WO2019188612A1 - Metal can - Google Patents

Metal can Download PDF

Info

Publication number
WO2019188612A1
WO2019188612A1 PCT/JP2019/011565 JP2019011565W WO2019188612A1 WO 2019188612 A1 WO2019188612 A1 WO 2019188612A1 JP 2019011565 W JP2019011565 W JP 2019011565W WO 2019188612 A1 WO2019188612 A1 WO 2019188612A1
Authority
WO
WIPO (PCT)
Prior art keywords
corners
metal
axial load
load strength
cross
Prior art date
Application number
PCT/JP2019/011565
Other languages
French (fr)
Japanese (ja)
Inventor
俊樹 奥村
野村 哲郎
清澄 眞仁田
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Publication of WO2019188612A1 publication Critical patent/WO2019188612A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/16Cans, casks, barrels, or drums characterised by shape of curved cross-section, e.g. cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/40Details of walls
    • B65D1/42Reinforcing or strengthening parts or members

Definitions

  • the present invention relates to a metal can having a polyhedral wall constituted by a plurality of unit panels on a can body, for example.
  • this metal can has a polyhedron wall in at least a part of the can body, and the polyhedron wall is a large number of unit panels having a folding structure partitioned into rhombus shapes by boundary ridge lines of the ridges. It is configured.
  • This unit panel has a configuration in which unit panel rows arranged in a direction parallel to the central axis of the can body are densely arranged in the circumferential direction of the can body. It is molded into a regular polygon shape.
  • the axial load strength is the buckling strength that causes buckling deformation when an axial compression load is applied.
  • An object of the present invention is to provide a metal can having a polyhedral wall with high axial load strength.
  • the present invention has a polyhedral wall composed of a number of unit panels defined by at least a part of a can body by convex boundary ridge lines,
  • the unit panel has a rhombus shape defined by the oblique ridgelines as the boundary ridgelines, two vertices located on a central plane passing through the central axis of the can body, and two vertices located symmetrically with respect to the central plane It has a total of four vertices, and has a valley fold horizontal ridge line connecting vertices located at symmetrical positions with respect to the center plane
  • the polyhedral wall has a configuration in which a plurality of the unit panels are arranged in a direction parallel to the central axis of the can body, and the unit panel row is densely arranged in the circumferential direction of the can body.
  • the cross-sectional shape passing through the horizontal ridgeline of the unit panel is a polygonal shape having 14 or more corners, and the axial load strength is increased by increasing the number of corners.
  • the present invention finds that the axial load strength of the can body is opposite to the strength in the direction perpendicular to the axis of the can body, and the strength increases as the number of cross-sections passing through the horizontal ridge line of the unit panel increases. To achieve a metal can with high axial load strength.
  • the present invention can be configured as follows. 1) The number of corners of the cross section passing through the horizontal ridge line of the unit panel of the polyhedral wall is 26 or less. When it becomes 26 corners, the axial load strength is almost the same as that of a straight can having no polyhedral wall, and it is not necessary to increase it further. 2) The protrusion amount at which the apex protrudes in the direction perpendicular to the axis from the extended surface of the straight portion of the can body that does not have the polyhedral wall is set to be 0.28 mm or less. If the protruding amount is large, the apex is easily deformed when the cans or the can and the guide wall come into contact with each other during conveyance.
  • the buckling is formed so that four unit panels surrounding the apex are depressed. If the apex is deformed, buckling is likely to occur. Therefore, it is preferable that the protrusion amount is small. However, because of the folding structure, the protrusion of the apex inevitably occurs, and the smaller the number of corners, the larger. If the angle is 14 or more, the amount of protrusion can be reduced, and a structure in which buckling does not occur as much as possible is obtained.
  • the axial load strength can be increased by setting the cross-sectional shape in the direction perpendicular to the axis passing through the apex of the unit panel to a polygonal shape of 14 or more corners.
  • FIG. 1A and 1B show a 14-corner metal can according to an embodiment of the present invention, in which FIG. 1A is a front view and FIG. 1B is a sectional view taken along line BB of FIG. 2A and 2B show the unit panel of FIG. 1, in which FIG. 2A is a front view and FIG. 2B is a cross-sectional view taken along the line CC of FIG.
  • FIG. 3 shows a 16-corner metal can according to an embodiment of the present invention.
  • (A) is a front view
  • (B) is a cross-sectional view taken along the line EE of (A)
  • (C) is a 26-corner. It is a front view of a metal can.
  • FIG. 4A and 4B are diagrams showing a method for measuring the axial load strength, in which FIG. 4A is an overall view of the measuring apparatus, and FIG. 4B is a diagram showing a neck portion reinforcing jig used when measuring the axial load strength.
  • FIG. 5 is a diagram showing the relationship between the number of corners of the horizontal cross section of the present invention and the conventional metal can and the axial load strength.
  • the horizontal cross-sectional shape passing through the horizontal ridge line of the unit panel is a polygonal shape of 14 or more corners, and the axial load strength is increased by increasing the number of corners.
  • FIG. 3A and 3B show examples of 16 corners
  • FIG. 3C shows examples of 26 corners.
  • the basic configuration of the metal can will be described by taking the 14 corners as an example.
  • FIG. 1 shows a 14-corner metal can according to an embodiment of the present invention.
  • the metal can 1 includes a bottomed cylindrical can body 2 having a can body 21 and is an empty can before a lid is wound.
  • a polyhedral wall 4 is provided on at least a part of the can body 21.
  • the can body 2 has a configuration including a cylindrical can body 21 extending straight, a neck portion 22 with a reduced diameter at the upper end of the can body 21, and a bottom portion 23.
  • a flange 24 around which the can lid is wound is provided.
  • the metal can 1 is a squeezed iron can such as a general aluminum alloy, for example, a positive pressure can having an internal capacity of 250 to 500 ml and an internal pressure of 20 to 300 [kPa] at 5 ° C.
  • the thickness of the can body 21 is 0.08 to 0.20 [mm]
  • the can body diameter D is 60 to 70 [mm] (211 diameter)
  • the can height H is 90 to 170. Use in the range of [mm] is assumed.
  • the ratio of the can height H to the can body diameter D is about 1.3 to 2.6.
  • the present invention is not limited to the above metal cans for positive pressure cans, but can also be applied to negative pressure cans, and can be applied not only to aluminum alloys but also to steel cans and widely applicable to metal cans. It is.
  • the polyhedral wall 4 has a concave and convex shape by a folding structure without changing the circumference of the can body 21, and is composed of a large number of rhomboid unit panels 5 partitioned by the folds of the diagonal ridges 51. That is, a predetermined number of unit panels 5 are arranged in a direction parallel to the central axis N of the can body 21 (hereinafter simply referred to as an axial direction) to form a panel row 50, and the panel row 50 is arranged in the circumferential direction of the can body 21.
  • the configuration is arranged all around.
  • the phase in the axial direction of the unit panels 5 of the panel rows 50 adjacent to each other is shifted by half the axial length of the unit panels 5 and the unit panels 5 are densely arranged in the axial direction and the circumferential direction. . Since the adjacent panel rows 50 are displaced in the axial direction by half the length of the unit panel 5, the unit panels 5 of the panel rows 50 located every other circumferential direction are in the same phase in the axial direction, The horizontal ridge line 52 is connected via a common vertex 53. Therefore, the cross section cut in the direction perpendicular to the central axis N of the can body 21 at the position of the horizontal ridgeline 52 of the unit panel 5 has a regular polygonal shape as shown in FIG.
  • the polyhedral wall 4 is provided in a strip shape in the middle of the axial direction of the can body 21, and the upper and lower regions of the polyhedral wall 4 are cylindrical straight portions 21 a and 21 b without irregularities.
