WO2019188010A1 - Optical element, polarization conversion element, image display device, and method for manufacturing optical element - Google Patents

Optical element, polarization conversion element, image display device, and method for manufacturing optical element Download PDF

Info

Publication number
WO2019188010A1
WO2019188010A1 PCT/JP2019/008349 JP2019008349W WO2019188010A1 WO 2019188010 A1 WO2019188010 A1 WO 2019188010A1 JP 2019008349 W JP2019008349 W JP 2019008349W WO 2019188010 A1 WO2019188010 A1 WO 2019188010A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
inorganic
glass substrate
optical element
optical
Prior art date
Application number
PCT/JP2019/008349
Other languages
French (fr)
Japanese (ja)
Inventor
元 米澤
昇平 阿部
高橋 祐一
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2020509749A priority Critical patent/JP7322873B2/en
Publication of WO2019188010A1 publication Critical patent/WO2019188010A1/en
Priority to JP2023122560A priority patent/JP2023153170A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present technology relates to an optical element having an optical functional film, a polarization conversion element, an image display apparatus including the same, and a method for manufacturing the optical element.
  • a polarization conversion element is used in order to increase the light use efficiency.
  • a first base material and a second base material made of optical glass such as BK7 are disposed between the first base material and the second base material.
  • a polarization conversion element having a polarization separation film and a bonding layer made of an organic film such as polyorganosiloxane disposed between the polarization separation film and a second base material is disclosed.
  • the polarization separation element is required to further improve heat resistance, light resistance and light transmittance.
  • a conventional polarization separation element uses an organic adhesive at the joint between the glass substrate and the polarization separation film, heat resistance is low, and deterioration due to light is inevitable. Furthermore, light transmission loss is likely to occur due to a difference in refractive index at the bonding interface.
  • an object of the present technology is to provide an optical element excellent in heat resistance, light resistance and light transmittance, a polarization conversion element, an image display apparatus including the same, and a method for manufacturing the optical element.
  • An optical element includes a first glass substrate, a second glass substrate, an optical functional film, and an inorganic bonding layer.
  • the first glass substrate has a first bonding surface.
  • the second glass substrate has a second bonding surface.
  • the optical functional film covers the first bonding surface.
  • the inorganic bonding layer is formed of a silicon compound that is provided between the optical function film and the second bonding surface and bonded to the second bonding surface by direct bonding.
  • the optical element is excellent in heat resistance and light resistance because the bonding portion between the optical functional film and the second bonding surface is composed of an inorganic bonding layer made of a silicon compound. Furthermore, since the bonding layer is directly bonded to the second bonding surface, the refractive index difference at the interface is reduced, and thus the transmittance can be improved.
  • the silicon compound may be a silicon oxide.
  • the direct bonding may be plasma bonding.
  • the surface roughness (Ra) of the inorganic bonding layer and the second bonding surface can be 2 nm or less.
  • the thickness of the inorganic bonding layer can be 200 nm or more and 1000 nm or less.
  • the optical functional film is an optical multilayer film in which a first dielectric having a first refractive index and a second dielectric having a second refractive index different from the first refractive index are alternately stacked. It may be.
  • the optical multilayer film can be a polarization separation film.
  • Each of the first glass substrate and the second glass substrate may have a refractive index (n d ) of 1.6 or more and 1.8 or less.
  • a polarization conversion element includes a polarization separation element, an inorganic wavelength plate, and a support.
  • the polarization separation element includes: a first glass substrate having a first bonding surface; a second glass substrate having a second bonding surface; and an optical functional film provided on the first bonding surface; And an inorganic bonding layer made of a silicon compound that is provided between the optical functional film and the second bonding surface and bonded to the second bonding surface by direct bonding.
  • the inorganic wave plate converts the first polarized light transmitted through the inorganic bonding layer into a second polarized light orthogonal to the first polarized light.
  • the support supports the polarization separation element and the inorganic wavelength plate in common so that the inorganic wavelength plate faces the polarization separation element with a gap therebetween.
  • An image display device includes a polarization conversion element.
  • the polarization conversion element includes a polarization separation element, an inorganic wavelength plate, and a support.
  • the polarization separation element includes: a first glass substrate having a first bonding surface; a second glass substrate having a second bonding surface; and an optical functional film provided on the first bonding surface; And an inorganic bonding layer made of a silicon compound that is provided between the optical functional film and the second bonding surface and bonded to the second bonding surface by direct bonding.
  • the inorganic wave plate converts the first polarized light transmitted through the inorganic bonding layer into a second polarized light orthogonal to the first polarized light.
  • the support supports the polarization separation element and the inorganic wavelength plate in common so that the inorganic wavelength plate faces the polarization separation element with a gap therebetween.
  • the method of manufacturing an optical element according to an aspect of the present technology is as follows. Forming an optical functional film on the surface of the first glass substrate; Forming an inorganic bonding layer made of a silicon compound on the optical functional film; A second glass substrate is bonded to the inorganic bonding layer by plasma bonding.
  • the bonding surface of the inorganic bonding layer and the second glass substrate may be polished before bonding the second glass substrate. Good.
  • the method for manufacturing the optical element comprises polishing the surface of the first glass substrate and bonding the second glass substrate to the inorganic bonding layer.
  • the bonding surface of the second glass substrate may be polished.
  • the optical functional film may be formed by ion beam sputtering or bias sputtering.
  • an optical element having excellent heat resistance, light resistance, and light transmittance can be obtained.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 1 is an exploded perspective view illustrating a configuration of a polarization conversion element 100 according to an embodiment of the present technology
  • FIG. 2 is a schematic cross-sectional view of a main part of the polarization element 100.
  • the polarization conversion element 100 includes a polarization separation element 10, an inorganic wavelength plate 20, and a support 30 that supports them.
  • the polarization conversion element 100 is an optical element that converts non-polarized incident light L into predetermined polarized light (P-polarized light in this example).
  • the polarization separation element 10 has a light incident surface 101 and a light emitting surface 102.
  • the polarization separation element 10 is an optical element (polarization beam splitter) that transmits or reflects the incident light L depending on the polarization direction of the incident light L.
  • the polarization separation element 10 is configured, for example, by bonding a plurality of parallelepiped prisms in the Z-axis direction.
  • the plurality of prisms includes a first glass substrate 11 and a second glass substrate 12. Between the first glass substrate 11 and the second glass substrate 12, the S-polarized light is reflected, the polarization separation layer 13 that transmits the P-polarized light, and the S-polarized light reflected by the polarization separation layer 13 is reflected again.
  • the reflective layers 14 are alternately arranged.
  • FIG. 3 is a schematic cross-sectional view of the main part showing the configuration of the polarization separation element 10.
  • the polarization separation layer 13 is composed of a laminate of a polarization separation film 131 and an inorganic bonding layer 132.
  • the polarization separation film 131 is an optical functional film that reflects the S-polarized light Ls and transmits the P-polarized light Lp, and is a dielectric that covers the bonding surface 11 a (first bonding surface) of the first glass substrate 11. It consists of a multilayer film. The angle formed by the joint surface 11a and the incident surface 101 is typically 45 °.
  • the polarization separation film 131 is an optical multilayer film in which a first dielectric having a first refractive index and a second dielectric having a second refractive index different from the first refractive index are alternately stacked. is there.
  • the first dielectric is made of a material having a refractive index (nd) smaller than that of the second dielectric.
  • the refractive index of each of the first dielectric and the second dielectric is selected according to the refractive indices of the first and second glass substrates 11 and 12. For example, when the refractive index (nd) of the first and second glass substrates 11 and 12 is 1.6 to 1.8, the first dielectric is SiO 2 (nd: 1.46), The dielectric is Ta 2 O 5 (nd: 2.16).
  • the glass material having a refractive index (nd) of 1.6 to 1.8 include OHARA glass material S-TIH (nd: 1.72).
  • the inorganic bonding layer 132 is provided between the polarization separation film 131 and the bonding surface 12a (second bonding surface) of the second glass substrate 12.
  • the joint surface 12a is a plane parallel to the joint surface 11a.
  • the inorganic bonding layer 132 is made of a silicon compound and bonded to the bonding surface 12a of the second glass substrate 12 by direct bonding.
  • the surface of the inorganic bonding layer 132 facing the bonding surface 12a forms a bonding interface that is directly bonded to the second glass substrate 12. That is, the inorganic bonding layer 132 functions as a buffer layer for forming the bonding interface.
  • the buffer layer constitutes a part of the polarization separation layer 13 and is laminated on the polarization separation film 131 to achieve a predetermined polarization separation function.
  • Examples of the silicon compound constituting the inorganic bonding layer 132 include silicon oxide (SiO 2 , SiO), silicon nitride (SiN), silicon oxynitride (SiON), silicon oxycarbide (SiOC), and the like. Since the inorganic bonding layer 132 is directly bonded to the bonding surface 12a of the second glass substrate 12, the inorganic bonding layer 132 is bonded integrally to the bonding surface 12a without interposing an adhesive at the interface. Can do.
  • Examples of direct bonding include plasma bonding.
  • the inorganic bonding layer 132 is firmly fixed to the bonding surface 12a by forming a silicon-oxygen covalent bond or a silicon-silicon covalent bond between the inorganic bonding layer 132 and the bonding surface 12a.
  • the direct bonding may employ a solid phase bonding method such as diffusion bonding in addition to plasma bonding.
  • the inorganic bonding layer 132 is made of silicon oxide, particularly silicon dioxide.
  • a refractive index close to that of a glass material containing SiO 2 as a main component is obtained. Therefore, although there is a difference in refractive index at the bonding interface between the inorganic bonding layer 132 and the second glass substrate 12, the thickness of the bonding interface is small. Since it is sufficiently smaller than the wavelength of 1 nm or less, reflection caused by the difference in refractive index can be eliminated.
  • the surface roughness (Ra) of the inorganic bonding layer 132 and the bonding surface 12a is 2 nm or less. Thereby, the direct joining process by the plasma joining of the inorganic joining layer 132 with respect to the 2nd glass base material 12 can be performed stably.
  • the surface roughness (Ra) of the inorganic bonding layer 132 and the bonding surface 12a is preferably 1 nm or less, and more preferably 0.5 nm or less.
  • the thickness of the inorganic bonding layer 132 may be sufficient to form the bonding interface, and is, for example, 200 nm or more and 1000 nm or less. Thereby, since the joining thickness between the 1st and 2nd glass base materials 11 and 12 can be made small, while being able to achieve size reduction of the polarization separation element 10 and the polarization conversion element 100, it is 2nd glass. The amount of gas generated by heating at the time of joining to the substrate 12 can be suppressed. By setting the thickness of the inorganic bonding layer 132 to 200 nm or more, the inorganic bonding layer 132 can function as a part of the polarization separation layer 13 (low refractive index material layer). Note that the thickness of the inorganic bonding layer 132 may be less than 200 nm, and is not particularly limited as long as a bonding interface can be formed.
  • the reflection layer 14 is an optical functional film that reflects the S-polarized light Ls reflected by the polarization separation layer 13 again toward the light exit surface 102, and includes the first glass substrate 11 and the second glass substrate. 12 is arranged in parallel with the polarization separation layer 13.
  • the reflective layer 14 is composed of, for example, a dielectric multilayer film. Examples of the dielectric multilayer film include a multilayer film in which silicon oxide and titanium oxide are alternately laminated.
  • the reflective layer 14 may be composed of a dielectric multilayer film.
  • the reflective layer 14 is formed on the surface of the second glass substrate 12 (bonding surface 12a).
  • the bonding method is not particularly limited, and may be direct bonding or bonding using an adhesive. In the case of direct bonding, a silicon dioxide film is formed on the surface of the dielectric multilayer film, and the silicon oxide film is bonded to the first glass substrate 11 by plasma bonding.
  • the polarization separation element 10 is an element set in which a second glass substrate 12 is bonded to both surfaces of a first glass substrate 11 on which a polarization separation layer 13 and a reflection layer 14 are formed.
  • the body 10M is formed by cutting along the cutting line C.
  • each polarization separating element 10p separated into pieces is lapped at both ends in the longitudinal direction, and antireflection films 101m and 102m are formed on the light incident surface 101 and the light emitting surface 102, respectively. After that, both ends are joined in the longitudinal direction.
  • the inorganic wavelength plate 20 is an optical element (half wavelength plate) that converts the S-polarized light Ls reflected by the reflective layer 14 into P-polarized light Lp.
  • the inorganic wavelength plate 20 is typically formed of a rectangular crystal plate that is long in the X-axis direction, and is disposed at a predetermined interval on the light emitting surface 102 of the polarization separation element 10.
  • the antireflection film 21 is formed on each surface of the inorganic wave plate 20 on the light incident side and the light emitting side.
  • the antireflection film 21 is a dielectric multilayer film, and is composed of a dielectric multilayer film such as magnesium fluoride (MgF 2 ), silicon dioxide (SiO 2 ), TiO 2 , Ta 2 O 5, for example.
  • the inorganic wave plate 20 has a long strip shape in the X-axis direction, and a plurality of inorganic wave plates 20 are arranged at intervals on the optical path of the reflected light (S-polarized light Ls) from the reflective layer 14 as shown in FIG. .
  • Each inorganic wave plate 20 is supported in common by the second support frame 120.
  • the support 30 is constituted by a joined body of the first support frame 110 and the second support frame 120.
  • the first support frame 110 is made of a metal plate having a plurality of apertures 111 and is disposed on the light incident surface 101 side of the polarization separation element 10.
  • the second frame 120 is configured by a frame-shaped metal plate disposed on the light exit surface 102 side of the polarization separation element 10.
  • the first support frame 110 and the second support frame 120 are bonded to each other via the adhesive layer 130 or an appropriate connection mechanism with the polarization separation element 10 and the inorganic wavelength plate 20 interposed therebetween.
  • the support 30 supports the polarization separation element 10 and the inorganic wavelength plate 20 in common so that the inorganic wavelength plate 20 faces a predetermined position of the light exit surface 102 of the polarization separation element 10.
  • the relative positional relationship between the polarization separation element 10 and the inorganic wavelength plate 20 is maintained without mutually bonding the polarization separation element 10 and the inorganic wavelength plate 20 with an adhesive or the like. Accordingly, it is possible to avoid a decrease in heat resistance, light resistance, and translucency due to the presence of the adhesive between the polarization separation element 10 and the inorganic wave plate 20.
  • the first support frame 110 has a frame shape and is in contact with the light incident surface 101 of the polarization separation element 10.
  • the second support frame 120 has a plate shape in which an opening for supporting the inorganic wave plate 20 is formed in the plane.
  • the first and second support frames 110 and 120 are secured to each other by reinforcing the periphery.
  • the constituent material is not particularly limited, and is typically composed of a metal material.
  • the adhesive layer 130 is made of an organic material such as an ultraviolet curable resin, adheres between the second support frame 120, the inorganic wave plate 20, and the polarization separation element 10, and is disposed in a region where the incident light L is not irradiated. . Thereby, deterioration of the adhesive layer 130 due to light irradiation can be avoided.
  • the method for manufacturing the polarization separation element 10 of the present embodiment includes a step of forming the polarization separation film 131 on the surface (bonding surface 11a) of the first glass substrate 11, and an inorganic material made of a silicon compound on the polarization separation film 131. There are a step of forming the bonding layer 132 and a step of bonding the second glass substrate 12 to the inorganic bonding layer 132 by plasma bonding.
