WO2019188355A1 - Plasma source mechanism and thin-film formation device - Google Patents

Plasma source mechanism and thin-film formation device Download PDF

Info

Publication number
WO2019188355A1
WO2019188355A1 PCT/JP2019/010606 JP2019010606W WO2019188355A1 WO 2019188355 A1 WO2019188355 A1 WO 2019188355A1 JP 2019010606 W JP2019010606 W JP 2019010606W WO 2019188355 A1 WO2019188355 A1 WO 2019188355A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma source
antenna
film formation
source mechanism
vacuum chamber
Prior art date
Application number
PCT/JP2019/010606
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 菅原
充祐 宮内
亦周 長江
Original Assignee
株式会社シンクロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シンクロン filed Critical 株式会社シンクロン
Publication of WO2019188355A1 publication Critical patent/WO2019188355A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to the field of optical thin film formation, and more particularly to a plasma source mechanism and a thin film formation apparatus.
  • This application claims the priority based on 2018102655405.6 of the Chinese patent application filed on March 28, 2018, and the designated countries that are allowed to be incorporated by reference are described in the above application. The contents of which are incorporated into the present application by reference and made a part of the description of the present application.
  • ICP inductively coupled plasma
  • various shapes of ICP have been submitted (for example, see Patent Documents 1 and 2).
  • the first method is to increase the size of the antenna.
  • the second method is that a plurality of antennas are arranged vertically. In the process of use, with these two methods, RF matching adjustment cannot be performed, power cannot be applied, or impurities are present in the sputtered material, which may affect the quality of film formation. is there.
  • each antenna 100 is located in each antenna chamber 200 and is independent from each other.
  • a process of forming plasma by ICP discharge by forming a metal partition 300 between two adjacent antennas 100 (or antenna chambers 200) by being fixed by the metal fixing member 300 when the antenna chamber 200 is attached.
  • sputtering occurs in the metal partition 300, and impurities are present in the sputtered material, which may affect the quality of film formation.
  • the present invention needs to provide a plasma source mechanism and a thin film forming apparatus so that the ICP discharge range can be expanded.
  • the plasma source mechanism according to the present embodiment is a plasma source mechanism applicable to a thin film forming apparatus having a vacuum chamber, and includes a case attached outside the vacuum chamber and a dielectric portion outside the vacuum chamber.
  • a plasma source mechanism In a preferred embodiment, the case is an integrally formed quartz glass case.
  • the antenna unit has two spiral coils arranged in parallel, and the length direction of the antenna unit is aligned with the two spiral coils. May be.
  • a plurality of the antenna units may be arranged in the longitudinal direction of the antenna unit.
  • the width of the gap may be 0.5 to 1.0 times the separation distance between the two spiral coils.
  • the antenna unit may be connected to a high frequency power source.
  • a thin film forming apparatus which is provided in a vacuum chamber, a film formation region for forming a film on a film formation target by sputtering, and in the vacuum chamber.
  • a plasma processing region for performing plasma processing on the film on the film formation target by the plasma source mechanism according to any one of the above-described embodiments; and a state in which the film formation target is supported in the vacuum chamber.
  • a rotation support mechanism that forms a desired thin film by passing the film formation target through the film formation region and the plasma processing region in accordance with the rotation.
  • the rotation support mechanism may rotate about a rotation axis, and the arrangement direction of the plurality of antenna units may be parallel to the rotation axis.
  • the plasma source mechanism of the present invention a plurality of antenna portions are installed in the same case, and accordingly, there is no metal partition between the two antenna portions.
  • the plasma source mechanism of this embodiment can expand the ICP discharge range, expand the film formation range, improve production efficiency, and suppress the generation of sputter impurities in the process of forming plasma by ICP discharge. The quality of film formation can be improved.
  • FIG. 1 is a schematic view of the structure of a conventional plasma source mechanism.
  • FIG. 2 is a schematic diagram of the structure of a plasma source mechanism provided by an embodiment of the present invention.
  • FIG. 3 is a schematic view of a thin film forming apparatus employing the plasma source mechanism shown in FIG.
  • FIG. 4 is a schematic view of a film forming range when the film forming test is performed by employing the thin film forming apparatus shown in FIG.
  • an element when an element is referred to as “provided” in another element, the element may be located directly on the other element, or the element may exist indirectly. Where one element is considered “connected” to another element, it may be directly connected to another element, or includes the presence of an element indirectly.
  • the terms “vertical”, “horizontal”, “left”, “right” and similar descriptions used in the text are for illustration purposes only and are not meant to represent the sole embodiment. Absent.
  • Each of the plasma source mechanisms 10 includes a case 1 attached to the outside of the vacuum chamber 30 and an independent connecting portion 3 that is disposed outside the vacuum chamber 30 via the dielectric portion 5 and to which high-frequency power is applied.
  • An antenna unit that includes a plurality of antenna units 2 that do not overlap each other region (any one region) and another region (another region).
  • a thin film forming apparatus is provided.
  • the thin film forming apparatus is provided in the vacuum chamber 30 and the vacuum chamber 30, provided in the vacuum chamber 30, and a film formation region (not shown) for forming a film on the film formation target 40 by sputtering.
  • a plasma processing region in which plasma processing is performed on the film on the film target 40 by the plasma source mechanism 10 described in the above embodiment and the vacuum chamber 30 are provided, and the film target 40 can be rotated while being supported.
  • a rotation support mechanism (not shown) for forming a desired thin film by passing the film formation target 40 through the film formation region and the plasma processing region with the rotation is included.
  • the thin film forming apparatus includes a vacuum container 20 that is a container with a chamber, and the chamber is a vacuum tank 30.
  • the vacuum chamber 30 can be connected to a vacuum exhaust system (not shown) to form an environment for vacuum film formation in the case 1.
  • a vacuum exhaust system not shown
  • an object to be processed by the plasma source mechanism 10 is disposed on, for example, the substrate 50 (or the substrate 50).
  • the plasma source mechanism 10 includes a case 1, a dielectric portion 5, and an antenna unit.
  • the case 1 can be fixed so as to close an opening formed in the wall of the vacuum vessel 20 from the outside.
  • the case 1 may be an integrally formed quartz glass case 1.
  • the dielectric part 5 can be fixed to the front surface of the case 1 (this front-rear direction is referred to as the front direction in the direction close to the vacuum chamber 30 and the rear direction from the vacuum chamber 30).
  • the region surrounded by the case 1 and the dielectric portion 5 forms an antenna accommodating chamber 4 that accommodates the antenna unit.
  • the dielectric portion 5 can be fixed to the surface of the case 1 that is formed of, for example, plate-shaped quartz having a predetermined thickness and faces the vacuum chamber 30.
  • the dielectric portion 5 is a rectangular plate.
  • the antenna unit is located in the case 1. Specifically, it is accommodated in the antenna accommodating chamber 4.
  • the antenna housing chamber 4 is separated from the inside of the vacuum vessel 20 (vacuum chamber 30). That is, the antenna housing chamber 4 and the vacuum chamber 30 form an independent space separated by the dielectric portion 5. Further, the antenna housing chamber 4 and the outside of the vacuum container 20 form an independent space separated by the case 1.
  • the antenna housing chamber 4 can be communicated with a vacuum pump by a pipe line. By performing evacuation by the vacuum pump and exhausting the inside of the antenna housing chamber 4, the antenna housing chamber 4 is brought into a vacuum state, and the inside of the antenna unit can be made into a vacuum environment.
  • the antenna unit includes a plurality (two or more) of antenna units 2.
  • each antenna part 2 has an independent connecting part 3 to which high-frequency power is applied.
  • Each of the antenna units 2 is supplied with power from the AC power supply 7 by the connecting unit 3 and generates an induction electric field in the vacuum chamber 30, thereby generating plasma.
  • each antenna unit 2 may be connected to an AC power source 7 via a matcher 6 that houses a matching circuit.
  • a variable capacitor capable of changing the power supplied from the AC power supply 7 to the antenna unit 2 can be provided.
  • the plurality of antenna parts 2 are in the same case 1, and accordingly, there is no metal partition between the two antenna parts 2.
  • the plasma source mechanism 10 of the present embodiment can suppress the generation of sputter impurities and improve the quality of film formation in the process of forming plasma by ICP discharge.
  • the antenna units 2 are independent of each other, and when power is supplied to the power supply 7, each antenna unit 2 can generate plasma by performing ICP discharge.
  • the single antenna unit 2 is a case where no other antenna unit 2 exists or is not energized, and the single antenna unit 2 itself cannot generate an induction electric field.
  • Each antenna unit 2 connected to the power source 7 has a connecting unit 3, and each antenna unit 2 can be connected to the high frequency power source 7 by the connecting unit 3.
  • each antenna unit 2 may be the same size as the single antenna 100 in FIG. 1, and the connected power source 7 may be the same as the conventional power source 7.
  • the conventional RF (radio frequency) matching relationship can be followed, and RF matching can be achieved.
  • the antenna unit 2 does not have an overlapping area between any one area and another certain area. As shown in FIG. 1, the areas covered by or occupied by the two antenna units 2 are independent of each other and do not overlap on the paper surface. Of course, the antenna unit 2 may be understood that any one of the ICP discharge areas does not overlap with the other ICP discharge areas. That is, the projected areas of the antenna units 2 do not overlap on a plane perpendicular to the projection direction along the front-rear direction (a plane parallel to the opening surface of the opening formed on the wall of the vacuum vessel 20).
  • the positional relationship between the antenna units 2 is not required to have an overlapping region.
  • the plurality of antenna units 2 are arranged vertically (according to the vertical direction), or arranged to the left and right (the heights match), or shifted left and right (the heights match). Or a part thereof may be arranged vertically and a part may be arranged right and left.
  • the plurality of antenna units 2 when the plurality of antenna units 2 are arranged vertically, the plurality of antenna units 2 can correspond to a large film formation height in the vertical direction.
  • the plurality of antenna units 2 can perform film formation over a large area.
  • the plurality of antenna units 2 are arranged on the left and right (or arranged along the rotation direction of the film formation target 40), the plurality of antenna units 2 are the same in the process of the film formation target 40 rotating for one week. It is possible to discharge a plurality of times to the part. This can improve the film formation efficiency, which is advantageous for high-speed film formation.
  • the rotation support mechanism can rotate around the rotation axis, and the arrangement direction of the plurality of antenna units 2 in the plasma source mechanism 10 is parallel to the rotation axis.
  • the rotation axis is parallel to the direction of gravity, and the plurality of antenna units 2 can be arranged vertically, so that a larger film formation area can be obtained.
  • the antenna unit 2 has two spiral coils 2a and 2b arranged in parallel.
  • the length direction (longitudinal direction) of the antenna unit 2 is the arrangement direction of the two spiral coils 2a and 2b.
  • the two spiral coils 2a, 2b are arranged one above the other (when the viewer faces FIG. 1) (of course, the two spiral coils 2a, 2b actually used are It may be arranged up and down along the direction of gravity).
  • the single antenna part 2 can form a large film-forming area.
  • one terminal side can be connected to the ground, and the other terminal side can be connected to the matcher 6. Each is applied.
  • the two spiral coils 2a and 2b are not limited to those arranged vertically, and may be arranged left and right or arranged obliquely.
  • the length direction (longitudinal direction) of the antenna unit 2 may be the length direction (longitudinal direction) that is intuitively expressed when a human can visually recognize the antenna unit 2.
  • the antenna unit 2 is not limited to the two spiral coils 2a and 2b arranged according to a certain direction, and may be formed by overlapping two spiral coils. For example, a small spiral coil is provided substantially concentrically inside a large spiral coil.
  • a plurality of antenna units 2 are arranged in the length direction (longitudinal direction) of the antenna unit 2.
  • the effective range of film formation is widened, so that the mounting amount and film formation amount of a large substrate and a film formation target can be increased. This improves productivity.
  • the expansion of the effective range of film formation is advantageous for forming a single thin film having a large area.
  • two adjacent antenna units 2 are arranged between two adjacent antenna units 2 in order to prevent interference with each other when high frequency power is applied.
  • a gap L is formed.
  • the two antenna portions 2 are arranged vertically, and a gap L having a certain distance is formed between the two upper and lower antenna portions 2.
  • the width of the gap L is 0.5 to 1 of the separation distance D (along the length direction (longitudinal direction) of the antenna portion) of the two spiral coils 2a and 2b. .0 times.
  • the film formation in the range of 400 mm to 800 mm can be performed by the thin film forming apparatus provided by the embodiment shown in FIG.
  • a silica thin film having a thickness of 800 mm is formed by the thin film forming apparatus shown in FIG.
  • Five deposition objects (1 to 5) were arranged vertically as shown in FIG. 4, and the refractive index and attenuation coefficient of the silica thin film were measured after the film formation. The results are shown in the table below.
  • Any digital value quoted in this sentence includes all values of lower and upper values that increment in one unit between the lower and upper limits, between any lower value and any higher value, There should be at least two units of spacing.
  • the quantity of one part or the value of a process variable eg, temperature, pressure, time, etc.
  • the specification For example, it is intended to explain that values such as 15 to 85, 22 to 68, 43 to 51, and 30 to 32 are also clearly listed.
  • one unit is considered to be 0.0001, 0.001, 0.01, 0.1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention discloses a plasma source mechanism that can be applied to a thin-film formation device having a vacuum chamber, and a thin-film formation device. The plasma source mechanism includes: a case installed outside the vacuum chamber; and an antenna unit positioned inside the case, said antenna unit including multiple antenna parts disposed on the outside of the vacuum chamber across dielectric parts, having independent connection parts to which radio frequency power is applied, and having no overlapping region between one region and another region. With the plasma source mechanism and the thin-film formation device provided by the present invention, the discharge range of inductively coupled plasma can be expanded.