  • the ratio (L / H) between the axial length L of the polyhedral wall 4 and the can height H is about 50%, and the length of the straight portion 21b on the bottom side is relative to the can height H.
  • the ratio is about 19%, but other ratios may be used.
  • the unit panel 5 includes two vertices 53 a and 53 c located on a central plane M passing through the central axis N of the can body 21, and two vertices located at symmetrical positions with respect to the central plane M. It has a total of four vertices, 53b and 53d. These four vertices 53a to 53d are located on a cylindrical surface with the central axis N as the center, and a valley-folded horizontal ridgeline 52 connecting the vertices 53b and 53d located in a symmetric position with respect to the central surface M is shown in FIG.
  • the solid line in (B) has a configuration in which it is bent and bent in the shape of a circle inward of the can body 21 in the axial direction.
  • the diameter of the virtual cylindrical surface passing through the four vertices 53a to 53d is the maximum diameter of the can body 21.
  • the aspect ratio (b / a) between the length b between the vertices 53a and 53c of the unit panel 5 (hereinafter, the length in the vertical direction) and the horizontal length a between the vertices 53b and 53d is shown in the illustrated example. 1 is set to about 0.8 ⁇ (b / a) ⁇ 1.2, with 1 as the center, but a vertically long configuration may be set to about 0.8 ⁇ (b / a) ⁇ 2.0. .
  • the 16-corner form shown in FIGS. 3 (A) and 3 (B) and the 26-corner form shown in FIG. 3 (C) have the same basic configuration as the embodiment of FIG. 1, so only the differences will be described.
  • the same components are denoted by the same reference numerals, and description thereof is omitted.
  • the difference is that the size of the unit panel decreases as the number of corners of the horizontal section increases.
  • the height of the can body, the diameter of the can body, and the aspect ratio of the unit panel are all set to the same even if the number of corners changes, and the axial length of the polyhedron wall is almost the same.
  • the number in the circumferential direction and the axial direction of the unit panel increases as the length decreases.
  • the number of unit panels is 28 in the circumferential direction, 28 in the circumferential direction, 4 in the axial direction and 3 in the axial direction, for a total of 98 planes, but in the 16 corner, the number of unit panels is 32 in the circumferential direction.
  • the number of panels in the axial direction depends on how much the length L in the axial direction of the polyhedral wall 4 is taken.
  • the axial length L of the polyhedral wall 4 is 64.70 mm at 16 angles and 61.60 mm at 26 angles.
  • Table 1 shows the relationship between the number of corners and the axial load strength.
  • a straight can is a can that does not have a polyhedral wall in the can body.
  • the axial load strength was measured by preparing the following five types of aluminum cans as samples.
  • Sample 1 Number of corners: 11 corners, horizontal length a ( ⁇ D / n) of panel: 18.84 mm, ratio of polyhedral wall to can height (L / H): 54.0% (65.94 / 122.20), number of axial panels: 3 and 3
  • n is the number of corners
  • D is the diameter of the can body
  • L is the length of the polyhedral wall in the axial direction
  • H is the height of the can.
  • the unit panel 5 has an aspect ratio (b / a) of 1, and L is equal to (the number of panels in the axial direction) ⁇ (the vertical length b of the panel).
  • Example 3 Number of corners: 16 corners, horizontal length a ( ⁇ D / n) of panel: 12.95 mm, ratio with polyhedron wall can height (L / H): 53% (64.76 / 122) 20), number of axial panels: 5 and 4, L is (the larger number of panels (5)) ⁇ (the vertical length b of the panel).
  • Sample 4 Number of corners: 26 corners, horizontal length a ( ⁇ D / n) of panel: 7.97 mm, ratio of polyhedral wall to can height (L / H): 52.2% (63.77 / 122.20), number of axial panels: 8 and 7, L is (the larger number of panels (8)) ⁇ (the vertical length b of the panel).
  • Example 5 No polyhedral wall. Each sample can is a can used for a 350 ml beverage can, and the dimensions are as follows. ⁇ Thickness of can body: 0.107 mm ⁇ Can body diameter (D): 66.00 mm (211 diameter) ⁇ Can height (H): 122.20mm The plate thickness of the can body is the plate thickness at the position of the polyhedral wall. The can body diameter is the outer diameter of the straight portion.
  • An autograph (model number: AG-2000D) manufactured by “Shimadzu Corporation” was used as a measuring device for the axial load strength.
  • the metal can 1 is placed on the pressure receiving table 61 of the measuring device 6 so that the flange 25 side faces upward, and the neck portion reinforcing jig 62 is placed on the opening of the metal can 1 as shown in FIG.
  • a compression load is applied to the neck portion reinforcing jig 62 placed on the metal can 1 at a compression speed of 10 mm / min using a test apparatus, the horizontal axis represents the compression amount, and the vertical axis To output a graph of compression load.
  • the compressive load decreases. Therefore, the maximum value of the graph is read and the value is set as the axial load strength.
  • the measurement quantity is 12 cans or more, and the average value is obtained.
  • the axial load strength was 923N for the 11th corner, 1173N for the 13th corner, 1458N for the 16th corner, 1582N for the 26th corner, and 1595N for the straight can without the polyhedral wall.
  • the compressive load in the axial direction is mainly supported by the oblique ridges 51. Therefore, when the number of corners increases, the number of oblique ridges 51 also increases, and the axial compressive load is dispersed to increase the axial load strength.
  • the FIG. 5 is a graph in which the axial load strength data in Table 1 is plotted with the number of angles on the horizontal axis and the axial load strength on the vertical axis.
  • the degree of increase in the axial load intensity is gentler in the gradient between the 16th and 26th corners than the gradient between the 11th and 13th corners.
  • the ratio of the axial load strength of each corner to the straight can from 16 to 26 corners, from 91% to 99%, an increase of 0.8% per corner, from 11 to 13 corners.
  • the 13 corner is about 73.5% of the straight can, whereas the 16 corner is over 90%, and the 14 corner is an increment of 11 to 13 corners (8% per corner). ) Is 82%, almost 80%.
  • the axial load strength of about 80% or more of the straight can can be ensured by setting the horizontal cross section to 14 corners or more. Moreover, if it sets to 16 or more corners, about 90% or more of axial load intensity
  • the axial load strength is increased by making the cross-sectional shape in the direction perpendicular to the axis passing through the vertex 53 of the unit panel 5 into a polygonal shape of 14 or more corners. be able to. Further, in order to obtain a predetermined axial load strength, it is possible to reduce the plate thickness by increasing the number of corners of the horizontal section.
  • the apex 53 has a chamfered shape in consideration of workability, but is inevitable with respect to the straight portions 21a and 21b positioned above and below the polyhedral wall because it is positioned at the apex of the polygon of the horizontal section. Projecting outward.
  • a two-dot chain line S is an extension line of the straight portions 21a and 21b.
  • Table 2 shows the protrusion amount ⁇ with respect to the straight portions 21a and 21b with respect to the number of angles of the horizontal section of the polyhedral wall.
  • the outermost diameter is the diameter of the cylindrical surface passing through the apex 53, and is calculated with calculated values including chamfering. For the 13th, 16th, and 26th angles, actual values are obtained to verify errors. .
  • the protrusion amount ⁇ is 13 corners, 0.33 mm at the maximum, gradually decreases as the number of corners increases, and 26 corners is 0.09 mm.
  • the diameters of the straight portions 21a and 21b are 66.00 mm.
  • the protrusion amount ⁇ is (outermost diameter ⁇ straight portion diameter) / 2. When actual dimensions were measured with respect to the calculated values, the error was ⁇ 0.04 mm at the outermost diameter, and ⁇ 0.02 mm at the protrusion amount on one side.
  • the present invention is not limited to metal cans of these dimensions, In a metal can having a certain combination of plate thickness, can body diameter, and can height, the axial load strength can be increased by similarly setting the number of corners to 14 or more.
  • 1 metal can 2 Can body 21 Can body, 22 Neck part, 23 Bottom part, 24 Flange 4 Polyhedron wall 5 Unit panel 51 Diagonal ridge line, 52 Horizontal ridge line, 53 (53a to 53d) Vertex 50 Panel row 6 Measuring device 61 Pressure receiving table, 62 Neck part Reinforcement jig M Center plane N Center axis ⁇ Projection amount