  • FIG. 6 is a schematic process diagram showing an example of a method for manufacturing the polarization separation element 10.
  • the polarization separation film 131 and the inorganic bonding layer 132 are formed on the first glass substrate 11 (FIG. 6A), and the surface of the inorganic bonding layer 132 and the bonding surface 12a of the second glass substrate 12 are formed.
  • the inorganic bonding layer 132 and the second glass substrate 12 are directly bonded (FIG. 6C). That is, in this example, after forming the inorganic bonding layer 132 and before bonding the second glass substrate 12, the bonding surface 12a of the inorganic bonding layer 132 and the second glass substrate 12 is polished.
  • a method for forming the polarization separation film 131 and the inorganic bonding layer 132 is not particularly limited, and a sputtering method, an ion beam sputtering method, a vacuum evaporation method, an ion assist evaporation method, or the like is applicable.
  • SiO 2 can be used as the low refractive index material layer
  • Ta 2 O 5 can be used as the high refractive index material layer for the dielectric multilayer film constituting the polarization separation film 131.
  • the thickness, the number of layers, etc. of each material layer can be appropriately set according to the required polarization separation characteristics.
  • the polarization separation film 131 is composed of a 12-layer dielectric multilayer film, and a silicon dioxide film constituting the inorganic bonding layer 132 is formed on the upper layer (13th layer).
  • the bonding surface 12a of the inorganic bonding layer 132 and the second glass substrate 12 is polished so that the surface roughness (Ra) is 1 nm or less, more preferably 0.5 nm or less.
  • the polishing method is not particularly limited, and typically, a high-accuracy polishing method that can adjust the surface roughness on the order of nm is employed. Thereby, desired joining strength can be obtained by plasma joining described later.
  • the surface roughness necessary for bonding to the second glass substrate 12 can be obtained, and thus the film is formed on the bonding surface 11a of the first glass substrate 11 and on the surface.
  • the surface roughness of the polarization separation film 131 may be 1 nm or more. Thereby, the processing cost of the bonding surface 11a and the film thickness control of the polarization separation film 131 are facilitated.
  • the thickness of the inorganic bonding layer 132 is reduced by polishing, the inorganic bonding layer 132 is formed to a thickness of, for example, 5000 nm, and then polished to a thickness of, for example, 2000 nm or less.
  • Plasma bonding is used for bonding the inorganic bonding layer 132 and the second glass substrate 12.
  • plasma bonding first, plasma activation treatment is performed on the surface of the inorganic bonding layer 132 on the first glass substrate 11 and the bonding surface 12 a of the second glass substrate 12.
  • OH groups are generated on the surface of the inorganic bonding layer 132 and the bonding surface 12a so as to be hydrophilized.
  • oxygen (O 2 ), nitrogen (N 2 ), helium (He), argon (Ar), hydrogen (H 2 ), or the like can be used.
  • oxygen in this example oxygen in this example
  • nitrogen (N 2 ) nitrogen
  • He helium
  • Ar argon
  • hydrogen (H 2 ), or the like can be used.
  • oxygen in this example oxygen in this example
  • alteration of the inorganic bonding layer 132 and the bonding surface 12a can be suppressed.
  • the inorganic bonding layer 132 and the second glass substrate 12 are bonded together, and a temporary bonding state is obtained by hydrogen bonding between the OH groups.
  • a temporary bonding state is obtained by hydrogen bonding between the OH groups.
  • heat treatment annealing
  • Si—OH at the interface is subjected to a dehydration condensation reaction to form a silicon-oxygen covalent bond or a silicon-silicon covalent bond, thereby completing plasma bonding.
  • FIG. 8 is a schematic process diagram illustrating another example of the method of manufacturing the polarization separation element 10.
  • the bonding surface 11a of the first glass substrate 11 and the bonding surface 12a of the second glass substrate 12 are flattened by polishing (FIG. 8A), and polarized on the bonding surface 11a of the first glass substrate.
  • the separation membrane 131 and the inorganic bonding layer 132 are sequentially formed (FIG. 8B)
  • the inorganic bonding layer 132 and the second glass substrate 12 are directly bonded (FIG. 8C).
  • the bonding surface 11a of the first glass substrate is polished, and before the second glass substrate 12 is bonded to the inorganic bonding layer 132, the first The bonding surface 12a of the second glass substrate 12 is polished.
  • a film forming method with high surface flatness is used in this example.
  • a film forming method for example, a film forming method having a small surface roughness such as ion beam sputtering, bias sputtering or the like can be applied, whereby the surface roughness (Ra) is, for example, A vapor deposition film having a high flatness of 0.5 nm or less can be formed. Since the polarization separation layer 13 is formed by such a film forming method, the surface of the inorganic bonding layer 132 can be formed with a desired flatness without requiring polishing treatment. Can be reduced to about 200 nm, for example.
  • a plasma bonding process similar to the method 1 described above is performed.
  • the thickness of the inorganic bonding layer 132 can be reduced, there is an advantage that the amount of degassing from the inorganic bonding layer 132 during annealing can be reduced.
  • the joint between the polarization separation layer 13 and the joint surface 12a of the second glass substrate 12 is composed of an inorganic joint layer 132 made of a silicon compound. Therefore, improvement in heat resistance and light resistance can be realized. Further, since the inorganic bonding layer 132 is directly bonded to the bonding surface 12a by bonding, there is a difference in refractive index at the bonding interface, but the thickness of the bonding interface is 1 nm or less, which is sufficiently smaller than the wavelength. Thus, the transmittance can be improved by eliminating reflection.
  • FIG. 9 shows the optical characteristics of the polarization separation element 10 produced by the above-described method 1.
  • FIG. 9 confirms that a high polarization extinction ratio can be obtained in the visible light region. Although not shown, it has been confirmed that the same optical characteristics as in FIG. 9 can be obtained even by the polarization separation element manufactured by the above-described method 2.
  • a polarization separation film is formed using a general-purpose glass (white plate glass, blue plate glass, BK7, etc.) having a refractive index (nd) of around 1.5 as a glass substrate, a low refractive index material If MgF 2 (magnesium fluoride, nd: 1.38) is not used, it is difficult to obtain desired optical characteristics (transmittance). However, since MgF 2 has a large film stress, it is difficult to form a dielectric multilayer film, and the multilayer film is destroyed when the temperature is raised to 200 ° C. during bonding.
  • the polarization separation film cannot be bonded to the glass substrate by direct bonding such as plasma bonding, and it has been necessary to use an organic adhesive such as an ultraviolet curable adhesive.
  • an organic adhesive such as an ultraviolet curable adhesive.
  • the polarization separation element 10 of the present embodiment since no organic adhesive is present at the joint between the glass substrate and the polarization separation film, the heat resistance and light resistance are improved. Therefore, it is possible to sufficiently cope with higher output or higher density of light energy.
  • there is no adhesive on the optical path of light there is a difference in refractive index at the bonding interface, but the thickness of the bonding interface is 1 nm or less, which is sufficiently smaller than the wavelength, so that reflection caused by the difference in refractive index is eliminated. The transmittance can be improved.
  • glass materials having a refractive index of 1.6 or more and 1.8 or less are used for the first and second glass base materials 11 and 12
  • carbon dioxide is used as the low refractive index material of the polarization separation film 131.
  • Desirable optical characteristics can be ensured by using silicon and a general material such as TiO 2 and Ta 2 O 5 as a high refractive index material.
  • the inorganic wavelength plate 20 is supported in common by the support 30 that supports the polarization separation element 10, on the optical path from the polarization separation element 10 to the inorganic wavelength plate 20.
  • the inorganic wave plate 20 can be disposed in a non-contact manner with respect to the light exit surface 102 of the polarization separation element 10 without interposing an organic adhesive on the surface. Thereby, the heat resistance, light resistance, and light transmittance of the polarization conversion element 100 can be improved.
  • nd refractive index
  • general-purpose glass of about 1.5 white plate glass, blue plate glass, BK7, Bolofloat, etc.
  • silicon dioxide with a low film stress is used as a low refractive index material for quartz having a refractive index (nd) of 1.45 or general-purpose glass (white glass, blue glass, BK7, Bolofloat, etc.) near 1.5. May be. In this case, the optical characteristics are also inferior, but the device can be manufactured.
  • nd refractive index
  • general-purpose glass white glass, blue glass, BK7, Bolofloat, etc.
  • FIG. 10 is a schematic configuration diagram illustrating an image display device 200 according to an embodiment of the present technology.
  • the image display apparatus 200 modulates the illumination optical system 240 that emits polarized light, the spectroscopic optical system 250 that splits the light emitted from the illumination optical system 240, and the light that is split by the spectroscopic optical system 250, respectively.
  • Liquid crystal panels 63, 68, 73 are provided.
  • the image display apparatus 200 includes a light combining unit 80 that combines the lights modulated by the liquid crystal panels 63, 68, and 73, and a projection lens 90 that projects the light combined by the light combining unit 80.
  • the white light emitted from the light source 41 such as an ultra-high pressure mercury lamp is reflected by the reflector 42 and transmitted through the explosion-proof glass 43.
  • the UV cut filter 44 removes ultraviolet rays from the light transmitted through the explosion-proof glass 43.
  • the light transmitted through the UV cut filter 44 is reduced in luminance unevenness by the first fly-eye lens 45 and the second fly-eye lens 46 and enters the polarization conversion element 100.
  • the polarization conversion element 100 converts incident light into, for example, P-polarized light. Then, this P-polarized light is emitted from the illumination optical system 240.
  • the light emitted from the illumination optical system 240 is collimated by the condenser lens 48 and enters the spectroscopic optical system 250.
  • the spectroscopic optical system 250 includes a dichroic mirror 49 that transmits blue light out of white light from the illumination optical system 240 and reflects red light and green light.
  • the spectroscopic optical system 250 includes a dichroic mirror 53 that is disposed on the optical path of the light reflected by the dichroic mirror 49, reflects green light, and transmits red light.
  • the blue light that has passed through the dichroic mirror 49 passes through the UV absorption filter 51, so that the ultraviolet rays are cut off.
  • the blue light transmitted through the UV absorption filter 51 is reflected by the mirror 52 and enters the condenser lens 61.
  • the blue light condensed by the condenser lens 61 is made to be linearly polarized by the incident side polarizing plate 62 and the polarization direction is aligned, and enters the liquid crystal panel 63.
  • An emission side polarizing plate 64 as an analyzer is disposed at the subsequent stage of the liquid crystal panel 63, and transmits only light having a predetermined polarization direction among the light transmitted through the liquid crystal panel 63.
  • the liquid crystal panel 63 for example, a twisted nematic type can be used.
  • a signal voltage for blue light corresponding to image information is applied to each pixel of the liquid crystal panel 63, and the polarization direction of the blue light transmitted through each pixel is rotated according to this voltage.
  • blue image light having an intensity distribution corresponding to image information is obtained.
  • the blue light that has passed through the exit-side polarizing plate 64 is transmitted through a half-wave film 65 provided on the incident surface of the light combining unit 80 so that the polarization direction is rotated by 90 °, and then the light combining unit 80 such as a combining prism. Is incident on.
  • the green light reflected by the dichroic mirror 53 enters the condenser lens 66.
  • the green light condensed by the condenser lens 66 becomes linearly polarized light by the incident side polarizing plate 67 and enters the liquid crystal panel 68.
  • the liquid crystal panel 68 rotates the polarization direction of the green light transmitted through each pixel according to the image information.
  • the green light transmitted through the liquid crystal panel 68 is transmitted through the exit side polarizing plate 69, whereby green image light having an intensity distribution corresponding to the image information is obtained.
  • the green light that has passed through the emission-side polarizing plate 69 enters the light combining unit 80.
  • the red light transmitted through the dichroic mirror 53 enters the wavelength selection filter 56 via the condenser lens 54 and the mirror 55.
  • the wavelength selection filter 56 is configured by a band pass filter or the like, and transmits only effective red light to the subsequent stage.
  • the red light that has passed through the wavelength selection filter 56 enters the condenser lens 71 via the condenser lens 57 and the mirror 58.
  • the red light condensed by the condenser lens 71 becomes linearly polarized light by the incident side polarizing plate 72 and enters the liquid crystal panel 73.
  • the liquid crystal panel 73 rotates the polarization direction of the red light transmitted through each pixel according to the image information.
  • the red light transmitted through the liquid crystal panel 73 is transmitted through the exit side polarizing plate 74, whereby red image light having an intensity distribution corresponding to the image information is obtained.
  • the red light that has passed through the exit-side polarizing plate 74 passes through the half-wave film 75 provided on the incident surface of the light combining unit 80, and the polarization direction is rotated by 90 °, and then enters the light combining unit 80.
  • the light combining unit 80 combines red light, green light, and blue light on the same optical path.
  • the combined light emitted from the combining prism is enlarged and projected onto a screen (not shown) by the projection lens 90.
  • a transmissive liquid crystal panel is shown as a modulator that modulates light according to image information.
  • modulation is performed by a reflective liquid crystal panel or other methods using GLV (Grating Light Valve) or the like. It may be broken.
  • GLV Grating Light Valve
  • the illumination optical system 240 since the illumination optical system 240 includes the polarization conversion element 100 described in the first embodiment, the illumination optical system is excellent in heat resistance, light resistance, and light transmittance. Can be built. In addition, since it is possible to cope with higher output of the light source or higher density of light energy, a high-luminance image can be formed.
  • the polarization separation film 131 of the polarization separation element 10 is configured by an optical functional film that reflects S-polarized light and transmits P-polarized light.
  • the present invention is not limited to this. It may be composed of an optical functional film that transmits light.
  • the inorganic wave plate 20 is not limited to a wave plate that converts S-polarized light into P-polarized light, and a wave plate that converts P-polarized light into S-polarized light may be used.
  • the number of layers of the polarization separation film 131 is not limited to 12 and may be, for example, 9 to 13 layers.
  • the thickness of each layer can also be set arbitrarily.
  • the total thickness of the polarization separation film 131 is not particularly limited, and can be appropriately set, for example, at 1500 to 2000 nm.
  • the polarization separation element having a polarization separation film is described as an example of the optical element.
  • the present invention is not limited to this, and an optical element having an optical function film such as an antireflection film or a wavelength selection film is used. This technique is also applicable.
  • this technique can also take the following structures.
  • a first glass substrate having a first bonding surface A second glass substrate having a second bonding surface; An optical functional film covering the first bonding surface;
  • An optical element comprising: an inorganic bonding layer made of a silicon compound that is provided between the optical functional film and the second bonding surface and bonded to the second bonding surface by direct bonding.
  • the optical element according to (1) above The optical element is a silicon oxide.
  • the optical element according to (1) or (2) above, The direct bonding is a plasma bonding optical element.
  • the optical element according to any one of (1) to (3) above, Surface roughness (Ra) of the inorganic bonding layer and the second bonding surface is 2 nm or less.
  • the optical element according to (6) above, The optical multilayer film is a polarization separation film.
  • a polarization beam splitting element having an inorganic bonding layer made of a silicon compound provided between the functional film and the second bonding surface and bonded to the second bonding surface by direct bonding;
  • An inorganic wave plate that converts the first polarized light transmitted through the inorganic bonding layer into a second polarized light that is orthogonal to the first polarized light, and the inorganic wave plate that faces the polarization separation element with a gap therebetween
  • a polarization conversion element comprising: a support that commonly supports the polarization separation element and the inorganic wavelength plate.
  • the image display apparatus which comprises the polarization conversion element which has the support body which supports the said polarization separation element and the said inorganic wavelength plate in common.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Abstract

