上面100から回転部13の上端部130を突出させるとともに、第1の回転軸O1が設置面Sに対して垂直となるように、回転部13を軸支する。 The support housing 10 is a cylindrical housing arranged coaxially with the first rotation axis O1. The support housing 10 protrudes the upper end 130 of the rotating section 13 from the upper surface 100 of the supporting housing 10, and rotates the rotating section 13 so that the first rotation axis O1 is perpendicular to the installation surface S. support.

発電機11は、増速機12を介して回転部13に連結されており、回転部13が回転する際の回転エネルギーを電気エネルギーに変換することで発電するように構成されている。 The generator 11 is connected to the rotating portion 13 via the gearbox 12, and is configured to generate electric power by converting rotational energy generated when the rotating portion 13 rotates into electrical energy.

3つの円筒翼2は、図3に示すように、垂直軸型マグナス式風力発電機1を上方から見たときに、第1の回転軸O1を中心した円周C上で等間隔となるように、すなわち、正三角形の各頂点に配置される。 As shown in FIG. 3, the three cylindrical blades 2 are equidistantly spaced on a circumference C around the first rotation axis O1 when the vertical axis type Magnus wind power generator 1 is viewed from above. , that is, at each vertex of an equilateral triangle.

また、3つの円筒翼2の各々は、第2の回転軸O2を中心として円筒翼2を時計回りに回転(自転)させる円筒翼モーター20と、円筒翼2から所定の距離だけ離間した位置に、第2の回転軸O2に対して平行となるように配置される整流板5と、を備える。 In addition, each of the three cylindrical blades 2 has a cylindrical blade motor 20 that rotates (rotates) the cylindrical blades 2 clockwise around the second rotation axis O2, and a motor 20 that is spaced apart from the cylindrical blades 2 by a predetermined distance. , and a current plate 5 arranged parallel to the second rotation axis O2.

垂直軸型マグナス式風力発電機1は、円筒翼モーター20により第2の回転軸O2を中心として円筒翼2を時計回りに回転(自転)させた状態において、所定の方向から風(空気流)を受けると、円筒翼2にマグナス力が発生する。そして、円筒翼2に発生したマグナス力が、円筒翼2を円周Cに沿って時計回りに移動させる方向に作用する。それにより、回転部13が時計回りに回転することで、回転部13に連結された発電機11で発電する。 The vertical axis type Magnus wind power generator 1 rotates (rotates) the cylindrical blades 2 clockwise around the second rotation axis O2 by the cylindrical blade motor 20, and generates wind (air flow) from a predetermined direction. , a Magnus force is generated in the cylindrical blade 2 . Then, the Magnus force generated in the cylindrical blades 2 acts in a direction to move the cylindrical blades 2 along the circumference C clockwise. As a result, the rotating portion 13 rotates clockwise, so that the generator 11 connected to the rotating portion 13 generates power.

図4は、本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機1の断面の一部を示す。 FIG. 4 shows a part of the cross section of the vertical axis type Magnus wind power generator 1 according to the first embodiment of the present invention.

垂直軸型マグナス式風力発電機1の円筒翼2は、回転部13の第1の回転軸O1を中心として等距離及び等角度に配置される。本実施形態の垂直軸型マグナス式風力発電機1は、3つの円筒翼2を設けるので、120°離間して配置される。 The cylindrical blades 2 of the vertical axis type Magnus wind power generator 1 are arranged at equal distances and angles around the first rotation axis O1 of the rotating part 13 . Since the vertical axis type Magnus wind power generator 1 of this embodiment is provided with three cylindrical blades 2, they are arranged at intervals of 120°.

図4に示す垂直軸型マグナス式風力発電機1の円筒翼2は、それぞれの第2の回転軸O2を中心として矢印Aのように時計方向に回転可能である。気流中で各円筒翼2を回転させることで、各円筒翼2にマグナス力が発生し、図3に示した支持部3及び回転部13が第1の回転軸O1を中心として矢印Bのように時計方向に回転する。すなわち、円筒翼2は、第2の回転軸O2を中心として自転し、第1の回転軸O1を中心として公転する。 The cylindrical blades 2 of the vertical axis type Magnus wind power generator 1 shown in FIG. By rotating each cylindrical blade 2 in the airflow, a Magnus force is generated in each cylindrical blade 2, and the supporting portion 3 and rotating portion 13 shown in FIG. to rotate clockwise. That is, the cylindrical blade 2 rotates around the second rotation axis O2 and revolves around the first rotation axis O1.

図5は、本発明の第1の実施形態に係るマグナス式推力発生装置の翼端板6を示す。 FIG. 5 shows the wing end plate 6 of the Magnus thrust generator according to the first embodiment of the present invention.