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Abstract

The present invention provides a metal can that has a polyhedron wall having high axial load strength. The metal can has a polyhedron wall with a structure in which unit panel columns obtained by arranging a plurality of unit panels in the direction parallel to the central axis of a can body are densely arranged all around the can body in the circumferential direction thereof, and a cross-section passing through a horizontal ridgeline of the unit panels has a polygonal shape. The metal can is characterized in that the shape of the cross-section passing through the horizontal ridgeline of the unit panels forms a polygonal shape having 14 or more corners, and the axial load strength is improved by increasing the number of corners.

Description

金属缶Metal can
 本発明は、たとえば、缶胴に複数の単位パネルによって構成される多面体壁を有する金属缶に関する。 The present invention relates to a metal can having a polyhedral wall constituted by a plurality of unit panels on a can body, for example.
 従来のこの種の多面体壁を有する金属缶としては、たとえば、特許文献1に記載のようなものが知られている。
 この金属缶は、缶胴の剛性を高めるために、缶胴の少なくとも一部に多面体壁を有し、多面体壁は凸条の境界稜線で菱形形状に区画された折り構造の多数の単位パネルで構成されている。この多数の単位パネルは、缶胴の中心軸線と平行方向に並んだ単位パネル列が、缶胴の周方向に全周的に密に配列された構成で、単位パネルの横稜線を通る断面は正多角形状に成形されている。
 このように凹凸を付けた多面体壁を設けることにより、意匠的な特徴を持たせると共に、缶胴に加わる軸直角方向の力に対する強度を高め、容器の薄肉化が図られていた。外圧に対する強度については、単位パネルの横稜線を通る断面の角数が大きいほど強度が低くなることが分かっており、従来から13角に設定されていた。
As a conventional metal can having this type of polyhedral wall, for example, one described in Patent Document 1 is known.
In order to increase the rigidity of the can body, this metal can has a polyhedron wall in at least a part of the can body, and the polyhedron wall is a large number of unit panels having a folding structure partitioned into rhombus shapes by boundary ridge lines of the ridges. It is configured. This unit panel has a configuration in which unit panel rows arranged in a direction parallel to the central axis of the can body are densely arranged in the circumferential direction of the can body. It is molded into a regular polygon shape.
By providing a polyhedral wall with irregularities in this way, design characteristics were given, and the strength against the force in the direction perpendicular to the axis applied to the can body was increased, thereby reducing the thickness of the container. As for the strength against external pressure, it has been known that the strength decreases as the number of corners of the cross section passing through the horizontal ridge line of the unit panel increases, and has conventionally been set to 13 corners.
特許第3915450号公報Japanese Patent No. 3915450
 近年、金属缶について、より薄肉化する傾向にあり、薄肉化を進めると、巻締め工程で座屈変形が生じるおそれがある。そこで、本発明者等は、この多面体壁を有する金属缶の軸荷重強度について鋭意研究した結果、単位パネルの横稜線を通る断面の角数が、軸荷重強度に大きく影響するという知見を得た。軸荷重強度とは、軸圧縮荷重を加えた場合に、座屈変形が生じる座屈強度のことである。
 本発明の目的は、軸荷重強度の高い多面体壁を有する金属缶を提供することにある。
In recent years, metal cans tend to be thinner, and buckling deformation may occur in the winding process when the thickness is further reduced. Therefore, as a result of earnest research on the axial load strength of the metal can having the polyhedral wall, the present inventors have obtained the knowledge that the number of corners of the cross section passing through the lateral ridge line of the unit panel greatly affects the axial load strength. . The axial load strength is the buckling strength that causes buckling deformation when an axial compression load is applied.
An object of the present invention is to provide a metal can having a polyhedral wall with high axial load strength.
 上記目的を達成するために、本発明は、缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、
 前記単位パネルは前記境界稜線としての斜め稜線によって区画される菱形形状で、缶胴の中心軸線を通る中心面上に位置する2つの頂点と、中心面に対して対称位置に位置する2つの頂点の計4つの頂点を有し、前記中心面に対して対称位置に位置する頂点を結ぶ谷折りの横稜線を有する構成で、
 前記多面体壁は、複数の前記単位パネルが前記缶胴の中心軸線と平行方向に並んだ単位パネル列が、前記缶胴の周方向に全周的に密に配列された構成で、前記単位パネルの横稜線を通る断面が多角形状となっている金属缶において、
 前記単位パネルの横稜線を通る断面形状を14角以上の多角形状とし、角数を増やすことによって軸荷重強度を高める構成となっていることを特徴とする。
 本発明は、缶胴の軸荷重強度が、缶胴の軸直角方向の強度とは逆に、単位パネルの横稜線を通る断面の角数が大きいほど強度が高くなることを見出し、14角以上に設定して軸荷重強度の高い金属缶を実現するものである。
In order to achieve the above object, the present invention has a polyhedral wall composed of a number of unit panels defined by at least a part of a can body by convex boundary ridge lines,
The unit panel has a rhombus shape defined by the oblique ridgelines as the boundary ridgelines, two vertices located on a central plane passing through the central axis of the can body, and two vertices located symmetrically with respect to the central plane It has a total of four vertices, and has a valley fold horizontal ridge line connecting vertices located at symmetrical positions with respect to the center plane,
The polyhedral wall has a configuration in which a plurality of the unit panels are arranged in a direction parallel to the central axis of the can body, and the unit panel row is densely arranged in the circumferential direction of the can body. In the metal can where the cross section passing through the horizontal ridgeline is polygonal,
The cross-sectional shape passing through the horizontal ridgeline of the unit panel is a polygonal shape having 14 or more corners, and the axial load strength is increased by increasing the number of corners.
The present invention finds that the axial load strength of the can body is opposite to the strength in the direction perpendicular to the axis of the can body, and the strength increases as the number of cross-sections passing through the horizontal ridge line of the unit panel increases. To achieve a metal can with high axial load strength.
 また、本発明は次のように構成することができる。
 1)前記多面体壁の単位パネルの横稜線を通る断面の角数を、26角以下とする。
 26角になると、軸荷重強度は多面体壁の無いストレート缶とほぼ同等であり、それ以上にする必要はない。
 2)前記缶胴における前記多面体壁を有していないストレート部分の延長面から前記頂点が軸直角方向に突出する突出量が、0.28mm以下となるように設定されている。
 突出量が大きいと搬送中に缶同士あるいは缶とガイド壁が当たった場合に頂点が変形し易くなる。座屈は、頂点を取り囲む4つの単位パネルが窪むように形成されており、頂点が変形していると座屈が生じやすいので、突出量が小さい方が好ましい。しかし、折り構造なので頂点の突出は不可避的に生じ、角数が小さいほど、大きくなる。14角以上であれば、突出量を小さくすることができ、可及的に座屈が生じにくい構造となる。
Further, the present invention can be configured as follows.
1) The number of corners of the cross section passing through the horizontal ridge line of the unit panel of the polyhedral wall is 26 or less.
When it becomes 26 corners, the axial load strength is almost the same as that of a straight can having no polyhedral wall, and it is not necessary to increase it further.
2) The protrusion amount at which the apex protrudes in the direction perpendicular to the axis from the extended surface of the straight portion of the can body that does not have the polyhedral wall is set to be 0.28 mm or less.
If the protruding amount is large, the apex is easily deformed when the cans or the can and the guide wall come into contact with each other during conveyance. The buckling is formed so that four unit panels surrounding the apex are depressed. If the apex is deformed, buckling is likely to occur. Therefore, it is preferable that the protrusion amount is small. However, because of the folding structure, the protrusion of the apex inevitably occurs, and the smaller the number of corners, the larger. If the angle is 14 or more, the amount of protrusion can be reduced, and a structure in which buckling does not occur as much as possible is obtained.
 本願発明によれば、単位パネルの頂点を通る軸直角方向の断面形状を14角以上の多角形状とすることにより、軸荷重強度を高めることができる。 According to the present invention, the axial load strength can be increased by setting the cross-sectional shape in the direction perpendicular to the axis passing through the apex of the unit panel to a polygonal shape of 14 or more corners.