An optical element according to one embodiment of the present technique is provided with a first glass substrate, a second glass substrate, an optical functional film and an inorganic bonding layer. The first glass substrate has a first bonding surface. The second glass substrate has a second bonding surface. The optical functional film covers the first bonding surface. The inorganic bonding layer is arranged between the optical functional film and the second bonding surface, and comprises a silicon compound bonded to the second bonding surface through direct bonding.

Description

光学素子、偏光変換素子、画像表示装置及び光学素子の製造方法Optical element, polarization conversion element, image display apparatus, and optical element manufacturing method
 本技術は、光学機能膜を有する光学素子、偏光変換素子及びこれを備えた画像表示装置、並びに光学素子の製造方法に関する。 The present technology relates to an optical element having an optical functional film, a polarization conversion element, an image display apparatus including the same, and a method for manufacturing the optical element.
 投射型画像表示装置(プロジェクタ)には、光の利用効率を上げるために偏光変換素子が用いられている。この種の偏光変換素子として、例えば特許文献1には、BK7等の光学ガラスで構成された第1基材及び第2基材と、第1基材と第2基材との間に配置された偏光分離膜と、偏光分離膜と第2基材との間に配置されたポリオルガノシロキサン等の有機膜からなる接合層とを有する偏光変換素子が開示されている。 In the projection type image display device (projector), a polarization conversion element is used in order to increase the light use efficiency. As this type of polarization conversion element, for example, in Patent Document 1, a first base material and a second base material made of optical glass such as BK7 are disposed between the first base material and the second base material. A polarization conversion element having a polarization separation film and a bonding layer made of an organic film such as polyorganosiloxane disposed between the polarization separation film and a second base material is disclosed.
特開2010-113056号公報JP 2010-113056 A
 近年、投射型画像表示装置においては、画像の高輝度化を実現するため、光源の高出力化あるいは光エネルギの高密度化が進められている。このため、偏光分離素子においては、耐熱性、耐光性及び光透過性の更なる向上が求められる。しかしながら、従来の偏光分離素子にはガラス基材と偏光分離膜との接合部に有機系の接着剤が用いられているため、耐熱性が低く、光による劣化が避けられない。さらには接合界面における屈折率差によって光の透過ロスも生じやすい。 In recent years, in a projection-type image display device, in order to achieve high brightness of an image, higher output of a light source or higher density of light energy has been promoted. For this reason, the polarization separation element is required to further improve heat resistance, light resistance and light transmittance. However, since a conventional polarization separation element uses an organic adhesive at the joint between the glass substrate and the polarization separation film, heat resistance is low, and deterioration due to light is inevitable. Furthermore, light transmission loss is likely to occur due to a difference in refractive index at the bonding interface.
 以上のような事情に鑑み、本技術の目的は、耐熱性、耐光性及び光透過性に優れた光学素子、偏光変換素子及びこれを備えた画像表示装置、並びに光学素子の製造方法を提供することにある。 In view of the circumstances as described above, an object of the present technology is to provide an optical element excellent in heat resistance, light resistance and light transmittance, a polarization conversion element, an image display apparatus including the same, and a method for manufacturing the optical element. There is.
 本技術の一形態に係る光学素子は、第1のガラス基材と、第2のガラス基材と、光学機能膜と、無機接合層とを具備する。
 前記第1のガラス基材は、第1の接合面を有する。
 前記第2のガラス基材は、第2の接合面を有する。
 前記光学機能膜は、前記第1の接合面を被覆する。
 前記無機接合層は、前記光学機能膜と前記第2の接合面との間に設けられ、前記第2の接合面と直接接合により接合されたシリコン化合物からなる。
An optical element according to an embodiment of the present technology includes a first glass substrate, a second glass substrate, an optical functional film, and an inorganic bonding layer.
The first glass substrate has a first bonding surface.
The second glass substrate has a second bonding surface.
The optical functional film covers the first bonding surface.
The inorganic bonding layer is formed of a silicon compound that is provided between the optical function film and the second bonding surface and bonded to the second bonding surface by direct bonding.
 上記光学素子は、光学機能膜と第2の接合面との接合部がシリコン化合物からなる無機接合層で構成されているため、耐熱性及び耐光性に優れる。さらに、上記接合層が第2の接合面に直接接合により接合されるため、界面における屈折率差が小さくなり、したがって透過率を向上させることができる。 The optical element is excellent in heat resistance and light resistance because the bonding portion between the optical functional film and the second bonding surface is composed of an inorganic bonding layer made of a silicon compound. Furthermore, since the bonding layer is directly bonded to the second bonding surface, the refractive index difference at the interface is reduced, and thus the transmittance can be improved.
 前記シリコン化合物は、シリコン酸化物であってもよい。 The silicon compound may be a silicon oxide.
 前記直接接合は、プラズマ接合であってもよい。 The direct bonding may be plasma bonding.
 この場合、前記無機接合層及び前記第2の接合面の表面粗さ(Ra)は、2nm以下とすることができる。 In this case, the surface roughness (Ra) of the inorganic bonding layer and the second bonding surface can be 2 nm or less.
 前記無機接合層の厚みは、200nm以上1000nm以下とすることができる。 The thickness of the inorganic bonding layer can be 200 nm or more and 1000 nm or less.
 前記光学機能膜は、第1の屈折率を有する第1の誘電体と、前記第1の屈折率とは異なる第2の屈折率を有する第2の誘電体とを交互に積層した光学多層膜であってもよい。 The optical functional film is an optical multilayer film in which a first dielectric having a first refractive index and a second dielectric having a second refractive index different from the first refractive index are alternately stacked. It may be.
 前記光学多層膜は、偏光分離膜とすることができる。 The optical multilayer film can be a polarization separation film.
 前記第1のガラス基材及び前記第2のガラス基材各々の屈折率(n)は、1.6以上1.8以下とすることができる。 Each of the first glass substrate and the second glass substrate may have a refractive index (n d ) of 1.6 or more and 1.8 or less.
 本技術の一形態に係る偏光変換素子は、偏光分離素子と、無機波長板と、支持体とを具備する。
 前記偏光分離素子は、第1の接合面を有する第1のガラス基材と、第2の接合面を有する第2のガラス基材と、前記第1の接合面に設けられた光学機能膜と、前記光学機能膜と前記第2の接合面との間に設けられ、前記第2の接合面と直接接合により接合されたシリコン化合物からなる無機接合層とを有する。
 前記無機波長板は、前記無機接合層を透過した第1の偏光を、前記第1の偏光と直交する第2の偏光に変換する。
 前記支持体は、前記偏光分離素子に対して前記無機波長板が間隔を介して対向するように前記偏光分離素子と前記無機波長板とを共通に支持する。
A polarization conversion element according to an embodiment of the present technology includes a polarization separation element, an inorganic wavelength plate, and a support.
The polarization separation element includes: a first glass substrate having a first bonding surface; a second glass substrate having a second bonding surface; and an optical functional film provided on the first bonding surface; And an inorganic bonding layer made of a silicon compound that is provided between the optical functional film and the second bonding surface and bonded to the second bonding surface by direct bonding.
The inorganic wave plate converts the first polarized light transmitted through the inorganic bonding layer into a second polarized light orthogonal to the first polarized light.
The support supports the polarization separation element and the inorganic wavelength plate in common so that the inorganic wavelength plate faces the polarization separation element with a gap therebetween.
 本技術の一形態に係る画像表示装置は、偏光変換素子を具備する。
 前記偏光変換素子は、偏光分離素子と、無機波長板と、支持体とを有する。
 前記偏光分離素子は、第1の接合面を有する第1のガラス基材と、第2の接合面を有する第2のガラス基材と、前記第1の接合面に設けられた光学機能膜と、前記光学機能膜と前記第2の接合面との間に設けられ、前記第2の接合面と直接接合により接合されたシリコン化合物からなる無機接合層とを有する。
 前記無機波長板は、前記無機接合層を透過した第1の偏光を、前記第1の偏光と直交する第2の偏光に変換する。
 前記支持体は、前記偏光分離素子に対して前記無機波長板が間隔を介して対向するように前記偏光分離素子と前記無機波長板とを共通に支持する。
An image display device according to an embodiment of the present technology includes a polarization conversion element.
The polarization conversion element includes a polarization separation element, an inorganic wavelength plate, and a support.
The polarization separation element includes: a first glass substrate having a first bonding surface; a second glass substrate having a second bonding surface; and an optical functional film provided on the first bonding surface; And an inorganic bonding layer made of a silicon compound that is provided between the optical functional film and the second bonding surface and bonded to the second bonding surface by direct bonding.
The inorganic wave plate converts the first polarized light transmitted through the inorganic bonding layer into a second polarized light orthogonal to the first polarized light.
The support supports the polarization separation element and the inorganic wavelength plate in common so that the inorganic wavelength plate faces the polarization separation element with a gap therebetween.
 本技術の一形態に係る光学素子の製造方法は、
 第1のガラス基材の表面に光学機能膜を形成し、
 前記光学機能膜の上にシリコン化合物からなる無機接合層を形成し、
 前記無機接合層に、第2のガラス基材をプラズマ接合により接合する。
The method of manufacturing an optical element according to an aspect of the present technology is as follows.
Forming an optical functional film on the surface of the first glass substrate;
Forming an inorganic bonding layer made of a silicon compound on the optical functional film;
A second glass substrate is bonded to the inorganic bonding layer by plasma bonding.
 前記光学素子の製造方法は、前記無機接合層を形成した後、前記第2のガラス基材を接合する前に、前記無機接合層及び前記第2のガラス基材の接合面を研磨してもよい。 In the method for manufacturing the optical element, after the inorganic bonding layer is formed, the bonding surface of the inorganic bonding layer and the second glass substrate may be polished before bonding the second glass substrate. Good.
 あるいは、前記光学素子の製造方法は、前記光学機能膜を形成する前に、前記第1のガラス基材の表面を研磨し、前記第2のガラス基材を前記無機接合層に接合する前に、前記第2のガラス基材の接合面を研磨してもよい。 Alternatively, before the optical functional film is formed, the method for manufacturing the optical element comprises polishing the surface of the first glass substrate and bonding the second glass substrate to the inorganic bonding layer. The bonding surface of the second glass substrate may be polished.
 前記光学機能膜は、イオンビームスパッタ法又はバイアススパッタ法により形成されてもよい。 The optical functional film may be formed by ion beam sputtering or bias sputtering.
 以上のように、本技術によれば、耐熱性、耐光性及び光透過性に優れた光学素子を得ることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
As described above, according to the present technology, an optical element having excellent heat resistance, light resistance, and light transmittance can be obtained.
Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の一実施形態に係る偏光変換素子の構成を示す分解斜視図である。It is an exploded perspective view showing the composition of the polarization conversion element concerning one embodiment of this art. 上記偏光変換素子の構成を示す要部の概略断面図である。It is a schematic sectional drawing of the principal part which shows the structure of the said polarization conversion element. 上記偏光変換素子における偏光分離素子の構成を示す要部の概略断面図である。It is a schematic sectional drawing of the principal part which shows the structure of the polarization separation element in the said polarization conversion element. 上記偏光分離素子の作製方法を説明する図である。It is a figure explaining the preparation methods of the said polarization splitting element. 上記偏光分離素子の作製方法を説明する図である。It is a figure explaining the preparation methods of the said polarization splitting element. 上記偏光分離素子の製造方法の一例を示す概略工程図である。It is a schematic process drawing which shows an example of the manufacturing method of the said polarization splitting element. 上記偏光分離素子における偏光分離膜の層構造の一例を示す模式図である。It is a schematic diagram which shows an example of the layer structure of the polarization separation film in the said polarization separation element. 上記偏光分離素子の製造方法の他の一例を示す概略工程図である。It is a schematic process drawing which shows another example of the manufacturing method of the said polarization splitting element. 上記偏光分離素子の光学特性の一例を示す図である。It is a figure which shows an example of the optical characteristic of the said polarization splitting element. 本技術の一実施形態に係る画像表示装置を示す概略構成図である。It is a schematic structure figure showing an image display device concerning one embodiment of this art.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments of the present technology will be described with reference to the drawings.
<第1の実施形態>
 図1は、本技術の一実施形態に係る偏光変換素子100の構成を示す分解斜視図、図2は偏光素子100の要部の概略断面図である。偏光変換素子100は、偏光分離素子10と、無機波長板20と、これらを支持する支持体30とを備える。偏光変換素子100は、無偏光の入射光Lを所定の偏光(本例ではP偏光)に変換する光学素子である。
<First Embodiment>
FIG. 1 is an exploded perspective view illustrating a configuration of a polarization conversion element 100 according to an embodiment of the present technology, and FIG. 2 is a schematic cross-sectional view of a main part of the polarization element 100. The polarization conversion element 100 includes a polarization separation element 10, an inorganic wavelength plate 20, and a support 30 that supports them. The polarization conversion element 100 is an optical element that converts non-polarized incident light L into predetermined polarized light (P-polarized light in this example).
[偏光分離素子]
 偏光分離素子10は、光入射面101と、光出射面102とを有する。偏光分離素子10は、入射光Lの偏光方向によって入射光Lを透過し又は反射する光学素子(偏光ビームスプリッタ)である。
[Polarized light separation element]
The polarization separation element 10 has a light incident surface 101 and a light emitting surface 102. The polarization separation element 10 is an optical element (polarization beam splitter) that transmits or reflects the incident light L depending on the polarization direction of the incident light L.
 偏光分離素子10は、例えば、平行六面体形状の複数のプリズムをZ軸方向に貼り合わせることにより構成される。本実施形態において複数のプリズムは、第1のガラス基材11と、第2のガラス基材12とを有する。第1のガラス基材11及び第2のガラス基材12の間には、S偏光を反射し、P偏光を透過する偏光分離層13と、偏光分離層13によって反射されたS偏光を再び反射する反射層14とが交互に配置されている。 The polarization separation element 10 is configured, for example, by bonding a plurality of parallelepiped prisms in the Z-axis direction. In the present embodiment, the plurality of prisms includes a first glass substrate 11 and a second glass substrate 12. Between the first glass substrate 11 and the second glass substrate 12, the S-polarized light is reflected, the polarization separation layer 13 that transmits the P-polarized light, and the S-polarized light reflected by the polarization separation layer 13 is reflected again. The reflective layers 14 are alternately arranged.
 図3は、偏光分離素子10の構成を示す要部の概略断面図である。同図に示すように、偏光分離層13は、偏光分離膜131と、無機接合層132との積層体で構成される。 FIG. 3 is a schematic cross-sectional view of the main part showing the configuration of the polarization separation element 10. As shown in the figure, the polarization separation layer 13 is composed of a laminate of a polarization separation film 131 and an inorganic bonding layer 132.
 偏光分離膜131は、S偏光光Lsを反射し、P偏光光Lpを透過する光学機能膜であり、第1のガラス基材11の接合面11a(第1の接合面)を被覆する誘電体多層膜で構成される。接合面11aと入射面101とのなす角は、典型的には、45°である。偏光分離膜131は、第1の屈折率を有する第1の誘電体と、第1の屈折率とは異なる第2の屈折率を有する第2の誘電体とを交互に積層した光学多層膜である。 The polarization separation film 131 is an optical functional film that reflects the S-polarized light Ls and transmits the P-polarized light Lp, and is a dielectric that covers the bonding surface 11 a (first bonding surface) of the first glass substrate 11. It consists of a multilayer film. The angle formed by the joint surface 11a and the incident surface 101 is typically 45 °. The polarization separation film 131 is an optical multilayer film in which a first dielectric having a first refractive index and a second dielectric having a second refractive index different from the first refractive index are alternately stacked. is there.
