JP2010223207A - Vertical type reaction wind turbine generator - Google Patents

Vertical type reaction wind turbine generator Download PDF

Info

Publication number
JP2010223207A
JP2010223207A JP2009097460A JP2009097460A JP2010223207A JP 2010223207 A JP2010223207 A JP 2010223207A JP 2009097460 A JP2009097460 A JP 2009097460A JP 2009097460 A JP2009097460 A JP 2009097460A JP 2010223207 A JP2010223207 A JP 2010223207A
Authority
JP
Japan
Prior art keywords
vertical
wind turbine
wind
gear
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009097460A
Other languages
Japanese (ja)
Inventor
Kiyoshi Mitsui
清 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009097460A priority Critical patent/JP2010223207A/en
Publication of JP2010223207A publication Critical patent/JP2010223207A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of expecting a reaction wind turbine for enhancing energy conversion efficiency with a simple constitution by following the wind direction, though production cost is never said to be low due to complication of a constitution of the wind turbine since the constituting number of part items is many, though recently developing a wind turbine of compounding a drag type and a lift type, since a shape of a vertical wing requires a high-degree technology to a certain degree, due to being low in the energy conversion efficiency by interposing force for rotating by receiving wind pressure and force for hindering rotation by receiving the wind pressure, in a vertical drag type wind turbine. <P>SOLUTION: The production cost is suppressed by using the simple and same thing in the number of part items for constituting these, by enabling force acting on a vertical wing surface to continuously and efficiently contribute to rotational energy of a wind turbine body, by having a mechanism of not changing its elevation angle even if the wind turbine rotates once by imparting the elevation angle to the vertical wing for the wind direction even in an area of operating the force of hindering the rotation by receiving the wind pressure, and also having a mechanism of following the wind direction even if the wind direction changes. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は風車本体に設置された垂直翼翼面に作用する風圧を利用するもので、垂直翼に発生する反力を垂直翼が自転することにより風力のエネルギーを効率よく電気エネルギーに変換する垂直型反動風車発電機に関する。  The present invention utilizes the wind pressure acting on the vertical blade surface installed on the wind turbine body, and the vertical blade efficiently converts wind energy into electrical energy by the vertical blade rotating the reaction force generated on the vertical blade. Reactive wind turbine generator.

現在、主流となっている風車は水平軸プロペラ型であり、アメリカではほとんどがこのタイプである。国内では垂直抗力型のサボニウス型、クロスフロー型、垂直揚力型のダリウス型、ジャイロミル型、あるいはこれらの長所を生かした複合型があり、最近ではマグナス効果を利用した水平型、垂直型の開発が行われているが風圧による反動力を効率よく生かした風車発電の進展はほとんどなされていない。
特開2008−38794 特開2008−175070
Currently, the mainstream wind turbine is a horizontal axis propeller type, and this type is mostly used in the United States. In Japan, there are vertical drag type Savonius type, cross flow type, vertical lift type Darrieus type, gyromill type, or composite type taking advantage of these advantages, and recently, horizontal type and vertical type using Magnus effect are developed. However, there has been little progress in wind turbine power generation that efficiently utilizes reaction force due to wind pressure.
JP2008-38794 JP 2008-175070 A

今日の反動型風車は風車本体外周に案内羽等を設け大型化しているし、揚力型、複合型においては、加工技術も高度なものもあり、風車本体の構造も複雑化し、部品件数も多く低価格の縦型風車とは言いがたいところがある。  Today's recoil-type wind turbines are large in size with guide vanes around the wind turbine body, and in the lift and composite types, there are advanced processing techniques, the structure of the wind turbine body is complicated, and the number of parts is large. There is a place that cannot be called a low-priced vertical windmill.

今ある垂直反動型風車では風向きに対し、風車回転直径に働く風圧の半分しかエネルギーに変換されていないのが現状である。そこで、この発明は、垂直翼の断面が流線型点対称とし、この垂直翼を自転させることにより回転エネルギーに寄与できない領域内でも、より多くの回転エネルギーを得ることができるようにすることであり、同一部品を使用し、機械加工も単純なものとして風車本体の軽量化、および製作の簡易化を図り、低価格で提供することを課題とする。  In the current vertical reaction type windmill, only half of the wind pressure acting on the windmill rotation diameter is converted into energy with respect to the wind direction. Therefore, the present invention is to make it possible to obtain more rotational energy even in a region where the vertical blade has a streamlined point symmetry and can not contribute to rotational energy by rotating the vertical blade, It is an object of the present invention to provide a low price by using the same parts and making machining simple, reducing the weight of the windmill body and simplifying the production.