図1は、本発明の実施形態に係る14角の金属缶を示すもので、(A)は正面図、(B)は(A)のB-B線断面図である。1A and 1B show a 14-corner metal can according to an embodiment of the present invention, in which FIG. 1A is a front view and FIG. 1B is a sectional view taken along line BB of FIG. 図2は図1の単位パネルを示すもので、(A)は正面から見た図、(B)は(A)のC-C線断面図である。2A and 2B show the unit panel of FIG. 1, in which FIG. 2A is a front view and FIG. 2B is a cross-sectional view taken along the line CC of FIG. 図3は本発明の実施形態に係る16角の金属缶を示すもので、(A)は正面図、(B)は(A)のE-E線断面図、(C)は、26角の金属缶の正面図である。FIG. 3 shows a 16-corner metal can according to an embodiment of the present invention. (A) is a front view, (B) is a cross-sectional view taken along the line EE of (A), and (C) is a 26-corner. It is a front view of a metal can. 図4は軸荷重強度の測定方法を示す図で、(A)は測定装置全体図、(B)は軸荷重強度を測定する際に用いるネック部補強ジグを示す図である。4A and 4B are diagrams showing a method for measuring the axial load strength, in which FIG. 4A is an overall view of the measuring apparatus, and FIG. 4B is a diagram showing a neck portion reinforcing jig used when measuring the axial load strength. 図5は、本発明と従来の金属缶の水平断面の角数と軸荷重強度の関係を示す図である。FIG. 5 is a diagram showing the relationship between the number of corners of the horizontal cross section of the present invention and the conventional metal can and the axial load strength.
 以下に本発明を図示の実施形態に基づいて詳細に説明する。
 この実施の形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。
 本発明は、単位パネルの横稜線を通る水平断面形状を14角以上の多角形状とし、角数を増やすことによって軸荷重強度を高める構成としたものであり、図1は、14角の例を示し、図3(A),(B)には16角の例を、図3(C)には26角の例を示している。
 以下、14角を例にとって、金属缶の基本的な構成について説明する。
 図1は、本発明の実施形態に係る14角の金属缶を示すものである。
 この金属缶1は、缶胴21を有する有底筒状の缶本体2を備え、蓋を巻締前の空缶である。缶胴21の少なくとも一部に多面体壁4を有している。缶本体2は、ストレートに延びる円筒形状の缶胴21と、缶胴21の上端の径を絞ったネック部22と、底部23とを有する構成で、ネック部22上端の口部に、不図示の缶蓋が巻締められるフランジ24が設けられている。
 金属缶1としては、この実施形態では、一般的なアルミ合金等の絞りしごき缶で、たとえば、内容量が250ml~500ml用、5℃における缶内圧が20~300[kPa]の陽圧缶に使用される金属缶で、缶胴21の板厚は、0.08~0.20[mm]、缶胴径Dが60~70[mm](211径)、缶高さHが90~170[mm]の範囲で使用を想定している。缶胴径Dに対する缶高さHの比率は、1.3~2.6程度である。
 なお、本発明は上記陽圧缶用の金属缶に限らず、陰圧缶用にも適用可能であり、また、アルミ合金等に限らず、スチール缶にも適用でき、金属缶に広く適用可能である。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
The dimensions, materials, shapes, and relative arrangements of the components described in this embodiment should be changed as appropriate according to the configuration of the apparatus to which the invention is applied and various conditions. The present invention is not intended to be limited to the following embodiments.
In the present invention, the horizontal cross-sectional shape passing through the horizontal ridge line of the unit panel is a polygonal shape of 14 or more corners, and the axial load strength is increased by increasing the number of corners. FIG. 3A and 3B show examples of 16 corners, and FIG. 3C shows examples of 26 corners.
Hereinafter, the basic configuration of the metal can will be described by taking the 14 corners as an example.
FIG. 1 shows a 14-corner metal can according to an embodiment of the present invention.
The metal can 1 includes a bottomed cylindrical can body 2 having a can body 21 and is an empty can before a lid is wound. A polyhedral wall 4 is provided on at least a part of the can body 21. The can body 2 has a configuration including a cylindrical can body 21 extending straight, a neck portion 22 with a reduced diameter at the upper end of the can body 21, and a bottom portion 23. A flange 24 around which the can lid is wound is provided.
In this embodiment, the metal can 1 is a squeezed iron can such as a general aluminum alloy, for example, a positive pressure can having an internal capacity of 250 to 500 ml and an internal pressure of 20 to 300 [kPa] at 5 ° C. In the metal can used, the thickness of the can body 21 is 0.08 to 0.20 [mm], the can body diameter D is 60 to 70 [mm] (211 diameter), and the can height H is 90 to 170. Use in the range of [mm] is assumed. The ratio of the can height H to the can body diameter D is about 1.3 to 2.6.
The present invention is not limited to the above metal cans for positive pressure cans, but can also be applied to negative pressure cans, and can be applied not only to aluminum alloys but also to steel cans and widely applicable to metal cans. It is.
 多面体壁4は、缶胴21の周長は変化させずに折り構造によって凹凸形状としたもので、斜め稜線51の折り目で区画された菱形形状の多数の単位パネル5で構成されている。
すなわち、所定数の単位パネル5が缶胴21の中心軸線Nと平行方向(以下、単に軸方向という)に配列されてパネル列50を構成し、このパネル列50が缶胴21の周方向に全周的に配列された構成となっている。互いに隣り合うパネル列50の単位パネル5の軸方向の位相は、単位パネル5の軸方向の長さの半分だけずらして配列され、単位パネル5が軸方向及び周方向に密に配列されている。
 隣り合うパネル列50は、単位パネル5の長さの半分だけ軸方向にずれているので、周方向に一つ置きに位置するパネル列50の単位パネル5は、軸方向に同一位相にあり、横稜線52が、共通する頂点53を介してつながっている。したがって、単位パネル5の横稜線52の位置で、缶胴21の中心軸線Nと軸直角方向に切断した断面は、図1(B)に示すように、正多角形状となる。
 多面体壁4は、この例では、缶胴21の軸方向中途部分に、帯状に設けられ、多面体壁4の上部及び下部領域は、凹凸の無い円筒面のストレート部21a,21bとなっている。
 多面体壁4の軸方向長さLと、缶高さHとの比率(L/H)は、50%程度となっており、底部側のストレート部21bの長さは、缶高さHに対して、19%程度となっているが、他の比率としてもよい。
The polyhedral wall 4 has a concave and convex shape by a folding structure without changing the circumference of the can body 21, and is composed of a large number of rhomboid unit panels 5 partitioned by the folds of the diagonal ridges 51.
That is, a predetermined number of unit panels 5 are arranged in a direction parallel to the central axis N of the can body 21 (hereinafter simply referred to as an axial direction) to form a panel row 50, and the panel row 50 is arranged in the circumferential direction of the can body 21. The configuration is arranged all around. The phase in the axial direction of the unit panels 5 of the panel rows 50 adjacent to each other is shifted by half the axial length of the unit panels 5 and the unit panels 5 are densely arranged in the axial direction and the circumferential direction. .
Since the adjacent panel rows 50 are displaced in the axial direction by half the length of the unit panel 5, the unit panels 5 of the panel rows 50 located every other circumferential direction are in the same phase in the axial direction, The horizontal ridge line 52 is connected via a common vertex 53. Therefore, the cross section cut in the direction perpendicular to the central axis N of the can body 21 at the position of the horizontal ridgeline 52 of the unit panel 5 has a regular polygonal shape as shown in FIG.
In this example, the polyhedral wall 4 is provided in a strip shape in the middle of the axial direction of the can body 21, and the upper and lower regions of the polyhedral wall 4 are cylindrical straight portions 21 a and 21 b without irregularities.
The ratio (L / H) between the axial length L of the polyhedral wall 4 and the can height H is about 50%, and the length of the straight portion 21b on the bottom side is relative to the can height H. The ratio is about 19%, but other ratios may be used.
 単位パネル5は、図2に示すように、缶胴21の中心軸線Nを通る中心面M上に位置する2つの頂点53a、53cと、中心面Mに対して対称位置に位置する2つの頂点53b、53dの計4つの頂点を有している。これら4つの頂点53a~53dは、中心軸線Nを中心とする円筒面上に位置し、中心面Mに対して対称位置に位置する頂点53b、53dを結ぶ谷折りの横稜線52によって、図2(B)の実線で示すように、軸方向に缶胴21の内方にくの字状に屈曲して窪んだ構成となっている。4つの頂点53a~53dを通る仮想の円筒面の径は、缶胴21の最大径となる。
 また、単位パネル5の頂点53a,53c間の長さb(以下、縦方向長さ)と、頂点53b,53d間の水平方向長さaとの縦横比(b/a)は、図示例では1であり、1を中心に、0.8≦(b/a)≦1.2程度に設定されるが、0.8≦(b/a)≦2.0程度に、縦長構成としてもよい。
As shown in FIG. 2, the unit panel 5 includes two vertices 53 a and 53 c located on a central plane M passing through the central axis N of the can body 21, and two vertices located at symmetrical positions with respect to the central plane M. It has a total of four vertices, 53b and 53d. These four vertices 53a to 53d are located on a cylindrical surface with the central axis N as the center, and a valley-folded horizontal ridgeline 52 connecting the vertices 53b and 53d located in a symmetric position with respect to the central surface M is shown in FIG. As shown by the solid line in (B), it has a configuration in which it is bent and bent in the shape of a circle inward of the can body 21 in the axial direction. The diameter of the virtual cylindrical surface passing through the four vertices 53a to 53d is the maximum diameter of the can body 21.