 第1の誘電体は、第2の誘電体よりも屈折率(nd)が小さい材料で構成される。第1の誘電体及び第2の誘電体各々の屈折率は、第1及び第2のガラス基材11,12の屈折率によって選定される。例えば、第1及び第2のガラス基材11,12の屈折率(nd)が1.6~1.8の場合、第1の誘電体はSiO2(nd:1.46)、第2の誘電体はTa25(nd:2.16)である。屈折率(nd)が1.6~1.8のガラス材としては、例えば、OHARA製硝材S-TIH(nd:1.72)等が挙げられる。 The first dielectric is made of a material having a refractive index (nd) smaller than that of the second dielectric. The refractive index of each of the first dielectric and the second dielectric is selected according to the refractive indices of the first and second glass substrates 11 and 12. For example, when the refractive index (nd) of the first and second glass substrates 11 and 12 is 1.6 to 1.8, the first dielectric is SiO 2 (nd: 1.46), The dielectric is Ta 2 O 5 (nd: 2.16). Examples of the glass material having a refractive index (nd) of 1.6 to 1.8 include OHARA glass material S-TIH (nd: 1.72).
 無機接合層132は、偏光分離膜131と第2のガラス基材12の接合面12a(第2の接合面)との間に設けられる。接合面12aは、接合面11aと平行な平面である。無機接合層132は、シリコン化合物からなり、第2のガラス基材12の接合面12aと直接接合により接合される。接合面12aと対向する無機接合層132の表面は、第2のガラス基材12と直接接合される接合界面を形成する。つまり、無機接合層132は、当該接合界面を形成するためのバッファ層として機能する。当該バッファ層は、偏光分離層13の一部を構成し、偏光分離膜131に積層されることで所定の偏光分離機能を果たす。 The inorganic bonding layer 132 is provided between the polarization separation film 131 and the bonding surface 12a (second bonding surface) of the second glass substrate 12. The joint surface 12a is a plane parallel to the joint surface 11a. The inorganic bonding layer 132 is made of a silicon compound and bonded to the bonding surface 12a of the second glass substrate 12 by direct bonding. The surface of the inorganic bonding layer 132 facing the bonding surface 12a forms a bonding interface that is directly bonded to the second glass substrate 12. That is, the inorganic bonding layer 132 functions as a buffer layer for forming the bonding interface. The buffer layer constitutes a part of the polarization separation layer 13 and is laminated on the polarization separation film 131 to achieve a predetermined polarization separation function.
 無機接合層132を構成するシリコン化合物としては、シリコン酸化物(SiO2、SiO)、シリコン窒化物(SiN)、シリコン酸窒化物(SiON)、シリコン酸化炭化物(SiOC)等が挙げられる。無機接合層132は、第2のガラス基材12の接合面12aと直接接合されているため、界面に接着剤を介在させることなく、無機接合層132を接合面12aに一体的に接合することができる。 Examples of the silicon compound constituting the inorganic bonding layer 132 include silicon oxide (SiO 2 , SiO), silicon nitride (SiN), silicon oxynitride (SiON), silicon oxycarbide (SiOC), and the like. Since the inorganic bonding layer 132 is directly bonded to the bonding surface 12a of the second glass substrate 12, the inorganic bonding layer 132 is bonded integrally to the bonding surface 12a without interposing an adhesive at the interface. Can do.
 直接接合としては、例えば、プラズマ接合が挙げられる。プラズマ接合では、無機接合層132と接合面12aとの間に、シリコン-酸素共有結合あるいはシリコン-シリコン共有結合を形成することで、無機接合層132が接合面12aに強固に固定される。直接接合には、プラズマ接合のほか、拡散接合などの固相接合法が採用されてもよい。 Examples of direct bonding include plasma bonding. In the plasma bonding, the inorganic bonding layer 132 is firmly fixed to the bonding surface 12a by forming a silicon-oxygen covalent bond or a silicon-silicon covalent bond between the inorganic bonding layer 132 and the bonding surface 12a. The direct bonding may employ a solid phase bonding method such as diffusion bonding in addition to plasma bonding.
 本実施形態において無機接合層132は、シリコン酸化物、特に、二酸化ケイ素で構成される。これにより、SiO2を主成分とするガラス材に近い屈折率が得られるため、無機接合層132と第2のガラス基材12との接合界面における屈折率差はあるが当該接合界面の厚みが1nm以下と波長に比べて十分に小さいので、屈折率差に起因する反射をなくすことができる。 In the present embodiment, the inorganic bonding layer 132 is made of silicon oxide, particularly silicon dioxide. As a result, a refractive index close to that of a glass material containing SiO 2 as a main component is obtained. Therefore, although there is a difference in refractive index at the bonding interface between the inorganic bonding layer 132 and the second glass substrate 12, the thickness of the bonding interface is small. Since it is sufficiently smaller than the wavelength of 1 nm or less, reflection caused by the difference in refractive index can be eliminated.
 無機接合層132及び接合面12aの表面粗さ(Ra)は、2nm以下である。これにより、第2のガラス基材12に対する無機接合層132のプラズマ接合による直接接合処理を安定に行うことができる。無機接合層132及び接合面12aの表面粗さ(Ra)は、1nm以下であることが好ましく、0.5nm以下であることがより好ましい。 The surface roughness (Ra) of the inorganic bonding layer 132 and the bonding surface 12a is 2 nm or less. Thereby, the direct joining process by the plasma joining of the inorganic joining layer 132 with respect to the 2nd glass base material 12 can be performed stably. The surface roughness (Ra) of the inorganic bonding layer 132 and the bonding surface 12a is preferably 1 nm or less, and more preferably 0.5 nm or less.
 無機接合層132の厚みは、上記接合界面を形成するのに十分な厚みを有していればよく、例えば、200nm以上1000nm以下である。これにより、第1及び第2のガラス基材11,12間の接合厚みを小さくすることができるため、偏光分離素子10及び偏光変換素子100の小型化を図ることができるとともに、第2のガラス基材12との接合時の加熱によるガスの発生量を抑制することができる。無機接合層132の厚みを200nm以上とすることで、偏光分離層13の一部(低屈折率材料層)として無機接合層132を機能させることができる。なお、無機接合層132の厚みは200nm未満であってもよく、接合界面を形成することが可能であれば特に限定されない。 The thickness of the inorganic bonding layer 132 may be sufficient to form the bonding interface, and is, for example, 200 nm or more and 1000 nm or less. Thereby, since the joining thickness between the 1st and 2nd glass base materials 11 and 12 can be made small, while being able to achieve size reduction of the polarization separation element 10 and the polarization conversion element 100, it is 2nd glass. The amount of gas generated by heating at the time of joining to the substrate 12 can be suppressed. By setting the thickness of the inorganic bonding layer 132 to 200 nm or more, the inorganic bonding layer 132 can function as a part of the polarization separation layer 13 (low refractive index material layer). Note that the thickness of the inorganic bonding layer 132 may be less than 200 nm, and is not particularly limited as long as a bonding interface can be formed.
 一方、反射層14は、偏光分離層13によって反射されたS偏光光Lsを光出射面102に向けて再び反射する光学機能膜であり、第1のガラス基材11と第2のガラス基材12との間に偏光分離層13と平行に配置される。反射層14は、例えば、誘電体多層膜で構成される。誘電体多層膜としては、酸化ケイ素と酸化チタンとを交互に積層した多層膜が挙げられる。反射層14は、誘電体多層膜で構成されてもよい。 On the other hand, the reflection layer 14 is an optical functional film that reflects the S-polarized light Ls reflected by the polarization separation layer 13 again toward the light exit surface 102, and includes the first glass substrate 11 and the second glass substrate. 12 is arranged in parallel with the polarization separation layer 13. The reflective layer 14 is composed of, for example, a dielectric multilayer film. Examples of the dielectric multilayer film include a multilayer film in which silicon oxide and titanium oxide are alternately laminated. The reflective layer 14 may be composed of a dielectric multilayer film.
 反射層14は、第1のガラス基材11の表面(接合面11aとは反対側の面)に上記誘電体多層膜が形成された後、第2のガラス基材12の表面(接合面12aとは反対側の面)に接合される。接合方法は特に限定されず、直接接合でもよいし、接着剤を用いた接合であってもよい。直接接合の場合、誘電体多層膜の表面に二酸化ケイ素膜を形成し、当該に酸化ケイ素膜を第1のガラス基材11へプラズマ接合により接合される。 After the dielectric multilayer film is formed on the surface of the first glass substrate 11 (surface opposite to the bonding surface 11a), the reflective layer 14 is formed on the surface of the second glass substrate 12 (bonding surface 12a). To the opposite surface). The bonding method is not particularly limited, and may be direct bonding or bonding using an adhesive. In the case of direct bonding, a silicon dioxide film is formed on the surface of the dielectric multilayer film, and the silicon oxide film is bonded to the first glass substrate 11 by plasma bonding.
 偏光分離素子10は、例えば図4に示すように、偏光分離層13及び反射層14がそれぞれ形成された第1のガラス基材11の両面に第2のガラス基材12が接合された素子集合体10Mを、切断線Cに沿って切断することで形成される。図5A~Cに示すように、個片化された個々の偏光分離素子10pは、長手方向の両端がラップ研磨され、光入射面101及び光出射面102に反射防止膜101m,102mが形成された後、長手方向に両端どうし接合される。 For example, as shown in FIG. 4, the polarization separation element 10 is an element set in which a second glass substrate 12 is bonded to both surfaces of a first glass substrate 11 on which a polarization separation layer 13 and a reflection layer 14 are formed. The body 10M is formed by cutting along the cutting line C. As shown in FIGS. 5A to 5C, each polarization separating element 10p separated into pieces is lapped at both ends in the longitudinal direction, and antireflection films 101m and 102m are formed on the light incident surface 101 and the light emitting surface 102, respectively. After that, both ends are joined in the longitudinal direction.
[無機波長板]
 無機波長板20は、反射層14で反射されたS偏光光LsをP偏光光Lpに変換する光学素子(1/2波長板)である。無機波長板20は、典型的には、X軸方向に長手の矩形状の水晶板で構成され、偏光分離素子10の光出射面102に所定の間隔をおいて配置される。
[Inorganic wave plate]
The inorganic wavelength plate 20 is an optical element (half wavelength plate) that converts the S-polarized light Ls reflected by the reflective layer 14 into P-polarized light Lp. The inorganic wavelength plate 20 is typically formed of a rectangular crystal plate that is long in the X-axis direction, and is disposed at a predetermined interval on the light emitting surface 102 of the polarization separation element 10.
 無機波長板20の光入射側及び光出射側の各面には、反射防止膜21が形成される。反射防止膜21は、誘電体多層膜であり、例えば、フッ化マグネシウム(MgF2)や二酸化ケイ素(SiO2)、TiO2、Ta25などの誘電体多層膜で構成される。 An antireflection film 21 is formed on each surface of the inorganic wave plate 20 on the light incident side and the light emitting side. The antireflection film 21 is a dielectric multilayer film, and is composed of a dielectric multilayer film such as magnesium fluoride (MgF 2 ), silicon dioxide (SiO 2 ), TiO 2 , Ta 2 O 5, for example.
 無機波長板20は、X軸方向の長手の短冊形状を有し、図1に示すように反射層14からの反射光(S偏光光Ls)の光路上にそれぞれ間隔をあけて複数配置される。各無機波長板20は、第2の支持フレーム120に共通に支持される。 The inorganic wave plate 20 has a long strip shape in the X-axis direction, and a plurality of inorganic wave plates 20 are arranged at intervals on the optical path of the reflected light (S-polarized light Ls) from the reflective layer 14 as shown in FIG. . Each inorganic wave plate 20 is supported in common by the second support frame 120.
[支持体]
 支持体30は、第1の支持フレーム110と第2の支持フレーム120との接合体で構成される。第1の支持フレーム110は、複数のアパーチャ111を有する金属板で構成され、偏光分離素子10の光入射面101側に配置される。第2フレーム120は、偏光分離素子10の光出射面102側に配置された額縁状の金属板で構成される。第1の支持フレーム110及び第2の支持フレーム120は、偏光分離素子10及び無機波長板20を挟んで接着層130もしくは適宜の連結機構を介して相互に接合される。
[Support]
The support 30 is constituted by a joined body of the first support frame 110 and the second support frame 120. The first support frame 110 is made of a metal plate having a plurality of apertures 111 and is disposed on the light incident surface 101 side of the polarization separation element 10. The second frame 120 is configured by a frame-shaped metal plate disposed on the light exit surface 102 side of the polarization separation element 10. The first support frame 110 and the second support frame 120 are bonded to each other via the adhesive layer 130 or an appropriate connection mechanism with the polarization separation element 10 and the inorganic wavelength plate 20 interposed therebetween.
 支持体30は、無機波長板20が偏光分離素子10の光出射面102の所定位置に対向するように偏光分離素子10と無機波長板20とを共通に支持する。これにより、偏光分離素子10と無機波長板20との間を接着剤等により相互に接合することなく、偏光分離素子10と無機波長板20との相対的位置関係が維持される。したがって、偏光分離素子10と無機波長板20との間の接着剤の存在による耐熱性、耐光性及び透光性の低下を回避することができる。 The support 30 supports the polarization separation element 10 and the inorganic wavelength plate 20 in common so that the inorganic wavelength plate 20 faces a predetermined position of the light exit surface 102 of the polarization separation element 10. Thereby, the relative positional relationship between the polarization separation element 10 and the inorganic wavelength plate 20 is maintained without mutually bonding the polarization separation element 10 and the inorganic wavelength plate 20 with an adhesive or the like. Accordingly, it is possible to avoid a decrease in heat resistance, light resistance, and translucency due to the presence of the adhesive between the polarization separation element 10 and the inorganic wave plate 20.
 第1の支持フレーム110は額縁形状を有し、偏光分離素子10の光入射面101に接する。第2の支持フレーム120は、無機波長板20を支持する開口部が面内に形成された板形状を有する。第1及び第2の支持フレーム110,120は、周辺を補強することで互いの接合強度が確保される。の構成材料は特に限定されず、典型的には金属材料で構成される。接着層130は、紫外線硬化樹脂等の有機材料で構成され、第2の支持フレーム120と無機波長板20及び偏光分離素子10との間を接着し、入射光Lが照射されない領域に配置される。これにより、光の照射による接着層130の劣化を回避することができる。 The first support frame 110 has a frame shape and is in contact with the light incident surface 101 of the polarization separation element 10. The second support frame 120 has a plate shape in which an opening for supporting the inorganic wave plate 20 is formed in the plane. The first and second support frames 110 and 120 are secured to each other by reinforcing the periphery. The constituent material is not particularly limited, and is typically composed of a metal material. The adhesive layer 130 is made of an organic material such as an ultraviolet curable resin, adheres between the second support frame 120, the inorganic wave plate 20, and the polarization separation element 10, and is disposed in a region where the incident light L is not irradiated. . Thereby, deterioration of the adhesive layer 130 due to light irradiation can be avoided.
[偏光分離素子の製造方法]
 続いて、偏光分離素子10の製造方法、特に、偏光分離層13の製造方法について説明する。
[Production Method of Polarization Separation Element]
Then, the manufacturing method of the polarization separation element 10, especially the manufacturing method of the polarization separation layer 13, is demonstrated.
 本実施形態の偏光分離素子10の製造方法は、第1のガラス基材11の表面(接合面11a)に偏光分離膜131を形成する工程と、偏光分離膜131の上にシリコン化合物からなる無機接合層132を形成する工程と、無機接合層132に、第2のガラス基材12をプラズマ接合により接合する工程とを有する。 The method for manufacturing the polarization separation element 10 of the present embodiment includes a step of forming the polarization separation film 131 on the surface (bonding surface 11a) of the first glass substrate 11, and an inorganic material made of a silicon compound on the polarization separation film 131. There are a step of forming the bonding layer 132 and a step of bonding the second glass substrate 12 to the inorganic bonding layer 132 by plasma bonding.
 (方法1)
 図6は、偏光分離素子10の製造方法の一例を示す概略工程図である。この例では、第1のガラス基材11上に偏光分離膜131及び無機接合層132が成膜され(図6A)、無機接合層132の表面及び第2のガラス基材12の接合面12aが研磨により平坦化された後(図6B)、無機接合層132と第2のガラス基材12とが直接接合される(図6C)。つまり、本例では、無機接合層132を形成した後、第2のガラス基材12を接合する前に、無機接合層132及び第2のガラス基材12の接合面12aが研磨される。
(Method 1)
FIG. 6 is a schematic process diagram showing an example of a method for manufacturing the polarization separation element 10. In this example, the polarization separation film 131 and the inorganic bonding layer 132 are formed on the first glass substrate 11 (FIG. 6A), and the surface of the inorganic bonding layer 132 and the bonding surface 12a of the second glass substrate 12 are formed. After planarization by polishing (FIG. 6B), the inorganic bonding layer 132 and the second glass substrate 12 are directly bonded (FIG. 6C). That is, in this example, after forming the inorganic bonding layer 132 and before bonding the second glass substrate 12, the bonding surface 12a of the inorganic bonding layer 132 and the second glass substrate 12 is polished.
 偏光分離膜131及び無機接合層132の成膜方法は特に限定されず、スパッタ法、イオンビームスパッタ法、真空蒸着法、イオンアシスト蒸着法等が適用可能である。偏光分離膜131を構成する誘電体多層膜には、例えば、低屈折率材料層としてSiO2を、高屈折率材料層としてTa25を用いることができる。各材料層の厚み、層数等は、要求される偏光分離特性に応じて適宜設定可能である。一例として、図7に示すように、偏光分離膜131は12層の誘電体多層膜で構成され、その上層(13層目)に無機接合層132を構成する二酸化ケイ素膜が形成される。 A method for forming the polarization separation film 131 and the inorganic bonding layer 132 is not particularly limited, and a sputtering method, an ion beam sputtering method, a vacuum evaporation method, an ion assist evaporation method, or the like is applicable. For example, SiO 2 can be used as the low refractive index material layer, and Ta 2 O 5 can be used as the high refractive index material layer for the dielectric multilayer film constituting the polarization separation film 131. The thickness, the number of layers, etc. of each material layer can be appropriately set according to the required polarization separation characteristics. As an example, as shown in FIG. 7, the polarization separation film 131 is composed of a 12-layer dielectric multilayer film, and a silicon dioxide film constituting the inorganic bonding layer 132 is formed on the upper layer (13th layer).