翼端板6は、上方から見て整流板5の第1表面51及び第2表面52から水平方向に突出するように設置される。なお、第1表面51は第1縁51aと後端縁5aを結ぶ整流板5の表面であり、第2表面52は第2縁52aと後端縁5aを結ぶ整流板5の表面である。 The blade end plate 6 is installed so as to horizontally protrude from the first surface 51 and the second surface 52 of the current plate 5 when viewed from above. The first surface 51 is the surface of the current plate 5 that connects the first edge 51a and the rear edge 5a, and the second surface 52 is the surface of the current plate 5 that connects the second edge 52a and the rear edge 5a.

このように、翼端板6を設けることによって、翼表面を流れる空気の流れと翼周辺を流れる空気の流れを仕切り、気流の乱れを抑制することによって、効率を向上させることができる。 Thus, by providing the blade end plate 6, it is possible to separate the flow of air flowing on the surface of the blade from the flow of air flowing around the blade, thereby suppressing the turbulence of the air flow and improving the efficiency.

図6は、本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機1の整流板
の配置を示す。
FIG. 6 shows the arrangement of straightening vanes in the vertical axis Magnus wind power generator 1 according to the first embodiment of the present invention.

整流板5は、図6に示すように、第1の回転軸O1及び第2の回転軸O2に垂直な平面上において、断面が略三角形状に形成され、各円筒翼2の進行方向とは反対側に取り付けられる。第1の回転軸O1及び第2の回転軸O2に垂直な平面上において、整流板5の後端縁5aは、以下の条件(1)及び条件(2)の領域に存在するように配置される。
0.45D ≦ L ≦ 0.65D (1)
20° ≦ θ ≦ 60° (2)
ただし、
Dは円筒翼2の公転軌跡の外端円21の直径、
Lは第1の回転軸O1から後端縁5aまでの距離、
θは第1の回転軸O1と第2の回転軸O2を結ぶ線と第1の回転軸O1と後端縁5aを結ぶ線の角度、
である。
As shown in FIG. 6, the current plate 5 has a substantially triangular cross section on a plane perpendicular to the first rotation axis O1 and the second rotation axis O2. Mounted on the opposite side. On a plane perpendicular to the first rotation axis O1 and the second rotation axis O2, the rear edge 5a of the rectifying plate 5 is arranged so as to exist in the following conditions (1) and (2). be.
0.45D≦L≦0.65D (1)
20° ≤ θ ≤ 60° (2)
however,
D is the diameter of the outer end circle 21 of the revolution trajectory of the cylindrical blade 2;
L is the distance from the first rotation axis O1 to the trailing edge 5a;
θ is an angle between a line connecting the first rotation axis O1 and the second rotation axis O2 and a line connecting the first rotation axis O1 and the trailing edge 5a;
is.

また、整流板5の後端縁5aは、以下の条件(1’)及び条件(2’)の領域に存在するように配置されると、より好ましい。
0.5D ≦ L ≦ 0.55D (1’)
30° ≦ θ ≦ 40° (2’)
Further, it is more preferable that the rear edge 5a of the straightening plate 5 is arranged so as to exist in the regions of the following conditions (1') and (2').
0.5D ≤ L ≤ 0.55D (1')
30° ≤ θ ≤ 40° (2')

なお、後端縁5a、第1縁51a及び第2縁52aは、第1の回転軸O1及び第2の回転軸O2に垂直な平面上において、1点である必要は無く、所定の範囲の領域でもよい。例えば、各縁を面取りして形成した場合、面取りした領域又は面取り後の表面部分を縁としてもよい。そして、第1の回転軸O1及び第2の回転軸O2に垂直な平面上において、後端縁5aの少なくとも一部が上述の領域に存在すればよい。 Note that the trailing edge 5a, the first edge 51a, and the second edge 52a do not need to be one point on the plane perpendicular to the first rotation axis O1 and the second rotation axis O2, and are within a predetermined range. It can be a region. For example, if each edge is chamfered, the chamfered area or surface portion after chamfering may be the edge. At least part of the trailing edge 5a should be present in the above-described region on a plane perpendicular to the first rotation axis O1 and the second rotation axis O2.

第1の回転軸O1及び第2の回転軸O2に垂直な平面上において、整流板5の第1縁51aは、円筒翼2の公転軌跡の外端円21の近傍に位置すると好ましい。すなわち、第1縁51aと後端縁5aを含む第1平面51’は、円筒翼2の公転軌跡の外端円21の第1縁51aでの接線に含まれると好ましい。また、第1縁51aと後端縁5aを結ぶ整流板5の第1表面51は、第1平面51’に含まれるとより好ましい。 It is preferable that the first edge 51a of the rectifying plate 5 be positioned near the outer end circle 21 of the revolution locus of the cylindrical blade 2 on a plane perpendicular to the first rotation axis O1 and the second rotation axis O2. That is, the first plane 51 ′ including the first edge 51 a and the trailing edge 5 a is preferably included in the tangential line of the revolution locus of the cylindrical blade 2 to the outer end circle 21 at the first edge 51 a. Further, it is more preferable that the first surface 51 of the current plate 5 connecting the first edge 51a and the rear edge 5a is included in the first plane 51'.