本発明は風車本体に設置された垂直翼面に作用する風圧力を利用するものであり、風車本体の回転(以下垂直翼の公転と呼ぶ)と垂直翼の自転により風向きに対する垂直翼の仰角が公転周期ごとにその仰角が変わらないことが重要で、そのためには下記条件を満たせば解決できる。
条件1.垂直翼の断面が自転軸を対称の中心とした点対称であること
条件2.垂直翼の公転周期と垂直翼の自転周期の比が1対1/2であること
条件3.垂直翼の公転方向と垂直翼の自転方向が逆であること
The present invention utilizes the wind pressure acting on the vertical blade surface installed in the wind turbine body, and the elevation angle of the vertical blade relative to the wind direction is determined by rotation of the wind turbine body (hereinafter referred to as vertical blade revolution) and rotation of the vertical blade. It is important that the elevation angle does not change with each revolution cycle, and this can be solved by satisfying the following conditions.
Condition 1. 1. The vertical blade section is point-symmetric with the rotation axis as the center of symmetry. 2. The ratio of the revolution period of the vertical wing to the rotation period of the vertical wing is 1: 1/2. The direction of revolution of the vertical wing is opposite to the direction of rotation of the vertical wing.

以下、図2を用いて上記条件について垂直翼の1つをとりあげて説明する。
図2において、風は左から右方向に流れており、垂直翼が公転、自転するまえの状態を垂直翼仰角45度として、歯車列とともに示している。垂直翼を自転させるため、公転中心に歯車9があり、この歯車は歯車列10,11,12を介し、垂直翼を自転させるための歯車13に連結されている。公転中心にある歯車9と垂直翼の自転用歯車13の回転比率は歯車列を介し2対1とするここにより、公転1周期に対し自転1/2周期となる。ここで、風圧を受ける垂直翼面(斜線部)は裏面となるが垂直翼の断面が自転軸中心とする点対称形状であるため、風圧を受ける垂直翼の形状とその仰角は公転を始めるまえと同じとなる。また垂直翼の公転方向と垂直翼の自転方向を歯車列の組み合わせにより逆向きにすることができ、垂直翼公転が1/4回転(90度)したとき、垂直翼面は風向きに対し直角となり最大風圧を受け、3/4回転(270度)したときに垂直翼面は風向きに対し水平となり最小風圧を受ける。風圧による垂直翼面に作用する力は空気の粘性がないものとして、翼平面に垂直に働き、その力の大きさはSinθ(θは仰角)の変化量となるので垂直翼公転3/4回転(270度)付近以外では垂直翼面に作用する反力を得ることができ、より多くの回転エネルギーを得ることができる。
Hereinafter, the above condition will be described by taking one of the vertical blades with reference to FIG.
In FIG. 2, the wind is flowing from the left to the right, and the state before the vertical blade revolves and rotates is shown as a vertical blade elevation angle of 45 degrees together with the gear train. In order to rotate the vertical blade, there is a gear 9 at the center of revolution, and this gear is connected to a gear 13 for rotating the vertical blade through gear trains 10, 11, and 12. The rotation ratio between the gear 9 at the center of revolution and the rotation gear 13 of the vertical blade is set to 2 to 1 through the gear train. Here, the vertical wing surface (shaded area) that receives wind pressure is the back surface, but the cross section of the vertical wing has a point-symmetrical shape with the axis of rotation as the center of rotation. Will be the same. Also, the vertical blade revolution direction and the vertical blade rotation direction can be reversed by a combination of gear trains. When the vertical blade revolution is 1/4 turn (90 degrees), the vertical blade surface is perpendicular to the wind direction. When the maximum wind pressure is received and the wing rotates 3/4 (270 degrees), the vertical blade surface becomes horizontal with respect to the wind direction and receives the minimum wind pressure. The force acting on the vertical blade surface due to wind pressure assumes that there is no air viscosity, it works perpendicular to the blade plane, and the magnitude of the force is the amount of change in Sinθ (θ is the elevation angle), so vertical blade revolution 3/4 rotation Except near (270 degrees), a reaction force acting on the vertical blade surface can be obtained, and more rotational energy can be obtained.