In addition, the aspect ratio (b / a) between the length b between the vertices 53a and 53c of the unit panel 5 (hereinafter, the length in the vertical direction) and the horizontal length a between the vertices 53b and 53d is shown in the illustrated example. 1 is set to about 0.8 ≦ (b / a) ≦ 1.2, with 1 as the center, but a vertically long configuration may be set to about 0.8 ≦ (b / a) ≦ 2.0. .
 図3(A),(B)に示す16角の形態、図3(C)に示す26角の形態については、図1の実施形態と基本的な構成は同一なので、相違点のみについて説明するものとし、同一の構成部分については同一の符号を付し、説明を省略する。
 相違点は、水平断面の角数が大きくなるにつれて、単位パネルの大きさが小さくなる点である。缶本体の高さ及び缶胴径及び単位パネルの縦横比は、角数が変ってもすべて同じに設定しており、また、多面体壁の軸方向長さはほぼ同じであり、単位パネルの大きさが小さくなる分だけ、単位パネルの周方向及び軸方向の数が増大する。
 単位パネルの数は、14角では、周方向に28面、一列置きに軸方向に4面及び3面で、合計98面であるが、16角では、周方向に32面、一列置きに軸方向に5面及び4面で、合計144面、26角では、周方向に52面、一列置きに軸方向に8面及び7面で、合計390面となっている。
 軸方向のパネル列の面数については、多面体壁4の軸方向長さLをどの程度にとるかに依存する。たとえば、缶胴径が66.00mmで、缶高さが122.20の缶の場合、多面体壁4の軸方向長さLは、16角で64.70mm、26角で61.60mmである。
 表1には、角数と軸荷重強度の関係を示している。ストレート缶とは、缶胴に多面体壁を有していない缶である。
The 16-corner form shown in FIGS. 3 (A) and 3 (B) and the 26-corner form shown in FIG. 3 (C) have the same basic configuration as the embodiment of FIG. 1, so only the differences will be described. The same components are denoted by the same reference numerals, and description thereof is omitted.
The difference is that the size of the unit panel decreases as the number of corners of the horizontal section increases. The height of the can body, the diameter of the can body, and the aspect ratio of the unit panel are all set to the same even if the number of corners changes, and the axial length of the polyhedron wall is almost the same. The number in the circumferential direction and the axial direction of the unit panel increases as the length decreases.
The number of unit panels is 28 in the circumferential direction, 28 in the circumferential direction, 4 in the axial direction and 3 in the axial direction, for a total of 98 planes, but in the 16 corner, the number of unit panels is 32 in the circumferential direction. In the five directions and four sides in the direction, a total of 144 planes and 26 corners, 52 planes in the circumferential direction, 8 planes and 7 planes in the axial direction every other row, a total of 390 planes.
The number of panels in the axial direction depends on how much the length L in the axial direction of the polyhedral wall 4 is taken. For example, in the case of a can having a can barrel diameter of 66.00 mm and a can height of 122.20, the axial length L of the polyhedral wall 4 is 64.70 mm at 16 angles and 61.60 mm at 26 angles.
Table 1 shows the relationship between the number of corners and the axial load strength. A straight can is a can that does not have a polyhedral wall in the can body.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 上記軸荷重強度の測定は、サンプルとして、次の5種類のアルミ缶を用意して測定した。
(サンプル1)角数:11角、パネルの水平方向長さa(πD/n):18.84mm、多面体壁の缶高さとの比率(L/H):54.0%(65.94/122.20)、軸方向のパネル数:3及び3
 ここで、nは角数、Dは缶胴径、Lは多面体壁の軸方向長さ、Hは缶高さである。単位パネル5の縦横比(b/a)は1であり、Lは、(軸方向のパネル数)×(パネルの縦方向長さb)に等しい。隣り合うパネル列は半位相ずつずれているので、ここで、軸方向のパネル数は、3.5として計算した。また、多面体壁の缶高さとの比率(L/H)については、少数点2桁目を四捨五入して小数点一桁とした。以下同様である。
(サンプル2)角数:13角、パネルの水平方向長さa(πD/n):15.94mm、多面体壁の缶高さとの比率(L/H):52.2%(63.77/122.20)、軸方向のパネル数:4及び3、Lは、(多い方のパネル数(4))×(パネルの縦方向長さb)である。
(サンプル3)角数:16角、パネルの水平方向長さa(πD/n):12.95mm、多多面体壁の缶高さとの比率(L/H):53%(64.76/122.20)、軸方向のパネル数:5及び4、Lは、(多い方のパネル数(5))×(パネルの縦方向長さb)である。
(サンプル4)角数:26角、パネルの水平方向長さa(πD/n):7.97mm、多面体壁の缶高さとの比率(L/H):52.2%(63.77/122.20)、軸方向のパネル数:8及び7、Lは、(多い方のパネル数(8))×(パネルの縦方向長さb)である。
(サンプル5)多面体壁無し。
 それぞれのサンプル缶は、350ml用の飲料缶に用いられる缶で、その寸法は、次の通りである。
 ・缶胴の板厚:0.107mm
 ・缶胴径(D):66.00mm(211径)
 ・缶高さ(H):122.20mm
 缶胴の板厚は、多面体壁の位置での板厚である。また、缶胴径はストレート部の外径である。
 次に軸荷重強度の測定方法について説明する。
 軸荷重強度の測定装置には「株式会社島津製作所」製、オートグラフ(型番:AG-2000D)を用いた。まず、金属缶1のフランジ25側が上向きになるように測定装置6の受圧テーブル61に置き、図4(B)に示す様に、金属缶1の開口部にネック部補強ジグ62を載せる。次に、図4(A)に示すように、試験装置にて、金属缶1に載せたネック部補強ジグ62に10mm/minの圧縮速度で圧縮荷重を加え、横軸に圧縮量、縦軸に圧縮荷重のグラフを出力する。座屈が発生すると圧縮荷重が低下するので、グラフの最大値を読み取り、その値を軸荷重強度とする。測定数量は12缶以上とし、その平均値を求める。
The axial load strength was measured by preparing the following five types of aluminum cans as samples.
(Sample 1) Number of corners: 11 corners, horizontal length a (πD / n) of panel: 18.84 mm, ratio of polyhedral wall to can height (L / H): 54.0% (65.94 / 122.20), number of axial panels: 3 and 3
Here, n is the number of corners, D is the diameter of the can body, L is the length of the polyhedral wall in the axial direction, and H is the height of the can. The unit panel 5 has an aspect ratio (b / a) of 1, and L is equal to (the number of panels in the axial direction) × (the vertical length b of the panel). Since adjacent panel rows are shifted by a half phase, the number of panels in the axial direction is calculated as 3.5. Moreover, about the ratio (L / H) with the can height of the polyhedron wall, the second decimal point was rounded off to the first decimal place. The same applies hereinafter.
(Sample 2) Number of corners: 13 corners, horizontal length a (πD / n) of panel: 15.94 mm, ratio of polyhedral wall height to can (L / H): 52.2% (63.77 / 122.20), number of axial panels: 4 and 3, and L is (the larger number of panels (4)) × (the longitudinal length b of the panel).
(Sample 3) Number of corners: 16 corners, horizontal length a (πD / n) of panel: 12.95 mm, ratio with polyhedron wall can height (L / H): 53% (64.76 / 122) 20), number of axial panels: 5 and 4, L is (the larger number of panels (5)) × (the vertical length b of the panel).
(Sample 4) Number of corners: 26 corners, horizontal length a (πD / n) of panel: 7.97 mm, ratio of polyhedral wall to can height (L / H): 52.2% (63.77 / 122.20), number of axial panels: 8 and 7, L is (the larger number of panels (8)) × (the vertical length b of the panel).
(Sample 5) No polyhedral wall.
Each sample can is a can used for a 350 ml beverage can, and the dimensions are as follows.
・ Thickness of can body: 0.107 mm
・ Can body diameter (D): 66.00 mm (211 diameter)
・ Can height (H): 122.20mm
The plate thickness of the can body is the plate thickness at the position of the polyhedral wall. The can body diameter is the outer diameter of the straight portion.
Next, a method for measuring the axial load strength will be described.
An autograph (model number: AG-2000D) manufactured by “Shimadzu Corporation” was used as a measuring device for the axial load strength. First, the metal can 1 is placed on the pressure receiving table 61 of the measuring device 6 so that the flange 25 side faces upward, and the neck portion reinforcing jig 62 is placed on the opening of the metal can 1 as shown in FIG. Next, as shown in FIG. 4 (A), a compression load is applied to the neck portion reinforcing jig 62 placed on the metal can 1 at a compression speed of 10 mm / min using a test apparatus, the horizontal axis represents the compression amount, and the vertical axis To output a graph of compression load. When the buckling occurs, the compressive load decreases. Therefore, the maximum value of the graph is read and the value is set as the axial load strength. The measurement quantity is 12 cans or more, and the average value is obtained.
 表1に示す通り、軸荷重強度は、11角では923N、13角では1173N、16角では1458N、26角では1582N、多面体壁の無いストレート缶の場合は、1595Nであった。
 基本的に、軸方向の圧縮荷重は主として斜め稜線51で支えられるので、角数が増えると、斜め稜線51の数も多くなり、軸圧縮荷重が分散されて軸荷重強度が高まるものと思量される。
 図5は、表1の軸荷重強度のデータを、角数を横軸に、軸荷重強度を縦軸に取ったグラフである。
 このグラフからすると、軸荷重強度の増加の程度は、11角から13角の間の勾配に対して、16角から26角の間の勾配が緩やかになっている。ストレート缶に対する各角数の軸荷重強度の比率を見ると、16角から26角では、91%から99%と、1角当たり0.8%の増分であるのに対して、11角から13角では、58%から74%と、1角当たり16%の増分で、16角から26角の間の変化率に対して大きく変化している。
 特に、13角では、ストレート缶に対して73.5%程度であるのに対して、16角では90%を超えており、14角では、11角から13角の増分(1角当たり8%)を考慮すると、82パーセントと、ほぼ80%に達する。
 この結果に示すように、本実施形態によれば、水平断面を14角以上に設定することにより、ストレート缶の80%程度以上の軸荷重強度を確保することができる。また、16角以上に設定すれば、ストレート缶の90%程度以上の軸荷重強度を確保することができる。