また、第1の回転軸O1及び第2の回転軸O2に垂直な平面上において、整流板5の第2縁52aは、第2の回転軸O2と後端縁5aを結ぶ線の近傍に位置すると好ましい。すなわち、第2縁52aと後端縁5aを含む第2平面52’は、第2の回転軸O2と後端縁5aを結ぶ線に含まれると好ましい。また、第2縁52aと後端縁5aを結ぶ整流板5の第2表面52は、第2平面52’に含まれるとより好ましい。 Further, on a plane perpendicular to the first rotation axis O1 and the second rotation axis O2, the second edge 52a of the current plate 5 is positioned near the line connecting the second rotation axis O2 and the rear edge 5a. It is preferable to do so. That is, the second plane 52' including the second edge 52a and the trailing edge 5a is preferably included in the line connecting the second rotation axis O2 and the trailing edge 5a. Further, it is more preferable that the second surface 52 of the current plate 5 connecting the second edge 52a and the rear edge 5a is included in the second plane 52'.

図7乃至図9は、本発明の第1の実施形態に係る垂直軸型マグナス式風力発電機1の整流板5の後端5aの配置に対する出力係数Cpを示す。図7乃至図9において、色の濃い部分に整流板5の後端5aが位置すると出力係数Cpが大きく、色の薄い部分に整流板5の後端5aが位置すると出力係数Cpが小さい。 7 to 9 show the output coefficient Cp with respect to the placement of the rear end 5a of the rectifying plate 5 of the vertical axis type Magnus wind power generator 1 according to the first embodiment of the present invention. 7 to 9, the output coefficient Cp is large when the rear end 5a of the straightening plate 5 is positioned in a dark-colored portion, and the output coefficient Cp is small when the rear end 5a of the straightening plate 5 is positioned in a light-colored portion.

出力係数は、以下のように定義する。
Cp=P/(0.5ρU3D)
ただし、
Pは垂直軸型マグナス式風力発電機1の高さ方向の単位幅あたりの出力、
ρは空気密度、
Uは風速、
Dは円筒翼2の公転軌跡の外端円21の直径、
である。
The output coefficient is defined as follows.
Cp=P/( 0.5ρU3D )
however,
P is the output per unit width in the height direction of the vertical axis type Magnus wind power generator 1;
ρ is the air density,
U is wind speed,
D is the diameter of the outer end circle 21 of the revolution trajectory of the cylindrical blade 2;
is.

図7は円筒翼2の直径d=D/4、図8は円筒翼2の直径d=D/6、図9は円筒翼2の直径d=D/8の場合をそれぞれ示す。図7乃至図9に示した出力係数Cpの計算では、P=4200W、ρ=1.2kg/m3、U=10m/s、D=7m、とする。 7 shows a case where the diameter of the cylindrical blade 2 is d=D/4, FIG. 8 shows a case where the diameter of the cylindrical blade 2 is d=D/6, and FIG. 9 shows a case where the diameter of the cylindrical blade 2 is d=D/8. In calculating the power coefficient Cp shown in FIGS. 7 to 9, P=4200 W, ρ=1.2 kg/m 3 , U=10 m/s, and D=7 m.

図7乃至図9に示すように、円筒翼2の直径に関係なく、整流板5の後端5aが条件(1)及び条件(2)の領域に存在すると、出力係数Cpが大きい。さらに、整流板5の後端5aが条件(1’)及び条件(2’)の領域に存在すると、出力係数Cpがより大きい。 As shown in FIGS. 7 to 9, regardless of the diameter of the cylindrical blade 2, the output coefficient Cp is large when the rear end 5a of the rectifying plate 5 exists in the regions of conditions (1) and (2). Furthermore, when the rear end 5a of the rectifying plate 5 exists in the regions of conditions (1') and (2'), the output coefficient Cp is larger.

図10は、本発明の第2の実施形態に係る垂直軸型マグナス式風力発電機1の整流板5の形状を示す。 FIG. 10 shows the shape of the current plate 5 of the vertical axis Magnus wind power generator 1 according to the second embodiment of the present invention.

第2実施形態の垂直軸型マグナス式風力発電機1の整流板5は、第1縁51aを円筒翼2の公転軌跡の外端円21の接線上に配置し、第2縁52aを第2の回転軸O2と後端縁5aを結ぶ線上に配置する。第1縁51aと第2縁52aを結ぶ第3表面53は大きく凹状に形成される。このように形成されることによって、整流板5を軽量に形成することができる。 In the straightening plate 5 of the vertical axis type Magnus wind power generator 1 of the second embodiment, the first edge 51a is arranged on the tangential line of the outer end circle 21 of the revolution locus of the cylindrical blade 2, and the second edge 52a is arranged on the second edge. and the rear edge 5a. A third surface 53 connecting the first edge 51a and the second edge 52a is formed in a large concave shape. By being formed in this manner, the rectifying plate 5 can be formed to be lightweight.