風向きが変わった場合、自己制御では、風車本体中空軸を貫通している内軸先端部にある方向舵が風向きに追従し、内軸に装着している中心歯車、および歯車列を介し垂直翼に装着した自転用歯車を回転させ自己補正を行うことで解決できるし、方向舵別設置では方向舵からの電気指令により風向き方向に追従できるよう制御モータを回転させ、ウォーム歯車を介し、内軸に装着しているウォームホイールを回転させ、内軸に装着している中心歯車、および歯車列を介し、垂直翼に装着した自転用歯車を回転させて、補正を行うことで解決できる。  When the wind direction changes, in the self-control, the rudder at the tip of the inner shaft that passes through the hollow shaft of the wind turbine body follows the wind direction, and the vertical wing is moved through the central gear mounted on the inner shaft and the gear train. It can be solved by rotating the mounted rotation gear and performing self-correction.In the case of separate rudder installation, the control motor is rotated so that it can follow the direction of the wind direction by the electric command from the rudder, and it is attached to the inner shaft via the worm gear. The problem can be solved by rotating the rotating worm wheel and rotating the rotating gear mounted on the vertical blade through the central gear mounted on the inner shaft and the gear train.

歯車配列については、風車本体中心内軸に装着された中心歯車と風車本体に設置された垂直翼の自転用歯車との間に、歯車回転比率が内軸に装着された中心歯車を2、垂直翼の自転用歯車を1となるように歯車列を含めたそれぞれのピッチ円直径を決めればよく、自転用歯車、歯車列、中心歯車を含め奇数配列とすることにより公転方向と自転方向を逆にすることができる。また、歯車列の一部の歯車中心軸をオフセットさせ、オフセットさせた歯車より2個の垂直翼の自転駆動をおこなうことができ、直列に配置したときより歯車数を少なくすることもできる。
図1、図6
Regarding the gear arrangement, the central gear mounted on the inner shaft has a gear rotation ratio of 2 between the central gear mounted on the center inner shaft of the wind turbine body and the rotating gear of the vertical blade installed on the wind turbine body. The pitch circle diameter including the gear train should be determined so that the rotation gear of the wing becomes 1, and the revolution direction and the rotation direction are reversed by making an odd arrangement including the rotation gear, the gear train, and the central gear. Can be. Further, by offsetting a part of the gear central axis of the gear train, the two vertical blades can be driven to rotate by the offset gear, and the number of gears can be reduced as compared with the case where they are arranged in series.
1 and 6

歯車配列機構には、リング状の外歯、内歯をもった歯車を使用することも可能で、垂直翼を多く設置するのに利用することができる。 図3  For the gear arrangement mechanism, it is possible to use gears having ring-shaped external teeth and internal teeth, and can be used to install many vertical blades. FIG.

垂直翼を風車中心軸対称に2個、風車中心軸120°ピッチに3個とする場合、傘歯車
を使用することで、風車本体の軽量化をより可能にすることができる。
図4
When two vertical blades are provided symmetrically to the windmill center axis and three are provided at a windmill center axis pitch of 120 °, the bevel gear can be used to further reduce the weight of the windmill body.
FIG.

以上説明したごとく、本発明は、風車本体中心軸を内軸、中空軸の2重構造とし、歯車列を使用することにより風車本体が風向きに追従し、風向きに対する垂直翼との仰角が1公転ごとに同じ角度となり連続して回転し、この回転力を効率の良い風車出力として得ることができる。  As described above, according to the present invention, the wind turbine main body has a double structure of the inner shaft and the hollow shaft, and by using a gear train, the wind turbine main body follows the wind direction, and the elevation angle with the vertical blade with respect to the wind direction is one revolution. Each time, the rotation angle becomes the same, and the rotation force can be continuously obtained, and this rotational force can be obtained as an efficient windmill output.