 無機接合層132及び第2のガラス基材12の接合面12aは、表面粗さ(Ra)が1nam以下、より好ましくは、0.5nm以下となるように研磨される。研磨方法は特に限定されず、典型的には、nmオーダで表面粗さを調整できる高精度研磨法が採用される。これにより、後述するプラズマ接合により、所望とする接合強度を得ることができる。 The bonding surface 12a of the inorganic bonding layer 132 and the second glass substrate 12 is polished so that the surface roughness (Ra) is 1 nm or less, more preferably 0.5 nm or less. The polishing method is not particularly limited, and typically, a high-accuracy polishing method that can adjust the surface roughness on the order of nm is employed. Thereby, desired joining strength can be obtained by plasma joining described later.
 無機接合層132の表面を研磨することで第2のガラス基材12との接合に必要な表面粗さが得られるため、第1のガラス基材11の接合面11aやその上に成膜される偏光分離膜131の表面粗さは1nm以上であってもよい。これにより、接合面11aの加工コストや偏光分離膜131の膜厚制御が容易となる。また、無機接合層132は、研磨により厚みが削減されるため、例えば5000nmの厚みで成膜され、その後、例えば2000nm以下の厚みになるまで研磨される。 By polishing the surface of the inorganic bonding layer 132, the surface roughness necessary for bonding to the second glass substrate 12 can be obtained, and thus the film is formed on the bonding surface 11a of the first glass substrate 11 and on the surface. The surface roughness of the polarization separation film 131 may be 1 nm or more. Thereby, the processing cost of the bonding surface 11a and the film thickness control of the polarization separation film 131 are facilitated. In addition, since the thickness of the inorganic bonding layer 132 is reduced by polishing, the inorganic bonding layer 132 is formed to a thickness of, for example, 5000 nm, and then polished to a thickness of, for example, 2000 nm or less.
 無機接合層132と第2のガラス基材12との接合には、プラズマ接合が用いられる。プラズマ接合では、まず、第1のガラス基材11上の無機接合層132の表面と、第2のガラス基材12の接合面12aとに、プラズマ活性処理が施される。これにより、無機接合層132の表面及び接合面12aにOH基が生成されることで親水化される。 Plasma bonding is used for bonding the inorganic bonding layer 132 and the second glass substrate 12. In plasma bonding, first, plasma activation treatment is performed on the surface of the inorganic bonding layer 132 on the first glass substrate 11 and the bonding surface 12 a of the second glass substrate 12. As a result, OH groups are generated on the surface of the inorganic bonding layer 132 and the bonding surface 12a so as to be hydrophilized.
 プラズマ活性処理に使用されるガスには、酸素(O2)、窒素(N2)、ヘリウム(He)、アルゴン(Ar)、水素(H2)等を用いることができる。特に、無機接合層132及び接合面12aの構成元素と同種のガス(本例では酸素)を使用することで、無機接合層132及び接合面12aの変質を抑制することができる。 As a gas used for the plasma activation treatment, oxygen (O 2 ), nitrogen (N 2 ), helium (He), argon (Ar), hydrogen (H 2 ), or the like can be used. In particular, by using the same kind of gas (oxygen in this example) as that of the constituent elements of the inorganic bonding layer 132 and the bonding surface 12a, alteration of the inorganic bonding layer 132 and the bonding surface 12a can be suppressed.
 続いて、無機接合層132と第2のガラス基材12とが貼り合わされ、各々のOH基間の水素結合により仮接合状態となる。この状態で、例えば200℃以上の温度に熱処理(アニール)し、界面のSi-OHを脱水縮合反応させ、シリコン-酸素共有結合あるいはシリコン-シリコン共有結合を形成することで、プラズマ接合が完了する。 Subsequently, the inorganic bonding layer 132 and the second glass substrate 12 are bonded together, and a temporary bonding state is obtained by hydrogen bonding between the OH groups. In this state, for example, heat treatment (annealing) is performed at a temperature of 200 ° C. or more, and Si—OH at the interface is subjected to a dehydration condensation reaction to form a silicon-oxygen covalent bond or a silicon-silicon covalent bond, thereby completing plasma bonding. .
 (方法2)
 図8は、偏光分離素子10の製造方法の他の一例を示す概略工程図である。この例では、第1のガラス基材11の接合面11a及び第2のガラス基材12の接合面12aが研磨により平坦化され(図8A)、第1のガラス基材の接合面11aに偏光分離膜131及び無機接合層132が順に成膜された後(図8B)、無機接合層132と第2のガラス基材12とが直接接合される(図8C)。つまり、本例では、偏光分離層13が形成される前に、第1のガラス基材の接合面11aが研磨され、第2のガラス基材12を無機接合層132に接合する前に、第2のガラス基材12の接合面12aが研磨される。
(Method 2)
FIG. 8 is a schematic process diagram illustrating another example of the method of manufacturing the polarization separation element 10. In this example, the bonding surface 11a of the first glass substrate 11 and the bonding surface 12a of the second glass substrate 12 are flattened by polishing (FIG. 8A), and polarized on the bonding surface 11a of the first glass substrate. After the separation membrane 131 and the inorganic bonding layer 132 are sequentially formed (FIG. 8B), the inorganic bonding layer 132 and the second glass substrate 12 are directly bonded (FIG. 8C). That is, in this example, before the polarization separation layer 13 is formed, the bonding surface 11a of the first glass substrate is polished, and before the second glass substrate 12 is bonded to the inorganic bonding layer 132, the first The bonding surface 12a of the second glass substrate 12 is polished.
 偏光分離膜131及び無機接合層132の成膜方法は、本例では、表面の平坦度が高い成膜法が用いられる。このような成膜方法としては、例えば、イオンビームスパッタリング、バイアススパッタリング等のような成膜面の面粗度の小さい成膜方法が適用可能であり、これにより、表面粗さ(Ra)が例えば0.5nm以下の高い平坦度をもった蒸着膜を形成することができる。このような成膜法によって偏光分離層13が形成されることで、研磨処理を必要とすることなく無機接合層132の表面を所望とする平坦度で形成することができるため、無機接合層132の厚みを例えば200nm程度にまで薄くすることができる。 As a method for forming the polarization separation film 131 and the inorganic bonding layer 132, a film forming method with high surface flatness is used in this example. As such a film forming method, for example, a film forming method having a small surface roughness such as ion beam sputtering, bias sputtering or the like can be applied, whereby the surface roughness (Ra) is, for example, A vapor deposition film having a high flatness of 0.5 nm or less can be formed. Since the polarization separation layer 13 is formed by such a film forming method, the surface of the inorganic bonding layer 132 can be formed with a desired flatness without requiring polishing treatment. Can be reduced to about 200 nm, for example.
 無機接合層132と第2のガラス基材12との接合工程では、上述の方法1と同様なプラズマ接合処理が行われる。本例では、無機接合層132の厚みを小さくすることができるため、アニール時における無機接合層132からの脱ガス量を低減することができるという利点がある。 In the bonding step between the inorganic bonding layer 132 and the second glass substrate 12, a plasma bonding process similar to the method 1 described above is performed. In this example, since the thickness of the inorganic bonding layer 132 can be reduced, there is an advantage that the amount of degassing from the inorganic bonding layer 132 during annealing can be reduced.
 以上のように構成される本実施形態の偏光変換素子100においては、偏光分離層13と第2のガラス基材12の接合面12aとの接合部がシリコン化合物からなる無機接合層132で構成されているため、耐熱性及び耐光性の向上を実現することができる。さらに、無機接合層132が接合面12aに直接接合により接合されるため、接合界面における屈折率差はあるが当該接合界面の厚みが1nm以下と波長に比べて十分小さいので、屈折率差に起因する反射をなくして透過率を向上させることができる。 In the polarization conversion element 100 of the present embodiment configured as described above, the joint between the polarization separation layer 13 and the joint surface 12a of the second glass substrate 12 is composed of an inorganic joint layer 132 made of a silicon compound. Therefore, improvement in heat resistance and light resistance can be realized. Further, since the inorganic bonding layer 132 is directly bonded to the bonding surface 12a by bonding, there is a difference in refractive index at the bonding interface, but the thickness of the bonding interface is 1 nm or less, which is sufficiently smaller than the wavelength. Thus, the transmittance can be improved by eliminating reflection.
 例えば、図9に、上述の方法1で作製された偏光分離素子10の光学特性を示す。図9より、可視光域において高い偏波消光比が得られることが確認される。図示せずとも、上述の方法2で作製された偏光分離素子によっても図9と同様な光学特性が得られることが確認されている。 For example, FIG. 9 shows the optical characteristics of the polarization separation element 10 produced by the above-described method 1. FIG. 9 confirms that a high polarization extinction ratio can be obtained in the visible light region. Although not shown, it has been confirmed that the same optical characteristics as in FIG. 9 can be obtained even by the polarization separation element manufactured by the above-described method 2.
 ここで、一般的に、屈折率(nd)が1.5付近の汎用ガラス(白板ガラス、青板ガラス、BK7など)をガラス基材に用いて偏光分離膜を成膜する場合、低屈折率材料であるMgF2(フッ化マグネシウム、nd:1.38)を用いないと所望とする光学特性(透過率)が得られにくい。しかし、MgF2は、膜応力が大きいため、誘電体多層膜を形成することが困難であり、接合時に温度を200℃に上げた際に多層膜が破壊されてしまう。このため、プラズマ接合などの直接接合により偏光分離膜をガラス基材に接合することができず、紫外線硬化型接着剤などの有機系の接着剤を用いる必要があった。
 しかしながら、ガラス基材と偏光分離膜との接合部に有機系の接着剤が用いられているため、耐熱性が低く、光による劣化が避けられない。
Here, generally, when a polarization separation film is formed using a general-purpose glass (white plate glass, blue plate glass, BK7, etc.) having a refractive index (nd) of around 1.5 as a glass substrate, a low refractive index material If MgF 2 (magnesium fluoride, nd: 1.38) is not used, it is difficult to obtain desired optical characteristics (transmittance). However, since MgF 2 has a large film stress, it is difficult to form a dielectric multilayer film, and the multilayer film is destroyed when the temperature is raised to 200 ° C. during bonding. For this reason, the polarization separation film cannot be bonded to the glass substrate by direct bonding such as plasma bonding, and it has been necessary to use an organic adhesive such as an ultraviolet curable adhesive.
However, since an organic adhesive is used at the joint between the glass substrate and the polarization separation film, heat resistance is low, and deterioration due to light is inevitable.
 これに対して本実施形態の偏光分離素子10によれば、ガラス基材と偏光分離膜との接合部に有機系の接着剤が介在していないため、耐熱性及び耐光性が向上し、光源の高出力化あるいは光エネルギの高密度化にも十分に対応することが可能となる。また、光の光路上に接着剤が存在しないため、接合界面における屈折率差はあるが当該接合界面の厚みが1nm以下と波長に比べて十分小さいので、屈折率差に起因する反射をなくして透過率を向上させることができる。 On the other hand, according to the polarization separation element 10 of the present embodiment, since no organic adhesive is present at the joint between the glass substrate and the polarization separation film, the heat resistance and light resistance are improved. Therefore, it is possible to sufficiently cope with higher output or higher density of light energy. In addition, since there is no adhesive on the optical path of light, there is a difference in refractive index at the bonding interface, but the thickness of the bonding interface is 1 nm or less, which is sufficiently smaller than the wavelength, so that reflection caused by the difference in refractive index is eliminated. The transmittance can be improved.
 しかも、本実施形態では、第1及び第2のガラス基材11,12に屈折率が1.6以上1.8以下のガラス材が用いられるため、偏光分離膜131の低屈折率材料に二酸化ケイ素を、高屈折率材料にTiO2、Ta25などの一般的な材料を用いて、所望とする光学特性を確保することができる。 In addition, in the present embodiment, since glass materials having a refractive index of 1.6 or more and 1.8 or less are used for the first and second glass base materials 11 and 12, carbon dioxide is used as the low refractive index material of the polarization separation film 131. Desirable optical characteristics can be ensured by using silicon and a general material such as TiO 2 and Ta 2 O 5 as a high refractive index material.
 さらに本実施形態の偏光変換素子100によれば、無機波長板20が偏光分離素子10を支持する支持体30に共通に支持されているため、偏光分離素子10から無機波長板20に至る光路上に有機系の接着剤を介在させることなく無機波長板20を偏光分離素子10の光出射面102に対して非接触で配置することができる。これにより、偏光変換素子100の耐熱性、耐光性及び光透過率を向上させることができる。 Furthermore, according to the polarization conversion element 100 of the present embodiment, since the inorganic wavelength plate 20 is supported in common by the support 30 that supports the polarization separation element 10, on the optical path from the polarization separation element 10 to the inorganic wavelength plate 20. The inorganic wave plate 20 can be disposed in a non-contact manner with respect to the light exit surface 102 of the polarization separation element 10 without interposing an organic adhesive on the surface. Thereby, the heat resistance, light resistance, and light transmittance of the polarization conversion element 100 can be improved.
 なお、一般的に屈折率(nd)が1.45の石英や1.5付近の汎用ガラス(白板ガラス、青板ガラス、BK7、Bolofloatなど)に対して低屈折率材料に膜応力の大きいMgF2を用いる場合にも本技術は適用可能である。この場合、接合時に温度を上げた際に多層膜中にマイクロクラックが発生したり、光学特性に劣ったりすることはあるが、素子の作製は可能である。 In general, MgF 2 having a large film stress in a low refractive index material with respect to quartz having a refractive index (nd) of 1.45 or general-purpose glass of about 1.5 (white plate glass, blue plate glass, BK7, Bolofloat, etc.) The present technology can also be applied when using. In this case, when the temperature is increased at the time of bonding, microcracks may be generated in the multilayer film or the optical characteristics may be deteriorated, but the device can be manufactured.
 同様に、屈折率(nd)が1.45の石英や1.5付近の汎用ガラス(白板ガラス、青板ガラス、BK7、Bolofloatなど)に対して低屈折率材料に膜応力の小さい二酸化ケイ素を用いてもよい。この場合もやはり光学特性は劣るが素子の作製は可能である。 Similarly, silicon dioxide with a low film stress is used as a low refractive index material for quartz having a refractive index (nd) of 1.45 or general-purpose glass (white glass, blue glass, BK7, Bolofloat, etc.) near 1.5. May be. In this case, the optical characteristics are also inferior, but the device can be manufactured.
<第2の実施形態>
 続いて、以上のように構成される偏光変換素子100を有する照明光学系を備えた画像表示装置について説明する。図10は、本技術の一実施形態に係る画像表示装置200を示す概略構成図である。
<Second Embodiment>
Subsequently, an image display apparatus including an illumination optical system having the polarization conversion element 100 configured as described above will be described. FIG. 10 is a schematic configuration diagram illustrating an image display device 200 according to an embodiment of the present technology.
 本実施形態の画像表示装置200は、偏光を出射する照明光学系240と、照明光学系240から出射された光を分光する分光光学系250と、分光光学系250によって分光された光をそれぞれ変調する液晶パネル63,68,73を備える。また、画像表示装置200は、液晶パネル63,68,73によって変調されたそれぞれの光を合成する光合成部80と、光合成部80により合成された光を投射する投射レンズ90を備える。 The image display apparatus 200 according to the present embodiment modulates the illumination optical system 240 that emits polarized light, the spectroscopic optical system 250 that splits the light emitted from the illumination optical system 240, and the light that is split by the spectroscopic optical system 250, respectively. Liquid crystal panels 63, 68, 73 are provided. The image display apparatus 200 includes a light combining unit 80 that combines the lights modulated by the liquid crystal panels 63, 68, and 73, and a projection lens 90 that projects the light combined by the light combining unit 80.
 照明光学系240において、超高圧水銀ランプ等の光源41から出射された白色光は、リフレクタ42によって反射され、防爆ガラス43を透過して出射される。UVカットフィルタ44は、防爆ガラス43を透過した光から紫外線を除去する。UVカットフィルタ44を透過した光は、第1のフライアイレンズ45及び第2のフライアイレンズ46によって輝度ムラが低減され、偏光変換素子100に入射する。偏光変換素子100は、入射した光を例えばP偏光光に変換する。そして、このP偏光光が照明光学系240から出射される。 In the illumination optical system 240, the white light emitted from the light source 41 such as an ultra-high pressure mercury lamp is reflected by the reflector 42 and transmitted through the explosion-proof glass 43. The UV cut filter 44 removes ultraviolet rays from the light transmitted through the explosion-proof glass 43. The light transmitted through the UV cut filter 44 is reduced in luminance unevenness by the first fly-eye lens 45 and the second fly-eye lens 46 and enters the polarization conversion element 100. The polarization conversion element 100 converts incident light into, for example, P-polarized light. Then, this P-polarized light is emitted from the illumination optical system 240.