図11は、本発明の第3の実施形態に係る垂直軸型マグナス式風力発電機1の整流板5の形状を示す。 FIG. 11 shows the shape of the current plate 5 of the vertical axis Magnus wind power generator 1 according to the third embodiment of the present invention.

第3実施形態の垂直軸型マグナス式風力発電機1の整流板5は、第1縁51aを円筒翼2の公転軌跡の外端円21の接線上に配置し、第2縁52aを円筒翼2の外周と後端縁5aを結ぶ線上に配置する。このように形成されることによって、整流板5の断面積が大きくなり、強度を向上させることができる。 In the straightening plate 5 of the vertical axis type Magnus wind power generator 1 of the third embodiment, the first edge 51a is arranged on the tangential line of the outer end circle 21 of the revolution trajectory of the cylindrical blade 2, and the second edge 52a is arranged on the tangent of the cylindrical blade 2. 2 and the rear edge 5a. By forming in this way, the cross-sectional area of the rectifying plate 5 is increased, and the strength can be improved.

図12は、本発明の第4の実施形態に係る垂直軸型マグナス式風力発電機1の整流板5の形状を示す。 FIG. 12 shows the shape of the current plate 5 of the vertical axis Magnus wind power generator 1 according to the fourth embodiment of the present invention.

第4実施形態の垂直軸型マグナス式風力発電機1の整流板5では、第1表面51が後端縁5aと第1縁51aを結ぶ第1平面51’と重ならず、第2表面52が後端縁5aと第2縁52aを結ぶ第2平面52’と重ならない。図12に示す例では、第1表面51は第1平面51’及び第2平面52’の間の領域の内側の曲面から形成され、第2表面52は第1平面51’及び第2平面52’の間の領域の外側の曲面から形成されている。 In the rectifying plate 5 of the vertical axis type Magnus wind power generator 1 of the fourth embodiment, the first surface 51 does not overlap the first plane 51' connecting the trailing edge 5a and the first edge 51a, and the second surface 52 does not overlap the second plane 52' connecting the trailing edge 5a and the second edge 52a. In the example shown in FIG. 12, the first surface 51 is formed from the inner curved surface of the area between the first plane 51' and the second plane 52', and the second surface 52 is formed from the first plane 51' and the second plane 52'. ' is formed from the outer curved surface of the area between .

しかしながら、これに限らず、第1表面51は第1平面51’及び第2平面52’の間の領域の外側の曲面から形成され、第2表面52は第1平面51’及び第2平面52’の間の領域の内側の曲面から形成されてもよい。また、第1表面51と第2表面52は両面とも第1平面51’及び第2平面52’の間の領域の内側の曲面から形成されてもよいし、両面とも第1平面51’及び第2平面52’の間の領域の外側の曲面から形成されてもよい。 However, not limited to this, the first surface 51 is formed from the outer curved surface of the area between the first plane 51' and the second plane 52', and the second surface 52 is formed by the first plane 51' and the second plane 52'. ' may be formed from the inner curved surface of the region between . Also, both the first surface 51 and the second surface 52 may be formed by curved surfaces inside the area between the first plane 51' and the second plane 52', or both surfaces may be formed by the first plane 51' and the second plane 52'. It may be formed from the outer curved surface of the area between the two planes 52'.

上記のように、本発明の一実施形態として、第1乃至第4の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で適宜変更可能である。 As described above, the first to fourth embodiments have been described as one embodiment of the present invention, but the present invention is not limited to the above embodiments, and is within the scope of the technical idea of the present invention. can be changed as appropriate.

例えば、上記各実施形態では、回転部13は時計回りに回転するものとして説明したが、半時計回りに回転するようにしてもよい。その場合には、円筒翼2の回転方向を反時計回りとするとともに、円筒翼2の進行方向とは反対側に整流板21を設ければよい。 For example, in each of the embodiments described above, the rotating portion 13 is described as rotating clockwise, but it may be rotated counterclockwise. In that case, the direction of rotation of the cylindrical blades 2 should be counterclockwise, and the rectifying plate 21 should be provided on the side opposite to the traveling direction of the cylindrical blades 2 .

また、上記各実施形態では、3つの円筒翼2を円周C上に配置するものとして説明したが、円筒翼2の数は適宜変更してもよく、2つ、又は、4つ以上の円筒翼2を円周C上に配置するようにしてもよい。また、上記各実施形態では、支持筺体10は円筒状の筺体として説明したが、トラス状の筺体としてもよい。 In each of the above embodiments, three cylindrical blades 2 are arranged on the circumference C, but the number of cylindrical blades 2 may be changed as appropriate. The blades 2 may be arranged on the circumference C. Further, in each of the above-described embodiments, the support housing 10 is described as a cylindrical housing, but it may be a truss-shaped housing.