垂直翼の形状は特殊加工をする必要もなく、風車本体を構成する部品もほとんどが単純な部品の構成であるため、コストを安く抑えることができる。  The shape of the vertical wing does not need to be specially processed, and most of the parts constituting the wind turbine body are simple parts, so that the cost can be reduced.

垂直翼の形状を幅方向に大きくし、あるいは縦方向に長くした垂直翼を選択することにより、年間平均風速の異なる地域でも対応することができる。By selecting a vertical wing whose vertical wing shape is increased in the width direction or lengthened in the vertical direction, it is possible to cope with regions having different annual average wind speeds.

本発明の一実体の垂直型反動風車発電機の正面図である。It is a front view of the vertical reaction windmill generator of one entity of the present invention. 垂直翼の公転と自転の関係、風向きに対する垂直翼仰角の変移、垂直翼面に作用する力の方向についての説明図である。It is explanatory drawing about the direction of the force which acts on the relationship between the rotation and rotation of a vertical wing | blade, the change of the vertical wing elevation angle with respect to a wind direction, and the vertical wing surface. リング状の外歯、内歯をもつ歯車を使用しての垂直翼自転駆動系を示す。A vertical blade rotation drive system using gears with ring-shaped external teeth and internal teeth is shown. 傘歯車を使用しての垂直翼自転駆動系を示す。A vertical blade rotation drive system using a bevel gear is shown. 風向きに対して自己制御補正をする方向舵の取り付け位置を示す。The installation position of the rudder which performs self-control correction | amendment with respect to a wind direction is shown. 歯車列の一部をオフセットさせ、歯車の数を少なくした歯車配列の実施例を示す。An embodiment of a gear arrangement in which a part of a gear train is offset to reduce the number of gears is shown.

以下、本発明の実施形態を図面によって説明する。図1は本発明の一実施形態を示すもので、風車本体中心軸は、中空軸1、中空軸2、内軸3より構成されている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention, and a windmill main body central axis is composed of a hollow shaft 1, a hollow shaft 2, and an inner shaft 3.

内軸3は、風向きに対し、各垂直翼の仰角が常に同じとなるよう風向きに追従する方向舵によって制御される。  The inner shaft 3 is controlled by a rudder that follows the wind direction so that the elevation angle of each vertical blade is always the same with respect to the wind direction.

方向舵は小型風車用として自己制御方式と中型、大型風車用として別設置方式とがあり、  The rudder has a self-control system for small windmills and a separate installation system for medium and large windmills.

自己制御方式では、図7に示すように、内軸3の先端部に直接方向舵を取り付け、自己制御を行い、  In the self-control method, as shown in FIG. 7, a rudder is attached directly to the tip of the inner shaft 3, and self-control is performed.

別設置では風向きの偏差分を電気信号に変え、制御モータ18を駆動し、ウォーム歯車14、15を回転させ、内軸3に装着している歯車9を回転してその偏差分の補正を行う。  In another installation, the deviation of the wind direction is changed into an electric signal, the control motor 18 is driven, the worm gears 14 and 15 are rotated, and the gear 9 attached to the inner shaft 3 is rotated to correct the deviation. .

中空軸1は垂直翼自転軸5の上端部を支持する円盤状の上板6、垂直翼自転軸5の下端上部を支持し、歯車列の歯車10,11,12の各軸上端部を支持する円盤状の中板7に直結されていて、中空軸1の上端部は四本の地上支柱に固定されたアーム20により軸受31を介し支持されている。  The hollow shaft 1 supports a disk-shaped upper plate 6 that supports the upper end portion of the vertical blade rotation shaft 5, supports the lower end upper portion of the vertical blade rotation shaft 5, and supports the upper end portions of the gears 10, 11, and 12 of the gear train. The upper end of the hollow shaft 1 is supported via a bearing 31 by an arm 20 fixed to four ground struts.