Description

プラズマソース機構及び薄膜形成装置Plasma source mechanism and thin film forming apparatus
 本発明は、光学薄膜形成分野に関し、特に、プラズマソース機構及び薄膜形成装置に関する。
 本出願は、2018年3月28日に出願された中国特許出願の201810265405.6に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
The present invention relates to the field of optical thin film formation, and more particularly to a plasma source mechanism and a thin film formation apparatus.
This application claims the priority based on 2018102655405.6 of the Chinese patent application filed on March 28, 2018, and the designated countries that are allowed to be incorporated by reference are described in the above application. The contents of which are incorporated into the present application by reference and made a part of the description of the present application.
 従来、コイルのICP(誘導結合型プラズマ)を使用して放電することが知られ、且つ各種の形状のICPが提出された(例えば、特許文献1、2を参照)。
 近年、大面積領域に対してICP放電を行うことが望ましいが、大面積のICP放電を確保するために、現在、2つの方式が一般に採用される。1番目の方式は、アンテナのサイズを大きくすることである。2番目の方式は、複数個のアンテナが縦に配置されることである。使用過程において、この二つの方式では、RFマッチング調整をとることができないとともに、電力を印加できなく、又はスパッタされた物質に不純物が存在することになり、成膜の品質に影響を与えるおそれがある。
Conventionally, it has been known to discharge using ICP (inductively coupled plasma) of a coil, and various shapes of ICP have been submitted (for example, see Patent Documents 1 and 2).
In recent years, it is desirable to perform ICP discharge on a large area, but two methods are currently generally employed in order to ensure large area ICP discharge. The first method is to increase the size of the antenna. The second method is that a plurality of antennas are arranged vertically. In the process of use, with these two methods, RF matching adjustment cannot be performed, power cannot be applied, or impurities are present in the sputtered material, which may affect the quality of film formation. is there.
日本特開2005-256024号公報Japanese Unexamined Patent Publication No. 2005-256024 日本特許第3188353号公報Japanese Patent No. 3188353
 発明者は、長年の研究試験により、下記のことを見出した。上記二つの方式の一番目の方式では、アンテナユニットの増大により、アンテナのインダクタ(L)成分が大きくなるため、RFマッチングをとることが困難になる。二番目の方式では、図1に示されるように、各アンテナ100は各々のアンテナ室200内に位置し、互いに独立している。アンテナ室200が取付けられる際に金属固定部材300により固定されることによって、隣接する二つのアンテナ100(又はアンテナ室200)の間には金属の仕切り300ができ、ICP放電でプラズマを形成する過程において、この金属の仕切り300でのスパッタが生じてしまい、スパッタされた物質に不純物が存在することになり、成膜の品質に影響を与えるおそれがある。
 上記技術の不具合に鑑みて、本発明はICP放電範囲を拡大することが可能になるように、プラズマソース機構及び薄膜形成装置を提供する必要がある。
The inventor has found the following through long-term research tests. In the first method of the above two methods, the increase in antenna units increases the inductor (L) component of the antenna, making it difficult to achieve RF matching. In the second method, as shown in FIG. 1, each antenna 100 is located in each antenna chamber 200 and is independent from each other. A process of forming plasma by ICP discharge by forming a metal partition 300 between two adjacent antennas 100 (or antenna chambers 200) by being fixed by the metal fixing member 300 when the antenna chamber 200 is attached. In this case, sputtering occurs in the metal partition 300, and impurities are present in the sputtered material, which may affect the quality of film formation.
In view of the above technical problems, the present invention needs to provide a plasma source mechanism and a thin film forming apparatus so that the ICP discharge range can be expanded.
上記目的に達するために、本発明は以下の技術内容を採用する。
[1]本実施形態に係るプラズマソース機構は、真空槽を有する薄膜形成装置に適用可能なプラズマソース機構であって、前記真空槽外に取り付けられるケースと、前記真空槽外に誘電体部を介して配置され、高周波電力が印加される独立した連結部を有し、一の領域と他の領域との間に重なる領域がない複数のアンテナ部を含む、前記ケース内に位置するアンテナユニットと、を備えるプラズマソース機構である。
好ましい実施形態としては、前記ケースが、一体成形された石英ガラスケースである。
[2]本実施形態に係るプラズマソース機構において、隣接する2つのアンテナ部の間に隙間があるようにしてもよい。
[3]本実施形態に係るプラズマソース機構において、前記アンテナ部が、並列する2つの渦巻状コイルを有し、前記アンテナ部の長さ方向が2つの前記渦巻状コイルの並び方向になるよう構成してもよい。
[4]本実施形態に係るプラズマソース機構において、複数の前記アンテナ部が前記アンテナ部の長手方向に配置されててもよい。
[5]本実施形態に係るプラズマソース機構において、前記隙間の幅が前記2つの渦巻状コイルの離隔距離の0.5~1.0倍でもよい。
[6]本実施形態に係るプラズマソース機構において、前記アンテナ部が高周波電源に接続されていてもよい。
[7]本実施形態に係る薄膜形成装置であって、真空槽と、前記真空槽内に設けられ、スパッタリングによって成膜対象上に膜を形成するための成膜領域と、前記真空槽内に設けられ、上記実施形態のいずれかに記載のプラズマソース機構によって前記成膜対象上の膜にプラズマ処理を行うプラズマ処理領域と、前記真空槽内に設けられ、前記成膜対象を支持した状態で回転可能であるとともに、その回転に伴い前記成膜対象が前記成膜領域及び前記プラズマ処理領域を通過することで所望の薄膜を形成する回転支持機構とを含む。
[8]本実施形態に係る薄膜形成装置において、前記回転支持機構が回転軸を中心として回転し、複数の前記アンテナ部の配置方向が前記回転軸と平行でもよい。
In order to achieve the above object, the present invention adopts the following technical contents.
[1] The plasma source mechanism according to the present embodiment is a plasma source mechanism applicable to a thin film forming apparatus having a vacuum chamber, and includes a case attached outside the vacuum chamber and a dielectric portion outside the vacuum chamber. An antenna unit located in the case, the antenna unit including a plurality of antenna portions that are arranged through and have independent coupling portions to which high-frequency power is applied, and that do not overlap between one region and another region; And a plasma source mechanism.
In a preferred embodiment, the case is an integrally formed quartz glass case.
[2] In the plasma source mechanism according to the present embodiment, there may be a gap between two adjacent antenna portions.
[3] In the plasma source mechanism according to the present embodiment, the antenna unit has two spiral coils arranged in parallel, and the length direction of the antenna unit is aligned with the two spiral coils. May be.
[4] In the plasma source mechanism according to this embodiment, a plurality of the antenna units may be arranged in the longitudinal direction of the antenna unit.
[5] In the plasma source mechanism according to the present embodiment, the width of the gap may be 0.5 to 1.0 times the separation distance between the two spiral coils.
[6] In the plasma source mechanism according to the present embodiment, the antenna unit may be connected to a high frequency power source.
[7] A thin film forming apparatus according to the present embodiment, which is provided in a vacuum chamber, a film formation region for forming a film on a film formation target by sputtering, and in the vacuum chamber. A plasma processing region for performing plasma processing on the film on the film formation target by the plasma source mechanism according to any one of the above-described embodiments; and a state in which the film formation target is supported in the vacuum chamber. And a rotation support mechanism that forms a desired thin film by passing the film formation target through the film formation region and the plasma processing region in accordance with the rotation.