 一方、26角になると、軸荷重強度はストレート缶とほぼ同等となり、これ以上の角数としても軸荷重強度の増大という観点では意味が無く、また、加工性も悪くなるので、26角以下が好ましい。
 このように、本願発明によれば、板厚を薄肉にしたとしても、単位パネル5の頂点53を通る軸直角方向の断面形状を14角以上の多角形状とすることにより、軸荷重強度を高めることができる。また、所定の軸荷重強度を得るために、水平断面の角数を増やすことによって、板厚を薄肉化することが可能となる。
As shown in Table 1, the axial load strength was 923N for the 11th corner, 1173N for the 13th corner, 1458N for the 16th corner, 1582N for the 26th corner, and 1595N for the straight can without the polyhedral wall.
Basically, the compressive load in the axial direction is mainly supported by the oblique ridges 51. Therefore, when the number of corners increases, the number of oblique ridges 51 also increases, and the axial compressive load is dispersed to increase the axial load strength. The
FIG. 5 is a graph in which the axial load strength data in Table 1 is plotted with the number of angles on the horizontal axis and the axial load strength on the vertical axis.
According to this graph, the degree of increase in the axial load intensity is gentler in the gradient between the 16th and 26th corners than the gradient between the 11th and 13th corners. Looking at the ratio of the axial load strength of each corner to the straight can, from 16 to 26 corners, from 91% to 99%, an increase of 0.8% per corner, from 11 to 13 corners. In the corners, from 58% to 74%, with a 16% increment per corner, there is a large change with respect to the rate of change between the 16th and 26th corners.
In particular, the 13 corner is about 73.5% of the straight can, whereas the 16 corner is over 90%, and the 14 corner is an increment of 11 to 13 corners (8% per corner). ) Is 82%, almost 80%.
As shown in this result, according to the present embodiment, the axial load strength of about 80% or more of the straight can can be ensured by setting the horizontal cross section to 14 corners or more. Moreover, if it sets to 16 or more corners, about 90% or more of axial load intensity | strength of a straight can is securable.
On the other hand, when it is 26 corners, the axial load strength is almost the same as that of a straight can, and even more corners are meaningless in terms of increasing the axial load strength, and the workability also deteriorates. preferable.
Thus, according to the present invention, even if the plate thickness is reduced, the axial load strength is increased by making the cross-sectional shape in the direction perpendicular to the axis passing through the vertex 53 of the unit panel 5 into a polygonal shape of 14 or more corners. be able to. Further, in order to obtain a predetermined axial load strength, it is possible to reduce the plate thickness by increasing the number of corners of the horizontal section.
[多面体壁4の角数と頂点のストレート部に対する突出量の関係]
 次に、図2を用いて、頂点53のストレート部からの突出量について説明する。なお、図2では、単位パネル5の上下左右の頂点53を区別する意味で、符号53に添字a~dを付しているが、以下の説明では、特に区別する必要が無いので、基本的に添字を省略して説明するものとする。
 座屈は、頂点53を取り囲む4つの単位パネル5が、頂点53を中心にしてまとめて窪むように発生する。この頂点53は、加工性を考慮して面取り形状となっているが、水平断面の多角形の頂点に位置するために、多面体壁の上下に位置するストレート部21a,21bに対して、不可避的に外側に突出している。図中、二点鎖線Sは、ストレート部21a,21bの延長線である。頂点53が突出していると、たとえば、搬送中に空缶同士、あるいはガイド壁に突出部が当たって微小変形する可能性があり、座屈変形を助長する。
 そのため、突出量δは可及的に小さくすることが好ましい。
 表2は、多面体壁の水平断面の角数に対して、ストレート部21a,21bに対する突出量δを示している。表2において、最外径は頂点53を通る円筒面の径であり、面取りを含めて計算値で求め、13角、16角、26角については、実測値を求めて誤差を検証している。
[Relationship between the number of corners of the polyhedral wall 4 and the protrusion amount with respect to the straight portion of the vertex]
Next, the amount of protrusion of the vertex 53 from the straight portion will be described with reference to FIG. In FIG. 2, subscripts a to d are attached to the reference numeral 53 in order to distinguish the top, bottom, left, and right vertices 53 of the unit panel 5. However, in the following description, there is no need to distinguish between them. The explanation will be made with the subscripts omitted.
The buckling occurs so that the four unit panels 5 surrounding the vertex 53 are recessed together around the vertex 53. The apex 53 has a chamfered shape in consideration of workability, but is inevitable with respect to the straight portions 21a and 21b positioned above and below the polyhedral wall because it is positioned at the apex of the polygon of the horizontal section. Projecting outward. In the drawing, a two-dot chain line S is an extension line of the straight portions 21a and 21b. When the apex 53 protrudes, for example, there is a possibility that the empty cans or the guide wall hits the guide wall during the conveyance, and the protrusion deforms, so that buckling deformation is promoted.
Therefore, it is preferable to make the protrusion amount δ as small as possible.
Table 2 shows the protrusion amount δ with respect to the straight portions 21a and 21b with respect to the number of angles of the horizontal section of the polyhedral wall. In Table 2, the outermost diameter is the diameter of the cylindrical surface passing through the apex 53, and is calculated with calculated values including chamfering. For the 13th, 16th, and 26th angles, actual values are obtained to verify errors. .
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2に示すように、突出量δは、13角で、0.33mmと最大で、角数が増えるにつれて徐々に小さくなり、26角では0.09mmとなっている。ストレート部21a,21bの径は66.00mmである。突出量δは、(最外径―ストレート部の径)/2である。計算値に対して実際の寸法を実測したところ、誤さは、最外径で±0.04mmであり、片側の突出量では、±0.02mmであった。
 このように、角数が増えるほど、突出量は小さくなるので、14角以上に設定しておけば、現行13角よりも小さく、最大(0.28±0.02)mm程度に押さえられ、搬送中に缶同士が仮りに当たったとしても、ストレート部21a,21bで衝突の衝撃が吸収することができる。したがって、頂点53付近での変形を防止することができ、軸方向荷重の低下を可及的に小さくすることができる。
 なお、表1、表2のデータ、図5のグラフは、具体例では、アルミ系の金属缶で、缶胴の板厚が0.107mm、缶胴径(D)が66.00mm、缶高さが122.20mmのものについて、角数を14角以上に設定して軸荷重強度を高める点について説明したが、本発明は、これらの寸法の金属缶に限定されるものではなく、他の板厚、缶胴径、缶高さの一定の組み合わせの金属缶において、同様に角数を14角以上に設定することにより、軸荷重強度を高めることができる。
As shown in Table 2, the protrusion amount δ is 13 corners, 0.33 mm at the maximum, gradually decreases as the number of corners increases, and 26 corners is 0.09 mm. The diameters of the straight portions 21a and 21b are 66.00 mm. The protrusion amount δ is (outermost diameter−straight portion diameter) / 2. When actual dimensions were measured with respect to the calculated values, the error was ± 0.04 mm at the outermost diameter, and ± 0.02 mm at the protrusion amount on one side.
Thus, as the number of corners increases, the amount of protrusion decreases, so if it is set to 14 or more corners, it is smaller than the current 13 corners and is suppressed to the maximum (0.28 ± 0.02) mm, Even if the cans hit each other during conveyance, the impact of the collision can be absorbed by the straight portions 21a and 21b. Therefore, deformation near the apex 53 can be prevented, and the decrease in the axial load can be minimized.
The data in Tables 1 and 2 and the graph in FIG. 5 are, in a specific example, an aluminum-based metal can with a can barrel thickness of 0.107 mm, a can barrel diameter (D) of 66.00 mm, and a can height. Although the point of increasing the axial load strength by setting the number of corners to 14 or more has been described for those having a length of 122.20 mm, the present invention is not limited to metal cans of these dimensions, In a metal can having a certain combination of plate thickness, can body diameter, and can height, the axial load strength can be increased by similarly setting the number of corners to 14 or more.
1  金属缶、
2  缶本体
 21  缶胴、22  ネック部、23  底部、24  フランジ
4  多面体壁
5  単位パネル
 51  斜め稜線、52  横稜線、53(53a~53d)  頂点
50 パネル列
6  測定装置
 61  受圧テーブル、62  ネック部補強ジグ
M    中心面
N    中心軸線
δ  突出量
1 metal can,
2 Can body 21 Can body, 22 Neck part, 23 Bottom part, 24 Flange 4 Polyhedron wall 5 Unit panel 51 Diagonal ridge line, 52 Horizontal ridge line, 53 (53a to 53d) Vertex 50 Panel row 6 Measuring device 61 Pressure receiving table, 62 Neck part Reinforcement jig M Center plane N Center axis δ Projection amount