中空軸2は垂直翼自転軸5の下端下部を支持し、歯車列の歯車10,11,12の各軸下端部を支持する円盤状の下板8に直結された風車出力軸であり、発電機を駆動する歯車16を装着し、発電機回転軸に装着している歯車17を回転させ発電を行い、地上支柱に固定された構造物により、軸受32を介し支持されている。  The hollow shaft 2 is a wind turbine output shaft that is directly connected to a disk-shaped lower plate 8 that supports the lower end of the vertical blade rotation shaft 5 and supports the lower ends of the gears 10, 11, and 12 of the gear train. A gear 16 for driving the machine is mounted, and a gear 17 mounted on the generator rotating shaft is rotated to generate power, and is supported via a bearing 32 by a structure fixed to the ground column.

風車本体の円盤状の中板7と円盤状の下板8は、歯車列それぞれの歯車10,11,12は軸受25,26,27が内装されているので、それぞれの歯車軸22,23,24の両端を固定することができ、円盤状の中板7と円盤状の下板8は連結され、風車本体の強度メンバーとなっている。  Since the disk-shaped middle plate 7 and the disk-shaped lower plate 8 of the windmill body are provided with bearings 25, 26, and 27 in the gear trains 10, 11, and 12, the respective gear shafts 22, 23, Both ends of 24 can be fixed, and the disk-shaped middle plate 7 and the disk-shaped lower plate 8 are connected to form a strength member of the windmill body.

風向きに対し垂直翼の仰角が常に同じとなる機構について、図2に示す垂直翼一つを例にとって説明する。  A mechanism in which the elevation angle of the vertical blade is always the same with respect to the wind direction will be described by taking one vertical blade shown in FIG. 2 as an example.

風は方向を変えず左から右へ流れるものとして、風車本体中心軸内軸3に装着された歯車9は回転せず固定したものと考えてよい。垂直翼の公転方向と、垂直翼の自転方向とは歯車列による組み合わせにより逆向きとすることができ、歯車9、および歯車列を介しての垂直翼の自転用歯車13の回転比率を、前者が2、後者が1であることにより垂直翼の公転1回転で、垂直翼の自転は1/2回転し、垂直翼翼断面形状は垂直翼自転の軸を対称の中心とする点対称形状なので垂直翼の仰角は変わらず、歯車9を中心としての垂直翼公転軌道上どの位置に垂直翼を設置しても同じことが言える。  Assuming that the wind flows from the left to the right without changing the direction, the gear 9 mounted on the windmill body central shaft inner shaft 3 may be considered to be fixed without rotating. The revolution direction of the vertical blade and the rotation direction of the vertical blade can be reversed by a combination of gear trains, and the rotation ratio of the gear 9 and the rotation gear 13 of the vertical blades through the gear train is determined by the former. Is 2 and the latter is 1, the vertical wing rotation is one rotation, the vertical wing rotation is ½ rotation, and the vertical wing blade cross section is a point symmetric shape with the axis of the vertical wing rotation as the center of symmetry. The elevation angle of the wing does not change, and the same can be said regardless of the position of the vertical wing installed on the vertical wing revolution orbit around the gear 9.

以上により、風車本体に設置された垂直翼仰角を、風向きに対して決めることにより、垂直翼の公転方向は左回り、停止、右回りすることができるので、公転力を最大限得る仰角を選定すればよく、複数個の垂直翼を使用する場合でも同じことが言える。  As described above, by determining the vertical blade elevation angle installed on the wind turbine body with respect to the wind direction, the vertical blade revolution direction can be counterclockwise, stopped, or clockwise, so select the elevation angle that maximizes the revolution force. The same can be said when multiple vertical wings are used.

風向きが変われば、方向舵により、その偏差分を内軸3が回転し補正するので垂直翼仰角は変わらず連続して回転することができる。  If the wind direction changes, the inner shaft 3 rotates and corrects the deviation by the rudder, so that the vertical blade elevation angle can be continuously rotated without changing.

本発明の垂直型反動風車発電機には歯車を多く使用しており、歯車から発生する騒音が問題視されるが、樹脂系の歯車の使用、あるいは強力な磁石を用いた無接点歯車を使用することで解決できる。  The vertical reaction wind turbine generator of the present invention uses many gears, and noise generated from the gears is regarded as a problem, but the use of resin gears or contactless gears using strong magnets is used. This can be solved.