また、上記各実施形態では、マグナス式推力発生装置の適用例の1つとして、マグナス式推力発生装置を用いた垂直軸型マグナス式風力発電機1について説明したが、回転部13を発電機11に連結することに代えて、回転部13をポンプ等の回転機械に連結することにより、マグナス式推力発生装置を用いた風力回転装置としてもよい。 Further, in each of the above-described embodiments, as one application example of the Magnus thrust generator, the vertical axis type Magnus wind power generator 1 using the Magnus thrust generator has been described. By connecting the rotating part 13 to a rotating machine such as a pump instead of connecting to the wind power rotating device using the Magnus type thrust generator.

また、上記各実施形態では、マグナス式推力発生装置の適用例の1つとして、マグナス式推力発生装置を用いた垂直軸型マグナス式風力発電機1について説明したが、エネルギー源として、風(空気流)を用いることに代えて、水流、波、潮流等を用いることにより、マグナス式推力発生装置を用いた水力発電機又は潮力発電機としてもよいし、さらに回転部13を発電機11に連結することに代えて、回転部13をポンプ等の回転機械に連結することにより、マグナス式推力発生装置を用いた水力回転装置又は潮力回転装置としてもよい。 Further, in each of the above-described embodiments, the vertical axis type Magnus wind power generator 1 using the Magnus thrust generator has been described as one application example of the Magnus thrust generator. Instead of using water flow, waves, tidal currents, etc., a hydraulic power generator or a tidal power generator using a Magnus type thrust generator may be used, and the rotating part 13 may be replaced by the power generator 11. Instead of connecting, by connecting the rotating part 13 to a rotating machine such as a pump, a hydraulic rotating device or a tidal rotating device using a Magnus type thrust generating device may be provided.

また、上記各実施形態では、第1の回転軸O1及び第2の回転軸O2を、設置面Sに対して垂直に配置した、すなわち、鉛直方向に対して平行に配置したものとして説明したが、鉛直方向に対して斜めに配置してもよいし、鉛直方向に対して直角に、すなわち、水平方向に配置してもよい。 Further, in each of the above-described embodiments, the first rotation axis O1 and the second rotation axis O2 are arranged perpendicular to the installation surface S, that is, arranged parallel to the vertical direction. , may be arranged obliquely to the vertical direction, or may be arranged at right angles to the vertical direction, that is, horizontally.

以上、本実施形態のマグナス式推力発生装置1は、支持筺体10と、支持筺体10に対して第1の回転軸O1を中心として回転可能な支持部3と、支持部3に対して第1の回転軸O1を中心とする円周上の第2の回転軸O2を中心として各々を軸支され、第1の回転軸O1を中心として公転可能であって、第1の回転軸O1に対して平行な第2の回転軸O2を中心として自転可能な複数の円筒翼2と、支持部3に支持され、円筒翼2に対して進行方向とは反対側に配置された整流板5と、を備え、第1の回転軸O1及び第2の回転軸O2に垂直な平面上において、整流板5の後端縁5aの少なくとも一部は、以下の条件(1)及び条件(2)を満たす領域に存在する。
0.45D ≦ L ≦ 0.65D (1)
20° ≦ θ ≦ 60° (2)
ただし、
Dは円筒翼の公転軌跡の外端円の直径、
Lは本体中心から後端縁までの距離、
θは本体中心と円筒翼中心を結ぶ線と本体中心と後端縁を結ぶ線の角度、
である。
したがって、整流板5の後端縁5aの位置が的確に配置され、回転部13を円滑に回転させることができる。すなわち、円筒翼2に発生するマグナス力による回転力によって回転部13を効率的に回転させることができる。
As described above, the Magnus-type thrust generator 1 of the present embodiment includes the support housing 10, the support section 3 rotatable about the first rotation axis O1 with respect to the support housing 10, and the first are pivotally supported around a second rotation axis O2 on a circumference centered on the rotation axis O1 of the rotation axis O1, and are capable of revolving around the first rotation axis O1, with respect to the first rotation axis O1 a plurality of cylindrical blades 2 capable of rotating about a second rotation axis O2 parallel to each other; a rectifying plate 5 supported by a support portion 3 and disposed on the opposite side of the cylindrical blades 2 from the traveling direction; and at least part of the rear edge 5a of the current plate 5 satisfies the following conditions (1) and (2) on a plane perpendicular to the first rotation axis O1 and the second rotation axis O2: exist in the area.
0.45D≦L≦0.65D (1)
20° ≤ θ ≤ 60° (2)
however,
D is the diameter of the outer end circle of the revolution trajectory of the cylindrical blade,
L is the distance from the center of the body to the rear edge,
θ is the angle between the line connecting the center of the main body and the center of the cylindrical blade and the line connecting the center of the main body and the rear edge,
is.
Therefore, the position of the rear edge 5a of the rectifying plate 5 is properly arranged, and the rotating portion 13 can be rotated smoothly. In other words, the rotational force due to the Magnus force generated in the cylindrical blades 2 can efficiently rotate the rotating portion 13 .