Claims (4)

  1.  缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、
     前記単位パネルは前記境界稜線としての斜め稜線によって区画される菱形形状で、缶胴の中心軸線を通る中心面上に位置する2つの頂点と、中心面に対して対称位置に位置する2つの頂点の計4つの頂点を有し、前記中心面に対して対称位置に位置する頂点を結ぶ谷折りの横稜線を有する構成で、
     前記多面体壁は、複数の前記単位パネルが前記缶胴の中心軸線と平行方向に並んだ単位パネル列が、前記缶胴の周方向に全周的に密に配列された構成で、前記単位パネルの横稜線を通る断面が多角形状となっている金属缶において、
     前記単位パネルの横稜線を通る断面形状を14角以上の多角形状とし、角数を増やすことによって軸荷重強度を高める構成となっていることを特徴とする金属缶。
    Having a polyhedral wall composed of a large number of unit panels partitioned by a convex boundary ridge line on at least a part of the can body;
    The unit panel has a rhombus shape defined by the oblique ridgelines as the boundary ridgelines, two vertices located on a central plane passing through the central axis of the can body, and two vertices located symmetrically with respect to the central plane It has a total of four vertices, and has a valley fold horizontal ridge line connecting vertices located at symmetrical positions with respect to the center plane,
    The polyhedral wall has a configuration in which a plurality of the unit panels are arranged in a direction parallel to the central axis of the can body, and the unit panel row is densely arranged in the circumferential direction of the can body. In the metal can where the cross section passing through the horizontal ridgeline is polygonal,
    A metal can characterized in that the cross-sectional shape passing through the horizontal ridge line of the unit panel is a polygonal shape of 14 or more corners, and the axial load strength is increased by increasing the number of corners.
  2.  前記多面体壁の単位パネルの横稜線を通る断面の角数を、26角以下とすることを特徴とする請求項1に記載の金属缶。 2. The metal can according to claim 1, wherein the number of corners of a cross section passing through a horizontal ridge line of the unit panel of the polyhedral wall is 26 or less.
  3.  前記単位パネルの横稜線を通る断面形状を14角以上の多角形状とした場合の軸荷重強度は、缶胴に多面体壁を有さない金属缶の軸荷重強度の80%以上である請求項1又は2に記載の金属缶。 2. The axial load strength when the cross-sectional shape passing through the horizontal ridge line of the unit panel is a polygonal shape of 14 or more is 80% or more of the axial load strength of a metal can having no polyhedral wall in the can body. Or the metal can as described in 2.
  4.  前記缶胴における前記多面体壁を有していないストレート部分の延長面から頂点が軸直角方向に突出する突出量が、0.28mm以下となるように設定されている請求項1乃至3のいずれか1項に記載の金属缶。 4. The projection amount of which the apex projects in the direction perpendicular to the axis from the extended surface of the straight portion not having the polyhedral wall in the can body is set to be 0.28 mm or less. 5. The metal can according to item 1.
PCT/JP2019/011565 2018-03-30 2019-03-19 Metal can WO2019188612A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068236 2018-03-30
JP2018068236A JP7305921B2 (en) 2018-03-30 2018-03-30 metal can