台風等の強風時には、本発明の風車は垂直翼の形状にもよるが規定風速以上になると風車の回転数は上昇しなくなるので自己制御方式の小型風車ではこのときの強度が保たれればよく、別設置方式の中型、大型風車においては遠心力による機器破損がともなうことがあるので、この場合は風向きに対する制御を離脱させ、制御モータにより右巻き方向、あるいは左巻き方向に回転させることにより風車の回転数を下げることができる。  In the case of strong winds such as typhoons, the wind turbine of the present invention depends on the shape of the vertical blades, but if the wind speed exceeds the specified wind speed, the rotational speed of the wind turbine will not increase. In the case of medium and large windmills with different installation methods, equipment damage due to centrifugal force may occur. In this case, control of the wind direction is removed, and the windmill is rotated by rotating it clockwise or counterclockwise with a control motor. The rotation speed can be lowered.

1 風車本体中空軸
2 風車本体中空出力軸
3 風車本体内軸
4 垂直翼
5 垂直翼回転軸
6 風車本体円盤状上板
7 風車本体円盤状中板
8 風車本体円盤状下板
9 風車本体中心中軸に装着した歯車
10 歯車列歯車
11 歯車列歯車
12 歯車列歯車
13 垂直翼自転用歯車
14 風車本体中心中軸に装着したウォームホイール歯車
15 ウォーム歯車
16 出力歯車
17 発電機回転軸に装着した歯車
18 制御モータ
19 発電機
20 支柱よりのアーム
21 基礎架構
22 歯車列歯車軸
23 歯車列歯車軸
24 歯車列歯車軸
25 歯車装着軸受
26 歯車装着軸受
27 歯車装着軸受
28 垂直翼自転用軸受
29 垂直翼自転用軸受
30 垂直翼自転用軸受
31 風車本体上軸受
32 風車本体下軸受
33 外歯、内歯をもつリング状歯車
34 外歯、内歯をもつリング状歯車の側面支持板
35 風車本体内軸装着の傘歯車
36 垂直翼自転駆動用傘歯車
37 垂直翼自転駆動用軸
38 垂直翼自転駆動用傘歯車
39 垂直翼自転傘歯車
40 垂直翼自転駆動用軸支持板
41 垂直翼自転駆動用軸支持板
42 方向舵
DESCRIPTION OF SYMBOLS 1 Windmill main body hollow shaft 2 Windmill main body hollow output shaft 3 Windmill main body inner shaft 4 Vertical wing 5 Vertical wing rotation axis 6 Windmill main body disk-shaped upper plate 7 Windmill main body disk-shaped middle plate 8 Windmill main body disk-shaped lower plate 9 Windmill main body center central axis The gear 10 mounted on the gear 11 The gear train 11 The gear train 12 The gear train 13 The vertical wheel rotation gear 14 The worm wheel gear 15 mounted on the center shaft of the wind turbine body 15 The worm gear 16 The output gear 17 The gear 18 mounted on the generator rotation shaft Motor 19 Generator 20 Arm 21 from support column Foundation frame 22 Gear train gear shaft 23 Gear train gear shaft 24 Gear train gear shaft 25 Gear mounted bearing 26 Gear mounted bearing 27 Gear mounted bearing 28 Vertical blade rotation bearing 29 Vertical blade rotation bearing Bearing 30 Vertical blade rotation bearing 31 Windmill main body upper bearing 32 Windmill main body lower bearing 33 Ring-shaped gear 34 having external teeth and internal teeth Ring-shaped teeth having external teeth and internal teeth Car side support plate 35 Bevel gear 36 mounted on the inner shaft of the windmill main body Bevel gear 37 for vertical wing rotation drive shaft 38 Vertical wing rotation drive shaft 38 Vertical wing rotation drive bevel gear 39 Vertical wing rotation bevel gear 40 Vertical wing rotation drive shaft Support plate 41 Vertical blade rotation drive shaft support plate 42 Rudder

Claims (5)