 照明光学系240から出射された光は、コンデンサレンズ48によってコリメートされ、分光光学系250に入射する。分光光学系250は、照明光学系240からの白色光のうち青色光を透過し、赤色光及び緑色光を反射するダイクロイックミラー49を含む。また、分光光学系250は、ダイクロイックミラー49によって反射された光の光路上に配置され、緑色光を反射し、赤色光を透過するダイクロイックミラー53を含んで構成される。 The light emitted from the illumination optical system 240 is collimated by the condenser lens 48 and enters the spectroscopic optical system 250. The spectroscopic optical system 250 includes a dichroic mirror 49 that transmits blue light out of white light from the illumination optical system 240 and reflects red light and green light. The spectroscopic optical system 250 includes a dichroic mirror 53 that is disposed on the optical path of the light reflected by the dichroic mirror 49, reflects green light, and transmits red light.
 ダイクロイックミラー49を透過した青色光は、UV吸収フィルタ51を透過することにより紫外線をカットされる。UV吸収フィルタ51を透過した青色光は、ミラー52によって反射されるとともに、コンデンサレンズ61に入射する。コンデンサレンズ61によって集光された青色光は、入射側偏光板62によって直線偏光に偏光方向が揃えられ、液晶パネル63に入射する。液晶パネル63の後段には、検光子としての出射側偏光板64が配置されており、液晶パネル63を透過した光のうち、所定の偏光方向の光のみを透過させる。 The blue light that has passed through the dichroic mirror 49 passes through the UV absorption filter 51, so that the ultraviolet rays are cut off. The blue light transmitted through the UV absorption filter 51 is reflected by the mirror 52 and enters the condenser lens 61. The blue light condensed by the condenser lens 61 is made to be linearly polarized by the incident side polarizing plate 62 and the polarization direction is aligned, and enters the liquid crystal panel 63. An emission side polarizing plate 64 as an analyzer is disposed at the subsequent stage of the liquid crystal panel 63, and transmits only light having a predetermined polarization direction among the light transmitted through the liquid crystal panel 63.
 液晶パネル63には、例えば、ツイストネマチック型のものを用いることができる。この場合、液晶パネル63の各画素には、画像情報に応じた青色光用の信号電圧が印加され、この電圧に応じて各画素を透過する青色光の偏光方向が回転される。画素毎に偏光方向の異なった青色光を出射側偏光板64に透すことにより、画像情報に対応した強度分布を有する青色像光が得られる。出射側偏光板64を透過した青色光は、光合成部80の入射面に設けられた1/2波長フィルム65を透過することによって偏光方向が90°回転された後、合成プリズム等の光合成部80に入射する。 As the liquid crystal panel 63, for example, a twisted nematic type can be used. In this case, a signal voltage for blue light corresponding to image information is applied to each pixel of the liquid crystal panel 63, and the polarization direction of the blue light transmitted through each pixel is rotated according to this voltage. By transmitting blue light having a different polarization direction for each pixel through the exit-side polarizing plate 64, blue image light having an intensity distribution corresponding to image information is obtained. The blue light that has passed through the exit-side polarizing plate 64 is transmitted through a half-wave film 65 provided on the incident surface of the light combining unit 80 so that the polarization direction is rotated by 90 °, and then the light combining unit 80 such as a combining prism. Is incident on.
 ダイクロイックミラー53によって反射された緑色光は、コンデンサレンズ66に入射する。コンデンサレンズ66によって集光された緑色光は、入射側偏光板67によって直線偏光となり、液晶パネル68に入射する。液晶パネル68は、画像情報に応じて、各画素を透過する緑色光の偏光方向を回転させる。液晶パネル68を透過した緑色光が出射側偏光板69を透過することによって、画像情報に対応した強度分布を有する緑色像光が得られる。出射側偏光板69を透過した緑色光は、光合成部80に入射する。 The green light reflected by the dichroic mirror 53 enters the condenser lens 66. The green light condensed by the condenser lens 66 becomes linearly polarized light by the incident side polarizing plate 67 and enters the liquid crystal panel 68. The liquid crystal panel 68 rotates the polarization direction of the green light transmitted through each pixel according to the image information. The green light transmitted through the liquid crystal panel 68 is transmitted through the exit side polarizing plate 69, whereby green image light having an intensity distribution corresponding to the image information is obtained. The green light that has passed through the emission-side polarizing plate 69 enters the light combining unit 80.
 一方、ダイクロイックミラー53を透過した赤色光は、集光レンズ54及びミラー55を介して波長選択フィルタ56へ入射する。波長選択フィルタ56は、バンドパスフィルタ等で構成され、有効な赤色光のみを後段に透過させる。波長選択フィルタ56を透過した赤色光は、集光レンズ57及びミラー58を介してコンデンサレンズ71に入射する。 On the other hand, the red light transmitted through the dichroic mirror 53 enters the wavelength selection filter 56 via the condenser lens 54 and the mirror 55. The wavelength selection filter 56 is configured by a band pass filter or the like, and transmits only effective red light to the subsequent stage. The red light that has passed through the wavelength selection filter 56 enters the condenser lens 71 via the condenser lens 57 and the mirror 58.
 コンデンサレンズ71によって集光された赤色光は、入射側偏光板72によって直線偏光となり、液晶パネル73に入射する。液晶パネル73は、画像情報に応じて、各画素を透過する赤色光の偏光方向を回転させる。液晶パネル73を透過した赤色光が出射側偏光板74を透過することによって、画像情報に対応した強度分布を有する赤色像光が得られる。出射側偏光板74を透過した赤色光は、光合成部80の入射面に設けられた1/2波長フィルム75を透過することによって偏光方向が90°回転された後、光合成部80に入射する。 The red light condensed by the condenser lens 71 becomes linearly polarized light by the incident side polarizing plate 72 and enters the liquid crystal panel 73. The liquid crystal panel 73 rotates the polarization direction of the red light transmitted through each pixel according to the image information. The red light transmitted through the liquid crystal panel 73 is transmitted through the exit side polarizing plate 74, whereby red image light having an intensity distribution corresponding to the image information is obtained. The red light that has passed through the exit-side polarizing plate 74 passes through the half-wave film 75 provided on the incident surface of the light combining unit 80, and the polarization direction is rotated by 90 °, and then enters the light combining unit 80.
 光合成部80は、赤色光と緑色光と青色光とを同一光路上に合成する。合成プリズムから出射された合成光は、投射レンズ90によって、図示しないスクリーンに拡大投射される。 The light combining unit 80 combines red light, green light, and blue light on the same optical path. The combined light emitted from the combining prism is enlarged and projected onto a screen (not shown) by the projection lens 90.
 なお、ここでは、画像情報に応じて光を変調する変調器として透過型の液晶パネルを示したが、反射型液晶パネルや、GLV(Grating Light Valve)等を用いた他の方式により変調が行われてもよい。 Here, a transmissive liquid crystal panel is shown as a modulator that modulates light according to image information. However, modulation is performed by a reflective liquid crystal panel or other methods using GLV (Grating Light Valve) or the like. It may be broken.
 本実施形態の画像表示装置200によれば、第1の実施形態で説明した偏光変換素子100を照明光学系240に備えているため、耐熱性、耐光性及び光透過率に優れた照明光学系を構築することができる。また、光源の高出力化あるいは光エネルギの高密度化にも対応することができるため、高輝度の画像を形成することができる。 According to the image display apparatus 200 of the present embodiment, since the illumination optical system 240 includes the polarization conversion element 100 described in the first embodiment, the illumination optical system is excellent in heat resistance, light resistance, and light transmittance. Can be built. In addition, since it is possible to cope with higher output of the light source or higher density of light energy, a high-luminance image can be formed.
 以上、本技術の実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this technique was described, this technique is not limited only to the above-mentioned embodiment, Of course, a various change can be added.
 例えば以上の実施形態では、偏光分離素子10の偏光分離膜131がS偏光を反射し、P偏光を透過する光学機能膜で構成されたが、これに限られず、P偏光を反射し、S偏光を透過する光学機能膜で構成されてもよい。あるいは、無機波長板20には、S偏光をP偏光に変換する波長板に限られず、P偏光をS偏光に変換する波長板が用いられてもよい。 For example, in the above embodiment, the polarization separation film 131 of the polarization separation element 10 is configured by an optical functional film that reflects S-polarized light and transmits P-polarized light. However, the present invention is not limited to this. It may be composed of an optical functional film that transmits light. Alternatively, the inorganic wave plate 20 is not limited to a wave plate that converts S-polarized light into P-polarized light, and a wave plate that converts P-polarized light into S-polarized light may be used.
 偏光分離膜131の層数は12層に限られず、例えば、9~13層であってもよい。各層の厚みも任意に設定することができる。偏光分離膜131の総厚も特に限定されず、例えば、1500~2000nmで適宜設定することができる。 The number of layers of the polarization separation film 131 is not limited to 12 and may be, for example, 9 to 13 layers. The thickness of each layer can also be set arbitrarily. The total thickness of the polarization separation film 131 is not particularly limited, and can be appropriately set, for example, at 1500 to 2000 nm.
 さらに以上の実施形態では、光学素子として偏光分離膜を有する偏光分離素子を例に挙げて説明したが、これに限られず、反射防止膜や波長選択膜等の光学機能膜を備えた光学素子にも本技術は適用可能である。 Further, in the above embodiment, the polarization separation element having a polarization separation film is described as an example of the optical element. However, the present invention is not limited to this, and an optical element having an optical function film such as an antireflection film or a wavelength selection film is used. This technique is also applicable.
 なお、本技術は以下のような構成もとることができる。
(1) 第1の接合面を有する第1のガラス基材と、
 第2の接合面を有する第2のガラス基材と、
 前記第1の接合面を被覆する光学機能膜と、
 前記光学機能膜と前記第2の接合面との間に設けられ、前記第2の接合面と直接接合により接合されたシリコン化合物からなる無機接合層と
 を具備する光学素子。
(2)上記(1)に記載の光学素子であって、
 前記シリコン化合物は、シリコン酸化物である
 光学素子。
(3)上記(1)又は(2)に記載の光学素子であって、
 前記直接接合は、プラズマ接合である
 光学素子。
(4)上記(1)~(3)のいずれか1つに記載の光学素子であって、
 前記無機接合層及び前記第2の接合面の表面粗さ(Ra)は、2nm以下である
 光学素子。
(5)上記(1)~(4)のいずれか1つに記載の光学素子であって、
 前記無機接合層の厚みは、200nm以上1000nm以下である
 光学素子。
(6)上記(1)~(5)のいずれか1つに記載の光学素子であって、
 前記光学機能膜は、第1の屈折率を有する第1の誘電体と、前記第1の屈折率とは異なる第2の屈折率を有する第2の誘電体とを交互に積層した光学多層膜である
 光学素子。
(7)上記(6)に記載の光学素子であって、
 前記光学多層膜は、偏光分離膜である
 光学素子。
(8)上記(7)に記載の光学素子であって、
 前記第1のガラス基材及び前記第2のガラス基材各々の屈折率(n)は、1.6以上1.8以下である
 光学素子。
(9) 第1の接合面を有する第1のガラス基材と、第2の接合面を有する第2のガラス基材と、前記第1の接合面に設けられた光学機能膜と、前記光学機能膜と前記第2の接合面との間に設けられ、前記第2の接合面と直接接合により接合されたシリコン化合物からなる無機接合層とを有する偏光分離素子と、
 前記無機接合層を透過した第1の偏光を、前記第1の偏光と直交する第2の偏光に変換する無機波長板と
 前記偏光分離素子に対して前記無機波長板が間隔を介して対向するように前記偏光分離素子と前記無機波長板とを共通に支持する支持体と
 を具備する偏光変換素子。
(10)  第1の接合面を有する第1のガラス基材と、第2の接合面を有する第2のガラス基材と、前記第1の接合面に設けられた光学機能膜と、前記光学機能膜と前記第2の接合面との間に設けられ、前記第2の接合面と直接接合により接合されたシリコン化合物からなる無機接合層とを有する偏光分離素子と、
  前記無機接合層を透過した第1の偏光を、前記第1の偏光と直交する第2の偏光に変換する無機波長板と
  前記偏光分離素子に対して前記無機波長板が間隔を介して対向するように前記偏光分離素子と前記無機波長板とを共通に支持する支持体と
 を有する偏光変換素子
 を具備する画像表示装置。
(11) 第1のガラス基材の表面に光学機能膜を形成し、
 前記光学機能膜の上にシリコン化合物からなる無機接合層を形成し、
 前記無機接合層に、第2のガラス基材をプラズマ接合により接合する
 光学素子の製造方法。
(12)上記(11)に記載の光学素子の製造方法であって、さらに、
 前記無機接合層を形成した後、前記第2のガラス基材を接合する前に、前記無機接合層及び前記第2のガラス基材の接合面を研磨する
 光学素子の製造方法。
(13)上記(11)に記載の光学素子の製造方法であって、さらに、
 前記光学機能膜を形成する前に、前記第1のガラス基材の表面を研磨し、
 前記第2のガラス基材を前記無機接合層に接合する前に、前記第2のガラス基材の接合面を研磨する
 光学素子の製造方法。
(14)上記(11)~(13)のいずれか1つに記載の光学素子の製造方法であって、
 前記無機接合層は、イオンビームスパッタ法又はバイアススパッタ法により形成される
 光学素子の製造方法。
In addition, this technique can also take the following structures.
(1) a first glass substrate having a first bonding surface;
A second glass substrate having a second bonding surface;
An optical functional film covering the first bonding surface;
An optical element comprising: an inorganic bonding layer made of a silicon compound that is provided between the optical functional film and the second bonding surface and bonded to the second bonding surface by direct bonding.
(2) The optical element according to (1) above,
The optical element is a silicon oxide.
(3) The optical element according to (1) or (2) above,
The direct bonding is a plasma bonding optical element.
(4) The optical element according to any one of (1) to (3) above,
Surface roughness (Ra) of the inorganic bonding layer and the second bonding surface is 2 nm or less.
(5) The optical element according to any one of (1) to (4) above,
The thickness of the said inorganic joining layer is 200 nm or more and 1000 nm or less. Optical element.
(6) The optical element according to any one of (1) to (5) above,
The optical functional film is an optical multilayer film in which a first dielectric having a first refractive index and a second dielectric having a second refractive index different from the first refractive index are alternately stacked. An optical element.
(7) The optical element according to (6) above,
The optical multilayer film is a polarization separation film.
(8) The optical element according to (7) above,
The first glass substrate and the refractive index of the second glass substrate, respectively (n d), the optical element is 1.6 to 1.8.
(9) a first glass substrate having a first bonding surface, a second glass substrate having a second bonding surface, an optical functional film provided on the first bonding surface, and the optical A polarization beam splitting element having an inorganic bonding layer made of a silicon compound provided between the functional film and the second bonding surface and bonded to the second bonding surface by direct bonding;
An inorganic wave plate that converts the first polarized light transmitted through the inorganic bonding layer into a second polarized light that is orthogonal to the first polarized light, and the inorganic wave plate that faces the polarization separation element with a gap therebetween A polarization conversion element comprising: a support that commonly supports the polarization separation element and the inorganic wavelength plate.
(10) a first glass substrate having a first bonding surface, a second glass substrate having a second bonding surface, an optical functional film provided on the first bonding surface, and the optical A polarization beam splitting element having an inorganic bonding layer made of a silicon compound provided between the functional film and the second bonding surface and bonded to the second bonding surface by direct bonding;
An inorganic wave plate that converts the first polarized light transmitted through the inorganic bonding layer into a second polarized light that is orthogonal to the first polarized light, and the inorganic wave plate that faces the polarization separation element with a gap therebetween Thus, the image display apparatus which comprises the polarization conversion element which has the support body which supports the said polarization separation element and the said inorganic wavelength plate in common.
(11) forming an optical functional film on the surface of the first glass substrate;
Forming an inorganic bonding layer made of a silicon compound on the optical functional film;
A method for manufacturing an optical element, wherein the second glass substrate is bonded to the inorganic bonding layer by plasma bonding.
(12) The method for manufacturing an optical element according to (11), further comprising:
After forming the inorganic bonding layer, the bonding surface of the inorganic bonding layer and the second glass substrate is polished before bonding the second glass substrate.
(13) The method for manufacturing an optical element according to (11), further comprising:
Before forming the optical functional film, the surface of the first glass substrate is polished,
A method for producing an optical element, comprising: polishing a bonding surface of the second glass substrate before bonding the second glass substrate to the inorganic bonding layer.
(14) The method for manufacturing an optical element according to any one of (11) to (13) above,
The inorganic bonding layer is formed by ion beam sputtering or bias sputtering. An optical element manufacturing method.
 10…偏光分離素子
 11…第1のガラス基材
 12…第2のガラス基材
 13…偏光分離層
 14…反射層
 20…無機波長板
 30…支持体
 100…波長変換素子
 131…偏光分離膜
 132…無機接合層
 200…画像表示装置
DESCRIPTION OF SYMBOLS 10 ... Polarization separation element 11 ... 1st glass base material 12 ... 2nd glass base material 13 ... Polarization separation layer 14 ... Reflection layer 20 ... Inorganic wavelength plate 30 ... Support body 100 ... Wavelength conversion element 131 ... Polarization separation film 132 ... Inorganic bonding layer 200 ... Image display device