[8] In the thin film forming apparatus according to this embodiment, the rotation support mechanism may rotate about a rotation axis, and the arrangement direction of the plurality of antenna units may be parallel to the rotation axis.
 本発明のプラズマソース機構は、複数のアンテナ部を同一のケース内に設置することによって、相応に、二つのアンテナ部の間には金属の仕切りが存在しない。これによって、本実施形態のプラズマソース機構により、ICP放電範囲を拡大し、成膜の範囲を拡大し、生産効率を改善でき、ICP放電でプラズマを形成する過程において、スパッタ不純物の発生を抑制し、成膜の品質を高めることができる。 In the plasma source mechanism of the present invention, a plurality of antenna portions are installed in the same case, and accordingly, there is no metal partition between the two antenna portions. As a result, the plasma source mechanism of this embodiment can expand the ICP discharge range, expand the film formation range, improve production efficiency, and suppress the generation of sputter impurities in the process of forming plasma by ICP discharge. The quality of film formation can be improved.
 後述の説明と添付図面に従って、本発明の特定の実施形態が詳しく開示されており、本発明の原理が採用され得る方式が明示されている。 Specific embodiments of the present invention are disclosed in detail in accordance with the following description and the accompanying drawings, and the manner in which the principles of the present invention can be employed is clearly indicated.
 一つの実施形態に記載及び/又は示される特徴について、同一又は類似の方式で、一つ又は複数のほかの実施形態で使用され、ほかの実施形態における特徴と組み合わせ、又はほかの実施形態における特徴を代替することができる。なお、用語「含む/含める」は本文で使用される場合、特徴、インテグラル、ステップ又はモジュールの存在を指すが、一つ又は複数のほかの特徴、インテグラル、ステップ又はモジュールの存在又は付加を除外しない。 Features described and / or shown in one embodiment may be used in one or more other embodiments in the same or similar manner, combined with features in other embodiments, or features in other embodiments Can be substituted. Note that the term “include / include”, as used herein, refers to the presence of a feature, integral, step or module, but the presence or addition of one or more other features, integrals, steps or modules. Do not exclude.
図1は従来のプラズマソース機構の構造の概略図である。FIG. 1 is a schematic view of the structure of a conventional plasma source mechanism. 図2は本発明のある実施形態により提供されたプラズマソース機構の構造の概略図である。FIG. 2 is a schematic diagram of the structure of a plasma source mechanism provided by an embodiment of the present invention. 図3は図2に示されるプラズマソース機構を採用する薄膜形成装置の概略図である。FIG. 3 is a schematic view of a thin film forming apparatus employing the plasma source mechanism shown in FIG. 図4は図3に示される薄膜形成装置を採用して成膜試験を実行する時の成膜の範囲の概略図である。FIG. 4 is a schematic view of a film forming range when the film forming test is performed by employing the thin film forming apparatus shown in FIG.
 当業者が本発明における技術内容をより良好に理解するために、以下、本発明の実施形態における添付図面を参照しつつ、本実施形態における技術内容を説明する。説明する実施形態は必ずしも本発明の全部の形態ではなく、一部の実施形態としてもよい。 In order for those skilled in the art to better understand the technical contents in the present invention, the technical contents in the present embodiment will be described below with reference to the accompanying drawings in the embodiments of the present invention. The described embodiments are not necessarily all forms of the present invention, but may be some embodiments.
 なお、素子がほかの素子に「設けられる」と称される場合、ほかの素子に直接に位置してもよく、又は間接的に素子が存在してもよい。一つの素子がほかの素子に「接続される」と考えられる場合、ほかの素子に直接に接続されてもよく、又は間接的に素子が存在することも含まれる。本文で使用される用語である「垂直な」、「水平な」、「左」、「右」及び類似する記載は説明のためのものに過ぎず、唯一の実施形態であることを表すものではない。 In addition, when an element is referred to as “provided” in another element, the element may be located directly on the other element, or the element may exist indirectly. Where one element is considered “connected” to another element, it may be directly connected to another element, or includes the presence of an element indirectly. The terms "vertical", "horizontal", "left", "right" and similar descriptions used in the text are for illustration purposes only and are not meant to represent the sole embodiment. Absent.
 特に定義のない限り、本文で使用される全ての技術と科学用語は、当業者が一般的に理解する意味と同一である。本文において、本発明の明細書で使用される用語は、具体的な実施形態を説明することを目的とするだけで、本発明を制限するためではない。本文で使用される用語である「及び/又は」は、一つ又は複数の関連の列記された項目の任意及び全部の組み合わせを含む。 Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In this text, the terminology used in the specification of the present invention is only for the purpose of describing specific embodiments and is not intended to limit the present invention. As used herein, the term “and / or” includes any and all combinations of one or more of the associated listed items.
 図2、図3には、本発明のある実施形態により提供された、真空槽30を有する薄膜形成装置に適用可能なプラズマソース機構10が示される。プラズマソース機構10は、真空槽30外に取り付けられるケース1と、真空槽30外に誘電体部5を介して配置され、高周波電力が印加される独立した連結部3を各々が有し、一の領域(いずれかのある領域)と他の領域(その他のある領域)との間に重なる領域がない複数のアンテナ部2を含む、ケース1内に位置するアンテナユニットと、を含む。 2 and 3 show a plasma source mechanism 10 applicable to a thin film forming apparatus having a vacuum chamber 30 provided by an embodiment of the present invention. Each of the plasma source mechanisms 10 includes a case 1 attached to the outside of the vacuum chamber 30 and an independent connecting portion 3 that is disposed outside the vacuum chamber 30 via the dielectric portion 5 and to which high-frequency power is applied. An antenna unit that includes a plurality of antenna units 2 that do not overlap each other region (any one region) and another region (another region).
 本実施形態又は他の実施形態では、薄膜形成装置が提供されている。薄膜形成装置は、真空槽30と、真空槽30内に設けられ、スパッタリングによって成膜対象40上に膜を形成するための成膜領域(不図示)と、真空槽30内に設けられ、成膜対象40上の膜に対して上記実施形態に記載のプラズマソース機構10によってプラズマ処理を行うプラズマ処理領域と、真空槽30内に設けられ、成膜対象40を支持した状態で回転可能であるとともに、その回転に伴い当該成膜対象40が成膜領域及びプラズマ処理領域を通過することで所望の薄膜を形成する回転支持機構(不図示)とを含む。 In this embodiment or another embodiment, a thin film forming apparatus is provided. The thin film forming apparatus is provided in the vacuum chamber 30 and the vacuum chamber 30, provided in the vacuum chamber 30, and a film formation region (not shown) for forming a film on the film formation target 40 by sputtering. A plasma processing region in which plasma processing is performed on the film on the film target 40 by the plasma source mechanism 10 described in the above embodiment and the vacuum chamber 30 are provided, and the film target 40 can be rotated while being supported. In addition, a rotation support mechanism (not shown) for forming a desired thin film by passing the film formation target 40 through the film formation region and the plasma processing region with the rotation is included.