垂直型風車の回転中心軸を内軸と中空軸よりなる2重構造とし、内軸は垂直翼仰角が風向き方向に追従できるよう垂直翼自転用の中心歯車を装着し中空軸を貫通し、小型風車においては内軸上端部に直接方向舵を取り付け、風向き方向に内軸が回転する自己制御方式により垂直翼仰角を追従させることができ、大型風車、中型風車においては内軸下端部にウォーム減速機のウォームホイールを装着させ、別設置方式の方向舵からの電気指令により風向き方向に制御モータが回転し、ウォーム減速機を介し内軸中心歯車を回転させ、垂直翼の仰角が風向きに対して追従することができることを特徴とする垂直型反動風車発電機。  The vertical axis of the vertical wind turbine has a double structure consisting of an inner shaft and a hollow shaft, and the inner shaft is fitted with a central gear for rotating the vertical blade so that the vertical blade elevation angle can follow the direction of the wind. In windmills, a rudder is attached directly to the upper end of the inner shaft, and the vertical blade elevation angle can be made to follow by a self-control system in which the inner shaft rotates in the direction of the wind. The worm wheel is mounted, the control motor rotates in the direction of the wind in response to an electrical command from the rudder of another installation method, the inner shaft central gear is rotated via the worm reducer, and the elevation angle of the vertical blade follows the wind direction A vertical reaction wind turbine generator characterized in that it can be used. 中空軸は中空軸その1、中空軸その2があり、中空軸その1は垂直翼軸上端部を支持する円盤状の上板が直結し、また垂直翼軸下端上部を支持し、歯車列の各歯車軸上部を支持する円盤状の中板が直結しており、中空軸その2は垂直翼軸下端下部を支持し、歯車列の各歯車軸下部を支持する円盤状の下板が直結しており、中空軸その2を風車出力軸としたことを特徴とする請求項目1の垂直型反動風車発電機。  The hollow shaft has a hollow shaft 1 and a hollow shaft 2 and the hollow shaft 1 is directly connected to a disk-shaped upper plate that supports the upper end of the vertical blade shaft, and supports the upper lower end of the vertical blade shaft. The disk-shaped middle plate that supports the upper part of each gear shaft is directly connected, the hollow shaft part 2 supports the lower part of the lower end of the vertical blade shaft, and the disk-shaped lower plate that supports the lower part of each gear shaft of the gear train is directly connected. The vertical reaction wind turbine generator according to claim 1, wherein the hollow shaft 2 is used as a wind turbine output shaft. 風車本体が1回転するのに対し垂直翼が1/2回転すると、垂直翼が風圧を受ける面は回転前の裏面となるが垂直翼断面は180度回転しても同じ形状となるよう垂直翼の自転軸を対称の中心とした点対称翼とし、風を切るときの乱流防止のため流線型としたことを特徴とする請求項目1の垂直型反動風車発電機。  When the wind turbine body makes one rotation and the vertical blade makes 1/2 rotation, the surface of the vertical blade that receives the wind pressure is the back surface before rotation, but the vertical blade cross-section has the same shape even if rotated 180 degrees. 2. A vertical reaction wind turbine generator according to claim 1, wherein the vertical reaction wind turbine generator is a point-symmetrical wing having a rotational axis of symmetric as a center of symmetry and is streamlined to prevent turbulent flow when the wind is cut. 風車本体の回転力を減衰させないために、垂直翼が自転するための歯車回転比率が歯車列を含めて内軸に装着の中心歯車を2、垂直翼装着の歯車を1とし、風車本体が回転する方向と、垂直翼自体が回転する方向は逆向きとなる歯車列を有することを特徴とする請求項目1、請求項目3の垂直型反動風車発電機。  In order not to attenuate the rotational force of the wind turbine body, the gear rotation ratio for rotating the vertical blades is 2 for the central gear mounted on the inner shaft including the gear train and 1 for the gear mounted on the vertical blade, and the wind turbine body rotates. The vertical reaction wind turbine generator according to claim 1 or 3, further comprising a gear train in which the direction of rotating and the direction of rotation of the vertical blades are opposite to each other. 中空軸その2の出力軸には複数の発電機の設置、また必要に応じ風車起動用駆動モータも設置できるように歯車を装着したことを特徴とする請求項目1、請求項目2の垂直型反動風車発電機。  The vertical reaction according to claim 1 or 2, wherein a gear is mounted on the output shaft of the hollow shaft 2 so that a plurality of generators can be installed, and a windmill starting drive motor can be installed if necessary. Windmill generator.
JP2009097460A 2009-03-21 2009-03-21 Vertical type reaction wind turbine generator Pending JP2010223207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097460A JP2010223207A (en) 2009-03-21 2009-03-21 Vertical type reaction wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097460A JP2010223207A (en) 2009-03-21 2009-03-21 Vertical type reaction wind turbine generator