Claims (14)

  1.  第1の接合面を有する第1のガラス基材と、
     第2の接合面を有する第2のガラス基材と、
     前記第1の接合面を被覆する光学機能膜と、
     前記光学機能膜と前記第2の接合面との間に設けられ、前記第2の接合面と直接接合により接合されたシリコン化合物からなる無機接合層と
     を具備する光学素子。
    A first glass substrate having a first bonding surface;
    A second glass substrate having a second bonding surface;
    An optical functional film covering the first bonding surface;
    An optical element comprising: an inorganic bonding layer made of a silicon compound that is provided between the optical functional film and the second bonding surface and bonded to the second bonding surface by direct bonding.
  2.  請求項1に記載の光学素子であって、
     前記シリコン化合物は、シリコン酸化物である
     光学素子。
    The optical element according to claim 1,
    The optical element is a silicon oxide.
  3.  請求項1に記載の光学素子であって、
     前記直接接合は、プラズマ接合である
     光学素子。
    The optical element according to claim 1,
    The direct bonding is a plasma bonding optical element.
  4.  請求項1に記載の光学素子であって、
     前記無機接合層及び前記第2の接合面の表面粗さ(Ra)は、2nm以下である
     光学素子。
    The optical element according to claim 1,
    Surface roughness (Ra) of the inorganic bonding layer and the second bonding surface is 2 nm or less.
  5.  請求項1に記載の光学素子であって、
     前記無機接合層の厚みは、200nm以上1000nm以下である
     光学素子。
    The optical element according to claim 1,
    The thickness of the said inorganic joining layer is 200 nm or more and 1000 nm or less. Optical element.
  6.  請求項1に記載の光学素子であって、
     前記光学機能膜は、第1の屈折率を有する第1の誘電体と、前記第1の屈折率とは異なる第2の屈折率を有する第2の誘電体とを交互に積層した光学多層膜である
     光学素子。
    The optical element according to claim 1,
    The optical functional film is an optical multilayer film in which a first dielectric having a first refractive index and a second dielectric having a second refractive index different from the first refractive index are alternately stacked. An optical element.
  7.  請求項6に記載の光学素子であって、
     前記光学多層膜は、偏光分離膜である
     光学素子。
    The optical element according to claim 6,
    The optical multilayer film is a polarization separation film.
  8.  請求項7に記載の光学素子であって、
     前記第1のガラス基材及び前記第2のガラス基材各々の屈折率(n)は、1.6以上1.8以下である
     光学素子。
    The optical element according to claim 7,
    The first glass substrate and the refractive index of the second glass substrate, respectively (n d), the optical element is 1.6 to 1.8.
  9.  第1の接合面を有する第1のガラス基材と、第2の接合面を有する第2のガラス基材と、前記第1の接合面に設けられた光学機能膜と、前記光学機能膜と前記第2の接合面との間に設けられ、前記第2の接合面と直接接合により接合されたシリコン化合物からなる無機接合層とを有する偏光分離素子と、
     前記無機接合層を透過した第1の偏光を、前記第1の偏光と直交する第2の偏光に変換する無機波長板と
     前記偏光分離素子に対して前記無機波長板が間隔を介して対向するように前記偏光分離素子と前記無機波長板とを共通に支持する支持体と
     を具備する偏光変換素子。
    A first glass substrate having a first bonding surface; a second glass substrate having a second bonding surface; an optical functional film provided on the first bonding surface; and the optical functional film; A polarization separation element having an inorganic bonding layer made of a silicon compound provided between the second bonding surface and directly bonded to the second bonding surface;
    An inorganic wave plate that converts the first polarized light transmitted through the inorganic bonding layer into a second polarized light that is orthogonal to the first polarized light, and the inorganic wave plate that faces the polarization separation element with a gap therebetween A polarization conversion element comprising: a support that commonly supports the polarization separation element and the inorganic wavelength plate.
  10.   第1の接合面を有する第1のガラス基材と、第2の接合面を有する第2のガラス基材と、前記第1の接合面に設けられた光学機能膜と、前記光学機能膜と前記第2の接合面との間に設けられ、前記第2の接合面と直接接合により接合されたシリコン化合物からなる無機接合層とを有する偏光分離素子と、
      前記無機接合層を透過した第1の偏光を、前記第1の偏光と直交する第2の偏光に変換する無機波長板と
      前記偏光分離素子に対して前記無機波長板が間隔を介して対向するように前記偏光分離素子と前記無機波長板とを共通に支持する支持体と
     を有する偏光変換素子
     を具備する画像表示装置。
    A first glass substrate having a first bonding surface; a second glass substrate having a second bonding surface; an optical functional film provided on the first bonding surface; and the optical functional film; A polarization separation element having an inorganic bonding layer made of a silicon compound provided between the second bonding surface and directly bonded to the second bonding surface;
    An inorganic wave plate that converts the first polarized light transmitted through the inorganic bonding layer into a second polarized light that is orthogonal to the first polarized light, and the inorganic wave plate that faces the polarization separation element with a gap therebetween Thus, the image display apparatus which comprises the polarization conversion element which has the support body which supports the said polarization separation element and the said inorganic wavelength plate in common.
  11.  第1のガラス基材の表面に光学機能膜を形成し、
     前記光学機能膜の上にシリコン化合物からなる無機接合層を形成し、
     前記無機接合層に、第2のガラス基材をプラズマ接合により接合する
     光学素子の製造方法。
    Forming an optical functional film on the surface of the first glass substrate;
    Forming an inorganic bonding layer made of a silicon compound on the optical functional film;
    A method for manufacturing an optical element, wherein the second glass substrate is bonded to the inorganic bonding layer by plasma bonding.
  12.  請求項11に記載の光学素子の製造方法であって、さらに、
     前記無機接合層を形成した後、前記第2のガラス基材を接合する前に、前記無機接合層及び前記第2のガラス基材の接合面を研磨する
     光学素子の製造方法。
    The method of manufacturing an optical element according to claim 11, further comprising:
    After forming the inorganic bonding layer, the bonding surface of the inorganic bonding layer and the second glass substrate is polished before bonding the second glass substrate.
  13.  請求項11に記載の光学素子の製造方法であって、さらに、
     前記光学機能膜を形成する前に、前記第1のガラス基材の表面を研磨し、
     前記第2のガラス基材を前記無機接合層に接合する前に、前記第2のガラス基材の接合面を研磨する
     光学素子の製造方法。
    The method of manufacturing an optical element according to claim 11, further comprising:
    Before forming the optical functional film, the surface of the first glass substrate is polished,
    A method for producing an optical element, comprising: polishing a bonding surface of the second glass substrate before bonding the second glass substrate to the inorganic bonding layer.
  14.  請求項11に記載の光学素子の製造方法であって、
     前記光学機能膜は、イオンビームスパッタ法又はバイアススパッタ法により形成される
     光学素子の製造方法。
    It is a manufacturing method of the optical element according to claim 11,
    The optical functional film is formed by an ion beam sputtering method or a bias sputtering method.
PCT/JP2019/008349 2018-03-30 2019-03-04 Optical element, polarization conversion element, image display device, and method for manufacturing optical element WO2019188010A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020509749A JP7322873B2 (en) 2018-03-30 2019-03-04 Polarization conversion element and image display device
JP2023122560A JP2023153170A (en) 2018-03-30 2023-07-27 Polarization conversion element and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068011 2018-03-30
JP2018068011 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019188010A1 true WO2019188010A1 (en) 2019-10-03