また、本実施形態のマグナス式推力発生装置1は、整流板5の後端縁5aは、以下の条件(1’)及び条件(2’)を満たす領域に存在する。
0.5D ≦ L ≦ 0.55D (1’)
30° ≦ θ ≦ 40° (2’)
したがって、整流板5の後端縁5aの位置がさらに的確に配置され、回転部13をさらに円滑に回転させることができる。すなわち、円筒翼2に発生するマグナス力による回転力によって回転部13をさらに効率的に回転させることができる。
Further, in the Magnus-type thrust generator 1 of the present embodiment, the rear edge 5a of the rectifying plate 5 exists in a region that satisfies the following conditions (1') and (2').
0.5D ≤ L ≤ 0.55D (1')
30° ≤ θ ≤ 40° (2')
Therefore, the position of the rear edge 5a of the rectifying plate 5 is more accurately arranged, and the rotating portion 13 can be rotated more smoothly. That is, the rotation force generated by the Magnus force generated in the cylindrical blades 2 can rotate the rotating portion 13 more efficiently.

また、本実施形態のマグナス式推力発生装置1は、第1の回転軸及び第2の回転軸に垂直な平面上において、整流板5の第1縁51aは、円筒翼2の公転軌跡の外端円21上に位置し、第1縁51aと後端縁5aを含む第1平面51’は、円筒翼2の公転軌跡の外端円21の第1縁51aでの接線に含まれる。したがって、回転時の空気抵抗を減少させ回転部13を円滑に回転させることができる。すなわち、円筒翼2に発生するマグナス力による回転力によって回転部13をより効率的に回転させることができる。 Further, in the Magnus-type thrust generator 1 of the present embodiment, the first edge 51a of the current plate 5 is positioned outside the orbit of the cylindrical blade 2 on the plane perpendicular to the first and second rotation axes. A first plane 51 ′ located on the end circle 21 and including the first edge 51 a and the trailing edge 5 a is included in the tangential line of the orbit of the cylindrical blade 2 to the first edge 51 a of the outer end circle 21 . Therefore, the air resistance during rotation can be reduced, and the rotating portion 13 can be smoothly rotated. That is, the rotation force generated by the Magnus force generated in the cylindrical blades 2 can rotate the rotating portion 13 more efficiently.

また、本実施形態のマグナス式推力発生装置1は、第1縁51aと後端縁5aを結ぶ整流板5の第1表面51は、第1平面51’に含まれる。したがって、回転時の空気抵抗をより減少させ回転部13をより円滑に回転させることができる。 Further, in the Magnus-type thrust generator 1 of the present embodiment, the first surface 51 of the current plate 5 connecting the first edge 51a and the rear edge 5a is included in the first plane 51'. Therefore, air resistance during rotation can be further reduced, and the rotating portion 13 can be rotated more smoothly.

また、本実施形態のマグナス式推力発生装置1は、整流板5の第2縁52aは、第2の回転軸O2と後端縁5aを結ぶ線上に位置し、第2縁52aと後端縁5aを含む第2平面52’は、第2の回転軸O2と後端縁5aを結ぶ線に含まれる。したがって、軽量且つ高剛性で効率的に回転させる整流板5を形成することが可能となる。 Further, in the Magnus-type thrust generator 1 of the present embodiment, the second edge 52a of the current plate 5 is positioned on the line connecting the second rotation axis O2 and the rear edge 5a, and the second edge 52a and the rear edge 5a are aligned. A second plane 52' containing 5a is included in a line connecting the second rotation axis O2 and the trailing edge 5a. Therefore, it is possible to form the rectifying plate 5 that is lightweight, highly rigid, and efficiently rotated.

また、本実施形態のマグナス式推力発生装置1は、第2縁52aと後端縁5aを結ぶ整流板5の第2表面52は、第2平面52’に含まれる。したがって、軽量且つ高剛性でより効率的に回転させる整流板5を形成することが可能となる。 Further, in the Magnus-type thrust generator 1 of the present embodiment, the second surface 52 of the current plate 5 connecting the second edge 52a and the rear edge 5a is included in the second plane 52'. Therefore, it is possible to form the rectifying plate 5 that is lightweight, has high rigidity, and is rotated more efficiently.

また、本実施形態の風力回転装置、水力回転装置または潮力回転装置は、マグナス式推力発生装置を用いる。したがって、より効率の良い回転装置を形成することが可能となる。 Further, the wind power rotating device, the hydraulic power rotating device, or the tidal power rotating device of this embodiment uses a Magnus-type thrust generator. Therefore, it is possible to form a more efficient rotating device.

また、本発明の一実施形態に係る風力発電機、水力発電機または潮力発電機は、前記マグナス式推力発生装置を用いる。したがって、より効率の良い発電機を形成することが可能となる。 A wind power generator, a hydraulic power generator, or a tidal power generator according to an embodiment of the present invention uses the Magnus-type thrust generator. Therefore, it becomes possible to form a more efficient generator.