 本実施形態において、薄膜形成装置はチャンバー付きの容器である真空容器20を備え、該チャンバーは即ち真空槽30である。真空槽30は不図示の真空排気系に接続されることにより、ケース1内に真空成膜の環境を形成することができる。また、真空槽30の内部において、プラズマソース機構10によりプラズマ処理が実行される処理対象物は、例えば基板50(又は基板50)に配置される。 In this embodiment, the thin film forming apparatus includes a vacuum container 20 that is a container with a chamber, and the chamber is a vacuum tank 30. The vacuum chamber 30 can be connected to a vacuum exhaust system (not shown) to form an environment for vacuum film formation in the case 1. Further, in the vacuum chamber 30, an object to be processed by the plasma source mechanism 10 is disposed on, for example, the substrate 50 (or the substrate 50).
 本実施形態において、プラズマソース機構10はケース1、誘電体部5、及びアンテナユニットを備える。ケース1は、真空容器20の壁に形成された開口を外部から塞ぐように固定されることができる。具体的には、ケース1は一体成形された石英ガラスケース1であってもよい。誘電体部5はケース1の前面(この前後方向とは、真空槽30寄りの方向を前、真空槽30から離れる方向を後と称する)に固定されることができる。これによって、ケース1及び誘電体部5に囲まれる領域は、アンテナユニットを収容するアンテナ収容室4を形成する。具体的には、誘電体部5は、例えば所定の厚さの板状の石英により形成され、且つ真空槽30に面するケース1の表面に固定されることができる。この誘電体部5は長方形板である。 In the present embodiment, the plasma source mechanism 10 includes a case 1, a dielectric portion 5, and an antenna unit. The case 1 can be fixed so as to close an opening formed in the wall of the vacuum vessel 20 from the outside. Specifically, the case 1 may be an integrally formed quartz glass case 1. The dielectric part 5 can be fixed to the front surface of the case 1 (this front-rear direction is referred to as the front direction in the direction close to the vacuum chamber 30 and the rear direction from the vacuum chamber 30). As a result, the region surrounded by the case 1 and the dielectric portion 5 forms an antenna accommodating chamber 4 that accommodates the antenna unit. Specifically, the dielectric portion 5 can be fixed to the surface of the case 1 that is formed of, for example, plate-shaped quartz having a predetermined thickness and faces the vacuum chamber 30. The dielectric portion 5 is a rectangular plate.
 本実施形態において、アンテナユニットはケース1内に位置する。具体的には、アンテナ収容室4に収容される。アンテナ収容室4は真空容器20の内部(真空槽30)から分離される。即ち、アンテナ収容室4と真空槽30は、誘電体部5により隔てられた状態で独立した空間を形成する。また、アンテナ収容室4と真空容器20の外部は、ケース1により隔てられた状態で独立した空間を形成する。アンテナ収容室4は管路によって真空ポンプに連通されることができる。この真空ポンプによる真空引きを行い、アンテナ収容室4の内部に対して排気を行うことによって、アンテナ収容室4が真空状態となり、アンテナユニット内を真空環境にすることができる。 In this embodiment, the antenna unit is located in the case 1. Specifically, it is accommodated in the antenna accommodating chamber 4. The antenna housing chamber 4 is separated from the inside of the vacuum vessel 20 (vacuum chamber 30). That is, the antenna housing chamber 4 and the vacuum chamber 30 form an independent space separated by the dielectric portion 5. Further, the antenna housing chamber 4 and the outside of the vacuum container 20 form an independent space separated by the case 1. The antenna housing chamber 4 can be communicated with a vacuum pump by a pipe line. By performing evacuation by the vacuum pump and exhausting the inside of the antenna housing chamber 4, the antenna housing chamber 4 is brought into a vacuum state, and the inside of the antenna unit can be made into a vacuum environment.
 本実施形態において、アンテナユニットは複数(二つ以上)のアンテナ部2を備える。その中、各アンテナ部2は、高周波電力が印加される独立した連結部3を有する。アンテナ部2各々が、連結部3によって交流電源7からの電力供給を受け、真空槽30内に誘導電界を生じさせることにより、プラズマを生成することができる。本実施例において、各アンテナ部2は、マッチング回路を収容するマッチャ6を介して交流電源7に接続されてもよい。マッチャ6内には、交流電源7からアンテナ部2に供給される電力を変更できる可変容量コンデンサが設けられることができる。 In this embodiment, the antenna unit includes a plurality (two or more) of antenna units 2. Among them, each antenna part 2 has an independent connecting part 3 to which high-frequency power is applied. Each of the antenna units 2 is supplied with power from the AC power supply 7 by the connecting unit 3 and generates an induction electric field in the vacuum chamber 30, thereby generating plasma. In the present embodiment, each antenna unit 2 may be connected to an AC power source 7 via a matcher 6 that houses a matching circuit. In the matcher 6, a variable capacitor capable of changing the power supplied from the AC power supply 7 to the antenna unit 2 can be provided.
 本実施形態において、複数のアンテナ部2が同一のケース1内にあり、相応に、二つのアンテナ部2の間には金属の仕切りが存在しない。これによって、本実施形態のプラズマソース機構10により、ICP放電でプラズマを形成する過程において、スパッタ不純物の発生を抑止し、成膜の品質を向上できる。 In the present embodiment, the plurality of antenna parts 2 are in the same case 1, and accordingly, there is no metal partition between the two antenna parts 2. As a result, the plasma source mechanism 10 of the present embodiment can suppress the generation of sputter impurities and improve the quality of film formation in the process of forming plasma by ICP discharge.
 各アンテナ部2は互いに独立しており、電源7の給電に通電される場合、各アンテナ部2はICP放電を行いプラズマを生成することができる。単一のアンテナ部2としては、ほかのアンテナ部2が存在しない場合、又は通電されない場合であって、単一のアンテナ部2自身が誘導電界を生じさせることができない。電源7に接続される各アンテナ部2は連結部3を有し、各アンテナ部2は連結部3によって高周波電源7に接続されることができる。本実施形態において、各アンテナ部2は、図1における単一のアンテナ100とサイズが同一であってもよく、接続される電源7も従来の電源7と同一であってもよい。これによって、従来のRF(無線周波数)マッチング関係を踏襲することができ、RFマッチングをとることができる。 The antenna units 2 are independent of each other, and when power is supplied to the power supply 7, each antenna unit 2 can generate plasma by performing ICP discharge. The single antenna unit 2 is a case where no other antenna unit 2 exists or is not energized, and the single antenna unit 2 itself cannot generate an induction electric field. Each antenna unit 2 connected to the power source 7 has a connecting unit 3, and each antenna unit 2 can be connected to the high frequency power source 7 by the connecting unit 3. In the present embodiment, each antenna unit 2 may be the same size as the single antenna 100 in FIG. 1, and the connected power source 7 may be the same as the conventional power source 7. Thus, the conventional RF (radio frequency) matching relationship can be followed, and RF matching can be achieved.
 しかも、好適なICP放電範囲を取得するために、アンテナ部2は、いずれかのある領域とその他のある領域との間で重なる領域がない。図1に示されるように、紙面には、二つのアンテナ部2が覆う、又は占める面積は互いに独立しており、重なることがない。もちろん、アンテナ部2は、いずれかのICP放電領域とその他のICP放電領域とが重ならないと理解してもよい。即ち、各アンテナ部2は、上記前後方向に沿ってこの投影方向に直交する平面上(真空容器20の壁に形成された開口の開口面に対して平行な面)における投影面積が重ならない。 Moreover, in order to obtain a suitable ICP discharge range, the antenna unit 2 does not have an overlapping area between any one area and another certain area. As shown in FIG. 1, the areas covered by or occupied by the two antenna units 2 are independent of each other and do not overlap on the paper surface. Of course, the antenna unit 2 may be understood that any one of the ICP discharge areas does not overlap with the other ICP discharge areas. That is, the projected areas of the antenna units 2 do not overlap on a plane perpendicular to the projection direction along the front-rear direction (a plane parallel to the opening surface of the opening formed on the wall of the vacuum vessel 20).