Family

ID=68059012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008349 WO2019188010A1 (en) 2018-03-30 2019-03-04 Optical element, polarization conversion element, image display device, and method for manufacturing optical element

Country Status (2)

Country Link
JP (2) JP7322873B2 (en)
WO (1) WO2019188010A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095518A (en) * 1995-06-19 1997-01-10 Nikon Corp Polarization beam splitter and its production
JPH09221342A (en) * 1996-02-09 1997-08-26 Nikon Corp Method for joining optical members together and joined optical component thereby
JP2012078605A (en) * 2010-10-01 2012-04-19 Seiko Epson Corp Polarizing conversion element, polarizing conversion unit, projection device, and method for manufacturing polarizing conversion element
JP2017177519A (en) * 2016-03-30 2017-10-05 株式会社トプコン Method for joining member and optical element produced by the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095518A (en) * 1995-06-19 1997-01-10 Nikon Corp Polarization beam splitter and its production
JPH09221342A (en) * 1996-02-09 1997-08-26 Nikon Corp Method for joining optical members together and joined optical component thereby
JP2012078605A (en) * 2010-10-01 2012-04-19 Seiko Epson Corp Polarizing conversion element, polarizing conversion unit, projection device, and method for manufacturing polarizing conversion element
JP2017177519A (en) * 2016-03-30 2017-10-05 株式会社トプコン Method for joining member and optical element produced by the method

Also Published As

Publication number Publication date
JPWO2019188010A1 (en) 2021-05-13
JP7322873B2 (en) 2023-08-08
JP2023153170A (en) 2023-10-17

Similar Documents

Publication Publication Date Title
KR100909405B1 (en) Polarization conversion element, polarization conversion optical system and image projection device
US20070217011A1 (en) Optical element and image projecting apparatus
JP6287037B2 (en) Polarization conversion element, projector, and method of manufacturing polarization conversion element
JP7203317B2 (en) Light source device and projection type image display device
US10503005B2 (en) Wire grid polarization element and projection type display apparatus
WO2019188010A1 (en) Optical element, polarization conversion element, image display device, and method for manufacturing optical element
JP2007233208A (en) Optical element, projection type projector, and method for manufacturing optical element
JP2001021719A (en) Polarization separation element, polarization converting element and projection type display device
JP2008116898A (en) Optical filter, projection type display device and manufacturing method of optical filter
JP4191125B2 (en) Polarization conversion element and manufacturing method thereof
JP2008096766A (en) Cross dichroic prism and projector
CN113391509B (en) Wavelength conversion element, method for manufacturing wavelength conversion element, light source device, and projector
CN113391510B (en) Wavelength conversion element, method for manufacturing same, light source device, and projector
JP4841154B2 (en) Polarization conversion element and projection display device using the same
JP2004317828A (en) Optical device, optical system and projecting projector device
JP2004170677A (en) Polarized-light separation element
JP6686443B2 (en) Wave plate, polarization conversion element, and projector
JP2012133269A (en) Wavelength plate, polarization conversion element, polarization conversion unit and projection device
JP2009128568A (en) Polarization conversion element and projector
JP3399449B2 (en) Manufacturing method of polarization conversion element
JP2022150711A (en) Polarization conversion element, light source device, and projector
JP2007264010A (en) Manufacturing method of polarization conversion element, and projector
JP4747541B2 (en) Projector phase plate and liquid crystal projector
JP2002071951A (en) Polarized light separating element, polarized light converting element and projection display
JP2005258058A (en) Three-wavelength synthesis device and projection type projector using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509749

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19775793

Country of ref document: EP

Kind code of ref document: A1