本発明のマグナス式推力発生装置は、後端縁の位置を的確に配置した整流板を用いた円筒翼に発生するマグナス力によって、さらに効率的に回転力を得ることを可能とし、風力回転装置、水力回転装置、潮力回転装置、ならびに風力発電機、水力発電機、潮力発電機としても利用できる。 The Magnus-type thrust generator of the present invention makes it possible to obtain rotational force more efficiently by means of the Magnus force generated in the cylindrical blades using straightening vanes with the trailing edge positioned at an appropriate position. , hydraulic rotators, tidal rotators, and wind power generators, hydraulic power generators, and tidal power generators.

1…垂直軸型マグナス式風力発電機(マグナス式推力発生装置)
2…円筒翼
3…支持部
10…支持筐体
11…発電機
12…増速機
13…回転部
20…円筒翼モーター
5…整流板
6…翼端板
1 ... Vertical axis type Magnus type wind power generator (Magnus type thrust generator)
DESCRIPTION OF SYMBOLS 2... Cylindrical blade 3... Support part 10... Support housing 11... Generator 12... Speed-up gear 13... Rotating part 20... Cylindrical blade motor 5... Straightening plate 6... Blade end plate

Claims (8)

支持筺体と、
前記支持筺体に対して第1の回転軸を中心として回転可能な支持部と、
前記支持部に対して前記第1の回転軸を中心とする円周上の第2の回転軸を中心として各々を軸支され、前記第1の回転軸を中心として公転可能であって、前記第1の回転軸に対して平行な第2の回転軸を中心として自転可能な複数の円筒翼と、
前記支持部に支持され、前記円筒翼に対して進行方向とは反対側に配置された整流板と、
を備え、
前記第1の回転軸及び前記第2の回転軸に垂直な平面上において、前記整流板の後端縁の少なくとも一部は、以下の条件(1)及び条件(2)を満たす領域に存在する
ことを特徴とするマグナス式推力発生装置。
0.45D ≦ L ≦ 0.65D (1)
20° ≦ θ ≦ 60° (2)
ただし、
Dは円筒翼の公転軌跡の外端円の直径、
Lは本体中心から後端縁までの距離、
θは本体中心と円筒翼中心を結ぶ線と本体中心と後端縁を結ぶ線の角度、
である。
a support housing;
a support rotatable about a first rotation axis with respect to the support housing;
each pivotally supported about a second rotating shaft on a circumference centered on the first rotating shaft with respect to the supporting portion and capable of revolving about the first rotating shaft; a plurality of cylindrical blades rotatable around a second rotation axis parallel to the first rotation axis;
a rectifying plate supported by the support portion and disposed on the side opposite to the traveling direction with respect to the cylindrical blade;
with
On a plane perpendicular to the first rotation axis and the second rotation axis, at least a part of the rear edge of the current plate exists in a region that satisfies the following conditions (1) and (2). A Magnus-type thrust generator characterized by:
0.45D≦L≦0.65D (1)
20° ≤ θ ≤ 60° (2)
however,
D is the diameter of the outer end circle of the revolution trajectory of the cylindrical blade,
L is the distance from the center of the body to the rear edge,
θ is the angle between the line connecting the center of the main body and the center of the cylindrical blade and the line connecting the center of the main body and the rear edge,
is.
前記整流板の後端縁の少なくとも一部は、以下の条件(1’)及び条件(2’)を満たす領域に存在する
請求項1に記載のマグナス式推力発生装置。
0.5D ≦ L ≦ 0.55D (1’)
30° ≦ θ ≦ 40° (2’)
2. A Magnus-type thrust generator according to claim 1, wherein at least part of the trailing edge of said rectifying plate exists in a region satisfying the following conditions (1') and (2').
0.5D ≤ L ≤ 0.55D (1')
30° ≤ θ ≤ 40° (2')
前記第1の回転軸及び前記第2の回転軸に垂直な平面上において、
前記整流板の第1縁は、前記円筒翼の公転軌跡の外端円上に位置し、
前記第1縁と前記後端縁を含む第1平面は、前記円筒翼の公転軌跡の外端円の前記第1縁での接線に含まれる
請求項1又は2に記載のマグナス式推力発生装置。
On a plane perpendicular to the first rotation axis and the second rotation axis,
a first edge of the rectifying plate is positioned on an outer end circle of a revolution trajectory of the cylindrical blade;
3. The Magnus-type thrust generator according to claim 1, wherein a first plane including said first edge and said trailing edge is included in a tangent line at said first edge of an outer end circle of the orbit of revolution of said cylindrical blade. .
前記第1縁と前記後端縁を結ぶ前記整流板の第1表面は、前記第1平面に含まれる
請求項3に記載のマグナス式推力発生装置。
4. A Magnus-type thrust generator according to claim 3, wherein a first surface of said rectifying plate connecting said first edge and said trailing edge is included in said first plane.
前記整流板の第2縁は、前記第2の回転軸と前記後端縁を結ぶ線上に位置し、
前記第2縁と前記後端縁を含む第2平面は、前記第2の回転軸と前記後端縁を結ぶ線に含まれる
請求項1乃至4のいずれか1つに記載のマグナス式推力発生装置。
a second edge of the rectifying plate is positioned on a line connecting the second rotating shaft and the trailing edge;
5. The Magnus-type thrust generator according to any one of claims 1 to 4, wherein a second plane including the second edge and the trailing edge is included in a line connecting the second rotating shaft and the trailing edge. Device.
前記第2縁と前記後端縁を結ぶ前記整流板の第2表面は、前記第2平面に含まれる
請求項5に記載のマグナス式推力発生装置。
6. A Magnus type thrust generator according to claim 5, wherein a second surface of said rectifying plate connecting said second edge and said trailing edge is included in said second plane.
請求項1乃至6のいずれか1つに記載のマグナス式推力発生装置を用いた風力回転装置、水力回転装置または潮力回転装置。 A wind power rotating device, a hydraulic power rotating device, or a tidal power rotating device using the Magnus type thrust generator according to any one of claims 1 to 6. 請求項1乃至6のいずれか1つに記載のマグナス式推力発生装置を用いた風力発電機、水力発電機または潮力発電機。 A wind power generator, a hydraulic power generator or a tidal power generator using the Magnus type thrust generator according to any one of claims 1 to 6.
JP2018138429A 2018-07-24 2018-07-24 Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator Active JP7180057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018138429A JP7180057B2 (en) 2018-07-24 2018-07-24 Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018138429A JP7180057B2 (en) 2018-07-24 2018-07-24 Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator

Publications (2)

Publication Number Publication Date
JP2020016167A JP2020016167A (en) 2020-01-30
JP7180057B2 true JP7180057B2 (en) 2022-11-30

Family

ID=69579459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018138429A Active JP7180057B2 (en) 2018-07-24 2018-07-24 Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator

Country Status (1)

Country Link
JP (1) JP7180057B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175070A (en) 2007-01-16 2008-07-31 Kansai Electric Power Co Inc:The Vertical shaft magnus type wind power generator
WO2017002757A1 (en) 2015-07-01 2017-01-05 株式会社チャレナジー Magnus-type thrust generating device
JP2019085895A (en) 2017-11-02 2019-06-06 有限会社アイデーエム Hybrid type wind power generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175070A (en) 2007-01-16 2008-07-31 Kansai Electric Power Co Inc:The Vertical shaft magnus type wind power generator
WO2017002757A1 (en) 2015-07-01 2017-01-05 株式会社チャレナジー Magnus-type thrust generating device
US20180171969A1 (en) 2015-07-01 2018-06-21 Challenergy Inc. Magnus type thrust generating device
JP2019085895A (en) 2017-11-02 2019-06-06 有限会社アイデーエム Hybrid type wind power generator

Also Published As

Publication number Publication date
JP2020016167A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
US10138866B2 (en) Fluid power generation method and fluid power generation device
US9863398B2 (en) Wind-powered rotor and energy generation method using said rotor
KR20130006419A (en) Turbine
JP2015031227A (en) Wind mill
KR102448925B1 (en) Vertical axis wind turbine
JP7180057B2 (en) Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator
TW201716687A (en) Multi-layered blade type wind power generation device capable of enhancing operation smoothness and being not easily damaged and deformed
KR102067026B1 (en) Vertical wind turbine with auxiliary blade
KR102055997B1 (en) Wind force generator having horizontal shaft
JP7161747B2 (en) Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator
US20150322919A1 (en) Electricity Generating Wind Turbine
JP2010223207A (en) Vertical type reaction wind turbine generator
KR101136546B1 (en) Wind-collecting type wind power generator
JP6904766B2 (en) Vertical axis wind turbines and wind power generators
JP6178550B2 (en) Power generation impeller and windmill equipped with the impeller
JP5976414B2 (en) Water current generator
KR20080101338A (en) Horizontal drum type wind power generator
KR100613130B1 (en) A turbine for generating power by flow of fluid
JP2020033885A (en) Axial flow impeller and turbine
KR20150096553A (en) Downwind Windpower Generating Apparatus having Swept Blade Tip
WO2017141501A1 (en) Vertical axis wind turbine
WO2022202358A1 (en) Windmill and wind power generator
JP6354051B2 (en) Wave power turbine
JP7421221B2 (en) Magnus type thrust generator, a wind rotation device using the Magnus type thrust generator, a hydraulic rotation device, a tidal power rotation device, and a wind power generator, a hydraulic power generator, and a tidal power generator using the Magnus type thrust generator.
KR101552167B1 (en) Vertical wind power generation device with rotating blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221028

R150 Certificate of patent or registration of utility model

Ref document number: 7180057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150