 ケース1内において、アンテナ部2の各々の間の位置関係は、重なる領域がなければよい。例えば、複数のアンテナ部2は上下(鉛直方向に準じる)に配置され、又は左右に揃えって配置され(高さが一致している)、又は左右にずらして配置され(高さが一致していない)、又は一部が上下に配置され一部が左右に配置されてもよい。 In the case 1, the positional relationship between the antenna units 2 is not required to have an overlapping region. For example, the plurality of antenna units 2 are arranged vertically (according to the vertical direction), or arranged to the left and right (the heights match), or shifted left and right (the heights match). Or a part thereof may be arranged vertically and a part may be arranged right and left.
 上述した例により、複数のアンテナ部2が上下に配置されると、この複数のアンテナ部2は大きい縦方向の成膜高さに対応することができる。成膜対象40が垂直軸を中心として回転する場合、複数のアンテナ部2は大面積の成膜を行うことができる。また、複数のアンテナ部2が左右に配置される(又は成膜対象40の回転方向に沿って配置される)場合、成膜対象40が1週回転する過程において、複数のアンテナ部2は同一の部位に対して複数回放電することができる。これによって、成膜効率を改善することができ、高速の成膜に有利である。 According to the above-described example, when the plurality of antenna units 2 are arranged vertically, the plurality of antenna units 2 can correspond to a large film formation height in the vertical direction. When the film formation target 40 rotates about the vertical axis, the plurality of antenna units 2 can perform film formation over a large area. Further, when the plurality of antenna units 2 are arranged on the left and right (or arranged along the rotation direction of the film formation target 40), the plurality of antenna units 2 are the same in the process of the film formation target 40 rotating for one week. It is possible to discharge a plurality of times to the part. This can improve the film formation efficiency, which is advantageous for high-speed film formation.
 本発明の他の実施形態において、回転支持機構は回転軸を中心として回転することができ、プラズマソース機構10のうち複数のアンテナ部2の配置方向が回転軸と平行である。好ましくは、この回転軸が重力方向と平行し、複数のアンテナ部2が上下に配置されることができるようになり、更に大きい成膜面積を有することができる。 In another embodiment of the present invention, the rotation support mechanism can rotate around the rotation axis, and the arrangement direction of the plurality of antenna units 2 in the plasma source mechanism 10 is parallel to the rotation axis. Preferably, the rotation axis is parallel to the direction of gravity, and the plurality of antenna units 2 can be arranged vertically, so that a larger film formation area can be obtained.
 本実施形態において、アンテナ部2は並列する2つの渦巻状コイル2a、2bを有する。アンテナ部2の長さ方向(長手方向)が2つの渦巻状コイル2a、2bの並び方向である。図1に示されるように、2つの渦巻状コイル2a、2bは上下(閲覧者が図1に面する場合)に配置される(もちろん、実際に使用された2つの渦巻状コイル2a、2bは重力方向に沿って上下に配置されてもよい)。これによって、単一のアンテナ部2は大きい成膜面積を形成することができる。 In the present embodiment, the antenna unit 2 has two spiral coils 2a and 2b arranged in parallel. The length direction (longitudinal direction) of the antenna unit 2 is the arrangement direction of the two spiral coils 2a and 2b. As shown in FIG. 1, the two spiral coils 2a, 2b are arranged one above the other (when the viewer faces FIG. 1) (of course, the two spiral coils 2a, 2b actually used are It may be arranged up and down along the direction of gravity). Thereby, the single antenna part 2 can form a large film-forming area.
 2つの渦巻状コイル2a、2bでは、一方の端子側がアースに接続され、他方の端子側が上記マッチャ6に接続されることができ、それぞれ高周波電源7と並列に接続されることにより、高周波電力がそれぞれ印加される。 In the two spiral coils 2 a and 2 b, one terminal side can be connected to the ground, and the other terminal side can be connected to the matcher 6. Each is applied.
 2つの渦巻状コイル2a、2bは上下に配置されるものに限定されるものではなく、左右に配置され、又は斜めに配置されてもよい。アンテナ部2の長さ方向(長手方向)とは、人が視認できる場合で直観的に表される長さ方向(長手方向)であってもよい。また、アンテナ部2とは、2つの渦巻状コイル2a、2bがある方向に従って配置されたものに限定されるものではない、2つの渦巻状コイルが重なって形成されるものであってもよい。例えば、大きい渦巻状コイルの内部に小さい渦巻状コイルがほぼ同心に設けられる。 The two spiral coils 2a and 2b are not limited to those arranged vertically, and may be arranged left and right or arranged obliquely. The length direction (longitudinal direction) of the antenna unit 2 may be the length direction (longitudinal direction) that is intuitively expressed when a human can visually recognize the antenna unit 2. The antenna unit 2 is not limited to the two spiral coils 2a and 2b arranged according to a certain direction, and may be formed by overlapping two spiral coils. For example, a small spiral coil is provided substantially concentrically inside a large spiral coil.
 大きい成膜面積を取得するために、複数のアンテナ部2がアンテナ部2の長さ方向(長手方向)に配置されている。このように設置すると、成膜の有効範囲が広くなるため、大型基板及び成膜対象の搭載量、成膜量を増加できる。これによって、生産性が向上する。同時に、成膜の有効範囲の拡大により、大面積の単一の薄膜の形成にも有利である。 In order to obtain a large film-forming area, a plurality of antenna units 2 are arranged in the length direction (longitudinal direction) of the antenna unit 2. With such an installation, the effective range of film formation is widened, so that the mounting amount and film formation amount of a large substrate and a film formation target can be increased. This improves productivity. At the same time, the expansion of the effective range of film formation is advantageous for forming a single thin film having a large area.
 本実施形態において、図2に示されるように、隣接する二つのアンテナ部2は、高周波電力が印加される時に互いに干渉することを防止するために、隣接する二つのアンテナ部2の間には隙間Lが形成されている。閲覧者が図1をみた場合、二つのアンテナ部2が上下に配置されており、上下二つのアンテナ部2の間には、一定の距離をもつ隙間Lが形成される。好ましくは、隙間Lの(アンテナ部の長さ方向に沿う)幅は2つの渦巻状コイル2a、2bの(アンテナ部の長さ方向(長手方向)に沿う)離隔距離Dの0.5~1.0倍である。 In the present embodiment, as shown in FIG. 2, two adjacent antenna units 2 are arranged between two adjacent antenna units 2 in order to prevent interference with each other when high frequency power is applied. A gap L is formed. When the viewer looks at FIG. 1, the two antenna portions 2 are arranged vertically, and a gap L having a certain distance is formed between the two upper and lower antenna portions 2. Preferably, the width of the gap L (along the length direction of the antenna portion) is 0.5 to 1 of the separation distance D (along the length direction (longitudinal direction) of the antenna portion) of the two spiral coils 2a and 2b. .0 times.