Publications (1)

Publication Number Publication Date
JP2010223207A true JP2010223207A (en) 2010-10-07

Family

ID=43040651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097460A Pending JP2010223207A (en) 2009-03-21 2009-03-21 Vertical type reaction wind turbine generator

Country Status (1)

Country Link
JP (1) JP2010223207A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014848A1 (en) * 2011-07-22 2013-01-31 Shimizu Atsushi Vertical axis type magnus wind turbine generator
WO2014104692A1 (en) * 2012-12-26 2014-07-03 Min Young-Hee Vertical-axis wind power generator having adjustable-angle rotating blades
CN104271945A (en) * 2012-12-26 2015-01-07 闵泳憙 Vertical-axis wind power generator having adjustable-angle rotating blades
CN107061149A (en) * 2017-04-14 2017-08-18 缪德贵 A kind of large-scale vertical axle type wind driven generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014848A1 (en) * 2011-07-22 2013-01-31 Shimizu Atsushi Vertical axis type magnus wind turbine generator
JP5209826B1 (en) * 2011-07-22 2013-06-12 敦史 清水 Vertical axis type Magnus wind generator
WO2014104692A1 (en) * 2012-12-26 2014-07-03 Min Young-Hee Vertical-axis wind power generator having adjustable-angle rotating blades
CN104271945A (en) * 2012-12-26 2015-01-07 闵泳憙 Vertical-axis wind power generator having adjustable-angle rotating blades
KR101483461B1 (en) 2012-12-26 2015-01-21 민영희 Vertical-axis type wind power generator adjusted blade angle
US9605655B2 (en) 2012-12-26 2017-03-28 Young-Hee Min Vertical-axis wind power generator having adjustable-angle rotating blades
CN107061149A (en) * 2017-04-14 2017-08-18 缪德贵 A kind of large-scale vertical axle type wind driven generator
CN107061149B (en) * 2017-04-14 2023-06-02 缪德贵 Large vertical shaft type wind driven generator

Similar Documents

Publication Publication Date Title
CN203601542U (en) Tidal current power generation device and installation frame thereof
JP6128575B2 (en) Fluid power generation method and fluid power generation apparatus
US9989033B2 (en) Horizontal axis wind or water turbine with forked or multi-blade upper segments
WO2016062139A1 (en) Single-frame type impeller of wind turbine
CN201925096U (en) Vertical axis wind-driven generator with variable-rotating-angle blades
JP2012500940A (en) Turbine and rotor for turbine
JP5470626B2 (en) Wind power generator
CN102392782A (en) Lift-drag non-fixed combined vertical axis wind turbine
JP2003129935A (en) Wind power generator
JP2010121518A (en) Vertical shaft magnus type wind turbine generator
CN201433854Y (en) Helical flexible blade turbine
JP2010223207A (en) Vertical type reaction wind turbine generator
JP2011122508A (en) Power generator
JP6954739B2 (en) Rotor for generator
CN205578183U (en) Self -adaptation becomes vertical axis wind -force drive arrangement and aerogenerator of oar
CN204572338U (en) Vertical axis aerogenerator
CN104389730B (en) Band kuppe trunnion axis Contra-rotating rotor power generation device from sea current
CN105840428A (en) Self-adaption variation paddle vertical shaft wind driven generator with blades provided with flaps
CN203822529U (en) Ocean energy power generating device and built-in module thereof
CN203230525U (en) Ocean energy power generation device and frame thereof
KR101525553B1 (en) Wind power generator with vertical rotor
Kubo et al. Development of intelligent wind turbine unit with tandem wind rotors and double rotational armatures (2nd report, characteristics of tandem wind rotors)
KR101239277B1 (en) Wind power generator
CN104500346A (en) Combined Magnus wind-driven generator
JP2008150963A (en) Vertical axis lift utilizing type counter-rotating wind turbine generator