Publications (1)

Publication Number Publication Date
WO2019188612A1 true WO2019188612A1 (en) 2019-10-03

Family

ID=68060533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011565 WO2019188612A1 (en) 2018-03-30 2019-03-19 Metal can

Country Status (2)

Country Link
JP (1) JP7305921B2 (en)
WO (1) WO2019188612A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602626U (en) * 1983-06-20 1985-01-10 川鉄コンテイナ−株式会社 Polygonal pail can
JPH07102417B2 (en) * 1989-08-31 1995-11-08 東洋製罐株式会社 Can for can and method of manufacturing the same
JP2011152939A (en) * 2010-01-27 2011-08-11 Nippon Steel Corp Can with bead
JP2016155595A (en) * 2015-02-26 2016-09-01 東洋製罐株式会社 Polyhedral periphery wall can

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602626U (en) * 1983-06-20 1985-01-10 川鉄コンテイナ−株式会社 Polygonal pail can
JPH07102417B2 (en) * 1989-08-31 1995-11-08 東洋製罐株式会社 Can for can and method of manufacturing the same
JP2011152939A (en) * 2010-01-27 2011-08-11 Nippon Steel Corp Can with bead
JP2016155595A (en) * 2015-02-26 2016-09-01 東洋製罐株式会社 Polyhedral periphery wall can

Also Published As

Publication number Publication date
JP7305921B2 (en) 2023-07-11
JP2019177924A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP4667854B2 (en) Bottle can and manufacturing method thereof
JP4683278B2 (en) Synthetic resin housing
WO2006120977A1 (en) Resin storage container
EP2634106A1 (en) Bottle
JP6136172B2 (en) Resin container
JP2016043991A (en) can
WO2019188612A1 (en) Metal can
CN110686429A (en) Micro-channel heat exchanger
WO2016158038A1 (en) Can body
JP2017100752A (en) Square bottle
JP5057305B2 (en) Synthetic resin housing
JP5402677B2 (en) Can with bead
JP3527498B2 (en) Angle bracket
JP6798770B2 (en) Round bottle
JP2007091330A (en) Bottle can
JP5609526B2 (en) Can body and can body forming tool
JP2595469B2 (en) Container with reinforcing ribs
JP7505255B2 (en) Metal can, positive pressure can, and method for manufacturing metal can
JP4966745B2 (en) Bottle
JP2020193037A (en) Metal can, positive pressure can, and manufacturing method of metal can
US9677455B2 (en) Stackable muffler shell
JP5890094B2 (en) Bottle
JP2021107234A (en) Bottle
JP6902933B2 (en) Bottle
JP5120976B2 (en) Oval bottle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776467

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776467

Country of ref document: EP

Kind code of ref document: A1