 図3に示される実施形態により提供された薄膜形成装置により、400mm~800mmの成膜の範囲の成膜を実行することができる。本成膜試験では、図3に示される薄膜形成装置により800mmの成膜の範囲のシリカ薄膜を成膜する。5つの被成膜物(1~5)は図4に示されるように垂直に配置され、成膜終了後にシリカ薄膜の屈折率及び減衰係数を測定した。結果は下記の表に示される。 The film formation in the range of 400 mm to 800 mm can be performed by the thin film forming apparatus provided by the embodiment shown in FIG. In this film forming test, a silica thin film having a thickness of 800 mm is formed by the thin film forming apparatus shown in FIG. Five deposition objects (1 to 5) were arranged vertically as shown in FIG. 4, and the refractive index and attenuation coefficient of the silica thin film were measured after the film formation. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表のデータから分かるように、本実施形態の薄膜形成装置を利用して大きい成膜の範囲の成膜を実行すると、形成された薄膜の屈折率及び減衰係数の結果には問題がない。これにより、上記プラズマソース機構を有する薄膜形成装置を利用すると、大面積の成膜を有効に実行することができ、成膜の有効範囲が広くなるため、大型基板及び搭載量を増加することができ、薄膜の生産性が向上する。 As can be seen from the data in the above table, there is no problem in the results of the refractive index and the attenuation coefficient of the formed thin film when the film forming in the large film forming range is executed using the thin film forming apparatus of this embodiment. Accordingly, when the thin film forming apparatus having the plasma source mechanism is used, a large area film can be effectively formed, and the effective range of film formation is widened, so that a large substrate and a mounting amount can be increased. This improves the productivity of the thin film.
 この文で引用されるいかなるデジタル値は、いずれも下限値ないし上限値の間の、1単位で逓増する下値と上値という全ての値を含み、任意の下値と任意のより高い値の間に、少なくとも2単位の間隔が存在すればよい。例えば、一つの部品の数量又はプロセス変数(例えば、温度、圧力、時間など)の値が1~90、好ましくは20~80、より好ましくは30~70であると述べると、該明細書には、例えば15~85、22~68、43~51、30~32などの値も明確に列挙されることを説明することを目的とする。1未満の値について、1単位が0.0001、0.001、0.01、0.1であると適切に考えられる。これらは明確に表現するための例示に過ぎず、最低値と最高値の間に列挙される数値の全ての可能な組み合わせは、ともに類似の方式で該明細書で明確に述べられていると考えられることができる。 Any digital value quoted in this sentence includes all values of lower and upper values that increment in one unit between the lower and upper limits, between any lower value and any higher value, There should be at least two units of spacing. For example, if it is stated that the quantity of one part or the value of a process variable (eg, temperature, pressure, time, etc.) is 1 to 90, preferably 20 to 80, more preferably 30 to 70, the specification For example, it is intended to explain that values such as 15 to 85, 22 to 68, 43 to 51, and 30 to 32 are also clearly listed. For values less than 1, one unit is considered to be 0.0001, 0.001, 0.01, 0.1. These are only examples for the sake of clarity and all possible combinations of numerical values listed between the lowest and highest values are considered to be clearly stated in the specification together in a similar manner. Can be done.
 特に説明のない限り、全ての範囲はエンドポイント及びエンドポイントの間の全ての数字を含む。範囲とともに使用される「約」又は「ほぼ」は、該範囲の二つのエンドポイントに適用可能である。従って、「約20~30」は、「約20~約30」を覆うことを図り、少なくとも明示されたエンドポイントを含む。 Unless stated otherwise, all ranges include endpoints and all numbers between endpoints. “About” or “approximately” used with a range is applicable to the two endpoints of the range. Thus, “about 20-30” intends to cover “about 20 to about 30” and includes at least the specified endpoints.
 開示された全ての文章及び参考資料(特許出願と出版物を含む)は、種々の目的のために引用によってここに記載されている。組み合わせを説明するための用語である「基本的に…からなる」は、確定した素子、成分、部品又はステップ及び実質的に該組み合わせの基本的な新規性要件に影響を及ぼさないほかの素子、成分、部品又はステップを含むと考えられる。用語である「含む」又は「含める」などでここの素子、成分、部品又はステップの組合せを説明することについて、基本的にこれらの素子、成分、部品又はステップからなる実施形態も考えられる。ここで、用語である「であってもよい」を使用することによって、含む「であってもよい」説明したいかなる属性も選択可能であると説明することを図る。 All disclosed texts and references (including patent applications and publications) are hereby incorporated by reference for various purposes. The term “consisting essentially of” for describing a combination means a defined element, component, part or step and other elements that do not substantially affect the basic novelty requirements of the combination, It is considered to include a component, part or step. Regarding the description of a combination of elements, components, parts or steps herein, such as with the terms “include” or “include”, embodiments consisting essentially of these elements, components, parts or steps are also contemplated. Here, by using the term “may be”, the term “may” is used to explain that any of the described attributes “may” are selectable.
 複数の素子、成分、部品又はステップは単独な集積素子、成分、部品又はステップによって提供されることができる。又は、単独な集積素子、成分、部品又はステップは分離した複数の素子、成分、部品又はステップに分けることができる。素子、成分、部品又はステップを説明するために開示した「ある」又は「一つ」は、ほかの素子、成分、部品又はステップを除外するものではない。 Multiple elements, components, parts or steps can be provided by a single integrated element, component, part or step. Alternatively, a single integrated element, component, part or step can be divided into a plurality of separate elements, components, parts or steps. The “a” or “one” disclosed to describe an element, component, component or step does not exclude another element, component, component or step.
 以上の説明は制限するためのものではなく、図示を説明するためのものであると考えられることができる。上記説明を閲覧することによって、提供された例示以外の多くの実施形態及び多くの応用は、当業者にとって自明なものである。従って、本教示の範囲については、上記説明を参照して確定すべきではなく、添付した請求項及びこれらの請求項に記載の相当物の範囲の全てを参照して確定すべきである。全面的になる目的のために、全ての文章及び参考資料(特許出願と出版物を含む)は、引用によってここに記載されている。請求項で省略され、ここで開示された主題のいかなる面は、該主体内容を放棄するためのものではなく、発明者が該主題を開示された発明主題の一部に考慮しないと考えてもならない。 The above description is not intended to limit, but can be considered to be illustrative. Many embodiments and many applications other than the examples provided will be apparent to those skilled in the art upon reviewing the above description. The scope of the present teachings should, therefore, not be determined with reference to the above description, but should be determined with reference to the appended claims along with their full scope of equivalents. For full purpose, all text and references (including patent applications and publications) are hereby incorporated by reference. No aspect of the subject matter disclosed herein, which is omitted in the claims, is intended to disclaim the subject matter, and the inventor will not consider the subject matter as part of the disclosed subject matter. Don't be.
1 ケース
2 アンテナ部
2a、2b 渦巻状コイル
3 連結部
4 アンテナ収容室
5 誘電体部
6 マッチャ
7 電源
10 プラズマソース機構
20 真空容器
30 真空槽
40 成膜対象物
50 基板
100 アンテナ
DESCRIPTION OF SYMBOLS 1 Case 2 Antenna part 2a, 2b Spiral coil 3 Connection part 4 Antenna accommodating chamber 5 Dielectric part 6 Matcher 7 Power supply 10 Plasma source mechanism 20 Vacuum vessel 30 Vacuum chamber 40 Deposition target object 50 Substrate 100 Antenna

Claims (9)

  1.  真空槽を有する薄膜形成装置に適用可能なプラズマソース機構であって、
     前記真空槽外に取り付けられるケースと、
     前記真空槽外に誘電体部を介して配置され、高周波電力が印加される独立した連結部を有し、一の領域と他の領域との間に重なる領域がない複数のアンテナ部を含み、前記ケース内に位置するアンテナユニットと、
     を備えるプラズマソース機構。
    A plasma source mechanism applicable to a thin film forming apparatus having a vacuum chamber,
    A case attached outside the vacuum chamber;
    Including a plurality of antenna portions arranged outside the vacuum chamber via a dielectric portion, having independent connection portions to which high-frequency power is applied, and having no overlapping region between one region and the other region; An antenna unit located in the case;
    A plasma source mechanism comprising:
  2.  前記ケースが、一体成形された石英ガラスケースであることを特徴とする請求項1に記載のプラズマソース機構。 The plasma source mechanism according to claim 1, wherein the case is an integrally formed quartz glass case.
  3.  隣接する2つのアンテナ部の間に隙間があることを特徴とする請求項1又は2に記載のプラズマソース機構。 3. The plasma source mechanism according to claim 1, wherein there is a gap between two adjacent antenna portions.
  4.  前記アンテナ部は、並列する2つの渦巻状コイルを有し、
     前記アンテナ部の長手方向が2つの前記渦巻状コイルの並び方向であることを特徴とする請求項3に記載のプラズマソース機構。
    The antenna unit has two spiral coils arranged in parallel,
    The plasma source mechanism according to claim 3, wherein a longitudinal direction of the antenna portion is an arrangement direction of the two spiral coils.
  5.  複数の前記アンテナ部は、前記アンテナ部の長手方向に配置されていることを特徴とする、請求項4に記載のプラズマソース機構。 The plasma source mechanism according to claim 4, wherein the plurality of antenna parts are arranged in a longitudinal direction of the antenna part.
  6.  前記隙間の幅は、前記2つの渦巻状コイルの離隔距離の0.5~1.0倍であることを特徴とする、請求項5に記載のプラズマソース機構。 The plasma source mechanism according to claim 5, wherein a width of the gap is 0.5 to 1.0 times a separation distance between the two spiral coils.
  7.  前記アンテナ部が高周波電源に接続されていることを特徴とする、請求項1に記載のプラズマソース機構。 The plasma source mechanism according to claim 1, wherein the antenna unit is connected to a high-frequency power source.
  8.  薄膜形成装置であって、
     真空槽と、
     前記真空槽内に設けられ、スパッタリングによって成膜対象上に膜を形成するための成膜領域と、
     前記真空槽内に設けられ、請求項1乃至7のいずれかに記載のプラズマソース機構によって前記成膜対象上の膜にプラズマ処理を行うプラズマ処理領域と、
     前記真空槽内に設けられ、前記成膜対象を支持した状態で回転可能であるとともに、その回転に伴い前記成膜対象が前記成膜領域及び前記プラズマ処理領域を通過することで所望の薄膜を形成する回転支持機構と
     を含むことを特徴とする薄膜形成装置。
    A thin film forming apparatus,
    A vacuum chamber;
    A film formation region provided in the vacuum chamber for forming a film on a film formation target by sputtering;
    A plasma processing region provided in the vacuum chamber and performing plasma processing on the film on the film formation target by the plasma source mechanism according to claim 1;
    The film is provided in the vacuum chamber and can be rotated while supporting the film formation target, and the film formation target passes through the film formation region and the plasma processing region along with the rotation. A thin film forming apparatus comprising: a rotation support mechanism for forming the thin film forming apparatus.
  9.  前記回転支持機構が回転軸を中心として回転し、
     複数の前記アンテナ部の配置方向が前記回転軸と平行であることを特徴とする、請求項8に記載の薄膜形成装置。
    The rotation support mechanism rotates about a rotation axis;
    The thin film forming apparatus according to claim 8, wherein the arrangement direction of the plurality of antenna units is parallel to the rotation axis.
PCT/JP2019/010606 2018-03-28 2019-03-14 Plasma source mechanism and thin-film formation device WO2019188355A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810265405.6 2018-03-28
CN201810265405.6A CN110318028A (en) 2018-03-28 2018-03-28 Plasma source mechanism and film forming device

Publications (1)

Publication Number Publication Date
WO2019188355A1 true WO2019188355A1 (en) 2019-10-03

Family

ID=68061627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010606 WO2019188355A1 (en) 2018-03-28 2019-03-14 Plasma source mechanism and thin-film formation device

Country Status (3)

Country Link
CN (1) CN110318028A (en)
TW (1) TW201942944A (en)
WO (1) WO2019188355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024123A1 (en) * 2022-07-27 2024-02-01 日新電機株式会社 Plasma treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337809A (en) * 2020-02-14 2021-09-03 株式会社新柯隆 Thin film forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108980A1 (en) * 2003-06-02 2004-12-16 Shincron Co., Ltd. Thin film forming device and thin film forming method
JP2012038461A (en) * 2010-08-04 2012-02-23 Tokyo Electron Ltd Plasma processing apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017906A2 (en) * 1998-09-22 2000-03-30 Applied Materials, Inc. Rf plasma etch reactor with internal inductive coil antenna and electrically conductive chamber walls
JP5479867B2 (en) * 2009-01-14 2014-04-23 東京エレクトロン株式会社 Inductively coupled plasma processing equipment
JP5757710B2 (en) * 2009-10-27 2015-07-29 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP5554047B2 (en) * 2009-10-27 2014-07-23 東京エレクトロン株式会社 Plasma processing equipment
US9543123B2 (en) * 2011-03-31 2017-01-10 Tokyo Electronics Limited Plasma processing apparatus and plasma generation antenna
JP6010305B2 (en) * 2012-02-07 2016-10-19 東京エレクトロン株式会社 Inductively coupled plasma antenna unit, inductively coupled plasma processing apparatus, and inductively coupled plasma processing method
US9745663B2 (en) * 2012-07-20 2017-08-29 Applied Materials, Inc. Symmetrical inductively coupled plasma source with symmetrical flow chamber
JP6539986B2 (en) * 2014-11-05 2019-07-10 東京エレクトロン株式会社 PLASMA PROCESSING APPARATUS AND PLASMA PROCESSING METHOD
JP6715129B2 (en) * 2016-08-31 2020-07-01 東京エレクトロン株式会社 Plasma processing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108980A1 (en) * 2003-06-02 2004-12-16 Shincron Co., Ltd. Thin film forming device and thin film forming method
JP2012038461A (en) * 2010-08-04 2012-02-23 Tokyo Electron Ltd Plasma processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024123A1 (en) * 2022-07-27 2024-02-01 日新電機株式会社 Plasma treatment device

Also Published As

Publication number Publication date
CN110318028A (en) 2019-10-11
TW201942944A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
JP5707341B2 (en) Apparatus for coupling RF power into the interior of a plasma chamber
US8940128B2 (en) Plasma processing apparatus
WO2019188355A1 (en) Plasma source mechanism and thin-film formation device
TWI714553B (en) Auto capacitance tuner current compensation to control one or more film properties through target life
US9605341B2 (en) Physical vapor deposition RF plasma shield deposit control
US20130199925A1 (en) HIGH DENSITY TiN RF/DC PVD DEPOSITION WITH STRESS TUNING
CN106574363B (en) Low heteropical method and apparatus is maintained during the target lifetime
CN214782134U (en) Plasma coating equipment and radio frequency discharge device
JP6502591B2 (en) Film deposition system
US20080023146A1 (en) Inductively coupled plasma system with internal coil
JP2024050576A (en) Em source for enhanced plasma control
CN206902226U (en) Film formation device
WO2011158808A1 (en) Inductively coupled plasma generation device
CN112176300A (en) Deposition apparatus and associated methods
CN103820758B (en) Physical vapor deposition device
CN109155498A (en) Dielectric electrode assembly and its manufacturing method
CN108476584B (en) Plasma processing apparatus
CN112640028A (en) Method for generating and processing uniform high density plasma sheets
CN112602165A (en) High density plasma processing apparatus
JP2015157993A (en) sputtering device
GB2576540A (en) An apparatus
GB2576545A (en) An apparatus
TWI537406B (en) Physical vapor deposition chamber with rotating magnet assembly and centrally fed rf power
JP2010168663A (en) Plasma treatment apparatus
US20120103802A1 (en) Thin film depositing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP